<概要>
本開示における実施形態の概要について説明する。以下の<>にて分類された項目は、独立または関連して利用されうる。
本実施形態に係る検眼システム(例えば、検眼システム1)は、被検眼の光学特性を自覚的に測定するための検眼システムである。例えば、被検眼の光学特性は、被検眼の眼屈折力(例えば、球面度数、円柱度数、乱視軸角度、プリズム量、等)、両眼視機能(例えば、プリズム量、立体視機能、等)コントラスト感度、等の少なくともいずれかであってもよい。
検眼システムは、検眼装置(例えば、検眼装置100)を備えてもよい。例えば、検眼装置は、額当て(例えば、額当て121)と、後述の矯正手段と、を有してもよい。なお、額当ては矯正手段に設けられてもよく、被検者の頭部を額当てに当接させることで、被検眼が矯正手段に対する所定の位置に配置される。もちろん、検眼装置は、額当てや矯正手段とは異なる構成を有してもよい。例えば、後述の視標呈示手段、第1撮像手段、第2撮像手段、等の構成を有してもよい。
また、検眼システムは、後述の操作手段を備えてもよい。例えば、操作手段は、後述の表示制御手段を有してもよい。もちろん、操作手段は、表示制御手段とは異なる構成を有してもよい。
本実施形態では、検眼システムにおいて、検眼装置が視標呈示手段、矯正手段、第1撮像手段、および第2撮像手段を有し、操作手段が表示制御手段を有する構成としてもよい。
検査装置および検眼用コントローラは、通信手段を備えてもよい。例えば、検査装置および検眼用コントローラは、通信手段を用いることで直接的に接続され、互いに通信してもよい。また、例えば、検査装置および検眼用コントローラは、通信手段を用いることで間接的に接続され、互いに通信してもよい。この場合には、検査装置と検眼用コントローラとが、共有サーバ(例えば、共有サーバ300)を介して接続される構成としてもよい。
<視標呈示手段>
本実施形態において、検眼システムは、視標呈示手段を備える。視標呈示手段は、被検眼に向けて視標光束を出射する。
視標呈示手段は、ディスプレイ(例えば、ディスプレイ161)であってもよい。この場合、LCOS、LCD、有機EL、等のいずれかを用いることができる。また、視標呈示手段は、光源およびDMD(Digital Micromirror Device)であってもよい。また、視標呈示手段は、光源および視標板であってもよい。
視標呈示手段からの視標光束は、被検眼に向けて直接的に出射されてもよい。また、視標呈示手段からの視標光束は、投影光学系(例えば、投影光学系160)を介して、被検眼に向けて間接的に導光されてもよい。投影光学系は、視標光束を経由させるための光学部材を、少なくとも1つ有してもよい。例えば、レンズ、ミラー、等を有してもよい。
例えば、検眼システムは、検眼装置とは別に、視標呈示装置として視標呈示手段を有してもよい。また、例えば、検眼システムは、検眼装置を構成する一部の部材として、視標呈示手段を有してもよい。この場合には、検眼装置に視標呈示手段が設けられてもよい。
<矯正手段>
本実施形態において、検眼システムは、矯正手段を備える。矯正手段は、被検眼の眼前に配置され、視標光束の光学特性を変化させる。例えば、視標光束の光学特性は、視標光束の球面度数、円柱度数、乱視軸角度、プリズム量、等の少なくともいずれかであってもよい。例えば、視標呈示手段から出射した視標光束は、矯正手段を介して、被検眼に導光される。
矯正手段は、矯正光学系を備えてもよい。矯正光学系は、視標光束の光学特性を変化させることができる構成であればよい。一例として、矯正光学系は、光学素子(例えば、光学素子133)を有し、光学素子を制御することによって、視標光束の光学特性を変化させてもよい。例えば、光学素子は、球面レンズ、円柱レンズ、クロスシリンダレンズ、ロータリプリズム、波面変調素子、可変焦点レンズ、等の少なくともいずれかであってもよい。もちろん、光学素子は、これらとは異なってもよい。
本実施形態では、被検眼の眼前に光学素子を配置する眼屈折力測定ユニット(例えば、眼屈折力測定ユニット120)が、矯正手段として用いられる。例えば、眼屈折力測定ユニットは、光学素子として可変焦点レンズを有し、可変焦点レンズの屈折力を変化させることで、被検眼を矯正してもよい。また、例えば、眼屈折力測定ユニットは、同一円周上に複数の光学素子を配置したレンズディスク(例えば、レンズディスク131)と、このレンズディスクを回転させるための駆動手段(例えば、駆動部134)と、を有し、駆動手段を駆動させて光学素子を切り換えることで、被検眼を矯正してもよい。もちろん、眼屈折力測定ユニットは、可変焦点レンズと、レンズディスクおよび駆動手段と、を有し、これらを制御することで、被検眼を矯正してもよい。
<操作手段>
本実施形態において、検眼システムは、操作手段(例えば、コントローラ200)を備える。操作手段は、視標呈示手段および矯正手段の少なくともいずれかを制御する操作信号を入力する。
操作手段は、検者からの操作指示を受け付けることができればよい。すなわち、操作手段は、検者による入力が可能であればよい。一例として、操作手段は、スイッチ、タッチパネル、マウス、キーボード、等の少なくともいずれかのユーザーインターフェイスであってもよい。なお、操作手段がタッチパネルである場合は、操作手段が表示手段を兼ねる。
例えば、操作手段は、視標呈示手段に表示する視標の種類や大きさを切り換える操作信号、視標の位置を変更する操作信号、視標の呈示距離を変更する操作信号、等の少なくともいずれかの操作信号を入力することができる。また、例えば、操作手段は、被検眼の眼前に配置する光学素子の種類を切り換える操作信号、被検眼を矯正する矯正度数を変更する操作信号、被検眼に対する矯正手段の位置を変更する操作信号、等の少なくともいずれかの操作信号を入力することができる。
もちろん、操作手段は、視標呈示手段および矯正手段とは異なる手段を制御する操作信号を入力することができてもよい。例えば、検査室内を撮影する撮影手段を制御する操作信号を入力することができてもよい。
例えば、操作手段は、複数の視標呈示手段の操作において兼用されてもよい。この場合、操作手段は、1つの検眼システムが有する複数の視標呈示手段を操作するものであってもよい。また、この場合、操作手段は、複数の検眼システムが各々に有する視標呈示手段を操作するものであってもよい。同様に、例えば、操作手段は、複数の矯正手段の操作において兼用されてもよい。この場合、操作手段は、1つの検眼システムが有する複数の矯正手段を操作するものであってもよい。また、この場合、操作手段は、複数の検眼システムが各々に有する矯正手段を操作するものであってもよい。
例えば、検眼システムは、少なくとも第1操作手段(例えば、コントローラ200)を備えてもよい。また、例えば、検眼システムは、第1操作手段と、第2操作手段(例えば、コントローラ400)と、を備えてもよい。この場合、第1操作手段は、検者による入力を可能とし、第2操作手段は、検者または被検者の動作を補助する補助者による入力を可能としてもよい。
<第1取得手段>
本実施形態において、検眼システムは、第1取得手段(例えば、制御部170)を備える。第1取得手段は、被検眼が撮像された第1画像であって、被検眼の瞳孔間距離を確認するための第1画像を取得する。なお、被検眼の瞳孔間距離とは、左眼の瞳孔中心位置と、右眼の瞳孔中心位置と、における左右方向の距離である。
例えば、第1画像は、左眼および右眼の瞳孔中心位置と、左眼および右眼に対応する矯正手段の光学素子と、の位置を確認することができる画像であればよい。一例として、第1画像は、被検眼の正面方向(略正面方向)から、被検眼が矯正手段を介して撮像された画像であってもよい。なお、第1画像は、左眼と右眼がともに撮像された1枚の画像でもよい。また、第1画像は、左眼と右眼が各々に撮像された2枚の画像でもよい。
例えば、検眼システムは、被検眼を正面方向から撮像する第1撮像手段(例えば、撮像素子165)を備えてもよい。この場合、第1取得手段は第1撮像手段を兼ね、第1撮像手段によって第1画像を撮像することで、第1画像を取得してもよい。例えば、第1撮像手段は、被検眼の瞳孔間距離を確認できる第1画像を撮像することが可能であれば、検眼システムにおけるいずれの位置に配置されてもよい。一例として、第1撮像手段は、検眼装置の外部に設けられてもよい。また、一例として、第1撮像手段は、検眼装置が有する光学系と一体的に設けられてもよい。この場合、投影光学系、矯正光学系、等と一体的に設けられてもよい。
例えば、第1撮像手段は、被検眼を動画として撮像してもよい。つまり、第1撮像手段は、被検眼をリアルタイムに撮像してもよい。また、第1撮像手段は、被検眼を静止画として撮像してもよい。この場合、第1撮像手段は、一定時間毎(例えば、1秒間隔毎)にキャプチャしてもよい。
なお、例えば、検眼システムは、必ずしも前述の第1撮像手段を備えていなくてもよい。この場合、第1取得手段は、検眼システムとは異なる撮像手段(例えば、監視カメラ等)によって撮像された第1画像を受信することによって、第1画像を取得してもよい。すなわち、第1取得手段が、第1画像を受信する受信部として機能してもよい。
<第2取得手段>
本実施形態において、検眼システムは、第2取得手段(例えば、制御部170)を備える。第2取得手段は、被検眼が撮像された第2画像であって、被検眼の角膜頂点間距離を確認するための第2画像を取得する。なお、被検眼の角膜頂点間距離とは、被検眼の角膜頂点位置と、被検眼の最前に配置された光学素子と、における前後方向の距離である。
例えば、第2画像は、被検眼の角膜頂点位置と、矯正手段の光学素子と、の位置を確認することができる画像であればよい。一例として、第2画像は、被検眼の側面方向(略側面方向)から、被検眼が撮像された画像であってもよい。なお、第2画像は、左眼と右眼のいずれかが撮像された1枚の画像でもよい。また、第2画像は、左眼と右眼が各々に撮像された2枚の画像でもよい。
例えば、検眼システムは、被検眼を側面方向から撮像する第2撮像手段(例えば、撮像素子155)を備えてもよい。この場合、第2取得手段は第2撮像手段を兼ね、第2撮像手段によって第2画像を撮像することで、第2画像を取得してもよい。例えば、第2撮像手段は、被検眼の角膜頂点間距離を確認できる第2画像を撮像することが可能であれば、検眼システムにおけるいずれの位置に配置されてもよい。一例として、第2撮像手段は、検眼装置の外部に設けられてもよい。また、一例として、第1撮像手段は、検眼装置が有する光学系と一体的に設けられてもよい。この場合、照準光学系等と一体的に設けられてもよい。
例えば、第2撮像手段は、被検眼を動画として撮像してもよい。つまり、第2撮像手段は、被検眼をリアルタイムに撮像してもよい。また、第2撮像手段は、被検眼を静止画として撮像してもよい。この場合、第2撮像手段は、一定時間毎(例えば、1秒間隔毎)にキャプチャしてもよい。
なお、例えば、検眼システムは、必ずしも前述の第2撮像手段を備えていなくてもよい。この場合、第2取得手段は、検眼システムとは異なる撮像手段(例えば、監視カメラ等)によって撮像された第2画像を受信することによって、第2画像を取得してもよい。すなわち、第2取得手段が、第2画像を受信する受信部として機能してもよい。
<第3取得手段>
本実施形態において、検眼システムは、第3取得手段(例えば、制御部170)を備える。第3取得手段は、被検者の頭部に対する額当ての位置を確認するための第3画像を取得する。
例えば、第3画像は、被検者の頭部と額当てとの位置を確認することができる画像であればよい。一例として、第3画像は、被検者が上面方向(略上面方向)から撮像された画像であってもよいし、被検者が側面方向から撮像された画像であってもよい。また、一例として、第3画像は、後述の検出手段によって検出された検出結果に基づく検出情報を示す画像であってもよい。例えば、検出情報は、検出結果そのもの(つまり、被検者の頭部が額当てに当接したか否か)であってもよい。また、例えば、検出情報は、検出結果を表す記号であってもよい。また、例えば、検出情報は、検者の動作を誘導するための情報であってもよい。
例えば、検眼システムは、被検者を上面方向または側面方向から撮像する第3撮像手段を備えてもよい。この場合、第3取得手段は第3撮像手段を兼ね、第3撮像手段によって第3画像を撮像することで、第3画像を取得してもよい。例えば、第3撮像手段は、被検者の頭部と額当てとの位置を確認できる第3画像を撮像することが可能であれば、検眼システムにおけるいずれの位置に配置されてもよい。一例として、第1撮像手段は、検眼装置の外部に設けられてもよいし、検眼装置が有する光学系と一体的に設けられてもよい。
例えば、第3撮像手段は、被検眼を動画として撮像してもよい。つまり、第3撮像手段は、被検眼をリアルタイムに撮像してもよい。また、第3撮像手段は、被検眼を静止画として撮像してもよい。この場合、第3撮像手段は、一定時間毎(例えば、1秒間隔毎)にキャプチャしてもよい。
なお、例えば、検眼システムは、必ずしも前述の第3撮像手段を備えていなくてもよい。この場合、第3取得手段は、検眼システムとは異なる撮像手段(例えば、監視カメラ等)によって撮像された第3画像を受信することによって、第3画像を取得してもよい。すなわち、第3取得手段が、第3画像を受信する受信部として機能してもよい。
<表示制御手段>
本実施形態において、検眼システムは、表示制御手段(例えば、制御部280)を備える。表示制御手段は、視標呈示手段および矯正手段の少なくともいずれかを制御する操作信号を入力するための操作画像と、被検眼の瞳孔間距離を確認するための第1画像および被検眼の角膜頂点間距離を確認するための第2画像の少なくとも一方と、を表示手段に表示可能とさせる。これによって、自覚式検査の開始時および自覚式検査の途中にて、操作画像から操作信号を入力しながら第1画像や第2画像を確認することができる。例えば、検者と被検者が離れていても、被検眼と矯正手段との位置合わせが容易になり、被検眼が適切な位置に配置されることで、自覚式検査が精度よく実施される。
表示制御手段は、さらに、被検者の頭部に対する額当ての位置を確認するための第3画像を表示手段に表示可能とさせてもよい。なお、表示制御手段は、第3画像として、第3撮像手段により撮像された撮像画像を表示させてもよい。また、表示制御手段は、第3画像として、後述の検出手段の検出結果に基づく検出情報を表示させてもよい。操作画像と、第1画像と、第2画像と、に加えて第3画像を表示させることで、被検眼に対する矯正手段の位置の適否が判断しやすくなる。特に、第2画像から確認することが可能な被検眼の角膜頂点間距離の適否が、第3画像を用いることで判断しやすくなる。
表示制御手段は、操作画像と、第1画像と、第2画像と、の少なくともいずれかを、表示手段の画面へ切り換え可能に表示させてもよい。もちろん、表示制御手段は、さらに第3画像を切り換え可能に表示させてもよい。一例として、各々の画像は、順に切り換え表示されてもよい。また、一例として、操作画像は常に表示され、第1画像と第2画像は順に切り換え表示されてもよい。これらの場合、検者が操作手段を操作することで、操作信号に基づき切り換え表示がなされてもよい。
また、表示制御手段は、操作画像と、第1画像と、第2画像と、を表示手段の同一画面へ表示させてもよい。もちろん、表示制御手段は、さらに第3画像を表示手段の同一画面へ表示させてもよい。なお、同一画面とは、一方の表示手段の画面を他方の表示手段の画面に拡張させる等、複数の表示手段を用いる場合を含み得る。これによって、操作画像から操作信号を入力しながら、第1画像、第2画像、および第3画像の少なくともいずれかを確認することが、より容易になる。
表示制御手段は、後述の出力手段からの出力信号に基づいて、後述の判定手段の判定結果に基づく判定情報を表示させてもよい。例えば、判定情報は、判定結果そのもの(つまり、被検眼に対して光学素子が適切に配置されているか否か)であってもよい。また、例えば、判定情報は、判定結果を表す記号であってもよい。また、例えば、判定情報は、検者の動作を誘導するための情報であってもよい。これによって、検者が自覚式検査に不慣れな場合であっても、第1画像および第2画像とともに判定情報を確認することで、被検眼が適切な位置にあるかを容易に判断することができる。
表示制御手段は、第1画像と第2画像との少なくともいずれかの表示と非表示とを制御するための操作信号に基づき、各々の画像の表示と非表示とを制御してもよい。
一例として、表示制御手段は、操作手段の操作によって入力される操作信号に基づいて、第1画像と第2画像との少なくともいずれかの表示と非表示とを切り換えてもよい。もちろん、表示制御手段は、操作手段の操作によって入力される操作信号に基づいて、さらに第3画像の表示と非表示とを切り換えてもよい。これによって、例えば、各々の画像を必要に応じて表示させ、被検眼と矯正手段との位置を確認することができ、自覚式検査が精度よく実施される。
また、一例として、表示制御手段は、後述の切換手段によって所定の検査モードが設定されることで出力される操作信号に基づいて、各々の画像の表示と非表示とを切り換えてもよい。もちろん、表示制御手段は、所定の検査モードの設定による操作信号に基づいて、さらに第3画像の表示と非表示とを切り換えてもよい。例えば、本実施例形態では、所定の検査モードが設定された場合に、第1画像と前記第2画像との少なくともいずれか(あるいは、第1画像、第2画像、および第3画像の少なくともいずれか)が表示される。これによって、所定の検査モードにおいて、各々の画像の確認を促すことができる。例えば、被検眼と矯正手段との位置が検査の精度に影響を与えやすいモードで、各々の画像の確認を促すことができる。
例えば、表示制御手段は、被検眼のプリズム量を測定するプリズム検査モード、または、被検眼の乱視度数を測定する乱視検査モード、が設定された場合、少なくとも第1画像を表示させてもよい。もちろん、第1画像とともに、第2画像と第3画像との少なくともいずれかを表示させてもよい。これによって、特に、被検眼の瞳孔中心位置と矯正手段の光学素子との位置が検査の精度に影響を与えやすいモードで、第1画像の確認を促すことができる。
例えば、表示制御手段は、被検眼の球面度数を測定する球面検査モードが設定された場合、少なくとも第2画像を表示させてもよい。もちろん、第2画像とともに、第1画像と第3画像との少なくともいずれかを表示させてもよい。これによって、特に、被検眼の角膜頂点位置と矯正手段の光学素子との位置が検査の精度に影響を与えやすいモードで、第2画像の確認を促すことができる。
<検出手段>
本実施形態において、検眼システムは、検出手段(例えば、検出器123)を備える。検出手段は、被検者の頭部が額当てに当接したか否かを検出する。
例えば、検出手段は、被検者の頭部と額当てとの当接を検出することが可能な、種々のセンサであってもよい。例えば、光センサ、圧力センサ、荷重センサ、等が利用されてもよい。この場合、検出手段は、検知信号に基づいて、被検者の頭部と額当てとの当接を検出することができる。
一例として、荷重センサは、外部からの荷重を検知した際に、その荷重を電気抵抗値に変換して出力する。このため、電位抵抗値の出力の有無(言い換えると、検知信号の出力の有無)に基づいて、被検者の頭部と額当てとの当接を検出することができる。例えば、電位抵抗値の出力があれば、被検者の頭部が額当てに当接していると検出される。また、例えば、電位抵抗値の出力がなければ、被検者の頭部が額当てに当接していないと検出される。
<判定手段>
本実施形態において、検眼システムは、判定手段(例えば、制御部170)を備える。判定手段は、第1画像および第2画像の少なくともいずれかを解析し、被検眼の瞳孔間距離および角膜頂点間距離の少なくともいずれかの適否を判定する。例えば、判定手段は、検眼装置に設けられてもよいし、検眼用コントローラに設けられてもよい。
判定手段は、第1画像から、被検眼の瞳孔中心位置と、光学素子の中心位置と、を少なくとも検出してもよい。例えば、判定手段は、これらの位置にずれがないときは、被検眼に対する光学素子の位置が適切であると判定してもよい。つまり、被検眼の瞳孔間距離と、左眼および右眼に対応する光学素子の距離と、が一致しており、被検眼に対する光学素子の位置が適切であると判定してもよい。また、例えば、判定手段は、これらの位置にずれがあるときは、被検眼に対する光学素子の位置が不適切であると判定してもよい。つまり、被検眼の瞳孔間距離と、左眼および右眼に対応する光学素子の距離と、が一致しておらず、被検眼に対する光学素子の位置が不適切であると判定してもよい。
例えば、被検眼の瞳孔中心位置と、光学素子の中心位置と、のずれには量許容範囲が設けられてもよい。判定手段は、ずれが許容範囲におさまるか否かに基づいて、被検眼に対する光学素子の位置の適否を判定してもよい。
判定手段は、第2画像から、被検眼の角膜頂点位置と、光学素子の位置と、を少なくとも検出してもよい。例えば、判定手段は、これらが所定の距離をあけて位置するときは、被検眼に対する光学素子の位置が適切であると判定してもよい。つまり、被検眼の角膜頂点位置から所定の距離で光学素子が配置されており、被検眼に対する光学素子の位置が適切であると判定してもよい。また、例えば、判定手段は、これらが所定の距離とは異なる距離をあけて位置するときは、被検眼に対する光学素子の位置が不適切であると判定してもよい。つまり、被検眼の角膜頂点位置から所定の距離よりも長い距離か、あるいは短い距離で光学素子が配置されており、被検眼に対する光学素子の位置が不適切であると判定してもよい。
例えば、被検眼の角膜頂点位置と、光学素子の位置と、の距離には量許容範囲が設けられてもよい。判定手段は、距離が許容範囲におさまるか否かに基づいて、被検眼に対する光学素子の位置の適否を判定してもよい。
なお、判定手段は、第3画像が第3撮像手段により撮像された撮像画像であれば、第3画像を解析してもよい。例えば、判定手段は、被検者の頭部と額当てが当接するときは、被検眼に対する光学素子の位置が適切であると判定してもよい。また、例えば、判定手段は、被検者の頭部と額当てが当接しないときは、被検眼に対する光学素子の位置が不適切であると判定してもよい。
<出力手段>
本実施形態において、検眼システムは、出力手段(例えば、制御部280)を備える。出力手段は、判定手段の判定結果に基づく判定情報を出力する。例えば、これによって、検者が自覚式検査に不慣れな場合であっても、出力手段によって出力された判定情報を確認することで、被検眼が適切な位置にあるかを容易に判断することができる。
例えば、出力手段は、表示手段(例えば、モニタ220)への表示、音声ガイドの発生、メモリやサーバへの送信、プリンタ等への印刷、外部装置への送信、等の少なくともいずれかによって、判定情報を出力してもよい。
<切換手段>
本実施形態において、検眼システムは、切換手段(例えば、制御部170)を備える。切換手段は、被検眼に対する検査モードを切り換える。例えば、切換手段は、操作者が操作手段を操作して入力される操作信号に基づいて、検査モードを切り換えてもよい。また、例えば、切換手段は、設定された検眼プログラム等に基づいて、検査モードを切り換えてもよい。
例えば、所定の検査モードは、プリズム検査モードであってもよい。プリズム検査モードでは、被検眼の眼前に、少なくともプリズムレンズが配置されてもよい。また、例えば、所定の検査モードは、乱視検査モードであってもよい。乱視検査モードでは、被検眼の眼前に、円柱レンズ、クロスシリンダレンズ、オートクロスシリンダレンズ等の少なくともいずれかが配置されてもよい。また、例えば、所定の検査モードは、被検眼の球面度数を測定する球面検査モードであってもよい。球面検査モードでは、被検眼の眼前に、少なくとも球面レンズが配置されてもよい。
なお、本開示は、本実施形態に記載する検眼システムに限定されない。例えば、上記実施形態の機能を行う端末制御ソフトウェア(プログラム)を、ネットワークまたは各種の記憶媒体等を介して、検眼システムに供給し、検眼システムの制御装置(例えば、CPU等)がプログラムを読み出して実行することも可能である。
<実施例>
本実施形態に関わる検眼システムの一実施例を図面に基づいて説明する。
図1は、検眼システム1の一例である。検眼システム1は、自覚式検眼装置100(以下、検眼装置100)、検眼用コントローラ200(以下、コントローラ200)、等を備える。検眼装置100とコントローラ200とは、図示なき通信部を備え、有線あるいは無線のネットワークを介して、互いに接続される。
例えば、検眼システム1では、検眼装置100とコントローラ200とが、共有サーバ300を介して接続される。共有サーバ300は、検眼装置100のから制御指令を受けて、コントローラ200を制御する。また、共有サーバ300は、コントローラ200から制御指令を受けて、検眼装置100を制御する。なお、共有サーバ300は、必ずしも必須の構成ではなく、検眼装置100からの制御指令をコントローラ200が受信してもよいし、コントローラ200からの制御指令を検眼装置100が受信してもよい。
図2は、検眼システム1の使用例である。図2では、被検者Sと、被検者Sを補助する補助者Aと、が居る検査室R1に検眼装置100を設置し、検者Dが居る観察室R2にコントローラ200を配置する場合を例に挙げる。つまり、検者Dが、検眼装置100を検者用に設けられたコントローラ200で遠隔操作する場合を例に挙げる。
なお、検査室R1には、補助者Aが検眼装置100を操作する、補助者用に設けられたコントローラ400が設置されてもよい。検眼装置100における各動作に対して、コントローラ200を用いて制御することができる動作と、コントローラ400を用いて制御することができる動作と、は予め割り振られていてもよい。また、検査室R1には、検査室R1内を撮影する撮影カメラ500が設置されてもよい。また、観察室R2には、撮影カメラ500の映像を表示するモニタ600が設置されてもよい。
<検眼装置>
図3は、検眼装置100の概略図である。例えば、検眼装置100は、筐体110、呈示窓111、保持アーム112、観察窓113、眼屈折力測定ユニット120(以下、測定ユニット120)、制御部170(図7参照)、等を備える。
筐体110の正面には、呈示窓111が設けられる。筐体110の内部には、後述する投影光学系160が収納される。筐体110の背面には、観察窓113が設けられる。
呈示窓111は、被検眼に視標を呈示するための窓である。呈示窓111は、投影光学系160における視標光束を透過させ、呈示窓111を介した視標光束を被検眼に投影する。
保持アーム112は、測定ユニット120を保持する。保持アーム112は、測定ユニット120を、所定の位置に配置するように保持する。例えば、本実施例では、筺体2の正面に測定ユニット120を下降させた測定位置、または、筺体2の上部に測定ユニット120を上昇させた待機位置、の少なくともいずれかの位置に配置するように保持される。なお、保持アーム112による測定位置と退避位置との切り換えは、図示なき駆動部の制御により行われる。
観察窓113は、被検眼Eの瞳孔中心と、後述の検眼窓132と、の位置を確認する窓である。観察窓113は、被検眼Eの瞳孔を確認することができる位置に配置される。また、観察窓113は、後述する投影光学系160の視標光束が通過する光路の光路外に配置される。本実施例では、観察窓113を視標光束の光路の上方に配置することで、光路外としている。これにより、ディスプレイ161に表示した視標が欠けることなく被検眼Eに呈示される。
例えば、補助者A(補助者眼AE)は、観察窓113を覗き、筐体110の外部から呈示窓111を介して被検眼Eと検眼窓132との位置を観察することによって、被検眼Eと測定ユニット120との位置関係を把握できる。
<投影光学系>
図4は、投影光学系160の概略図である。例えば、投影光学系160は、ディスプレイ161、ハーフミラー162、凹面ミラー163、撮像素子165、等を備える。
ディスプレイ161は、視標(例えば、固視標、検査視標、等)を表示する。ディスプレイ161から出射した視標光束は、被検眼Eに導光される。例えば、ディスプレイ161から出射した視標光束は、被検眼Eの眼前に配置される測定ユニット120を介して、被検眼Eに導光される。ディスプレイ161の表示は、後述の制御部170に制御される。
ハーフミラー162は、ディスプレイ161からの視標光束を反射させ、凹面ミラー163へ導光する。また、ハーフミラー162は、凹面ミラー163に導光された視標光束を反射させ、被検眼Eへ導光する。なお、ハーフミラー162の代わりに、プリズム、ビームスプリッタ、平面ミラー、等を用いて、ディスプレイ161からの視標光束を凹面ミラー163および被検眼Eへ導光する構成としてもよい。
凹面ミラー163は、ディスプレイ161からの視標光束を反射させ、ハーフミラー162へ導光する。例えば、凹面ミラー163の焦点距離は、ディスプレイ161から被検眼Eまでの光学距離が5mとなるように設計されている。なお、凹面ミラー163の代わりに、非球面ミラー、自由曲面ミラー、レンズ、等を用いて、ディスプレイ161からの視標光束をハーフミラー162へ導光する構成としてもよい。
撮像素子165は、ハーフミラー162における透過方向に配置される。撮像素子165は、被検眼Eおよび測定ユニット120を、被検眼Eを正面方向から撮像する。例えば、撮像素子165により撮像された撮像画像(第1画像)は、共有サーバ300を経由してコントローラ200へ送信され、コントローラ200が有するモニタ220へ表示されてもよい。例えば、検者Dは、第1画像を用いて被検眼Eと検眼窓132との位置を観察することによって、被検眼Eと測定ユニット120との位置関係を把握できる(詳細は後述する)。撮像素子165による撮影は、制御部170に制御される。
例えば、被検眼Eに対する自覚式検査時は、ディスプレイ161から出射した視標光束が、光軸L1を通過して平面ミラー162に反射され、光軸L2を通過して凹面ミラー163に反射され、光軸L3を通過してハーフミラー162に反射され、光軸L4を通過して被検眼Eに投影される。
<眼屈折力測定ユニット>
図5は、測定ユニット120の概略図である。測定ユニット120は、額当て121、レンズユニット130、移動ユニット140、角膜位置照準ユニット150(以下、照準ユニット150)、等を備える。
額当て121には、被検者の頭部が当接される。額当て121は、駆動部122により、前後方向(Z方向)の位置が調整される。このため、被検眼Eが後述の検眼窓132に対して所定の距離に保たれる。例えば、額当て121の位置は、コントローラ200から操作信号を発し、駆動部122を制御することで、適宜、変更することができる。また、例えば、額当て121の位置は、コントローラ400から操作信号を発し、駆動部122を制御することで、適宜、変更することができる。なお、例えば、駆動部122は、モータ、ソレノイド、等により構成されてもよい。
額当て121には、検出器123が設けられる。検出器123は、被検者の頭部と額当て121との当接を検出する。例えば、検出器123は、光センサ、圧力センサ、荷重センサ、等であってもよい。
レンズユニット130は、左右一対の左レンズユニット130Lと右レンズユニット130Rとを有する。レンズユニット130は、レンズディスク131(左レンズディスク131Lと右レンズディスク131R)、検眼窓132(左検眼窓132Lと右検眼窓132R)、等を備える。
レンズディスク131には、複数の光学素子133(左光学素子133Lと右光学素子133R)が、同一円周上に配置される。例えば、光学素子133は、球面レンズ、円柱レンズ、プリズムレンズ、等である。なお、レンズディスク131と光学素子133の詳細は、例えば、特開2007-68574号公報を参照されたい。
レンズディスク131は、駆動部134(左駆動部134Lと右駆動部134R)によって回転される。例えば、レンズディスク131の回転角度は、コントローラ200から操作信号を発し、駆動部134を制御することで、適宜、変更することができる。また、光学素子133は、駆動部135(左駆動部135Lと右駆動部135R)によって回転される。例えば、光学素子133の回転角度は、コントローラ200から操作信号を発し、駆動部135を制御することで、適宜、変更することができる。なお、例えば、駆動部134と駆動部135は、モータ、ソレノイド、等により構成されてもよい。
検眼窓132には、レンズディスク131の回転にともない、光学素子133が切り換え配置される。このため、被検眼Eの眼前には、検者が所望する光学素子133が、所望する回転角度で配置される。
移動ユニット140は、駆動部141(左駆動部141Lと右駆動部141R)によって、レンズユニット130を左右方向(X方向)へ移動させる。例えば、左駆動部141Lにより左レンズユニット130Lを移動させ、右駆動部141Rにより右レンズユニット130Rを移動させることで、各レンズユニット間の距離が調整される。例えば、レンズユニット130の移動は、コントローラ200から操作信号を発し、駆動部141を制御することで、適宜、変更することができる。なお、例えば、駆動部141は、モータ、スライド機構、等により構成されてもよい。これによって、被検眼Eの瞳孔間距離PDに合わせ、検眼窓132の間隔を調整することができる。
また移動ユニット140は、駆動部142によって、レンズユニット130を輻輳方向へ回転させる。例えば、駆動部142により左レンズユニット130Lと右レンズユニット130Rとをともに回転させることで、各レンズユニットにおける輻輳角度(内寄せ角度)が調整される。例えば、レンズユニット130の回転は、被検眼Eの瞳孔間距離PD、被検眼Eから視標までの距離(すなわち、被検眼Eに視標を呈示する呈示距離)、等に応じて、駆動部142が制御されることで、適宜、変更される。なお、例えば、駆動部141は、モータ、輻輳機構、等により構成されてもよい。
図6は、照準ユニット150の概略図である。図6では、左レンズユニット130Lに設けられる左照準ユニット150Lを図示し、右レンズユニット130Rに設けられる右角照準ユニット150Rは、左右対称な構成であるため省略する。照準ユニット150Lは、照準光学系151を備える。照準光学系151は、第1観察窓152、第2観察窓153、ハーフミラー154、撮像素子155、等を備える。
第1観察窓152と第2観察窓153は、被検眼Eの角膜頂点位置Cと、後述の基準位置Kと、の距離を確認する窓である。第1観察窓152は、ハーフミラー154における一方の反射方向に配置される。第1観察窓152には、照準目盛板156(図6参照)が設けられる。第2観察窓153は、ハーフミラー154における他方の反射方向に配置される。第2観察窓153には、レチクル板157(図6参照)が設けられる。
ハーフミラー154は、被検眼Eの側方向(X方向)に配置される。ハーフミラー154は、被検眼Eに照射され、被検眼Eにて反射された照明光束を、透過あるいは反射させる。撮像素子155は、ハーフミラー154における透過方向に配置される。
撮像素子155は、ハーフミラー154および第1観察窓152を介して、被検眼Eの角膜を側面方向から撮像する。例えば、撮像素子155により撮像された撮像画像(第2画像)は、共有サーバ300を経由してコントローラ200へ送信され、コントローラ200が有するモニタ220へ表示されてもよい。例えば、検者Dは、第2画像を用いて被検眼Eと目盛線W1との位置を観察することによって、被検眼Eと測定ユニット120との位置関係を把握できる(詳細は後述する)。撮像素子155による撮影は、制御部170に制御される。
図7は、照準目盛板156とレチクル板157の構成図である。図7(a)は、照準目盛板156を示す。図7(b)は、レチクル板157を示す。図7(c)は、被検眼Eを第2観察窓153から観察した状態を示す。
例えば、照準目盛板156は、目盛線W1、中央線W2、第1指標W3、等で構成される。目盛線W1は数本の線からなり、被検眼Eの角膜頂点位置Cから被検眼の最前に配置されたレンズまでの距離(角膜頂点間距離VD)が、順に13.75mm、16mm、18mm、20mmとなるよう対応される。被検眼Eが眼鏡を装用した際の角膜頂点間距離VDは、13.75mmが基準の距離となる。すなわち、被検眼の最前に配置されたレンズから13.75mm離れた位置が、レンズ装用時の基準位置Kとされる。13.75mmの目盛線W1aは、他の目盛線と区別できるように描かれてもよい。中央線W2は、レチクルW4を位置合わせするための基準線である。中央線W2は、照準目盛板156の左右中央に位置してもよい。第1指標W3は、被検眼Eを第2観察窓153から観察する際、補助者A(補助者眼AE)を所定の位置に導くための基準指標である。
例えば、レチクル板157は、レチクルW4、第2指標W5、等で構成される。レチクルW4は、中央線W2を位置合わせするための基準線である。レチクルW4は、レチクル板55の左右中央に位置してもよい。第2指標W5は、被検眼Eを第2観察窓153から観察する際、補助者A(補助者眼AE)を所定の位置に導くための基準指標である。
例えば、補助者A(補助者眼AE)は、第2観察窓153を覗き、第1指標W3と第2指標W5とが重なって1つにみえる位置から、ハーフミラー154および第1観察窓152を介して、被検眼Eを観察することによって、被検眼Eと測定ユニット120との位置関係を把握できる。
<検者用コントローラ>
例えば、コントローラ200は、スイッチ部210、モニタ220、制御部280、等を備える。
スイッチ部210は、検眼装置100を操作するための操作部である。例えば、ディスプレイ161における視標の表示を変更することができる。また、例えば、測定ユニット120における、額当て121の位置、レンズユニット130の移動、レンズディスク131の回転角度、光学素子133の回転角度、等の少なくともいずれかを変更することができる。スイッチ部210からの操作指示に応じた信号は、共有サーバ300を経由して検眼装置100へ送信される。
モニタ220は、各種の情報を表示する。モニタ220はタッチパネルであってもよく、モニタ220がスイッチ部210の機能を兼ねてもよい。
図8は、モニタ220の表示画面の一例である。モニタ220には、操作画像230、結果画像240、第1画像250、第2画像260、第3画像270、等が表示されてもよい。
操作画像230は、視標切換スイッチ231、第1調整スイッチ232、第2調整スイッチ233、等により構成されてもよい。例えば、視標切換スイッチ231は、ディスプレイ161に表示させる視標を変更するためのスイッチである。例えば、第1調整スイッチ232は、レンズユニット130の間隔を変更するためのスイッチである。例えば、第2調整スイッチ233は、額当て121の位置を変更するためのスイッチである。結果画像240は、被検眼Eに対する自覚式検査の結果を示す画像である。第1画像250は、投影光学系160が備える撮像素子165が、被検眼Eを正面方向から撮像した画像であってもよい。第2画像260は、照準ユニット150が備える撮像素子155が、被検眼Eを側面方向から撮像した画像であってもよい。第3画像270は、額当て121に設けられた検出器123が、被検者の頭部と額当て121との当接を検出した検出結果を示す画像であってもよい。
<制御系>
図9は、検眼システム1の制御系を示す図である。例えば、共有サーバ300は、制御部301、メモリ302、等を備える。
制御部301は、一般的なCPU、RAM、ROM、等で構成される。例えば、CPUは、検眼装置100に対するコントローラ200からの通信、コントローラ200に対する検眼装置100からの通信、等を制御してもよい。例えば、RAMは、各種の情報を一時的に記憶してもよい。例えば、ROMには、検眼装置100の動作を制御するためのプログラム、コントローラ200の動作を制御するためのプログラム、等が記憶されてもよい。
制御部301には、検眼装置100における制御部170、コントローラ200における制御部280、等が電気的に接続される。制御部170には、投影光学系160における、ディスプレイ161、撮像素子165、等が電気的に接続される。また、制御部170には、測定ユニット120における、各々の駆動部(駆動部122、駆動部134、駆動部135、駆動部141、駆動部142)、検出器123、撮像素子155、等が電気的に接続される。制御部280には、スイッチ部210、モニタ220、等が電気的に接続される。もちろん、制御部301には、コントローラ400が有する各部材、撮影カメラ500が有する各部材、モニタ600が有する各部材、等が電気的に接続されてもよい。
メモリ302は、電源の供給が遮断されても記憶内容を保持できる、非一過性の記憶媒体である。例えば、メモリ302としては、ハードディスクドライブ、フラッシュROM、USBメモリ、等を使用することができる。例えば、メモリ302には、ディスプレイ161に表示させる視標のデータ、撮像素子165に撮像された第1画像、撮像素子155に撮像された第2画像、等が記憶されてもよい。
<動作>
上記の検眼システム1を用いて、検査室R1に居る被検者S(被検眼E)に対し、観察室R2に居る検者Dが、自覚式検査を行う動作について説明する。
<被検眼と測定ユニットの位置合わせ>
被検眼Eの自覚式検査を開始する際には、被検眼Eと測定ユニット120の位置合わせが行われる。例えば、補助者Aによりこれらの位置合わせが行われ、次いで、検者Dによりこれらの位置合わせが行われてもよい。
まず、補助者Aによる被検眼Eと測定ユニット120との位置合わせについて説明する。
補助者Aは、被検者Sに、顔を額当て121に当接させ、検眼窓132と呈示窓111を介して、ディスプレイ161を観察するように指示を出す。また、補助者Aは、被検者Sの瞳孔間距離PDを予め測定しておき、コントローラ400を用いて、その値を入力する。検眼装置100の制御部170は、駆動部141を駆動させてレンズユニット130を左右方向(X方向)へ移動させ、検眼窓132の間隔を変更する。これによって、被検眼Eの瞳孔間距離PDに、検眼窓132が合わせられる。
補助者Aは、観察窓113を覗き、筐体110の外部から呈示窓111を介して、被検眼Eの瞳孔中心位置Pに対するレンズユニット130の左右方向の位置を確認する。例えば、補助者Aは、被検眼Eの瞳孔中心位置Pと、検眼窓132の位置と、を確認する。また、例えば、補助者Aは、必要に応じてコントローラ400を操作し、被検眼Eの瞳孔中心位置Pに対するレンズユニット130の間隔を調整する。これによって、補助者Aは、被検眼Eの瞳孔間距離PDに、検眼窓132を合わせることができる。
次いで、補助者Aは、第2観察窓153を覗き、測定ユニット120の外部から第1観察窓152を介して、被検眼Eの角膜頂点位置Cに対するレンズユニット130の前後方向(Z方向)の位置を確認する。例えば、補助者Aは、被検眼Eの角膜頂点位置Cと、検眼窓132の位置と、を確認する。また、例えば、補助者Aは、必要に応じてコントローラ400を操作し、額当て121の位置を調整する。検眼装置100の制御部170は、駆動部122を駆動させて額当て121を前後方向へ移動させ、検眼窓132に対する額当て121の位置を変更する。これによって、補助者Aは、被検眼Eの角膜頂点位置Cを基準位置Kに合わせることができる。
次に、検者Dによる被検眼Eと測定ユニット120との位置合わせについて説明する。
検者Dは被検者Sとは別室に居り、補助者Aのように観察窓113や第2観察窓153を利用して、被検眼Eと測定ユニット120との位置合わせを目視で行うことができない。このため、検者Dが操作するコントローラ200のモニタ220に、被検眼Eを正面方向から撮像した第1画像250と、被検眼Eを側面方向から撮像した第2画像260と、を少なくとも表示させる。もちろん、被検者の頭部と額当て121との当接を検出した検出結果を示す第3画像270を表示させてもよい。これによって、検者Dは、被検者Sと離れていても、容易に位置合わせを行うことができる。
補助者Aが被検眼Eと測定ユニット120の位置合わせを行う間、検眼装置100の制御部170は、撮像素子112が撮像した第1画像250、撮像素子155が撮像した第2画像260、検出器123の検出結果を示す第3画像270を、コントローラ200へ送信する。コントローラ200の制御部280は、各々の画像を受信すると、これらを常にモニタ220へ表示する。これにより、検者Dは、第1画像250、第2画像260、および第3画像270を確認することができるようになる。
例えば、検者Dは、補助者Aによる被検眼Eと測定ユニット120との位置合わせの途中で、各々の画像を確認しながら、適宜、補助者Aに指示を出してもよい。また、例えば、検者Dは、補助者Aによる被検眼Eと測定ユニット120との位置合わせが終了した後で、各々の画像を確認し、被検眼Eが適切な位置に配置されるよう、自ら調整を行ってもよい。
図10は、第1画像250と第2画像260の一例である。図10(a)は、第1画像250を示す。図10(b)は、第2画像260を示す。なお、第1画像250と第2画像260とは、いずれも被検眼Eに対する測定ユニット120の位置合わせが不適切な状態である。
検者Dは、第1画像250を用いて、左眼ELの瞳孔中心位置PLと左検眼窓132Lの中心位置FLとが略一致するか、および、右眼ERの瞳孔中心位置PRと右検眼窓132Rの中心位置FRが略一致するか、をそれぞれ確認する。また、検者Dは、これらの少なくともいずれかが一致しない場合、被検眼Eの瞳孔間距離PDに検眼窓132が合っていないと判断し、第1調整スイッチ232(図8参照)を操作してもよい。
第1調整スイッチ232は、レンズユニット130の間隔を狭くするためのスイッチ232aと、レンズユニット130の間隔を広くするためのスイッチ232bと、により構成されてもよい。コントローラ200の制御部280は、検者によるスイッチ232aの操作で入力された操作信号を、検眼装置100の制御部170へと送信する。制御部170は、操作信号に基づいて駆動部141を駆動させ、レンズユニット130の間隔を狭くする。また、制御部280は、検者によるスイッチ232bの操作で入力された操作信号を、制御部170へと送信する。制御部170は、操作信号に基づいて駆動部141を駆動させ、レンズユニット130の間隔を広くする。なお、このとき、制御部170は、操作信号に基づいて、被検者Sに注意を促すメッセージ(例えば、「装置が動きます」等)を音声ガイドとして発してもよい。
例えば、図10(a)に示す第1画像250では、被検眼Eの瞳孔間距離PDに対し、検眼窓132の間隔が広くなっている。このため、検者Dは、第1画像250を確認しながらスイッチ232aを操作し、レンズユニット130の間隔を狭くする。これによって、被検眼Eの瞳孔間距離PDに検眼窓132が合わせられ、被検眼Eが適切な位置に配置される。
なお、第1画像250には、検眼窓132の中心位置を表す補助目盛262が表示されてもよい。一例として、補助目盛262は十字線で示されてもよい。この場合、制御部280は、第1画像250の輝度を利用して検眼窓132を検出し、検眼窓132の中心位置を求めることで、第1画像250に補助目盛262を重畳させてもよい。
また、検者Dは、第2画像260を用いて、左眼ELの角膜頂点位置CLと基準位置Kとが略一致するか、および、右眼ERの角膜頂点位置CRと基準位置Kが略一致するか、をそれぞれ確認する。また、検者Dは、これらの少なくともいずれかが一致しない場合、被検眼Eの角膜頂点間距離VDがレンズ装用時の基準となる距離に合っていないと判断し、第2調整スイッチ233(図8参照)を操作してもよい。
例えば、被検者は頭部を額当て121に当接させるため、第2調整スイッチ233を用いて額当て121を前後方向に移動させることで、被検眼Eを検眼窓132に対して所定の距離に保つことができる。言い換えると、被検眼Eの角膜頂点位置Cを基準位置Kに合わせることができる。
第2調整スイッチ233は、額当て121を前方向(レンズユニット130に近づく方向)へ移動させるためのスイッチ233aと、額当て121を後方向(レンズユニット130から離れる方向)へ移動させるためのスイッチ233bと、により構成されてもよい。コントローラ200の制御部280は、検者によるスイッチ233aの操作で入力された操作信号を、検眼装置100の制御部170へと送信する。制御部170は、操作信号に基づいて駆動部122を駆動させ、額当て121をレンズユニット130に近づける。また、制御部280は、検者によるスイッチ233bの操作で入力された操作信号を、制御部170へと送信する。制御部170は、操作信号に基づいて駆動部122を駆動させ、額当て121をレンズユニット130から遠ざける。なお、このとき、制御部170は、操作信号に基づいて、被検者Sに注意を促すメッセージ(例えば、「装置が動きます」、「額当てから離れてください」等)を音声ガイドとして発してもよい。
例えば、図10(b)に示す第2画像260では、被検眼Eの角膜頂点位置Cが、基準位置Kよりも後方に離れている。そこで、検者Dは、第2画像260を確認しながらスイッチ233aを操作し、額当て121をレンズユニット130に近づける。このとき、検者Dは、第3画像270を用いて、被検者の頭部と額当て121とが当接しているか否かを、適宜、確認してもよい。これによって、被検眼Eの角膜頂点位置Cが基準位置Kに合わせられ、被検眼Eが適切な位置に配置される。
<被検眼に対する自覚式検査>
被検眼Eと測定ユニット120との位置合わせが完了すると、検者Dにより被検眼Eの自覚式検査が開始される。検眼装置100の制御部170は、引き続き、第1画像250、第2画像260、および第3画像270を、コントローラ200へ送信してもよい。コントローラ200の制御部280は、各々の画像を常にモニタ220へ表示する。
検者Dは、スイッチ部210および操作画像230の少なくともいずれかを操作し、所定の視標と、所望の矯正度数と、をそれぞれ設定する。例えば、検者Dは、操作画像230における視標切換スイッチ231(図8参照)を操作し、所定の視標(例えば、ランドルト環)を設定してもよい。また、例えば、検者Dは、スイッチ部210を操作し、所望の矯正度数(例えば、0D)を設定してもよい。制御部280は、スイッチ部210および操作画像230の少なくともいずれから入力された操作信号を制御部170へと送信する。制御部170は、操作信号に基づいて、測定ユニット120を制御する。
例えば、制御部170は、駆動部134を制御してレンズディスク131の回転角度を変更し、所定の球面度数をもつ光学素子133を検眼窓132に配置する。また、例えば、制御部170は、駆動部134を制御してレンズディスク131の回転角度を変更し、所定の円柱度数をもつ光学素子133を検眼窓132に配置する。また、例えば、制御部170は、駆動部135を制御して、所定の円柱度数をもつ光学素子133を、所定の回転角度で検眼窓132に配置する。これによって、被検眼Eに対する測定ユニット120の位置が適切な状態では、ディスプレイ161からの視標光束が光学素子133を介して網膜上で集光するように(すなわち、被検眼Eの眼屈折度が0Dとなるように)、被検眼Eが矯正される。
検者Dは、視標切換スイッチ231を操作し、被検眼Eに呈示する検査視標の視力値を切り換えながら、被検眼Eを矯正する矯正度数が適切であるかを確認する。被検眼Eを矯正する矯正度数が不適切であった場合等には、被検眼Eの眼屈折度を0Dとは異なる値で矯正し、再度、矯正度数が適切であるかを確認してもよい。
なお、検者Dは、被検眼Eに対する自覚式検査の途中で、スイッチ部210または操作画像230を操作しながら各々の画像を確認し、被検眼Eと測定ユニット120とにずれが生じた際は、必要に応じて測定ユニット120の位置を調整してもよい。一例としては、被検眼Eに対する自覚式検査の途中で、被検眼Eの自覚値の変化が徐々に小さくならない場合等に、これらの画像を確認するようにしてもよい。
以上、説明したように、例えば、本実施例における検眼システムは、操作信号を入力するための操作画像と、被検眼の瞳孔間距離を確認するための第1画像および被検眼の角膜頂点間距離を確認するための第2画像の少なくとも一方と、を表示可能とする。これによって、検者は、自覚式検査の開始時および自覚式検査の途中で、第1画像や第2画像を確認し、被検眼と眼屈折力測定ユニットとの位置合わせを容易に行うことができる。このため、検者と被検者が離れていても、被検眼を適切な位置に配置し、自覚式検査を精度よく実施することができる。
また、例えば、本実施例における検眼システムは、操作画像と、第1画像および第2画像の少なくとも一方と、に加えて、被検者の頭部に対する額当ての位置を確認するための第3画像を表示可能とする。検者は、操作信号を入力しながら、第1画像および第2画像とともに第3画像を確認することで、被検眼をより適切な位置に配置し、自覚式検査を精度よく実施することができる。
また、例えば、本実施例における検眼システムは、被検者の頭部が額当てに当接したか否かを検出し、その検出結果に基づく検出情報を、第3画像として表示させる。このため、検者は、検出情報(第3画像)を確認することで、被検眼が適切な位置にあるかを、容易に判断することができる。
また、例えば、本実施例における検眼システムは、操作画像と、第1画像と、第2画像と、をモニタの同一画面上に表示させる。検者は、操作画像から操作信号を入力しながら、第1画像と第2画像を容易に確認することができ、これによって、被検眼と眼屈折力測定ユニットとの位置合わせを、効率よく行うことができる。
<変容例>
なお、本実施例では、第1調整スイッチ232および第2調整スイッチ233を操作することによって、レンズユニット130の間隔および額当て121の位置を調整する操作信号が入力される構成を例に挙げて説明したが、これに限定されない。例えば、第1調整スイッチ232および第2調整スイッチ233を操作することによって、操作信号に基づいた補助者Aへのメッセージ(例えば、「レンズユニットの間隔を広げてください」等)がコントローラ400に表示されてもよい。
なお、本実施例では、検者Dが、第1画像250、第2画像260、及び第3画像270を確認することで、被検眼Eに対して測定ユニット120が適切な位置にあるかを判断する構成を例に挙げて説明したが、これに限定されない。例えば、被検眼Eに対して測定ユニット120が適切な位置にあるかを自動的に判定することで得られる判定情報を出力する構成としてもよい。この場合、検眼装置100の制御部170は、撮像素子165により撮像された第1画像250と、撮像素子155により撮像された第2画像260と、の少なくともいずれかを解析する。
例えば、制御部170は、第1画像250の輝度に基づいてエッジを検出し、被検眼Eの瞳孔中心位置Pと、検眼窓132の中心位置Fと、の画素位置を取得する。また、例えば、制御部170は、左眼ELの瞳孔中心位置PLに対する左検眼窓132Lの中心位置FLと、右眼ERの瞳孔中心位置PRに対する右検眼窓132Lの中心位置FRと、の少なくともいずれかにおいて、互いの画素位置のずれを検出する。例えば、制御部170は、各々の画素位置にずれが生じている場合に、被検眼Eの瞳孔中心位置Pに対するレンズユニット130の左右方向の位置が不適切であると判定する。
また、例えば、制御部170は、第2画像260の輝度に基づいてエッジを検出し、被検眼Eの角膜頂点位置Cと、基準位置Kと、の画素位置を取得する。また、例えば、制御部170は、左眼ELの角膜頂点位置CLに対する基準位置と、右眼ELの角膜頂点位置CRに対する基準位置と、の少なくともいずれかにおいて、互いの画素位置のずれを検出する。例えば、制御部170は、各々の画素位置にずれが生じている場合に、被検眼Eの角膜頂点位置Cに対するレンズユニット130の前後方向の位置が不適切であると判定する。
例えば、検眼装置100の制御部170は、各々の画像を解析することで取得した判定結果を、コントローラ200の制御部280へ送信してもよい。制御部280は、判定結果を受信し、判定結果をモニタ220へ表示させてもよい。なお、制御部170は、判定結果とともに、被検眼Eに対するレンズユニット130の位置のずれ量や、被検眼Eに対してレンズユニット130を適切な位置へと移動させるための誘導情報を、コントローラ200の制御部280へ送信してもよい。この場合、制御部280は、判定結果とともに、ずれ量や誘導情報を受信し、これらをモニタ220へ表示させてもよい。もちろん、制御部280は、判定結果、ずれ量、および誘導情報の少なくともいずれかを、音声ガイドとして発生させてもよい。
なお、上記では、検眼装置100の制御部170が各々の画像を解析するが、コントローラ200の制御部280が各々の画像を解析してもよい。この場合は、制御部280が、第1画像250と第2画像260とを受信した後で、各々の画像を同様に解析してもよい。
例えば、検眼システム1をこのような構成とすれば、検者Dには、被検眼Eに対して測定ユニット120が適切な位置にあるか否かが報知される。このため、例えば、検者Dが自覚式検査に不慣れな場合であっても、被検眼Eが検眼窓132や基準位置Kからずれたことを把握しやすく、適宜、位置合わせを行うことで、自覚式検査が精度よく実施される。
なお、本実施例では、第1画像250、第2画像260、および第3画像270を、常にモニタ220へ表示する構成を例に挙げて説明したが、これに限定されない。例えば、これらの画像の少なくともいずれかは、検者Dによる任意のタイミングで、その表示と非表示とが切り換え可能に構成されてもよい。また、例えば、これらの画像の少なくともいずれかは、設定された検査モードに応じて、その表示と非表示とが切り換え可能に構成されてもよい。
まず、検者Dが任意のタイミングで各々の画像の表示と非表示とを切り換える構成を説明する。この場合、各々の画像の表示と非表示とを切り換えることが可能な表示切換スイッチ(図8参照)が、モニタ220へ表示されてもよい。例えば、第1画像250の表示と非表示とを切り換えるための第1切換スイッチ251と、第2画像260の表示と非表示とを切り換えるための第2切換スイッチ261と、第3画像270の表示と非表示とを切り換えるための第3切換スイッチ271と、がそれぞれモニタ220へ表示されてもよい。また、例えば、第1画像250と、第2画像260と、第3画像270と、のすべての表示と非表示とを一度に切り換えるための切換スイッチが、モニタ220へ表示されてもよい。なお、このような表示切換スイッチは、スイッチ部210に設けられてもよい。
検者Dは、被検眼Eの自覚式検査において、各々の画像を確認したいタイミング、あるいは、各々の画像を確認し終えたタイミングで、表示切換スイッチから操作信号を入力する。コントローラ200の制御部280は、操作信号に応じてモニタ220の表示を制御し、各々の画像の表示と非表示とを切り換える。
例えば、検眼システム1をこのような構成とすれば、検者Dは、被検眼Eと測定ユニット120との位置を、適宜、確認することができる。一例としては、自覚式検査の開始時や、自覚式検査の途中で自覚値の変化が徐々に小さくならない場合に、各々の画像を表示させ、必要に応じて、被検眼Eの瞳孔間距離PDに検眼窓132を合わせたり、被検眼Eの角膜頂点間距離VDを基準位置Kに合わせたりできる。このため、自覚式検査が精度よく実施される。
次に、設定された検査モードに応じて各々の画像の表示と非表示とを切り換える構成を説明する。例えば、検査モードは、検者Dにより手動で設定されてもよいし、検眼プログラム等により自動で設定されてもよい。ここでは、検査モードが検者Dにより設定される場合を例示する。
この場合、自覚式検査のモードを切り換えることが可能な図示なきモード切換スイッチが、モニタ220へ表示されてもよい。なお、このようなモード切換スイッチは、スイッチ部210に設けられてもよい。
検者Dは、被検眼Eの自覚式検査において、モード切換スイッチから操作信号を入力する。コントローラ200の制御部280は、操作信号を検眼装置100の制御部170へと送信する。制御部170は、操作信号に基づいてディスプレイ161を制御し、検査モードに応じた視標を表示させる。また、制御部170は、操作信号に基づいて測定ユニット120を制御し、検査モードに応じた光学素子133を検眼窓132に配置させる。また、コントローラ200の制御部280は、操作信号に応じてモニタ220の表示を制御し、各々の画像を表示させる。
本実施例では、被検眼Eに対する測定ユニット120の位置が検査結果に影響を与えやすいモードを設定した際に、各々の画像の表示と非表示とが切り換えられる。一例としては、被検眼Eのプリズム量を測定するプリズム検査モード、被検眼Eの乱視度数を測定する乱視検査モード、被検眼Eの球面度数を測定する球面検査モード、等が挙げられる。
例えば、プリズム検査モードにおいて、検眼窓132には、光学素子133として、少なくともプリズムレンズが配置される。もちろん、検眼窓132には、被検眼Eを所望の矯正度数で矯正するため、光学素子133として、さらに球面レンズや円柱レンズが配置されてもよい。このとき、瞳孔間距離PDと検眼窓132の間隔とが一致(略一致)していれば、瞳孔中心位置Pと光学素子133の光学中心位置とが一致(略一致)し、検査結果を精度よく得ることができる。しかし、瞳孔間距離PDと検眼窓132の間隔とが一致していないと、検査結果を精度よく得ることが難しくなる。
これについて、より詳細に説明する。被検眼Eには、その眼前にプリズムレンズを配置することによって、所定のプリズム量が付加される。ディスプレイ161から出射した視標光束は、球面レンズや円柱レンズにおける光学中心位置とは異なる位置を通過し、プリズムレンズを介して、被検眼Eに導光される。例えば、球面レンズや円柱レンズは、プリズムの合成と考えることができ、光学中心位置から離れるほど、プリズム量が大きく発生する。このため、被検眼Eには、プリズムレンズの配置にともなう所定のプリズム量に加えて、球面レンズや円柱レンズにより発生したプリズム量が、実際には付加されることになる。
また、例えば、乱視検査モードにおいて、検眼窓132には、光学素子133として、円柱レンズが配置されてもよい。また、乱視検査モードにおいて、検眼窓132には、光学素子133として、クロスシリンダレンズが配置されてもよい。乱視検査モードでは、プリズム検査モードと同様に、瞳孔間距離PDと検眼窓132の間隔とが一致していないと、検査結果を精度よく得ることが難しくなる。
これについて、被検眼Eの眼前にオートクロスシリンダレンズを配置する場合を例に挙げて、より詳細に説明する。例えば、オートクロスシリンダレンズは、検眼窓132の中心位置Fを基準として左右方向(X方向)へ視界を分離するための、2つのプリズム領域をもつ。瞳孔間距離PDと検眼窓132の間隔とが一致していないと、ディスプレイ161からの視標光束が、検眼窓132の中心位置Fとは異なる位置を通過して被検眼Eに導光される。被検眼Eは、位置合わせが適切であれば2つの点群視標を確認することができる。しかし、位置合わせが不適切であると、例えば1つの点群視標しか確認することができず、検査を進めることができない。
そこで、コントローラ200の制御部280は、被検眼Eに対する測定ユニット120の左右方向の位置が重要な、プリズム検査モードまたは乱視検査モードで、少なくとも第1画像250をモニタ220へ表示させる。これによって、検者Dに、第1画像250の確認を促すことができる。もちろん、制御部280は、さらに、第2画像260と第3画像270との少なくともいずれかをモニタ220へ表示させることで、検者Dに各々の画像の確認を促すこともできる。例えば、検者Dは、プリズム検査や乱視検査の開始時および途中で位置合わせを容易に行い、これらの検査を精度よく実施することができる。
また、例えば、球面検査モードにおいて、検眼窓132には、光学素子133として、球面レンズが配置される。このとき、角膜頂点間距離VDがレンズ装用時の基準の距離に一致(略一致)していれば、検査結果を精度よく得ることができる。しかし、角膜頂点間距離VDがレンズ装用時の基準の距離に一致していないと、検査結果を精度よく得ることが難しくなる。
これについて、より詳細に説明する。例えば、被検眼Eの角膜頂点位置Cを基準位置Kに一致(略一致)させた状態では、ディスプレイ161に表示される視標が、所定の呈示距離で被検眼Eに導光される。このため、被検眼Eは、眼前に配置された球面レンズがもつ球面度数で矯正される。しかし、例えば、被検眼Eの角膜頂点位置が基準位置Kからずれた状態では、視標の呈示距離が変化するため、被検眼Eは球面レンズがもつ球面度数とは異なる度数で、実際には矯正されることになる。
そこで、コントローラ200の制御部280は、被検眼Eに対する測定ユニット120の前後方向の位置が重要な球面検査モードで、少なくとも第2画像260をモニタ220へ表示させる。これによって、検者Dに、第2画像260の確認を促すことができる。もちろん、制御部280は、さらに、第1画像250と第3画像270との少なくともいずれかをモニタ220へ表示させることで、検者Dに各々の画像の確認を促すこともできる。例えば、検者Dは、球面検査の開始時および途中で位置合わせを容易に行い、これらの検査を精度よく実施することができる。
例えば、検眼システム1をこのような構成とすれば、検者Dは、自覚式検査に不慣れな場合であっても、各々の画像を確認すべきタイミングを、容易に判断することができる。また、検者Dは、検査モードの切り換えとともに、被検眼Eの瞳孔間距離PDに検眼窓132を合わせたり、被検眼Eの角膜頂点間距離VDを基準位置Kに合わせたりすることができ、自覚式検査が精度よく実施される。