WO2023045348A1 - 抗氧化导电铜浆料及其制备方法和应用 - Google Patents

抗氧化导电铜浆料及其制备方法和应用 Download PDF

Info

Publication number
WO2023045348A1
WO2023045348A1 PCT/CN2022/092276 CN2022092276W WO2023045348A1 WO 2023045348 A1 WO2023045348 A1 WO 2023045348A1 CN 2022092276 W CN2022092276 W CN 2022092276W WO 2023045348 A1 WO2023045348 A1 WO 2023045348A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidation
copper
conductive
conductive copper
copper paste
Prior art date
Application number
PCT/CN2022/092276
Other languages
English (en)
French (fr)
Inventor
李健
Original Assignee
西安隆基乐叶光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安隆基乐叶光伏科技有限公司 filed Critical 西安隆基乐叶光伏科技有限公司
Publication of WO2023045348A1 publication Critical patent/WO2023045348A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the technical field of solar cells, and in particular relates to an oxidation-resistant conductive copper paste and a preparation method and application thereof.
  • conductive metal pastes have been widely used in semiconductor, electronics, energy, automobile and other fields.
  • the conductive paste with silver particles as conductive filler is mainly used, which has excellent conductivity and oxidation resistance.
  • the high price of silver greatly hinders the wide application and development of conductive silver paste.
  • the mobility of silver is also one of the factors affecting its application.
  • Copper as a conductive metal second only to silver, has gradually gained people's attention in the development of conductive paste technology.
  • copper particles are easily oxidized in the air, and its long-term use stability faces great difficulties.
  • the commonly used method in the prior art is to coat or electroplate a layer of anti-oxidation metal shell on the surface of copper particles, such as silver-coated copper particles.
  • the surface often has cracks. Finally, it still leads to the oxidation of the copper core.
  • the use of silver also increases the cost of the conductive paste; while the copper electroplating process is complicated and the cost is high; another method is to carry out chemical modification on the surface of the copper particles, but its Oxidation resistance and conductivity still need to be improved, and chemical modification is easily damaged in the subsequent operation of conductive copper paste, thereby reducing its oxidation resistance.
  • the curing temperature of the conductive paste is relatively high, and the high curing temperature easily destroys the oxidation resistance of the surface of the copper particles, resulting in an increase in the resistance of the conductive copper paste.
  • an object of the present invention is to propose a kind of anti-oxidation conductive copper paste and its preparation method and application, described anti-oxidation conductive copper paste has excellent electrical conductivity and stable oxidation resistance, and its electrical conductivity is the same as existing There is a conductive silver paste close to it; and the anti-oxidation conductive copper paste can be quickly cured at a low temperature below 200°C; the conductivity of the anti-oxidation conductive copper paste has hardly changed after six months of natural storage at room temperature , indicating that it is hardly oxidized; after the oxidation-resistant conductive copper paste was oxidized in air at 180° C. for 60 minutes, its electrical conductivity decreased, but it was still equivalent to the conductive copper paste currently on the market.
  • the present invention provides an oxidation-resistant conductive copper paste.
  • the anti-oxidation conductive copper paste includes: copper powder, resin, cross-linking agent, conductive enhancing filler, anti-oxidation additive and solvent;
  • the antioxidant aids include: organic copper salts, alcohol amine compounds and organic antioxidants.
  • the present invention provides a long-term stable oxidation resistance by combining a reducing organic copper salt with an organic antioxidant to prepare a composite anti-oxidation additive. It is said that both the anion and the organic antioxidant in the organic copper salt can form a coordination with copper, thereby forming an anti-oxidation film on the surface of the copper powder, benefiting from the difference in structure and steric hindrance between the anion and the organic antioxidant, That is, the anion has a relatively small structure, so it is easy to adsorb and coordinate on the surface of the copper powder, while the organic antioxidant has a relatively large structure, so it fills the "interstitial" position of the anion, through this steric hindrance difference, the two types of particles are squeezed against each other, thus forming a dense anti-oxidation layer on the surface of the copper powder, which effectively prevents the contact between the oxide and copper; at the same time, when the anti-oxidation conductive copper paste is subsequently
  • the hydroxyl group in the structure of the alcohol amine compound in the antioxidant additive is reactive and can react with the resin and the cross-linking agent, thereby limiting other antioxidant components nearby. Form a "wrapped" structure to avoid the migration of antioxidant components, thus forming a more stable antioxidant performance and electrical conductivity.
  • the above-mentioned oxidation-resistant conductive copper paste has excellent conductivity and stable oxidation resistance, and its conductivity is close to that of the existing conductive silver paste; and the above-mentioned oxidation-resistant conductive copper paste can be used at a low temperature below 200°C Fast curing; after six months of natural storage at room temperature, the above-mentioned anti-oxidation conductive copper paste has almost no change in conductivity, indicating that it is almost not oxidized; Although its conductivity has decreased, it is still comparable to the conductive copper paste currently on the market.
  • oxidation-resistant conductive copper paste according to the above-mentioned embodiments of the present invention may also have the following additional technical features:
  • the antioxidant additives include: 20-40 parts by weight of the organic copper salt, 20-40 parts by weight of the alcohol amine compound and 20-40 parts by weight of the organic Antioxidants.
  • the anti-oxidation conductive copper paste includes: 60-88 parts by weight of the copper powder, 5-15 parts by weight of the resin, 1-3 parts by weight of the cross-linked agent, 0.05-2 parts by weight of the conductive enhancing filler, 1-5 parts by weight of the antioxidant aid and 5-15 parts by weight of the solvent.
  • the organic antioxidant is selected from at least one of nitrogen-containing five-membered ring nitrogen azoles and thiol compounds.
  • the nitrogen-containing five-membered ring nitrogen azole is selected from 3-mercapto-1,2,4-triazole, benzotriazole and 5-methylbenzotriazole at least one of the .
  • the thiol compound is selected from at least one of 2-benzothiazole thiol and alkyl thiol with 6-18 carbons.
  • the organic copper salt is selected from at least one of copper formate and copper acetate.
  • the alcohol amine compound is selected from ethanolamine, propanolamine, isopropanolamine, diethanolamine, dipropanolamine, diisopropanolamine, trimethanolamine, triethanolamine, triisopropanolamine, At least one of propanolamine, methyldiethanolamine, diethylethanolamine, oleic acid diethanolamine, oleic acid triethanolamine, diisopropylethanolamine, and butyldiethanolamine.
  • the antioxidant aid further includes: 5-20 parts by weight of additives.
  • the additive is selected from at least one of a dispersant, a stabilizer, a thixotropic agent and a coupling agent.
  • the viscosity of the oxidation-resistant conductive copper paste is 180-350 Pa ⁇ s.
  • the shape of the copper powder is at least one of flake, spherical and dendritic, and the particle size D50 of the copper powder is 100 nm-5 ⁇ m.
  • the resin is selected from at least one of epoxy resins, polyamide resins, saturated polyester resins, polyurethane resins, acrylic resins and silicone resins.
  • the crosslinking agent is at least one selected from polyamines, acid anhydrides, polyamides, polyols and blocked isocyanates.
  • the conductive enhancing filler is selected from at least one of nano or submicron carbon black, graphene, carbon nanotubes, nickel powder, tin powder, indium powder, silver powder and aluminum powder .
  • the solvent is selected from hydroxyl-containing compounds with 2-12 carbons, ether-containing compounds with 2-18 carbons, carbonyl-containing compounds with 3-10 carbons, and It is at least one of 4-16 ester group-containing compounds.
  • the present invention proposes a method for preparing the above oxidation-resistant conductive copper paste. According to an embodiment of the present invention, the method includes:
  • the copper powder is processed in two stages, the copper powder is firstly pretreated in step (1), and the step (3) is added again to the slurry Antioxidant aids.
  • step (1) during the pretreatment process of copper powder, a part of the anti-oxidation aid is added, and the anions and organic antioxidants in the organic copper salt can form coordination with copper, thereby forming a complex on the surface of the copper powder.
  • a layer of anti-oxidation organic film which effectively avoids the problem of copper oxidation during the preparation of conductive copper paste.
  • step (3 ) added an appropriate amount of antioxidant additives to the slurry to ensure that the conductive copper slurry continues to have excellent oxidation resistance in subsequent use.
  • the oxidation-resistant conductive copper paste prepared by this method has excellent conductivity and stable oxidation resistance, and its conductivity is close to that of the existing conductive silver paste; and the above-mentioned oxidation-resistant conductive copper paste can be used at 200 ° C Rapid curing at low temperatures below; the above-mentioned anti-oxidation conductive copper paste has been stored naturally at room temperature for six months, and its conductivity has hardly changed, indicating that it is almost not oxidized; the above-mentioned anti-oxidation conductive copper paste is in the air at 180 ° After oxidizing for 60 minutes, although its conductivity decreased, it was still comparable to the current conductive copper paste on the market.
  • the invention proposes an electrode.
  • the electrode is prepared by using the anti-oxidation conductive copper paste described in the above embodiments or the anti-oxidation conductive copper paste prepared by the method described in the above embodiments.
  • the electrode has more excellent conductivity.
  • the invention proposes a solar cell.
  • the solar cell has the electrodes described in the above embodiments.
  • the solar cell has better conductivity, which further satisfies the needs of consumers.
  • FIG. 1 is a SEM image of an anti-oxidation conductive copper paste according to an embodiment of the present invention.
  • the present invention provides an oxidation-resistant conductive copper paste.
  • the anti-oxidation conductive copper paste includes: copper powder, resin, crosslinking agent, conductive enhancing filler, anti-oxidation auxiliary agent and solvent;
  • the anti-oxidation auxiliary agent includes: organic copper salt, alcohol Amine compounds and organic antioxidants. Therefore, the present invention provides long-term stable oxidation resistance by combining reducing organic copper salts with organic antioxidants to prepare composite antioxidant additives.
  • the anions and organic antioxidants in organic copper salts All antioxidants can form coordination with copper, thereby forming an anti-oxidation film on the surface of copper powder, benefiting from the difference in structure and steric hindrance between the anion and the organic antioxidant, that is, the anion has a relatively small structure, Therefore, it is easy to adsorb and coordinate on the surface of copper powder, while the organic antioxidant has a relatively large structure, so it is filled in the "interstitial" position of the anion.
  • the two types of particles are squeezed each other, It effectively prevents the contact between oxide and copper, thereby forming a dense anti-oxidation layer on the surface of copper powder; at the same time, when the anti-oxidation conductive copper paste is subsequently cured, the organic copper salt is decomposed by heat to release copper, which strengthens the copper powder.
  • the contact between them and the conductive reinforcing filler form a synergistic effect, which further improves the conductivity of the conductive copper paste; the alcohol amine compound not only has the function of a crosslinking agent accelerator, but also has a certain oxidation resistance.
  • the combined use of organic antioxidants further promotes the oxidation resistance of the anti-oxidation conductive copper paste; in addition, the inventors found in the study of the anti-oxidation mechanism that the anti-oxidation additives in the paste partly participated in the cross-linking process of the resin, specifically Generally speaking, the hydroxyl group in the structure of the alcohol amine compound in the antioxidant additive is reactive and can react with resins and crosslinking agents, thereby confining other antioxidant components nearby, forming a "wrapped" structure, and avoiding antioxidant components. Migration, thus forming a more stable oxidation resistance and conductivity.
  • the above-mentioned oxidation-resistant conductive copper paste has excellent conductivity and stable oxidation resistance, and its conductivity is close to that of the existing conductive silver paste; and the above-mentioned oxidation-resistant conductive copper paste can be used at a low temperature below 200°C Fast curing; after six months of natural storage at room temperature, the above-mentioned anti-oxidation conductive copper paste has almost no change in conductivity, indicating that it is almost not oxidized; Although its conductivity has decreased, it is still comparable to the conductive copper paste currently on the market.
  • the role of the copper powder is to conduct electricity, and the copper particles contact each other to form a charge transfer path.
  • the above-mentioned antioxidant additives provide long-term stable oxidation resistance for the conductive copper paste.
  • the role of the resin It is to form a skeleton. After curing, the resin molecules are connected to each other, thereby forming a close contact between the copper powder and between the copper powder and the matrix.
  • the role of the crosslinking agent is to connect the resin to form a thermosetting network structure, and the role of the conductive reinforcing filler It is to fill the gaps between copper powders (carbon black), enhance the contact between copper powders and the substrate (indium powder), and increase the conductivity of copper paste (silver powder). Dispersed in the solvent to form a slurry with a certain viscosity.
  • the antioxidant additives include: 20-40 parts by weight of the organic copper salt, 20-40 parts by weight of the alcohol amine compound and 20-40 parts by weight of the organic Antioxidant, thus, each component in the antioxidation auxiliary agent of above-mentioned ratio range cooperates with each other, has provided more long-term stable oxidation resistance for conductive copper paste, and inventor finds, any one component in antioxidation auxiliary agent is too little Or too high will cause the decline of the oxidation resistance of the conductive copper paste.
  • the anti-oxidation conductive copper paste includes: 60-88 parts by weight of the copper powder, 5-15 parts by weight of the resin, 1-3 parts by weight of the Joint agent, 0.05-2 parts by weight of the conductive enhancing filler, 1-5 parts by weight of the antioxidant additive and 5-15 parts by weight of the solvent, thus, the anti-oxidation conductive copper paste of the above ratio range
  • the material has more excellent conductivity and more stable oxidation resistance, and its conductivity is close to that of the existing conductive silver paste.
  • the inventors found that too low or too high of any component in the anti-oxidation conductive copper paste will lead to a decrease in the conductivity or stability of the paste.
  • the viscosity of the anti-oxidation conductive copper paste is 180-350 Pa ⁇ s, thus, the anti-oxidation conductive copper paste in the above viscosity range is particularly suitable for screen printing.
  • the specific type of the organic antioxidant is not particularly limited, and those skilled in the art can choose at will according to actual needs.
  • the organic antioxidant is selected from nitrogen-containing five-membered At least one of cyclic nitrogen azole (the number of N is 1-3) and thiol compounds, the nitrogen-containing five-membered cyclic nitrogen azole is selected from 3-mercapto-1,2,4-triazole, At least one of benzotriazole and 5-methylbenzotriazole, the thiol compound is selected from at least one of 2-benzothiazole thiol and alkyl thiol with a carbon number of 6-18 One, thus, the nitrogen or sulfur in the above-mentioned organic antioxidant molecules forms a coordination effect with copper, adsorbs on the surface of the copper powder, and forms a synergistic antioxidant effect with the organic copper salt.
  • the specific type of the organic copper salt is not particularly limited, and those skilled in the art can choose at will according to actual needs.
  • the organic copper salt is selected from copper formate and acetic acid At least one of copper, thus, the anions in the above-mentioned organic copper salt molecules form a coordination effect with copper, adsorb on the surface of copper powder, and form a synergistic anti-oxidation effect with organic antioxidants, and the copper ions are reduced during the heating and curing process. It is a single substance of copper, which enhances the contact between copper powders and is beneficial to improve the conductivity of copper paste.
  • the alcohol amine compound is used as an accelerator for the reaction between the resin and the crosslinking agent, thereby reducing the reaction temperature and shortening the reaction time.
  • the specific types of the above-mentioned alcoholamine compounds are not particularly limited, and those skilled in the art can choose at will according to actual needs.
  • the alcoholamine compounds are selected from the group consisting of ethanolamine, propanolamine, isopropanolamine, diethanolamine , Dipropanolamine, Diisopropanolamine, Trimethanolamine, Triethanolamine, Triisopropanolamine, Methyldiethanolamine, Diethylethanolamine, Diethanolamine Oleate, Triethanolamine Oleate, Diisopropylethanolamine and at least one of butyldiethanolamine.
  • the antioxidant auxiliary agent further includes: 5-20 parts by weight of an additive selected from at least one of a dispersant, a stabilizer, a thixotropic agent and a coupling agent,
  • the function of the dispersant is to promote the uniform dispersion of solid particles such as copper powder in organic media such as resin to form a stable suspension system.
  • the function of the stabilizer is to increase the stability of the suspension system and prolong the storage of the anti-oxidation conductive copper paste.
  • the function of the thixotropic agent is to improve the screen printing performance of the anti-oxidation conductive copper paste
  • the function of the coupling agent is to improve the adhesion between the conductive copper paste and the substrate.
  • the specific types of dispersant, stabilizer, thixotropic agent and coupling agent are not particularly limited, and are all conventional materials in the art.
  • the specific shape of the copper powder is not particularly limited, and those skilled in the art can choose at will according to actual needs.
  • the shape of the copper powder is one of flake, spherical and dendritic. at least one.
  • the specific particle size/size of the copper powder is not particularly limited, and those skilled in the art can choose at will according to actual needs.
  • the particle size D50 of the copper powder is 100 nm-5 ⁇ m.
  • the specific type of the resin is not particularly limited, and those skilled in the art can choose at will according to actual needs.
  • the resin is selected from epoxy resin, polyamide resin, At least one of saturated polyester resin, polyurethane resin, acrylic resin and silicone resin.
  • the specific type of the cross-linking agent is not particularly limited, and those skilled in the art can choose at will according to actual needs.
  • the cross-linking agent is selected from polyamines, acid anhydrides , polyamide, polyol and blocked isocyanate at least one.
  • the specific type of the conductive enhancing filler is not particularly limited, and those skilled in the art can choose at will according to actual needs.
  • the conductive enhancing filler is selected from nanometer or submicron At least one of grade carbon black, graphene, carbon nanotubes, nickel powder, tin powder, indium powder, silver powder and aluminum powder.
  • submicron level refers to a particle size diameter of 100 nm to 1.0 ⁇ m.
  • the specific type of the solvent is not particularly limited, and those skilled in the art can choose at will according to actual needs.
  • the solvent is selected from the group consisting of At least one of hydroxyl compounds, ether-group-containing compounds with 2-18 carbons, carbonyl-containing compounds with 3-10 carbons and ester-group-containing compounds with 4-16 carbons.
  • the present invention proposes a method for preparing the above oxidation-resistant conductive copper paste. According to an embodiment of the present invention, the method includes:
  • a part of the anti-oxidation auxiliary agent is mixed with an alcohol solvent to prepare an anti-oxidation pretreatment liquid with a mass fraction of 3% to 25%, and the anti-oxidation pre-treatment liquid and copper powder are mixed and stirred. Centrifuge and dry to obtain pretreated copper powder; the volume-to-weight ratio of the anti-oxidation pretreatment solution to the copper powder is 1 mL: (0.9 ⁇ 1.1) g.
  • both the anions in the organic copper salt in the antioxidant additive and the organic antioxidant can form a coordination effect with copper, thereby forming an anti-oxidation organic film on the surface of the copper powder, effectively avoiding the preparation of conductive copper paste. Copper is oxidized during the process. At the same time, the organic thin layer covered on the surface of copper powder effectively improves the wettability of copper powder and other components (such as resin and crosslinking agent, etc.), which is conducive to the uniform dispersion of each component.
  • the drying temperature is 30-50°C
  • the drying time is 0.5-3 hours
  • the vacuum degree during drying is (-0.065)-(-0.095) MPa.
  • the copper powder is a mixture of spherical copper powder with a particle diameter D50 of 300-1200 nm and flake-shaped copper powder with a particle diameter D50 of 1 ⁇ m to 5 ⁇ m mixed in any proportion.
  • the spherical copper powder with small particle size is filled in the gaps of the flake copper powder with larger particle size.
  • the spherical copper powder with smaller particle size has a gap-filling effect, which can further increase the contact between copper powder. area, thereby increasing the conductivity of the conductive copper paste.
  • the pretreated copper powder, resin, conductive enhancing filler and solvent are mixed, stirred, ground and fully dispersed to obtain a mixture.
  • step S300 adds an appropriate amount of anti-oxidation organic film to the slurry in step S300. Oxidation additives, so as to ensure that the conductive copper paste continues to have excellent oxidation resistance in subsequent use.
  • the copper powder is processed in two stages, the copper powder is firstly pretreated in step S100, and the anti-oxidation additive is added to the slurry in step S300 .
  • step S100 during the pretreatment process of the copper powder, a part of antioxidant additives is added, and the anions and organic antioxidants in the organic copper salt can form coordination with copper, thereby forming a layer of anti-oxidant additives on the surface of the copper powder. Oxidation of organic film effectively avoids the problem of copper oxidation during the preparation of conductive copper paste.
  • the organic thin layer covered on the surface of copper powder effectively improves the infiltration of copper powder and other components (such as resin and crosslinking agent, etc.) property, which is conducive to the uniform dispersion of each component.
  • step S300 in the slurry An appropriate amount of anti-oxidation additives is added to ensure that the conductive copper paste continues to have excellent anti-oxidation performance in subsequent use.
  • the oxidation-resistant conductive copper paste prepared by this method has excellent conductivity and stable oxidation resistance, and its conductivity is close to that of the existing conductive silver paste; and the above-mentioned oxidation-resistant conductive copper paste can be used at 200 ° C Rapid curing at low temperatures below; the above-mentioned anti-oxidation conductive copper paste has been stored naturally at room temperature for six months, and its conductivity has hardly changed, indicating that it is almost not oxidized; the above-mentioned anti-oxidation conductive copper paste is in the air at 180 ° After oxidizing for 60 minutes, although its conductivity decreased, it was still comparable to the current conductive copper paste on the market.
  • the invention proposes an electrode.
  • the electrode is prepared by using the anti-oxidation conductive copper paste described in the above examples or the anti-oxidation conductive copper paste prepared by the method described in the above examples.
  • the electrode has more excellent conductivity.
  • the method for preparing an electrode using the oxidation-resistant conductive copper paste is as follows:
  • the conductive copper paste is screen-printed onto the base material, cured at 160-200° C. for 15-45 minutes under a nitrogen atmosphere to form an electrode.
  • the specific material of the substrate is not particularly limited, and those skilled in the art can choose at will according to actual needs.
  • the substrate is a silicon substrate.
  • the invention proposes a solar cell.
  • the solar cell has the electrodes described in the above embodiments.
  • the solar cell has better conductivity, which further satisfies the needs of consumers.
  • the oxidation-resistant conductive copper paste is suitable for all types of solar cells, especially for HJT and HBC solar cells.
  • Step 1 Weigh copper formate, diethanolamine, benzotriazole, polymer dispersant (dispersant 4801, UK J1) according to the ratio of mass parts 3:3:3:1, and mix them to form 10wt% Ethanol solution 100mL, add 80g flake copper powder with a particle size D50 of 1 ⁇ m to 5 ⁇ m and 20 g spherical copper powder with a particle size D50 of 500 to 800 nm, stir at room temperature (25°C) for 30 minutes, centrifuge, and pour out the supernatant Liquid and solid are baked in a vacuum oven at 35°C for 1 hour with a vacuum of -0.095MPa.
  • Step 2 Mix the copper powder treated in step 1, bisphenol A epoxy resin E44, terpineol, and carbon nanotubes according to the ratio of 81:8.4:10.5:0.1 by mass and stir at constant temperature (25°C) for 15 minutes. Put the mixture into a three-roll mill for dispersion, and then mix the above mixture, methylnadic anhydride in a ratio of 95:2:3 by mass, copper formate and diethanolamine in a ratio of 3:3:3:1 by mass , benzotriazole, and polymer dispersant mixture are added to a vacuum planetary defoamer to stir and disperse and remove air bubbles to obtain an anti-oxidation conductive copper slurry with uniform color and viscosity of 200-300pa ⁇ s.
  • Step 1 Weigh copper formate, triethanolamine, 2-benzothiazole thiol, and coupling agent (KBM-903, Shin-Etsu Japan) according to the ratio of mass parts 4:3:2:1, and mix them to form 15wt% Ethanol solution 100mL, add 100g of spherical copper particles with a particle diameter D50 of 300-500nm, stir at room temperature (25°C) for 30 minutes, centrifuge, pour out the supernatant, bake the solid in a vacuum oven at 35°C for 1 hour, vacuum The degree is -0.095MPa.
  • Step 2 According to the ratio of mass parts 78:10.9:10.9:0.2, the copper powder, polyurethane resin, diethylene glycol methyl ether acetate, and nano-graphite powder processed in step 1 were mixed and stirred at a constant temperature (25°C) for 20 minutes.
  • the mixture is added to a three-roll mill for dispersion, and then the above mixture, 4,4'-diaminodiaminodiphenylsulfone, and formic acid are prepared in a ratio of 4:3:2:1 by mass parts according to the ratio of 92:3:5 by mass parts
  • the mixture of copper, triethanolamine, 2-benzothiazole mercaptan and coupling agent is added into a vacuum planetary defoamer to stir and disperse and remove air bubbles to obtain an anti-oxidation conductive copper paste with uniform color and viscosity of 250-350pa ⁇ s.
  • Step 1 Weigh copper formate, diethylethanolamine, benzotriazole, polymer dispersant (dispersant 4801, UK J1) according to the ratio of mass parts 3:2.5:2.5:2, and mix them to make 20wt % ethanol solution 100mL, add 100g of dendritic copper particles with a particle diameter D50 of 800-1200nm, stir at room temperature (25°C) for 30 minutes, centrifuge, pour out the supernatant and bake the solid in a vacuum oven at 35°C for 1 hour, the vacuum is -0.095MPa.
  • Step 2 Mix the copper powder treated in step 1, bisphenol A epoxy resin E51, propylene glycol phenyl ether, butyl acetate, carbon black, and metal indium according to the ratio of 82.25:7.5:6:4:0.05:0.1:0.1 by mass Powder and metal tin powder were mixed and stirred at constant temperature (25°C) for 15 minutes.
  • the mixture was added to a three-roll mill for dispersion, and then the above mixture and blocked isocyanate were mixed according to the mass parts ratio of 94:2:4, according to 3 parts by mass: Add the mixture of copper formate, diethylethanolamine, benzotriazole and polymer dispersant in the ratio of 2.5:2.5:2 to the vacuum planetary defoamer to stir and disperse and remove air bubbles to obtain uniform color and viscosity of 200-350pa s anti-oxidation conductive copper paste.
  • Step 1 Weigh copper formate, dipropanolamine, dodecyl mercaptan, and stabilizer (963 stabilizer, Japan MINO) according to the ratio of mass parts 3:2:3:2, and mix them to form 15wt% Ethanol solution 100mL, add 50g particle size D50 is 1 ⁇ 3 ⁇ m flake copper particles, 30 g particle size D50 is 300 ⁇ 800 nm spherical copper particles and 20 g particle size D50 is 3 ⁇ 6 ⁇ m dendritic copper particles, at room temperature (25 °C) and stirred for 30 minutes, centrifuged, and the supernatant was poured out, and the solid obtained was baked in a vacuum oven at 35°C for 1 hour, and the vacuum degree was -0.095MPa.
  • Step 2 Copper powder, bisphenol F type epoxy resin, acrylic resin, diethylene glycol butyl ether acetate, isofor Mix ketone, graphene, and metal aluminum powder and stir at constant temperature (25°C) for 15 minutes, add the mixture to a three-roll mill for dispersion, and then mix the above mixture, blocked isocyanate, and The mixture of copper formate, dipropanolamine, dodecyl mercaptan, and stabilizer in a ratio of 3:2:3:2 by mass is added to a vacuum planetary defoamer to stir and disperse and remove air bubbles to obtain uniform color and viscosity. 180 ⁇ 260pa ⁇ s anti-oxidation conductive copper paste.
  • Example 1 the benzotriazole in Example 1 was replaced by copper formate, that is, only copper formate was added in this comparative example, and benzotriazole was not added, and other contents were the same as in Example 1.
  • Example 1 the copper formate in Example 1 was replaced by benzotriazole, that is, only benzotriazole was added in this comparative example, copper formate was not added, and other contents were the same as in Example 1.
  • the oxidation-resistant conductive copper paste prepared in Examples 1-4 and Comparative Examples 1-3 was cured, and the curing was carried out in a nitrogen atmosphere oven, and then the film thickness and sheet resistance of the cured film were tested, and the test results are shown in the table 1, where A and B represent parallel experiments. Place the cured samples of the anti-oxidation conductive copper paste prepared in Examples 1-4 and Comparative Examples 1-3 for 6 months at room temperature (environment is temperature 25 ⁇ 2°C, humidity 45 ⁇ 5%), and then measure its square The test results are shown in Table 1. The cured samples of anti-oxidation conductive copper paste prepared in Examples 1-4 and Comparative Examples 1-3 were oxidized in a general blast oven at 180°C for 60 minutes, and then the sheet resistance was measured. The test results are shown in Table 1.
  • the oxidation-resistant conductive copper paste of Examples 1-4 has excellent electrical conductivity and stable oxidation resistance, and its electrical conductivity is close to that of the existing conductive silver paste; and the above-mentioned oxidation-resistant conductive copper paste
  • the paste can be cured rapidly at a low temperature below 200°C; the above-mentioned anti-oxidation conductive copper paste has been naturally stored at room temperature for six months, and its conductivity has hardly changed, indicating that it has hardly been oxidized; the above-mentioned anti-oxidation conductive copper paste After being oxidized in air at 180°C for 60 minutes, although its electrical conductivity decreased, it was still comparable to the conductive copper paste currently on the market.
  • the copper paste with copper formate or benzotriazole added alone has a high square resistance at the beginning after curing, whether it is placed at room temperature for 6 months or oxidized in air at 180°C After 60 minutes, its square resistance all significantly increased, indicating that adding copper formate or benzotriazole alone cannot provide stable oxidation resistance; in comparative example 3, because copper formate or benzotriazole was not added in step 3 azole, the initial square resistance after curing is beyond the measuring range of the test instrument, and the copper paste does not show conductivity.
  • Embodiment 1 and comparative example 1, comparative example 2, comparative example 3 compare and can find out, when not adding, or only adding copper formate or benzotriazole when one of them, conductive copper paste all has larger squareness.
  • the resistance value, the long-term stability of its conductivity is also poor, and it does not have commercial application value, while the copper paste with copper formate and benzotriazole has excellent conductivity and conductivity stability, which shows that copper formate and benzotriazole Paratriazole both have good synergistic antioxidant effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)

Abstract

本发明公开了抗氧化导电铜浆料及其制备方法和应用,所述抗氧化导电铜浆料包括:铜粉、树脂、交联剂、导电增强填料、抗氧化助剂和溶剂;所述抗氧化助剂包括:有机铜盐、醇胺化合物和有机抗氧化剂。上述抗氧化导电铜浆料具有优异的导电性和稳定的抗氧化性,其导电性与现有导电银浆料接近;且上述抗氧化导电铜浆料可在200℃以下的低温下快速固化;上述抗氧化导电铜浆料经过六个月的室温自然储存,其导电性几乎没有变化,说明其几乎未被氧化;上述抗氧化导电铜浆料在180℃的空气中氧化60min后,其导电性虽然下降,但仍然与目前市面上的导电铜浆料相当。

Description

抗氧化导电铜浆料及其制备方法和应用
相关申请的交叉引用
本公开要求在2021年9月26日提交中国专利局、申请号为202111130893.8、名称为“抗氧化导电铜浆料及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本发明属于太阳能电池技术领域,具体涉及一种抗氧化导电铜浆料及其制备方法和应用。
背景技术
近年来,导电金属浆料在半导体、电子、能源、汽车等领域的应用越来越广泛。目前,主要使用的是以银微粒作为导电填料的导电浆料,其具有优良的导电性和耐氧化性,然而,由于银的价格昂贵,极大地阻碍了导电银浆料的广泛应用和发展,另外,银的迁移性也是影响其应用的因素之一。
铜作为仅次于银的导电性金属,在导电浆料技术的发展中逐渐得到了人们的重视,但是,铜微粒在空气中容易被氧化,其长期使用的稳定性面临极大的困难。为了解决该问题,现有技术中常用的方法是在铜微粒表面涂覆或电镀一层抗氧化金属外壳,如银包铜微粒,然而,由于银包铜微粒工艺限制,其表面常常有裂隙,最终仍然导致铜核心的氧化,另外,银的使用也增加了导电浆料的成本;而铜电镀工艺复杂,成本较高;另一种方法是在铜微粒的表面进行化学改性处理,但是其抗氧化性和导电性仍然有待提高,同时化学改性在导电铜浆料后续操作中容易受到破坏,从而降低其抗氧化性。此外,现有技术还存在导电浆料的固化温度较高的问题,较高的固化温度容易破坏铜微粒表面的抗氧化性,导致导电铜浆料的电阻升高。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此, 本发明的一个目的在于提出一种抗氧化导电铜浆料及其制备方法和应用,所述抗氧化导电铜浆料具有优异的导电性和稳定的抗氧化性,其导电性与现有导电银浆料接近;且所述抗氧化导电铜浆料可在200℃以下的低温下快速固化;所述抗氧化导电铜浆料经过六个月的室温自然储存,其导电性几乎没有变化,说明其几乎未被氧化;所述抗氧化导电铜浆料在180℃的空气中氧化60min后,其导电性虽然下降,但仍然与目前市面上的导电铜浆料相当。
在本发明的一个方面,本发明提出了一种抗氧化导电铜浆料。根据本发明的实施例,所述抗氧化导电铜浆料包括:铜粉、树脂、交联剂、导电增强填料、抗氧化助剂和溶剂;
所述抗氧化助剂包括:有机铜盐、醇胺化合物和有机抗氧化剂。
根据本发明实施例的抗氧化导电铜浆料,本发明通过将具有还原性的有机铜盐和有机抗氧化剂结合,配制成复合型抗氧化助剂,提供了长期稳定的抗氧化性,具体来说,有机铜盐中的阴离子和有机抗氧化剂均能和铜形成配位作用,从而在铜粉表面形成一层抗氧化薄膜,得益于该阴离子和有机抗氧化剂结构和空间位阻的差异,即该阴离子具有相对较小的结构,因此易于在铜粉表面吸附并配位,而有机抗氧化剂具有相对较大的结构,因此填充在该阴离子的“间隙”位置,通过这种空间位阻的差异,两类粒子之间相互挤压,从而在铜粉表面形成了致密的抗氧化层,有效阻止了氧化物与铜接触;同时,抗氧化导电铜浆料在后续固化时,有机铜盐受热分解释放出铜单质,增强了铜粉之间的接触,和导电增强填料形成协同作用,进一步提升了导电铜浆料的导电性;醇胺化合物不仅具有交联剂促进剂的作用,还具有一定的抗氧化性,其与有机铜盐、有机抗氧化剂合用,进一步促进了抗氧化导电铜浆料的抗氧化性;另外,发明人在对抗氧化机理的研究中发现,浆料中的抗氧化助剂部分参与了树脂的交联过程,具体来讲,抗氧化助剂中的醇胺化合物结构中的羟基具有反应活性,可以和树脂及交联剂反应,从而将其它抗氧化成分限制在附近,形成“包裹”式结构,避免抗氧化成分的迁移,因而形成了更稳定的抗氧化性能和导电性。由此,上述抗氧化导电铜浆料具有优异的导电性和稳定的抗氧化性,其导电性与现有导电银浆料接近;且上述抗氧化导电铜浆料可在200℃以下的低温下快速固化;上述抗氧化导电铜浆料经过六个月的室温自然储存,其导电性几乎没有变化,说明其几乎未被氧化;上述抗氧 化导电铜浆料在180℃的空气中氧化60min后,其导电性虽然下降,但仍然与目前市面上的导电铜浆料相当。
另外,根据本发明上述实施例的抗氧化导电铜浆料还可以具有如下附加的技术特征:
在本发明的一些实施例中,所述抗氧化助剂包括:20-40重量份的所述有机铜盐、20-40重量份的所述醇胺化合物和20-40重量份的所述有机抗氧化剂。
在本发明的一些实施例中,所述抗氧化导电铜浆料包括:60-88重量份的所述铜粉、5-15重量份的所述树脂、1-3重量份的所述交联剂、0.05-2重量份的所述导电增强填料、1-5重量份的所述抗氧化助剂和5-15重量份的所述溶剂。
在本发明的一些实施例中,所述有机抗氧化剂选自含氮五元环氮唑和硫醇类化合物中的至少之一。
在本发明的一些实施例中,所述含氮五元环氮唑选自3-巯基-1,2,4-三氮唑、苯骈三氮唑和5-甲基苯并三氮唑中的至少之一。
在本发明的一些实施例中,所述硫醇类化合物选自2-苯并噻唑硫醇和碳数为6-18的烷基硫醇中的至少之一。
在本发明的一些实施例中,所述有机铜盐选自甲酸铜和乙酸铜中的至少之一。
在本发明的一些实施例中,所述醇胺化合物选自乙醇胺、丙醇胺、异丙醇胺、二乙醇胺、二丙醇胺、二异丙醇胺、三甲醇胺、三乙醇胺、三异丙醇胺、甲基二乙醇胺、二乙基乙醇胺、油酸二乙醇胺、油酸三乙醇胺、二异丙基乙醇胺和丁基二乙醇胺中的至少之一。
在本发明的一些实施例中,所述抗氧化助剂还包括:5-20重量份的添加剂。
在本发明的一些实施例中,所述添加剂选自分散剂、稳定剂、触变剂和偶联剂中的至少之一。
在本发明的一些实施例中,所述抗氧化导电铜浆料的粘度为180-350pa·s。
在本发明的一些实施例中,所述铜粉的形状为片状、球状和树枝状中的至少之一,所述铜粉的粒径D50为100nm-5μm。
在本发明的一些实施例中,所述树脂选自环氧树脂、聚酰胺树脂、饱和 聚酯树脂、聚氨酯树脂、丙烯酸树脂和有机硅树脂中的至少之一。
在本发明的一些实施例中,所述交联剂选自多元胺、酸酐、聚酰胺、多元醇和封闭型异氰酸酯中的至少之一。
在本发明的一些实施例中,所述导电增强填料选自纳米或亚微米级的炭黑、石墨烯、碳纳米管、镍粉、锡粉、铟粉、银粉和铝粉中的至少之一。
在本发明的一些实施例中,所述溶剂选自碳数为2-12的含羟基化合物、碳数为2-18的含醚基化合物、碳数为3-10的含羰基化合物和碳数为4-16的含酯基化合物中的至少之一。
在本发明的再一个方面,本发明提出了一种制备上述抗氧化导电铜浆料的方法。根据本发明的实施例,所述方法包括:
(1)将其中一部分抗氧化助剂和醇类溶剂混合,配制成质量分数为3%~25%的抗氧化预处理液,将所述抗氧化预处理液和铜粉混合,搅拌,离心分离,干燥,以便得到预处理的铜粉;所述抗氧化预处理液和所述铜粉的体积重量比为1mL:(0.9~1.1)g;
(2)将所述预处理的铜粉、树脂、导电增强填料和溶剂混合,搅拌,研磨分散,以便得到混合物;
(3)将所述混合物、交联剂和另外一部分抗氧化助剂混合,搅拌,以便得到抗氧化导电铜浆料。
根据本发明实施例的制备上述抗氧化导电铜浆料的方法,该方法中,铜粉经过两段处理,步骤(1)中铜粉首先经过预处理,步骤(3)在浆料中再次添加抗氧化助剂。其中,步骤(1)在铜粉的预处理过程中,加入了其中一部分抗氧化助剂,有机铜盐中的阴离子和有机抗氧化剂均能和铜形成配位作用,从而在铜粉表面形成一层抗氧化有机薄膜,有效避免了导电铜浆料制备过程中铜被氧化的问题,同时,铜粉表面覆盖的有机薄层有效改善了铜粉和其它组分(如树脂及交联剂等)的浸润性,有利于各组分的均匀分散,但是,由于制备过程中的搅拌、研磨等物理过程会对该有机薄层造成损伤,导致铜粉在后续使用中的氧化,因此,步骤(3)在浆料中又添加了适量的抗氧化助剂,从而保证导电铜浆料在后续使用中持续具有优异的抗氧化性能。由此,该方法制备得到的抗氧化导电铜浆料具有优异的导电性和稳定的抗氧化性,其导电性与现有导电银浆料接近;且上述抗氧化导电铜浆料可在200℃以下的 低温下快速固化;上述抗氧化导电铜浆料经过六个月的室温自然储存,其导电性几乎没有变化,说明其几乎未被氧化;上述抗氧化导电铜浆料在180℃的空气中氧化60min后,其导电性虽然下降,但仍然与目前市面上的导电铜浆料相当。
在本发明的第三个方面,本发明提出了一种电极。根据本发明的实施例,所述电极是采用以上实施例所述的抗氧化导电铜浆料或以上实施例所述方法制备得到的抗氧化导电铜浆料制备得到的。由此,所述电极具有更优异的导电性。
在本发明的第四个方面,本发明提出了一种太阳能电池。根据本发明的实施例,所述太阳能电池具有以上实施例所述的电极。由此,所述太阳能电池具有更优异的导电性,进一步满足了消费者的需求。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明实施例的抗氧化导电铜浆料的SEM图。
具体实施例
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于 本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的一个方面,本发明提出了一种抗氧化导电铜浆料。根据本发明的实施例,所述抗氧化导电铜浆料包括:铜粉、树脂、交联剂、导电增强填料、抗氧化助剂和溶剂;所述抗氧化助剂包括:有机铜盐、醇胺化合物和有机抗氧化剂。由此,本发明通过将具有还原性的有机铜盐和有机抗氧化剂结合,配制成复合型抗氧化助剂,提供了长期稳定的抗氧化性,具体来说,有机铜盐中的阴离子和有机抗氧化剂均能和铜形成配位作用,从而在铜粉表面形成一层抗氧化薄膜,得益于该阴离子和有机抗氧化剂结构和空间位阻的差异,即该阴离子具有相对较小的结构,因此易于铜粉表面吸附并配位,而有机抗氧化剂具有相对较大的结构,因此填充在该阴离子的“间隙”位置,通过这种空间位阻的差异,两类粒子之间相互挤压,有效阻止了氧化物与铜接触,从而在铜粉表面形成了致密的抗氧化层;同时,抗氧化导电铜浆料在后续固化时,有机铜盐受热分解释放出铜单质,增强了铜粉之间的接触,和导电增强填料形成协同作用,进一步提升了导电铜浆料的导电性;醇胺化合物不仅具有交联剂促进剂的作用,还具有一定的抗氧化性,其与有机铜盐、有机抗氧化剂合用,进一步促进了抗氧化导电铜浆料的抗氧化性;另外,发明人在对抗氧化机理的研究中发现,浆料中的抗氧化助剂部分参与了树脂的交联过程,具体来讲,抗氧化助剂中的醇胺化合物结构中的羟基具有反应活性,可以和树脂及交联剂反应,从而将其它抗氧化成分限制在附近,形成“包裹”式结构,避免抗氧化成分的迁移,因而形成了更稳定的抗氧化性能和导电性。由此,上述抗氧化导电铜浆料具有优异的导电性和稳定的抗氧化性,其导电性与现有导电银浆料接近;且上述抗氧化导电铜浆料可在200℃以下的低温下快速固化;上述抗氧化导电铜浆料经过六个月的室温自然储存,其导电性几乎没有变化,说明其几乎未被氧化;上述抗氧化导电铜浆料在180℃的空气中氧化60min后,其导电性虽然下降,但仍然与目前市面上的导电铜浆 料相当。
在本发明的实施例中,铜粉的作用是起到导电作用,铜微粒相互接触,形成电荷传递通路,上述抗氧化助剂为导电铜浆料提供了长期稳定的抗氧化性,树脂的作用是形成骨架作用,固化后,树脂分子间彼此连接,从而在铜粉之间、铜粉与基体之间形成紧密接触,交联剂的作用是连接树脂形成热固性网状结构,导电增强填料的作用是填补铜粉之间的空隙(炭黑),增强铜粉之间及其与基体之间的接触(铟粉),增加铜浆料的导电性(银粉),溶剂的作用是将上述其他成分分散在该溶剂中,形成具有一定粘度的浆料。
根据本发明的一个具体实施例,所述抗氧化助剂包括:20-40重量份的所述有机铜盐、20-40重量份的所述醇胺化合物和20-40重量份的所述有机抗氧化剂,由此,上述比例范围的抗氧化助剂中各成分相互配合,为导电铜浆料提供了更加长期稳定的抗氧化性,发明人发现,抗氧化助剂中任一组分过少或过高都会造成导电铜浆料的抗氧化性能的下降。
根据本发明的再一个具体实施例,所述抗氧化导电铜浆料包括:60-88重量份的所述铜粉、5-15重量份的所述树脂、1-3重量份的所述交联剂、0.05-2重量份的所述导电增强填料、1-5重量份的所述抗氧化助剂和5-15重量份的所述溶剂,由此,上述比例范围的抗氧化导电铜浆料具有更加优异的导电性和更加稳定的抗氧化性,其导电性与现有导电银浆料接近。发明人发现,所述抗氧化导电铜浆料中的任一组分的过低或过高都会造成浆料导电性或稳定性的下降。
根据本发明的又一个具体实施例,所述抗氧化导电铜浆料的粘度为180-350pa·s,由此,上述粘度范围的抗氧化导电铜浆料特别适用于丝网印刷。
在本发明的实施例中,所述有机抗氧化剂的具体种类并不受特别限制,本领域人员可根据实际需要随意选择,作为一种优选的方案,所述有机抗氧化剂选自含氮五元环氮唑(N的个数为1-3个)和硫醇类化合物中的至少之一,所述含氮五元环氮唑选自3-巯基-1,2,4-三氮唑、苯骈三氮唑和5-甲基苯并三氮唑中的至少之一,所述硫醇类化合物选自2-苯并噻唑硫醇和碳数为6-18的烷基硫醇中的至少之一,由此,上述种类的有机抗氧化剂分子中的氮或硫与铜形成配位作用,吸附在铜粉表面,与有机铜盐形成协同抗氧化作用。
在本发明的实施例中,所述有机铜盐的具体种类并不受特别限制,本领 域人员可根据实际需要随意选择,作为一种优选的方案,所述有机铜盐选自甲酸铜和乙酸铜中的至少之一,由此,上述种类的有机铜盐分子中的阴离子与铜形成配位作用,吸附在铜粉表面,与有机抗氧化剂形成协同抗氧化作用,加热固化过程中铜离子还原为铜单质,增强了铜粉之间的接触,有利于提升铜浆料的导电性。
在本发明的实施例中,所述醇胺化合物作为树脂与交联剂反应的促进剂,起到了降低反应温度、缩短反应时间的作用。上述醇胺化合物的具体种类并不受特别限制,本领域人员可根据实际需要随意选择,作为一种优选的方案,所述醇胺化合物选自乙醇胺、丙醇胺、异丙醇胺、二乙醇胺、二丙醇胺、二异丙醇胺、三甲醇胺、三乙醇胺、三异丙醇胺、甲基二乙醇胺、二乙基乙醇胺、油酸二乙醇胺、油酸三乙醇胺、二异丙基乙醇胺和丁基二乙醇胺中的至少之一。
根据本发明的又一个具体实施例,所述抗氧化助剂还包括:5-20重量份的添加剂,所述添加剂选自分散剂、稳定剂、触变剂和偶联剂中的至少之一,其中分散剂的作用是促进铜粉等固体颗粒均匀分散在树脂等有机介质中,以形成稳定的悬浮体系,稳定剂的作用是增加该悬浮体系的稳定性,延长抗氧化导电铜浆料的储存时间,触变剂的作用是提升抗氧化导电铜浆料的丝网印刷性能,偶联剂的作用是提高导电铜浆料与基体的附着力。分散剂、稳定剂、触变剂和偶联剂的具体种类均不受特别限制,均是本领域的常规材料。
在本发明的实施例中,铜粉的具体形状并不受特别限制,本领域人员可根据实际需要随意选择,作为一个具体示例,所述铜粉的形状为片状、球状和树枝状中的至少之一。铜粉的具体粒径/尺寸并不受特别限制,本领域人员可根据实际需要随意选择,作为一个具体示例,所述铜粉的粒径D50为100nm-5μm。
在本发明的实施例中,所述树脂的具体种类并不受特别限制,本领域人员可根据实际需要随意选择,作为一种优选的方案,所述树脂选自环氧树脂、聚酰胺树脂、饱和聚酯树脂、聚氨酯树脂、丙烯酸树脂和有机硅树脂中的至少之一。
在本发明的实施例中,所述交联剂的具体种类并不受特别限制,本领域人员可根据实际需要随意选择,作为一种优选的方案,所述交联剂选自多元 胺、酸酐、聚酰胺、多元醇和封闭型异氰酸酯中的至少之一。
在本发明的实施例中,所述导电增强填料的具体种类并不受特别限制,本领域人员可根据实际需要随意选择,作为一种优选的方案,所述导电增强填料选自纳米或亚微米级的炭黑、石墨烯、碳纳米管、镍粉、锡粉、铟粉、银粉和铝粉中的至少之一。亚微米级在本公开中指的是粒度直径100nm~1.0μm。
在本发明的实施例中,所述溶剂的具体种类并不受特别限制,本领域人员可根据实际需要随意选择,作为一种优选的方案,所述溶剂选自碳数为2-12的含羟基化合物、碳数为2-18的含醚基化合物、碳数为3-10的含羰基化合物和碳数为4-16的含酯基化合物中的至少之一。
在本发明的再一个方面,本发明提出了一种制备上述抗氧化导电铜浆料的方法。根据本发明的实施例,所述方法包括:
S100:将其中一部分抗氧化助剂和醇类溶剂混合,配制成质量分数为3%~25%的抗氧化预处理液,将所述抗氧化预处理液和铜粉混合,搅拌,离心分离,干燥
在该步骤中,将其中一部分抗氧化助剂和醇类溶剂混合,配制成质量分数为3%~25%的抗氧化预处理液,将所述抗氧化预处理液和铜粉混合,搅拌,离心分离,干燥,以便得到预处理的铜粉;所述抗氧化预处理液和所述铜粉的体积重量比为1mL:(0.9~1.1)g。该步骤中,抗氧化助剂中的有机铜盐中的阴离子和有机抗氧化剂均能和铜形成配位作用,从而在铜粉表面形成一层抗氧化有机薄膜,有效避免了导电铜浆料制备过程中铜被氧化的问题,同时,铜粉表面覆盖的有机薄层有效改善了铜粉和其它组分(如树脂及交联剂等)的浸润性,有利于各组分的均匀分散。
根据本发明的一个具体实施例,所述干燥温度为30~50℃,干燥时间为0.5~3小时,干燥时的真空度为(-0.065)~(-0.095)MPa,由此,可以实现在较短的时间内使预处理的铜粉充分干燥,同时又避免了因干燥温度过高而导致破坏预处理的铜粉。
根据本发明的再一个具体实施例,所述铜粉为粒径D50为300~1200nm的球形铜粉和粒径D50为1μm~5μm的片状铜粉按照任意比例混合的混合物,由此,较小粒径的球形铜粉填充在较大粒径的片状铜粉的缝隙中,如附图1 所示,粒径较小的球状铜粉具有填隙作用,能进一步增加铜粉之间接触面积,从而提高导电铜浆料的电导率。
S200:将所述预处理的铜粉、树脂、导电增强填料和溶剂混合,搅拌,研磨分散
在该步骤中,将所述预处理的铜粉、树脂、导电增强填料和溶剂混合,搅拌,研磨,充分分散,以便得到混合物。
S300:将所述混合物、交联剂和抗氧化助剂混合,搅拌
在该步骤中,将所述混合物、交联剂和抗氧化助剂混合,搅拌,以便得到抗氧化导电铜浆料。由于制备过程中的搅拌、研磨等物理过程会对S100铜粉表面形成的抗氧化有机薄膜造成损伤,导致铜粉在后续使用中的氧化,因此,步骤S300在浆料中又添加了适量的抗氧化助剂,从而保证导电铜浆料在后续使用中持续具有优异的抗氧化性能。
根据本发明实施例的制备上述抗氧化导电铜浆料的方法,该方法中,铜粉经过两段处理,步骤S100中铜粉首先经过预处理,步骤S300在浆料中再次添加抗氧化助剂。其中,步骤S100在铜粉的预处理过程中,加入了其中一部分抗氧化助剂,有机铜盐中的阴离子和有机抗氧化剂均能和铜形成配位作用,从而在铜粉表面形成一层抗氧化有机薄膜,有效避免了导电铜浆料制备过程中铜被氧化的问题,同时,铜粉表面覆盖的有机薄层有效改善了铜粉和其它组分(如树脂及交联剂等)的浸润性,有利于各组分的均匀分散,但是,由于制备过程中的搅拌、研磨等物理过程会对该有机薄层造成损伤,导致铜粉在后续使用中的氧化,因此,步骤S300在浆料中又添加了适量的抗氧化助剂,从而保证导电铜浆料在后续使用中持续具有优异的抗氧化性能。由此,该方法制备得到的抗氧化导电铜浆料具有优异的导电性和稳定的抗氧化性,其导电性与现有导电银浆料接近;且上述抗氧化导电铜浆料可在200℃以下的低温下快速固化;上述抗氧化导电铜浆料经过六个月的室温自然储存,其导电性几乎没有变化,说明其几乎未被氧化;上述抗氧化导电铜浆料在180℃的空气中氧化60min后,其导电性虽然下降,但仍然与目前市面上的导电铜浆料相当。
在本发明的第三个方面,本发明提出了一种电极。根据本发明的实施例,所述电极是采用以上实施例所述的抗氧化导电铜浆料或以上实施例所述方法 制备得到的抗氧化导电铜浆料制备得到的。由此,所述电极具有更优异的导电性。
在本发明的实施例中,采用所述抗氧化导电铜浆料制备电极的方法如下:
将所述导电铜浆料通过丝网印刷到基材上,在氮气氛围下160~200℃固化15~45分钟,形成电极。需要说明的是,所述基材的具体材质并不受特别限制,本领域人员可根据实际需要随意选择,作为一种优选的方案,所述基材为硅衬底基材。
在本发明的第四个方面,本发明提出了一种太阳能电池。根据本发明的实施例,所述太阳能电池具有以上实施例所述的电极。由此,所述太阳能电池具有更优异的导电性,进一步满足了消费者的需求。需要说明的是,所述抗氧化导电铜浆料适用于所有种类的太阳能电池,尤其适用于HJT、HBC太阳能电池。
下面详细描述本发明的实施例,需要说明的是下面描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。另外,如果没有明确说明,在下面的实施例中所采用的所有试剂均为市场上可以购得的,或者可以按照本文或已知的方法合成的,对于没有列出的反应条件,也均为本领域技术人员容易获得的。
实施例1
步骤1:按照质量份3:3:3:1的比例称取甲酸铜、二乙醇胺、苯骈三氮唑、高分子分散剂(分散剂4801,英国J1),将其混合后配置成10wt%乙醇溶液100mL,加入80g粒径D50为1μm~5μm的片状铜粉和20g粒径D50为500~800nm的球状铜粉混合物,在室温(25℃)下搅拌30分钟,离心,倾倒出上清液,固体在真空烘箱中35℃烘烤1小时,真空度为-0.095MPa。
步骤2:按照质量份81:8.4:10.5:0.1的比例将步骤1处理的铜粉、双酚A型环氧树脂E44、松油醇、碳纳米管混合并恒温(25℃)搅拌15分钟,将该混合物加入三辊研磨机中进行分散,然后按照质量份95:2:3比例的上述混合物、甲基纳迪克酸酐、按照质量份3:3:3:1比例配置的甲酸铜、二乙醇胺、苯骈三氮唑、高分子分散剂混合物加入到真空行星脱泡机里搅拌分散并脱去气泡,得到色泽均匀、粘度200~300pa·s的抗氧化导电铜浆料。
实施例2
步骤1:按照质量份4:3:2:1比例称取甲酸铜、三乙醇胺、2-苯并噻唑硫醇、偶联剂(KBM-903,日本信越),将其混合后配置成15wt%乙醇溶液100mL,加入100g粒径D50为300~500nm的球状铜微粒,在室温(25℃)下搅拌30分钟,离心,倾倒出上清液,固体在真空烘箱中35℃烘烤1小时,真空度为-0.095MPa。
步骤2:按照质量份78:10.9:10.9:0.2比例将步骤1处理的铜粉、聚氨酯树脂、二乙二醇甲醚醋酸酯、纳米石墨粉混合并恒温(25℃)搅拌20分钟,将该混合物加入三辊研磨机进行分散,然后按照质量份92:3:5比例的上述混合物、4,4’-二氨基二氨基二苯砜、按照质量份4:3:2:1比例配置的甲酸铜、三乙醇胺、2-苯并噻唑硫醇、偶联剂混合物加入到真空行星脱泡机里搅拌分散并脱去气泡,得到色泽均匀、粘度250~350pa·s的抗氧化导电铜浆料。
实施例3
步骤1:按照质量份3:2.5:2.5:2比例称取甲酸铜、二乙基乙醇胺、苯骈三氮唑、高分子分散剂(分散剂4801,英国J1),将其混合后配置成20wt%乙醇溶液100mL,加入100g粒径D50为800~1200nm的树枝状铜微粒,在室温(25℃)下搅拌30分钟,离心,倾倒出上清液后所得固体在真空烘箱中35℃烘烤1小时,真空度为-0.095MPa。
步骤2:按照质量份82.25:7.5:6:4:0.05:0.1:0.1比例将步骤1处理的铜粉、双酚A型环氧树脂E51、丙二醇苯醚、乙酸丁酯、炭黑、金属铟粉、金属锡粉混合并恒温(25℃)搅拌15分钟,将该混合物加入三辊研磨机进行分散,然后按照质量份94:2:4比例的上述混合物、封闭型异氰酸酯、按照质量份3:2.5:2.5:2比例配置的甲酸铜、二乙基乙醇胺、苯骈三氮唑、高分子分散剂混合物加入到真空行星脱泡机里搅拌分散并脱去气泡,得到色泽均匀、粘度200~350pa·s的抗氧化导电铜浆料。
实施例4
步骤1:按照质量份3:2:3:2比例称取甲酸铜、二丙醇胺、十二烷基硫醇、稳定剂(963稳定剂,日本MINO),将其混合后配置成15wt%乙醇溶液100mL,加入50g粒径D50为1~3μm的片状铜微粒、30g粒径D50为300~800nm的球状铜微粒和20g粒径D50为3~6μm的树枝状铜微粒,在 室温(25℃)下搅拌30分钟,离心,倾倒出上清液后所得固体在真空烘箱中35℃烘烤1小时,真空度为-0.095MPa。
步骤2:按照质量份73.7:6.5:5.5:8:6:0.1:0.2比例将步骤1处理的铜粉、双酚F型环氧树脂、丙烯酸树脂、二乙二醇丁醚醋酸酯、异佛尔酮、石墨烯、金属铝粉混合并恒温(25℃)搅拌15分钟,将该混合物加入三辊研磨机进行分散,然后按照质量份90:4:6比例的上述混合物、封闭型异氰酸酯、按照质量份3:2:3:2比例配置的甲酸铜、二丙醇胺、十二烷基硫醇、稳定剂混合物加入到真空行星脱泡机里搅拌分散并脱去气泡,得到色泽均匀、粘度180~260pa·s的抗氧化导电铜浆料。
对比例1
该对比例中,将实施例1中的苯骈三氮唑替换为甲酸铜,即该对比例中只加入了甲酸铜,没有加入苯骈三氮唑,其他内容均与实施例1相同。
对比例2
该对比例中,将实施例1中的甲酸铜替换为苯骈三氮唑,即该对比例中只加入了苯骈三氮唑,没有加入甲酸铜,其他内容均与实施例1相同。
对比例3
该对比例中,不在步骤3中加入质量份3:2:3:2比例配置的甲酸铜、二丙醇胺、十二烷基硫醇、稳定剂混合物,其他内容均与实施例1相同。
将实施例1-4和对比例1-3制备得到的抗氧化导电铜浆料固化,固化是在氮气氛围烘箱内进行,然后测试固化后的膜的膜厚和方块电阻,其测试结果如表1所示,其中A和B表示平行实验。将实施例1-4和对比例1-3制备得到的抗氧化导电铜浆料固化样品在室温下(环境为温度25±2℃、湿度45±5%)放置6个月,然后测其方块电阻,其测试结果如表1所示。将实施例1-4和对比例1-3制备得到的抗氧化导电铜浆料固化样品在通用鼓风烘箱中180℃氧化60min,然后测其方块电阻,其测试结果如表1所示。
表1
Figure PCTCN2022092276-appb-000001
从表1中可以看出,实施例1-4的抗氧化导电铜浆料具有优异的导电性和稳定的抗氧化性,其导电性与现有导电银浆料接近;且上述抗氧化导电铜浆料可在200℃以下的低温下快速固化;上述抗氧化导电铜浆料经过六个月的室温自然储存,其导电性几乎没有变化,说明其几乎未被氧化;上述抗氧化导电铜浆料在180℃的空气中氧化60min后,其导电性虽然下降,但仍然与目前 市面上的导电铜浆料相当。而对比例1和对比例2中,单独添加甲酸铜或苯骈三氮唑的铜浆料固化后初始就具有较高的方阻,无论是室温放置6个月后还是在空气中180℃氧化60分钟后,其方阻均明显升高,说明单独添加甲酸铜或苯骈三氮唑都不能提供稳定的抗氧化性;对比例3中由于未在步骤3中添加甲酸铜或苯骈三氮唑,固化后初始方阻就超出了测试仪器的量程范围,铜浆料未体现出导电性。
实施例1和对比例1、对比例2、对比例3比较可以看出,当不添加、或者仅添加甲酸铜或苯骈三氮唑其中一种时,导电铜浆料均具有较大的方阻值,其导电的长期稳定性也差,不具备商业上的应用价值,而添加甲酸铜和苯骈三氮唑的铜浆料具有优异的导电性和导电稳定性,从而说明甲酸铜和苯骈三氮唑两者具有较好的协同抗氧化作用。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种抗氧化导电铜浆料,其特征在于,包括:铜粉、树脂、交联剂、导电增强填料、抗氧化助剂和溶剂;
    所述抗氧化助剂包括:有机铜盐、醇胺化合物和有机抗氧化剂。
  2. 根据权利要求1所述的抗氧化导电铜浆料,其特征在于,所述抗氧化助剂包括:20-40重量份的所述有机铜盐、20-40重量份的所述醇胺化合物和20-40重量份的所述有机抗氧化剂。
  3. 根据权利要求2所述的抗氧化导电铜浆料,其特征在于,包括:60-88重量份的所述铜粉、5-15重量份的所述树脂、1-3重量份的所述交联剂、0.05-2重量份的所述导电增强填料、1-5重量份的所述抗氧化助剂和5-15重量份的所述溶剂。
  4. 根据权利要求1-3任一项所述的抗氧化导电铜浆料,其特征在于,所述有机抗氧化剂选自含氮五元环氮唑和硫醇类化合物中的至少之一;
    任选地,所述含氮五元环氮唑选自3-巯基-1,2,4-三氮唑、苯骈三氮唑和5-甲基苯并三氮唑中的至少之一;
    任选地,所述硫醇类化合物选自2-苯并噻唑硫醇和碳数为6-18的烷基硫醇中的至少之一。
  5. 根据权利要求1-3任一项所述的抗氧化导电铜浆料,其特征在于,所述有机铜盐选自甲酸铜和乙酸铜中的至少之一;
    任选地,所述醇胺化合物选自乙醇胺、丙醇胺、异丙醇胺、二乙醇胺、二丙醇胺、二异丙醇胺、三甲醇胺、三乙醇胺、三异丙醇胺、甲基二乙醇胺、二乙基乙醇胺、油酸二乙醇胺、油酸三乙醇胺、二异丙基乙醇胺和丁基二乙醇胺中的至少之一。
  6. 根据权利要求1-3任一项所述的抗氧化导电铜浆料,其特征在于,所述抗氧化助剂还包括:5-20重量份的添加剂;
    任选地,所述添加剂选自分散剂、稳定剂、触变剂和偶联剂中的至少之一;
    任选地,所述抗氧化导电铜浆料的粘度为180-350pa·s。
  7. 根据权利要求1-3任一项所述的抗氧化导电铜浆料,其特征在于,所述铜粉的形状为片状、球状和树枝状中的至少之一,所述铜粉的粒径D50为 100nm-5μm;
    任选地,所述树脂选自环氧树脂、聚酰胺树脂、饱和聚酯树脂、聚氨酯树脂、丙烯酸树脂和有机硅树脂中的至少之一;
    任选地,所述交联剂选自多元胺、酸酐、聚酰胺、多元醇和封闭型异氰酸酯中的至少之一;
    任选地,所述导电增强填料选自纳米或亚微米级的炭黑、石墨烯、碳纳米管、镍粉、锡粉、铟粉、银粉和铝粉中的至少之一;
    任选地,所述溶剂选自碳数为2-12的含羟基化合物、碳数为2-18的含醚基化合物、碳数为3-10的含羰基化合物和碳数为4-16的含酯基化合物中的至少之一。
  8. 一种制备权利要求1-7任一项所述的抗氧化导电铜浆料的方法,其特征在于,包括:
    (1)将所述抗氧化助剂和所述醇类溶剂混合,配制成质量分数为3%~25%的抗氧化预处理液,将所述抗氧化预处理液和所述铜粉混合,所述抗氧化预处理液和所述铜粉的体积重量比为1mL:(0.9~1.1)g,然后搅拌,离心分离,干燥,以便得到预处理的铜粉;;
    (2)将所述预处理的铜粉、所述树脂、所述导电增强填料和所述溶剂混合,搅拌,研磨分散,以得到混合物;
    (3)将所述混合物、所述交联剂和所述抗氧化助剂混合,搅拌,以便得到抗氧化导电铜浆料。
  9. 一种电极,其特征在于,所述电极是采用权利要求1-7任一项所述的抗氧化导电铜浆料或权利要求8所述的方法制备得到的抗氧化导电铜浆料制备得到的。
  10. 一种太阳能电池,其特征在于,所述太阳能电池具有权利要求9所述的电极。
PCT/CN2022/092276 2021-09-26 2022-05-11 抗氧化导电铜浆料及其制备方法和应用 WO2023045348A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111130893.8 2021-09-26
CN202111130893.8A CN114005575B (zh) 2021-09-26 2021-09-26 抗氧化导电铜浆料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023045348A1 true WO2023045348A1 (zh) 2023-03-30

Family

ID=79921731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092276 WO2023045348A1 (zh) 2021-09-26 2022-05-11 抗氧化导电铜浆料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114005575B (zh)
WO (1) WO2023045348A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114005575B (zh) * 2021-09-26 2024-01-12 西安隆基乐叶光伏科技有限公司 抗氧化导电铜浆料及其制备方法和应用
CN114664476A (zh) * 2022-03-17 2022-06-24 西安隆基乐叶光伏科技有限公司 抗氧化导电铜浆料、制备方法及其应用
CN114464346A (zh) * 2022-03-24 2022-05-10 浙江晶科新材料有限公司 应用于晶体硅太阳能电池栅线电极的铜浆及其制备方法
CN114639506B (zh) * 2022-05-20 2022-10-28 西安宏星电子浆料科技股份有限公司 一种低温快速烧结型导电铜浆及其制备方法
CN115255358B (zh) * 2022-06-23 2024-01-16 西安隆基乐叶光伏科技有限公司 金属粉末材料表面改性方法、改性金属粉末材料及其应用
CN116259435A (zh) * 2023-01-05 2023-06-13 嘉庚创新实验室 导电铜浆及其制备方法、应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108005A (ja) * 2011-11-22 2013-06-06 Tosoh Corp 導電性インク組成物
CN107337965A (zh) * 2017-08-28 2017-11-10 厦门大学 一种抗氧化铜系导电油墨的制备方法
JP2019006903A (ja) * 2017-06-26 2019-01-17 東ソー株式会社 導電性銅インク組成物
CN111799012A (zh) * 2020-06-23 2020-10-20 厦门大学 一种抗氧化铜材料及其制备方法
CN112271013A (zh) * 2020-10-29 2021-01-26 无锡晶睿光电新材料有限公司 一种抗氧化低温导电银浆及其制备方法
CN114005575A (zh) * 2021-09-26 2022-02-01 西安隆基乐叶光伏科技有限公司 抗氧化导电铜浆料及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126815A (ja) * 2010-12-15 2012-07-05 Tosoh Corp 導電性インク組成物及びその製造方法
CN103949649B (zh) * 2014-05-13 2016-03-02 中南大学 一种水性体系下制备片状铜粉的方法
CN106833428B (zh) * 2017-01-10 2018-08-10 金陵科技学院 一种适用于柔性电极粘接的导电胶
CN107513311B (zh) * 2017-08-28 2020-03-06 厦门大学 一种抗氧化的铜-石墨烯复合导电油墨及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108005A (ja) * 2011-11-22 2013-06-06 Tosoh Corp 導電性インク組成物
JP2019006903A (ja) * 2017-06-26 2019-01-17 東ソー株式会社 導電性銅インク組成物
CN107337965A (zh) * 2017-08-28 2017-11-10 厦门大学 一种抗氧化铜系导电油墨的制备方法
CN111799012A (zh) * 2020-06-23 2020-10-20 厦门大学 一种抗氧化铜材料及其制备方法
CN112271013A (zh) * 2020-10-29 2021-01-26 无锡晶睿光电新材料有限公司 一种抗氧化低温导电银浆及其制备方法
CN114005575A (zh) * 2021-09-26 2022-02-01 西安隆基乐叶光伏科技有限公司 抗氧化导电铜浆料及其制备方法和应用

Also Published As

Publication number Publication date
CN114005575A (zh) 2022-02-01
CN114005575B (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
WO2023045348A1 (zh) 抗氧化导电铜浆料及其制备方法和应用
WO2020220395A1 (zh) 一种用于hit太阳能电池的低温导电银浆及其制备方法
CN106601994B (zh) 负电极及其制备方法和低温锂离子电池
WO2018006503A1 (zh) 一种掺杂银盐的导电银胶及其制备方法与应用
WO2022217832A1 (zh) 一种异质结电池用银浆及其制备方法与应用
WO2020134765A1 (zh) 一种降低锂离子电池阻抗的负极片及其制备方法
CN104347278A (zh) 一种超级电容器用涂层铝箔的制备方法
TW201415505A (zh) 固體電解電容元件、其製造方法及導電糊
CN109468042A (zh) 一种石墨烯水性自干聚氨酯导电涂料
CN111073483A (zh) 一种正极水性涂碳铝箔涂料及其制备方法
CN107746628A (zh) 一种水性碳纳米导电油墨、制备方法及其采暖制品
WO2021142752A1 (zh) 一种有机硅树脂导电胶及其制备方法和应用
CN110070968B (zh) 一种耐直流闪络的非线性电导涂层绝缘子制备方法
KR101701317B1 (ko) 그래핀을 적용한 도전성 접착제 및 이를 이용한 전극제조방법
CN114974654A (zh) 有机载体以及制备方法、导电浆料、制备方法以及应用
WO2022110455A1 (zh) 一种石墨烯添加剂及制备方法
CN105977495A (zh) 一种锂离子电池集流体用石墨纸的制备方法
CN111547717A (zh) 一种石墨负极浆料的制备方法
JP4273399B2 (ja) 導電ペースト及びその製造方法
CN104599790A (zh) 一种导电碳浆料及其制备方法
CN114464343A (zh) 一种高耐磨高导电低温固化银浆及其制备方法
WO2022088463A1 (zh) 一种亚超导体材料及制备方法
CN117186693A (zh) 金属薄膜材料上用阻值小于15mΩ的黑色油墨及其制备方法
CN109943252A (zh) 一种银包铜导电胶及其制备方法
CN110607142B (zh) 一种导电银浆压敏胶黏剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871409

Country of ref document: EP

Kind code of ref document: A1