WO2018040570A1 - 两面受光的高效晶体硅太阳能电池局域接触背场铝浆及其制备方法 - Google Patents

两面受光的高效晶体硅太阳能电池局域接触背场铝浆及其制备方法 Download PDF

Info

Publication number
WO2018040570A1
WO2018040570A1 PCT/CN2017/080433 CN2017080433W WO2018040570A1 WO 2018040570 A1 WO2018040570 A1 WO 2018040570A1 CN 2017080433 W CN2017080433 W CN 2017080433W WO 2018040570 A1 WO2018040570 A1 WO 2018040570A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
aluminum paste
aluminum
crystalline silicon
solar cell
Prior art date
Application number
PCT/CN2017/080433
Other languages
English (en)
French (fr)
Inventor
朱鹏
Original Assignee
南通天盛新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通天盛新能源股份有限公司 filed Critical 南通天盛新能源股份有限公司
Priority to US15/571,148 priority Critical patent/US10424418B2/en
Publication of WO2018040570A1 publication Critical patent/WO2018040570A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the field of solar cells, and in particular relates to a high-efficiency crystalline silicon solar cell local contact back-field aluminum paste with double-sided light receiving and a preparation method thereof.
  • PERC silicon solar cells are a special type of conventional crystalline silicon solar cells characterized by a dielectric passivation layer on both the front and back sides of the cell.
  • the high-efficiency crystalline silicon solar cell local contact battery with both sides receiving light is grooved on the back dielectric layer by laser technology to expose a linear or dot-shaped silicon substrate, and then the aluminum paste is printed on the dielectric layer by screen printing. At the same time, it does not cover the entire back field area.
  • the passivation film not only has anti-reflection effect, but also increases the red light response, increases the absorption of sunlight by the battery, and reduces the recombination of carriers on the back side.
  • the comprehensive effect can greatly improve the photoelectric conversion efficiency of the battery, and is a commercial crystalline silicon. The development direction of solar cells.
  • the invention aims to provide a high-efficiency crystalline silicon solar cell local-contact back-field aluminum paste with double-sided light receiving and a preparation method thereof.
  • the main feature of the aluminum paste is that the aluminum paste has a certain aspect ratio after being sintered. Good ohmic contact can be formed at the local contact.
  • the technical solution of the present invention provides a double-sided light-receiving high-efficiency crystalline silicon solar cell local contact back-field aluminum paste and a preparation method thereof, wherein the aluminum paste is pressed by the following components Composition by weight: 85-95 parts of aluminum powder, 10-15 parts of organic carrier, 0.1-6 parts of inorganic binder.
  • the aluminum powder has a median diameter of 0.3-0.8 um and a tap density of 1-3 g/cm 3 .
  • the organic carrier comprises a thickener, a thixotropic agent, a dispersing agent, and the balance is a solvent, wherein the thickener is xylene resin, vinegar cellulose, acetobutyl cellulose, acrylic resin, nitro fiber
  • the thickener is xylene resin, vinegar cellulose, acetobutyl cellulose, acrylic resin, nitro fiber
  • the thixotropic agent is one or both of a polyamide wax, a polyethylene wax, an organic bentonite
  • the additive is BYK2009, a coupling agent KH-570
  • the solvent is One or more of terpineol, butyl carbitol, propanol acetate, alcohol ester 12, petroleum ether.
  • the mixed inorganic binder is produced by a ball milling drying process of glass powder, nano zinc powder and nanometer molybdenum oxide having a specific softening temperature.
  • the glass frit is a bismuth silicate glass having a particle diameter of 1-5 um and a glass softening temperature of 450-500 ° C;
  • the nano zinc powder has a purity of more than 99.6%, a particle diameter of 20-80 nm, and a purity greater than 99.6%;
  • the nanometer molybdenum oxide has a purity greater than 99.6% and a particle size of 60-100 nm.
  • the mixed inorganic binder accounts for 85-95 parts by weight of bismuth tellurate glass, 1-10 parts of nano zinc powder and 1-10 parts of nanometer molybdenum oxide.
  • the acrylic resin in the organic carrier acts to improve the viscosity of the slurry
  • the polyamide wax, the polyethylene wax and the organic bentonite provide the thixotropy of the slurry
  • terpineol and butyl carbitol , propanol methyl ether acetate, alcohol ester 12, petroleum ether provide fluidity for the slurry
  • coupling agent KH-570 provides plasticity for the slurry, and the above raw materials are used together to provide balanced fluidity, plasticity and slurry.
  • Thixotropy which makes the slurry easy to print, and can form an aluminum grid line with a certain aspect ratio.
  • the nano-zinc powder is used in the mixed inorganic binder, and the nano-zinc powder has high activity, and the aluminum layer is filled into the voids of the aluminum powder to form a denser conductive layer, thereby improving the electrical properties of the battery sheet.
  • zinc oxide is oxidized to form zinc oxide, which not only increases the wettability of the glass frit but also contributes to the melting effect.
  • the use of nano-molybdenum oxide in the mixed inorganic binder mainly serves to improve the thermal stability, chemical stability and mechanical strength of the glass frit.
  • High-efficiency crystalline silicon solar cell local contact back field aluminum paste with double-sided light receiving and preparation method thereof Includes the following steps:
  • the prepared parts by weight were weighed as follows: 85-95 parts of aluminum powder, 10-15 parts of organic vehicle, and 0.1-6 parts of inorganic binder. After dispersing at 500-2000 rpm for 1 h, the dispersion was ground to a fineness of ⁇ 8 um on a three-roll mill, and the viscosity of the slurry was controlled at 80-100 Pa ⁇ s, wherein the viscosity of the slurry was measured by a Brookfield DV2T viscometer. Measured at 25 ° C.
  • a 400 mm screen printing is performed on the back passivation surface of a 156 mm ⁇ 156 mm single crystal silicon wafer to form a back surface groove covering aluminum paste, and after sintering, an aluminum gate line width is formed.
  • the aluminum grid line height is in the range of 18-25um, while the aluminum paste does not cover the entire back passivation film area; the oven is dried at 250 °C; after drying, the aluminum grid line does not fall off, and then the other side is printed on the front side.
  • Silver paste the sintering process reaches a peak temperature of 700-800 ° C to form a local BSF layer at the open line of the dielectric passivation layer.
  • the aluminum paste is screen printed on the back surface of the passivation sheet by a screen of 156 x 156 mesh size of 400 mesh.
  • the aluminum paste is advantageous for printing, and the invention not only increases the absorption of sunlight by the battery, but also increases the red light response, and can effectively reduce the carrier recombination on the back surface, and the comprehensive effect can greatly improve the photoelectric conversion efficiency of the battery.
  • the back passivated aluminum paste of the present invention has good printing characteristics, and the aluminum grid wire has a certain aspect ratio after printing and sintering, and enables the aluminum layer to form a good ohmic contact with the silicon substrate at the local contact.
  • the invention not only increases the absorption of sunlight by the battery, increases the red light response, but also effectively reduces the carrier recombination on the back surface, and the comprehensive effect can greatly improve the photoelectric conversion efficiency of the battery.
  • the organic vehicle comprises a thickener, a thixotropic agent, a dispersing agent, and the balance is a solvent, so that the paste has good printability and the aluminum grid wire has a certain aspect ratio after sintering.
  • a mixed inorganic binder added to the aluminum paste enables the aluminum layer to form a good ohmic contact with the silicon substrate at the local contact.
  • the mixed inorganic binder is composed of glass powder having a specific softening temperature, ultrafine nano zinc powder, and nano-molybdenum oxide.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • An aluminum paste for localized back field of PERC battery with high filling rate composed of the following components by weight: 85 parts of aluminum powder, organic carrier 12.5 Parts, 2.5 parts of inorganic binder.
  • the organic vehicle accounts for 3 parts by weight of the acrylic resin; the thixotropic agent accounts for 0.5 part of the organic bentonite; the additive is 0.016 parts of BYK2009; the coupling agent KH-570 accounts for 0.24 parts; the solvent is terpineol 50 parts, 20 parts of propanol methyl ether acetate, 20 parts of alcohol ester 12, and 6.2 parts of petroleum ether.
  • the mixed inorganic binder has a glass softening temperature of 450-500 ° C; the mixed inorganic binder accounts for 85 parts by weight of the bismuth silicate glass, and the nano zinc powder accounts for 10 parts, 5 parts of nano-molybdenum oxide.
  • 400-mesh screen printing is used to form a back-slot covering aluminum paste on the back passivation surface of a 156 mm ⁇ 156 mm single crystal silicon wafer, and the aluminum paste does not cover the entire back passivation.
  • Film area dried in an oven at 250 ° C; after drying, the aluminum grid line does not fall off, then the front side is printed on the other side to print the front silver paste, into the muffle furnace, and the peak sintering process reaches a peak temperature of 700-800 ° C to the medium.
  • a local BSF layer is formed at the opening of the passivation layer.
  • a high-filling aluminum paste for a localized back field of a PERC battery wherein the local back-field aluminum paste having a high filling rate is composed of the following components in parts by weight: 88 parts of aluminum powder, organic carrier 10 Parts, 2 parts of inorganic binder.
  • the organic vehicle accounts for 3 parts by weight of the acrylic resin; the thixotropic agent is 0.5 parts of the polyethylene wax; the additive is 0.016 parts of BYK2009, and the coupling agent KH-570 accounts for 0.24 parts; the solvent is terpineol 50 parts, 20 parts of propanol methyl ether acetate, 20 parts of alcohol ester 12, and 6.2 parts of petroleum ether.
  • the mixed inorganic binder has a glass powder softening temperature in the range of 450-500 ° C; the mixed inorganic binder accounts for 90 parts by weight of the bismuth silicate glass, and the nano zinc powder accounts for 7 parts, 3 parts of nano-molybdenum oxide.
  • a high-filling aluminum paste for a localized back field of a PERC battery wherein the local back-field aluminum paste having a high filling rate is composed of the following components in parts by weight: 88 parts of aluminum powder, organic carrier 10.5 Parts, 1.5 parts of inorganic binder.
  • the organic carrier accounts for 2.5 parts by weight of the phenolic modified cellulose; the thixotropic agent is 0.5 parts of the polyamide modified lauryl phosphate, the additive is 0.016 parts of the BYK2009, and the coupling agent KH-570 accounts for 0.24.
  • the solvent is terpineol, 50 parts, propanol methyl ether acetate, 15 parts, alcohol ester 12, 25 parts, petroleum ether, 6.9 parts.
  • the mixed inorganic binder has a glass powder softening temperature in the range of 450-500 ° C; the mixed inorganic binder accounts for 90 parts by weight of the bismuth silicate glass, and the nano zinc powder accounts for 5 parts, 5 parts of nano-molybdenum oxide.
  • a high-fill rate aluminum paste for localized back field of PERC battery said local back-field aluminum paste with high filling rate, composed of the following components in parts by weight: 90 parts of aluminum powder, organic carrier 8.5 Parts, 1.5 parts of inorganic binder.
  • the organic carrier accounts for 2 parts by weight of the phenolic modified cellulose; the thixotropic agent is 0.6 parts of the polyamide wax; the additive is 0.016 parts of BYK2009, and the coupling agent KH-570 accounts for 0.24 parts; the solvent is loose Oleic alcohol accounted for 50 parts, propanol methyl ether acetate accounted for 15 parts, alcohol ester 12 accounted for 25 parts, and petroleum ether accounted for 7 parts.
  • the mixed inorganic binder has a glass softening temperature in the range of 450-500 ° C; in the mixed inorganic binder, 88 parts of bismuth silicate glass, and the nano zinc powder accounts for 88 parts by weight 7 parts, 5 parts of nano-molybdenum oxide.

Abstract

本发明公开了两面受光的高效晶体硅太阳能电池局域接触背场铝浆及其制备方法,所述铝浆主要用于覆盖双面钝化背钝化电池背面开槽处,同时不覆盖整个背部钝化膜覆盖区域,由下列组份按照重量份配比组成:铝粉85-95份,有机载体10-15份,无机粘结剂0.1-6份。所述有机载体包括增稠剂、触变剂、分散剂、余量为溶剂,使得浆料印刷性好且经烧结后铝栅线具有一定的高宽比。另外,在铝浆中加入的一种混合无机粘结剂,能使铝层在局域接触处与硅基体形成良好的欧姆接触。本发明不仅增加电池对太阳光的吸收,增加红光响应,而且能有效降低载流子在背表面复合,综合效果可使电池的光电转换效率大大提高。

Description

两面受光的高效晶体硅太阳能电池局域接触背场铝浆及其制备方法 技术领域
本发明属于太阳能电池领域,具体涉及一种两面受光的高效晶体硅太阳能电池局域接触背场铝浆及其制备方法。
背景技术
常规晶体硅太阳能电池一般采用背面整面印刷铝浆,这种全铝背场结构的缺点是背面反射率低,电池对长波段光子的吸收弱,造成电池背表面光生载流子表面复合速率高,从而影响电池的电性能。改善表面钝化的质量、降低表面复合速率已经成为提高电池效率的主要手段之一。PERC硅太阳能电池是常规晶体硅太阳能电池的一种特殊类型,其特征是电池正面和背面均具有介质钝化层。而两面受光的高效晶体硅太阳能电池局域接触电池,则是通过激光技术在背面介质层上开槽,露出线状或点状硅衬底,然后经丝网印刷将铝浆印刷在介质层开槽处,同时不覆盖整个背场区域。
钝化膜不仅具有减反射作用增加了红光响应,增加电池对太阳光的吸收,而且降低了载流子在背面的复合,综合效果可使电池的光电转换效率大大提高,是商品化晶体硅太阳电池的发展方向。
发明内容
发明目的:在于提供一种两面受光的高效晶体硅太阳能电池局域接触背场铝浆及其制备方法,该铝浆的主要特点在于印刷性好、烧结后能铝栅线具有一定的高宽比、能在局域接触处形成良好的欧姆接触。
技术方案:为实现上述目的,本发明的技术方案是提供了一种两面受光的高效晶体硅太阳能电池局域接触背场铝浆及其制备方法,所述铝浆由下列组份按 照重量份数组成:铝粉85-95份,有机载体10-15份,无机粘结剂0.1-6份。
作为优化:所述的铝粉,中位径0.3-0.8um,其振实密度在1-3g/cm3
作为优化:所述的有机载体包括增稠剂、触变剂、分散剂、余量为溶剂,其中增稠剂为二甲苯树脂、醋丙纤维素、醋丁纤维素、丙烯酸树脂、硝基纤维素中的一种或多种,优选的是丙烯酸树脂;触变剂为聚酰胺蜡、聚乙烯蜡、有机膨润土中的一种或两种;添加剂为BYK2009、偶联剂KH-570,溶剂为松油醇、丁基卡必醇、丙醇甲醚醋酸酯、醇酯十二、石油醚中的一种或几种。
作为优化:所述混合无机粘结剂,由具有特定软化温度的玻璃粉、纳米锌粉和纳米氧化钼经球磨烘干工艺制成。所述玻璃粉为铋酸盐玻璃,其粒径在1-5um,玻璃粉软化温度在450-500℃范围内;所述纳米锌粉,纯度大于99.6%,粒径为20-80nm,纯度大于99.6%;所述纳米氧化钼,纯度大于99.6%,粒径为60-100nm。所述混合无机粘结剂中按照重量份数计,铋酸盐玻璃占85-95份,纳米锌粉占1-10份,纳米氧化钼占1-10份。
相对现有技术,本发明取得以下有益效果:有机载体中丙烯酸树脂起到改善浆料粘度作用;聚酰胺蜡、聚乙烯蜡、有机膨润土提供浆料触变性;松油醇、丁基卡必醇、丙醇甲醚醋酸酯、醇酯十二、石油醚为浆料提供流动性;偶联剂KH-570为浆料提供塑性,以上原材料配合使用,为浆料提供均衡的流动性、塑性和触变性,使浆料利于印刷,能形成一定高宽比的铝栅线。混合无机粘结剂中使用纳米锌粉,纳米锌粉具有较高活性,在铝层中填充到铝粉空隙中形成更加致密的导电层,提高电池片的电性能。另一方面,锌粉氧化后生成氧化锌,不仅能增加玻璃粉的润湿性,而且还能起到助熔效果。混合无机粘结剂中使用纳米氧化钼主要起到提高玻璃粉热稳定、化学稳定性和机械强度。
一种两面受光的高效晶体硅太阳能电池局域接触背场铝浆及其制备方法, 包括以下步骤:
称取制备好的重量份数如下:铝粉85-95份,有机载体10-15份,无机粘结剂0.1-6份。采用分散机在500-2000rpm转速下,分散1h后,在三辊研磨机上研磨分散至细度<8um,浆料粘度控制在80-100Pa·S,其中所述浆料粘度是用Brookfield DV2T粘度计在25℃测定的。
采用上述制备好的背场铝浆,通过400目丝网印刷在规格156mm×156mm的单晶硅片的背钝化面上形成背面开槽处覆盖铝浆,经烧结后形成铝栅线宽在50-100um,形成铝栅线高在18-25um范围内,同时铝浆不覆盖整个背部钝化膜区域;进烘箱250℃烘干;烘干以后铝栅线无脱落,然后换另一面印刷正面银浆,烧结过程达到700-800℃峰值温度,以在所述介质钝化层开线处形成局部BSF层。所述铝浆经规格为156x156目数为400目网版丝网印刷于钝化片背面开槽处,。
所述铝浆有利于印刷、经本发明不仅增加电池对太阳光的吸收,增加红光响应,而且能有效降低载流子在背表面复合,综合效果可使电池的光电转换效率大大提高
有益效果:本发明背钝化铝浆,具有良好的印刷特性,经印刷烧结后铝栅线具有一定的高宽比且能使铝层在局域接触处与硅基体形成良好的欧姆接触。本发明不仅增加电池对太阳光的吸收,增加红光响应,而且能有效降低载流子在背表面复合,综合效果可使电池的光电转换效率大大提高。
所述有机载体包括增稠剂、触变剂、分散剂、余量为溶剂,使得浆料印刷性好且经烧结后铝栅线具有一定的高宽比。另外,在铝浆中加入的一种混合无机粘结剂,能使铝层在局域接触处与硅基体形成良好的欧姆接触。混合无机粘结剂由具有特定软化温度的玻璃粉、超细纳米锌粉和纳米氧化钼。
具体实施方式
下面结合具体实施例对本发明进行阐述,而本发明的保护范围并非仅仅局限于以下的实施事例。
实施例一:
一种具有高填充率的PERC电池局域背场用铝浆,所述的具有高填充率的局域背场铝浆,由下列组份按照重量份数组成:铝粉85份,有机载体12.5份,无机粘结剂2.5份。
所述有机载体中按照重量份数计,丙烯酸树脂占3份;触变剂为有机膨润土占0.5份;添加剂为BYK2009占0.06份;偶联剂KH-570占0.24份;溶剂为松油醇占50份、丙醇甲醚醋酸酯占20份、醇酯十二占20份、石油醚占6.2份。
作为优化:所述混合无机粘结剂,其玻璃粉软化温度在450-500℃范围内;所述混合无机粘结剂中按照重量份数计,铋酸盐玻璃占85份,纳米锌粉占10份,纳米氧化钼占5份。
一种两面受光的高效晶体硅太阳能电池局域接触背场铝浆,包括以下步骤:
称取上述比例铝粉粉、混合无机粘结剂、有机载体进行混合均匀,采用分散机在500-1000rpm转速下,分散1h后,在三辊研磨机上研磨分散至细度<8um;浆料粘度控制在85-95Pa·S,其中所述浆料粘度是用Brookfield DV2T粘度计在25℃测定的。
采用上述制备好的背场铝浆,通过400目丝网印刷在规格156mm×156mm的单晶硅片的背钝化面上形成背面开槽处覆盖铝浆,同时铝浆不覆盖整个背部钝化膜区域;进烘箱250℃烘干;烘干以后铝栅线无脱落,然后换另一面印刷正面银浆,进马弗炉烧结,峰烧结过程达到700-800℃峰值温度,以在所述介质钝化层开线处形成局部BSF层。
具体实施例二:
一种具有高填充率的PERC电池局域背场用铝浆,所述的具有高填充率的局域背场铝浆,由下列组份按照重量份数组成:铝粉88份,有机载体10份,无机粘结剂2份。
所述有机载体按照重量份数计,丙烯酸树脂占3份;触变剂为聚乙烯蜡占0.5份;添加剂为BYK2009占0.06份,偶联剂KH-570占0.24份;溶剂为松油醇占50份、丙醇甲醚醋酸酯占20份、醇酯十二占20份、石油醚占6.2份。
作为优化:所述混合无机粘结剂,其玻璃粉软化温度在450-500℃范围内;所述混合无机粘结剂中按照重量份数计,铋酸盐玻璃占90份,纳米锌粉占7份,纳米氧化钼占3份。
相关制备步骤同实施例1。
具体实施例三:
一种具有高填充率的PERC电池局域背场用铝浆,所述的具有高填充率的局域背场铝浆,由下列组份按照重量份数组成:铝粉88份,有机载体10.5份,无机粘结剂1.5份。
所述有机载体按照重量份数计,酚醛改性纤维素占2.5份;触变剂为聚酰胺改性月桂基磷酸酯占0.5份,添加剂为BYK2009占0.06份,偶联剂KH-570占0.24份;溶剂为松油醇占50份、丙醇甲醚醋酸酯占15份、醇酯十二占25份、石油醚占6.9份。
作为优化:所述混合无机粘结剂,其玻璃粉软化温度在450-500℃范围内;所述混合无机粘结剂中按照重量份数计,铋酸盐玻璃占90份,纳米锌粉占5份,纳米氧化钼占5份。
相关制备步骤同实施例1。
具体实施例四:
一种具有高填充率的PERC电池局域背场用铝浆,所述的具有高填充率的局域背场铝浆,由下列组份按照重量份数组成:铝粉90份,有机载体8.5份,无机粘结剂1.5份。
所述有机载体按照重量份数计,酚醛改性纤维素占2份;触变剂为聚酰胺蜡占0.6份;添加剂为BYK2009占0.06份,偶联剂KH-570占0.24份;溶剂为松油醇占50份、丙醇甲醚醋酸酯占15份、醇酯十二占25份、石油醚占7份。
作为优化:所述混合无机粘结剂,其玻璃粉软化温度在450-500℃范围内;所述混合无机粘结剂中按照重量份数计,铋酸盐玻璃占88份,纳米锌粉占7份,纳米氧化钼占5份。
相关制备步骤同实施例1。
本发明不局限于上述最佳实施方式,任何人在本发明的启示下都可得出其他各种形式的产品,但不论在其形状或结构上作任何变化,凡是具有与本申请相同或相近似的技术方案,均落在本发明的保护范围之内。

Claims (7)

  1. 一种两面受光的高效晶体硅太阳能电池局域接触背场铝浆,其特征在于:所述铝浆由下列组份按照重量份数组成:铝粉85-95份,有机载体10-15份,无机粘结剂0.1-6份。
  2. 根据权利要求1所述的两面受光的高效晶体硅太阳能电池局域接触背场铝浆,其特征在于:所述铝粉粒径在0.3-0.8um,其振实密度在1-3g/cm3
  3. 根据权利要求1所述的两面受光的高效晶体硅太阳能电池局域接触背场铝浆,其特征在于:所述有机载体包括增稠剂、触变剂、添加剂、余量为溶剂,其中,增稠剂为二甲苯树脂、醋丙纤维素、醋丁纤维素、丙烯酸树脂、硝基纤维素中的一种或多种;触变剂为聚酰胺蜡、聚乙烯蜡、有机膨润土中的一种或两种;添加剂为BYK2009,偶联剂KH-570;溶剂为松油醇、丁基卡必醇、丙醇甲醚醋酸酯、醇酯十二、石油醚中的一种或几种。
  4. 根据权利要求1所述的两面受光的高效晶体硅太阳能电池局域接触背场铝浆,其特征在于:所述混合无机粘结剂,由具有特定软化温度的玻璃粉、纳米锌粉和纳米氧化钼经球磨烘干工艺制成;所述玻璃粉为铋酸盐玻璃,其粒径在1-5um,玻璃粉软化温度在450-500℃范围内;所述纳米锌粉,纯度大于99.6%,粒径为20-80nm,纯度大于99.6%;所述纳米氧化钼,纯度大于99.6%,粒径为60-100nm。所述混合无机粘结剂中按照重量份数铋酸盐玻璃占85-95份,纳米锌粉占1-10份,纳米氧化钼占1-10份。
  5. 一种根据权利要求1所述的两面受光的高效晶体硅太阳能电池局域接触背场铝浆的制备方法,其特征在于:包括以下步骤:
    称取制备好的重量份数如下:铝粉85-95份,有机载体10-15份,无机粘结剂0.1-6份进行混合均匀,采用分散机在500-2000rpm转速下,分散1h后,在三辊研磨机上研磨分散至细度<8um,浆料粘度控制在80-100Pa·S,其中所 述浆料粘度是用Brookfield DV2T粘度计在25℃测定的。
  6. 根据权利要求5所述的两面受光的高效晶体硅太阳能电池局域接触背场铝浆的制备方法,其特征在于:所述铝浆经规格为156x156目数为400目网版丝网印刷于钝化片背面开槽处,经烧结后形成铝栅线宽在50-100um,形成铝栅线高在18-25um范围内。
  7. 根据权利要求5所述的两面受光的高效晶体硅太阳能电池局域接触背场铝浆的制备方法,其特征在于:所述铝浆有利于印刷、经本发明不仅增加电池对太阳光的吸收,增加红光响应,而且能有效降低载流子在背表面复合,综合效果可使电池的光电转换效率大大提高。
PCT/CN2017/080433 2016-08-30 2017-04-13 两面受光的高效晶体硅太阳能电池局域接触背场铝浆及其制备方法 WO2018040570A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/571,148 US10424418B2 (en) 2016-08-30 2017-04-13 Back surface field aluminum paste for point contacts of efficient bifacial crystalline silicon solar cells and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610753538.9 2016-08-30
CN201610753538.9A CN106328726B (zh) 2016-08-30 2016-08-30 两面受光的高效晶体硅太阳能电池局域接触背场铝浆及其制备方法

Publications (1)

Publication Number Publication Date
WO2018040570A1 true WO2018040570A1 (zh) 2018-03-08

Family

ID=57788340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080433 WO2018040570A1 (zh) 2016-08-30 2017-04-13 两面受光的高效晶体硅太阳能电池局域接触背场铝浆及其制备方法

Country Status (3)

Country Link
US (1) US10424418B2 (zh)
CN (1) CN106328726B (zh)
WO (1) WO2018040570A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328726B (zh) 2016-08-30 2018-06-29 南通天盛新能源股份有限公司 两面受光的高效晶体硅太阳能电池局域接触背场铝浆及其制备方法
CN112967833B (zh) * 2021-02-04 2022-10-11 江苏日御光伏新材料科技有限公司 太阳能电池电极浆料用有机载体及其制备方法
CN114551000B (zh) * 2022-01-28 2023-08-15 广州市儒兴科技股份有限公司 一种窄线宽双面perc铝浆及其制备方法
CN116313214B (zh) * 2023-04-19 2024-02-02 上海银浆科技有限公司 导电银铝浆、制备方法、电极及N型Topcon电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425545A (zh) * 2008-04-30 2009-05-06 范琳 一种环保型硅太阳能电池背电场铝浆及其制造方法
CN101728439A (zh) * 2009-12-01 2010-06-09 洛阳神佳电子陶瓷有限公司 一种晶体硅太阳能电池铝浆组成及其制备方法
US20100307802A1 (en) * 2009-06-04 2010-12-09 Hitachi, Ltd. Wiring Member, Method of Manufacturing the Wiring Member and Electronic Element
CN106328726A (zh) * 2016-08-30 2017-01-11 南通天盛新能源股份有限公司 两面受光的高效晶体硅太阳能电池局域接触背场铝浆及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8212944B2 (en) 2008-07-10 2012-07-03 Qualcomm Incorporated Fast stream switching
KR101309809B1 (ko) * 2010-08-12 2013-09-23 제일모직주식회사 태양전지용 알루미늄 페이스트 및 이를 이용한 태양전지
JP2012227183A (ja) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd 電極用ペースト組成物及び太陽電池素子
CN102360584B (zh) * 2011-09-21 2013-05-01 江苏泓源光电科技有限公司 含有炭黑助剂的光伏电池用导电浆料及其制备方法
CN102855961B (zh) * 2012-08-24 2014-12-31 西安交通大学苏州研究院 太阳能电池背面电极形成用浆料及其制备方法
CN103199128B (zh) * 2013-04-07 2015-09-02 湖南红太阳光电科技有限公司 一种耐高温低翘曲铝浆
TWI577742B (zh) * 2014-06-20 2017-04-11 賀利氏貴金屬北美康舍霍肯有限責任公司 用於導電性漿料之有機載體
CN105374411B (zh) * 2015-11-18 2018-06-12 江苏国瓷泓源光电科技有限公司 一种低翘曲晶体硅太阳能电池导电铝浆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425545A (zh) * 2008-04-30 2009-05-06 范琳 一种环保型硅太阳能电池背电场铝浆及其制造方法
US20100307802A1 (en) * 2009-06-04 2010-12-09 Hitachi, Ltd. Wiring Member, Method of Manufacturing the Wiring Member and Electronic Element
CN101728439A (zh) * 2009-12-01 2010-06-09 洛阳神佳电子陶瓷有限公司 一种晶体硅太阳能电池铝浆组成及其制备方法
CN106328726A (zh) * 2016-08-30 2017-01-11 南通天盛新能源股份有限公司 两面受光的高效晶体硅太阳能电池局域接触背场铝浆及其制备方法

Also Published As

Publication number Publication date
US20180268954A1 (en) 2018-09-20
CN106328726A (zh) 2017-01-11
US10424418B2 (en) 2019-09-24
CN106328726B (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
CN105825913A (zh) 一种耐老化的晶体硅太阳能电池用背银浆及其制备方法
US20180226172A1 (en) Solar cell front side silver paste doped with modified grapheme and preparation method thereof
CN105118578B (zh) 太阳能电池用无铅正面电极银浆的制备工艺
CN101271928A (zh) 高粘度太阳能电池正面银浆及其制备方法
CN106024095B (zh) 一种太阳能电池无氧玻璃导电浆料
CN106782753B (zh) 一种晶体硅太阳能电池印刷用银浆及其制备方法
CN110364286B (zh) 一种单晶双面perc电池背面电极银浆及其制备方法
CN102779566B (zh) 晶体硅太阳能电池正面用无铅导电银浆
WO2018040570A1 (zh) 两面受光的高效晶体硅太阳能电池局域接触背场铝浆及其制备方法
CN104157331B (zh) 一种硅太阳能电池电极银包铜浆料及其制备方法
CN110415858B (zh) 一种晶体硅太阳能电池分次用的正面银浆及其制备方法
CN103000248B (zh) 一种适应高方阻浅结的太阳能电池正银浆料用粉体料
CN108198648A (zh) 一种背钝化太阳能电池背面银浆
CN107274964A (zh) 一种钝化发射极太阳能电池背银浆料
CN105118873B (zh) 晶体硅太阳能电池正面电极银浆
WO2020252827A1 (zh) 一种p型晶体硅背面电极的制备方法
CN106448807A (zh) 一种钝化发射极和背面的太阳能电池用铝浆及制备方法
CN105810284A (zh) 一种硅太阳能电池用浆料
CN105405488A (zh) 一种用于激光开孔局部背接触-钝化发射极晶体硅太阳能电池的铝浆及其制备方法和应用
CN101560060B (zh) 太阳能电池导电浆料用低温玻璃的表面处理方法
CN109166646B (zh) 一种用于背钝化硅太阳能电池的环保型铝电极浆料
CN105655416A (zh) 一种硅太阳能电池用电极浆料
CN109215837A (zh) 一种太阳能电池用银导电浆料及其制备方法
CN105118579B (zh) 用于光伏电池正面电极银浆的制备方法
CN104934104A (zh) 一种低银含量晶硅太阳能电池背面银浆及制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15571148

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17844878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17844878

Country of ref document: EP

Kind code of ref document: A1