WO2022110303A1 - 定子冲片、定子铁芯、电机、压缩机和制冷设备 - Google Patents

定子冲片、定子铁芯、电机、压缩机和制冷设备 Download PDF

Info

Publication number
WO2022110303A1
WO2022110303A1 PCT/CN2020/134782 CN2020134782W WO2022110303A1 WO 2022110303 A1 WO2022110303 A1 WO 2022110303A1 CN 2020134782 W CN2020134782 W CN 2020134782W WO 2022110303 A1 WO2022110303 A1 WO 2022110303A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
tooth
rotor
motor
core
Prior art date
Application number
PCT/CN2020/134782
Other languages
English (en)
French (fr)
Inventor
徐飞
邱小华
江波
Original Assignee
安徽美芝精密制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽美芝精密制造有限公司 filed Critical 安徽美芝精密制造有限公司
Priority to KR1020237015701A priority Critical patent/KR20230079451A/ko
Priority to JP2023528181A priority patent/JP2023548925A/ja
Priority to EP20963191.0A priority patent/EP4236034A4/en
Publication of WO2022110303A1 publication Critical patent/WO2022110303A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present application relates to the field of electric motors, in particular to a stator punch, a stator iron core, a motor, a compressor and a refrigeration device.
  • the motors generally use built-in permanent magnet motors.
  • higher requirements have been placed on the vibration and noise of the motors. It is increasingly unable to meet the needs of silence.
  • the present application aims to solve at least one of the technical problems existing in the prior art.
  • the first aspect of the present application proposes a stator punch.
  • a second aspect of the present application proposes a stator core.
  • a third aspect of the present application proposes a motor.
  • a fourth aspect of the present application proposes a compressor.
  • a fifth aspect of the present application proposes a refrigeration device.
  • the present application proposes a stator punching piece, comprising: a stator yoke, the stator yoke is in a ring structure; a plurality of stator teeth are arranged on the inner ring of the stator yoke; the stator teeth include : tooth root, connected with the stator yoke; tooth crown, connected with the tooth root, along the circumferential direction of the stator yoke, the two ends of the tooth crown are the first end and the second end respectively, wherein at least one tooth crown is provided with The magnetic guiding part, along the circumferential direction of the stator yoke, the shortest distance between the contour line of the magnetic guiding part deviating from the tooth root direction and facing the first end of the tooth crown and the first end of the tooth crown is smaller than the magnetic guiding part deviating from the tooth root direction And the shortest distance between the contour line facing the second end of the tooth crown and the second end of the tooth crown.
  • the stator punching piece proposed in the present application includes a stator yoke and stator teeth.
  • the stator yoke has a ring-shaped structure as a whole, and a plurality of stator teeth are evenly distributed on the inner ring of the stator yoke, that is, a stator slot is formed between the stator teeth, so as to facilitate the Set the windings.
  • the stator tooth includes a tooth root and a tooth crown, the first end of the tooth root is connected with the stator yoke, the second end of the tooth root is connected with the tooth crown, and the first end and the second end are opposite ends.
  • the end face of the tooth crown on the side away from the tooth root includes a first tooth surface and a second tooth surface, that is, after the motor is assembled, along the direction in which the rotor can rotate, the tooth crown is away from the tooth root.
  • the end surface of one side of the tooth root includes a first tooth surface and a second tooth surface. Specifically, the first tooth surface and the second tooth surface are distributed in a clockwise direction or a counterclockwise direction.
  • At least one tooth crown is provided with a magnetic guiding part, and along the circumferential direction of the stator yoke, the magnetic guiding part is away from the direction of the tooth root and faces the shortest distance between the contour line of the first end of the tooth crown and the first end of the tooth crown , which is smaller than the shortest distance between the contour line of the magnetic guide portion facing away from the tooth root direction and toward the second end of the tooth crown and the second end of the tooth crown.
  • the rotor rotates along the first end to the second end. Further, the magnetic guide portion is close to the first end, that is, close to the rotor and initially enters the stator tooth region. Further, the magnetic field is partially dispersed by the magnetic permeability, thereby increasing the voltage drop of the magnetic circuit on the side of the first end, thereby reducing the local saturation effect, weakening the distortion of the air-gap magnetic field, which is conducive to suppressing the even harmonics of the armature magnetic field and significantly reducing the
  • the radial electromagnetic force wave generated by the interaction of the armature magnetic field harmonics and the rotor magnetic field harmonics can improve the vibration noise in the key frequency band of the compressor and reduce the noise of the motor.
  • stator punching sheet in the above-mentioned technical solution provided by this application, it can also have the following additional technical features:
  • the end face of the side of the tooth crown facing away from the tooth root includes a first tooth surface and a second tooth surface, and the first end is located at the side of the first tooth surface.
  • the edge, the second tooth surface includes at least a second arc surface, and the axis of the second arc surface does not coincide with the axes of the inscribed circles of the plurality of stator teeth.
  • the axis of the second tooth surface does not coincide with the axes of the inscribed circles of the plurality of stator teeth, so that the air gap between the second tooth surface and the rotor is changed, thereby ensuring that the air gap magnetic The density is in a state of change, reducing the radial force generated by the same air gap magnetic density on the rotor.
  • the shortest distance between the contour line of the magnetic guiding portion facing away from the tooth root direction and the second end of the tooth crown and the first end of the tooth crown is smaller than the magnetic guiding portion deviating from the tooth root direction and The shortest distance between the contour line towards the second end of the crown and the second end of the crown.
  • the magnetic guide portion is further limited to be completely located on the side of the centerline of the tooth root to the first end, thereby further ensuring the radial electromagnetic force when the rotor first enters the stator teeth, thereby improving the noise reduction effect.
  • the magnetic guide portion conducts along the axis of the tooth crown.
  • the magnetic guide part conducts along the axis of the stator yoke, which is more conducive to the penetration of the magnetic field lines, thereby reducing the distortion of the air gap magnetic field to the greatest extent, and is conducive to suppressing the even harmonics of the armature magnetic field.
  • the magnetic guide portion includes: a magnetic guide hole; or a magnetic guide groove, and the opening of the magnetic guide groove is located on the side of the tooth crown away from the tooth root.
  • the magnetic guide portion may be a magnetic guide hole, that is, a hole opened on the tooth crown along the axial direction of the stator yoke, so that the side of the tooth crown facing away from the tooth root is complete.
  • the magnetic guide portion may be a magnetic guide groove, that is, an open groove on the tooth crown toward one side of the axis of the inscribed circle of the plurality of stator teeth.
  • the first tooth surface includes at least a segment of a first circular arc surface, and the axis of the first circular arc surface does not coincide with the axes of the inscribed circles of the plurality of stator teeth.
  • the tooth crown faces one side of the axis of the inscribed circle of the plurality of stator teeth, and has different axes, so that the air gap between the first tooth surface and the rotor is changed, thereby further reducing the armature
  • the even harmonics of the magnetic field reduce the radial force on the rotor and reduce the noise of the motor or compressor.
  • the first tooth surface includes at least a segment of a first circular arc surface, and the axis of the first circular arc surface coincides with the axes of the inscribed circles of the plurality of stator teeth.
  • the axis of the first tooth surface coincides with the axes of the inscribed circles of the plurality of stator teeth, so that the air gap between the first tooth surface and the rotor is uniform, thereby ensuring the electromagnetic force applied to the rotor. force, thereby improving the efficiency of the motor.
  • the ratio of the outer diameter of the stator yoke to the minimum inner diameter enclosed by the end faces of the stator teeth is greater than or equal to 0.5 and less than or equal to 0.57.
  • the ratio of the outer diameter of the stator yoke to the minimum inner diameter enclosed by the end faces of the stator teeth is greater than or equal to 0.5 and less than or equal to 0.57, thereby ensuring that the stator punching pieces have sufficient winding space and sufficient arrangement
  • the space of the rotor is reduced, the consumption of stator punching material is reduced, and the cost of stator punching is reduced.
  • the distance between the first tooth surface and the centers of the inscribed circles of the plurality of stator teeth gradually decreases.
  • the center of the inscribed circle of the plurality of stator teeth is the center of rotation of the rotor, and from the first end to the second end, the distance between the first tooth surface and the center of rotation of the rotor is The distance gradually decreases, thereby increasing the air gap when the rotor enters the stator teeth, further increasing the magnetic circuit pressure drop on the side of the first end, thereby reducing the local saturation effect, weakening the distortion of the air gap magnetic field, and helping to suppress the electrical
  • the even harmonics of the armature magnetic field can significantly reduce the radial electromagnetic force wave generated by the interaction of the armature magnetic field harmonics and the rotor magnetic field harmonics, thereby improving the vibration noise in the key frequency band of the compressor and reducing the noise of the motor.
  • the present application proposes a stator iron core, comprising: at least one stator punch as proposed in any of the above technical solutions.
  • the stator core proposed in the present application includes at least one stator punch provided by any of the above technical solutions, therefore, it has all the beneficial effects of the stator punch provided by any of the above technical solutions, and will not be described one by one here.
  • it further includes: at least one iron core punch, the iron core punch and the stator punch are stacked along the axial direction of the stator core.
  • iron core punching sheets of other structures may also be included in the stator iron core, thereby improving the performance of the motor.
  • the total height of the stator punching pieces is L1; along the axial direction of the stator iron core, the total height of the iron core punching pieces is L2, where 0.001 ⁇ L1/ L2 ⁇ 0.6.
  • the present application proposes a motor, comprising: a stator iron core as proposed in any of the above technical solutions; and a rotor rotatably disposed in the stator iron core.
  • the motor proposed in the present application includes the stator iron core proposed by any of the above technical solutions, it has all the beneficial effects of the stator iron core proposed by any of the above technical solutions, and will not be described one by one here.
  • the rotor rotates along the first end to the second end of the stator teeth of the stator punching pieces of the stator core.
  • the inner diameter of the stator core is Di
  • the rated torque of the motor is T
  • the torque per unit volume of the rotor is TPV, where 5.18 ⁇ 10 -7 ⁇ T ⁇ Di -3 ⁇ TPV -1 ⁇ 1.17 ⁇ 10 -6 , 5kN ⁇ m ⁇ m -3 ⁇ TPV ⁇ 45kN ⁇ m ⁇ m -3 .
  • the inner diameter Di of the stator iron core, the rated torque T of the motor and the torque per unit volume of the rotor are TPV satisfying: 5.18 ⁇ 10 -7 ⁇ T ⁇ Di -3 ⁇ TPV -1 ⁇ 1.17 ⁇ 10 -6 , 5kN ⁇ m ⁇ m -3 ⁇ TPV ⁇ 45kN ⁇ m ⁇ m -3 , which further defines the value of the combined variable of the rated torque T of the motor, the inner diameter Di of the stator core and the torque TPV per unit volume of the rotor range, so that the motor can meet the power requirements of high-intensity environments, such as compressors.
  • such a structure can effectively reduce the magnetic flux leakage of the rotor, increase the utilization rate of the permanent magnet, and improve the efficiency of the motor.
  • stator slots are formed between adjacent stator teeth of the stator core, and the ratio of the number of stator slots to twice the number of pole pairs of the rotor is any one of the following:
  • the pole-slot fit of the motor is further defined, Z and 2 ⁇ P satisfy or It can effectively reduce the armature iron loss, increase the magnetic flux, and then improve the motor efficiency.
  • the present application proposes a compressor, comprising: a stator core as proposed in any of the foregoing technical solutions; or a motor as provided in any of the foregoing technical solutions.
  • the compressor proposed in the present application includes the stator iron core proposed in any of the above technical solutions or the motor proposed in any of the above technical solutions, so it has the stator iron core proposed in any of the above technical solutions and the stator iron core proposed in any of the above technical solutions. All the beneficial effects of the motor proposed by the technical solution will not be described one by one here.
  • the present application proposes a refrigeration device, comprising: a stator core as proposed in any of the above technical solutions; or a motor as proposed in any of the above technical solutions; or as proposed in any of the above technical solutions compressor.
  • the refrigeration equipment proposed in this application includes the stator iron core proposed by any of the above technical solutions, the motor proposed by any of the above technical solutions, or the compressor proposed by any of the above technical solutions. Therefore, it has the above technical solutions. All the beneficial effects of the stator core proposed by the solution, the motor provided by any of the above technical solutions, and the compressor provided by any of the above technical solutions will not be described one by one here.
  • FIG. 1 shows a schematic structural diagram of a stator punch provided by an embodiment of the present application
  • FIG. 2 shows a schematic structural diagram of a stator punch provided by an embodiment of the present application
  • FIG. 3 shows a schematic structural diagram of a magnetic guide portion in a stator punch provided by an embodiment of the present application
  • FIG. 4 shows a schematic structural diagram of a magnetic guide portion in a stator punch provided by an embodiment of the present application
  • FIG. 5 shows a schematic structural diagram of a magnetic guide portion in a stator punch provided by an embodiment of the present application
  • FIG. 6 shows a schematic structural diagram of a stator punch provided by an embodiment of the present application.
  • FIG. 7 shows a schematic structural diagram of an iron core punch provided by an embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram of a compressor provided by an embodiment of the present application.
  • stator punch 110 stator yoke, 120 stator teeth, 122 tooth root, 124 tooth crown, 126 first tooth surface, 128 second tooth surface, 130 first end, 132 second end, 140 magnetic conductor, 150 stator Slot, 200 iron core punch, 300 compressor, 310 rotor, 320 crankshaft, 330 first bearing, 340 second bearing, 350 cylinder, 360 piston.
  • stator punch 100 The stator punch 100, the stator core, the motor, the compressor 300, and the refrigeration equipment provided according to some embodiments of the present application will be described below with reference to FIGS. 1 to 8 .
  • the present application provides a stator punch 100 , including: a stator yoke 110 and stator teeth 120 , wherein the stator yoke 110 is an annular structure, the number of stator teeth 120 is multiple, and the number of the stator teeth 120 is multiple.
  • the stator teeth 120 are evenly distributed on the inner ring of the stator yoke 110 , and stator slots 150 are formed between adjacent stator teeth 120 , so that windings can be arranged in the stator slots 150 , and the plurality of stator teeth 120 surround the space in order to For setting the rotor 310 .
  • the magnets on the rotor 310 are located in the magnetic field generated by the energization of the windings, and are further rotated by the magnetic force generated by the windings.
  • the stator tooth 120 includes a tooth root 122 and a tooth crown 124 .
  • the tooth root 122 is connected between the tooth crown 124 and the stator yoke 110 , that is, one end of the tooth root 122 is connected to the stator yoke 110 , and is connected to the opposite end of the stator yoke 110 .
  • the tooth crown 124 is connected.
  • the two ends of the tooth crown 124 are the first end 130 and the second end 132 respectively.
  • any point on the circumference of the rotor 310 in the space surrounded by the stator punch 100 will first pass through the first end 130 and then pass through the second end 132 .
  • a magnetic guide portion 140 is provided on the tooth crown 124 of the stator tooth 120 .
  • the magnetic guide portion 140 is away from the direction of the tooth root 122 and faces the contour line of the first end 130 of the tooth crown 124 and the tooth.
  • the shortest distance between the first end 130 of the crown 124 is smaller than the shortest distance between the contour line of the magnetic guide portion 140 away from the tooth root 122 and toward the second end 132 of the tooth crown 124 and the second end 132 of the tooth crown 124 , that is, the magnetic guide portion 140 is close to the first end 130 .
  • the pressure drop of the magnetic circuit at the beginning increases, thereby reducing the local saturation effect, weakening the distortion of the air-gap magnetic field, and helping to suppress the even harmonics of the armature magnetic field, significantly reducing the
  • the radial electromagnetic force wave generated by the interaction of the armature magnetic field harmonics and the rotor 310 magnetic field harmonics is reduced, thereby improving the vibration noise in the key frequency band of the compressor 300 and reducing the noise of the motor.
  • the magnetic permeability portion 140 is equivalent to increasing the number of stator slots 150, thus increasing the basic cogging torque order. As the harmonic order increases, the corresponding magnetic potential harmonics and magnetic permeability harmonic amplitudes follow is reduced, the cogging torque is also reduced, thereby reducing the noise of the motor or compressor 300 .
  • the magnetic guide portion 140 is away from the direction of the tooth root 122 and faces the contour line of the second end 132 of the tooth crown 124 of the tooth crown 124 and the tooth crown 124
  • the shortest distance between the first ends 130 is smaller than the shortest distance between the contour line of the magnetic guide portion 140 away from the tooth root 122 and toward the second end 132 of the tooth crown 124 and the second end 132 of the tooth crown 124 .
  • the magnetic guide portion 140 is further defined to be completely located on the side of the centerline of the tooth root 122 to the first end 130, thereby further ensuring the radial electromagnetic force when the rotor 310 first enters the stator tooth 120, This improves the noise reduction effect.
  • the tooth root 122 is a center-symmetric structure, and the tooth root 122 is symmetrically arranged with a diameter of the stator yoke 110 as the symmetry axis.
  • the magnetic guide portion 140 conducts along the axial direction of the tooth crown 124 .
  • the magnetic guide portion 140 conducts along the axis of the tooth crown 124, which is more conducive to the penetration of the magnetic field lines, thereby reducing the distortion of the air gap magnetic field to the greatest extent, and is conducive to suppressing the even-order of the armature magnetic field. harmonic.
  • the magnetic guide portion 140 includes: a magnetic guide hole.
  • the magnetic guide portion 140 may be a magnetic guide hole, that is, a hole opened on the tooth crown 124 along the axial direction of the stator yoke 110 , so that the side of the tooth crown 124 away from the tooth root 122 is complete.
  • the magnetic guide portion 140 further includes: a magnetic guide groove, and the opening of the magnetic guide groove is located on the tooth crown 124 away from the tooth root 122 side.
  • the magnetic guide portion 140 may be a magnetic guide groove, that is, an open groove on the side of the tooth crown 124 toward the shaft center of the stator yoke 110.
  • the structure of the magnetic guide portion 140 may be a part of a rectangular structure, that is, the two adjacent surfaces of the magnetic guide portion 140 are in a vertical relationship.
  • the structure of the magnetic guide portion 140 may be a part of a circular structure, that is, the magnetic guide portion 140 is a curved surface.
  • the structure of the magnetic guide portion 140 may be a part of a trapezoidal structure, that is, the relationship between two adjacent surfaces of the magnetic guide portion 140 is non-perpendicular. is an acute or obtuse angle.
  • the end surface includes a first tooth surface 126 and a second tooth surface 128, the second tooth surface includes at least a second arc surface, and the axis of the second arc surface does not coincide with the axes of the inscribed circles of the plurality of stator teeth.
  • the second tooth surface 128 may be a complete circular arc surface, and the axis of the second tooth surface 128 does not coincide with the rotation center of the rotor 310 .
  • the axis of the second tooth surface 128 does not coincide with the axes of the inscribed circles of the plurality of stator teeth 120, so that the air gap between the second tooth surface 128 and the rotor 310 is changed, thereby ensuring that In order to make the air-gap magnetic density change, the radial force on the rotor 310 caused by the same air-gap magnetic density is reduced.
  • the first tooth surface 126 includes at least a section of a first arc surface, and the axis of the first arc surface is The axes of the inscribed circles of the plurality of stator teeth 120 coincide.
  • the entirety of the first tooth surface 126 is a circular arc surface, and the axis of the first tooth surface 126 coincides with the rotation axis of the rotor 310 .
  • the axis of the first tooth surface 126 coincides with the axes of the inscribed circles of the plurality of stator teeth 120 , so that the air gap between the first tooth surface 126 and the rotor 310 is uniform, thereby ensuring that the air gap between the first tooth surface 126 and the rotor 310 is uniform.
  • the electromagnetic force applied to the rotor 310 further improves the efficiency of the motor.
  • the inscribed circle between the first tooth surface 126 and the plurality of stator teeth 120 is The distance between the centers of the circles gradually decreases.
  • the center of the inscribed circle of the plurality of stator teeth 120 is the rotation center of the rotor 310 , and from the first end 130 to the second end 132 , the first tooth surface 126 and the The distance between the rotation centers of the rotors 310 is gradually reduced, which further increases the magnetic circuit pressure drop on the side of the first end 130, thereby reducing the local saturation effect, weakening the distortion of the air gap magnetic field, and helping to suppress the armature magnetic field.
  • Even-order harmonics can significantly reduce the radial electromagnetic force waves generated by the interaction of the armature magnetic field harmonics and the rotor magnetic field harmonics, thereby improving the vibration noise in the key frequency bands of the compressor and reducing the noise of the motor.
  • the first tooth surface 126 includes at least a section of a first arc surface, and the axis of the first arc surface is The axes of the inscribed circles of the plurality of stator teeth 120 do not coincide.
  • the tooth crown 124 faces one side of the axis of the inscribed circle of the plurality of stator teeth 120, and has different axes, so that the air gap between the first tooth surface 126 and the rotor is changed, thereby It further reduces the even harmonics of the armature magnetic field, reduces the radial force on the rotor, and reduces the noise of the motor or compressor.
  • the ratio of the outer diameter of the stator yoke 110 to the minimum inner diameter enclosed by the end faces of the stator teeth 120 is greater than or equal to 0.5 and less than or equal to 0.57.
  • the ratio of the outer diameter of the stator punch 100 to the inner diameter of the stator punch 100 is greater than or equal to 0.5 and less than or equal to 0.57.
  • the ratio of the outer diameter of the stator yoke 110 to the minimum inner diameter enclosed by the end faces of the stator teeth 120 is greater than or equal to 0.5 and less than or equal to 0.57, thereby ensuring that the stator punch 100 has sufficient winding space, and While there is enough space for arranging the rotor 310 , the material consumption of the stator punch 100 is reduced, and the cost of the stator punch 100 is reduced.
  • the present application provides a stator core, including: at least one stator punch 100 as provided in any of the embodiments.
  • the stator core proposed in the present application includes at least one stator punch 100 as provided in any of the embodiments. Therefore, it has all the beneficial effects of the stator punch 100 proposed in any of the above technical solutions, which will not be described here. statement.
  • the stator core includes a plurality of stator punches 100 , and the plurality of stator punches 100 are stacked along the axial direction of the stator core.
  • it further includes: at least one iron core punch 200 , and the iron core punch 200 and the stator punch 100 are stacked along the axial direction of the stator core.
  • stator iron core may further include iron core punching sheets 200 of other structures, thereby providing more variations for the magnetic field, so as to expand the effect of the stator iron core.
  • the core punch 200 and the stator punch 100 may be stacked in any manner.
  • stack iron core punches 200 at both ends of stator punches 100; stack stator punches 100 at both ends of iron core punches 200; stack core punches 200 on one side of stator punches 100; stator punches 100 and the core punch 200 are interspersed and stacked.
  • the total height of the stator punch 100 is L1; along the axial direction of the stator core, the total height of the core punch 200 is L1. Height is L2. in,
  • two kinds of punching sheets are assembled according to different axial thicknesses to obtain different effects of improving the vibration and noise of the motor.
  • the present application provides a motor, including: a stator iron core as provided in any of the above embodiments; a rotor 310, which is rotatably disposed in the stator iron core.
  • the motor provided by the present application includes the stator core provided by any of the above embodiments, it has all the beneficial effects of the stator core provided by any of the above embodiments, which will not be described one by one here.
  • the motor includes a stator, and the stator includes the stator iron core provided in any of the above embodiments, and windings provided on the stator iron core.
  • the rotor 310 includes a rotor iron core and a magnet arranged with the rotor iron core. After the winding is energized, a magnetic field is generated, which can push the magnet to rotate.
  • the rotor 310 rotates along the first tooth surface 126 to the second tooth surface 128 of the stator teeth 120 of the stator punch 100 of the stator core, that is, the rotor 310 rotates along the stator punch of the stator core
  • the first end 130 to the second end 132 of the stator teeth 120 of the sheet 100 rotate.
  • the rotor 310 by setting the rotor 310 to rotate along the first tooth surface 126 to the second tooth surface 128 of the stator teeth 120 of the stator punch 100 of the stator iron core, it is ensured that the rotor 310 passes through the first tooth surface 126 first.
  • the width of the air gap will be increased, and the increased air gap width will increase the pressure drop of the magnetic circuit, thereby reducing the magnetic saturation at the first tooth surface 126, reducing the local saturation effect, and weakening the distortion of the air gap magnetic field.
  • the inner diameter of the stator core is Di
  • the rated torque of the motor is T
  • the torque per unit volume of the rotor 310 is TPV, where 5.18 ⁇ 10 ⁇ 7 ⁇ T ⁇ Di ⁇ 3 ⁇ TPV ⁇ 1 ⁇ 1.17 ⁇ 10 ⁇ 6 , 5kN ⁇ m ⁇ m ⁇ 3 ⁇ TPV ⁇ 45kN ⁇ m ⁇ m ⁇ 3 .
  • the unit of the rated torque T of the motor is N ⁇ m
  • the unit of the inner diameter Di of the stator core is mm
  • the unit of the torque TPV per unit volume of the rotor 310 is kN ⁇ m ⁇ m ⁇ 3 .
  • the inner diameter Di of the stator iron core, the rated torque T of the motor, and the torque per unit volume of the rotor 310 are TPV satisfying: 5.18 ⁇ 10 ⁇ 7 ⁇ T ⁇ Di ⁇ 3 ⁇ TPV ⁇ 1 ⁇ 1.17 ⁇ 10 -6 , 5kN ⁇ m ⁇ m -3 ⁇ TPV ⁇ 45kN ⁇ m ⁇ m -3 , which further defines the combined variable of the rated torque T of the motor, the inner diameter Di of the stator core and the torque TPV per unit volume of the rotor 310
  • the value range of so that the motor can meet the power requirements of a high-intensity environment, such as the compressor 300.
  • such a structure can effectively reduce the magnetic flux leakage of the rotor 310, increase the utilization rate of the permanent magnets, and improve the efficiency of the motor.
  • stator slots 150 are formed between adjacent stator teeth 120 of the stator iron core, and the number of stator slots 150 is twice as many as the pole pairs of the rotor 310 .
  • the ratio of numbers which is any of the following:
  • Z and 2 ⁇ P satisfy or It can effectively reduce the armature iron loss, increase the magnetic flux, and then improve the motor efficiency.
  • the motor may be a 6-pole 9-slot motor, a 4-pole 6-slot motor, an 8-pole 12-slot motor, and a 10-pole 12-slot motor.
  • the present application provides a compressor 300 , including: a stator core provided in any of the foregoing embodiments; or a motor provided in any of the foregoing embodiments.
  • the compressor 300 provided in the present application includes the stator iron core provided in any of the above embodiments or the motor provided in any of the above embodiments, it has the stator iron core provided in any of the above embodiments and the stator iron core provided in any of the above embodiments. All the beneficial effects of the motor provided by an embodiment will not be described one by one here.
  • the compressor 300 further includes: a crankshaft 320 , which penetrates through the rotor iron core of the rotor 310 and is connected to the rotor iron core; the power part is connected to the crankshaft 320 In connection, the power part is configured to be adapted to follow the rotation of the rotor 310 to compress the medium.
  • the power part includes a piston 360 and a cylinder 350, which are arranged in the cylinder 350 and connected to the crankshaft 320, and the crankshaft 320 is provided with a first bearing 330 and a second bearing 340, the first bearing 330 and the second bearing 340 are respectively located at both ends of the power part.
  • the present application provides a refrigeration device, including: a stator core provided in any of the foregoing embodiments; or a motor provided in any of the foregoing embodiments; or a compressor 300 provided in any of the foregoing embodiments.
  • the refrigeration equipment proposed in the present application includes the stator iron core provided in any of the above embodiments, the motor provided in any of the above embodiments, or the compressor 300 provided in any of the above embodiments, therefore, it has the above-mentioned one All the beneficial effects of the stator core provided by the embodiment, the motor provided by any of the foregoing embodiments, and the compressor 300 provided by any of the foregoing embodiments will not be described one by one here.
  • the refrigeration equipment further includes a heat exchanger and a throttling member, and then a heat exchange circuit is formed by the heat exchanger, the throttling member and the compressor 300, and further, the heat exchanger includes a condenser and an evaporator.
  • Refrigeration equipment includes: refrigerators, freezers, air conditioners and other heat exchange equipment.
  • a stator iron core is provided, which is applied to a motor.
  • the motor includes a stator, and the stator includes a stator iron core, and the stator iron core is arranged around the rotor 310 .
  • the outer part of the stator core includes stator punching pieces 100 .
  • the stator punch 100 includes a plurality of stator teeth 120 , the stator teeth 120 are arranged on the side of the stator core facing the rotor 310 , and the plurality of stator teeth 120 are arranged along the circumferential direction of the stator core, between adjacent stator teeth 120 .
  • the stator slot 150 is defined so that the coil can be wound on the stator iron core. Taking the rotation center of the rotor 310 as the center of the circle, the tooth crown 124 of the stator tooth 120 that is closest to the rotation center point of the rotor 310 is in the rotation direction of the rotor 310.
  • the circle where the point on the outermost contour of the side is defined as the first base circle, and the magnetic permeability portion 140 is provided near the side of the tooth crown 124 of the stator tooth 120 of the stator punch 100 facing the rotor 310 , specifically a magnetic permeability modulation slot.
  • the permeance modulation slot is biased toward the direction in which the rotor 310 rotates into the stator teeth 120 , and the contour lines of the tooth crowns 124 of the stator teeth 120 facing the rotor 310 have at least a section of the first base circle that does not overlap.
  • the use of the stator punch 100 structure is beneficial to suppress the even-order harmonics of the armature magnetic field, significantly reduce the radial electromagnetic force waves generated by the interaction between the armature magnetic field harmonics and the magnetic field harmonics of the rotor 310, thereby improving the compressor 300. Vibration and noise in key frequency bands can effectively improve the listening experience of Compressor 300.
  • the permeance modulation slot is deviated from the centerline of the stator teeth 120 and is disposed on the opposite side of the rotation direction of the motor rotor 310 , that is, the side where the rotor 310 enters the stator teeth 120 .
  • the magnetic permeability modulation groove communicates or does not communicate with the air gap of the motor.
  • contour line of the tooth crown 124 of the stator tooth 120 on the opposite side to the rotation direction of the rotor 310 of the permeance modulation slot toward the rotor 310 is an arc, that is, the side of the rotor 310 entering the stator tooth 120, the center of which is the same as the rotor 310. 310 The center of rotation coincides.
  • contour line of the tooth crown 124 of the stator tooth 120 facing the rotor 310 side with the magnetic permeability modulation slot biased toward the rotor 310 rotation direction is an arc, and the circle center does not coincide with the rotor 310 rotation center.
  • the present application also provides a motor, including: the stator core provided in any of the above embodiments.
  • the motor provided by the present application includes the stator iron core provided by any of the above embodiments, it has all the beneficial effects of the above stator iron core.
  • the motor includes: a stator, the stator includes a stator iron core, and the stator iron core is arranged outside the rotor 310; a plurality of stator teeth 120 are provided on the side of the multi-stator iron core facing the rotor iron core, and the plurality of stator teeth 120 are arranged along the stator iron.
  • the circumferential arrangement of the core defines stator slots 150 between adjacent teeth; the coils are wound on the stator teeth 120 to form windings; wherein the number of stator slots 150 is Z, the number of pole pairs of the rotor 310 is P,
  • the ratio of Z to 2P is equal to or
  • the stator includes a stator iron core, stator teeth 120 are arranged on the stator iron core, stator slots 150 are defined between adjacent stator teeth 120, coils are wound around the stator teeth 120, and the stator iron core is surrounded by Outside the rotor 310, the proportional relationship between the number Z of the stator slots 150 and the number of pole pairs P of the rotor 310 is defined, thereby defining the pole-slot fit of the motor, wherein, when the number of pole pairs of the rotor 310 is P, then the The number of poles is 2P, that is, the motor can be a 6-pole 9-slot motor, a 4-pole 6-slot motor, an 8-pole 12-slot motor, and a 10-pole 12-slot motor.
  • the above types of motors can effectively reduce the armature iron loss, increase the magnetic flux, and then improve the Motor efficiency.
  • the inner diameter of the stator core is Di
  • the rated torque of the motor is T
  • the torque per unit volume of the rotor 310 is TPV, which satisfies the following relationship: 5.18 ⁇ 10 ⁇ 7 ⁇ T ⁇ Di ⁇ 3 ⁇ TPV ⁇ 1 ⁇ 1.17 ⁇ 10 -6 , 5kN ⁇ m ⁇ m -3 ⁇ TPV ⁇ 45kN ⁇ m ⁇ m -3 .
  • the unit of the rated torque T of the motor is N ⁇ m
  • the unit of the inner diameter Di of the stator core is mm
  • the unit of the torque TPV per unit volume of the rotor 310 is kN ⁇ m ⁇ m ⁇ 3 .
  • the rated torque of the motor is T
  • the inner diameter of the stator core is Di
  • the torque per unit volume of the rotor 310 is TPV
  • the value range of the torque TPV per unit volume is 5kN ⁇ m ⁇ m -3 ⁇ TPV ⁇ 45kN ⁇ m ⁇ m -3 , by limiting the rated torque T of the motor and the inner diameter Di of the stator core
  • the value range of the combined variable of the torque TPV per unit volume of the rotor 310 so that the motor can meet the power requirements of the compressor 300.
  • the magnetic flux leakage of the rotor 310 can be effectively reduced , increase the utilization rate of permanent magnets and improve the efficiency of the motor.
  • the side of the plurality of stator teeth 120 facing the rotor iron core forms an inner side wall of the stator iron core, and the ratio of the minimum diameter of the inner side wall of the stator iron core to the diameter of the outer side wall of the stator iron core is greater than 0.5 and less than is equal to 0.57.
  • the ratio of the diameter of the inner side wall of the stator to the diameter of the outer side wall of the stator iron core is greater than 0.5, and less than or equal to 0.57, so that the motor has higher cost performance.
  • the present application further provides a compressor 300 , including: a stator core provided in any of the foregoing embodiments; or a motor provided in any of the foregoing embodiments.
  • the compressor 300 provided by the present application includes the stator iron core provided in any of the above embodiments, or the motor provided in any of the above embodiments, it has all the beneficial effects of the stator iron core or the motor.
  • the compressor 300 further includes: a crankshaft 320, which penetrates through the rotor iron core of the rotor 310 and is connected with the rotor iron core; follow the motor to rotate.
  • the compressor 300 further includes a crankshaft 320 and a power part.
  • the crankshaft 320 is penetrated through the rotor iron core of the rotor 310, and the crankshaft 320 is connected to the rotor iron core and the power part, so that when the motor works, it can drive the power part to move. , and then compress the medium, such as: refrigerant.
  • crankshaft 320 of the compressor 300 is connected to the rotor iron core through the shaft hole of the rotor iron core.
  • the compressor 300 further includes a main bearing and an auxiliary bearing
  • the power part further includes a cylinder 350 and a piston 360
  • one end of the crankshaft 320 is inserted in the rotor 310, and the other end passes through the main bearing, the cylinder 350 and the auxiliary bearing in sequence.
  • a refrigeration device is also provided according to the present application, including: a stator core provided in any of the foregoing embodiments; or a motor provided in any of the foregoing embodiments; or a compressor 300 as provided in any of the foregoing embodiments.
  • the refrigeration equipment provided in the present application includes the stator iron core provided in any of the above embodiments; or the motor provided in any of the above embodiments; or the compressor 300 provided in any of the above embodiments, so it has a stator iron core or the full benefit of the motor or compressor 300.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种定子冲片(100)、定子铁芯、电机、压缩机(300)和制冷设备,定子冲片(100)包括:定子轭(110),定子轭(110)呈环状结构;多个定子齿(120),设于定子轭(110)的内圈;定子齿(120)包括:齿根(122),与定子轭(110)相连接;齿冠(124),与齿根(122)相连接,沿定子轭(110)的周向,齿冠(124)的两端分别为第一端(130)和第二端(132),其中,至少一个齿冠(124)上设置有磁导部(140),沿定子轭(110)的周向,磁导部(140)背离齿根(122)方向的轮廓朝向第一端(130)的一侧与第一端(130)之间的最短距离,小于磁导部(140)背离齿根(122)方向的轮廓朝向第二端(132)的一侧与第二端(132)之间的最短距离。该定子冲片(100)利用磁导部(140)分散磁场,进而提升第一端(130)这一侧的磁路压降,进而降低了局部饱和效应,改善了转子(310)在相应频率上的径向力叠加,降低了转子(310)的径向振动,降低了电机的噪音。

Description

定子冲片、定子铁芯、电机、压缩机和制冷设备
本申请要求于2020年11月30日提交中国专利局、申请号为“202011376547.3”、发明名称为“定子冲片、定子铁芯、电机、压缩机和制冷设备”的中国专利申请的优先权,以及于2020年12月07日提交中国专利局、申请号为“202011415684.3”、发明名称为“定子冲片、定子铁芯、电机、压缩机和制冷设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机领域,具体而言涉及一种定子冲片、一种定子铁芯、一种电机、一种压缩机和一种制冷设备。
背景技术
相关技术中的采用电机的旋转式直流变频压缩机中,电机普遍采用内置式永磁电动机,近年来随着电机功率密度提升,对电机的振动噪音提出了更高的要求,而以往的电机越来越无法满足静音的需求。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。
为此,本申请的第一方面提出了一种定子冲片。
本申请的第二方面提出了一种定子铁芯。
本申请的第三方面提出了一种电机。
本申请的第四方面提出了一种压缩机。
本申请的第五方面提出了一种制冷设备。
有鉴于此,根据本申请的第一方面,本申请提出了一种定子冲片,包括:定子轭,定子轭呈环状结构;多个定子齿,设于定子轭的内圈;定子齿包括:齿根,与定子轭相连接;齿冠,与齿根相连接,沿定子轭的周向,齿冠的两端分别为第一端和第二端,其中,至少一个齿冠上设置有磁导部,沿定子轭的周 向,磁导部背离齿根方向且朝向齿冠的第一端的轮廓线与齿冠的第一端之间的最短距离,小于磁导部背离齿根方向且朝向齿冠的第二端的轮廓线与齿冠的第二端之间的最短距离。
本申请提出的定子冲片,包括有定子轭和定子齿,定子轭整体呈环状结构,多个定子齿均布于定子轭的内圈上,即在定子齿之间形成定子槽,以便于设置绕组。
具体地,定子齿包括齿根和齿冠,齿根的第一端和定子轭相连接,齿根的第二端和齿冠相连接,第一端和第二端为相背的两端。
其中,沿着定子轭的周侧,齿冠背离齿根的一侧的端面上包括第一齿面和第二齿面,即在组装成电机后,沿着转子可以转动的方向,齿冠背离齿根的一侧的端面上包括第一齿面和第二齿面,具体地,第一齿面和第二齿面沿顺时针方向或逆时针方向分布。
并且,至少一个齿冠上设置有磁导部,沿定子轭的周向,磁导部背离齿根方向且朝向齿冠的第一端的轮廓线与齿冠的第一端之间的最短距离,小于磁导部背离齿根方向且朝向齿冠的第二端的轮廓线与齿冠的第二端之间的最短距离。
具体地,在组装成电机后,转子沿第一端向第二端转动。进而磁导部靠近第一端,即靠近转子初始进入定子齿区域。进而利用磁导部分散磁场,进而提升第一端这一侧的磁路压降,进而降低了局部饱和效应,减弱气隙磁场的畸变,有利于抑制电枢磁场的偶次谐波,显著降低电枢磁场谐波与转子磁场谐波相作用所产生的径向电磁力波,进而改善压缩机关键频段的振动噪音,降低电机的噪音。
另外,根据本申请提供的上述技术方案中的定子冲片,还可以具有如下附加技术特征:
在一种可能的设计中,进一步地,沿第一端至第二端,齿冠背离齿根的一侧的端面包括第一齿面和第二齿面,第一端位于第一齿面的边缘,第二齿面包括的至少一段第二圆弧面,第二圆弧面的轴线与多个定子齿的内接圆的轴线不重合。
在该设计中,第二齿面的轴线与多个定子齿的内接圆的轴线不重合,进而 使得第二齿面处和转子之间的气隙是变化的,进而保证了使得气隙磁密呈变化状态,降低相同的气隙磁密对转子产生的径向力。
在一种可能的设计中,进一步地,磁导部背离齿根方向且朝向齿冠的第二端的轮廓线与齿冠的第一端之间的最短距离,小于磁导部背离齿根方向且朝向齿冠的第二端的轮廓线与齿冠的第二端之间的最短距离。
在该设计中,进一步地限定了磁导部完全位于齿根的中心线到第一端的一侧,进而进一步确保转子初入定子齿时所受到的径向电磁力,进而提升降噪效果。
在一种可能的设计中,进一步地,磁导部沿齿冠的轴向导通。
在该设计中,磁导部沿定子轭的轴向导通,更有利于磁感线的穿入,进而最大程度的减弱气隙磁场的畸变,有利于抑制电枢磁场的偶次谐波。
在一种可能的设计中,进一步地,磁导部包括:磁导孔;或磁导凹槽,磁导凹槽的开口位于齿冠背离齿根的一侧。
在该设计中,磁导部可以是磁导孔,即在齿冠上沿定子轭的轴向开设的孔道,进而使得齿冠背离齿根的一侧是完整的。
磁导部可以是磁导凹槽,即在齿冠上朝向多个定子齿的内接圆的轴线的一侧开启凹槽。
在一种可能的设计中,进一步地,第一齿面包括至少一段第一圆弧面,第一圆弧面的轴线与多个定子齿的内接圆的轴线不重合。
在该设计中,齿冠朝向多个定子齿的内接圆的轴线的一侧,具有不同的轴线,进而使得第一齿面处和转子之间的气隙是变化的,从而进一步降低电枢磁场的偶次谐波,降低转子受到的径向力,降低电机或压缩机的噪音。
在一种可能的设计中,进一步地,第一齿面包括至少一段第一圆弧面,第一圆弧面的轴线与多个定子齿的内接圆的轴线重合。
在该设计中,第一齿面的轴线与多个定子齿的内接圆的轴线重合,进而使得第一齿面处和转子之间的气隙是均匀的,进而保证了对转子施加的电磁力,进而提升了电机的效率。在一种可能的设计中,进一步地,定子轭的外径与定子齿的端面围成的最小内径的比值,大于等于0.5,且小于等于0.57。
在该实施例中,定子轭的外径和定子齿的端面围成的最小内径的比值,大 于等于0.5,且小于等于0.57,进而在保证定子冲片具有足够的绕线空间,以及足够的设置转子的空间的同时,降低定子冲片材料的消耗,降低定子冲片的成本。
在一种可能的设计中,进一步地,由第一端至第二端的方向,第一齿面与多个定子齿的内接圆的圆心之间的距离逐渐减小。
在该设计中,在组装成电机后,多个定子齿的内接圆的圆心为转子的旋转中心,进而由第一端至第二端的方向,第一齿面与转子的旋转中心之间的距离逐渐减小,进而增大转子进入定子齿时的气隙,进一步地提升第一端这一侧的磁路压降,进而降低了局部饱和效应,减弱气隙磁场的畸变,有利于抑制电枢磁场的偶次谐波,显著降低电枢磁场谐波与转子磁场谐波相作用所产生的径向电磁力波,进而改善压缩机关键频段的振动噪音,降低电机的噪音。
根据本申请的第二方面,本申请提出了一种定子铁芯,包括:至少一个如上述任一技术方案提出的定子冲片。
本申请提出的定子铁芯,因包括至少一个上述任一技术方案提出的定子冲片,因此,具有如上述任一技术方案提出的定子冲片的全部有益效果,在此不再一一陈述。
在一种可能的设计中,进一步地,还包括:至少一个铁芯冲片,铁芯冲片和定子冲片沿定子铁芯的轴向堆叠。
在该设计中,定子铁芯内还可以包括其他结构的铁芯冲片,从而改善电机的性能。
在一种可能的设计中,进一步地,沿定子铁芯的轴向,定子冲片总高度为L1;沿定子铁芯的轴向,铁芯冲片总高度为L2,其中,0.001≤L1/L2≤0.6。
在该设计中,将两种冲片按不同轴向厚度组装可以获得不同的电机振动噪音改善效果,定子冲片的总高度越大,噪音改善效果越好,铁芯冲片的总高度越大,电机能效越高,进而在
Figure PCTCN2020134782-appb-000001
时,可以兼顾电机的能效和降噪效果。
根据本申请的第三方面,本申请提出了一种电机,包括:如上述任一技术方案提出的定子铁芯;转子,可转动地设置在定子铁芯内。
本申请提出的电机,因包括如上述任一技术方案提出的定子铁芯,因此, 具有如上述任一技术方案提出的定子铁芯的全部有益效果,在此不再一一陈述。
在上述技术方案中,进一步地,转子沿定子铁芯的定子冲片的定子齿的第一端至第二端转动。
在该设计中,保证第一齿面处的气隙较大,进而保证降低对转子的径向力以及降低噪音的效果。
在一种可能的设计中,进一步地,定子铁芯的内径为Di,电机的额定转矩为T,转子的单位体积转矩为TPV,其中,5.18×10 -7≤T×Di -3×TPV -1≤1.17×10 -6,5kN·m·m -3≤TPV≤45kN·m·m -3
在该设计中,定子铁芯的内径Di、电机的额定转矩T和转子的单位体积转矩为TPV满足:5.18×10 -7≤T×Di -3×TPV -1≤1.17×10 -6,5kN·m·m -3≤TPV≤45kN·m·m -3,进而通过限定了电机的额定转矩T、定子铁芯的内径Di和转子的单位体积转矩TPV的组合变量的取值范围,使得电机可以满足较高强度环境的动力需求,例如:压缩机。
此外,这样的结构可有效降低转子的漏磁,增加永磁体利用率,提升电机的效率。
在一种可能的设计中,进一步地,定子铁芯的相邻的定子齿之间形成定子槽,定子槽的数量与2倍的转子的极对数的比值,为以下任一者:
Figure PCTCN2020134782-appb-000002
Figure PCTCN2020134782-appb-000003
在该设计中,通过限定定子槽的数量Z和转子的极对数P的比例关系,进而限定电机的极槽配合,Z和2×P满足
Figure PCTCN2020134782-appb-000004
Figure PCTCN2020134782-appb-000005
时,可有效减少电枢铁损,提升磁通量,进而提升电机效率。
根据本申请的第四方面,本申请提出了一种压缩机,包括:如上述任一技术方案提出的定子铁芯;或如上述任一技术方案提出的电机。
本申请提出的压缩机,因包括如上述任一技术方案提出的定子铁芯或如上述任一技术方案提出的电机,因此,具有如上述任一技术方案提出的定子铁芯和如上述任一技术方案提出的电机的全部有益效果,在此不再一一陈述。
根据本申请的第五方面,本申请提出了一种制冷设备,包括:如上述任一技术方案提出的定子铁芯;或如上述任一技术方案提出的电机;或如上述任 一技术方案提出的压缩机。
本申请提出的制冷设备,因包括如上述任一技术方案提出的定子铁芯或如上述任一技术方案提出的电机或如上述任一技术方案提出的压缩机,因此,具有如上述任一技术方案提出的定子铁芯和如上述任一技术方案提出的电机和如上述任一技术方案提出的压缩机的全部有益效果,在此不再一一陈述。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出本申请一个实施例提供的定子冲片的结构示意图;
图2示出本申请一个实施例提供的定子冲片的结构示意图;
图3示出本申请一个实施例提供的定子冲片中磁导部的结构示意图;
图4示出本申请一个实施例提供的定子冲片中磁导部的结构示意图;
图5示出本申请一个实施例提供的定子冲片中磁导部的结构示意图;
图6示出本申请一个实施例提供的定子冲片的结构示意图;
图7示出本申请一个实施例提供的铁芯冲片的结构示意图;
图8示出本申请一个实施例提供的压缩机的结构示意图。
其中,图1至图8中附图标记与部件名称之间的对应关系为:
100定子冲片,110定子轭,120定子齿,122齿根,124齿冠,126第一齿面,128第二齿面,130第一端,132第二端,140磁导部,150定子槽,200铁芯冲片,300压缩机,310转子,320曲轴,330第一轴承,340第二轴承,350气缸,360活塞。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图8来描述根据本申请一些实施例提供的定子冲片100、定子铁芯、电机、压缩机300和制冷设备。
实施例1:
如图1至图5所示,本申请提供了一种定子冲片100,包括:定子轭110和定子齿120,其中,定子轭110为环状结构,定子齿120的数量为多个,多个定子齿120均布于定子轭110的内圈,并且,相邻的定子齿120之间形成有定子槽150,进而可在定子槽150内设置绕组,多个定子齿120围绕呈空间,以便于设置转子310。
在组装成电机后,转子310上的磁体,位于绕组通电产生的磁场内,进而受到绕组产生的磁力,进而进行转动。
进一步地,定子齿120包括齿根122和齿冠124,齿根122连接在齿冠124和定子轭110之间,即齿根122的一端连接定子轭110,并在连接定子轭110相对的一端连接齿冠124。
其中,沿着定子轭110的周线,齿冠124的两端分别为第一端130和第二端132,具体地,在安装成电机后,如图1和图2所示,转子310沿W方向旋转时,转子310周侧上位于定子冲片100所围设空间内的任意一点,会先经过第一端130,后经过第二端132。
并且,在定子齿120的齿冠124上设置有磁导部140,沿定子轭110的周向,磁导部140背离齿根122方向且朝向齿冠124的第一端130的轮廓线与齿冠124的第一端130之间的最短距离,小于磁导部140背离齿根122方向且朝向齿冠124的第二端132的轮廓线与齿冠124的第二端132之间的最短距离,即磁导部140靠近第一端130。因此,在转子310转入定子齿120时,刚开始处的磁路压降增大,进而降低了局部饱和效应,减弱气隙磁场的畸变,有利于抑制电枢磁场的偶次谐波,显著降低电枢磁场谐波与转子310磁场谐波相作用所产生的径向电磁力波,进而改善压缩机300关键频段的振动噪音,降低电机的噪音。
具体地,磁导部140相当于增加定子槽150的数量,如此增加了基本齿槽转矩次数,随着谐波次数增加,与之对应的磁势谐波与磁导谐波幅值随之减小,则齿槽转矩也减小,从而减小电机或压缩机300的噪音。
实施例2:
如图1和图2所示,在实施例1的基础上,进一步地,磁导部140背离齿根122方向且朝向齿冠124的齿冠124的第二端132的轮廓线与齿冠124的第一端130之间的最短距离,小于磁导部140背离齿根122方向且朝向齿冠124的第二端132的轮廓线与齿冠124的第二端132之间的最短距离。
在该实施例中,进一步地限定了磁导部140完全位于齿根122的中心线到第一端130的一侧,进而进一步确保转子310初入定子齿120时所受到的径向电磁力,进而提升降噪效果。
具体地,齿根122为中心对称结构,齿根122以定子轭110的一条直径为对称轴,对称设置,磁导部140完全设置在齿根122的对称轴至第一端130这部分。
实施例3:
如图1和图2所示,在实施例1或实施例2的基础上,进一步地,磁导部140沿齿冠124的轴向导通。
在该实施例中,磁导部140沿齿冠124的轴向导通,更有利于磁感线的穿入,进而最大程度的减弱气隙磁场的畸变,有利于抑制电枢磁场的偶次谐波。
实施例4:
如图2所示,在实施例1至实施例3中任一者的基础上,磁导部140包括:磁导孔。
在该实施例中,磁导部140可以是磁导孔,即在齿冠124上沿定子轭110的轴向开设的孔道,进而使得齿冠124背离齿根122的一侧是完整的。
实施例5:
如图1所示,在实施例1至实施例4中任一者的基础上,进一步地,磁导部140包括:磁导凹槽,磁导凹槽的开口位于齿冠124背离齿根122的一侧。
在该实施例中,磁导部140可以是磁导凹槽,即在齿冠124上朝向定子轭 110的轴心的一侧开启凹槽。
具体地,如图3所示,磁导部140的结构可以是矩形结构的一部分,即磁导部140的相邻的两个面之间为垂直关系。
如图4所示,磁导部140的结构可以是圆形结构的一部分,即磁导部140呈一个曲面。
如图5所示,磁导部140的结构可以是梯形结构的一部分,即磁导部140的相邻的两个面之间为非垂直关系,具体地,相邻的两个面之间可以是锐角或钝角。
实施例6:
如图1和图2所示,在实施例1至实施例5中任一者的基础上,进一步地,沿第一端130至第二端132,齿冠124背离齿根122的一侧的端面包括第一齿面126和第二齿面128,第二齿面包括的至少一段第二圆弧面,第二圆弧面的轴线与多个定子齿的内接圆的轴线不重合。
具体地,第二齿面128可以为完整的圆弧面,第二齿面128的轴线和转子310的旋转中心不重合。
在该实施例中,第二齿面128的轴线与多个定子齿120的内接圆的轴线不重合,进而使得第二齿面128处和转子310之间的气隙是变化的,进而保证了使得气隙磁密呈变化状态,降低相同的气隙磁密对转子310产生的径向力。
实施例7:
如图1和图2所示,在实施例1至实施例6中任一者的基础上,进一步地,第一齿面126包括至少一段第一圆弧面,第一圆弧面的轴线与多个定子齿120的内接圆的轴线重合。
具体地,第一齿面126的整体为圆弧面,第一齿面126的轴线和转子310的旋转轴线重合。
在该实施例中,第一齿面126的轴线与多个定子齿120的内接圆的轴线重合,进而使得第一齿面126处和转子310之间的气隙是均匀的,进而保证了对转子310施加的电磁力,进而提升了电机的效率。
实施例8:
如图6所示,在实施例6或实施例7的基础上,进一步地,由第一端 130至第二端132的方向,第一齿面126与多个定子齿120的内接圆的圆心之间的距离逐渐减小。
在该实施例中,在组装成电机后,多个定子齿120的内接圆的圆心为转子310的旋转中心,进而由第一端130至第二端132的方向,第一齿面126与转子310的旋转中心之间的距离逐渐减小,进一步地提升第一端130这一侧的磁路压降,进而降低了局部饱和效应,减弱气隙磁场的畸变,有利于抑制电枢磁场的偶次谐波,显著降低电枢磁场谐波与转子磁场谐波相作用所产生的径向电磁力波,进而改善压缩机关键频段的振动噪音,降低电机的噪音。
具体地,如图6所示,沿转子的旋转方向,在转子的旋转中心O到第一齿面之间,选取Y1、Y2和Y3三条直线,其中,Y1为29.3043cm,Y2为29.1696cm,Y3为29.0376cm。
实施例9:
如图1和图2所示,在实施例1至实施例8中任一者的基础上,进一步地,第一齿面126包括至少一段第一圆弧面,第一圆弧面的轴线与多个定子齿120的内接圆的轴线不重合。
在该实施例中,齿冠124朝向多个定子齿120的内接圆的轴线的一侧,具有不同的轴线,进而使得第一齿面126处和转子之间的气隙是变化的,从而进一步降低电枢磁场的偶次谐波,降低转子受到的径向力,降低电机或压缩机的噪音。
实施例10:
在实施例1至实施例9中任一者的基础上,进一步地,定子轭110的外径与定子齿120的端面围成的最小内径的比值,大于等于0.5,且小于等于0.57。
即定子冲片100的外径和定子冲片100的内径的比值为,大于等于0.5,且小于等于0.57。
在该实施例中,定子轭110的外径和定子齿120的端面围成的最小内径的比值,大于等于0.5,且小于等于0.57,进而在保证定子冲片100具有足够的绕线空间,以及足够的设置转子310的空间的同时,降低定子冲片100材料的消耗,降低定子冲片100的成本。
实施例11:
本申请提供了一种定子铁芯,包括:至少一个如任一实施例提供的定子冲片100。
本申请提出的定子铁芯,因包括至少一个如任一实施例提供的定子冲片100,因此,具有如上述任一技术方案提出的定子冲片100的全部有益效果,在此不再一一陈述。
具体地,定子铁芯包括多个定子冲片100,多个定子冲片100沿着定子铁芯的轴向堆叠。
实施例12:
如图7所示,在实施例11的基础上,进一步地,还包括:至少一个铁芯冲片200,铁芯冲片200和定子冲片100沿定子铁芯的轴向堆叠。
在该实施例中,定子铁芯中,还可以包括其他结构的铁芯冲片200,进而为磁场提供更多样的变化,以扩展定子铁芯的效果。
具体地,铁芯冲片200和定子冲片100可以采用任一种堆叠方式。例如:在定子冲片100的两端堆叠铁芯冲片200;在铁芯冲片200的两端堆叠定子冲片100;在定子冲片100的一侧堆叠铁芯冲片200;定子冲片100和铁芯冲片200穿插的堆叠。
实施例13:
在实施例11或实施例12中任一者的基础上,进一步地,沿定子铁芯的轴向,定子冲片100总高度为L1;沿定子铁芯的轴向,铁芯冲片200总高度为L2。其中,
Figure PCTCN2020134782-appb-000006
在该实施例中,将两种冲片按不同轴向厚度组装可以获得不同的电机振动噪音改善效果,设置有磁导凹槽的定子冲片100总高度越大,噪音改善效果越好,铁芯冲片200的总高度越大,电机能效越高,进而在
Figure PCTCN2020134782-appb-000007
时,可以兼顾电机的能效和降噪效果。
具体地,
Figure PCTCN2020134782-appb-000008
等于0.001、0.002、0.003、0.004、0.005、0.006、0.007、0.008、0.009、0.1、0.2、0.3、0.4、0.5、0.6。
实施例14:
本申请提供了一种电机,包括:如上述任一实施例提供的定子铁芯;转子310,可转动地设置在定子铁芯内。
本申请提供的电机,因包括如上述任一实施例提供的定子铁芯,因此,具有如上述任一实施例提供的定子铁芯的全部有益效果,在此不再一一陈述。
具体地,电机包括定子,定子包括如上述任一实施例所提供的定子铁芯,以及设置于定子铁芯的绕组。
转子310包括转子铁芯和设置与转子铁芯的磁体,绕组通电后产生磁场,可推动磁体转动。
实施例15:
在实施例14的基础上,进一步地,转子310沿定子铁芯的定子冲片100的定子齿120的第一齿面126至第二齿面128转动,即转子310沿定子铁芯的定子冲片100的定子齿120的第一端130至第二端132转动。
在该实施例中,通过设置转子310沿定子铁芯的定子冲片100的定子齿120的第一齿面126至第二齿面128转动,进而保证了在转子310先经过第一齿面126时,气隙的宽度会得到一个增加,而增大的气隙宽度会增大磁路压降,进而在降低第一齿面126处的磁饱和,降低局部饱和效应,减弱气隙磁场的畸变,有利于抑制电枢磁场的偶次谐波,显著降低电枢磁场谐波与转子310磁场谐波相作用所产生的径向电磁力波,进而改善压缩机300关键频段的振动噪音,降低电机的噪音。
实施例16:
在实施例14或实施例15的基础上,进一步地,定子铁芯的内径为Di,电机的额定转矩为T,转子310的单位体积转矩为TPV,其中,5.18×10 -7≤T×Di -3×TPV -1≤1.17×10 -6,5kN·m·m -3≤TPV≤45kN·m·m -3
具体地,电机的额定转矩T的单位为N·m,定子铁芯的内径Di的单位为mm,转子310的单位体积转矩TPV的单位为kN·m·m -3
在该实施例中,定子铁芯的内径Di、电机的额定转矩T和转子310的单位体积转矩为TPV满足:5.18×10 -7≤T×Di -3×TPV -1≤1.17×10 -6,5kN·m·m -3≤TPV≤45kN·m·m -3,进而通过限定了电机的额定转矩T、定子铁芯的内径Di和转子310的单位体积转矩TPV的组合变量的取值范围,使得电机可以满足较高强度环境的动力需求,例如:压缩机300。
此外,这样的结构可有效降低转子310的漏磁,增加永磁体利用率, 提升电机的效率。
实施例17:
在实施例14至实施例15中任一者的基础上,进一步地,定子铁芯的相邻的定子齿120之间形成定子槽150,定子槽150的数量与2倍的转子310的极对数的比值,为以下任一者:
Figure PCTCN2020134782-appb-000009
Figure PCTCN2020134782-appb-000010
在该实施例中,通过限定定子槽150的数量Z和转子310的极对数P的比例关系,进而限定电机的极槽配合,Z和2×P满足
Figure PCTCN2020134782-appb-000011
Figure PCTCN2020134782-appb-000012
时,可有效减少电枢铁损,提升磁通量,进而提升电机效率。
具体地,电机可以是6极9槽电机、4极6槽电机、8极12槽电机、10极12槽电机。
实施例18:
如图8所示,本申请提供了一种压缩机300,包括:如上述任一实施例提供的定子铁芯;或如上述任一实施例提供的电机。
本申请提供的压缩机300,因包括如上述任一实施例提供的定子铁芯或如上述任一实施例提供的电机,因此,具有如上述任一实施例提供的定子铁芯和如上述任一实施例提供的电机的全部有益效果,在此不再一一陈述。
实施例19:
如图8所示,在实施例18的基础上,进一步地,压缩机300还包括:曲轴320,穿设于转子310的转子铁芯,并与转子铁芯相连接;动力部,与曲轴320相连接,动力部被配置为适于跟随转子310转动,以压缩介质。
具体地,动力部包括活塞360和气缸350,设于气缸350内,并与曲轴320连接,并且,在曲轴320上设置有第一轴承330和第二轴承340,第一轴承330和第二轴承340分别位于动力部的两端。
实施例20:
本申请提供了一种制冷设备,包括:如上述任一实施例提供的定子铁芯;或如上述任一实施例提供的电机;或如上述任一实施例提供的压缩机300。
本申请提出的制冷设备,因包括如上述任一实施例提供的定子铁芯或如上述任一实施例提供的电机或如上述任一实施例提供的压缩机300,因此,具有如上述任一实施例提供的定子铁芯和如上述任一实施例提供的电机和如上 述任一实施例提供的压缩机300的全部有益效果,在此不再一一陈述。
具体地,制冷设备还包括,换热器和节流件,进而通过换热器、节流件和压缩机300组成换热回路,进一步地,换热器包括冷凝器和蒸发器。
制冷设备包括:冰箱、冰柜、空调器等换热设备。
实施例21:
如图1和图2所示,本申请的一个实施例中,提供了一种定子铁芯,应用于电机,具体地,电机包括定子,定子包括定子铁芯,定子铁芯围设于转子310的外部,定子铁芯包括定子冲片100。
具体地,定子冲片100包括多个定子齿120,定子齿120设置在定子铁芯朝向转子310的一侧,多个定子齿120沿定子铁芯的周向设置,相邻定子齿120之间限定出定子槽150,以便于在定子铁芯上绕设线圈,以转子310的旋转中心为圆心,与转子310旋转中心点距离最近的定子齿120的齿冠124,在转子310的旋转方向一侧最远端轮廓上的点所在圆定义为第一基圆,定子冲片100的定子齿120的齿冠124朝向转子310的一侧的附近设置磁导部140,具体为磁导调制槽。
磁导调制槽偏向转子310旋转进入定子齿120的方向,定子齿120的齿冠124朝向转子310一侧的轮廓线至少有一段第一基圆不重合。采用这种定子冲片100结构,有利于抑制电枢磁场的偶次谐波,显著降低电枢磁场谐波与转子310磁场谐波相作用所产生的径向电磁力波,进而改善压缩机300关键频段的振动噪音,有效改善压缩机300听感。
进一步地,磁导调制槽偏离定子齿120的中心线,设置在电机转子310旋转方向的反侧,即转子310进入定子齿120的一侧。
进一步地,磁导调制凹槽与电机的气隙连通或不连通。
进一步地,在磁导调制槽的与转子310旋转方向的反侧的定子齿120的齿冠124朝向转子310一侧轮廓线为圆弧,即转子310进入定子齿120的一侧,其圆心与转子310旋转中心重合。
进一步地,磁导调制槽偏向转子310旋转方向的定子齿120的齿冠124朝向转子310一侧轮廓线为圆弧,圆心与转子310旋转中心不重合。
实施例22:
本申请还提供了一种电机,包括:如上述任一实施例提供的定子铁芯。
本申请提供的电机,因包括上述任一实施例提供的定子铁芯,因此具有上述定子铁芯的全部有益效果。
电机包括:定子,定子包括定子铁芯,定子铁芯围设于转子310的外部;多定子铁芯朝向转子铁芯的一侧设置有多个定子齿120部,多个定子齿120沿定子铁芯的周向设置,相邻齿部之间限定出定子槽150;线圈,绕设在定子齿120上,形成绕组;其中,定子槽150的数量为Z,转子310的极对数为P,Z与2P的比值等于
Figure PCTCN2020134782-appb-000013
Figure PCTCN2020134782-appb-000014
在该实施例中,定子包括定子铁芯,定子铁芯上设置有定子齿120,相邻定子齿120之间限定出定子槽150,定子齿120上绕设有线圈,定子铁芯围设于转子310外部,其中,限定定子槽150的数量Z和转子310的极对数P的比例关系,进而限定电机的极槽配合,其中,当转子310的极对数为P时,则转子310的极数为2P,即电机可为6极9槽电机、4极6槽电机、8极12槽电机、10极12槽电机、上述类型的电机可有效减少电枢铁损,提升磁通量,进而提升电机效率。
进一步地,定子铁芯的内径为Di,电机的额定转矩为T,转子310的单位体积转矩为TPV,满足以下关系式:5.18×10 -7≤T×Di -3×TPV -1≤1.17×10 -6,5kN·m·m -3≤TPV≤45kN·m·m -3
其中,电机的额定转矩T的单位为N·m,定子铁芯的内径Di的单位为mm,转子310的单位体积转矩TPV的单位为kN·m·m -3
在该实施例中,电机的额定转矩为T,定子铁芯的内径为Di,转子310的单位体积转矩为TPV,且满足5.18×10 -7≤T×Di -3×TPV -1≤1.17×10 -6,单位体积转矩TPV的取值范围为5kN·m·m -3≤TPV≤45kN·m·m -3,通过限定了电机的额定转矩T、定子铁芯的内径Di和转子310的单位体积转矩TPV的组合变量的取值范围,使得该电机可以满足压缩机300的动力需求,此外,对于采用该转子310的电机及压缩机300,可有效降低转子310漏磁,增加永磁体利用率,提升电机效率。
进一步地,多个定子齿120朝向转子铁芯的一侧合围成定子铁芯的内侧壁,定子铁芯的内侧壁的最小直径与定子铁芯的外侧壁的直径的比值,大 于0.5,且小于等于0.57。
在该实施例中,定子的内侧壁的直径与定子铁芯的外侧壁的直径的比值大于0.5,且小于等于0.57使得电机具有较高的性价比。
实施例23:
如图8所示,本申请还提供了一种压缩机300,包括:如上述任一实施例提供的定子铁芯;或如上述任一实施例提供的电机。
本申请提供的压缩机300,因包括如上述任一实施例提供的定子铁芯;或如上述任一实施例提供的电机,因此具有定子铁芯或电机的全部有益效果。
进一步地,压缩机300还包括:曲轴320,穿设于转子310的转子铁芯,并与转子铁芯相连接;动力部,与曲轴320相连接,且动力部工作被配置为压缩介质,并跟随电机转动。
在该实施例中,压缩机300还包括曲轴320和动力部,曲轴320穿设于转子310的转子铁芯,且曲轴320连接转子铁芯和动力部,进而电机工作时,可以带动动力部运动,进而压缩介质,例如:冷媒。
具体地,压缩机300的曲轴320通过转子铁芯的轴孔与转子铁芯相连接。
具体地,压缩机300还包括主轴承和副轴承,动力部还包括气缸350和活塞360,曲轴320一端穿设于转子310内,另一端依次穿过主轴承、气缸350和副轴承。
实施例24:
根据本申请还提供了一种制冷设备,包括:如上述任一实施例提供的定子铁芯;或如上述任一实施例提供的电机;或如上述任一实施例提供的压缩机300。
本申请提供的制冷设备,因包括如上述任一实施例提供的定子铁芯;或如上述任一实施例提供的电机;或如上述任一实施例提供的压缩机300,因此具有定子铁芯或电机或压缩机300的全部有益效果。
在本申请中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如, “连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本申请的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种定子冲片,其中,包括:
    定子轭,所述定子轭呈环状结构;
    多个定子齿,设于所述定子轭的内圈;
    所述定子齿包括:
    齿根,与所述定子轭相连接;
    齿冠,与所述齿根相连接,沿所述定子轭的周向,所述齿冠的两端分别为第一端和第二端,
    其中,至少一个所述齿冠上设置有磁导部,沿所述定子轭的周向,所述磁导部背离所述齿根方向且朝向所述齿冠的所述第一端的轮廓线与所述第一端之间的最短距离,小于所述磁导部背离所述齿根方向且朝向所述齿冠的所述第二端的轮廓线与所述第二端之间的最短距离。
  2. 根据权利要求1所述的定子冲片,其中,
    沿所述第一端至所述第二端,所述齿冠背离所述齿根的一侧的端面包括第一齿面和第二齿面,所述第一端位于所述第一齿面的边缘,所述第二齿面包括的至少一段第二圆弧面,所述第二圆弧面的轴线与多个所述定子齿的内接圆的轴线不重合。
  3. 根据权利要求1所述的定子冲片,其中,
    所述磁导部沿所述齿冠的轴向导通。
  4. 根据权利要求1至3中任一项所述的定子冲片,其中,所述磁导部包括:
    磁导孔;或
    磁导凹槽,所述磁导凹槽的开口位于所述齿冠背离所述齿根的一侧。
  5. 根据权利要求2所述的定子冲片,其中,
    所述第一齿面包括至少一段第一圆弧面,所述第一圆弧面的轴线与多个所述定子齿的内接圆的轴线不重合。
  6. 根据权利要求2所述的定子冲片,其中,
    所述第一齿面包括至少一段第一圆弧面,所述第一圆弧面的轴线与多个所 述定子齿的内接圆的轴线重合。
  7. 根据权利要求1至3中任一项所述的定子冲片,其中,
    所述定子轭的外径与多个所述定子齿的端面之间形成的最小内径的比值,大于等于0.5,且小于等于0.57。
  8. 根据权利要求2所述的定子冲片,其中,
    由所述第一端至所述第二端的方向,所述第一齿面与多个所述定子齿的内接圆的圆心之间的距离逐渐减小。
  9. 一种定子铁芯,其中,包括:
    至少一个如权利要求1至8中任一项所述的定子冲片。
  10. 根据权利要求9所述的定子铁芯,其中,还包括:
    至少一个铁芯冲片,所述铁芯冲片和所述定子冲片沿所述定子铁芯的轴向堆叠。
  11. 根据权利要求10所述的定子铁芯,其中,
    沿所述定子铁芯的轴向,所述定子冲片总高度为L1;
    沿所述定子铁芯的轴向,所述铁芯冲片总高度为L2,
    其中,0.001≤L1/L2≤0.6。
  12. 一种电机,其中,包括:
    如权利要求9至11中任一项所述的定子铁芯;
    转子,可转动地设置在所述定子铁芯内。
  13. 根据权利要求12所述的电机,其中,
    所述转子沿所述定子铁芯的定子冲片的定子齿的第一端至第二端转动。
  14. 根据权利要求12或13所述的电机,其中,
    所述定子铁芯的内径为Di,所述电机的额定转矩为T,所述转子的单位体积转矩为TPV,
    其中,5.18×10 -7≤T×Di -3×TPV -1≤1.17×10 -6,5kN·m·m -3≤TPV≤45kN·m·m -3,所述定子铁芯的内径Di的单位为mm,所述电机的额定转矩T的单位为N·m,所述转子的单位体积转矩TPV的单位为kN·m·m -3
  15. 根据权利要求12或13所述的电机,其中,
    所述定子铁芯的相邻的定子齿之间形成定子槽,所述定子槽的数量与2 倍的所述转子的极对数的比值,为以下任一者:
    Figure PCTCN2020134782-appb-100001
    Figure PCTCN2020134782-appb-100002
  16. 一种压缩机,其中,包括:
    如权利要求9至11中任一项所述的定子铁芯;或
    如权利要求12至15中任一项所述的电机。
  17. 一种制冷设备,其中,包括:
    如权利要求9至11中任一项所述的定子铁芯;或
    如权利要求12至15中任一项所述的电机;或
    如权利要求16所述的压缩机。
PCT/CN2020/134782 2020-11-30 2020-12-09 定子冲片、定子铁芯、电机、压缩机和制冷设备 WO2022110303A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237015701A KR20230079451A (ko) 2020-11-30 2020-12-09 고정자 라미네이션, 고정자 스틸 코어, 모터, 압축기 및 냉동 기기
JP2023528181A JP2023548925A (ja) 2020-11-30 2020-12-09 固定子パンチングシート、固定子鉄心、モータ、圧縮機及び冷凍設備
EP20963191.0A EP4236034A4 (en) 2020-11-30 2020-12-09 STATOR PLATE, STATOR CORE, MOTOR, COMPRESSOR AND COOLING DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011376547 2020-11-30
CN202011376547.3 2020-11-30
CN202011415684.3 2020-12-07
CN202011415684.3A CN112564319A (zh) 2020-11-30 2020-12-07 定子冲片、定子铁芯、电机、压缩机和制冷设备

Publications (1)

Publication Number Publication Date
WO2022110303A1 true WO2022110303A1 (zh) 2022-06-02

Family

ID=75058971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134782 WO2022110303A1 (zh) 2020-11-30 2020-12-09 定子冲片、定子铁芯、电机、压缩机和制冷设备

Country Status (5)

Country Link
EP (1) EP4236034A4 (zh)
JP (1) JP2023548925A (zh)
KR (1) KR20230079451A (zh)
CN (1) CN112564319A (zh)
WO (1) WO2022110303A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11496015B2 (en) * 2019-06-03 2022-11-08 GM Global Technology Operations LLC Electric machine with stator tooth tip profile for reducing winding-based power losses
CN114069905B (zh) * 2021-12-08 2024-06-07 安徽美芝精密制造有限公司 定子、电机、压缩机和电器设备
CN114069906B (zh) * 2021-12-08 2024-05-31 安徽美芝精密制造有限公司 定子、电机、压缩机和电器设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102810965A (zh) * 2012-07-19 2012-12-05 春城控股集团有限公司 定子转子齿冠开设凹斜槽绕组无刷永磁直流电机
US20130038165A1 (en) * 2011-08-11 2013-02-14 Zhongshan Broad-Ocean Motor Manufacturing Co., Ltd. Motor structure
CN103683562A (zh) * 2012-09-17 2014-03-26 美的集团股份有限公司 一种直流电机、变频压缩机及全直流变频空调室外机
CN108768003A (zh) * 2018-08-01 2018-11-06 珠海格力电器股份有限公司 电机、定子铁芯及其定子冲片
CN208272722U (zh) * 2018-05-16 2018-12-21 湖州越球电机有限公司 一种冷柜用内转子无刷直流电机定子冲片结构
CN208623399U (zh) * 2018-09-12 2019-03-19 珠海凯邦电机制造有限公司 冲片及具有其的电机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189163A (ja) * 2008-02-06 2009-08-20 Nippon Densan Corp モータ
JP2012244738A (ja) * 2011-05-18 2012-12-10 Daikin Ind Ltd 電動機、及び電動機ユニット
JP2015096022A (ja) * 2013-11-14 2015-05-18 日産自動車株式会社 回転電機
CN206077089U (zh) * 2016-08-31 2017-04-05 广东威灵电机制造有限公司 单向旋转电机和风扇
CN208190359U (zh) * 2018-05-30 2018-12-04 广东威灵电机制造有限公司 定子铁芯和旋转电机
JP6824348B2 (ja) * 2019-09-03 2021-02-03 三菱電機株式会社 単相ブラシレスモータ、単相ブラシレスモータの製造方法、単相ブラシレスモータを備えた電気掃除機、および電気掃除機の製造方法
CN112003392B (zh) * 2020-09-28 2021-07-23 珠海格力电器股份有限公司 永磁电机及具有其的洗衣机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130038165A1 (en) * 2011-08-11 2013-02-14 Zhongshan Broad-Ocean Motor Manufacturing Co., Ltd. Motor structure
CN102810965A (zh) * 2012-07-19 2012-12-05 春城控股集团有限公司 定子转子齿冠开设凹斜槽绕组无刷永磁直流电机
CN103683562A (zh) * 2012-09-17 2014-03-26 美的集团股份有限公司 一种直流电机、变频压缩机及全直流变频空调室外机
CN208272722U (zh) * 2018-05-16 2018-12-21 湖州越球电机有限公司 一种冷柜用内转子无刷直流电机定子冲片结构
CN108768003A (zh) * 2018-08-01 2018-11-06 珠海格力电器股份有限公司 电机、定子铁芯及其定子冲片
CN208623399U (zh) * 2018-09-12 2019-03-19 珠海凯邦电机制造有限公司 冲片及具有其的电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4236034A4

Also Published As

Publication number Publication date
KR20230079451A (ko) 2023-06-07
EP4236034A4 (en) 2024-05-01
CN112564319A (zh) 2021-03-26
EP4236034A1 (en) 2023-08-30
JP2023548925A (ja) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2022110303A1 (zh) 定子冲片、定子铁芯、电机、压缩机和制冷设备
US20120131945A1 (en) Self-Starting Type Axial Gap Synchronous Motor, Compressor and Refrigeration Cycle Apparatus Using the Same
CN213521426U (zh) 电机、压缩机和制冷设备
CN112467897B (zh) 电机、压缩机和制冷设备
CN112564317B (zh) 定子铁芯、定子、永磁同步电机、压缩机和制冷设备
WO2023060830A1 (zh) 定子结构、电机结构、压缩机结构和制冷设备
CN113872350B (zh) 定子结构、电机结构、压缩机结构和制冷设备
CN113872351A (zh) 定子结构、电机结构、压缩机结构和制冷设备
KR20240067970A (ko) 스테이터 구조, 모터 구조, 압축기 구조 및 냉동 기기
WO2022110306A1 (zh) 定子铁芯、定子、永磁同步电机、压缩机和制冷设备
CN110875679A (zh) 永磁同步电机和压缩机
TWI272753B (en) Concentrated-roll-type motor
CN112564318B (zh) 定子冲片、定子铁芯、电机、压缩机和制冷设备
WO2022110311A1 (zh) 定子铁芯、定子、永磁同步电机、压缩机和制冷设备
CN213602456U (zh) 定子冲片、定子铁芯、永磁同步电机、压缩机和制冷设备
WO2020019588A1 (zh) 永磁电机、压缩机和空调器
JP4464584B2 (ja) 圧縮機
CN209805641U (zh) 一种永磁电机及具有其的压缩机和空调器
JP2001268873A (ja) 圧縮機用モータ及びその応用機器
WO2022110305A1 (zh) 定子铁芯、定子、永磁同步电机、压缩机和制冷设备
CN213521442U (zh) 转子、永磁同步电机、压缩机和制冷设备
EP3982515A1 (en) Electric motor, compressor, fan, and refrigerating and air conditioning apparatus
CN113872352B (zh) 电机结构、压缩机结构和制冷设备
CN111697781A (zh) 一种永磁电机及具有其的压缩机和空调器
CN220510839U (zh) 一种转子结构及马达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237015701

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023528181

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2020963191

Country of ref document: EP

Effective date: 20230521

NENP Non-entry into the national phase

Ref country code: DE