WO2022107922A1 - 시력 측정 장치 및 이를 포함하는 시력 측정 시스템 - Google Patents

시력 측정 장치 및 이를 포함하는 시력 측정 시스템 Download PDF

Info

Publication number
WO2022107922A1
WO2022107922A1 PCT/KR2020/016440 KR2020016440W WO2022107922A1 WO 2022107922 A1 WO2022107922 A1 WO 2022107922A1 KR 2020016440 W KR2020016440 W KR 2020016440W WO 2022107922 A1 WO2022107922 A1 WO 2022107922A1
Authority
WO
WIPO (PCT)
Prior art keywords
eyeball
light
measurement light
eyepiece
image
Prior art date
Application number
PCT/KR2020/016440
Other languages
English (en)
French (fr)
Inventor
박성용
윤영대
Original Assignee
주식회사 에덴룩스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에덴룩스 filed Critical 주식회사 에덴룩스
Publication of WO2022107922A1 publication Critical patent/WO2022107922A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0008Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0041Operational features thereof characterised by display arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography

Definitions

  • the present invention relates to a visual acuity measuring device capable of independently measuring eye visual acuity by a subject, and a visual acuity measuring system including the same.
  • Abnormal vision symptoms such as nearsightedness, farsightedness, and astigmatism may occur in the human body depending on personal, environmental and habit.
  • the visual acuity measurement method includes a subjective test and an objective test.
  • the subjective test is a method in which the subject reads letters, pictures, and numbers on an acuity test table spaced apart by a predetermined distance. method.
  • a third party e.g., optometrist, doctor, etc. manually moves the bib that supports the subject's chin to align the optical axis of the optical system with the pupil of the eye, and then sends the measurement light of the optical system to the pupil of the eye. After output, the eye visual acuity was measured by analyzing the reflected light reflected from the pupil of the eyeball.
  • the conventional optometrist necessarily needs the help of a third party when aligning the pupil of the eye with the optical axis of the optical system, so there is a problem that the examinee cannot measure the eye acuity alone.
  • the present invention has been devised to solve the above problems, and it is an object of the present invention to provide a visual acuity measuring device that allows a subject to independently measure eye visual acuity without the help of a third party, and a visual acuity measuring system including the same .
  • a vision measuring apparatus includes: a main body having at least one eyepiece in which the eye of a subject is eyed; a light source unit for outputting the measurement light projected to the eye eyepiece in the eyepiece; a first imaging unit detecting an image of the measurement light from the reflected light reflected from the eyeball; a second imaging unit detecting an image of the eyeball from the reflected light reflected from the eyeball; and a controller configured to determine whether the measurement light and the set area of the eyeball are aligned based on a synthesized image in which the image of the measurement light and the image of the eyeball are synthesized, and determine the state of the eyeball when the measurement light is aligned. Alignment of the light and the set area of the eyeball is characterized in that it can be made by the movement of the eyeball.
  • the first beam splitter for reflecting the measurement light output from the light source unit to the eye eyepiece, and reflecting the reflected light from the eyeball to the light source unit; and a second beam splitter that transmits a wavelength belonging to the measurement light from the reflected light passing through the light source unit and reflects a wavelength other than the wavelength belonging to the measurement light
  • the first imaging unit includes the second beam splitter may be disposed in an optical path of light having a wavelength that has passed through, and the second imaging unit may be disposed in an optical path of light having a wavelength reflected by the second beam splitter.
  • the light source unit may be formed in a ring shape to output ring-shaped measurement light, and the reflected light reflected from the first beam splitter and directed to the light source unit may pass through the inside of the light source unit and reach the second beam splitter.
  • the first beam splitter and the eyepiece provided between the eyepiece to the eyepiece may further include an adjustment lens unit for adjusting the focal length of the measurement light.
  • the set region of the eye may be a pupil or an iris.
  • the measurement light may be infrared (Infrared Ray).
  • the vision measurement system includes: a vision measurement device that generates a composite image in which measurement light is projected on the eye of a subject; and a display device configured to output the composite image transmitted from the vision measurement device to a screen and provide it as a target to which the examinee gazes, while aligning the measurement light with a setting area of the eyeball in the composite image,
  • the final composite image in which the measurement light is aligned with the set region of the eyeball may be used to determine the condition of the eyeball.
  • the vision measuring device may include: a main body having at least one eyepiece in which the eye of the subject is eyed; a light source unit for outputting the measurement light projected to the eye eyepiece in the eyepiece; a first imaging unit detecting an image of the measurement light from the reflected light reflected from the eyeball; a second imaging unit detecting an image of the eyeball from the reflected light reflected from the eyeball; and a controller configured to generate a synthesized image in which the image of the measurement light and the image of the eye are synthesized, transmit it to the display device, and determine the state of the eyeball based on the final synthesized image.
  • the eyepiece may be formed in a penetrating shape along the eyeball direction, and the display device may be disposed in the eyeball direction.
  • control unit may display a guide image indicating the movement direction of the eyeball for aligning the measurement light with the setting region of the eyeball on the composite image.
  • the guide image may be an arrow.
  • the first beam splitter for reflecting the measurement light output from the light source unit to the eye eyepiece, and reflecting the reflected light from the eyeball to the light source unit; and a second beam splitter that transmits a wavelength belonging to the measurement light from the reflected light passing through the light source unit and reflects a wavelength other than the wavelength belonging to the measurement light
  • the first imaging unit includes the second beam splitter may be disposed in an optical path of light having a wavelength that has passed through, and the second imaging unit may be disposed in an optical path of light having a wavelength reflected by the second beam splitter.
  • the first beam splitter which is a non-polarized beam splitter, is disposed on the eyepiece, and the light source unit, the first imaging unit, the second imaging unit, and the second beam are disposed on the cover part.
  • a splitter may be disposed.
  • the light source unit may be formed in a ring shape to output ring-shaped measurement light, and the reflected light reflected from the first beam splitter and directed to the light source unit may pass through the inside of the light source unit and reach the second beam splitter.
  • the visual acuity measuring apparatus and the visual acuity measuring system including the same have the advantage that the examinee can independently measure the visual acuity without the help of a third party.
  • FIG. 1 is a perspective view illustrating a vision measuring apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a vision measuring apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram illustrating a process in which measurement light is aligned with a setting area of the eyeball by movement of the eyeball of the vision measuring apparatus according to an embodiment of the present invention.
  • FIG. 4 is a block diagram illustrating a vision measurement system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram illustrating a process of inducing movement of an eyeball to align a measurement light with a setting area of the eyeball to a subject in the vision measurement system according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram illustrating a guide image of the vision measurement system according to an embodiment of the present invention.
  • FIG. 1 is a perspective view illustrating an eyesight measuring apparatus according to an exemplary embodiment of the present invention
  • FIG. 2 is a block diagram illustrating an eyesight measuring apparatus according to an exemplary embodiment of the present invention.
  • the vision measuring apparatus includes a main body 10 , a light source unit 20 , a first imaging unit 30 , a second imaging unit 40 , and a control unit (not shown). city) is included.
  • the vision measuring apparatus in the vision measuring apparatus according to an embodiment of the present invention, after the measurement light output from the light source unit 20 is projected onto the eye 1 of the examinee pierced in the main body 10, the movement of the eye 1 of the examinee After the measurement light is aligned with the setting area (ie, pupil or iris) of the eyeball 1 by Judgment (ie, measure the visual acuity of the eyeball 1).
  • the setting area ie, pupil or iris
  • the vision measuring device since the alignment of the measurement light and the setting area of the eyeball 1 is made by the movement of the eyeball 1 of the subject, the subject alone can use the eyeball ( 1) acuity can be measured.
  • the eyeball 1 of the subject is eyed, and the light source unit 20, the first imaging unit 30, the second imaging unit 40, the first beam splitter 60, and the second beam splitter 70 ) to accept
  • the body 10 may be formed in the form of a telescope or glasses, but is not particularly limited thereto.
  • the body 10 may have an eyepiece 11 in which the eyepiece 1 of the examinee is eyed, and a cover portion 12 that covers other parts than the eyepiece 11 .
  • the measurement light output from the light source unit 20 to be described later is incident to the eyepiece 11 , and the measurement light is projected onto the eyepiece eyepiece 11 .
  • a ring-shaped cushion (not shown) may be provided in the eyepiece 11 , in which the eyeball 1 is eyed, for comfortable adhesion of the eyeball 1 .
  • the eyepiece 11 may be configured as a single or a pair. However, when the eyepiece 11 is configured as a pair, the distance between the pair of eyepieces 11 and the gap between the pair of eyepieces 1 may not match. For this correction, it is preferable that the pair of eyepieces 11 are slidably installed in a direction spaced apart from each other.
  • the cover part 12 covers a part other than the eyepiece 11 in the main body 10 .
  • the cover part 12 may be made of an opaque material to prevent exposure of components accommodated therein and to prevent leakage of measurement light.
  • a band 13 or a pair of temples (not shown) to be worn on the subject's face may be installed in the cover unit 12 .
  • the light source unit 20 serves to output the measurement light projected to the eyepiece (1) eyepiece (11). At this time, the measurement light output from the light source unit 20 may be infrared for preventing the visual acuity of the eyeball 1 from being deteriorated, but is not particularly limited.
  • the light source unit 20 may be formed in a ring shape to output ring-shaped measurement light, and the control unit may set the setting region of the eyeball 1 to be a pupil or an iris.
  • control unit checks whether the ring-shaped measurement light output from the light source unit 20 and the edge of the pupil or the edge of the iris are aligned, and if aligned, analyzes the image of the measurement light from the reflected light reflected from the eyeball 1 1) can be determined.
  • the measurement light projected to the eyeball (1) must be incident perpendicularly to the eyeball (1).
  • the controller can accurately determine the state of the eyeball 1 by analyzing the image of the measurement light included in the reflected light vertically reflected from the eyeball 1 .
  • the optical path of the measurement light projected on the eyeball 1 is set to the eye ( 1) and a first beam splitter 60 that adjusts vertically is required.
  • the first beam splitter 60 is disposed on the optical path of the measurement light output from the light source unit 20 to the eyepiece 11 , reflects the output measurement light and is vertically incident on the eyepiece 1 eyepiece 11 . and the reflected light reflected from the eyepiece 1 eyepiece on the eyepiece 11 is reflected to be incident on the inside of the light source unit 20 .
  • the reflected light incident on the light source unit 20 passes through the inside of the light source unit 20 and then arrives at a second beam splitter 70 to be described later.
  • the first imaging unit 30 serves to detect an image of the measurement light from the reflected light reflected from the eyeball 1, and the second imaging unit 40 excludes the measurement light from the reflected light reflected from the eyeball (1). 1) It plays a role in detecting the image of
  • the first imaging unit 30 detects an image of the measurement light by recognizing a wavelength belonging to the measurement light from the reflected light reflected from the eyeball 1 , and the second imaging unit 40 is reflected from the eyeball 1 .
  • An image of the eyeball can be detected by recognizing a wavelength other than the wavelength of the measurement light from the reflected light.
  • the wavelength belonging to the measurement light may be a wavelength of infrared light
  • a wavelength other than the wavelength of the measurement light may be a wavelength of visible light.
  • the second beam splitter 70 may perform the splitting of the reflected light reflected from the eyeball 1 into a wavelength belonging to the measurement light and a wavelength other than the wavelength of the measurement light.
  • the second beam splitter 70 transmits a wavelength belonging to the measurement light from the reflected light passing through the inside of the light source unit 20 and serves to reflect wavelengths other than the wavelength belonging to the measurement light.
  • the second beam splitter 70 may be a dichroic beam splitter that transmits a specific wavelength and reflects other wavelengths than the specific wavelength, but is not particularly limited.
  • the first imaging unit 30 is disposed in the optical path of the light having a wavelength that has passed through the second beam splitter 70 (ie, a wavelength belonging to the measurement light) to detect an image of the measurement light
  • the second imaging unit ( 40 is disposed in the optical path of the light of the wavelength reflected by the second beam splitter 70 (ie, the wavelength belonging to the eyeball 1) to detect an image of the eyeball.
  • the first imaging unit 30 includes a first focusing lens 31 for focusing the light having a wavelength transmitted through the second beam splitter 70 to the first image sensor 32 , and focusing on the first focusing lens 31 . It may have a first image sensor 32 for recognizing the emitted light.
  • the second imaging unit 40 includes a second focusing lens 41 that focuses the light of the wavelength reflected from the second beam splitter 70 to the second image sensor 42 , and the second focusing lens 41 . It may have a second image sensor 42 for recognizing the emitted light.
  • the controller may generate a composite image in which the image of the measurement light detected by the first imaging unit 30 and the image of the eye detected by the second imaging unit 40 are synthesized, and based on the synthesized image, the measurement light and the eyeball Check whether the setting area of (1) is aligned, and if the measurement light is aligned with the setting area of the eyeball 1, the image of the measurement light detected by the first imaging unit 30 is analyzed to determine the state of the eyeball 1 can do.
  • the controller analyzes the size and shape of the set area of the eyeball 1 in the image of the measurement light, calculates the states of refractive power, astigmatism, astigmatism axis, etc. of the eyeball 1 to measure the visual acuity of the eyeball 1 can do.
  • control unit may be operated in an automatic mode or a manual mode according to the setting of the examinee.
  • the automatic mode when the measurement light is aligned with the setting area of the eyeball 1 , the image of the measurement light detected by the first imaging unit 30 is immediately analyzed to immediately determine the state of the eyeball 1 .
  • the manual mode even when the measurement light is aligned with the setting area of the eyeball 1 , the determination of the state of the eyeball 1 is suspended by analyzing the image of the measurement light until the subject's alignment confirmation input is obtained.
  • the alignment confirmation input may be a press of a button separately provided in the vision measuring device.
  • control unit may be disposed on the main body 10 .
  • control unit when the control unit is disposed on the main body 10 , the control unit may be electrically connected to the first imaging unit 30 and the second imaging unit to transmit and receive electrical signals.
  • An adjustment lens unit 80 for adjusting the focal length of the measurement light may be provided between the first beam splitter 60 in the eyepiece 11 and the rear of the eyepiece 11 .
  • a fluid lens, a polymer lens, and a Badal lens may be used as the adjustment lens unit 80, and may be arranged in a single or multiple arrays.
  • a correction lens 90 may be provided between the first beam splitter 60 and the front of the eyepiece 110 .
  • the setting area of the eyeball 1 set by the controller is defined as the iris.
  • FIG. 3 is a schematic diagram illustrating a process in which measurement light is aligned with a setting area of an eyeball by movement of an examinee's eyeball of the vision measuring apparatus according to an embodiment of the present invention.
  • the controller when the measurement light is not aligned with the iris, the controller does not determine the state of the eyeball 1 .
  • the controller may output a guide voice or a guide image for guiding the movement direction of the eyeball 1 of the examinee for alignment of the measurement light and the iris through the speaker.
  • the controller analyzes the image of the measurement light to determine the state of the eyeball 1 .
  • control unit when the control unit is set to the automatic mode, the control unit recognizes that the measurement light is aligned with the iris and at the same time analyzes the image of the measurement light to determine the state of the eyeball 1 .
  • the control unit when the control unit is set to the manual mode, the control unit recognizes that the measurement light is aligned with the setting area of the eyeball 1, but it is withheld from judging the state of the eyeball 1 until the subject's alignment confirmation input is obtained . After that, when obtaining the input for checking the alignment of the subject, the controller analyzes the measurement light included in the reflected light reflected from the eyeball to determine the state of the eyeball 1 .
  • the alignment confirmation input may be a press of a button separately provided in the vision measuring device.
  • FIG. 4 is a block diagram illustrating a vision measurement system according to an embodiment of the present invention.
  • the vision measurement system As shown in FIG. 4 , the vision measurement system according to an embodiment of the present invention generates a composite image in which measurement light is projected on the eye of a subject, and a composite image 51 transmitted from the vision measurement device. ) includes a display device 50 for displaying the.
  • the vision measuring device is the same as the above-described vision measuring device, but the eyepiece 11 may be formed in a different shape.
  • the eyepiece 11 may be formed in a penetrating form along the gaze direction of the eyeball 1 .
  • the eyepiece 11 may be formed in a penetrating form from the rear to the front of the main body 10 .
  • the composite image 51 generated by the vision measuring device is a composite image in which the image 51a of the measurement light detected by the first imaging unit 30 and the image 51b of the eye detected by the second imaging unit 40 are synthesized. (51).
  • the display device 50 outputs the composite image 51 transmitted from the vision measuring device to the screen and provides it as a target that the examinee looks at, and aligns the measurement light with the set area of the eye in the composite image 51 by the examinee. do.
  • the controller of the vision measuring apparatus may determine the state of the eyeball based on the final synthesized image.
  • the display device may be a mobile device, a smart phone, a monitor, a TV, or the like, but is not particularly limited.
  • the display device 50 may be disposed in the gaze direction of the eyeball 1 .
  • the display device 50 may be disposed to be spaced apart from the eyepiece 11 in the gaze direction of the eyeball 1 . That is, the display device 50 may be disposed in front of the eyepiece 11 .
  • the eyepiece 11 is used as a gaze passage for focusing the eye 1 of the subject on the composite image 51 of the display device 50 . Therefore, a component that distorts or blocks the gaze of the eyeball 1 should not be disposed in the eyepiece 11 .
  • the first beam splitter 60 which is a non-polarized beam splitter is disposed in the eyepiece 11 , and the light source unit 20 , the first imaging unit 30 , and the cover unit 12 are provided.
  • the second imaging unit 40 and the second beam splitter 70 are disposed.
  • the first beam splitter 60 which is such a non-polarization beam splitter, transmits and reflects incident light at a predetermined ratio, so that even if it is disposed on the eyepiece 11, it can prevent distortion or blocking the gaze of the eyeball 1 have.
  • An adjustment lens unit 80 for adjusting the focal length of the measurement light is provided between the first beam splitter 60 and the rear of the eyepiece 11 in the eyepiece 11. In this case, the synthesized image through the eyepiece 11 The gaze of the eyeball 1 looking at 51 may be distorted.
  • a correction lens 90 may be provided between the first beam splitter 60 and the distal end of the eyepiece 11 .
  • the correction lens 90 serves to correct the gaze distortion of the eyeball 1 by the adjustment lens unit 80 .
  • the setting area of the eyeball 1 is defined as the iris.
  • FIG. 5 is a schematic diagram illustrating a process of inducing movement of an eyeball to align a measurement light with a setting area of the eyeball to a subject in the vision measurement system according to an embodiment of the present invention.
  • the display device 50 displays a composite image 51 indicating a state in which the measurement light is not aligned with the iris. Therefore, the measurement light is not aligned with the iris in the eye 1 of the subject who is looking at the synthesized image 51 through the eyepiece 11 to induce movement of the eye 1 for alignment of the measurement light and the iris.
  • the subject moves the eyeball 1 to align the measurement light with the iris.
  • the display device 50 displays a composite image 51 indicating a state in which the measurement light is aligned with the iris. ) is displayed. Therefore, it is confirmed that the measurement light is aligned with the iris in the eye 1 of the subject who was watching the synthesized image 51 through the eyepiece 11 to induce the stop of the movement of the eye 1 .
  • the subject stops the movement of the eyeball 1 , and the controller analyzes the image 51a of the measurement light to determine the state of the eyeball 1 .
  • control unit when the control unit is set to the automatic mode, the control unit recognizes that the measurement light is aligned with the iris and at the same time analyzes the image 51a of the measurement light to determine the state of the eyeball 1 .
  • the control unit when the control unit is set to the manual mode, the control unit recognizes that the measurement light is aligned with the iris, but stops determining the state of the eyeball 1 until the subject's alignment confirmation input is obtained. Thereafter, upon obtaining the subject's alignment confirmation input, the controller analyzes the image 51a of the measurement light to determine the state of the eyeball 1 .
  • the alignment confirmation input may be a press of a button separately provided in the vision measuring device or a touch recognition of the button image 53 displayed on the display device 50 .
  • control unit may be installed in the main body 10 or the display device 50 .
  • FIG. 6 is a schematic diagram illustrating a guide image of the vision measurement system according to an embodiment of the present invention.
  • the control unit displays the movement direction of the eyeball 1 for aligning the measurement light with the setting area of the eyeball 1 .
  • the image 52 may be displayed on the composite image 51 of the display device 50 .
  • the guide image 52 may be an arrow.
  • the examinee may move the eyeball 1 in the direction indicated by the guide image 52 to align the measurement light with the setting area of the eyeball 1 .
  • the controller removes the guide image 52 from the composite image 51 of the display device 50 when the measurement light is aligned with the set region of the eyeball 1 .
  • the examinee can stop the movement of the eyeball 1 by checking the state in which the measurement light is aligned with the setting area of the eyeball 1 .
  • the vision measurement system may measure a distance between the vision measurement apparatus and the display device 50 .
  • the distance between the vision measuring device and the display device 50 may be measured by a distance sensor (not shown) installed in the vision measuring device.
  • a distance sensor may include an ultrasonic sensor, an infrared sensor, a laser sensor, and the like.
  • the controller may adjust the size of the synthesized image 51 according to the distance data obtained from the distance sensor, and may use it as an auxiliary element in determining the state of the eyeball (ie, measuring eyesight).
  • the distance measurement between the vision measuring device and the display device 50 may be performed through an image of the vision measuring device acquired by a camera built into the smartphone.
  • the smartphone compares the horizontal or vertical length of the image of the vision measuring device obtained through the camera with the horizontal or vertical length of the actual vision measuring device to determine the distance between the vision measuring device and the display device 50 .
  • the controller may adjust the size of the synthesized image 51 according to the distance data obtained from the smart phone, and may use it as an auxiliary element in determining the state of the eyeball (ie, measuring eyesight).

Abstract

본 발명의 일 실시예에 따른 시력 측정 장치 및 이를 포함하는 시력 측정 시스템은 제3자의 도움 없이 피검자가 단독으로 안구의 시력 측정을 할 수 있는 특징이 있다. 상기 시력 측정 장치는, 피검자의 안구가 접안되는 적어도 하나의 접안부를 갖는 본체; 상기 접안부에 접안된 상기 안구에 투영되는 측정광을 출력하는 광원부; 상기 안구에서 반사되는 반사광에서 상기 측정광의 영상을 검출하는 제1촬상부; 상기 안구에서 반사되는 반사광에서 상기 안구의 영상을 검출하는 제2촬상부; 및 상기 측정광의 영상과 상기 안구의 영상이 합성된 합성 영상에 기초하여 상기 측정광과 상기 안구의 설정 영역의 정렬 여부를 확인하고 정렬된 경우 상기 안구의 상태를 판단하는 제어부를 포함하며, 상기 측정광과 상기 안구의 설정 영역의 정렬은 상기 안구의 이동에 의해 이루어질 수 있는 것을 특징으로 한다.

Description

시력 측정 장치 및 이를 포함하는 시력 측정 시스템
본 발명은 피검자가 단독으로 안구의 시력 측정을 할 수 있는 시력 측정 장치 및 이를 포함하는 시력 측정 시스템에 관한 것이다.
인체는 개인적, 환경적 및 습관에 따라 근시(Nearsightedness), 원시(Farsightedness), 난시(Astigmatism) 등의 이상 시력 증상이 발생할 수 있으며, 이 경우 시력교정을 위하여 시력을 정확히 측정하여야 한다.
시력 측정 방법은 자각적 검사와 타각적 검사가 있으며, 자각적 검사는 피검자가 소정 거리 이격된 시력 검사표의 글자, 그림, 숫자 등을 읽는 방식이며, 타각적 검사는 검안기를 이용하여 안구의 시력을 측정하는 방식이다.
기존의 검안기는 제3자(예를들면, 검안사, 의사 등)가 수동으로 피검자의 턱을 받쳐주는 턱받이를 이동시켜서 광학계의 광학축을 안구의 동공과 정렬시킨 후, 광학계의 측정광을 안구의 동공으로 출력 시킨 후, 안구의 동공에서 반사된 반사광을 분석하여 안구의 시력을 측정하였다.
따라서 기존의 검안기는 광학계의 광학축과 안구의 동공 정렬시 제3자의 도움이 반드시 필요하므로, 피검자가 단독으로 안구의 시력 측정을 할 수 없는 문제점이 있었다.
본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 제3자의 도움 없이 피검자가 단독으로 안구의 시력 측정을 할 수 있는 시력 측정 장치 및 이를 포함하는 시력 측정 시스템을 제공하려는 것이다.
본 발명이 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 시력 측정 장치는 피검자의 안구가 접안되는 적어도 하나의 접안부를 갖는 본체; 상기 접안부에 접안된 상기 안구에 투영되는 측정광을 출력하는 광원부; 상기 안구에서 반사되는 반사광에서 상기 측정광의 영상을 검출하는 제1촬상부; 상기 안구에서 반사되는 반사광에서 상기 안구의 영상을 검출하는 제2촬상부; 및 상기 측정광의 영상과 상기 안구의 영상이 합성된 합성 영상에 기초하여 상기 측정광과 상기 안구의 설정 영역의 정렬 여부를 확인하고 정렬된 경우 상기 안구의 상태를 판단하는 제어부를 포함하며, 상기 측정광과 상기 안구의 설정 영역의 정렬은 상기 안구의 이동에 의해 이루어질 수 있는 것을 특징으로 한다.
또한, 상기 광원부에서 출력된 상기 측정광을 상기 접안부에 접안된 상기 안구로 반사시키고, 상기 안구에서 반사되는 상기 반사광을 상기 광원부로 반사시키는 제1빔 스플리터; 및 상기 광원부를 통과한 상기 반사광에서, 상기 측정광에 속하는 파장을 투과시키고 상기 측정광에 속하는 파장 외의 다른 파장을 반사시키는 제2빔 스플리터를 더 포함하며, 상기 제1촬상부는 상기 제2빔 스플리터를 투과한 파장의 광의 광경로에 배치되고, 상기 제2촬상부는 상기 제2빔 스플리터에서 반사된 파장의 광의 광경로에 배치될 수 있다.
또한, 상기 광원부는 링형으로 형성되어 링형의 측정광을 출력하며, 상기 제1빔 스플리터에서 반사되어 상기 광원부로 향하는 상기 반사광은 상기 광원부의 내측을 통과하고 상기 제2빔 스플리터에 도달할 수 있다.
또한, 상기 제1빔 스플리터 및 상기 접안부에 접안된 상기 안구 사이에 마련되고 상기 측정광의 초점거리를 조절하기 위한 조절렌즈부를 더 포함할 수 있다.
또한, 상기 안구의 설정 영역은 동공 또는 홍채일 수 있다.
또한, 상기 측정광은 적외선(Infrared Ray)일 수 있다.
본 발명의 일 실시에에 따른 시력 측정 시스템은 피검자의 안구에 측정광이 투영된 형태의 합성 영상을 생성하는 시력 측정 장치; 및 상기 시력 측정 장치에서 전송된 상기 합성 영상을 화면에 출력하여 상기 피검자가 주시하는 시표로 제공하면서, 상기 합성 영상 내에서 상기 측정광을 상기 안구의 설정 영역과 정렬시키게 하는 표시 장치를 포함하며, 상기 측정광이 상기 안구의 설정 영역과 정렬된 형태의 최종 합성 영상은 상기 안구의 상태의 판단에 활용될 수 있다.
또한, 상기 시력 측정 장치는 피검자의 안구가 접안되는 적어도 하나의 접안부를 갖는 본체; 상기 접안부에 접안된 상기 안구에 투영되는 측정광을 출력하는 광원부; 상기 안구에서 반사되는 반사광에서 상기 측정광의 영상을 검출하는 제1촬상부; 상기 안구에서 반사되는 반사광에서 상기 안구의 영상을 검출하는 제2촬상부; 및 상기 측정광의 영상과 상기 안구의 영상이 합성된 합성 영상을 생성하여 상기 표시 장치로 전송하고 상기 최종 합성 영상에 기초하여 상기 안구의 상태를 판단하는 제어부를 포함할 수 있다.
또한, 상기 접안부는, 상기 안구의 시선방향을 따라 관통된 형태로 형성되며, 상기 표시 장치는, 상기 안구의 시선방향에 배치될 수 있다.
또한, 상기 제어부는 상기 측정광이 상기 안구의 설정 영역과 비정렬된 경우 상기 측정광과 상기 안구의 설정 영역의 정렬을 위한 상기 안구의 이동 방향을 표시하는 안내 이미지를 상기 합성 영상에 표시할 수 있다.
또한, 상기 안내 이미지는 화살표일 수 있다.
또한, 상기 광원부에서 출력된 상기 측정광을 상기 접안부에 접안된 상기 안구로 반사시키고, 상기 안구에서 반사되는 상기 반사광을 상기 광원부로 반사시키는 제1빔 스플리터; 및 상기 광원부를 통과한 상기 반사광에서, 상기 측정광에 속하는 파장을 투과시키고 상기 측정광에 속하는 파장 외의 다른 파장을 반사시키는 제2빔 스플리터를 더 포함하며, 상기 제1촬상부는 상기 제2빔 스플리터를 투과한 파장의 광의 광경로에 배치되고, 상기 제2촬상부는 상기 제2빔 스플리터에서 반사된 파장의 광의 광경로에 배치될 수 있다.
또한, 상기 접안부에는 비-편광 빔 스플리터(Non-polarized Beam Splitter)인 상기 제1빔 스플리터가 배치되고, 상기 커버부에는 상기 광원부, 상기 제1촬상부, 상기 제2촬상부 및 상기 제2빔 스플리터가 배치될 수 있다.
또한, 상기 광원부는 링형으로 형성되어 링형의 측정광을 출력하며, 상기 제1빔 스플리터에서 반사되어 상기 광원부로 향하는 상기 반사광은 상기 광원부의 내측을 통과하고 상기 제2빔 스플리터에 도달할 수 있다.
본 발명의 일 실시예에 따른 시력 측정 장치 및 이를 포함하는 시력 측정 시스템은 제3자의 도움 없이 피검자가 단독으로 안구의 시력 측정을 할 수 있는 장점이 있다.
본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 시력 측정 장치를 나타낸 사시도이다.
도 2는 본 발명의 일 실시예에 따른 시력 측정 장치를 나타낸 블록 구성도이다.
도 3는 본 발명의 일 실시예에 따른 시력 측정 장치의 안구의 이동에 의해 측정광이 안구의 설정 영역과 정렬되는 과정을 나타낸 개략도이다.
도 4는 본 발명의 일 실시예에 따른 시력 측정 시스템을 나타낸 블록 구성도이다.
도 5는 본 발명의 일 실시예에 따른 시력 측정 시스템에서 피검자에게 측정광과 안구의 설정 영역의 정렬을 위한 안구의 이동을 유도하는 과정을 나타낸 개략도이다.
도 6은 본 발명의 일 실시예에 따른 시력 측정 시스템의 안내 이미지를 나타낸 개략도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야의 통상의 기술자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. 명세서 전체에 걸쳐 동일한 도면 부호는 동일한 구성 요소를 지칭하며, "및/또는"은 언급된 구성요소들의 각각 및 하나 이상의 모든 조합을 포함한다. 비록 "제1", "제2" 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야의 통상의 기술자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 구성요소와 다른 구성요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작시 구성요소들의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들어, 도면에 도시되어 있는 구성요소를 뒤집을 경우, 다른 구성요소의 "아래(below)"또는 "아래(beneath)"로 기술된 구성요소는 다른 구성요소의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 구성요소는 다른 방향으로도 배향될 수 있으며, 이에 따라 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 일 실시예를 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 시력 측정 장치를 나타낸 사시도, 도 2는 본 발명의 일 실시예에 따른 시력 측정 장치를 나타낸 블록 구성도이다.
도 1 내지 도 2를 참조하면, 본 발명의 일 실시예에 따른 시력 측정 장치는 본체(10), 광원부(20), 제1촬상부(30), 제2촬상부(40) 및 제어부(미도시)를 포함한다.
전체적으로, 본 발명의 일 실시예에 따른 시력 측정 장치는 광원부(20)에서 출력된 측정광이 본체(10)에 접안된 피검자의 안구(1)로 투영된 후, 피검자의 안구(1)의 이동에 의해 측정광이 안구(1)의 설정 영역(즉, 동공 또는 홍채)과 정렬된 후, 제어부가 안구(1)에서 반사된 반사광에 포함된 측정광의 영상을 분석하여 안구(1)의 상태를 판단(즉, 안구(1)의 시력을 측정)한다.
따라서 본 발명의 일 실시예에 따른 시력 측정 장치는 측정광과 안구(1)의 설정 영역의 정렬이 피검자의 안구(1)의 이동에 의해 이루어지므로, 제3자의 도움 없이 피검자가 단독으로 안구(1)의 시력 측정을 할 수 있다.
본체(10)는 피검자의 안구(1)가 접안되고, 광원부(20), 제1촬상부(30), 제2촬상부(40), 제1빔 스플리터(60) 및 제2빔 스플리터(70)를 수용하는 역할을 한다. 본체(10)는 망원경 또는 안경 형태로 형성될 수 있으나, 이에 특별히 한정되지 아니한다.
본체(10)는 피검자의 안구(1)가 접안되는 접안부(11)와, 접안부(11) 외의 다른 부분을 커버하는 커버부(12)를 가질 수 있다.
접안부(11)에는 후술할 광원부(20)에서 출력된 측정광이 입사되는데, 이러한 측정광은 접안부(11)에 접안된 안구에 투영된다.
접안부(11)에서 안구(1)가 접안되는 부위에는 안구(1)의 편안한 밀착을 위하여 링형의 쿠션(미도시)이 마련될 수 있다.
접안부(11)는 단일 또는 한 쌍으로 구성될 수 있다. 단, 접안부(11)가 한 쌍으로 구성된 경우, 한 쌍의 접안부(11) 간의 이격 거리와 한 쌍의 안구(1) 간의 간극이 불일치 할 수 있다. 이의 보정을 위하여, 한 쌍의 접안부(11)는 서로 이격된 방향으로 슬라이딩 가능하게 설치되는 것이 바람직하다.
커버부(12)는 본체(10)에서 접안부(11) 외의 다른 부분을 커버한다.
일예로, 커버부(12)는 내부에 수용된 구성 요소의 노출을 방지하고 측정광의 누출을 방지하기 위하여 불투명한 재질로 이루어질 수 있다.
일예로, 커버부(12)에는 피검자의 얼굴에 착용되기 위한 밴드(13) 또는 한 쌍의 안경 다리(미도시)가 설치될 수 있다.
광원부(20)는 접안부(11)에 접안된 안구(1)에 투영되는 측정광을 출력하는 역할을 한다. 이 떄, 광원부(20)가 출력하는 측정광은 안구(1)의 시력 저하를 방지하기 위한 적외선일 수 있으나, 특별히 한정되지 않는다.
일예로, 광원부(20)는 링형으로 형성되어 링형의 측정광을 출력할 수 있으며, 제어부는 안구(1)의 설정 영역을 동공 또는 홍채로 설정할 수 있다.
이 경우, 제어부는 광원부(20)에서 출력된 링형의 측정광과 동공의 테두리 또는 홍채의 테두리의 정렬 여부를 확인하고 정렬된 경우 안구(1)에서 반사되는 반사광에서 측정광의 영상을 분석하여 안구(1)의 상태를 판단할 수 있다.
한편, 안구(1)에 투영되는 측정광은 안구(1)에 수직하게 입사되어야 한다. 그래야, 제어부가 안구(1)에서 수직하게 반사되는 반사광에 포함된 측정광의 영상을 분석하여 안구(1)의 상태를 정확하게 판단할 수 있기 떄문이다. 그런데, 광원부(20)는 커버부(12)에 배치되므로, 안구(1)에 투영되는 측정광이 안구(1)에 수직하게 입사되려면, 안구(1)에 투영되는 측정광의 광경로를 안구(1)와 수직하게 조절해주는 제1빔 스플리터(60)가 필요하다.
제1빔 스플리터(60)는 광원부(20)에서 접안부(11)로 출력되는 측정광의 광경로에 배치되고, 출력된 측정광을 반사시켜서 접안부(11)에 접안된 안구(1)로 수직하게 입사시키고, 접안부(11)에 접안된 안구(1)에서 반사된 반사광을 반사시켜서 광원부(20)의 내측으로 입사시킨다.
이 후, 광원부(20)에 입사된 반사광은 광원부(20)의 내측을 통과한 후 후술할 제2빔 스플리터(70)에 도달한다.
제1촬상부(30)는 안구(1)에서 반사되는 반사광에서 측정광의 영상을 검출하는 역할을 하고, 제2촬상부(40)는 안구(1)에서 반사되는 반사광에서 측정광을 제외한 안구(1)의 영상을 검출하는 역할을 한다
예를들면, 제1촬상부(30)는 안구(1)에서 반사되는 반사광에서 측정광에 속하는 파장을 인식하여 측정광의 영상을 검출하고, 제2촬상부(40)는 안구(1)에서 반사되는 반사광에서 측정광의 파장 외의 다른 파장을 인식하여 안구의 영상을 검출할 수 있다. 여기서 측정광에 속하는 파장은 적외선의 파장일 수 있으며, 측정광의 파장 외의 다른 파장은 가시광의 파장일 수 있다.
안구(1)에서 반사되는 반사광을 측정광에 속하는 파장과 측정광의 파장 외의 다른 파장으로 분할하는 것은 제2빔 스플리터(70)가 수행할 수 있다.
제2빔 스플리터(70)는 광원부(20)의 내측을 통과한 반사광에서 측정광에 속하는 파장을 투과시키고 측정광에 속하는 파장 외의 다른 파장을 반사시키는 역할을 한다. 이러한 제2빔 스플리터(70)는 특정 파장은 투과시키고 특정 파장 외의 다른 파장은 반사시키는 다이크로익 빔 스플리터(Dichroic beam splitter)일 있으나, 특별히 한정되지 않는다.
제1촬상부(30)는 제2빔 스플리터(70)를 투과한 파장의 광(즉, 측정광에 속하는 파장)의 광경로에 배치되어 측정광의 영상을 검출할 수 있고, 제2촬상부(40)는 제2빔 스플리터(70)에서 반사된 파장의 광(즉, 안구(1)에 속하는 파장)의 광경로에 배치되어 안구의 영상을 검출할 수 있다.
제1촬상부(30)는 제2빔 스플리터(70)를 투과한 파장의 광을 제1이미지센서(32)로 집속하는 제1집속렌즈(31)와, 제1집속렌즈(31)에서 집속된 광을 인식하는 제1이미지센서(32)를 가질 수 있다.
제2촬상부(40)는 제2빔 스플리터(70)에서 반사된 파장의 광을 제2이미지센서(42)로 집속하는 제2집속렌즈(41)와, 제2집속렌즈(41)에서 집속된 광을 인식하는 제2이미지센서(42)를 가질 수 있다.
제어부는 제1촬상부(30)에서 검출된 측정광의 영상과 제2촬상부(40)에서 검출된 안구의 영상이 합성된 합성 영상을 생성할 수 있고, 이러한 합성 영상에 기초하여 측정광과 안구(1)의 설정 영역의 정렬 여부를 확인하고 측정광이 안구(1)의 설정 영역과 정렬된 경우 제1촬상부(30)에서 검출된 측정광의 영상을 분석하여 안구(1)의 상태를 판단할 수 있다.
일예로, 제어부는 측정광의 영상에서 안구(1)의 설정 영역의 크기 및 형태를 분석하여, 안구(1)의 굴절력, 난시력, 난시축 등의 상태를 산출하여 안구(1)의 시력을 측정 할 수 있다.
일예로, 제어부는 피검자의 설정에 의해 자동모드 또는 수동모드로 작동될 수 있다. 자동모드는 측정광이 안구(1)의 설정 영역과 정렬된 경우 바로 제1촬상부(30)에서 검출된 측정광의 영상을 즉시 분석하여 안구(1)의 상태를 즉시 판단하는 것이다. 수동모드는 측정광이 안구(1)의 설정 영역과 정렬된 경우라도 피검자의 정렬확인입력을 획득하기 전까지 측정광의 영상을 분석하여 안구(1)의 상태를 판단하는 것을 보류하는 것이다. 이때, 정렬확인입력은 시력 측정 장치에 별도로 구비되는 버튼의 눌림일 수 있다.
일예로, 제어부는 본체(10)에 배치될 수 있다. 여기서, 제어부가 본체(10)에 배치된 경우, 제어부는 제1촬상부(30) 및 제2촬상부와 전기적으로 연결되어 전기적인 신호를 송수신할 수 있다.
접안부(11)에서 제1빔 스플리터(60) 및 접안부(11)의 후방 사이에는 측정광의 초점거리를 조절하기 위한 조절렌즈부(80)가 마련될 수 있다. 예를들어, 조절렌즈부(80)는 유체렌즈, 폴리머 렌즈 및 바달렌즈 하나가 사용될 수 있으며, 단일 또는 다수의 어레이로 배열될 수 있다. 또한, 제1빔 스플리터(60) 및 접안부(110의 전방 사이에는 보정렌즈(90)가 마련될 수 있다.
이하에서는 본 발명의 일 실시예에 따른 시력 측정 장치에 있어서, 안구(1)의 이동에 의해 측정광이 안구(1)의 설정 영역과 정렬되는 과정에 대하여 설명하기로 한다. 이 때, 설명 편의상, 제어부가 설정하는 안구(1)의 설정 영역은 홍채로 정의한다.
도 3는 본 발명의 일 실시예에 따른 시력 측정 장치의 피검자의 안구의 이동에 의해 측정광이 안구의 설정 영역과 정렬되는 과정을 나타낸 개략도이다.
도 3의 상측에 도시된 바와 같이, 측정광이 홍채와 비정렬된 경우, 제어부는 안구(1)의 상태를 판단하지 않는다.
이 때, 제어부는 스피커를 통해 측정광과 홍채의 정렬을 위한 피검자의 안구(1)의 이동 방향을 안내하는 안내 음성이나 안내 이미지를 출력할 수 있다.
이 후, 도 3의 하측에 도시된 바와 같이, 피검자의 안구(1)의 이동에 의해 측정광이 홍채와 정렬된 경우, 제어부는 측정광의 영상을 분석하여 안구(1)의 상태를 판단한다.
이 때, 제어부가 자동모드로 설정된 경우, 제어부는 측정광이 홍채와 정렬된 것을 인식함과 동시에 측정광의 영상을 분석하여 안구(1)의 상태를 판단한다.
또한, 제어부가 수동모드로 설정된 경우, 제어부는 측정광이 안구(1)의 설정 영역과 정렬된 것을 인식하나, 피검자의 정렬확인입력을 획득하기 전까지 안구(1)의 상태를 판단하는 것을 보류한다. 이 후, 제어부는 피검자의 정렬확인입력을 획득한 경우, 안구에서 반사된 반사광에 포함된 측정광을 분석하여 안구(1)의 상태를 판단한다. 이때, 정렬확인입력은 시력 측정 장치에 별도로 구비되는 버튼의 눌림일 수 있다.
도 4는 본 발명의 일 실시예에 따른 시력 측정 시스템을 나타낸 블록 구성도이다.
도 4에 도시된 바와 같이, 본 발명의 일 실시예에 따른 시력 측정 시스템은 피검자의 안구에 측정광이 투영된 형태의 합성 영상을 생성하는 시력 측정 장치 및 시력 측정 장치에서 전송된 합성 영상(51)을 표시하는 표시 장치(50)를 포함한다.
시력 측정 장치는 상술한 시력 측정 장치와 동일하나, 접안부(11)가 다른 형태로 형성될 수 있다.
예를들면, 접안부(11)는 안구(1)의 시선 방향을 따라 관통된 형태로 형성될 수 있다. 더욱 상세하게, 접안부(11)는 본체(10)의 후방으로부터 전방까지 관통된 형태로 형성될 수 있다.
시력 측정 장치가 생성하는 합성 영상(51)은 제1촬상부(30)에서 검출된 측정광의 영상(51a)과 제2촬상부(40)에서 검출된 안구의 영상(51b)이 합성된 합성 영상(51)일 수 있다.
표시 장치(50)는 시력 측정 장치에서 전송된 합성 영상(51)을 화면에 출력하여 피검자가 주시하는 시표로 제공하면서, 피검자가 합성 영상(51) 내에서 측정광을 안구의 설정 영역과 정렬시키게 한다.
피검자의 안구의 이동에 의해 합성 영상(51) 내에서 측정광이 안구의 설정 영역과 정렬된 후, 측정광과 안구의 설정 영역이 정렬된 형태의 최종 합성 영상은 안구의 상태의 판단에 활용될 수 있는데, 예를들면, 시력 측정 장치의 제어부가 최종 합성 영상에 기초하여 안구의 상태를 판단할 수 있다.
일예로, 표시 장치는 모바일, 스마트폰, 모니터, TV 등이 사용될 수 있으나, 특별히 한정되지 아니한다.
표시 장치(50)는 안구(1)의 시선방향에 배치될 수 있다. 구체적으로, 표시 장치(50)는 접안부(11)로부터 안구(1)의 시선 방향으로 이격되게 배치될 수 있다. 즉, 표시 장치(50)는 접안부(11)의 전방에 배치될 수 있다.
한편, 본 시스템에서, 접안부(11)는 표시 장치(50)의 합성 영상(51)에 피검자의 안구(1)를 주시시키기 위한 시선 통로로 활용된다. 따라서 접안부(11)에는 안구(1)의 시선을 왜곡하거나 차단하는 부품이 배치되지 말아야 한다.
그러므로, 접안부(11)에는 비-편광 빔 스플리터(Non-polarized Beam Splitter)인 제1빔 스플리터(60)가 배치되고, 커버부(12)에는 광원부(20), 제1촬상부(30), 제2촬상부(40) 및 제2빔 스플리터(70)가 배치되는 것이 바람직하다.
이러한 비-편광 빔 스플리터인 제1빔 스플리터(60)는 입사광을 소정 비율로 투과 및 반사시킴에 따라, 접안부(11)에 배치되어도, 안구(1)의 시선을 왜곡하거나 차단하는 것을 방지할 수 있다.
접안부(11)에서 제1빔 스플리터(60) 및 접안부(11)의 후방 사이에는 측정광의 초점거리를 조절하기 위한 조절렌즈부(80)가 마련되는데, 이 경우, 접안부(11)를 통해 합성 영상(51)을 주시하는 안구(1)의 시선이 왜곡될 수 있다.
이의 보정을 위하여, 제1빔 스플리터(60) 및 접안부(11)의 말단 사이에는 보정렌즈(90)가 마련될 수 있다. 보정렌즈(90)는 조절렌즈부(80)에 의한 안구(1)의 시선 왜곡을 보정하는 역할을 한다.
이하에서는 본 발명의 일 실시예에 따른 시력 측정 시스템에서 피검자에게 측정광과 안구(1)의 설정 영역의 정렬을 위한 안구(1)의 이동을 유도하는 과정에 대하여 설명하기로 한다. 이 때, 설명 편의상, 안구(1)의 설정 영역은 홍채로 정의한다.
도 5는 본 발명의 일 실시예에 따른 시력 측정 시스템에서 피검자에게 측정광과 안구의 설정 영역의 정렬을 위한 안구의 이동을 유도하는 과정을 나타낸 개략도이다.
도 5의 상측에 도시된 바와 같이, 측정광이 홍채와 비정렬된 경우, 표시 장치(50)에는 측정광이 홍채와 비정렬된 상태를 나타내는 합성 영상(51)이 표시된다. 따라서 접안부(11)를 통해 합성 영상(51)을 주시하는 피검자의 안구(1)에 측정광이 홍채와 비정렬된 상태를 확인시켜서 측정광과 홍채의 정렬을 위한 안구(1)의 이동을 유도하게 된다.
그 결과, 피검자는 측정광과 홍채의 정렬을 위한 안구(1)의 이동을 수행하게 된다.
이 후, 도 5의 하측에 도시된 바와 같이, 안구(1)의 이동에 의해 측정광이 홍채와 정렬된 경우, 표시 장치(50)에는 측정광이 홍채와 정렬된 상태를 나타내는 합성 영상(51)이 표시된다. 따라서 접안부(11)를 통해 합성 영상(51)을 주시하던 피검자의 안구(1)에 측정광이 홍채와 정렬된 상태를 확인시켜서 안구(1)의 이동을 중단을 유도한다.
그 결과, 피검자는 안구(1)의 이동을 중단하게 되고, 제어부는 측정광의 영상(51a)을 분석하여 안구(1)의 상태를 판단한다.
이 때, 제어부가 자동모드로 설정된 경우, 제어부는 측정광이 홍채와 정렬된 것을 인식함과 동시에 측정광의 영상(51a)을 분석하여 안구(1)의 상태를 판단한다.
또한, 제어부가 수동모드로 설정된 경우, 제어부는 측정광이 홍채와 정렬된 것을 인식하나, 피검자의 정렬확인입력을 획득하기 전까지 안구(1)의 상태를 판단하는 것을 보류한다. 이 후, 제어부는 피검자의 정렬확인입력을 획득하면, 측정광의 영상(51a)을 분석하여 안구(1)의 상태를 판단한다. 이때, 정렬확인입력은 시력 측정 장치에 별도로 구비되는 버튼의 눌림이나, 표시 장치(50)에 표시되는 버튼 이미지(53)의 터치 인식일 수 있다.
또한, 제어부는 본체(10) 또는 표시 장치(50)에 설치될 수 있다.
도 6은 본 발명의 일 실시예에 따른 시력 측정 시스템의 안내 이미지를 나타낸 개략도이다.
도 6의 상측을 참조하면, 제어부는 측정광이 안구(1)의 설정 영역과 비정렬된 경우 측정광과 안구(1)의 설정 영역의 정렬을 위한 안구(1)의 이동 방향을 표시하는 안내 이미지(52)를 표시 장치(50)의 합성 영상(51)에 표시할 수 있다. 이러한 안내 이미지(52)는 화살표일 수 있다.
따라서 피검자는 안내 이미지(52)가 표시하는 방향으로 안구(1)를 이동시켜서 측정광을 안구(1)의 설정 영역과 정렬시킬 수 있다.
이 후, 도 6의 하측을 참조하면, 제어부는 측정광이 안구(1)의 설정 영역과 정렬된 경우 안내 이미지(52)를 표시 장치(50)의 합성 영상(51)에서 제거한다.
따라서 피검자는 측정광이 안구(1)의 설정 영역과 정렬된 상태를 확인하여 안구(1)의 이동을 중단할 수 있다.
한편, 본 발명의 일 실시예에 따른 시력 측정 시스템은 시력 측정 장치와 표시 장치(50) 간의 거리를 측정할 수 있다.
일예로, 시력 측정 장치와 표시 장치(50) 간의 거리 측정은 시력 측정 장치에 설치된 거리 센서(미도시)에 의해 이루어질 수 있다. 이러한 거리 센서는 초음파 센서, 적외선 센서, 레이저 센서 등을 포함할 수 있다. 이 때, 제어부는 거리센서로부터 획득된 거리 데이터에 따라 합성 영상(51)의 크기를 조절할 수 있으며, 안구의 상태(즉, 시력 측정)의 판단에 보조 요소로 활용할 수 있다.
다른예로, 시력 측정 장치와 표시 장치(50) 간의 거리 측정은 표시 장치가 스마트폰일 경우, 스마트폰에 내장된 카메라에 의해 획득된 시력 측정 장치의 이미지를 통해 이루어질 수 있다. 예를들어, 스마트폰은 카메라를 통해 획득된 시력 측정 장치의 이미지의 가로 길이 또는 세로 길이와 실제 시력 측정 장치의 가로 길이 또는 세로 길이를 비교하여, 시력 측정 장치와 표시 장치(50) 간의 거리를 측정할 수 있다. 이 때, 제어부는 스마트폰으로부터 획득된 거리 데이터에 따라 합성 영상(51)의 크기를 조절할 수 있으며, 안구의 상태(즉, 시력 측정)의 판단에 보조 요소로 활용할 수 있다.
이상, 첨부된 도면을 참조로 하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 통상의 기술자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 제한적이 아닌 것으로 이해해야만 한다.

Claims (14)

  1. 피검자의 안구가 접안되는 적어도 하나의 접안부를 갖는 본체;
    상기 접안부에 접안된 상기 안구에 투영되는 측정광을 출력하는 광원부;
    상기 안구에서 반사되는 반사광에서 상기 측정광의 영상을 검출하는 제1촬상부;
    상기 안구에서 반사되는 반사광에서 상기 안구의 영상을 검출하는 제2촬상부; 및
    상기 측정광의 영상과 상기 안구의 영상이 합성된 합성 영상에 기초하여 상기 측정광과 상기 안구의 설정 영역의 정렬 여부를 확인하고 정렬된 경우 상기 안구의 상태를 판단하는 제어부를 포함하며,
    상기 측정광과 상기 안구의 설정 영역의 정렬은 상기 안구의 이동에 의해 이루어질 수 있는 것을 특징으로 하는 시력 측정 장치.
  2. 제1항에 있어서,
    상기 광원부에서 출력된 상기 측정광을 상기 접안부에 접안된 상기 안구로 반사시키고, 상기 안구에서 반사되는 상기 반사광을 상기 광원부로 반사시키는 제1빔 스플리터; 및
    상기 광원부를 통과한 상기 반사광에서, 상기 측정광에 속하는 파장을 투과시키고 상기 측정광에 속하는 파장 외의 다른 파장을 반사시키는 제2빔 스플리터를 더 포함하며,
    상기 제1촬상부는 상기 제2빔 스플리터를 투과한 파장의 광의 광경로에 배치되고,
    상기 제2촬상부는 상기 제2빔 스플리터에서 반사된 파장의 광의 광경로에 배치되는 것을 특징으로 하는 시력 측정 장치.
  3. 제2항에 있어서,
    상기 광원부는 링형으로 형성되어 링형의 측정광을 출력하며,
    상기 제1빔 스플리터에서 반사되어 상기 광원부로 향하는 상기 반사광은 상기 광원부의 내측을 통과하고 상기 제2빔 스플리터에 도달하는 것을 특징으로 하는 시력 측정 장치.
  4. 제2항에 있어서,
    상기 제1빔 스플리터 및 상기 접안부에 접안된 상기 안구 사이에 마련되고 상기 측정광의 초점거리를 조절하기 위한 조절렌즈부를 더 포함하는 것을 특징으로 하는 시력 측정 장치.
  5. 제1항에 있어서,
    상기 안구의 설정 영역은,
    동공 또는 홍채인 것을 특징으로 하는 시력 측정 장치.
  6. 제1항에 있어서,
    상기 측정광은,
    적외선(Infrared Ray)인 것을 특징으로 하는 시력 측정 장치.
  7. 피검자의 안구에 측정광이 투영된 형태의 합성 영상을 생성하는 시력 측정 장치; 및
    상기 시력 측정 장치에서 전송된 상기 합성 영상을 화면에 출력하여 상기 피검자가 주시하는 시표로 제공하면서, 상기 합성 영상 내에서 상기 측정광을 상기 안구의 설정 영역과 정렬시키게 하는 표시 장치를 포함하며,
    상기 측정광이 상기 안구의 설정 영역과 정렬된 형태의 최종 합성 영상은 상기 안구의 상태의 판단에 활용될 수 있는 것을 특징으로 하는 시력 측정 시스템.
  8. 제7항에 있어서,
    상기 시력 측정 장치는,
    피검자의 안구가 접안되는 적어도 하나의 접안부를 갖는 본체;
    상기 접안부에 접안된 상기 안구에 투영되는 측정광을 출력하는 광원부;
    상기 안구에서 반사되는 반사광에서 상기 측정광의 영상을 검출하는 제1촬상부;
    상기 안구에서 반사되는 반사광에서 상기 안구의 영상을 검출하는 제2촬상부; 및
    상기 측정광의 영상과 상기 안구의 영상이 합성된 합성 영상을 생성하여 상기 표시 장치로 전송하고 상기 최종 합성 영상에 기초하여 상기 안구의 상태를 판단하는 제어부를 포함하는 것을 특징으로 하는 시력 측정 시스템.
  9. 제8항에 있어서,
    상기 접안부는, 상기 안구의 시선방향을 따라 관통된 형태로 형성되며,
    상기 표시 장치는, 상기 안구의 시선방향에 배치되는 것을 특징으로 하는 시력 측정 시스템.
  10. 제8항에 있어서,
    상기 제어부는,
    상기 측정광이 상기 안구의 설정 영역과 비정렬된 경우 상기 측정광과 상기 안구의 설정 영역의 정렬을 위한 상기 안구의 이동 방향을 표시하는 안내 이미지를 상기 합성 영상에 표시하는 것을 특징으로 하는 시력 측정 시스템.
  11. 제10항에 있어서,
    상기 안내 이미지는,
    화살표인 것을 특징으로 하는 시력 측정 시스템.
  12. 제8항에 있어서,
    상기 시력 측정 장치는,
    상기 광원부에서 출력된 상기 측정광을 상기 접안부에 접안된 상기 안구로 반사시키고, 상기 안구에서 반사되는 상기 반사광을 상기 광원부로 반사시키는 제1빔 스플리터; 및
    상기 광원부를 통과한 상기 반사광에서, 상기 측정광에 속하는 파장을 투과시키고 상기 측정광에 속하는 파장 외의 다른 파장을 반사시키는 제2빔 스플리터를 더 포함하며,
    상기 제1촬상부는 상기 제2빔 스플리터를 투과한 파장의 광의 광경로에 배치되고,
    상기 제2촬상부는 상기 제2빔 스플리터에서 반사된 파장의 광의 광경로에 배치되는 것을 특징으로 하는 시력 측정 시스템.
  13. 제12항에 있어서,
    상기 접안부에는 비-편광 빔 스플리터(Non-polarized Beam Splitter)인 상기 제1빔 스플리터가 배치되고,
    상기 커버부에는 상기 광원부, 상기 제1촬상부, 상기 제2촬상부 및 상기 제2빔 스플리터가 배치되는 것을 특징으로 하는 시력 측정 시스템.
  14. 제12항에 있어서,
    상기 광원부는 링형으로 형성되어 링형의 측정광을 출력하며,
    상기 제1빔 스플리터에서 반사되어 상기 광원부로 향하는 상기 반사광은 상기 광원부의 내측을 통과하고 상기 제2빔 스플리터에 도달하는 것을 특징으로 하는 시력 측정 시스템.
PCT/KR2020/016440 2020-11-20 2020-11-20 시력 측정 장치 및 이를 포함하는 시력 측정 시스템 WO2022107922A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0156227 2020-11-20
KR1020200156227A KR102480635B1 (ko) 2020-11-20 2020-11-20 시력 측정 장치 및 이를 포함하는 시력 측정 시스템

Publications (1)

Publication Number Publication Date
WO2022107922A1 true WO2022107922A1 (ko) 2022-05-27

Family

ID=81709083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/016440 WO2022107922A1 (ko) 2020-11-20 2020-11-20 시력 측정 장치 및 이를 포함하는 시력 측정 시스템

Country Status (2)

Country Link
KR (1) KR102480635B1 (ko)
WO (1) WO2022107922A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231753A (ja) * 2000-02-24 2001-08-28 Canon Inc 検眼装置
KR101043202B1 (ko) * 2008-10-24 2011-06-21 주식회사 휴비츠 마이어링 광 및 포커스 광을 이용한 검안기의 위치 조정 방법 및 이를 이용한 검안기
US20180078131A1 (en) * 2013-07-02 2018-03-22 Massachusetts Institute Of Technology Apparatus and Method of Determining an Eye Prescription
KR101942465B1 (ko) * 2018-01-30 2019-01-28 주식회사 루티헬스 망막 촬영 장치 및 이를 이용한 망막 촬영 방법
WO2020061546A1 (en) * 2018-09-21 2020-03-26 MacuLogix, Inc. Methods, apparatus, and systems for ophthalmic testing and measurement

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101096086B1 (ko) 2010-05-28 2011-12-19 주식회사 피치나광학 터치패드를 이용한 검안기 제어 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001231753A (ja) * 2000-02-24 2001-08-28 Canon Inc 検眼装置
KR101043202B1 (ko) * 2008-10-24 2011-06-21 주식회사 휴비츠 마이어링 광 및 포커스 광을 이용한 검안기의 위치 조정 방법 및 이를 이용한 검안기
US20180078131A1 (en) * 2013-07-02 2018-03-22 Massachusetts Institute Of Technology Apparatus and Method of Determining an Eye Prescription
KR101942465B1 (ko) * 2018-01-30 2019-01-28 주식회사 루티헬스 망막 촬영 장치 및 이를 이용한 망막 촬영 방법
WO2020061546A1 (en) * 2018-09-21 2020-03-26 MacuLogix, Inc. Methods, apparatus, and systems for ophthalmic testing and measurement

Also Published As

Publication number Publication date
KR20220070086A (ko) 2022-05-30
KR102480635B1 (ko) 2022-12-26

Similar Documents

Publication Publication Date Title
WO2018030818A1 (ko) 사시 자동측정기구
JPS6324927A (ja) 眼科測定装置
WO2020116669A1 (ko) 가상현실 기반의 휴대용 안진 검사장치 및 이를 이용한 검진 방법
JPH04200436A (ja) 眼科装置
WO2020050497A1 (ko) 가상현실 기반의 시야검사 방법 및 시스템
WO2018143651A1 (ko) 망막 촬영 장치 및 이를 이용한 망막 촬영 방법
WO2020050496A1 (ko) 검안용 헤드 마운티드 디스플레이 장치 및 이를 이용한 안과검사방법
WO2022107922A1 (ko) 시력 측정 장치 및 이를 포함하는 시력 측정 시스템
WO2021149942A1 (ko) 용접 정보 제공 장치
KR101911441B1 (ko) 휴대용 망막 촬영 장치 및 이를 이용한 망막 촬영 방법
WO2020209418A1 (ko) 안저 촬영 장치 및 이를 이용하는 안저 촬영 방법
JPH0315434A (ja) 眼屈折計
JPH08224213A (ja) 眼科装置
WO2015163616A1 (ko) 검영장치
JPH0646996A (ja) 検眼装置
JPH08182651A (ja) 眼科装置
JPH09253049A (ja) 検眼装置
JPH11347016A (ja) 撮像装置
JPH11197108A (ja) 視機能検査装置
JPH0767833A (ja) 視野計
JP2960739B2 (ja) 眼科装置
CN219661671U (zh) 一种瞳距测试仪
JP3027513B2 (ja) 眼屈折測定装置
JP7443831B2 (ja) 検眼システム、検眼用コントローラ、および検眼プログラム
WO2024076085A1 (ko) 원격진료용 세극등 현미경 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962528

Country of ref document: EP

Kind code of ref document: A1