WO2022041537A1 - 一种玻璃粉及含该玻璃粉的银浆 - Google Patents

一种玻璃粉及含该玻璃粉的银浆 Download PDF

Info

Publication number
WO2022041537A1
WO2022041537A1 PCT/CN2020/132699 CN2020132699W WO2022041537A1 WO 2022041537 A1 WO2022041537 A1 WO 2022041537A1 CN 2020132699 W CN2020132699 W CN 2020132699W WO 2022041537 A1 WO2022041537 A1 WO 2022041537A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass powder
silver
silver paste
powder
glass
Prior art date
Application number
PCT/CN2020/132699
Other languages
English (en)
French (fr)
Inventor
毛平
赵新
郑金华
Original Assignee
南通天盛新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通天盛新能源股份有限公司 filed Critical 南通天盛新能源股份有限公司
Priority to US17/777,934 priority Critical patent/US11787730B2/en
Publication of WO2022041537A1 publication Critical patent/WO2022041537A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/14Compositions for glass with special properties for electro-conductive glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2205/00Compositions applicable for the manufacture of vitreous enamels or glazes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to the technical field of conductive materials containing metals or alloys, in particular to a glass powder and a silver paste containing the glass powder.
  • Tunneling oxide passivation contact (TOPCon) solar cell is a new type of silicon solar cell proposed by the Fraunhofer Institute for Solar Energy in Germany.
  • the tunnel oxide layer passivation contact solar cell adopts n-type silicon wafer.
  • the solar cell structure from top to bottom is: front electrode, front SiN x layer, Al 2 O 3 layer, P + doped layer, n-type silicon wafer , SiO2 tunneling oxide layer, N + polysilicon layer, backside SiNx layer and backside electrode.
  • the patent CN201910354176.X “A method of metallizing the front electrode of an N-type solar cell” filed by our company on April 29, 2019 discloses a method for metallizing the front electrode of an N-type solar cell.
  • the metallization method is : Print aluminum paste on the SiN x layer to form a first fine grid, then overprint silver paste on the first fine grid to form a second fine grid, and finally print front silver paste on the first fine grid to form a main grid.
  • the aluminum paste used as the first fine grid has a higher resistance, and the function of the front electrode is to increase the wire resistance between the fine grid and the front silicon wafer.
  • the front electrode structure is opposite to the second fine grid silver paste printed on the first fine grid.
  • the requirements are: low wire resistance, good silver-aluminum adhesion with the first fine grid aluminum paste and low silver-aluminum contact resistance, and the grid line should be as thin as possible, preferably sintered at a lower temperature to reduce The role of silicon wafer damage.
  • the requirements for the front busbar silver paste printed on the first fine grid are: the front busbar paste has high activity, good welding tension, low wire resistance, low sintering temperature, and low compounding.
  • the present invention provides a glass powder, a preparation method thereof, and a silver paste containing the glass powder.
  • the glass powder provided by the present invention has a softening point of 230- Therefore, the silver paste containing the glass powder has higher activity in a lower temperature environment, and the silver paste of the present invention can be printed on the first fine grid as the second fine grid paste, and can be used as the main grid paste, And it satisfies the advantages of sintering at low temperature, low wire resistance, small composite, good welding tension, etc.
  • the specific content of the present invention is as follows:
  • the present invention provides a glass powder, the technical point of which is: the glass powder is a glass powder containing the vanadium-tellurium-silver of formula (I):
  • the M element is selected from boron, aluminum, gallium, silicon, germanium, tin, phosphorus, niobium, titanium, molybdenum, tungsten, At least one of chromium element, alkali metal element and alkaline earth metal element.
  • the N element is selected from at least one of oxygen element, halogen element, carbonate and nitrate.
  • the softening temperature of the glass powder is 230-330° C.
  • the median particle size of the glass powder is 1-2 ⁇ m.
  • the present invention also provides a silver paste containing the above-mentioned glass powder. It is prepared by mixing an organic carrier and 2-4 parts by mass of the glass powder.
  • the median particle size D50 of the silver powder is 50-500 nm.
  • the specific surface area of the silver powder is 3-10 m 2 /g
  • the burning loss rate of the silver powder after ablation at 540° C. for 30 min is 0.2-0.4%
  • the tap density of the silver powder is 0.2-0.4%. 6-8g/mL.
  • the organic carrier is at least one of a thixotropic agent, a thickening agent, a toughening agent, a surfactant, an antioxidant, a binder, a dispersing agent and a solvent.
  • the above-mentioned solvent is selected from a solvent with a lower saturated vapor pressure at the same temperature, and the solvent can be selected from at least one of diethylene glycol dibutyl ether, alcohol ester dodecyl and ethylene glycol diacetate.
  • the silver paste containing glass frit as the front busbar has a welding tension of 2-4.3N, and the sintering temperature of the silver paste containing glass frit is 230-400°C,
  • the silver paste containing glass frit is used for preparing the front electrode of the solar cell which is passivated and contacted by the tunnel oxide layer.
  • the present invention also provides a preparation method of glass powder, the technical point of which is: comprising the following steps:
  • Step 1 weigh the components in the glass powder according to the ratio, and mix them evenly to obtain a mixed material
  • Step 2 Put the mixed material in step 1 into a ball mill and grind it for 4-6 hours to make it evenly mixed, then put the ground mixed material into a dried corundum crucible, and put the corundum crucible into 1000-1400 Melting in resistance furnace at °C for 50-60min;
  • Step 3 Take the corundum crucible described in Step 2 out of the resistance furnace, then pour the molten mixture into cold water quickly for water quenching, and finally dry the water-quenched mixture to obtain solid mixture materials;
  • Step 4 put the solid mixture material in step 3 into the jet mill for grinding, the working air pressure of the jet mill is 0.3-0.5MPa, the rotating speed of the classification wheel is 400-600r/min, and the solid mixture material is ground after grinding.
  • the glass powder is obtained by putting it into a drying oven for drying.
  • the glass powder disclosed in the present invention is a vanadium-tellurium-silver glass powder.
  • the network structure of the glass powder is strong, and the softening temperature of the glass powder is 230-330 ° C.
  • the glass powder is applied to the silver paste. It can satisfy the sintering temperature of silver paste at 230-400°C and ensure that the glass system can form a firm three-dimensional network structure after silver paste sintering.
  • the contact resistance of silver aluminum and the line resistance of silver electrodes can be reduced when applied to overprinted fine grid paste.
  • the glass powder of the present invention is also supplemented with boron element, aluminum element, gallium element, silicon element, germanium element, tin element, phosphorus element, niobium element, titanium element, molybdenum element, tungsten element, chromium element, alkali element Metal elements such as metal elements and alkaline earth metal elements, the addition of these metal elements can make the network structure of the glass powder more dense and complete, and at the same time ensure the stability of the glass powder.
  • the selected nano-silver powder has a uniform particle size, a narrow particle size distribution range, good dispersibility and excellent electrical conductivity.
  • the median particle size of the nano-silver powder of the present invention is D 50 is 50-500 nm, the specific surface area is 3-10 m 2 /g, the burning loss rate of the silver powder after ablation at 540° C. for 30 min is 0.2-0.4%, and the tap density of the silver powder is 6-8 g/mL,
  • the nano-silver powder is used in the preparation of low-temperature sintered silver paste, which can make the silver paste have good fluidity and less damage to the silicon wafer when sintered at a temperature of 230-400 ° C. When it is used as the front busbar, it is welded The pulling force is 2-4.3N.
  • Fig. 1 is the DSC chart of the glass powder prepared in Examples 1 and 4 of the present invention.
  • Fig. 2 is the DSC chart of the glass powder prepared by Example 2 of the present invention.
  • Fig. 3 is the DSC chart of the glass powder prepared in Examples 3 and 5 of the present invention.
  • Fig. 4 is the SEM scanning electron microscope picture of the silver paste prepared by embodiment 1 of the present invention.
  • Fig. 5 is the SEM scanning electron microscope image of the silver paste prepared by embodiment 2 of the present invention.
  • Fig. 6 is the SEM scanning electron microscope picture of the silver paste prepared by embodiment 3 of the present invention.
  • Fig. 7 is the SEM scanning electron microscope picture of the silver paste prepared by embodiment 4 of the present invention.
  • Fig. 8 is the SEM scanning electron microscope image of the silver paste prepared by Example 5 of the present invention.
  • Fig. 9 is the SEM image of the selected silver powder of embodiment 1 of the present invention.
  • Fig. 10 is the SEM image of the selected silver powder of embodiment 2 of the present invention.
  • Fig. 11 is the SEM image of the selected silver powder of embodiment 3 of the present invention.
  • Fig. 12 is the SEM image of the selected silver powder of embodiment 4 of the present invention.
  • Example 13 is a SEM image of the silver powder selected in Example 5 of the present invention.
  • the present invention provides a glass powder, a preparation method thereof, and a silver paste containing the glass powder.
  • the glass powder has a low softening point, and the silver paste containing the glass powder has higher activity in a lower temperature environment, and is suitable for printing
  • the formation of the front electrode tensile force is high, and the specific content of the present invention is as follows:
  • the invention provides a glass powder with a softening temperature of 230-330° C., and 2-4 parts by mass of the glass powder is used in combination with 80-95 parts by mass of specific nano-silver powder and 5-13 parts by mass of low saturated vapor pressure
  • a low-temperature sintered silver paste is prepared with a lower organic carrier, and the low-temperature sintered silver paste can be screen-printed to form a front fine grid or a front busbar on the front side of the tunnel oxide layer passivation and contact with solar energy, and use it as the front side
  • the width of the front fine grid is only 25-40 ⁇ m, and the fine grid line resistance is low, the silver-aluminum adhesion is good, the interaction between the silver-aluminum is small, and the silver-aluminum contact resistance is low.
  • the silver paste When it is used as a busbar, the silver paste has high activity, and has a good welding tension of 2-4.3N, and the silver paste can be sintered at a temperature of 230-400°C, with less damage to the silicon wafer. It has been reported in the literature that the maximum temperature that the PN junction of the heterojunction solar cell can withstand is 230°C.
  • the low-temperature sintered silver paste of the present invention can also be used in the heterojunction solar cell, which can not destroy the PN junction of the heterojunction solar cell. Under the premise of good photoelectric conversion efficiency.
  • the glass frit of the present invention is a glass frit comprising vanadium-tellurium-silver of formula (I):
  • the glass system of the vanadium-tellurium-silver glass powder of the present invention has a strong network structure, and its application in the silver paste can make the silver paste have Better welding tension.
  • M element is selected from boron element, aluminum element, gallium element, silicon element, germanium element, tin element, phosphorus element, niobium element, titanium element, molybdenum element, tungsten element, chromium element, alkali metal element and alkaline earth metal element At least one, the addition of these metal elements can make the network structure of the glass powder more dense and complete, and at the same time ensure the stability of the glass powder.
  • the N element is selected from at least one of oxygen, halogen, carbonate and nitrate.
  • the softening temperature of the glass powder in this system is 230-330°C, and the median particle size of the glass powder in this system can be 1-2 ⁇ m.
  • the median particle size of the glass powder When the median particle size of the glass powder is less than 1 ⁇ m, the activity of the glass powder is too high. In the process of sintering, it is easy to damage the solar cell silicon wafer.
  • the median particle size of the glass powder is greater than 2 ⁇ m, the larger the particle size of the glass powder, the smaller the specific surface area, and the softening temperature of the glass powder is increased. paste, which will cause the sintering temperature of the silver paste to be too high.
  • the median particle size D50 of the silver powder used in the present invention is 50-500 nm, and the selected silver powder has a uniform particle size, a narrow particle size distribution range, good dispersibility and excellent electrical conductivity.
  • the specific surface area of the silver powder of the present invention is 3-10 m 2 /g. The fact shows that with the increase of the specific surface area of the silver powder, the sintering temperature of the silver paste prepared by using the silver powder will be lower. Therefore, it is necessary to reduce the sintering temperature of the silver paste. , it is more direct and effective to increase the specific surface area of the silver powder, but with the increase of the specific surface area of the silver powder, the silver powder is more prone to agglomeration.
  • the silver powder of the present invention has a burning loss rate of 0.2-0.4% at 540° C. for 30 minutes. In theory, the smaller the silver powder burning loss rate, the higher the sintering activity of the silver powder. When it is used as the conductive metal powder of the silver paste, it will lead to The sintering temperature of the silver paste is lowered.
  • the tap density of the silver powder of the present invention is 6-8 g/mL. The applicant finds through experiments that when the tap density of the silver powder is larger, the silver paste prepared from the silver powder will be used as the front busbar and its welding tension will be larger. It is most suitable to set the tap density of silver powder as 6-8g/mL.
  • the organic carrier of the present invention is at least one of a thixotropic agent, a thickening agent, a toughening agent, a surfactant, an antioxidant, a binder, a dispersing agent and a solvent.
  • thixotropic agent, thickener, toughening agent, surfactant and antioxidant can prepare silver paste with better plastic properties and rheological properties, wherein the solvent is selected from the same temperature, saturated vapor pressure Lower solvent, the solvent can be selected from at least one of diethylene glycol dibutyl ether, alcohol ester dodecyl and ethylene glycol diacetate, the solvent is a solvent with low saturated vapor pressure, and these solvents have relatively low saturation vapor pressure.
  • the silver paste containing glass powder prepared by the invention has a welding tension of 2-4.3N as a front busbar, the sintering temperature of the silver paste containing glass powder is 230-400°C, and the silver paste containing glass powder The paste is used to make the tunnel oxide layer passivation contacting the front electrode of the solar cell.
  • a glass powder comprising a vanadium-tellurium-silver glass powder of formula (I):
  • M element is boron element, aluminum element, gallium element, silicon element and sodium element.
  • N element is oxygen element.
  • the preparation method of the inorganic glass powder of the present invention is:
  • Step 1 weigh the components in the glass powder according to the ratio, and mix them evenly to obtain a mixed material
  • Step 2 Put the mixed material in step 1 into a ball mill and grind for 5 hours to make it evenly mixed, then put the ground mixed material into a dried corundum crucible, and put the corundum crucible into a resistance furnace at 1200°C Medium melting for 55min;
  • Step 3 Take the corundum crucible described in Step 2 out of the resistance furnace, then pour the molten mixture into cold water quickly for water quenching, and finally dry the water-quenched mixture to obtain solid mixture materials;
  • Step 4 put the solid mixture material in the step 3 into the jet mill for grinding, the working air pressure of the jet mill is 0.4MPa, the rotating speed of the classification wheel is 500r/min, and the solid mixture material is put into the drying box after grinding. After drying, the glass frit is obtained.
  • the softening temperature of the glass frit of the present invention is 248.07° C. as shown in FIG. 1 , and the median particle size of the glass frit is 1 ⁇ m.
  • the prepared glass powder is used to prepare the low-temperature sintered silver paste, which is prepared by mixing 85 kg of silver powder, 12 kg of organic carrier and 3 kg of the glass powder prepared above.
  • the median particle size D 50 of the selected silver powder is 200-300 nm
  • FIG. 9 is an SEM image of the selected nano-silver powder in this embodiment. It can be seen from the figure that the particle size distribution of the nano-silver powder is uniform.
  • the specific surface area of the selected silver powder was 6.5 m 2 /g
  • the burning loss rate of ablation at 540° C. for 30 min was 0.3%
  • the tap density was 7 g/mL.
  • Organic carriers including thixotropic agents, thickeners, toughening agents, surfactants, antioxidants, binders and dispersants are commonly used reagents for common conductive pastes for solar cells. Conductivity and sintering characteristics can be adjusted to add types and amounts.
  • all the solvents of the organic carrier are the mixture of diethylene glycol dibutyl ether and alcohol ester 12.
  • the selected silver paste containing glass powder as the front busbar has a welding tension of 3.5N
  • the sintering temperature of the silver paste containing glass powder is 300°C
  • the silver paste containing glass powder is used for preparing
  • the front electrode contacting the solar cell is passivated by the tunnel oxide layer.
  • the morphology of the front electrode of the electrode prepared in this example is observed by scanning electron microscope, as shown in Figure 4. The electron microscope observation shows that the sintered density of the silver paste is high.
  • a glass powder comprising a vanadium-tellurium-silver glass powder of formula (I):
  • M element is gallium element, silicon element, germanium element and potassium element.
  • the N element is a halogen element.
  • the preparation method of the inorganic glass powder of the present invention is:
  • Step 1 weigh the components in the glass powder according to the ratio, and mix them evenly to obtain a mixed material
  • Step 2 Put the mixed material in step 1 into a ball mill and grind for 5 hours to make it evenly mixed, then put the ground mixed material into a dried corundum crucible, and put the corundum crucible into a resistance furnace at 1200°C Medium melting for 55min;
  • Step 3 Take the corundum crucible described in Step 2 out of the resistance furnace, then pour the molten mixture into cold water quickly for water quenching, and finally dry the water-quenched mixture to obtain solid mixture materials;
  • Step 4 put the solid mixture material in the step 3 into the jet mill for grinding, the working air pressure of the jet mill is 0.4MPa, the rotating speed of the classification wheel is 500r/min, and the solid mixture material is put into the drying box after grinding. After drying, the glass frit is obtained.
  • the softening temperature of the glass frit of the present invention is 288.45° C. as shown in FIG. 2 , and the median particle size of the glass frit is 1.8 ⁇ m.
  • the prepared glass powder is used to prepare low-temperature sintered silver paste, which is prepared by mixing 85 kg of silver powder, 13 kg of organic carrier and 2 kg of the glass powder prepared above.
  • the median particle size D 50 of the selected silver powder is 50-100 nm
  • FIG. 10 is an SEM image of the selected nano-silver powder in this embodiment. It can be seen from the figure that the particle size distribution of the nano-silver powder is uniform.
  • the specific surface area of the selected silver powder is 3 m 2 /g
  • the burning loss rate of ablation at 540° C. for 30 min is 0.2%
  • the tap density is 6 g/mL.
  • Organic carriers including thixotropic agents, thickeners, toughening agents, surfactants, antioxidants, binders and dispersants are commonly used reagents for common conductive pastes for solar cells. Conductivity and sintering characteristics can be adjusted to add types and amounts.
  • all the solvents of the organic carrier are the mixture of diethylene glycol dibutyl ether and ethylene glycol diacetate.
  • the selected silver paste containing glass powder as the front busbar has a welding tension of 2.6N
  • the sintering temperature of the silver paste containing glass powder is 200°C
  • the silver paste containing glass powder is used for preparing
  • the front electrode contacting the solar cell is passivated by the tunnel oxide layer.
  • the morphology of the front electrode of the electrode prepared in this example is observed by scanning electron microscope, as shown in Figure 5. The electron microscope observation shows that the sintered density of the silver paste is high.
  • a glass powder comprising a vanadium-tellurium-silver glass powder of formula (I):
  • M element is silicon element, germanium element, tin element, phosphorus element, magnesium element, calcium element and potassium element.
  • the N element is carbonate.
  • the preparation method of the inorganic glass powder of the present invention is:
  • Step 1 weigh the components in the glass powder according to the ratio, and mix them evenly to obtain a mixed material
  • Step 2 Put the mixed material in step 1 into a ball mill and grind for 5 hours to make it evenly mixed, then put the ground mixed material into a dried corundum crucible, and put the corundum crucible into a resistance furnace at 1200°C Medium melting for 55min;
  • Step 3 Take the corundum crucible described in Step 2 out of the resistance furnace, then pour the molten mixture into cold water quickly for water quenching, and finally dry the water-quenched mixture to obtain solid mixture materials;
  • Step 4 put the solid mixture material in the step 3 into the jet mill for grinding, the working air pressure of the jet mill is 0.4MPa, the rotating speed of the classification wheel is 500r/min, and the solid mixture material is put into the drying box after grinding. After drying, the glass frit is obtained.
  • the softening temperature of the glass frit of the present invention is 322.00° C. as shown in FIG. 3 , and the median particle size of the glass frit is 1.2 ⁇ m.
  • the prepared glass powder is used to prepare low-temperature sintered silver paste, which is prepared by mixing 83 kg of silver powder, 13 kg of organic carrier and 4 kg of the glass powder prepared above.
  • the median particle size D 50 of the selected silver powder is 100-200 nm
  • FIG. 11 is an SEM image of the selected nano-silver powder in this embodiment. It can be seen from the figure that the particle size distribution of the nano-silver powder is uniform.
  • the specific surface area of the selected silver powder is 10 m 2 /g
  • the burning loss rate of ablation at 540° C. for 30 min is 0.2%
  • the tap density is 6.5 g/mL.
  • Organic carriers including thixotropic agents, thickeners, toughening agents, surfactants, antioxidants, binders and dispersants are commonly used reagents for common conductive pastes for solar cells. Conductivity and sintering characteristics can be adjusted to add types and amounts.
  • all the solvents of the organic carrier are the mixture of alcohol ester dodecyl and ethylene glycol diacetate.
  • the selected silver paste containing glass powder as the front busbar has a welding tension of 3.2N, the sintering temperature of the silver paste containing glass powder is 280°C, and the silver paste containing glass powder is used for preparing
  • the front electrode contacting the solar cell is passivated by the tunnel oxide layer.
  • the morphology of the front electrode of the electrode prepared in this example is observed by scanning electron microscope, as shown in Figure 6. The electron microscope observation shows that the sintered density of the silver paste is high.
  • a glass powder comprising a vanadium-tellurium-silver glass powder of formula (I):
  • M element is boron element, aluminum element, gallium element, silicon element and sodium element.
  • N element is oxygen element.
  • the preparation method of the inorganic glass powder of the present invention is:
  • Step 1 weigh the components in the glass powder according to the ratio, and mix them evenly to obtain a mixed material
  • Step 2 Put the mixed material in step 1 into a ball mill and grind for 5 hours to make it evenly mixed, then put the ground mixed material into a dried corundum crucible, and put the corundum crucible into a resistance furnace at 1200°C Medium melting for 55min;
  • Step 3 Take the corundum crucible described in Step 2 out of the resistance furnace, then pour the molten mixture into cold water quickly for water quenching, and finally dry the water-quenched mixture to obtain solid mixture materials;
  • Step 4 put the solid mixture material in the step 3 into the jet mill for grinding, the working air pressure of the jet mill is 0.4MPa, the rotating speed of the classification wheel is 500r/min, and the solid mixture material is put into the drying box after grinding. After drying, the glass frit is obtained.
  • the softening temperature of the glass frit of the present invention is 248.07° C. as shown in FIG. 1 , and the median particle size of the glass frit is 1.5 ⁇ m.
  • the prepared glass powder is used for preparing low-temperature sintered silver paste, which is prepared by mixing 90 kg of silver powder, 6 kg of organic carrier and 4 kg of the glass powder prepared above.
  • the median particle size D 50 of the selected silver powder is 400-500 nm
  • FIG. 12 is a SEM image of the selected nano-silver powder in this embodiment. It can be seen from the figure that the particle size distribution of the nano-silver powder is uniform.
  • the specific surface area of the selected silver powder was 4 m 2 /g
  • the burning loss rate of ablation at 540° C. for 30 min was 0.2%
  • the tap density was 8 g/mL.
  • Organic carriers including thixotropic agents, thickeners, toughening agents, surfactants, antioxidants, binders and dispersants are commonly used reagents for common conductive pastes for solar cells. Conductivity and sintering characteristics can be adjusted to add types and amounts.
  • the selected silver paste containing glass powder as the front busbar has a welding tension of 4.3N
  • the sintering temperature of the silver paste containing glass powder is 350°C
  • the silver paste containing glass powder is used for preparing
  • the front electrode of the solar cell is passivated through the tunnel oxide layer.
  • the morphology of the front electrode of the electrode prepared in this example is observed by scanning electron microscope, as shown in Figure 7. The electron microscope observation shows that the sintered density of the silver paste is high.
  • a glass powder comprising a vanadium-tellurium-silver glass powder of formula (I):
  • M element is silicon element, germanium element, tin element, phosphorus element, magnesium element, calcium element and potassium element.
  • the N element is carbonate.
  • the preparation method of the inorganic glass powder of the present invention is:
  • Step 1 each component in the described glass powder is weighed according to the ratio, and mixed uniformly to obtain a mixed material
  • Step 2 Put the mixed material in step 1 into a ball mill and grind for 5 hours to make it evenly mixed, then put the ground mixed material into a dried corundum crucible, and put the corundum crucible into a resistance furnace at 1200°C Medium melting for 55min;
  • Step 3 Take the corundum crucible described in Step 2 out of the resistance furnace, then pour the molten mixture into cold water quickly for water quenching, and finally dry the water-quenched mixture to obtain solid mixture materials;
  • Step 4 put the solid mixture material in the step 3 into the jet mill for grinding, the working air pressure of the jet mill is 0.4MPa, the rotating speed of the classification wheel is 500r/min, and the solid mixture material is put into the drying box after grinding. After drying, the glass frit is obtained.
  • the softening temperature of the glass frit of the present invention is 322.00° C. as shown in FIG. 3 , and the median particle size of the glass frit is 1.75 ⁇ m.
  • the prepared glass powder is used for preparing low-temperature sintered silver paste, which is prepared by mixing 90 kg of silver powder, 6 kg of organic carrier and 4 kg of the glass powder prepared above.
  • the median particle size D 50 of the selected silver powder is 100-200 nm
  • FIG. 13 is an SEM image of the selected nano-silver powder in this embodiment. As can be seen from the figure, the particle size distribution of the nano-silver powder is uniform.
  • the specific surface area of the selected silver powder is 8 m 2 /g
  • the burning loss rate of ablation at 540° C. for 30 min is 0.2%
  • the tap density is 7.5 g/mL.
  • Organic carriers including thixotropic agents, thickeners, toughening agents, surfactants, antioxidants, binders and dispersants are commonly used reagents for common conductive pastes for solar cells. Conductivity and sintering characteristics can be adjusted to add types and amounts.
  • all solvents of the organic carrier are diethylene glycol dibutyl ether.
  • the selected silver paste containing glass powder as the front busbar has a welding tension of 2.7N, the sintering temperature of the silver paste containing glass powder is 275°C, and the silver paste containing glass powder is used for preparing
  • the front electrode contacting the solar cell is passivated by the tunnel oxide layer.
  • the morphology of the front electrode of the electrode prepared in this example is observed by scanning electron microscope, as shown in Figure 8. The electron microscope observation shows that the sintered density of the silver paste is high.
  • the silver paste prepared by the present invention can be used to prepare the front electrode of the tunnel oxide layer passivation contact solar cell and the heterojunction solar cell.
  • the low-temperature sintered silver paste prepared in Examples 1-5 is screen-printed Printing on the front side of the tunnel oxide layer passivation contacting the solar cell, and then taking the tunnel oxide layer passivation contacting the front side electrode of the solar cell printed with conventional silver paste as a comparative example, recording the sintering temperature, and using the IV test, the above obtained results were obtained.
  • the battery efficiency is tested, and the test results are shown in Table 1:
  • the low temperature sintering silver paste is used to print it on the front surface of the tunnel oxide layer passivation contact solar cell to form a front electrode, the sintering temperature is low, and the damage to the cell is reduced.
  • the open circuit voltage and filling factor of the front electrode are higher than the open circuit voltage and filling factor of the front electrode prepared by using the conventional silver paste on the market.
  • the photoelectric conversion efficiency is 0.16-0.6% higher, and the welding tension is 0.6-2.3N higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Glass Compositions (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种玻璃粉及其制备方法和含该玻璃粉的银浆。玻璃粉为含有钒-碲-银的玻璃粉,其软化温度为230-330℃,中值粒径为1-2μm,将该玻璃粉应用于银浆中,可满足银浆在230-400℃的温度烧结的同时保证银浆烧结后,该玻璃体系形成牢固的三维网络结构,提升银电极的焊接拉力,在该玻璃粉中还添加了其他金属元素使得玻璃粉的网络结构更加致密且完整,同时保证玻璃粉的稳定性。含有该玻璃粉的银浆中选择粒径大小均匀、粒径分布范围窄、分散性好且具有优异的导电性能的纳米银粉,制备的银浆可在230-400℃温度下进行烧结,且可在不过度损伤电池片的前提下大大提高太阳能电池的光电转换效率。

Description

一种玻璃粉及含该玻璃粉的银浆 技术领域
本发明涉及包含金属或合金的导电材料技术领域,具体涉及一种玻璃粉及含该玻璃粉的银浆。
背景技术
隧穿氧化层钝化接触(TOPCon)太阳能电池是由德国弗兰霍夫太阳能研究所提出的一种新型硅太阳能电池。隧穿氧化层钝化接触太阳能电池采用n型硅片,该太阳能电池结构自上而下依次为:正面电极、正面SiN x层、Al 2O 3层、P +掺杂层、n型硅片、SiO 2隧穿氧化层、N +多晶硅层、背面SiN x层和背面电极。
本公司于2019年4月29日申请的专利CN201910354176.X《一种N型太阳能电池正面电极金属化方法》,该专利公开了一种N型太阳能电池正面电极金属化方法,该金属化方法为:在SiN x层上印刷铝浆形成第一细栅,然后第一细栅上叠印银浆形成第二细栅,最后在第一细栅上印刷正面银浆形成主栅。用作第一细栅的铝浆电阻较大,在该正面电极的作用是增加细栅与正面硅片的线电阻,该正面电极结构对叠印在第一细栅上的第二细栅银浆的要求为:具有低的线电阻,与第一细栅铝浆具有良好的银铝附着且银铝接触电阻低,且栅线要尽量细,最好能在较低的温度下烧结,减少对硅片的损伤的作用。作为印刷在第一细栅上的正面主栅银浆的要求为:该正面主栅浆料的活性要高、具有好的焊接拉力、线电阻低、烧结温度低、复合低等。
发明内容
为了解决上述问题本发明提供了一种玻璃粉及其制备方法和含该玻璃粉的银浆,作为低温烧结银浆的核心材料——玻璃粉,本发明的提供的玻璃粉软化点在230-330℃,因此含有该玻璃粉的银浆在较低温环境下活性较高,本发明的 银浆既可以印刷在第一细栅上作为第二细栅浆料,又可以作为主栅浆料,且满足在低温下烧结,线电阻低、复合小、具有好的焊接拉力等优点,本发明的具体内容如下:
本发明提供了一种玻璃粉,其技术点在于:所述的玻璃粉为包含式(Ⅰ)的钒-碲-银的玻璃粉:
V a-Te b-Ag d-M c-N e,          (1),
其中0<a、b、c或d<1,a、b、c和d的和为1,其中0.1≤a≤0.3、0.3≤b≤0.5、0.01≤c≤0.03、0.3≤d≤0.5,M为一种或者多种元素,e为平衡该玻璃粉电荷的自然数。
在本发明的有的实施例中,所述的M元素选自硼元素、铝元素、镓元素、硅元素、锗元素、锡元素、磷元素、铌元素、钛元素、钼元素、钨元素、铬元素、碱金属元素和碱土金属元素中的至少一种。
在本发明的有的实施例中,所述的N元素选自氧元素、卤族元素、碳酸根和硝酸根中的至少一种。
在本发明的有的实施例中,所述的玻璃粉的软化温度为230-330℃,所述的玻璃粉的中值粒径为1-2μm。
本发明还提供了一种含有上述玻璃粉的银浆,其技术点在于:所述的含有玻璃粉的银浆以质量份数计,由80-95质量份的银粉、5-13质量份的有机载体和2-4质量份的所述玻璃粉混合制备而成。
在本发明的有的实施例中,所述银粉的中值粒径D 50为50-500nm。
在本发明的有的实施例中,所述银粉的比表面积为3-10m 2/g,所述银粉在540℃烧蚀30min的烧损率为0.2-0.4%,所述银粉的振实密度为6-8g/mL。
在本发明的有的实施例中,所述的有机载体为触变剂、增稠剂、增韧剂、 表面活性剂、抗氧剂、粘结剂、分散剂和溶剂中的至少一种。
上述的溶剂选自相同温度下,饱和蒸气压较低的溶剂,该溶剂可以选择二乙二醇二丁醚、醇酯十二和乙二醇二醋酸酯中的至少一种。
在本发明的有的实施例中,所述的含有玻璃粉的银浆作为正面主栅其焊接拉力为2-4.3N,所述的含有玻璃粉的银浆的烧结温度为230-400℃,所述的含有玻璃粉的银浆用于制备隧穿氧化层钝化接触太阳能电池的正面电极。
本发明还提供了一种玻璃粉的制备方法,其技术点在于:包括如下步骤:
步骤1:将所述的玻璃粉中的各个组分按比称量好,并混合均匀得到混合物料;
步骤2:将步骤1中的混合物料投入球磨机中研磨4-6h,使其混合均匀,然后将研磨好的混合物料放入烘干的刚玉坩埚中,并将所述的刚玉坩埚投入1000-1400℃的电阻炉中熔融50-60min;
步骤3:将步骤2所述的刚玉坩埚从电阻炉中取出,然后将所述的熔融后的混合物料迅速倒入冷水中进行水淬,最后将水淬后的混合物料进行烘干处理,得到固态混合物物料;
步骤4:将步骤3中固态混合物料投入气流磨中磨碎,所述的气流磨工作气压为0.3-0.5MPa,分级轮转速为400-600r/min,磨碎后将所述的固态混合物料投入干燥箱中干燥,即得到所述的玻璃粉。
与现有技术相比,本发明的有益效果在于:
1、本发明公开的一种玻璃粉为钒-碲-银的玻璃粉,该玻璃粉的网络结构强度强,且该玻璃粉的软化温度为230-330℃,将该玻璃粉应用于银浆中,可以满足银浆在230-400℃的温度烧结的同时保证银浆烧结后该玻璃体系能够形成牢固的三维网络结构,将其应用于主栅浆料时可以提升正面银电极的焊接拉力, 将应用于叠印的细栅浆料时可以降低银铝的接触电阻以及银电极的线电阻。
2、本发明的一种玻璃粉中还辅以硼元素、铝元素、镓元素、硅元素、锗元素、锡元素、磷元素、铌元素、钛元素、钼元素、钨元素、铬元素、碱金属元素和碱土金属元素等金属元素,这些金属元素的加入可以使得玻璃粉的网络结构更加致密且完整,同时保证玻璃粉的稳定性。
3、本发明的一种含有玻璃粉的银浆,选用的纳米银粉的粒径大小均匀,粒径分布范围窄,分散性好且具有优异的导电性能,本发明的纳米银粉的中值粒径D 50为50-500nm,比表面积为3-10m 2/g,所述银粉在540℃烧蚀30min的烧损率为0.2-0.4%,所述银粉的振实密度为6-8g/mL,该纳米银粉应用于制备低温烧结银浆中,可以使得该银浆在230-400℃的温度下进行烧结时具有较好的流动性且对硅片的损伤少,将其作为正面主栅时焊接拉力为2-4.3N。
附图说明
图1为本发明的实施例1、4制备的玻璃粉的DSC图;
图2为本发明的实施例2制备的玻璃粉的DSC图;
图3为本发明的实施例3、5制备的玻璃粉的DSC图;
图4为本发明的实施例1制备的银浆的SEM扫描电镜图;
图5为本发明的实施例2制备的银浆的SEM扫描电镜图;
图6为本发明的实施例3制备的银浆的SEM扫描电镜图;
图7为本发明的实施例4制备的银浆的SEM扫描电镜图;
图8为本发明的实施例5制备的银浆的SEM扫描电镜图;
图9为本发明的实施例1所选用的银粉的SEM图;
图10为本发明的实施例2所选用的银粉的SEM图;
图11为本发明的实施例3所选用的银粉的SEM图;
图12为本发明的实施例4所选用的银粉的SEM图;
图13为本发明的实施例5所选用的银粉的SEM图。
具体实施方式
为了解决上述问题本发明提供了一种玻璃粉及其制备方法和含该玻璃粉的银浆,该玻璃粉的软化点低,含有该玻璃粉的银浆在较低温环境下活性较高,印刷形成正面电极拉力高,本发明的具体内容如下:
本发明提供了一种软化温度为230-330℃的玻璃粉,将2-4质量份的该玻璃粉配合使用80-95质量份的特定的纳米银粉和5-13质量份的低饱和蒸气压较低有机载体制备得到一种低温烧结型的银浆,可以将该低温烧结银浆通过丝网印刷在隧穿氧化层钝化接触太阳能的正面形成正面细栅或者正面主栅,将其作为正面细栅时,将其叠印在铝浆上,其正面细栅的宽度仅25-40μm,且细栅线电阻低、银铝附着好、银铝之间的相互作用小、银铝接触电阻低。将其作为主栅时,该银浆活性高,且具有较好的焊接拉力为2-4.3N,且该银浆在230-400℃温度下就可进行烧结,对于硅片的损伤较少。有文献报道,异质结太阳能电池的P-N结能承受的最高温度为230℃,在异质结太阳能电池中也可以使用本发明的低温烧结银浆可以在不破坏异质结太阳能电池的P-N结的前提下,有良好的光电转换效率。
玻璃粉
本发明的玻璃粉为包含式(Ⅰ)的钒-碲-银的玻璃粉:
V a-Te b-Ag d-M c-N e           (Ⅰ),
其中0<a、b、c或d<1,a、b、c和d的和为1,其中0.1≤a≤0.3、0.3≤b≤0.5、0.01≤c≤0.03、0.3≤d≤0.5,M为一种或者多种元素,e为平衡该玻璃粉电荷的自然数,本发明的钒-碲-银玻璃粉的玻璃体系的网络结构强度强,将其应用于银浆 中可以使得银浆具有较好的焊接拉力。其中M元素选自硼元素、铝元素、镓元素、硅元素、锗元素、锡元素、磷元素、铌元素、钛元素、钼元素、钨元素、铬元素、碱金属元素和碱土金属元素中的至少一种,这些金属元素的加入可以使得玻璃粉的网络结构更加致密且完整,同时保证玻璃粉的稳定性。其中N元素选自氧元素、卤族元素、碳酸根和硝酸根中的至少一种。该体系的玻璃粉的软化温度为230-330℃,该体系的玻璃粉的中值粒径可以做到1-2μm,当玻璃粉的中值粒径小于1μm时,则玻璃粉的活性过高在烧结的过程中容易损伤太阳能电池硅片,当玻璃粉的中值粒径大于2μm时候,玻璃粉的粒径大比表面积就相对较小,则玻璃粉的软化温度提高,将其制成银浆,会导致银浆的烧结温度过高。
银粉
本发明所用的银粉的中值粒径D 50为50-500nm,本发明选用的银粉的粒径大小均匀,粒径分布范围窄,分散性好且具有优异的导电性能。本发明的银粉的比表面积为3-10m 2/g,事实表明随着银粉的比表面积的增大,采用该银粉制备成银浆的烧结温度会越低,因此要想降低银浆的烧结温度,增加银粉的比表面积较为直接有效,但是随着银粉的比表面积的增加,银粉越容易出现团聚现象,同时由于比表面积较大的银粉的氧化活性变高,将其制备成银浆在烧结过程中极易与空气中的氧气发生氧化反应,影响银粉的品质,当银粉的比表面积增加到10m 2/g以上时,银粉会出现严重的团聚和氧化反应。本发明的银粉在540℃烧蚀30min的烧损率为0.2-0.4%,理论上来说,银粉烧损率越小,银粉的烧结活性越高,将其作为银浆的导电金属粉时会导致银浆的烧结温度降低。本发明的银粉的振实密度为6-8g/mL,申请人通过实验发现当银粉的振实密度越大,则该银粉制备成的银浆作为正面主栅其焊接拉力越大,结合本发明的特性,将 银粉的振实密度定为6-8g/mL最为合适。
有机载体
本发明的有机载体为触变剂、增稠剂、增韧剂、表面活性剂、抗氧剂、粘结剂、分散剂和溶剂中的至少一种。触变剂、增稠剂、增韧剂、表面活性剂、抗氧剂的加入可以制备的银浆具有更好的塑形性质和流变性能,其中,溶剂选自相同温度下,饱和蒸气压较低的溶剂,该溶剂可以选择二乙二醇二丁醚、醇酯十二和乙二醇二醋酸酯中的至少一种,该溶剂为低饱和蒸气压较低的溶剂,这些溶剂具有较好的热分解能力,如果溶剂的饱和蒸气压过高,所制备的银浆在低温烧结的过程中,银浆中的有机溶剂就不能完全挥发而遗留在银浆中,从而导致银浆的线电阻增加,进一步影响银浆的光电转换效率。
本发明所制备的含有玻璃粉的银浆作为正面主栅其焊接拉力为2-4.3N,所述的含有玻璃粉的银浆的烧结温度为230-400℃,所述的含有玻璃粉的银浆用于制备隧穿氧化层钝化接触太阳能电池的正面电极。
下面将对本发明实施例中的技术方案进行清楚、完整地描述,以使本领域的技术人员能够更好的理解本发明的优点和特征,从而对本发明的保护范围做出更为清楚的界定。本发明所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。如无特殊说明,本发明中的原料均为市售。
实施例1
一种玻璃粉包含式(Ⅰ)的钒-碲-银的玻璃粉:
V a-Te b-Ag d-M c-N e           (Ⅰ),
其中,a=0.2、b=0.4、c=0.02、d=0.38,e为平衡该玻璃粉电荷的自然数。
其中,M元素为硼元素、铝元素、镓元素、硅元素和钠元素。
其中,N元素为氧元素。
按照上述配方,本发明的无机玻璃粉的制备方法为:
步骤1:将所述的玻璃粉中的各个组分按比称量好,并混合均匀得到混合物料;
步骤2:将步骤1中的混合物料投入球磨机中研磨5h,使其混合均匀,然后将研磨好的混合物料放入烘干的刚玉坩埚中,并将所述的刚玉坩埚投入1200℃的电阻炉中熔融55min;
步骤3:将步骤2所述的刚玉坩埚从电阻炉中取出,然后将所述的熔融后的混合物料迅速倒入冷水中进行水淬,最后将水淬后的混合物料进行烘干处理,得到固态混合物物料;
步骤4:将步骤3中固态混合物料投入气流磨中磨碎,所述的气流磨工作气压为0.4MPa,分级轮转速为500r/min,磨碎后将所述的固态混合物料投入干燥箱中干燥,即得到所述的玻璃粉,本发明的玻璃粉的软化温度如图1所示为248.07℃,所述的玻璃粉的中值粒径为1μm。
将制备的玻璃粉用于制备低温烧结银浆由85kg的银粉、12kg的有机载体和3kg的上述制备的玻璃粉混合制备而成。
其中,所选择的银粉的中值粒径D 50为200-300nm,图9为本实施例所选择的纳米银粉的SEM图,从图中可以看出,该纳米银粉的粒径分布均匀。
其中,所选择的银粉的比表面积为6.5m 2/g,在540℃烧蚀30min的烧损率为0.3%,振实密度为7g/mL。
有机载体包括触变剂、增稠剂、增韧剂、表面活性剂、抗氧剂、粘结剂和分散剂均为常见的太阳能电池用导电浆料常用的试剂,可以根据浆料的粘度、 导电性和烧结特性进行调节加入种类与加入量。
其中,机载体所有的溶剂为二乙二醇二丁醚和醇酯十二的混合物。
其中,所选择的含有玻璃粉的银浆作为正面主栅其焊接拉力为3.5N,所述的含有玻璃粉的银浆的烧结温度为300℃,所述的含有玻璃粉的银浆用于制备隧穿氧化层钝化接触太阳能电池的正面电极,采用扫描电镜观察本实施例制备的电极的正面电极的形貌见图4,电镜观察发现该银浆的烧结致密度高。
实施例2
一种玻璃粉包含式(Ⅰ)的钒-碲-银的玻璃粉:
V a-Te b-Ag d-M c-N e             (Ⅰ),
其中,a=0.3、b=0.3、c=0.01、d=0.39,e为平衡该玻璃粉电荷的自然数。
其中,M元素为镓元素、硅元素、锗元素和钾元素。
其中,N元素为卤族元素。
按照上述配方,本发明的无机玻璃粉的制备方法为:
步骤1:将所述的玻璃粉中的各个组分按比称量好,并混合均匀得到混合物料;
步骤2:将步骤1中的混合物料投入球磨机中研磨5h,使其混合均匀,然后将研磨好的混合物料放入烘干的刚玉坩埚中,并将所述的刚玉坩埚投入1200℃的电阻炉中熔融55min;
步骤3:将步骤2所述的刚玉坩埚从电阻炉中取出,然后将所述的熔融后的混合物料迅速倒入冷水中进行水淬,最后将水淬后的混合物料进行烘干处理,得到固态混合物物料;
步骤4:将步骤3中固态混合物料投入气流磨中磨碎,所述的气流磨工作气压为0.4MPa,分级轮转速为500r/min,磨碎后将所述的固态混合物料投入干燥 箱中干燥,即得到所述的玻璃粉,本发明的玻璃粉的软化温度如图2所示为288.45℃,所述的玻璃粉的中值粒径为1.8μm。
将制备的玻璃粉用于制备低温烧结银浆由85kg的银粉、13kg的有机载体和2kg的上述制备的玻璃粉混合制备而成。
其中,所选择的银粉的中值粒径D 50为50-100nm,图10为本实施例所选择的纳米银粉的SEM图,从图中可以看出,该纳米银粉的粒径分布均匀。
其中,所选择的银粉的比表面积为3m 2/g,在540℃烧蚀30min的烧损率0.2%,振实密度为6g/mL。
有机载体包括触变剂、增稠剂、增韧剂、表面活性剂、抗氧剂、粘结剂和分散剂均为常见的太阳能电池用导电浆料常用的试剂,可以根据浆料的粘度、导电性和烧结特性进行调节加入种类与加入量。
其中,机载体所有的溶剂为二乙二醇二丁醚和乙二醇二醋酸酯的混合物。
其中,所选择的含有玻璃粉的银浆作为正面主栅其焊接拉力为2.6N,所述的含有玻璃粉的银浆的烧结温度为200℃,所述的含有玻璃粉的银浆用于制备隧穿氧化层钝化接触太阳能电池的正面电极,采用扫描电镜观察本实施例制备的电极的正面电极的形貌见图5,电镜观察发现该银浆的烧结致密度高。
实施例3
一种玻璃粉包含式(Ⅰ)的钒-碲-银的玻璃粉:
V a-Te b-Ag d-M c-N e            (Ⅰ),
其中,a=0.1、b=0.4、c=0.03、d=0.47,e为平衡该玻璃粉电荷的自然数。
其中,M元素为硅元素、锗元素、锡元素、磷元素、镁元素、钙元素和钾元素。
其中,N元素为碳酸根。
按照上述配方,本发明的无机玻璃粉的制备方法为:
步骤1:将所述的玻璃粉中的各个组分按比称量好,并混合均匀得到混合物料;
步骤2:将步骤1中的混合物料投入球磨机中研磨5h,使其混合均匀,然后将研磨好的混合物料放入烘干的刚玉坩埚中,并将所述的刚玉坩埚投入1200℃的电阻炉中熔融55min;
步骤3:将步骤2所述的刚玉坩埚从电阻炉中取出,然后将所述的熔融后的混合物料迅速倒入冷水中进行水淬,最后将水淬后的混合物料进行烘干处理,得到固态混合物物料;
步骤4:将步骤3中固态混合物料投入气流磨中磨碎,所述的气流磨工作气压为0.4MPa,分级轮转速为500r/min,磨碎后将所述的固态混合物料投入干燥箱中干燥,即得到所述的玻璃粉,本发明的玻璃粉的软化温度如图3所示为322.00℃,所述的玻璃粉的中值粒径为1.2μm。
将制备的玻璃粉用于制备低温烧结银浆由83kg的银粉、13kg的有机载体和4kg的上述制备的玻璃粉混合制备而成。
其中,所选择的银粉的中值粒径D 50为100-200nm,图11为本实施例所选择的纳米银粉的SEM图,从图中可以看出,该纳米银粉的粒径分布均匀。
其中,所选择的银粉的比表面积为10m 2/g,在540℃烧蚀30min的烧损率为0.2%,振实密度为6.5g/mL。
有机载体包括触变剂、增稠剂、增韧剂、表面活性剂、抗氧剂、粘结剂和分散剂均为常见的太阳能电池用导电浆料常用的试剂,可以根据浆料的粘度、导电性和烧结特性进行调节加入种类与加入量。
其中,机载体所有的溶剂为醇酯十二和乙二醇二醋酸酯中的混合物。
其中,所选择的含有玻璃粉的银浆作为正面主栅其焊接拉力为3.2N,所述的含有玻璃粉的银浆的烧结温度为280℃,所述的含有玻璃粉的银浆用于制备隧穿氧化层钝化接触太阳能电池的正面电极,采用扫描电镜观察本实施例制备的电极的正面电极的形貌见图6,电镜观察发现该银浆的烧结致密度高。
实施例4
一种玻璃粉包含式(Ⅰ)的钒-碲-银的玻璃粉:
V a-Te b-Ag d-M c-N e            (Ⅰ),
其中,a=0.2、b=0.4、c=0.02、d=0.38,e为平衡该玻璃粉电荷的自然数。
其中,M元素为硼元素、铝元素、镓元素、硅元素和钠元素。
其中,N元素为氧元素。
按照上述配方,本发明的无机玻璃粉的制备方法为:
步骤1:将所述的玻璃粉中的各个组分按比称量好,并混合均匀得到混合物料;
步骤2:将步骤1中的混合物料投入球磨机中研磨5h,使其混合均匀,然后将研磨好的混合物料放入烘干的刚玉坩埚中,并将所述的刚玉坩埚投入1200℃的电阻炉中熔融55min;
步骤3:将步骤2所述的刚玉坩埚从电阻炉中取出,然后将所述的熔融后的混合物料迅速倒入冷水中进行水淬,最后将水淬后的混合物料进行烘干处理,得到固态混合物物料;
步骤4:将步骤3中固态混合物料投入气流磨中磨碎,所述的气流磨工作气压为0.4MPa,分级轮转速为500r/min,磨碎后将所述的固态混合物料投入干燥箱中干燥,即得到所述的玻璃粉,本发明的玻璃粉的软化温度如图1所示为248.07℃,所述的玻璃粉的中值粒径为1.5μm。
将制备的玻璃粉用于制备低温烧结银浆由90kg的银粉、6kg的有机载体和4kg的上述制备的玻璃粉混合制备而成。
其中,所选择的银粉的中值粒径D 50为400-500nm,图12为本实施例所选择的纳米银粉的SEM图,从图中可以看出,该纳米银粉的粒径分布均匀。
其中,所选择的银粉的比表面积为4m 2/g,在540℃烧蚀30min的烧损率为0.2%,振实密度为8g/mL。
有机载体包括触变剂、增稠剂、增韧剂、表面活性剂、抗氧剂、粘结剂和分散剂均为常见的太阳能电池用导电浆料常用的试剂,可以根据浆料的粘度、导电性和烧结特性进行调节加入种类与加入量。
其中,机载体所有的溶剂为醇酯十二。
其中,所选择的含有玻璃粉的银浆作为正面主栅其焊接拉力为4.3N,所述的含有玻璃粉的银浆的烧结温度为350℃,所述的含有玻璃粉的银浆用于制备隧穿氧化层钝化接触太阳能电池的正面电极,采用扫描电镜观察本实施例制备的电极的正面电极的形貌见图7,电镜观察发现该银浆的烧结致密度高。
实施例5
一种玻璃粉包含式(Ⅰ)的钒-碲-银的玻璃粉:
V a-Te b-Ag d-M c-N e              (Ⅰ),
其中,a=0.1、b=0.4、c=0.03、d=0.47,e为平衡该玻璃粉电荷的自然数。
其中,M元素为硅元素、锗元素、锡元素、磷元素、镁元素、钙元素和钾元素。
其中,N元素为碳酸根。
按照上述配方,本发明的无机玻璃粉的制备方法为:
步骤1:将所述的玻璃粉中的各个组分按比称量好,并混合均匀得到混合物 料;
步骤2:将步骤1中的混合物料投入球磨机中研磨5h,使其混合均匀,然后将研磨好的混合物料放入烘干的刚玉坩埚中,并将所述的刚玉坩埚投入1200℃的电阻炉中熔融55min;
步骤3:将步骤2所述的刚玉坩埚从电阻炉中取出,然后将所述的熔融后的混合物料迅速倒入冷水中进行水淬,最后将水淬后的混合物料进行烘干处理,得到固态混合物物料;
步骤4:将步骤3中固态混合物料投入气流磨中磨碎,所述的气流磨工作气压为0.4MPa,分级轮转速为500r/min,磨碎后将所述的固态混合物料投入干燥箱中干燥,即得到所述的玻璃粉,本发明的玻璃粉的软化温度如图3所示为322.00℃,所述的玻璃粉的中值粒径为1.75μm。
将制备的玻璃粉用于制备低温烧结银浆由90kg的银粉、6kg的有机载体和4kg的上述制备的玻璃粉混合制备而成。
其中,所选择的银粉银粉的中值粒径D 50为100-200nm,图13为本实施例所选择的纳米银粉的SEM图,从图中可以看出,该纳米银粉的粒径分布均匀。
其中,所选择的银粉的比表面积为8m 2/g,在540℃烧蚀30min的烧损率为0.2%,振实密度为7.5g/mL。
有机载体包括触变剂、增稠剂、增韧剂、表面活性剂、抗氧剂、粘结剂和分散剂均为常见的太阳能电池用导电浆料常用的试剂,可以根据浆料的粘度、导电性和烧结特性进行调节加入种类与加入量。
其中,机载体所有的溶剂为二乙二醇二丁醚。
其中,所选择的含有玻璃粉的银浆作为正面主栅其焊接拉力为2.7N,所述的含有玻璃粉的银浆的烧结温度为275℃,所述的含有玻璃粉的银浆用于制备隧 穿氧化层钝化接触太阳能电池的正面电极,采用扫描电镜观察本实施例制备的电极的正面电极的形貌见图8,电镜观察发现该银浆的烧结致密度高。
实验例
本发明做制备的银浆可以用于制备隧穿氧化层钝化接触太阳能电池、异质结太阳能电池的正面电极,本实验例将实施例1-5所制备的低温烧结银浆通过丝网印刷印刷于隧穿氧化层钝化接触太阳能电池的正面,然后以印刷常规银浆的隧穿氧化层钝化接触太阳能电池正面电极为对比例,记录其烧结温度,并利用I-V测试,对上述得到的电池效率进行检测,测试结果见表1:
表1 性能测试对比表
Figure PCTCN2020132699-appb-000001
从表1可以看出,采用低温烧结银浆将其印刷在隧穿氧化层钝化接触太阳能电池的正面形成正面电极,其烧结温度低,对电池片的损伤减少,采用本发明的低温烧结制备正面电极的开路电压和填充因子相较于使用市面上常规银浆制备正面电极的开路电压和填充因子要高,采用本发明制备的低温烧结银浆制成正面电极的光电转化效率比常规银浆的光电转化效率高出0.16-0.6%,焊接拉力高出0.6-2.3N。
最后指出,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种玻璃粉,其特征在于:所述的玻璃粉为包含式(Ⅰ)的钒-碲-银的玻璃粉:V a-Te b-Ag d-M c-N e       (Ⅰ),
    其中0<a、b、c或d<1,a、b、c和d的和为1,其中0.1≤a≤0.3、0.3≤b≤0.5、0.01≤c≤0.03、0.3≤d≤0.5,M为一种或者多种元素,e为平衡该玻璃粉电荷的自然数。
  2. 根据权利要求1所述的一种玻璃粉,其特征在于:所述的M元素选自硼元素、铝元素、镓元素、硅元素、锗元素、锡元素、磷元素、铌元素、钛元素、钼元素、钨元素、铬元素、碱金属元素和碱土金属元素中的至少一种。
  3. 根据权利要求1所述的一种玻璃粉,其特征在于:所述的N元素选自氧元素、卤族元素、碳酸根和硝酸根中的至少一种。
  4. 根据权利要求1所述的一种玻璃粉,其特征在于:所述的玻璃粉的软化温度为230-330℃,所述的玻璃粉的中值粒径为1-2μm。
  5. 一种含有权利要求1-4任一项所述的玻璃粉的银浆,其特征在于:所述的含有玻璃粉的银浆以质量份数计,由80-95质量份的银粉、5-13质量份的有机载体和2-4质量份的所述玻璃粉混合制备而成。
  6. 根据权利要求5所述的一种含有玻璃粉的银浆,其特征在于:所述银粉的中值粒径D 50为50-500nm。
  7. 根据权利要求5所述的一种含有玻璃粉的银浆,其特征在于:所述银粉的比表面积为3-10m 2/g,所述银粉在540℃烧蚀30min的烧损率为0.2-0.4%,所述银粉的振实密度为6-8g/mL。
  8. 根据权利要求5所述的一种含有玻璃粉的银浆,其特征在于:所述的有机载体为触变剂、增稠剂、增韧剂、粘结剂、表面活性剂、抗氧剂、分散剂和溶剂中的至少一种。
  9. 根据权利要求6-8所述的任意所述的一种含有玻璃粉的银浆,其特征在于:所述的含有玻璃粉的银浆作为正面主栅其焊接拉力为2-4.3N,所述的含有玻璃粉的银浆的烧结温度为230-400℃,所述的含有玻璃粉的银浆用于制备隧穿氧化层钝化接触太阳能电池的正面电极。
  10. 根据权利要求1-4所述的任意所述的玻璃粉的制备方法,其特征在于:包括如下步骤:
    步骤1:将所述的玻璃粉中的各个组分按比称量好,并混合均匀得到混合物料;
    步骤2:将步骤1中的混合物料投入球磨机中研磨4-6h,使其混合均匀,然后将研磨好的混合物料放入烘干的刚玉坩埚中,并将所述的刚玉坩埚投入1000-1400℃的电阻炉中熔融50-60min;
    步骤3:将步骤2所述的刚玉坩埚从电阻炉中取出,然后将所述的熔融后的混合物料迅速倒入冷水中进行水淬,最后将水淬后的混合物料进行烘干处理,得到固态混合物物料;
    步骤4:将步骤3中固态混合物料投入气流磨中磨碎,所述的气流磨工作气压为0.3-0.5MPa,分级轮转速为400-600r/min,磨碎后将所述的固态混合物料投入干燥箱中干燥,即得到所述的玻璃粉。
PCT/CN2020/132699 2020-08-26 2020-11-30 一种玻璃粉及含该玻璃粉的银浆 WO2022041537A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/777,934 US11787730B2 (en) 2020-08-26 2020-11-30 Glass powder and silver paste comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010868973.2A CN111847889A (zh) 2020-08-26 2020-08-26 一种玻璃粉及含该玻璃粉的银浆
CN202010868973.2 2020-08-26

Publications (1)

Publication Number Publication Date
WO2022041537A1 true WO2022041537A1 (zh) 2022-03-03

Family

ID=72967230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132699 WO2022041537A1 (zh) 2020-08-26 2020-11-30 一种玻璃粉及含该玻璃粉的银浆

Country Status (3)

Country Link
US (1) US11787730B2 (zh)
CN (1) CN111847889A (zh)
WO (1) WO2022041537A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111847889A (zh) * 2020-08-26 2020-10-30 南通天盛新能源股份有限公司 一种玻璃粉及含该玻璃粉的银浆
CN113896424B (zh) * 2021-10-14 2023-11-21 浙江光达电子科技有限公司 一种用于perc晶硅太阳能电池背面银浆的玻璃粉及制备方法
CN114999707A (zh) * 2022-07-07 2022-09-02 江苏日御光伏新材料科技有限公司 一种hjt银浆及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103648999A (zh) * 2011-07-04 2014-03-19 株式会社日立制作所 玻璃组合物、包含其的玻璃料、包含其的玻璃膏、及利用其的电气电子零件
US20150037594A1 (en) * 2013-07-30 2015-02-05 Asahi Glass Company, Limited Glass composition, sealing material, and sealed package
WO2015076157A1 (ja) * 2013-11-20 2015-05-28 株式会社ノリタケカンパニーリミテド 導電性組成物の製造方法
CN104798209A (zh) * 2012-09-26 2015-07-22 株式会社村田制作所 导电性膏以及太阳能电池
CN105384339A (zh) * 2014-08-29 2016-03-09 日立化成株式会社 无铅低熔点玻璃组合物以及使用组合物的玻璃材料和元件
CN105384338A (zh) * 2014-08-29 2016-03-09 日立化成株式会社 无铅低熔点玻璃组合物以及使用组合物的玻璃材料和元件
CN108463440A (zh) * 2016-01-18 2018-08-28 株式会社日立制作所 无铅玻璃组合物、玻璃复合材料、玻璃糊剂、密封结构体、电气电子部件和涂装部件
CN109215829A (zh) * 2018-09-03 2019-01-15 苏州晶银新材料股份有限公司 一种太阳能电池用正面电极银浆、银粉及其制备方法
CN111847889A (zh) * 2020-08-26 2020-10-30 南通天盛新能源股份有限公司 一种玻璃粉及含该玻璃粉的银浆

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4945071A (en) * 1989-04-19 1990-07-31 National Starch And Chemical Investment Holding Company Low softening point metallic oxide glasses suitable for use in electronic applications
JP2000016835A (ja) * 1998-06-30 2000-01-18 Toray Ind Inc ディスプレイ用絶縁ペースト
KR101693070B1 (ko) * 2013-08-28 2017-01-04 제일모직주식회사 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
CN104289726B (zh) * 2014-09-25 2017-02-15 中国船舶重工集团公司第七一二研究所 高比表面积絮状超细银粉制备方法及制得的银粉
CN105800942B (zh) * 2016-03-16 2018-06-19 西南科技大学 一种硅太阳能电池正面电极银浆用碲酸盐玻璃粉的制备方法
CN107195354B (zh) * 2017-04-20 2019-02-26 广东爱康太阳能科技有限公司 一种背钝化硅太阳能电池用正电极银浆及其制备方法
CN107746184B (zh) * 2017-10-20 2020-11-24 苏州晶银新材料股份有限公司 一种玻璃粉组合物及含有其的导电银浆和制备方法
WO2019205223A1 (zh) * 2018-04-28 2019-10-31 深圳市首骋新材料科技有限公司 晶硅太阳能电池正面导电银浆及其制备方法和太阳能电池
KR102217221B1 (ko) * 2018-11-09 2021-02-18 엘지전자 주식회사 무연계 저온 소성 글라스 프릿, 페이스트 및 이를 이용한 진공 유리 조립체
CN110459343B (zh) * 2019-06-19 2020-12-18 南通天盛新能源股份有限公司 一种全铝背场晶体硅太阳能电池用低温烧结型背面银浆
CN110619971A (zh) * 2019-09-09 2019-12-27 江苏正能电子科技有限公司 一种适应于高碲玻璃的高拉力正面银浆配方及制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103648999A (zh) * 2011-07-04 2014-03-19 株式会社日立制作所 玻璃组合物、包含其的玻璃料、包含其的玻璃膏、及利用其的电气电子零件
CN104798209A (zh) * 2012-09-26 2015-07-22 株式会社村田制作所 导电性膏以及太阳能电池
US20150037594A1 (en) * 2013-07-30 2015-02-05 Asahi Glass Company, Limited Glass composition, sealing material, and sealed package
WO2015076157A1 (ja) * 2013-11-20 2015-05-28 株式会社ノリタケカンパニーリミテド 導電性組成物の製造方法
CN105384339A (zh) * 2014-08-29 2016-03-09 日立化成株式会社 无铅低熔点玻璃组合物以及使用组合物的玻璃材料和元件
CN105384338A (zh) * 2014-08-29 2016-03-09 日立化成株式会社 无铅低熔点玻璃组合物以及使用组合物的玻璃材料和元件
CN108463440A (zh) * 2016-01-18 2018-08-28 株式会社日立制作所 无铅玻璃组合物、玻璃复合材料、玻璃糊剂、密封结构体、电气电子部件和涂装部件
CN109215829A (zh) * 2018-09-03 2019-01-15 苏州晶银新材料股份有限公司 一种太阳能电池用正面电极银浆、银粉及其制备方法
CN111847889A (zh) * 2020-08-26 2020-10-30 南通天盛新能源股份有限公司 一种玻璃粉及含该玻璃粉的银浆

Also Published As

Publication number Publication date
US11787730B2 (en) 2023-10-17
CN111847889A (zh) 2020-10-30
US20230174412A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
WO2022041537A1 (zh) 一种玻璃粉及含该玻璃粉的银浆
CN109524150B (zh) 一种全铝背场背银浆料及其制备方法与应用
WO2020220393A1 (zh) 一种玻璃粉及包括该玻璃粉的n型双面太阳能电池正面用银铝浆
CN106477897A (zh) 玻璃粉及应用该玻璃粉制得的正电极银浆、太阳能电池
WO2022116646A1 (zh) 一种与N型太阳电池p+发射极接触的电极浆料
CN106024095B (zh) 一种太阳能电池无氧玻璃导电浆料
WO2016124005A1 (zh) 一种全铝背场晶体硅太阳能电池用铝浆及其制备方法
WO2020024253A1 (zh) 用于perc电池的浆料及该浆料的制备方法
EP4283634A2 (en) Conductive silver aluminum paste, preparation method, electrode and cell
JP6100407B2 (ja) 太陽電池の電極の製造方法およびこれを用いた太陽電池
WO2019183932A1 (zh) 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池
CN112041994A (zh) 晶硅太阳能电池正面导电浆料及其制备方法和太阳能电池
CN111302638B (zh) 一种玻璃粉组合物及含有其的导电银浆和太阳能电池
CN106782759A (zh) 一种用于perc晶体硅太阳能电池的背面银浆及其制备方法
CN106683744A (zh) 低温烧结太阳能电池背电极银浆
WO2020024254A1 (zh) 玻璃粉、玻璃粉组合物及该玻璃粉的制备方法
CN103065701A (zh) 一种硅太阳能电池用铝浆
WO2020118781A1 (zh) 一种玻璃粉组合物及含有其的导电银浆和太阳能电池
CN114262157B (zh) 一种玻璃粉组合物及其制备方法与应用
CN110534227B (zh) 一种应用于TOPCon电池N+层的高性能银浆
WO2018040570A1 (zh) 两面受光的高效晶体硅太阳能电池局域接触背场铝浆及其制备方法
CN108735341A (zh) 有机改性的太阳能电池低接触电阻电极浆料及制备方法
CN113471422A (zh) 一种利用硅废料制备镓掺杂纳米硅颗粒的方法
CN109166646B (zh) 一种用于背钝化硅太阳能电池的环保型铝电极浆料
CN104751936A (zh) 一种晶体硅太阳能电池正极导电银浆及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951205

Country of ref document: EP

Kind code of ref document: A1