WO2019034100A1 - 低成本可回收的导电浆料及其制备方法和电子器件 - Google Patents

低成本可回收的导电浆料及其制备方法和电子器件 Download PDF

Info

Publication number
WO2019034100A1
WO2019034100A1 PCT/CN2018/100797 CN2018100797W WO2019034100A1 WO 2019034100 A1 WO2019034100 A1 WO 2019034100A1 CN 2018100797 W CN2018100797 W CN 2018100797W WO 2019034100 A1 WO2019034100 A1 WO 2019034100A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
alloy
conductive paste
tin
liquid metal
Prior art date
Application number
PCT/CN2018/100797
Other languages
English (en)
French (fr)
Inventor
董仕晋
白安洋
汪鸿章
李亿东
于洋
刘静
Original Assignee
北京梦之墨科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京梦之墨科技有限公司 filed Critical 北京梦之墨科技有限公司
Publication of WO2019034100A1 publication Critical patent/WO2019034100A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the invention belongs to the field of electronic materials, and particularly relates to a low-cost recyclable conductive paste, a preparation method thereof and an electronic device.
  • conductive pastes generally consist of conductive fillers, polymeric binders, solvents, and other auxiliaries.
  • the conductive filler is the main component for realizing the function of the slurry.
  • the polymer binder is not electrically conductive, but acts as a carrier for the conductive filler to serve to facilitate the connection and fixation of the conductive filler.
  • the solvent is used to dissolve the binder and provide sufficient fluidity to ensure uniform dispersion of the conductive filler while adjusting the viscosity and ensuring that the conductive paste flows into the film.
  • the present invention has been made in view of the disadvantages of the high cost of existing conductive pastes and the inability to recycle them.
  • the invention provides a low cost recyclable electrically conductive paste.
  • the conductive paste is composed of 45% to 80% liquid metal conductive binder, 12% to 50% conductivity enhancing material, 1% to 5% dispersion wetting agent, 0.5% by weight. % to 2% coupling agent and 0.5% to 2% adhesion promoter.
  • the liquid metal conductive adhesive is used to replace the non-conductive polymer binder and solvent in the existing conductive paste (that is, the conductive paste does not contain the polymer binder and the solvent), in a small amount
  • a small amount of conductive reinforcing filler is uniformly and stably dispersed, which has high compatibility and high dispersion stability, ideal electrical conductivity, flow film forming property, bond strength and curing property, and cost.
  • the conductivity is obviously improved, the volume resistivity can reach 3 ⁇ 10 -5 ⁇ cm, and it is environmentally friendly and can be recycled and reused.
  • the conductive paste may include 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80% liquid metal conductive adhesive, which may include 12%, 15 %, 20%, 25%, 30%, 35%, 40%, 45%, 50% conductivity enhancing material, may include 1%, 2%, 3%, 4%, 5% dispersing wetting agent, may include 0.5%, 1%, 1.5%, 2% coupling agent may include 0.5%, 1%, 1.5%, 2% adhesion promoter.
  • the conductive paste has better electrical conductivity, can reduce the amount of precious metal, and has lower cost, and the conductive paste has better film forming properties, bond strength and curing performance, and is environmentally friendly. Recyclable.
  • the liquid metal conductive binder is a low melting point metal or alloy having a melting point below 300 degrees Celsius, or a conductive material formed by mixing a low melting point metal nanoparticle (melting point below 300 degrees Celsius) with a fluid dispersing agent. Nanofluid. Therefore, the conductive paste has better electrical conductivity, better connection and fixation effects, and the liquid metal has fluidity, which can uniformly disperse the components in the conductive paste, so that the conductive paste has a better conductivity. Good fluidity, film forming properties, curing properties and bond strength.
  • the liquid metal conductive binder is gallium, indium, tin, zinc, antimony, lead, cadmium, mercury, sodium, potassium, magnesium, aluminum, A simple substance of one of iron, cobalt, manganese, titanium, or vanadium or an alloy formed of a plurality of types.
  • the conductive paste has desirable electrical conductivity, flow film forming properties, curing properties, and bond strength, and is low in cost and recyclable.
  • the alloy may contain 0 to 30% (eg, 0%, 5%, 10%, 15%, 20%, 25%, 30%, etc.) of non-metals by weight percent.
  • the non-metal component being one or more of boron, carbon, and silicon.
  • boron, carbon, silicon, etc. can be incorporated into the conductive paste in the form of a compound or a simple substance.
  • carbon is doped in the form of graphene, carbon nanotubes, carbon fiber, graphite, etc.
  • silicon is silicon oxide, silicon boride Incorporation in the form of boron, boron is incorporated in the form of silicon boride or the like.
  • the incorporation of boron and silicon can adjust the specific gravity of the conductive paste, and the support structure can improve the structural strength and tensile strength of the coating formed by the conductive paste; the incorporation of carbon can improve flexibility and attachment. Focus on increasing temperature and heat resistance and oxidation resistance.
  • the liquid metal conductive adhesive is a simple substance of one of mercury, gallium, indium and tin, or is a gallium indium alloy, a gallium indium tin alloy, a gallium tin alloy, a gallium zinc alloy.
  • the liquid metal conductive binder is an alloy of two or three of gallium, indium, tin, antimony, aluminum, and zinc, each of which accounts for the liquid metal. 15 to 50% of the quality of the conductive adhesive (such as 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, etc.).
  • the above liquid metal conductive adhesive is selected, has ideal electrical conductivity, and has good fluidity, film forming property, curing property and bonding strength, and has wide source of materials and low cost.
  • the liquid metal conductive binder is a binary or ternary alloy to achieve workability improvement and cost reduction, and the binary or ternary alloy also facilitates adjustment of the melting point.
  • the conductive reinforcing material is gold powder, platinum powder, silver powder, copper powder, nickel powder, conductive carbon black, conductive graphite, carbon nanotube, nickel-coated graphite powder, silver-coated copper powder, silver One or more of the nickel powder.
  • the conductive reinforcing material has a particle diameter ranging from 1 nm to 100 ⁇ m (eg, 1 nm, 50 nm, 100 nm, 500 nm, 800 nm, 1 ⁇ m, 10 ⁇ m, 50 ⁇ m, 80 ⁇ m, 100 ⁇ m, etc.). Inside.
  • the conductive reinforcing material has a particle diameter of 10 nm to 50 ⁇ m (eg, 1 nm, 40 nm, 50 nm, 80 nm, 100 nm, 300 nm, 500 nm, 600 nm, 800 nm, 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, In the range of 20 microns, 40 microns, 50 microns, etc.). Within the above particle size range, it is easy to uniformly disperse, and the amount of the non-conductive dispersing wetting agent and the coupling agent is remarkably reduced.
  • the dispersing wetting agent comprises one or more of a nonionic small molecule dispersing agent, a nonionic polymeric dispersing agent, an anionic dispersing agent, and a cationic dispersing agent.
  • the coupling agent is one or more of a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent.
  • the adhesion promoter is carbon fiber, silver fiber, copper fiber, copper-coated copper fiber, graphite, graphene, carbon nanotube, aerogel powder, hollow microsphere, ceramic microsphere, One or more of sepiolite, closed-cell expanded perlite, vermiculite, and potassium silicate whiskers.
  • a method for preparing a conductive paste according to the present invention comprises the steps of: (1) removing an oxide on a surface of a raw material forming a liquid metal binder to obtain an oxide-removing raw material; (2) The raw material of the removed oxide is smelted, and the molten metal liquid is poured into an ingot or filled into a container to obtain the liquid metal binder; (3) the liquid metal is adhered under an inert atmosphere The mixture is melted, then a conductive reinforcing material is added, a dispersing wetting agent, a coupling agent, and an adhesion promoter are added, and the resulting mixture is ground to obtain the conductive paste.
  • the method has the advantages of simple steps, convenient operation, no special requirements on equipment, mild reaction conditions, no need of toxic solvent, good safety and environmental friendliness, and the obtained conductive paste has ideal electrical conductivity, fluidity and film formation. Properties, curability and bond strength, better performance, lower cost and recyclability.
  • the step (1) comprises subjecting the raw material forming the liquid metal binder to a reduction treatment under a hydrogen or carbon monoxide atmosphere.
  • the oxide on the surface of the raw material can be removed conveniently and quickly, and a raw material with higher purity can be obtained, which is advantageous for improving the usability of the obtained conductive paste.
  • the step (3) comprises: heating the liquid metal binder to a temperature above the melting point of the liquid metal binder by 10 ° C to 200 ° C (eg, 10 ° C, 20 ° C, 30 ° C above the melting point) 40°C, 50°C, 60°C, 70°C, 80°C, 90°C, 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 180°C, 190°C, 200 °C, etc., and keep warm for 10min ⁇ 30min (such as 10min, 15min, 20min, 25min, 30min, etc.); then add the conductive reinforcing material, the resulting mixture is naturally cooled, then add dispersing wetting agent, coupling The agent and the adhesion promoter, and the obtained mixture is sequentially stirred and subjected to the grinding to obtain the conductive paste.
  • 10 ° C to 200 ° C eg, 10 ° C, 20 ° C, 30
  • the conductive paste can be prepared at a suitable temperature and time, which can ensure the performance of the obtained conductive paste is good, and does not affect the conductive paste due to excessive or too low temperature, too long or too short.
  • the performance or increase in energy consumption and cost, the economy is better.
  • the stirring speed is 1500-2000r/min (such as 1500r/min, 1600r/min, 1700r/min, 1800r/min, 1900r/min, 2000r/min, etc.), and the stirring time is 1 ⁇ 2 hours (such as 1.2h, 1.5h, 1.8h, 2.0h, etc.).
  • the grinding is carried out using a horizontal sand mill with inert gas protection at a grinding speed of 4000 to 5000 r/min (eg 4000 r/min, 4100 r/min, 4200 r/min, 4300 r/min, 4400r/min, 4500r/min, 4600r/min, 4700r/min, 4800r/min, 4900r/min, 5000r/min, etc.), grinding time is 3 ⁇ 5 hours (such as 3h, 3.5h, 4h, 4.5h, 5h) Etc), the grinding medium is zirconia particles.
  • the conductive paste has better dispersibility and stability, and the use performance is good.
  • the preparation method may include: Step 1: melting of a liquid metal conductive binder, and reducing the liquid metal material by using a reduction furnace under a condition of hydrogen or carbon monoxide gas to remove oxides on the surface of the raw material.
  • the raw materials after the proportional reduction treatment are placed in a vacuum melting furnace or an atmosphere furnace for melting, and the melted alloy liquid is poured into an ingot or filled into a container in a vacuum furnace or an atmosphere furnace for use.
  • Step 2 Weigh and smelt the liquid metal conductive adhesive according to the ratio, add it to the container with inert gas protection, and heat it to 10 ° C ⁇ 200 ° C above the melting point of the liquid metal conductive adhesive (such as above the melting point 10 °C, 20°C, 30°C, 40°C, 50°C, 60°C, 70°C, 80°C, 90°C, 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 180 ° C, 190 ° C, 200 ° C, etc.), heat for 10 min ⁇ 30 min (such as 10 min, 15 min, 20 min, 25 min, 30 min, etc.), and then slowly add conductive reinforcing materials, then add dispersing wetting agent, coupling agent, An adhesion promoter, after mixing uniformly, transferring the mixture to a grinding device with inert gas protection for grinding;
  • Step 3 After filtering the ground conductive paste, it is poured into a container under the protection of an inert gas.
  • step 2 after adding the conductive reinforcing material, the dispersing wetting agent, the coupling agent and the adhesion promoter are added after natural cooling, at 1500-2000 r/min (such as 1500 r/min, 1600 r/ Min, 1700r/min, 1800r/min, 1900r/min, 2000r/min, etc.) Mix for 1 ⁇ 2h (such as 1.2h, 1.5h, 1.8h, 2.0h, etc.), transfer the mixture to the inert gas protection In the horizontal sand mill, the zirconia particles are used as the grinding medium at 4000-5000r/min (such as 4000r/min, 4100r/min, 4200r/min, 4300r/min, 4400r/min, 4500r/min, 4600r/min). Grinding for 3 to 5 hours (eg, 3h, 3.5h, 4h, 4.5h, 5h, etc.) under conditions of 4700r/min, 4800r/min, 4900r/min,
  • the invention provides an electronic device.
  • at least a portion of the electronic device is formed from the electrically conductive paste described above.
  • the electronic device has all the features and advantages of the conductive paste described above, and will not be further described herein.
  • the specific kind of the electronic device is not particularly limited, and may be any electronic device that needs to use a conductive paste, such as but not limited to a printed circuit board, a solar cell, an RFID radio frequency antenna, a touch screen line, and a flexible Printed circuits and so on.
  • a conductive paste such as but not limited to a printed circuit board, a solar cell, an RFID radio frequency antenna, a touch screen line, and a flexible Printed circuits and so on.
  • the electronic device also includes the structures and components necessary for conventional electronic devices.
  • the touch screen line may include a substrate and printed on the substrate. Circuit structure and so on.
  • the present invention has at least the following advantages:
  • Embodiments of the present application are described in detail below.
  • the embodiments described below are illustrative and are merely illustrative of the present application and are not to be construed as limiting.
  • specific techniques or conditions are not indicated in the examples, they are carried out according to the techniques or conditions described in the literature in the art or in accordance with the product specifications.
  • the reagents or instruments used are not indicated by the manufacturer, and are conventional products that can be obtained commercially.
  • the preparation method of the conductive paste is:
  • Step 1 Melting of the liquid metal conductive binder, the liquid metal raw materials (elemental gallium, elemental indium) are respectively subjected to a reduction treatment under a hydrogen protection condition to remove oxides on the surface of the raw material.
  • the two raw materials after the reduction treatment are sampled and sampled, and placed in a vacuum melting furnace or an atmosphere furnace for melting.
  • the smelted alloy liquid is poured into an ingot or filled into a container in a vacuum furnace or an atmosphere furnace for use.
  • Step 2 Weigh the above-mentioned liquid metal conductive adhesive according to the ratio, add it to the container with inert gas protection, heat it to the temperature above 10 ° C ⁇ 200 ° C (heating temperature 150 ° C), keep warm for 30 min, slowly add to it
  • the conductive reinforcing material has been weighed and added to the dispersing wetting agent, coupling agent and adhesion promoter after natural cooling, and mixed at 2000r/min for 2h to ensure that the conductive reinforcing material can be uniformly dispersed in the liquid metal conductive bond.
  • the mixture was transferred to a horizontal sand mill with inert gas protection, and the zirconia particles were ground as a grinding medium at 5000 r/min for 3 h.
  • Step 3 After filtering the ground conductive paste, it is poured into a container under an inert gas atmosphere by an automatic filling machine.
  • the liquid metal conductive adhesive which is smelted according to the ratio is weighed, added to a container protected by an inert gas, and heated until it is 10 ° C to 200 ° C above the melting point (heating temperature is 230 ° C).
  • the grinding time was 3.5 h.
  • the other operations are the same as in the first embodiment.
  • the dispersing wetting agent in the table is BYK-190, a nonionic polymer dispersing agent.
  • silver powder is used as a conductive reinforcing material, and the silver powder has the characteristics of good electrical conductivity and strong oxidation resistance, and in the process of dispersion and grinding, it is not easy to cause a large amount of oxides to cause a decrease in conductivity, and tin and aluminum.
  • the contact resistance between the interfaces of the conductive paths formed together is small.
  • the silver powder used in the present invention has the characteristics of high sphericity and uniform particle size distribution, so that it is easy to uniformly disperse, and the amount of the non-conductive dispersing wetting agent and the coupling agent is remarkably reduced; and graphite as an adhesion promoter
  • the electrical conductivity of the olefin is relatively good, and the conductive paste obtained in the present embodiment has better conductivity.
  • This embodiment differs from Example 3 in that the conductive filler is made of nickel powder (particle diameter D50 is 500 nm), and the adhesion promoter is made of carbon fiber.
  • the anionic dispersing wetting agent in the table is sodium dodecylbenzenesulfonate.
  • Comparative Example 1 is Electrodag 427ss of the American Acheson Company, and Comparative Example 2 is Japanese DOTITE XA 436 conductive silver paste.
  • the volume resistivity of the high conductive paste described in the embodiment of the present invention is lower than the index of the commercially available product, and the corresponding conductivity has obvious advantages.
  • the content of the volatile organic compound in the conductive paste in the embodiment of the present invention is much lower than that in the comparative example, indicating that the conductive paste of the present invention has better environmental protection and safety.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)

Abstract

本发明提出了低成本可回收的导电浆料及其制备方法和电子器件,按重量百分比计,该导电浆料由45%~80%液态金属导电粘结剂、12%~50%导电性增强材料、1%~5%分散润湿剂、0.5%~2%偶联剂和0.5%~2%附着力促进剂组成。

Description

低成本可回收的导电浆料及其制备方法和电子器件 技术领域
本发明属于电子材料领域,具体涉及低成本可回收的导电浆料及其制备方法和电子器件。
背景技术
近年来,随着电子信息技术的迅猛发展,电子设备不断向着微型化、智能化、环保和低成本的方向迈进,促使人们不断研究、开发并应用更为先进且经济的电子元器件制造技术。同时在新能源领域随着太阳能光伏产业的需求增加以及对光电转换效率要求的提高,高性能导电浆料是实现光伏太阳能扩大规模使用的关键材料之一。导电浆料作为一种具有特定功能的基础电子材料,在印制电路板、太阳能电池、RFID射频天线、触摸屏线路、柔性印刷电路等电子线路领域得到广泛应用,同时开发高性能低成本的导电浆料也引起工业界和学术界的高度关注。传统的导电浆料一般由导电填料、高分子粘结剂、溶剂和其它助剂组成。其中导电填料是实现浆料功能的主要成分。高分子粘结剂并不导电,只是作为导电填料的载体,起到帮助导电填料连接和固定的作用。溶剂则是用来溶解粘结剂,并提供足够的流动性保证导电填料均匀分散,同时调节粘度,并保证导电浆料流动成膜。
目前,为了满足高端电子产品和太阳能电池板等对浆料的高导电性的要求,往往需要在高分子粘结剂中添加大量的金、银、铂等贵金属填料,往往添加量占总固含量的60-90%,高含量的导电微粒不仅大大提高了制备成本,同时降低了粘结剂的含量,导致固化性能和粘结强度下降,电子线路表面粗糙等问题。此外,现有的导电浆料大量的使用了贵金属材料,这些材料一旦使用后难以实现回收再利用,即会造成环境污染又不利于资源的循环利用。
综合上述分析,针对现有导电浆料成本高且不可回收再利用的缺点,特提出本发明。
发明内容
针对本领域现有的低成本导电浆料导电性能不理想,高性能导电浆料成本过高的问题,以及现有导电浆料中无可避免的因使用溶剂而造成环境污染、使用安全性低、存在火灾和爆炸隐患、无法回收重复利用的缺陷,本发明旨在提供一种可回收、高导电的导电浆料。本发明的另一目的是提出所述导电浆料的制备方法。本发明的另一目的是提出一种电子器件。
在本发明的一个方面,本发明提供了一种低成本可回收的导电浆料。根据本发明的实施例,按重量百分比计,该导电浆料由45%~80%液态金属导电粘结剂、12%~50%导电性增强材料、1%~5%分散润湿剂、0.5%~2%偶联剂和0.5%~2%附着力促进剂组成。该导电浆料中,利用液态金属导电粘结剂替代现有导电浆料中不导电的高分子粘结剂和溶剂(即该导电浆料中不含有高分子粘结剂和溶剂),在少量偶联剂和分散润湿剂协同作用下,少量添加导电增强填料均匀稳定的分散,具有高相容性和高分散稳定性,理想的导电性能、流动成膜性能、粘结强度和固化性能,且成本较低,导电性明显提高,体积电阻率可达到3×10 -5Ω·cm,且环境友好,可回收再利用。
根据本发明的一些实施例,该导电浆料可以包括45%、50%、55%、60%、65%、70%、75%、80%液态金属导电粘结剂,可以包括12%、15%、20%、25%、30%、35%、40%、45%、50%导电性增强材料、可以包括1%、2%、3%、4%、5%分散润湿剂、可以包括0.5%、1%、1.5%、2%偶联剂,可以包括0.5%、1%、1.5%、2%附着力促进剂。在上述范围内,该导电浆料具有较好的导电性能,可以降低贵金属的用量,成本较低,且该导电浆料流动成膜性能、粘结强度和固化性能均较好,同时环境友好,可回收再利用。
根据本发明的实施例,所述液态金属导电粘结剂为熔点在300摄氏度以下的低熔点金属或合金、或是低熔点金属纳米颗粒(熔点低于300摄氏度)与流体分散剂混合形成的导电纳米流体。由此,该导电浆料既具有较好的导电性能,还具有较好的连接和固定效果,同时液态金属具有流动性,能够使得导电浆料中各组分分散均匀,使得导电浆料具有较好的流动性、成膜性能、固化性能和粘结强度。
根据本发明的实施例,为了进一步提高导电浆料的使用性能,所述液态金属导电粘结剂为镓、铟、锡、锌、铋、铅、镉、汞、钠、钾、镁、铝、铁、钴、锰、钛、钒中的一种的单质或由多种形成的合金。由此,该导电浆料具有理想的导电性能、流动成膜性能、固化性能和粘结强度,且成本较低,可回收利用。根据本发明的一些实施例,按照重量百分比计,所述合金中可以含有0~30%(如0%、5%、10%、15%、20%、25%、30%等)的非金属成分,所述非金属成分为硼、碳、硅中的一种或多种。其中,硼、碳、硅等均可以以化合物或者单质的形式掺入导电浆料中,例如,碳以石墨烯、碳纳米管、碳纤维、石墨等形式掺入,硅以氧化硅、硼化硅等形式掺入,硼以硼化硅等形式掺入。由此,硼和硅的掺入均可以调节导电浆料的比重,起支撑作用使导电浆料形成的涂层的结构强度和抗拉强度有所提升;碳的掺入可以提高柔韧性和附着力,增加耐温耐热性和抗氧化能力。
根据本发明的一些实施例,所述的液态金属导电粘结剂为汞、镓、铟、锡中的一种的单质,或为镓铟合金、镓铟锡合金、镓锡合金、镓锌合金、镓铟锌合金、镓锡锌合金、镓铟锡锌合金、镓锡镉合金、镓铝合金、铋铟合金、铋锡合金、铋铟锡合金、铋铟锌合金、 铋锡锌合金、锡铝合金、锡铅合金、锡铜合金、锡锌合金、锡银铜合金、铋铅锡合金中的一种。
根据本发明的另一些实施例,所述液态金属导电粘结剂为镓、铟、锡、铋、铝、锌中的两种或三种金属形成的合金,每种金属质量占所述液态金属导电粘结剂质量的15~50%(如15%、20%、25%、30%、35%、40%、45%、50%等)。选用上述液态金属导电粘结剂,具有理想的导电性能,且具有较好的流动性、成膜性、固化性能和粘结强度,且材料来源广泛,成本较低。
根据本发明的一些具体实施例,液态金属导电粘结剂为二元或三元合金,以实现施工性的提高和成本的降低,二元或三元的合金也利于调整熔点。
根据本发明的实施例,所述的导电性增强材料为金粉、铂粉、银粉、铜粉、镍粉、导电炭黑、导电石墨、碳纳米管、镍包石墨粉、银包铜粉、银包镍粉中的一种或几种。由此,可以显著提高导电浆料的导电性能,较少的用量即可获得高导电性能的导电浆料。
根据本发明的实施例,所述的导电性增强材料的粒径在1nm~100μm(如1nm、50nm、100nm、500nm、800nm、1微米、10微米、50微米、80微米、100微米等)范围内。在本发明的一些具体实施例中,导电性增强材料的粒径在10nm~50μm(如1nm、40nm、50nm、80nm、100nm、300nm、500nm、600nm、800nm、1微米、5微米、10微米、20微米、40微米、50微米等)范围内。在上述粒径范围之内,容易均匀分散,显著地减少不导电的分散润湿剂和偶联剂的用量。
根据本发明的实施例,所述的分散润湿剂包括非离子型小分子分散剂、非离子型高分子分散剂、阴离子型分散剂、阳离子型分散剂中的一种或几种。由此,能够使得导电浆料分散均匀,使用性能理想。
根据本发明的实施例,所述的偶联剂为硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂中的一种或几种。采用上述偶联剂,较少的用量即可使得导电浆料分散均匀,获得使用性能较佳的导电浆料。
根据本发明的实施例,所述的附着力促进剂为碳纤维、银纤维、铜纤维、银包铜纤维、石墨、石墨烯、碳纳米管、气凝胶粉、中空微球、陶瓷微球、海泡石、闭孔膨胀珍珠岩、蛭石、硅酸钾晶须中的一种或几种。由此,可以大大提高导电浆料的结合强度。
在本发明的再一方面,本发明提供一种制备前面所述的导电浆料的方法。根据本发明的实施例,本发明所述的导电浆料的制备方法,包括以下步骤:(1)去除形成液态金属粘结剂的原料表面的氧化物,得到去除氧化物的原料;(2)将所去除氧化物的原料进行熔炼,并将熔炼得到的金属液体浇注成锭或灌装到容器中,得到所述液态金属粘结剂;(3)在惰性气氛下,将所述液态金属粘结剂熔融,然后加入导电性增强材料,再加入分散润湿剂、 偶联剂和附着力促进剂,并将所得到的混合物进行研磨,得到所述导电浆料。该方法步骤简单,操作方便,对设备没有特别要求,且反应条件温和,不需要有毒性的溶剂,安全性好,环境友好,同时获得的导电浆料具有理想的导电性能、流动性、成膜性、固化性和粘结强度,使用性能较佳,且成本较低,可回收利用。
根据本发明的实施例,步骤(1)包括:在氢气或一氧化碳气氛下,对所述形成液态金属粘结剂的原料进行还原处理。由此,可以方便快速的去除原料表面的氧化物,获得纯度较高的原料,利于提高获得的导电浆料的使用性能。
根据本发明的实施例,步骤(3)包括:将所述液态金属粘结剂加热至所述液态金属粘结剂的熔点以上10℃~200℃(如熔点以上10℃、20℃、30℃、40℃、50℃、60℃、70℃、80℃、90℃、100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃、200℃等),并保温10min~30min(如10min、15min、20min、25min、30min等);然后加入所述导电性增强材料,将所得到的混合物自然冷却后,再加入分散润湿剂、偶联剂和附着力促进剂,并将所得到的混合物依次进行搅拌和所述研磨,得到所述导电浆料。由此,能够在适合的温度和时间下制备导电浆料,既能保证获得的导电浆料性能较好,且不会因温度过高或过低,时间过长或过短而影响导电浆料的性能或增加能耗和成本,经济性较好。
根据本发明的实施例,所述搅拌的速度为1500~2000r/min(如1500r/min、1600r/min、1700r/min、1800r/min、1900r/min、2000r/min等),搅拌时间为1~2小时(如1.2h、1.5h、1.8h、2.0h等)。由此,上述能够使得导电浆料混合均匀,且其中各组分的分散稳定性较好。
根据本发明的实施例,所述研磨利用带有惰性气体保护的卧式砂磨机进行,研磨转速为4000~5000r/min(如4000r/min、4100r/min、4200r/min、4300r/min、4400r/min、4500r/min、4600r/min、4700r/min、4800r/min、4900r/min、5000r/min等),研磨时间为3~5小时(如3h、3.5h、4h、4.5h、5h等),研磨介质为氧化锆颗粒。由此,导电浆料的分散性和稳定性均较佳,使用性能较好。
根据本发明的实施例,上述制备方法可以包括:步骤1:液态金属导电粘结剂的熔炼,液态金属原料在氢气或一氧化碳气体条件下利用还原炉进行还原处理,去除原料表面的氧化物,按比例称量还原处理后的原料,放入真空熔炼炉或气氛炉内进行熔炼,熔炼好的合金液体在真空炉或气氛炉内浇注成锭或灌装到容器中备用。
步骤2:根据配比称量熔炼好的液态金属导电粘结剂,加入到带惰性气体保护的容器内,加热至所述液态金属导电粘结剂熔点以上10℃~200℃(如熔点以上10℃、20℃、30℃、40℃、50℃、60℃、70℃、80℃、90℃、100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃、200℃等),保温10min~30min(如10min、15min、20min、25min、30min等),然后向其中缓慢加入导电性增强材料,再加入分散润湿剂、偶联剂、 附着力促进剂,混合均匀后,将混合物转移到带有惰性气体保护的研磨设备中研磨;
步骤3:将研磨后的导电浆料过滤后,在惰性气体保护下灌注于容器中。
根据本发明的实施例,步骤2中,加入导电性增强材料后,自然冷却后加入分散润湿剂、偶联剂、附着力促进剂,在1500~2000r/min(如1500r/min、1600r/min、1700r/min、1800r/min、1900r/min、2000r/min等)转速下混合1~2h(如1.2h、1.5h、1.8h、2.0h等),将混合物转移到带有惰性气体保护的卧式砂磨机中,以氧化锆颗粒为研磨介质在4000~5000r/min(如4000r/min、4100r/min、4200r/min、4300r/min、4400r/min、4500r/min、4600r/min、4700r/min、4800r/min、4900r/min、5000r/min等)条件下研磨3~5h(如3h、3.5h、4h、4.5h、5h等)。
在本发明的另一方面,本发明提供了一种电子器件。根据本发明的实施例,该电子器件的至少一部分是由前面所述的导电浆料形成的。该电子器件具有前面所述的导电浆料的全部特征和优点,在此不再一一赘述。
根据本发明的实施例,该电子器件的具体种类没有特别限制,可以为任何需要采用导电浆料的电子器件,例如包括但不限于印制电路板、太阳能电池、RFID射频天线、触摸屏线路、柔性印刷电路等等。本领域技术人员可以理解,除了前面所述的导电浆料形成的部分,该电子器件还包括常规电子器件所必备的结构和部件,以触摸屏线路为例,可以包括基板和印刷在基板上的电路结构等等。本发明与现有技术相比,至少具有如下优点:
1、利用液态金属导电粘结剂替代不导电的高分子粘结剂和溶剂,在少量偶联剂和分散润湿剂协同作用下,少量添加导电性增强填料均匀稳定的分散,形成具有高相容性和高分散稳定性的低成本导电浆料,体积电阻率达到3×10 -5Ω·cm。
2、在上述低成本导电浆料基础上,通过进一步增加导电增强填料的用量,得到兼具相对低成本和极高导电性能的浆料,体积电阻率达到9×10 -6Ω·cm
3、解决了传统导电浆料价格高、性能不稳定、含有大量溶剂不环保、施工安全性低、存在火灾和爆炸隐患的问题。具有成膜速度快,安全环保、施工方便、成本低廉的特点。
4、开发了可回收利用的导电浆料,解决现有导电浆料无法循环使用的缺点。实现了导电浆料在塑料、硅晶体、橡胶、陶瓷、纸张表面的有效润湿和附着。
具体实施方式
下面详细描述本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1
本实施例低成本可回收的高导电浆料的配方组成如下表所示:
Figure PCTCN2018100797-appb-000001
本导电浆料的制备方法为:
步骤1:液态金属导电粘结剂的熔炼,液态金属原料(单质镓、单质铟)分别在氢气保护条件下利用还原炉进行还原处理,去除原料表面的氧化物。按比例取样称量还原处理后的两种原料,一起放入真空熔炼炉或气氛炉内进行熔炼。熔炼好的合金液体在真空炉或气氛炉内浇注成锭或灌装到容器中备用。
步骤2:根据配比称量上述液态金属导电粘结剂,加入到带惰性气体保护的容器内,加热直至其熔点以上10℃~200℃(加热温度150℃),保温30min,向其中缓慢加入已经称量好的导电性增强材料,自然冷却后加入分散润湿剂、偶联剂、附着力促进剂,在2000r/min转速下混合2h,确保导电增强材料能均匀分散在液态金属导电粘结剂中,将混合物转移到带有惰性气体保护的卧式砂磨机中,以氧化锆颗粒为研磨介质在5000r/min条件下研磨3h。
步骤3:将研磨后的导电浆料过滤后利用自动灌装机在惰性气体保护下灌注于容器中。
实施例2
一种低成本可回收的高导电浆料的配方组成如下表所示:
Figure PCTCN2018100797-appb-000002
制备的步骤2中,根据配比称量熔炼好的液态金属导电粘结剂,加入到带惰性气体保护的容器内,加热直至其熔点以上10℃~200℃(加热温度为230℃)。研磨时间为3.5h。其他操作同实施例1。
实施例3
一种低成本可回收的高导电浆料的配方组成如下表所示:
Figure PCTCN2018100797-appb-000003
表中分散润湿剂为BYK-190,非离子型高分子分散剂。
本实施例中使用银粉作为导电增强材料,银粉具有导电性好,抗氧化性强的特点,在分散及研磨等加工过程中,不容易因形成大量氧化物而使得导电性下降,与锡、铝共同形成的导电通路界面间接触电阻小。此外,本发明中使用的银粉具有球形度高、粒径分布均匀的特点,因此容易均匀分散,显著地减少不导电的分散润湿剂和偶联剂的用量;兼之作为附着力促进剂的石墨烯的导电性比较好,本实施例获得的导电浆料的导电性更好。
实施例4
本实施例与实施例3的区别在于导电填料采用镍粉(粒径D50为500nm),附着力促进剂采用碳纤维。
实施例5
一种低成本可回收的高导电浆料的配方组成如下表所示:
Figure PCTCN2018100797-appb-000004
Figure PCTCN2018100797-appb-000005
实施例6
一种低成本可回收的高导电浆料的配方组成如下表所示:
Figure PCTCN2018100797-appb-000006
表中阴离子型分散润湿剂为十二烷基苯磺酸钠。
实施例7
本实施例低成本可回收的高导电浆料的配方组成如下表所示:
Figure PCTCN2018100797-appb-000007
对比例1为美国埃奇森公司的Electrodag427ss,对比例2为日本DOTITE XA 436导电银浆。
性能试验
将上述实施例和对比例分别在聚酯薄膜上涂刷,制备平均厚度为25微米的样板,测试其导电性结果如下:
表1:性能测试结果
Figure PCTCN2018100797-appb-000008
从上表的对比数据可以看到,本发明实施例中描述的高导电浆料体积电阻率低于市售产品的指标,对应导电性具备明显优势。此外,本发明实施例中的导电浆料中的可挥发性有机物含量远低于对比例,表明本发明导电浆料具有更好的环保性和安全性。
虽然,上文中已经本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (18)

  1. 一种低成本可回收的导电浆料,其特征在于,按重量百分比计,由45%~80%液态金属导电粘结剂、12%~50%导电性增强材料、1%~5%分散润湿剂、0.5%~2%偶联剂和0.5%~2%附着力促进剂组成。
  2. 根据权利要求1所述的导电浆料,其特征在于,所述液态金属导电粘结剂为熔点在300摄氏度以下的低熔点金属或合金、或是低熔点金属纳米颗粒与流体分散剂混合形成的导电纳米流体。
  3. 根据权利要求1或2所述的导电浆料,其特征在于,所述液态金属导电粘结剂为镓、铟、锡、锌、铋、铅、镉、汞、钠、钾、镁、铝、铁、钴、锰、钛、钒中的一种的单质或由多种形成的合金。
  4. 根据权利要求3所述的导电浆料,其特征在于,按重量百分比计,所述合金中含有0~30%的非金属成分,所述非金属成分为硼、碳、硅中的一种或多种。
  5. 根据权利要求1-4中任一项所述的导电浆料,其特征在于,所述液态金属导电粘结剂为镓铟合金、镓铟锡合金、镓锡合金、镓锌合金、镓铟锌合金、镓锡锌合金、镓铟锡锌合金、镓锡镉合金、镓铝合金、铋铟合金、铋锡合金、铋铟锡合金、铋铟锌合金、铋锡锌合金、锡铝合金、锡铅合金、锡铜合金、锡锌合金、锡银铜合金、铋铅锡合金中的一种。
  6. 根据权利要求1-4中任一项所述的导电浆料,其特征在于,所述液态金属导电粘结剂为镓、铟、锡、铋、铝、锌中的两种或三种金属形成的合金,其中,每种金属质量占所述液态金属导电粘结剂质量的15~50%。
  7. 根据权利要求1-6中任一项所述的导电浆料,其特征在于,所述导电性增强材料为金粉、铂粉、银粉、铜粉、镍粉、导电炭黑、导电石墨、碳纳米管、镍包石墨粉、银包铜粉、银包镍粉中的一种或几种。
  8. 根据权利要求1-7中任一项所述的导电浆料,其特征在于,所述导电性增强材料的粒径在1nm~100μm范围内。
  9. 根据权利要求1-8中任一项所述的导电浆料,其特征在于,所述导电性增强材料的粒径在10nm~50μm范围内。
  10. 根据权利要求1-9中任一项所述的导电浆料,其特征在于,所述分散润湿剂包括非离子型小分子分散剂、非离子型高分子分散剂、阴离子型分散剂、阳离子型分散剂中的一种或几种。
  11. 根据权利要求1-10中任一项所述的导电浆料,其特征在于,所述偶联剂为硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂中的一种或几种。
  12. 根据权利要求1-11中任一项所述的导电浆料,其特征在于,所述附着力促进剂为 碳纤维、银纤维、铜纤维、银包铜纤维、石墨、石墨烯、碳纳米管、气凝胶粉、中空微球、陶瓷微球、海泡石、闭孔膨胀珍珠岩、蛭石、硅酸钾晶须中的一种或几种。
  13. 权利要求1-12中任一项所述的导电浆料的制备方法,其特征在于,包括以下步骤:
    (1)去除形成液态金属粘结剂的原料表面的氧化物,得到去除氧化物的原料;
    (2)将所述去除氧化物的原料进行熔炼,并将熔炼得到的金属液体浇注成锭或灌装到容器中,得到所述液态金属粘结剂;
    (3)在惰性气氛下,将所述液态金属粘结剂熔融,然后加入导电性增强材料,再加入分散润湿剂、偶联剂和附着力促进剂,并将所得到的混合物进行研磨,得到所述导电浆料。
  14. 根据权利要求13所述的制备方法,其特征在于,步骤(1)包括:
    在氢气或一氧化碳气氛下,对所述形成液态金属粘结剂的原料进行还原处理。
  15. 根据权利要求13或14所述的制备方法,其特征在于,步骤(3)包括:
    将所述液态金属粘结剂加热至所述液态金属粘结剂的熔点以上10℃~200℃,并保温10min~30min;然后加入所述导电性增强材料,将所得到的混合物自然冷却后,再加入分散润湿剂、偶联剂和附着力促进剂,并将所得到的混合物依次进行搅拌和所述研磨,得到所述导电浆料。
  16. 根据权利要求15所述的制备方法,其特征在于,所述搅拌的速度为1500~2000r/min,搅拌时间为1~2小时。
  17. 根据权利要求15或16所述的制备方法,其特征在于,所述研磨利用带有惰性气体保护的卧式砂磨机进行,研磨转速为4000~5000r/min,研磨时间为3~5小时,研磨介质为氧化锆颗粒。
  18. 一种电子器件,其特征在于,所述电子器件的至少一部分是由权利要求1-12中任一项所述的导电浆料形成的。
PCT/CN2018/100797 2017-08-17 2018-08-16 低成本可回收的导电浆料及其制备方法和电子器件 WO2019034100A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710707151.4A CN107578838B (zh) 2017-08-17 2017-08-17 一种低成本可回收的导电浆料及其制备方法
CN201710707151.4 2017-08-17

Publications (1)

Publication Number Publication Date
WO2019034100A1 true WO2019034100A1 (zh) 2019-02-21

Family

ID=61034607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100797 WO2019034100A1 (zh) 2017-08-17 2018-08-16 低成本可回收的导电浆料及其制备方法和电子器件

Country Status (2)

Country Link
CN (1) CN107578838B (zh)
WO (1) WO2019034100A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107578838B (zh) * 2017-08-17 2019-02-15 北京梦之墨科技有限公司 一种低成本可回收的导电浆料及其制备方法
CN108580904B (zh) * 2018-05-28 2023-09-29 北京梦之墨科技有限公司 一种打印装置的填料机构及打印装置
CN108986949A (zh) * 2018-06-15 2018-12-11 北京梦之墨科技有限公司 一种导电复合材料及其制备方法
CN108831586B (zh) * 2018-06-15 2024-02-23 北京梦之墨科技有限公司 一种用于印刷复合材料及其制备装置、制备方法
CN108546160A (zh) * 2018-06-15 2018-09-18 北京梦之墨科技有限公司 一种陶瓷基电路及其制备方法
CN108774476A (zh) * 2018-06-29 2018-11-09 北京梦之墨科技有限公司 一种金属材质的粘接剂及其使用方法
CN108566727B (zh) * 2018-06-29 2024-03-26 北京梦之墨科技有限公司 一种基于bga的电子器件及其制作方法
CN109054710A (zh) * 2018-07-05 2018-12-21 广东石成科技有限公司 一种石墨烯复合材料和其制备方法及其作为导磁胶的应用
CN110769663B (zh) * 2018-07-27 2021-07-20 中国科学院理化技术研究所 可回收的电磁屏蔽用液态金属浆料及其制备方法和应用
CN109370367A (zh) * 2018-08-31 2019-02-22 陈建峰 一种环氧树脂基导电涂料
CN108746664A (zh) * 2018-09-10 2018-11-06 河南金渠银通金属材料有限公司 一种高吸油率光伏银粉及其制备方法与应用
CN111462934B (zh) * 2019-01-18 2021-06-01 北京梦之墨科技有限公司 导电浆料及其制备方法、可穿戴电子电路及其diy套件
CN109852281B (zh) * 2019-02-01 2020-07-28 扬州富威尔复合材料有限公司 一种基于液态金属的各向异性导电胶的制备方法
CN110343933A (zh) * 2019-07-16 2019-10-18 深圳市启晟新材科技有限公司 一种光热领域300-400度控氧型与不锈钢相容液态金属及其工艺
CN110284043A (zh) * 2019-07-23 2019-09-27 深圳市启晟新材科技有限公司 一种200-300度用核反应堆控氧型液态金属及其相容性工艺
CN110434350A (zh) * 2019-09-12 2019-11-12 中国科学院理化技术研究所 一种低熔点金属粉末及其制备方法和应用
CN110605400B (zh) * 2019-09-25 2022-05-31 苏州大学 一种液态金属纳米液滴大规模制备方法
CN113053559A (zh) * 2019-12-27 2021-06-29 北京梦之墨科技有限公司 一种液态金属导电浆料及其制备方法、电子器件
CN111128442B (zh) * 2020-01-07 2021-12-03 北京梦之墨科技有限公司 一种液态金属导电浆料及其制备方法、电子器件
CN112552075A (zh) * 2020-12-24 2021-03-26 中节能(唐山)环保装备有限公司 一种碳基云母板电发热元件及其制备方法
CN113372760A (zh) * 2021-06-30 2021-09-10 东莞职业技术学院 一种牢度好的水性油墨及其制备方法
CN113764118B (zh) * 2021-09-09 2023-11-28 北京星宇同辉科技有限公司 一种可拉伸高导电性材料的制备方法及其应用
CN113990557B (zh) * 2021-09-09 2024-03-29 山西聚微天成科技有限公司 一种高导电性和高拉伸性弹性体的制备方法及其应用
CN116254017B (zh) * 2023-04-24 2024-02-02 四川大学 一种可拉伸复合导电油墨及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279903A (ja) * 1997-04-04 1998-10-20 Asahi Chem Ind Co Ltd 導電性接着剤
CN101621082A (zh) * 2009-07-28 2010-01-06 付天恩 一种硅太阳能电池背场用铝导电浆料及其制备方法
CN104992742A (zh) * 2015-07-08 2015-10-21 北京依米康科技发展有限公司 一种高粘度低熔点金属导电膏及其制备方法和应用
CN107578838A (zh) * 2017-08-17 2018-01-12 北京梦之墨科技有限公司 一种低成本可回收的导电浆料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4191678B2 (ja) * 2002-05-31 2008-12-03 タツタ電線株式会社 導電性ペースト、これを用いた多層基板及びその製造方法
CN104124031B (zh) * 2013-04-28 2017-02-08 中国科学院理化技术研究所 一种磁纳米金属流体及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279903A (ja) * 1997-04-04 1998-10-20 Asahi Chem Ind Co Ltd 導電性接着剤
CN101621082A (zh) * 2009-07-28 2010-01-06 付天恩 一种硅太阳能电池背场用铝导电浆料及其制备方法
CN104992742A (zh) * 2015-07-08 2015-10-21 北京依米康科技发展有限公司 一种高粘度低熔点金属导电膏及其制备方法和应用
CN107578838A (zh) * 2017-08-17 2018-01-12 北京梦之墨科技有限公司 一种低成本可回收的导电浆料及其制备方法

Also Published As

Publication number Publication date
CN107578838B (zh) 2019-02-15
CN107578838A (zh) 2018-01-12

Similar Documents

Publication Publication Date Title
WO2019034100A1 (zh) 低成本可回收的导电浆料及其制备方法和电子器件
Aradhana et al. A review on epoxy-based electrically conductive adhesives
WO2019129228A1 (zh) 导电浆料及其制备方法
JP4973830B2 (ja) 導電性組成物、導電性ペースト及び導電性皮膜
WO2018098852A1 (zh) 可低温固化的纳米金属墨水及其制备方法和应用
CN107452436A (zh) 一种液态金属电子浆料及其制备方法
CN106024095B (zh) 一种太阳能电池无氧玻璃导电浆料
CN104021838B (zh) 一种聚噻吩/混合价金属氧化物协同导电浆料及其制备方法
CN104464883A (zh) 表面吸附分散剂的石墨烯导电浆料、其制备方法及应用
CN103839605B (zh) 一种导电浆料及其制备方法和应用
Peng et al. Conductivity improvement of silver flakes filled electrical conductive adhesives via introducing silver–graphene nanocomposites
CN103971784A (zh) 一种新型有机/无机纳米复合导电浆料及其制备方法
CN106128553A (zh) 一种高性能无铅晶硅太阳能电池背电极银浆及其制备方法
CN106479272A (zh) 一种导电油墨及其制备方法
WO2016124005A1 (zh) 一种全铝背场晶体硅太阳能电池用铝浆及其制备方法
JP2011236453A (ja) 銀微粒子とその製造方法、並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイス
WO2022041537A1 (zh) 一种玻璃粉及含该玻璃粉的银浆
CN107945910A (zh) 掺杂银包覆石墨烯的太阳能电池正面电极银浆及制备方法
WO2021023162A1 (zh) 一种导电材料及其制备方法、电子器件
CN110663087A (zh) 晶硅太阳能电池正面导电银浆及其制备方法和太阳能电池
US8911821B2 (en) Method for forming nanometer scale dot-shaped materials
Liu et al. Tuning the electrical resistivity of conductive silver paste prepared by blending multi-morphologies and micro-nanometers silver powder
CN104200875A (zh) 一种低银含量石墨烯复合导电银浆及其制备方法
Liu et al. Sintering mechanism of electronic aluminum paste and its effect on electrical conductivity of aluminum electrode
CN107887050A (zh) 一种晶体硅太阳能电池高可焊性正面电极银浆及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18845749

Country of ref document: EP

Kind code of ref document: A1