WO2022107885A1 - 耐熱性プロテイングルタミナーゼ - Google Patents

耐熱性プロテイングルタミナーゼ Download PDF

Info

Publication number
WO2022107885A1
WO2022107885A1 PCT/JP2021/042625 JP2021042625W WO2022107885A1 WO 2022107885 A1 WO2022107885 A1 WO 2022107885A1 JP 2021042625 W JP2021042625 W JP 2021042625W WO 2022107885 A1 WO2022107885 A1 WO 2022107885A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
amino acid
glutaminase
protein glutaminase
seq
Prior art date
Application number
PCT/JP2021/042625
Other languages
English (en)
French (fr)
Inventor
友洋 松岡
寛之 谷内
大樹 千田
健介 結城
Original Assignee
天野エンザイム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天野エンザイム株式会社 filed Critical 天野エンザイム株式会社
Priority to US18/037,934 priority Critical patent/US20230416718A1/en
Priority to EP21894756.2A priority patent/EP4249590A1/en
Priority to JP2022563844A priority patent/JPWO2022107885A1/ja
Priority to CN202180072888.8A priority patent/CN116829701A/zh
Publication of WO2022107885A1 publication Critical patent/WO2022107885A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • A23J3/32Working-up of proteins for foodstuffs by hydrolysis using chemical agents
    • A23J3/34Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/01Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in linear amides (3.5.1)
    • C12Y305/01044Protein-glutamine glutaminase (3.5.1.44)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • the present invention relates to a thermostable protein glutaminase. More specifically, the present invention relates to a heat-resistant protein glutaminase, a DNA encoding the heat-resistant protein glutaminase, a recombinant vector, a transformant, an enzyme agent, a method for producing the heat-resistant protein glutaminase, and the heat-resistant protein. Regarding the use of glutaminase.
  • Protein glutaminase is an enzyme that deamids the ⁇ -amide group and ⁇ -amide group of glutamine residues and asparagine residues in proteins, and specifically, protein glutaminase derived from chryseobacteriumledgem JCM2410 strain and A protein glutaminase (Patent Document 1) derived from the chryseobacterium proteolyticum 9670 strain is known.
  • Patent Document 2 discloses a method of modifying a protein by allowing protein glutaminase and transglutaminase to act on the protein, for producing yogurt using milk, producing tofu using soymilk, and using wheat. It is described that the smoothness of the produced food was improved by treating with protein glutaminase and transglutaminase in the production of soymilk.
  • Patent Document 3 discloses a method for producing a processed livestock meat using arginine or a salt thereof and protein glutaminase, and arginine is used as a raw material in the production of sausage, ham, hamburger, fried pork cutlet, char siu and the like. Alternatively, it is described that the texture of the obtained processed food is improved by treating with the salt thereof and protein glutaminase.
  • an object of the present invention is to provide a protein glutaminase having improved heat resistance.
  • the present inventor has found a protein glutaminase having improved heat resistance by screening from an unknown strain library owned by the applicant.
  • the present invention has been completed based on this finding. That is, the present invention provides the inventions of the following aspects.
  • Protein glutaminase consisting of the polypeptide shown in any of the following (1) to (3): (1) A polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 1 or 2. (2) In the amino acid sequence shown in SEQ ID NO: 1 or 2, one or several amino acid residues are substituted, added, inserted or deleted, and the polypeptide consists of the amino acid sequence shown in SEQ ID NO: 1 or 2.
  • polypeptide showing heat resistance equivalent to that of (3) and the amino acid sequence shown in (3) SEQ ID NO: 1 or 2 the sequence identity with respect to the amino acid sequence shown in SEQ ID NO: 1 or 2 is 76% or more, and SEQ ID NO: 1 or A polypeptide having heat resistance equivalent to that of the polypeptide consisting of the amino acid sequence shown in 2.
  • Item 2. The DNA encoding the protein glutaminase according to Item 1.
  • Item 3. An expression cassette or recombinant vector containing the DNA according to Item 2.
  • Item 4. A transformant obtained by transforming a host with the expression cassette or recombinant vector according to Item 3.
  • the method for producing protein glutaminase according to Item 1 which comprises the step of culturing the transformant according to Item 4.
  • Item 6. The enzyme preparation containing the protein glutaminase according to Item 1.
  • Item 7. A protein modifier comprising the protein glutaminase according to Item 1.
  • Item 8. A method for producing a modified protein material, which comprises the step of allowing the protein glutaminase according to Item 1 to act on the protein material.
  • a protein glutaminase having improved heat resistance is provided.
  • amino acid residues in the amino acid sequence may be expressed by one-letter abbreviation. That is, Gly is G, alanine (Ala) is A, valine (Val) is V, leucine (Leu) is L, isoleucine (Ile) is I, phenylalanine (Phe) is F, and tyrosine (Tyr) is Y.
  • Trp Tryptophan
  • Serin Serin
  • Seronin Thr
  • Cystein Cystein
  • Met Methionin
  • Met Methionin
  • Glu glutamic acid
  • Asparagine Asparagine
  • Asn N
  • glutamic acid Gln
  • lysine L
  • arginine Arg
  • Histidine Histidine
  • Pro proline
  • amino acid sequence to be displayed has the N-terminal at the left end and the C-terminal at the right end.
  • non-polar amino acids include alanine, valine, leucine, isoleucine, proline, methionine, phenylalanine, and tryptophan.
  • Uncharged amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine.
  • Acid amino acids include aspartic acid and glutamic acid.
  • Basic amino acids include lysine, arginine, and histidine.
  • substitution means not only when an amino acid residue substitution is artificially introduced, but also when an amino acid residue substitution is naturally introduced, that is, the amino acid residue is originally different. Is also included.
  • the substitution of the amino acid residue may be an artificial substitution or a natural substitution, but an artificial substitution is preferable.
  • Protein Glutaminase The protein glutaminase of the present invention comprises the polypeptide shown in any of the following (1) to (3).
  • the amino acid sequence shown in SEQ ID NO: 1 or 2 one or several amino acid residues are substituted, added, inserted or deleted, and the polypeptide consists of the amino acid sequence shown in SEQ ID NO: 1 or 2.
  • the sequence identity with respect to the amino acid sequence shown in SEQ ID NO: 1 or 2 is 76% or more, and SEQ ID NO: 1 or A polypeptide having heat resistance equivalent to that of the polypeptide consisting of the amino acid sequence shown in 2.
  • polypeptides shown in (1) to (3) above have protein glutaminase activity and improved heat resistance.
  • the polypeptide shown in (1) is a protein glutaminase derived from Chryseobacterium sp.
  • the polypeptides shown in (2) and (3) are the polypeptides shown in (1). It is a variant of.
  • the polypeptides (1) to (3) include not only the polypeptides obtained by artificially substituting but also the polypeptides originally having such an amino acid sequence.
  • the modification of the introduced amino acid may include only one modification (for example, substitution only) from substitutions, additions, insertions, and deletions.
  • the above modifications eg, substitution and insertion
  • the number of amino acid differences at arbitrary differences may be one or several, for example, 1 to 80, preferably 1 to 70, 1 to 60, 1 to 1. 50 pieces, 1-40 pieces, or 1-30 pieces, more preferably 1-20 pieces, 1-10 pieces, 1-8 pieces, 1-7 pieces, 1-6 pieces, 1-5 pieces, or 1- ⁇
  • the number is 4, more preferably 1 to 3, and particularly preferably 1 or 2 or 1.
  • sequence identity with respect to the amino acid sequence shown in SEQ ID NO: 1 or 2 may be 76% or more, preferably 80% or more, more preferably 85% or more, still more preferably. Is 90% or more, more preferably 95% or more, 96% or more, 97% or more, 98% or more, and particularly preferably 99% or more.
  • sequence identity is defined as BLASTPACKAGE [sgi32 bit edition, Version 2.0.12; available from National Center for Biotechnology Information (NCBI)] bl2sexoM.
  • NCBI National Center for Biotechnology Information
  • the value of the identity of the amino acid sequence obtained by Lett., Vol. 174, p247-250, 1999) is shown.
  • the parameters may be set to Gap insertion Cost value: 11 and Gap extension Cost value: 1.
  • amino acids at positions 176 (cysteine), 217 (histidine), and 237 (aspartic acid) in the amino acid sequences shown in SEQ ID NOs: 1 and 2 are proteins. Since it is considered to be a glutaminase active catalytic residue, it is desirable not to introduce substitutions or deletions at these sites.
  • substitution in the polypeptides of (2) and (3) for example, if the amino acid before substitution is a non-polar amino acid, it may be replaced with another non-polar amino acid, or the amino acid before substitution may be a non-charged amino acid.
  • substitution with another uncharged amino acid substitution with another acidic amino acid if the amino acid before substitution is acidic, and substitution with another basic amino acid if the amino acid before substitution is basic amino acid.
  • heat resistance that is, the relative activity of protein glutaminase at 65 ° C. is measured.
  • the relative activity of the protein glutaminase of the polypeptide (1) is equivalent to that of the polypeptide of (1), specifically, the relative activity of the protein glutaminase is set to 1 when the relative activity of the protein glutaminase of the polypeptide of the above (1) is 1.
  • the relative activity of protein glutaminase at 65 ° C is 65 ° C when the enzyme is exposed to a temperature environment of 4 ° C or 65 ° C for 10 minutes and the protein glutaminase activity of the enzyme exposed to a temperature condition of 4 ° C is 100%.
  • the DNA of the present invention is a DNA encoding the protein glutaminase described in the above "1. Protein glutaminase” (hereinafter, also referred to as “the above-mentioned predetermined protein glutaminase”).
  • the DNA of the present invention contains a DNA consisting of the base sequence shown in SEQ ID NO: 3 or 4.
  • the base sequence shown in SEQ ID NO: 3 is a gene encoding a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 1
  • the base sequence shown in SEQ ID NO: 4 is a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2. It is a gene that encodes.
  • the DNA of the present invention is not limited to the above sequence, and is 76% or more, preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, the base sequence shown in SEQ ID NO: 3 or 4.
  • DNA having a base sequence having a homology of 91% or more, 92% or more, more preferably 95% or more, particularly preferably 99% or more is also described in the present invention as long as it encodes a polypeptide having protein glutaminase activity. It is contained in DNA.
  • the "homology" of DNA is calculated using publicly available or commercially available software having an algorithm for comparing a reference sequence as a query sequence.
  • BLAST, FASTA, GENETYX manufactured by Genetics Co., Ltd.
  • GENETYX manufactured by Genetics Co., Ltd.
  • a mutation of substitution, addition, insertion or deletion occurred in several bases in the base sequence set forth in SEQ ID NO: 3 or 4.
  • the base sequence is also included in the DNA of the present invention as long as it encodes a polypeptide having protein glutaminase activity.
  • a DNA that hybridizes under stringent conditions with a DNA having a base sequence complementary to the DNA having the base sequence set forth in SEQ ID NO: 3 or 4 can also be used as long as it encodes a polypeptide having protein glutaminase activity. It is included in the DNA of the present invention.
  • the stringent condition is that a nylon film on which DNA is fixed is dissolved in 6 ⁇ SSC (1 ⁇ SSC is 8.76 g of sodium chloride and 4.41 g of sodium citrate dissolved in 1 liter of water).
  • the following is an example of a method for obtaining the DNA of the present invention by hybridization, but the method for obtaining the DNA of the present invention is not limited to the following.
  • a DNA library is prepared by connecting DNA obtained from an appropriate gene source to a plasmid or phage vector according to a conventional method.
  • the transformant obtained by introducing this library into a suitable host is cultured on a plate, the grown colonies or plaques are transferred to a nitrocellulose or nylon membrane, and the DNA is fixed to the membrane after the modification treatment.
  • This membrane is kept warm under the above stringent conditions in a solution having the above composition containing a probe previously labeled with 32P or the like, and hybridization is performed.
  • a polynucleotide encoding all or part of the amino acid sequence set forth in SEQ ID NO: 1 or 2 can be used.
  • the non-specifically adsorbed probe is washed away, and the clone that has formed a hybrid with the probe is identified by autoradiography or the like. This operation is repeated until the hybrid forming clone can be isolated. Finally, from the obtained clones, a gene encoding a protein having the desired enzyme activity is selected. Gene isolation can be carried out by a known polynucleotide extraction method such as an alkaline method.
  • the DNA of the present invention can also be isolated from the above-mentioned microorganisms that produce the predetermined protein glutaminase. For example, using genomic DNA derived from Chryseobacterium sp. As a template, a primer or probe designed from known amino acid sequence information in consideration of gene hybridization, or a design based on known base sequence information.
  • the DNA of interest can be isolated from the genome of the microorganism by PCR or hybridization method using the above-mentioned primer or probe.
  • the DNA of the present invention includes various kinds of DNA derived from codon decompression. Artificial production of various DNAs encoding the same amino acid sequence can be easily performed using known genetic engineering techniques. For example, in the production of a genetically engineered protein, if the codon used on the original gene encoding the protein of interest is infrequently used in the host, the expression level of the protein is low. There is. In such a case, high expression of the target protein can be achieved by optimizing the codon utilization frequency for the host without changing the encoded amino acid sequence.
  • the total of the host optimum codon usage frequency of each codon may be adopted.
  • the optimal codon is defined as the most frequently used codon among the codons corresponding to the same amino acid.
  • the frequency of codon utilization is not particularly limited as long as it is optimized for the host, and examples of the optimal codons of Escherichia coli include the following.
  • F phenylalanine (ttt), L: leucine (ctg), I: isoleucine (att), M: methionine (atg), V: valine (gtg), Y: tyrosine (tat), termination codon (taa), H: Histidine (cat), Q: glutamine (cag), N: asparagine (aat), K: lysine (aaa), D: aspartic acid (gat), E: glutamic acid (gaa), S: serine (agc), P: Proline (ccg), T: threonine (acc), A: alanine (gcg), C: cysteine (tgc), W: tryptophan (tgg), R: arginine (cgc), G: glycine (ggc).
  • a known method such as the Kunkel method or the Gapped doublex method, and a mutation introduction kit using a site-specific mutagenesis method, for example, QuikChangeTM Site -Directed Mutagenesis Kit( ⁇ ) ⁇ GeneArtTM Site-Directed Mutagenesis PLUS System( ⁇ ) ⁇ TaKaRa Site-Directed Mutagenesis System(Mutan-K,Mutan-Super Express Km ⁇ PrimeSTAR Mutagenesis Basal Kit ⁇ : ⁇ ) ⁇ Can be used.
  • the base sequence of DNA can be confirmed by sequence determination by a conventional method. For example, it can be carried out by the dideoxynucleotide chain termination method (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA 74: 5463) or the like. In addition, the sequence can be analyzed using an appropriate DNA sequencer.
  • the obtained DNA is the DNA encoding the target protein glutaminase can be confirmed by comparing the determined base sequence with the base sequence set forth in SEQ ID NO: 3 or 4.
  • the amino acid sequence deduced from the determined base sequence can be compared with the amino acid sequence set forth in SEQ ID NO: 1 or 2.
  • expression cassette or recombinant vector containing the DNA encoding the above-mentioned predetermined protein glutaminase (hereinafter, also referred to as “expression cassette of the present invention” or “recombinant vector of the present invention”) is the present invention. It can be obtained by linking a promoter and a terminator to the DNA of the above, or by inserting the expression cassette of the present invention or the DNA of the present invention into an expression vector.
  • the expression cassette of the present invention or the recombinant vector of the present invention contains a promoter, a terminator, and, if necessary, a transcription element such as an enhancer, a CCAAT box, a TATA box, and an SPI site as control factors. good.
  • These regulators need only be operably linked to the DNA of the present invention.
  • Operable ligation means that various regulators that regulate the DNA of the present invention and the DNA of the present invention are ligated in a state in which they can operate in a host cell.
  • the expression vector a vector constructed from phages, plasmids, or viruses capable of autonomously growing in a host for gene recombination is suitable.
  • expression vectors are known, and for example, commercially available expression vectors include pQE-based vector (Qiagen Co., Ltd.), pDR540, pRIT2T (GE Healthcare Bioscience Co., Ltd.), and pET-based vector (Merck). Co., Ltd.) and the like.
  • the expression vector may be used by selecting an appropriate combination with the host cell.
  • Escherichia coli when Escherichia coli is used as the host cell, a combination of a pET-based vector and a DH5 ⁇ Escherichia coli strain, a pET-based vector and BL21 (DE3) Escherichia coli. Examples thereof include a combination of strains, a combination of pDR540 vector and JM109 Escherichia coli strain, and the like.
  • Transformant of the present invention can be obtained by transforming a host with the expression cassette of the present invention or a recombinant vector.
  • a gene can be introduced, an expression cassette or a recombinant vector is stable, autonomous proliferation is possible, and the trait of a gene containing the DNA of the present invention can be expressed.
  • bacteria belonging to the genus Escherichia such as Escherichia coli, the genus Pseudomonas such as Bacillus subtilis, and the genus Pseudomonas such as Pseudomonas putida;
  • it may be an animal cell, an insect cell, a plant or the like.
  • the transformant of the present invention can be obtained by introducing the expression cassette of the present invention or the recombinant vector of the present invention into a host cell.
  • the place where the DNA of the present invention is introduced is not particularly limited as long as the gene of interest can be expressed, and may be on a plasmid or on the genome.
  • Specific methods for introducing the expression cassette of the present invention or the recombinant vector of the present invention include, for example, a recombinant vector method and a genome editing method.
  • the conditions for introducing the expression cassette or the recombinant vector into the host may be appropriately set according to the type of the host and the like.
  • the host is a bacterium, for example, a method using competent cells treated with calcium ions, an electroporation method, and the like can be mentioned.
  • yeast for example, an electroporation method, a spheroplast method, a lithium acetate method and the like can be mentioned.
  • an animal for example, an electroporation method, a calcium phosphate method, a lipofection method and the like can be mentioned.
  • an insect for example, a calcium phosphate method, a lipofection method, an electroporation method and the like can be mentioned.
  • the host is a plant, for example, an electroporation method, an Agrobacterium method, a particle gun method, a PEG method and the like can be mentioned.
  • the expression cassette of the present invention or the recombinant vector of the present invention has been incorporated into the host can be confirmed by the PCR method, the Southern hybridization method, the Northern hybridization method, or the like.
  • genomic DNA or the expression cassette or the recombinant vector may be separated and purified from the transformant. ..
  • Separation / purification of the expression cassette or recombinant vector is performed, for example, based on a lysate obtained by lysing the bacterium when the host is a bacterium.
  • a lytic enzyme such as lysozyme
  • a protease and other enzymes and a surfactant such as sodium lauryl sulfate (SDS) are used in combination.
  • Separation and purification of DNA from the lysate can be performed, for example, by appropriately combining a phenol treatment, a protein removal treatment by a protease treatment, a ribonuclease treatment, an alcohol precipitation treatment, and a commercially available kit.
  • DNA can be cleaved according to a conventional method, for example, using restriction enzyme treatment.
  • restriction enzyme for example, a type II restriction enzyme that acts on a specific nucleotide sequence is used.
  • Binding of DNA to an expression cassette or expression vector is performed using, for example, DNA ligase.
  • a primer specific to the DNA of the present invention is designed and PCR is performed.
  • the amplified product obtained by PCR is subjected to agarose gel electrophoresis, polyacrylamide gel electrophoresis, capillary electrophoresis, etc., stained with ethidium bromide, SYBR Green solution, etc., and the amplified product is detected as a band. You can confirm that it has been converted.
  • amplification product it is also possible to detect the amplification product by performing PCR using a primer labeled in advance with a fluorescent dye or the like. Further, a method of binding the amplification product to a solid phase such as a microplate and confirming the amplification product by fluorescence, an enzymatic reaction or the like may also be adopted.
  • the above-mentioned predetermined protein glutaminase can be obtained by a production method including a step of culturing a transformant of the present invention or a production method including a step of culturing a microorganism producing the above-mentioned predetermined protein glutaminase. ..
  • the above-mentioned culture conditions may be appropriately set in consideration of the nutritional and physiological properties of the above-mentioned transformant or the above-mentioned microorganism, and liquid culture is preferable. Further, in the case of industrial production, aeration stirring culture is preferable.
  • the carbon source of the medium may be any carbon compound that can be assimilated, and examples thereof include glucose, sucrose, lactose, maltose, molasses, and pyruvic acid.
  • the nitrogen source may be any nitrogen compound that can be assimilated, and examples thereof include peptone, meat extract, yeast extract, casein hydrolyzate, and soybean meal alkaline extract.
  • salts such as phosphates, carbonates, sulfates, magnesium, calcium, potassium, iron, manganese and zinc, specific amino acids and specific vitamins are used as needed. You may.
  • the culture temperature can be appropriately set within a range in which the transformant or the microorganism of the present invention can grow and the transformant or the microorganism produces the predetermined protein glutaminase, for example, 10 to 40 ° C.
  • the temperature is preferably about 15 to 37 ° C.
  • the culturing may be completed at an appropriate time after the time when the above-mentioned predetermined protein glutaminase reaches the maximum yield, and usually, the culturing time is about 6 to 96 hours and about 12 to 48 hours.
  • the culture supernatant or cells are collected by a method such as centrifugation, and the cells are collected by a mechanical method such as ultrasonic or French press or a lytic enzyme such as lysozyme.
  • solubilization is performed by using an enzyme such as protease or a surfactant such as sodium lauryl sulfate (SDS) to obtain a water-soluble fraction containing the above-mentioned predetermined protein glutaminase.
  • an enzyme such as protease or a surfactant such as sodium lauryl sulfate (SDS)
  • the expressed predetermined protein glutaminase can be secreted into the culture medium.
  • the water-soluble fraction containing the above-mentioned predetermined protein glutaminase obtained as described above may be subjected to the purification treatment as it is, but the above-mentioned predetermined protein glutaminase in the water-soluble fraction may be concentrated and then subjected to the purification treatment. May be served.
  • Concentration can be performed by, for example, vacuum concentration, membrane concentration, salting out treatment, fractional precipitation method using a hydrophilic organic solvent (for example, methanol, ethanol and acetone), or the like.
  • a hydrophilic organic solvent for example, methanol, ethanol and acetone
  • the above-mentioned purification treatment of the predetermined protein glutaminase can be performed, for example, by appropriately combining methods such as gel filtration, adsorption chromatography, ion exchange chromatography, affinity chromatography and the like.
  • the above-mentioned predetermined protein glutaminase purified in this way can be powdered by freeze-drying, vacuum-drying, spray-drying or the like and distributed on the market, if necessary.
  • Enzyme agent The above-mentioned predetermined protein glutaminase can be provided in the form of an enzyme agent. Therefore, the present invention also provides an enzyme preparation containing the above-mentioned predetermined protein glutaminase as an active ingredient.
  • the content of the above-mentioned predetermined protein glutaminase in the enzyme preparation of the present invention is not particularly limited, but is, for example, 0.1 U / g or more, 1 U / g or more, preferably 10 U / g or more, more preferably 100 U / g or more, and further.
  • Preferred are 250 U / g or more, particularly preferably 500 U / g or more, 1000 U / g or more, 1500 U / g or more, 2000 U / g or more, and 5000 U / g or more.
  • the enzyme preparation of the present invention may contain other components in addition to the above-mentioned predetermined protein glutaminase to the extent that the effect of the present invention is not affected.
  • other components include enzymes other than the above-mentioned predetermined protein glutaminase, additives, culture residues generated by the above-mentioned production method, and the like.
  • enzymes include, for example, amylase ( ⁇ -amylase, ⁇ -amylase, glucoamylase), glucosidase ( ⁇ -glucosidase, ⁇ -glucosidase), galactosidase ( ⁇ -galactosidase, ⁇ -galactosidase), protease (acidic protease, medium).
  • Sex protease alkaline protease
  • peptidase leucine peptidase, aminopeptidase
  • lipase lipase
  • esterase cellulase
  • phosphatase acidic phosphatase, alkaline phosphatase
  • nuclease deaminase, oxidase, dehydrogenase, glutaminase, pectinase, catalase, dextranase, trans Examples thereof include glutaminase, protein deamylase (other than the above active ingredients), and pluranase.
  • These other enzymes may be contained alone or in combination of a plurality of types.
  • Examples of the additive include excipients, buffers, suspensions, stabilizers, preservatives, preservatives, physiological saline and the like.
  • examples of the excipient include starch, dextrin, maltose, trehalose, lactose, D-glucose, sorbitol, D-mannitol, sucrose, glycerol and the like.
  • examples of the buffer include phosphates, citrates, acetates and the like.
  • Examples of the stabilizer include propylene glycol, ascorbic acid and the like.
  • Preservatives include benzoate (alkali metal salts such as potassium salt and sodium salt), sorbate salt (alkali metal salt such as potassium salt and sodium salt), phenol, benzalconium chloride, benzyl alcohol, chlorobutanol, Examples include methylparaben.
  • examples of the preservative include ethanol, benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like. These additives may be contained alone or in combination of a plurality of types.
  • Examples of the culture residue include culture medium-derived components, contaminating proteins, bacterial cell components, and the like.
  • the form of the enzyme preparation of the present invention is not particularly limited, and examples thereof include liquid and solid (powder, granule, etc.).
  • the composition can be prepared by a generally known method.
  • the above-mentioned predetermined protein glutaminase can be used for known uses of protein glutaminase.
  • the above-mentioned predetermined protein glutaminase can be used for the purpose of modifying a protein. Therefore, the present invention also provides a protein modifier containing the above-mentioned predetermined protein glutaminase.
  • the specific embodiment of the modification of the protein is not particularly limited, and the protein resulting from the deamidation of the ⁇ -amide group and the ⁇ -amide group of the glutamine residue and the asparagine residue of the protein produces a carboxyl group. It may be a characteristic change.
  • Specific examples of protein modification include increased protein solubility, increased water dispersibility, improved emulsifying power, and emulsified stability.
  • the enzyme preparation of the present invention is particularly used when the protein to be modified is treated at a relatively high temperature and / or when it is treated for a long time under heating conditions. It is useful.
  • the above-mentioned predetermined protein glutaminase treats the protein to be modified under heating conditions of 40 to 80 ° C, preferably 46 to 77 ° C, more preferably 53 to 74 ° C, and particularly preferably 60 to 70 ° C. It is preferably used in some cases.
  • a predetermined protein glutaminase can be used for the purpose of modifying a protein. Therefore, the present invention also provides a method for producing a modified protein material, which comprises a step of allowing the above-mentioned predetermined protein glutaminase to act on the protein material.
  • a mixture containing a protein material and a predetermined protein glutaminase is subjected to a predetermined protein glutaminase action condition to promote a reaction for modifying the protein.
  • the protein material is not particularly limited as long as it is a material containing protein, and may be edible or non-edible.
  • the edible protein material can be used as a food or drink or as a material for producing a food or drink.
  • the non-edible protein material can be used as a material for protein experiments, a medical material, and a cosmetic material.
  • the protein material it is obtained by performing a treatment for increasing the protein content from a protein source by a known method, and is appropriately selected by those skilled in the art.
  • examples of edible protein materials include vegetable protein materials obtained from foods containing vegetable proteins, animal proteins, and the like.
  • Examples of vegetable proteins include bean proteins such as soybean protein, empty bean protein, pea protein, chick bean protein, green bean protein, and lupine bean protein; grain proteins such as wheat protein, rye protein, oat wheat protein, and corn protein; canary seeds, Examples thereof include flaxseed, almonds, cashew nuts, hazelnuts, pecan nuts, macadamia nuts, pistachios, walnuts, Brazilian nuts, peanuts, coconuts, hemp seeds (industrial hemp), pirinuts, chestnuts, sesame seeds, pine nuts and other seed proteins.
  • Examples of animal proteins include livestock meat, fish meat, egg protein and the like.
  • Examples of the non-edible protein material include albumin, globulin and the like derived from biological samples such as egg white and serum.
  • the content of the protein contained in these protein materials is not particularly limited, but is, for example, 30% by weight or more, 40% by weight or more, 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more, and further. It is preferably 80% by weight or more.
  • the upper limit of the protein content contained in the protein material is not particularly limited, but is, for example, 95% by weight or less, 90% by weight or less, 85% by weight or less, 80% by weight or less, 70% by weight or less, or 60% by weight or less. Can be mentioned.
  • the concentration of the protein contained in the protein material in the mixture is, for example, 0.1% by weight or more, 0.3% by weight or more, preferably 0.7% by weight or more, more preferably. Is an amount of 1.4% by weight or more.
  • the upper limit of the concentration in the mixture of proteins contained in the protein material is not particularly limited, but is, for example, 80% by weight or less, 60% by weight or less, 40% by weight or less, 30% by weight or less, 20% by weight or less, 15% by weight. % Or less, 10% by weight or less, 8% by weight or less, 5% by weight or less, 3% by weight or less, or 2% by weight or less.
  • the amount of the predetermined protein glutaminase used is not particularly limited, but the amount of the predetermined protein glutaminase used per 1 g of protein contained in the protein material is, for example, 0.1 U or more, preferably 0.5 U or more, more preferably 1 U or more. More preferably, it is 2U or more, more preferably 3.5U or more, and even more preferably 4.5U or more.
  • the upper limit of the amount of the predetermined protein glutaminase used per 1 g of protein contained in the protein material is not particularly limited, and examples thereof include 45 U or less, 35 U or less, 20 U or less, 10 U or less, 8 U or less, or 5.5 U or less.
  • the amount of the predetermined protein glutaminase used per 1 g of protein material is, for example, 0.1 U or more, preferably 0.5 U or more, more preferably 1 U or more, still more preferably 2 U or more, still more preferably 3 U or more, still more. Preferred is 4U or more.
  • the upper limit of the amount of predetermined protein glutaminase used per 1 g of protein material is not particularly limited, and examples thereof include 40 U or less, 30 U or less, 20 U or less, 10 U or less, 7 U or less, or 5 U or less.
  • benzyloxycarbonyl-L-glutaminylglycine (Z-Gln-Gly) is used as a substrate, and the amount of enzyme that favors 1 ⁇ mol of ammonia per minute is 1 unit (1U). And.
  • the operating conditions of the predetermined protein glutaminase are appropriately determined based on the optimum temperature and the optimum pH of the protein glutaminase to be used.
  • the temperature condition includes, for example, 50 to 80 ° C, preferably 60 to 80 ° C, and more preferably 63 to 80 ° C. Since the predetermined protein glutaminase has excellent heat resistance, it is particularly useful when used under the conditions of 65 ° C. or higher. From this point of view, the temperature conditions are more preferably 65 to 80 ° C, more preferably 65 to 75 ° C, still more preferably 65 to 70 ° C, still more preferably 65 to 67 ° C. On the other hand, the predetermined protein glutaminase tends to have a lower relative value to the activity at the optimum temperature as the temperature becomes lower under the condition of less than 65 ° C.
  • suitable examples of the temperature condition include 50 ° C. or higher and lower than 65 ° C., 55 ° C. or higher and lower than 65 ° C., 60 ° C. or higher and lower than 65 ° C., or 63 ° C. or higher and lower than 65 ° C.
  • the pH condition includes, for example, 2 to 12, preferably 3 to 10, and more preferably 4 to 9.
  • the time for allowing the predetermined protein glutaminase to act is not particularly limited and may be appropriately determined according to the charging scale and the like, but for example, 1 hour or more, preferably 8 hours or more, more preferably 16 hours or more, still more preferably 20 hours. More than time can be mentioned.
  • the upper limit of the time range is not particularly limited, and examples thereof include 40 hours or less, 30 hours or less, or 25 hours or less.
  • the modified protein material can be obtained by performing enzyme deactivation treatment, cooling, and post-treatment if necessary.
  • thermostable protein glutaminase-producing strains From an unknown strain library owned by the applicant, Chryseobacterium sp. 57594 strains and Chryseobacterium sp. 61798 strains were selected and stocked in a culture medium containing glycerol.
  • FIGS. 1 and 2 SDS-PAGE images of the purified fractions of the cultures of the 57594 and 61798 strains are shown in FIGS. 1 and 2, respectively.
  • lane 7 represents a pre-purified fraction
  • lanes 8 to 10 represent a purified fraction from a 57594 strain culture
  • lane 11 represents a molecular marker.
  • lane 1 represents a molecular marker
  • lanes 2 to 4 represent purified fractions from 61798 strain cultures.
  • 18 kDa band indicated by an arrow
  • the enzyme reaction was carried out by leaving this solution for 10 minutes, and then 1 mL of 0.4 mol / L trichloroacetic acid solution was added to stop the enzyme reaction.
  • the measurement blank was prepared by adding 0.1 mL of the enzyme solution to the test tube, and then adding 1 mL of the 0.4 mol / L trichloroacetic acid solution and 1 mL of the substrate solution in this order.
  • -Ammonia-Test Wako (Fuji Film Wako Pure Chemical Industries, Ltd.) was used for color development reaction, and the amount of ammonia released by the enzymatic reaction for 10 minutes was quantified based on the value of absorbance at a wavelength of 630 nm.
  • the amount of enzyme that produces 1 ⁇ mol of ammonia per minute was defined as 1 unit (1 U), and the activity value was calculated from the amount of ammonia released by the enzymatic reaction.
  • the relative activity of the comparative PG at 65 ° C. was 11%, whereas the relative activity of the protein glutaminase derived from the 57594 strain was 65% and the relative activity of the protein glutaminase derived from the 61798 strain was 66%. Therefore, the heat resistance was significantly improved.
  • a degenerate primer was designed from the sequence information of Chryseobacterium spp., which is presumed to be closely related to the 57594 and 61798 strains.
  • DNA fragments were amplified by PCR using the genomic DNAs of 57594 and 61798 strains as templates and PrimeSTAR (R) GXL DNA Polymerase (manufactured by Takara Bio Inc.). Amplified fragments were recovered by NucleoSpin (R) Gel and PCR Clean-up (manufactured by Takara Bio Inc.), and sequence analysis was performed using degenerate primers.
  • amino acid sequence of the protein glutaminase derived from the 57594 strain (SEQ ID NO: 1); the base sequence around the protein glutaminase gene derived from the 57594 strain (SEQ ID NO: 5) containing the structural gene encoding SEQ ID NO: 1 (SEQ ID NO: 3); derived from the 61798 strain.
  • the amino acid sequence of protein glutaminase (SEQ ID NO: 2); and the base sequence around the protein glutaminase gene (SEQ ID NO: 6) derived from the 61798 strain containing the structural gene encoding SEQ ID NO: 2 (SEQ ID NO: 4) were determined.
  • Test Example 2 various protein materials were modified (deamidated) by using the protein glutaminase derived from the 57594 strain of Example 1 and the protein glutaminase derived from the 61798 strain of Example 2.
  • the protein glutaminase (comparative PG) derived from the existing Chryseobacterium proteobacterium 9670 strain of Comparative Example 1 was also subjected to the following modification (deamidation) reactions of various proteins in the same manner.
  • the protein deamidation rate was derived by dividing the obtained amount of free ammonia by the amount of free ammonia in the protein material suspension before the addition of protein glutaminase.
  • the amount of free ammonia in the protein material suspension before the addition of protein glutaminase was measured as follows. 3N concentrated sulfuric acid was added to the protein material suspension before the addition of the enzyme, mixed, treated at 110 ° C. for 3 hours, cooled and neutralized with 6N sodium hydroxide, and a supernatant was obtained by centrifugation. The amount of free ammonia in the obtained supernatant was quantified using Ammonia-Test Wako (Fujifilm Wako Pure Chemical Industries, Ltd.). Further, a multiple of the protein deamidation rate in each example when the protein deamidation rate when the PG of Comparative Example 1 was used was set to 1, was derived as the deamidation promotion rate. The results are shown in Table 3.
  • Examples 3 to 8 the protein glutaminase derived from the 57594 strain of Example 1 was compared with the case where the protein glutaminase of Comparative Example 1 was used (Comparative Examples 2 to 4) for all the food materials regardless of the reaction temperature. And when the protein glutaminase derived from the 61798 strain of Example 2 was used, an excellent protein deamidation rate was observed (Examples 3 to 8). Among them, in the case of food materials such as pea and soybean, a particularly high protein deamidation promotion rate was observed when the reaction temperature was 60 ° C. (Examples 3 to 6), and in the case of albumin, the reaction temperature. However, a high protein deamidation promotion rate was observed at 60 ° C., 65 ° C., and 70 ° C. (Examples 7 to 8).
  • pea protein material protein content: 82% by weight
  • protein glutaminase was added so as to be 0.23 mg / g-protein (203 mg / g-protein). More detailed addition amounts of each component are as shown in Table 4), and the reaction was carried out at 65 ° C. for 24 hours.
  • the reaction was stopped by immersing the container containing the reaction composition in boiling water and applying heat treatment. Desalting was performed with purified water, and lyophilization was performed to obtain a deamidated protein (modified protein) powder. 2 mg of the obtained lyophilized deamidated protein (modified protein) powder was dissolved in 1 mL of Briton Robinson buffer having a pH of 2 to 12, and shaken at room temperature for 30 minutes. Centrifugation was performed at 15,000 ⁇ g for 5 minutes, and the dissolved protein concentration of the supernatant was measured by the Lowry method.
  • Example 4 the protein glutaminase derived from the 57594 strain of Example 1 and the protein glutaminase derived from the 61798 strain of Example 2 were used to test the deamidation ability of egg white albumin under alkaline conditions. Similarly, the following deamidation ability test was carried out for the protein glutaminase (comparative PG) derived from the existing Chryseobacterium proteobacterium 9670 strain of Comparative Example 1.
  • the protein deamidation rate was derived by dividing the obtained amount of free ammonia by the amount of free ammonia in the protein material suspension before the addition of protein glutaminase. Further, a multiple of the protein deamidation rate at pH 10 when the protein deamidation rate when treated at pH 7 was 1, was derived as the deamidation promotion rate under alkaline conditions. The results are shown in Table 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、耐熱性が向上したプロテイングルタミナーゼを提供することを目的とする。以下の(1)から(3)のいずれかに示すポリペプチドからなるプロテイングルタミナーゼは、耐熱性が向上している:(1)配列番号1又は2に示すアミノ酸配列からなるポリペプチド;(2)配列番号1又は2に示すアミノ酸配列において、1個又は数個のアミノ酸残基が置換、付加、挿入又は欠失されてなり、且つ配列番号1又は2に示すアミノ酸配列からなるポリペプチドと同等の耐熱性を示すポリペプチド;及び(3)配列番号1又は2に示すアミノ酸配列において、配列番号1又は2に示すアミノ酸配列に対する配列同一性が76%以上であり、且つ配列番号1又は2に示すアミノ酸配列からなるポリペプチドと同等の耐熱性を示すポリペプチド。

Description

耐熱性プロテイングルタミナーゼ
 本発明は、耐熱性プロテイングルタミナーゼに関する。より具体的には、本発明は、耐熱性プロテイングルタミナーゼ、当該耐熱性プロテイングルタミナーゼをコードするDNA、組換えベクター、形質転換体、酵素剤、当該耐熱性プロテイングルタミナーゼの製造方法、及び当該耐熱性プロテイングルタミナーゼの用途に関する。
 プロテイングルタミナーゼは、タンパク質中のグルタミン残基及びアスパラギン残基のγ-アミド基及びβ-アミド基を脱アミドする酵素であり、具体的には、クリセオバクテリウム・グレウムJCM2410株由来のプロテイングルタミナーゼ及びクリセオバクテリウム・プロテオリティカム9670株由来のプロテイングルタミナーゼ(特許文献1)が知られている。
 プロテイングルタミナーゼでタンパク質を処理するとカルボキシル基が生じるため、タンパク質の負電荷が増加することによるタンパク質の可溶性及び水分散性の増大、及びタンパク質の高次構造を変化させることによるタンパク質の乳化力及び乳化安定性等の向上をもたらすと考えられている。
 このため、プロテイングルタミナーゼは、様々なタンパク質の機能特性を改質する技術において用いられている。例えば、特許文献2には、プロテイングルタミナーゼ及びトランスグルタミナーゼをタンパク質に作用させてタンパク質を改質する方法が開示されており、牛乳を用いたヨーグルトの製造、豆乳を用いた豆腐の製造、小麦を用いた麺の製造においてプロテイングルタミナーゼとトランスグルタミナーゼとで処理することで、製造される食品の滑らかさを向上したことが記載されている。また、特許文献3には、アルギニン又はその塩とプロテイングルタミナーゼを用いる畜肉加工食品の製造方法が開示されており、ソーセージ、ハム、ハンバーグ、から揚げ、豚カツ、チャーシュー等の製造において、原料畜肉をアルギニン又はその塩とプロテイングルタミナーゼとで処理することで、得られる加工食品の食感が向上したことが記載されている。
国際公開第2010/029685号 国際公開第2009/113628号 国際公開第2012/060409号
 プロテイングルタミナーゼがタンパク質を変性させることによる効果は、食品等のタンパク質素材において様々な好ましい機能特性を生じさせるものとして認められており、プロテイングルタミナーゼは、今後も広く食品加工等に用いられると考えられる。一方で、これまでのプロテイングルタミナーゼは固有の熱的特性を有するため、タンパク質の処理における温度条件はプロテイングルタミナーゼの熱的特性に応じて必然的に制限される。したがって、プロテイングルタミナーゼをより広範な用途へ拡大するためには、耐熱性をより向上させることが望まれる。
 そこで本発明は、耐熱性が向上したプロテイングルタミナーゼを提供することを目的とする。
 本発明者は、出願人が所有する非公知の菌株ライブラリーからのスクリーニングにより、向上した耐熱性を有するプロテイングルタミナーゼを見出した。本発明は、この知見に基づいて完成されたものである。即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 以下の(1)から(3)のいずれかに示すポリペプチドからなるプロテイングルタミナーゼ:
(1)配列番号1又は2に示すアミノ酸配列からなるポリペプチド、
(2)配列番号1又は2に示すアミノ酸配列において、1個又は数個のアミノ酸残基が置換、付加、挿入又は欠失されてなり、且つ配列番号1又は2に示すアミノ酸配列からなるポリペプチドと同等の耐熱性を示すポリペプチド、及び
(3)配列番号1又は2に示すアミノ酸配列において、配列番号1又は2に示すアミノ酸配列に対する配列同一性が76%以上であり、且つ配列番号1又は2に示すアミノ酸配列からなるポリペプチドと同等の耐熱性を示すポリペプチド。
項2. 項1に記載のプロテイングルタミナーゼをコードしているDNA。
項3. 項2に記載のDNAを含む発現カセット又は組換えベクター。
項4. 項3に記載の発現カセット又は組換えベクターにより宿主を形質転換して得られる形質転換体。
項5. 項4に記載の形質転換体を培養する工程を含む、項1に記載のプロテイングルタミナーゼの製造方法。
項6. 項1に記載のプロテイングルタミナーゼを含む酵素剤。
項7. 項1に記載のプロテイングルタミナーゼを含む、タンパク質改質剤。
項8. 項1に記載のプロテイングルタミナーゼをタンパク質材料に作用させる工程を含む、改質されたタンパク質材料の製造方法。
項9. 前記タンパク質材料が食用である、項8に記載の製造方法。
 本発明によれば、向上した耐熱性を有するプロテイングルタミナーゼが提供される。
クリセオバクテリウム・エスピー(Chryseobacterium sp.)の57594株由来のプロテイングルタミナーゼの精製画分のSDS-PAGE画像である。 クリセオバクテリウム・エスピー(Chryseobacterium sp.)の61798株由来のプロテイングルタミナーゼの精製画分のSDS-PAGE画像である。 クリセオバクテリウム・エスピー(Chryseobacterium sp.)の57594株及び61798株由来のプロテイングルタミナーゼの温度安定性試験結果である。 クリセオバクテリウム・エスピー(Chryseobacterium sp.)の57594株及び61798株由来のプロテイングルタミナーゼの至適温度試験結果である。 クリセオバクテリウム・エスピー(Chryseobacterium sp.)の57594株及び61798株由来のプロテイングルタミナーゼのpH安定性試験結果である。 クリセオバクテリウム・エスピー(Chryseobacterium sp.)の57594株及び61798株由来のプロテイングルタミナーゼの至適pH試験結果である。
 以下、本発明を詳細に説明する。なお、配列表以外では、アミノ酸配列における20種類のアミノ酸残基は、一文字略記で表現することがある。即ち、グリシン(Gly)はG、アラニン(Ala)はA、バリン(Val)はV、ロイシン(Leu)はL、イソロイシン(Ile)はI、フェニルアラニン(Phe)はF、チロシン(Tyr)はY、トリプトファン(Trp)はW、セリン(Ser)はS、スレオニン(Thr)はT、システイン(Cys)はC、メチオニン(Met)はM、アスパラギン酸(Asp)はD、グルタミン酸(Glu)はE、アスパラギン(Asn)はN、グルタミン(Gln)はQ、リジン(Lys)はK、アルギニン(Arg)はR、ヒスチジン(His)はH、プロリン(Pro)はPである。
 本明細書において、表示するアミノ酸配列は、左端がN末端、右端がC末端である。
 本明細書において、「非極性アミノ酸」には、アラニン、バリン、ロイシン、イソロイシン、プロリン、メチオニン、フェニルアラニン、及びトリプトファンが含まれる。「非電荷アミノ酸」には、グリシン、セリン、スレオニン、システイン、チロシン、アスパラギン、及びグルタミンが含まれる。「酸性アミノ酸」には、アスパラギン酸及びグルタミン酸が含まれる。「塩基性アミノ酸」には、リジン、アルギニン、及びヒスチジンが含まれる。
 本明細書において、「置換」とは、人為的にアミノ酸残基の置換を導入した場合のみならず、自然にアミノ酸残基の置換が導入された場合、すなわち、もともとアミノ酸残基が相違していた場合も含まれる。本明細書においては、アミノ酸残基の置換は、人為的な置換であってもよく、自然な置換であってもよいが、人為的な置換が好ましい。
1.プロテイングルタミナーゼ
 本発明のプロテイングルタミナーゼは、下記(1)から(3)のいずれかに示すポリペプチドからなる。
(1)配列番号1又は2に示すアミノ酸配列からなるポリペプチド、
(2)配列番号1又は2に示すアミノ酸配列において、1個又は数個のアミノ酸残基が置換、付加、挿入又は欠失されてなり、且つ配列番号1又は2に示すアミノ酸配列からなるポリペプチドと同等の耐熱性を示すポリペプチド、及び
(3)配列番号1又は2に示すアミノ酸配列において、配列番号1又は2に示すアミノ酸配列に対する配列同一性が76%以上であり、且つ配列番号1又は2に示すアミノ酸配列からなるポリペプチドと同等の耐熱性を示すポリペプチド。
 前記(1)~(3)に示すポリペプチドは、プロテイングルタミナーゼ活性を有し、且つ、向上した耐熱性を有する。
 前記(1)に示すポリペプチドは、クリセオバクテリウム・エスピー(Chryseobacterium sp.)由来のプロテイングルタミナーゼであり、前記(2)及び(3)に示すポリペプチドは、前記(1)に示すポリペプチドの変異体である。前記(1)~(3)のポリペプチドには、人為的に置換して得られるポリペプチドのみならず、そのようなアミノ酸配列を元々有するポリペプチドも含まれる。
 前記(2)のポリペプチドにおいて、導入されるアミノ酸の改変は、置換、付加、挿入、及び欠失の中から1種類の改変のみ(例えば置換のみ)を含むものであってもよく、2種以上の改変(例えば、置換と挿入)を含んでいてもよい。前記(2)のポリペプチドにおいて、任意相違部位におけるアミノ酸の相違の数は、1個又は数個であればよく、例えば1~80個、好ましくは1~70個、1~60個、1~50個、1~40個、又は1~30個、より好ましくは1~20個、1~10個、1~8個、1~7個、1~6個、1~5個、又は1~4個、更に好ましくは1~3個、特に好ましくは1又は2個或いは1個が挙げられる。
 また、前記(3)のポリペプチドにおいて、配列番号1又は2に示すアミノ酸配列に対する配列同一性は、76%以上であればよいが、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%以上、一層好ましくは95%以上、96%以上、97%以上、98%以上、特に好ましくは99%以上が挙げられる。
 ここで、前記(3)のポリペプチドにおいて、配列番号1又は2に示す各アミノ酸配列に対する配列同一性とは、配列番号1又は2に示すアミノ酸配列と比較して算出される配列同一性である。また、「配列同一性」とは、BLASTPACKAGE[sgi32 bit edition,Version 2.0.12;available from National Center for Biotechnology Information(NCBI)]のbl2seq program(Tatiana A.Tatsusova,Thomas L.Madden,FEMS Microbiol.Lett.,Vol.174,p247-250,1999)により得られるアミノ酸配列の同一性の値を示す。パラメーターは、Gap insertion Cost value:11、Gap extension Cost value:1に設定すればよい。
 前記(2)及び(3)のポリペプチドにおいて、配列番号1及び2に示すアミノ酸配列における第176位(システイン)、第217位(ヒスチジン)、及び第237位(アスパラギン酸)のアミノ酸は、プロテイングルタミナーゼ活性触媒残基と考えられることから、これらの部位には置換又は欠失を導入しないことが望ましい。
 前記(2)及び(3)のポリペプチドにおいて、配列番号1又は2に対してアミノ酸置換が導入されている場合、導入されるアミノ酸置換の好適な一態様として保存的置換が挙げられる。即ち前記(2)及び(3)のポリペプチドにおける置換としては、例えば、置換前のアミノ酸が非極性アミノ酸であれば他の非極性アミノ酸への置換、置換前のアミノ酸が非荷電性アミノ酸であれば他の非荷電性アミノ酸への置換、置換前のアミノ酸が酸性アミノ酸であれば他の酸性アミノ酸への置換、及び置換前のアミノ酸が塩基性アミノ酸であれば他の塩基性アミノ酸への置換が挙げられる。
 前記(2)及び(3)のポリペプチドにおいて、「配列番号1又は2に示すアミノ酸配列からなるポリペプチドと同等の耐熱性を示す」とは、耐熱性すなわち65℃におけるプロテイングルタミナーゼ相対活性を測定した場合に、前記(1)のポリペプチドとプロテイングルタミナーゼ相対活性が同等であること、具体的には、前記(1)のポリペプチドのプロテイングルタミナーゼ相対活性を1とした場合に、プロテイングルタミナーゼ相対活性が0.8~1.2程度を示すことを意味する。なお、65℃におけるプロテイングルタミナーゼ相対活性とは、酵素を4℃又は65℃の温度環境に10分晒し、4℃の温度条件に晒した酵素のプロテイングルタミナーゼ活性を100%とした場合の、65℃の温度条件に晒した酵素のプロテイングルタミナーゼ活性の相対量(%)をいう。
2.DNA
 本発明のDNAは、上記「1.プロテイングルタミナーゼ」で述べたプロテイングルタミナーゼ(以下において、「上記所定のプロテイングルタミナーゼ」とも記載する)をコードするDNAである。本発明のDNAは、配列番号3又は4に示される塩基配列からなるDNAを含む。配列番号3に示される塩基配列は上記配列番号1に示すアミノ酸配列からなるポリペプチドをコードする遺伝子であり、配列番号4に示される塩基配列は上記配列番号2に示すアミノ酸配列からなるポリペプチドをコードする遺伝子である。
 本発明のDNAは上記配列に限定されるものではなく、配列番号3又は4に示される塩基配列と76%以上、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%以上、91%以上、92%以上、一層好ましくは95%以上、特に好ましくは99%以上の相同性を有する塩基配列を有するDNAも、それがプロテイングルタミナーゼ活性を有するポリペプチドをコードする限り、本発明のDNAに含まれる。
 ここで、DNAの「相同性」は、基準配列を照会配列として比較するアルゴリズムをもった公開又は市販されているソフトウェアを用いて計算される。具体的には、BLAST、FASTA、又はGENETYX(株式会社ゼネティックス製)等を用いることができ、これらはデフォルトパラメーターに設定して使用すればよい。
 また、前述したアミノ酸配列の置換、付加、挿入又は欠失に対応して、配列番号3又は4に記載の塩基配列において、数個の塩基に置換、付加、挿入又は欠失の変異が生じた塩基配列も、それがプロテイングルタミナーゼ活性を有するポリペプチドをコードする限り、本発明のDNAに含まれる。
 さらに、配列番号3又は4に記載の塩基配列からなるDNAと相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAも、これがプロテイングルタミナーゼ活性を有するポリペプチドをコードする限り、本発明のDNAに含まれる。
 ここで、ストリンジェントな条件とは、DNAを固定したナイロン膜を、6×SSC(1×SSCは、塩化ナトリウム8.76g、クエン酸ナトリウム4.41gを1リットルの水に溶かしたもの)、1%SDS、100μg/mLサケ精子DNA、0.1%ウシ血清アルブミン、0.1%ポリビニルピロリドン、0.1%フィコールを含む溶液(本明細書において、「%」は「w/v」を意味する。)中で65℃にて20時間プローブとともに保温してハイブリダイゼーションを行う条件である。
 ハイブリダイゼーション法の詳細な手順については、Molecular  Cloning,  A  Laboratory  Manual  2nd  ed.(Cold  Spring  Harbor  Laboratory  Press  (1989))等を参照することができる。
 以下に、ハイブリダイゼーションにより本発明のDNAを得る方法の一例を示すが、本発明のDNAを得る方法は以下に限定されない。
 まず、適当な遺伝子源から得たDNAを定法に従ってプラスミドやファージベクターに接続してDNAライブラリを作製する。このライブラリを適当な宿主に導入して得られる形質転換体をプレート上で培養し、生育したコロニー又はプラークをニトロセルロースやナイロンの膜にうつしとり、変性処理の後にDNAを膜に固定する。この膜をあらかじめ32P等で標識したプローブを含む上記の組成の溶液中、上記のストリンジェントな条件で保温し、ハイブリダイゼーションを行う。プローブとしては、配列番号1又は2に記載したアミノ酸配列の全部又は一部をコードするポリヌクレオチドを使用することができる。
 ハイブリダイゼーションの終了後、非特異的に吸着したプローブを洗い流し、オートラジオグラフィ等によりプローブとハイブリッドを形成したクローンを同定する。この操作をハイブリッド形成クローンが単離できるまで繰り返す。最後に、得られたクローンの中から、目的の酵素活性を有するタンパク質をコードする遺伝子を選択する。遺伝子の単離は、アルカリ法等の公知のポリヌクレオチド抽出法により実施できる。
 本発明のDNAは、上記所定のプロテイングルタミナーゼを産生する微生物から単離することもできる。例えば、クリセオバクテリウム・エスピー(Chryseobacterium sp.)由来のゲノムDNAを鋳型として、既知のアミノ酸配列情報から遺伝子の縮重を考慮して設計したプライマー若しくはプローブ又は既知の塩基配列情報に基づいて設計したプライマー又はプローブを用いたPCR又はハイブリダイゼーション法により、前記微生物のゲノムから目的のDNAを単離することができる。
 本発明のDNAには、コドンの縮重に由来する多種のDNAが包含される。同じアミノ酸配列をコードする多種のDNAを人為的に作製することは、公知の遺伝子工学的手法を用いて容易に行うことができる。例えば、遺伝子工学的なタンパク質の生産において、目的のタンパク質をコードする本来の遺伝子上で使用されているコドンが宿主中では使用頻度の低いものであった場合には、タンパク質の発現量が低いことがある。このような場合にはコードされているアミノ酸配列に変化を与えることなく、コドン利用頻度を宿主に最適化することにより、目的タンパク質の高発現を図ることができる。
 コドン利用頻度を表す指標として、各コドンの宿主最適コドン利用頻度の総計を採択すればよい。最適コドンとは、同じアミノ酸に対応するコドンのうち利用頻度が最も高いコドンと定義される。コドン利用頻度は、宿主に最適化したものであれば特に限定されないが、例えば、大腸菌の最適コドンの一例として以下のものが挙げられる。F:フェニルアラニン(ttt)、L:ロイシン(ctg)、I:イソロイシン(att)、M:メチオニン(atg)、V:バリン(gtg)、Y:チロシン(tat)、終止コドン(taa)、H:ヒスチジン(cat)、Q:グルタミン(cag)、N:アスパラギン(aat)、K:リジン(aaa)、D:アスパラギン酸(gat)、E:グルタミン酸(gaa)、S:セリン(agc)、P:プロリン(ccg)、T:スレオニン(acc)、A:アラニン(gcg)、C:システイン(tgc)、W:トリプトファン(tgg)、R:アルギニン(cgc)、G:グリシン(ggc)。
 遺伝子に変異を導入し、人為的にアミノ酸配列を改変する方法としては、Kunkel法やGapped  duplex法等の公知の手法、及び部位特異的突然変異誘発法を利用した変異導入キット、例えば、QuikChangeTM  Site-Directed  Mutagenesis  Kit(ストラタジーン社)、GeneArtTM  Site-Directed  Mutagenesis PLUS System(インビトロジェン社)、TaKaRa  Site-Directed  Mutagenesis  System(Mutan-K,Mutan-Super  Express  Km、PrimeSTAR Mutagenesis Basal Kit等:タカラバイオ社)等を用いることができる。
 DNAの塩基配列の確認は、慣用の方法により配列決定することにより行うことができる。例えば、ジデオキシヌクレオチドチェーンターミネーション法(Sanger  et  al.(1977)  Proc.Natl.Acad.Sci.USA  74:5463)等により行うことができる。また、適当なDNAシークエンサーを利用して配列を解析することができる。
 得られたDNAが目的のプロテイングルタミナーゼをコードするDNAであるかどうかの確認は、決定された塩基配列を配列番号3又は4に記載の塩基配列と比較して行うことができる。あるいは決定された塩基配列より推定されるアミノ酸配列を配列番号1又は2に記載のアミノ酸配列と比較して行うことができる。
3.発現カセット又は組換えベクター
 上記所定のプロテイングルタミナーゼをコードするDNAを含む発現カセット又は組換えベクター(以下、「本発明の発現カセット」又は「本発明の組換えベクター」とも表記する)は、本発明のDNAにプロモーター及びターミネーターを連結することにより、又は、発現ベクターに本発明の発現カセット若しくは本発明のDNAを挿入することにより得ることができる。
 本発明の発現カセット又は本発明の組換えベクターには、制御因子として、プロモーター及びターミネーターの他、更に必要に応じてエンハンサー、CCAATボックス、TATAボックス、SPI部位等の転写要素が含まれていてもよい。これらの制御因子は、本発明のDNAに作動可能に連結されていればよい。作動可能に連結とは、本発明のDNAを調節する種々の制御因子と本発明のDNAが、宿主細胞中で作動し得る状態で連結されることをいう。
 本発明の組換えベクターについて、発現ベクターとしては、宿主内で自律的に増殖し得るファージ、プラスミド、又はウイルスから遺伝子組換え用として構築されたものが好適である。このような発現ベクターは公知であり、例えば、商業的に入手可能な発現ベクターとしては、pQE系ベクター(株式会社キアゲン)、pDR540、pRIT2T(GEヘルスケアバイオサイエンス株式会社)、pET系ベクター(メルク株式会社)等が挙げられる。発現ベクターは、宿主細胞との適切な組み合わせを選んで使用すればよく、例えば、大腸菌を宿主細胞とする場合には、pET系ベクターとDH5α大腸菌株の組み合わせ、pET系ベクターとBL21(DE3)大腸菌株の組み合わせ、又はpDR540ベクターとJM109大腸菌株の組み合わせ等が挙げられる。
4.形質転換体
 本発明の発現カセット又は組換えベクターを用いて宿主を形質転換することによって形質転換体(以下、「本発明の形質転換体」とも表記する)が得られる。
 形質転換体の製造に使用される宿主としては、遺伝子の導入が可能で、発現カセット又は組換えベクターが安定であり、且つ自律増殖可能で本発明のDNAを含む遺伝子の形質を発現できるのであれば特に制限されないが、例えば、大腸菌(Escherichia coli)等のエッシェリヒア属、バチルス・ズブチリス(Bacillus subtilis)等のバチルス属、シュードモナス・プチダ(Pseudomonas putida)等のシュードモナス属等に属する細菌;酵母等が好適な例として挙げられるが、その他、動物細胞、昆虫細胞、植物等であってもよい。
 本発明の形質転換体は、宿主の細胞に本発明の発現カセット又は本発明の組換えベクターを導入することによって得ることができる。本発明のDNAを導入する場所も、目的の遺伝子が発現できる限り特に限定されず、プラスミド上であってもよいし、ゲノム上であってもよい。本発明の発現カセット又は本発明の組換えベクターを導入する具体的な方法としては、例えば、組換えベクター法、ゲノム編集法が挙げられる。宿主に発現カセット又は組換えベクターを導入する条件は、宿主の種類等に応じて適宜設定すればよい。宿主が細菌の場合であれば、例えば、カルシウムイオン処理によるコンピテントセルを用いる方法及びエレクトロポレーション法等が挙げられる。宿主が酵母の場合であれば、例えば、電気穿孔法(エレクトロポレーション法)、スフェロプラスト法及び酢酸リチウム法等が挙げられる。宿主が動物の場合であれば、例えば、エレクトロポレーション法、リン酸カルシウム法及びリポフェクション法等が挙げられる。宿主が昆虫の場合であれば、例えば、リン酸カルシウム法、リポフェクション法及びエレクトロポレーション法等が挙げられる。宿主が植物の場合であれば、例えば、エレクトロポレーション法、アグロバクテリウム法、パーティクルガン法、及びPEG法等が挙げられる。
 本発明の発現カセット又は本発明の組換えベクターが宿主に組み込まれたか否かの確認は、PCR法、サザンハイブリダイゼーション法、及びノーザンハイブリダイゼーション法等により行うことができる。
 PCR法よって本発明の発現カセット又は本発明の組換えベクターが宿主に組み込まれたか否かを確認する場合、例えば、形質転換体からゲノムDNA又は発現カセット又は組換えベクターを分離・精製すればよい。
 発現カセット又は組換えベクターの分離・精製は、例えば、宿主が細菌の場合、細菌を溶菌して得られる溶菌物に基づいて行われる。溶菌の方法としては、例えばリゾチームなどの溶菌酵素により処理が施され、必要に応じてプロテアーゼ、及び他の酵素並びにラウリル硫酸ナトリウム(SDS)等の界面活性剤が併用される。
 更に、凍結融解およびフレンチプレス処理のような物理的破砕方法を組み合わせてもよい。溶菌物からのDNAの分離・精製は、例えば、フェノール処理およびプロテアーゼ処理による除蛋白処理、リボヌクレアーゼ処理、アルコール沈殿処理並びに市販のキットを適宜組み合わせることにより行うことができる。
 DNAの切断は、常法に従い、例えば制限酵素処理を用いて行うことができる。制限酵素としては、例えば特定のヌクレオチド配列に作用するII型制限酵素を用いる。DNAと発現カセット又は発現ベクターとの結合は、例えばDNAリガーゼを用いて行う。
 その後、分離・精製したDNAを鋳型として、本発明のDNAに特異的なプライマーを設計してPCRを行う。PCRにより得られた増幅産物についてアガロースゲル電気泳動、ポリアクリルアミドゲル電気泳動、キャピラリー電気泳動等を行い、臭化エチジウムおよびSYBR Green液等により染色し、そして増幅産物をバンドとして検出することにより、形質転換されたことを確認することができる。
 また、予め蛍光色素等により標識したプライマーを用いてPCRを行い、増幅産物を検出することもできる。さらに、マイクロプレート等の固相に増幅産物を結合させ、蛍光および酵素反応等により増幅産物を確認する方法も採用してもよい。
5.プロテイングルタミナーゼの製造方法
 上記所定のプロテイングルタミナーゼは、本発明の形質転換体を培養する工程を含む製造方法、又は上記所定のプロテイングルタミナーゼを産生する微生物を培養する工程を含む製造方法によって得ることができる。
 上記の培養条件は、上記形質転換体又は上記微生物の栄養生理的性質を考慮して適宜設定すればよいが、好ましくは液体培養が挙げられる。また、工業的製造を行う場合であれば、通気攪拌培養が好ましい。
 培地の栄養源としては、上記形質転換体又は上記微生物の生育に必要とされるものが使用され得る。炭素源としては、資化可能な炭素化合物であればよく、例えば、グルコース、スクロース、ラクトース、マルトース、糖蜜、ピルビン酸等が挙げられる。
 窒素源としては、資化可能な窒素化合物であればよく、例えば、ペプトン、肉エキス、酵母エキス、カゼイン加水分解物、大豆粕アルカリ抽出物が挙げられる。
 炭素源及び窒素源の他に、例えば、リン酸塩、炭酸塩、硫酸塩、マグネシウム、カルシウム、カリウム、鉄、マンガンおよび亜鉛などの塩類、特定のアミノ酸並びに特定のビタミンなどを必要に応じて使用してもよい。
 培養温度は、本発明の上記形質転換体又は上記微生物が生育可能であり、且つ上記形質転換体又は上記微生物が上記所定のプロテイングルタミナーゼを産生する範囲で適宜設定し得るが、例えば10~40℃程度、好ましくは15~37℃程度である。培養は、上記所定のプロテイングルタミナーゼが最高収量に達する時期を見計らって適当時期に完了すればよく、通常は培養時間が6~96時間程度、12~48時間程度が挙げられる。
 上記形質転換体又は上記微生物の培養後は、培養液を遠心分離などの方法により培養上清または菌体を回収し、菌体は超音波およびフレンチプレスといった機械的方法又はリゾチーム等の溶菌酵素により処理を施し、必要に応じてプロテアーゼ等の酵素やラウリル硫酸ナトリウム(SDS)等の界面活性剤を使用することにより可溶化し、上記所定のプロテイングルタミナーゼを含む水溶性画分を得ることができる。
 また、適当な発現カセット又は発現ベクターと宿主を選択することにより、発現した上記所定のプロテイングルタミナーゼを培養液中に分泌させることもできる。
 上記のようにして得られた上記所定のプロテイングルタミナーゼを含む水溶性画分は、そのまま精製処理に供してもよいが、該水溶性画分中の上記所定のプロテイングルタミナーゼを濃縮した後に精製処理に供してもよい。
 濃縮は、例えば、減圧濃縮、膜濃縮、塩析処理、親水性有機溶媒(例えば、メタノール、エタノールおよびアセトン)による分別沈殿法等により行うことができる。
 上記所定のプロテイングルタミナーゼの精製処理は、例えば、ゲルろ過、吸着クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティクロマトグラフィー等の方法を適宜組み合わせることによって行うことができる。
 このようにして精製された上記所定のプロテイングルタミナーゼは、必要に応じて、凍結乾燥、真空乾燥、スプレードライ等により粉末化して市場に流通させることができる。
6.酵素剤
 上記所定のプロテイングルタミナーゼは、酵素剤の形態で提供されることができる。したがって、本発明は、上記所定のプロテイングルタミナーゼを有効成分として含む酵素剤も提供する。
 本発明の酵素剤における上記所定のプロテイングルタミナーゼの含有量としては特に限定されないが、例えば0.1U/g以上、1U/g以上、好ましくは10U/g以上、より好ましくは100U/g以上、更に好ましくは250U/g以上、特に好ましくは500U/g以上、1000U/g以上、1500U/g以上、2000U/g以上、5000U/g以上が挙げられる。
 本発明の酵素剤は、上記所定のプロテイングルタミナーゼ以外に、本発明の効果に影響を与えない程度に、他の成分を含んでいてもよい。他の成分としては、上記所定のプロテイングルタミナーゼ以外の他の酵素、添加剤、上記製造方法で生じた培養残渣等が挙げられる。
 他の酵素としては、例えば、アミラーゼ(α-アミラーゼ、β-アミラーゼ、グルコアミラーゼ)、グルコシダーゼ(α-グルコシダーゼ、β-グルコシダーゼ)、ガラクトシダーゼ(α-ガラクトシダーゼ、β-ガラクトシダーゼ)、プロテアーゼ(酸性プロテアーゼ、中性プロテアーゼ、アルカリプロテアーゼ)、ペプチダーゼ(ロイシンペプチダーゼ、アミノペプチダーゼ)、リパーゼ、エステラーゼ、セルラーゼ、ホスファターゼ(酸性ホスファターゼ、アルカリホスファターゼ)、ヌクレアーゼ、デアミナーゼ、オキシダーゼ、デヒドロゲナーゼ、グルタミナーゼ、ペクチナーゼ、カタラーゼ、デキストラナーゼ、トランスグルタミナーゼ、蛋白質脱アミド酵素(上記有効成分以外)、プルラナーゼ等が挙げられる。これらの他の酵素は、1種を単独で含んでもよいし、複数種の組み合わせで含んでもよい。
 添加剤としては、賦形剤、緩衝剤、懸濁剤、安定剤、保存剤、防腐剤、生理食塩水等が挙げられる。賦形剤としては、デンプン、デキストリン、マルトース、トレハロース、乳糖、D-グルコース、ソルビトール、D-マンニトール、白糖、グリセロール等が挙げられる。緩衝剤としては、リン酸塩、クエン酸塩、酢酸塩等が挙げられる。安定剤としては、プロピレングリコール、アスコルビン酸等が挙げられる。保存剤としては、安息香酸塩(カリウム塩、ナトリウム塩等のアルカリ金属塩)、ソルビン酸塩(カリウム塩、ナトリウム塩等のアルカリ金属塩)、フェノール、塩化ベンザルコニウム、ベンジルアルコール、クロロブタノール、メチルパラベン等が挙げられる。防腐剤としては、エタノール、塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノール等が挙げられる。これらの添加剤は、1種を単独で含んでもよいし、複数種の組み合わせで含んでもよい。
 培養残渣としては、培地由来の成分、夾雑タンパク質、菌体成分等が挙げられる。
 本発明の酵素剤の形態としては特に限定されず、例えば、液状、固形状(粉末、顆粒等)等が挙げられる。前記組成物は、一般的に公知の方法で調製することができる。
7.用途
 上記所定のプロテイングルタミナーゼは、プロテイングルタミナーゼの公知の用途に用いることができる。例えば、上記所定のプロテイングルタミナーゼは、タンパク質の改質を目的として用いることができる。従って、本発明は、上記所定のプロテイングルタミナーゼを含むタンパク質の改質剤も提供する。
 タンパク質の改質の具体的な態様としては特に限定されず、タンパク質のグルタミン残基及びアスパラギン残基のγ-アミド基及びβ-アミド基の脱アミド化によりカルボキシル基が生じることでもたらされるタンパク質の特性変化であればよい。具体的には、タンパク質の改質としては、タンパク質の可溶性の増大、水分散性の増大、乳化力の向上、及び乳化安定性等が挙げられる。
 上記所定のプロテイングルタミナーゼは耐熱性が向上しているため、本発明の酵素剤は、改質すべきタンパク質を比較的高い温度で処理する場合、及び/又は加熱条件下で長時間処理する場合に特に有用である。具体的には、上記所定のプロテイングルタミナーゼは、改質すべきタンパク質を40~80℃、好ましくは46~77℃、更に好ましくは53~74℃、特に好ましくは60~70℃の加熱条件で処理する場合に用いられることが好ましい。
8.改質されたタンパク質材料の製造方法
 上述のとおり、所定のプロテイングルタミナーゼは、タンパク質の改質を目的として用いることができる。従って、本発明は、上記所定のプロテイングルタミナーゼをタンパク質材料に作用させる工程を含む、改質されたタンパク質材料の製造方法も提供する。
 本発明の製造方法においては、タンパク質材料と所定のプロテイングルタミナーゼとを含む混合物を、所定のプロテイングルタミナーゼの作用条件下に供することで、タンパク質を改質する反応を進行させる。
 タンパク質材料としては、タンパク質を含んでいる材料であれば特に限定されず、食用及び非食用のいずれであってもよい。食用のタンパク質材料は、飲食品として、又は、飲食品を製造するための素材として用いることができる。非食用のタンパク質材料は、タンパク質実験用の材料、医療材料、香粧品材料として用いることができる。
 タンパク質材料の具体例としては、タンパク質源から公知の方法でタンパク質含量を高める処理を行って得られるものであり、当業者によって適宜選択される。例えば、食用のタンパク質材料としては、植物性タンパク質を含有する食品から得られる植物性タンパク質材料、及び動物性タンパク質等が挙げられる。植物性タンパク質としては、大豆タンパク質、空豆タンパク質、エンドウタンパク質、ひよこ豆タンパク質、緑豆タンパク質、ルパン豆タンパク質等の豆タンパク質;小麦タンパク質、ライ麦タンパク質、オート麦タンパク質、トウモロコシタンパク質等の穀物タンパク質;カナリーシード、亜麻仁、アーモンド、カシューナッツ、ヘーゼルナッツ、ペカンナッツ、マカダミアナッツ、ピスタチオ、クルミ、ブラジルナッツ、ピーナッツ、ココナッツ、ヘンプシード(産業用ヘンプ)、ピリナッツ、栗、ゴマ、松の実等の種実タンパク質等が挙げられる。動物性タンパク質としては、畜肉、魚肉、卵のタンパク質等が挙げられる。非食用のタンパク質材料としては、それらの由来としては、卵白、血清等の生体試料に由来する、アルブミン、グロブリン等が挙げられる。
 これらのタンパク質材料に含まれるタンパク質の含有量としては特に限定されないが、例えば30重量%以上、40重量%以上、50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上、さらに好ましくは80重量%以上が挙げられる。タンパク質材料に含まれるタンパク質の含有量の上限としては特に限定されないが、例えば95重量%以下、90重量%以下、85重量%以下、80重量%以下、70重量%以下、又は60重量%以下が挙げられる。
 混合物中におけるタンパク質材料の含有量としては、タンパク質材料に含まれるタンパク質の混合物中の濃度が、例えば0.1重量%以上、0.3重量%以上、好ましくは0.7重量%以上、より好ましくは1.4重量%以上となる量が挙げられる。タンパク質材料に含まれるタンパク質の混合物中の当該濃度の上限としては特に限定されないが、例えば、80重量%以下、60重量%以下、40重量%以下、30重量%以下、20重量%以下、15重量%以下、10重量%以下、8重量%以下、5重量%以下、3重量%以下、又は2重量%以下が挙げられる。
 所定のプロテイングルタミナーゼの使用量としては特に限定されないが、タンパク質材料に含まれるタンパク質1g当たりの所定のプロテイングルタミナーゼの使用量として、例えば0.1U以上、好ましくは0.5U以上、より好ましくは1U以上、さらに好ましくは2U以上、一層好ましくは3.5U以上、より一層好ましくは4.5U以上が挙げられる。タンパク質材料に含まれるタンパク質1g当たりの所定のプロテイングルタミナーゼの使用量の上限としては特に限定されないが、例えば、45U以下、35U以下、20U以下、10U以下、8U以下又は5.5U以下が挙げられる。
 また、タンパク質材料1g当たりの所定のプロテイングルタミナーゼの使用量としては、例えば0.1U以上、好ましくは0.5U以上、より好ましくは1U以上、さらに好ましくは2U以上、一層好ましくは3U以上、より一層好ましくは4U以上が挙げられる。タンパク質材料1g当たりの所定のプロテイングルタミナーゼの使用量の上限としては特に限定されないが、例えば、40U以下、30U以下、20U以下、10U以下、7U以下又は5U以下が挙げられる。
 タンパク質脱アミド酵素(プロテイングルタミナーゼ)の活性については、ベンジルオキシカルボニル-L-グルタミニルグリシン(Z-Gln-Gly)を基質とし、1分間に1μmolのアンモニアを有利する酵素量を1単位(1U)とする。
 所定のプロテイングルタミナーゼの作用条件としては、使用するプロテイングルタミナーゼの至適温度及び至適pHに基づいて適宜決定される。
 所定のプロテイングルタミナーゼの作用条件のうち温度条件としては、例えば、50~80℃、好ましくは60~80℃、より好ましくは63~80℃が挙げられる。所定のプロテイングルタミナーゼは耐熱性に優れているため65℃以上の条件において使用される場合に特に有用である。このような観点から、当該温度条件として、さらに好ましくは65~80℃、より好ましくは65~75℃、さらに好ましくは65~70℃、一層好ましくは65~67℃が挙げられる。一方、当該所定のプロテイングルタミナーゼは、65℃未満の条件下では温度が低くなるほど至適温度における活性に対する相対値が低くなる傾向にあるが、自身が有するタンパク質脱アミド化能が高いため、65℃未満の条件下でも優れたタンパク質脱アミド化能を奏する。このような観点から、当該温度条件の好適な例としては、50℃以上65℃未満、55℃以上65℃未満、60℃以上65℃未満、又は63℃以上65℃未満も挙げられる。
 所定のプロテイングルタミナーゼの作用条件のうちpH条件としては、例えば、2~12、好ましくは3~10、より好ましくは4~9が挙げられる。
 所定のプロテイングルタミナーゼを作用させる時間としては特に限定されず、仕込みスケール等に応じて適宜決定すればよいが、例えば1時間以上、好ましくは8時間以上、より好ましくは16時間以上、さらに好ましくは20時間以上が挙げられる。当該時間の範囲の上限としては特に限定されないが、例えば40時間以下、30時間以下、又は25時間以下が挙げられる。
 反応終了後は、酵素失活処理を行った後に冷却を行い、必要に応じて後処理を行うことで、改質タンパク質材料が得られる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明は以下の実施例に限定して解釈されるものではない。
[試験例1]
(1)耐熱性プロテイングルタミナーゼ産生株の選出
 出願人が所有する非公知の菌株ライブラリーから、プロテイングルタミナーゼ活性及び温度安定性を指標に、クリセオバクテリウム・エスピー(Chryseobacterium sp.)の57594株及び61798株を選出し、グリセロールを含む培養液にストックした。
(2)選出株の培養
 水に表1の成分を表示の濃度となるように溶解し、121℃、30分間オートクレーブして、培地を調製した。選出した株を培地に接種し、120rpm、30℃、40-48時間培養を行った。培養後、培地を遠心分離して菌体を回収し、上清のみを採取した。上清に対しての珪藻土を添加してろ過を行い、さらに、限外ろ過膜を用いて培養ろ液の濃縮を行った。
(3)酵素の精製
 濃縮液を、塩析、Phenyl-sepharose、及びSephacryl S-100により処理し酵素を精製した。57594株及び61798株それぞれの培養液の精製後の濃縮画分について、SDS-PAGE画像を、それぞれ図1及び図2に示す。図1のレーン7は精製前画分、レーン8~10は57594株培養物からの精製画分、レーン11は分子マーカーを表す。図2のレーン1は分子マーカー、レーン2~4は61798株培養物からの精製画分を表す。図1及び図2に示すように、精製画分には18kDa(矢印で示されるバンド)が精製物として確認できた。
Figure JPOXMLDOC01-appb-T000001
(4)酵素学的性質評価試験
 57594株及び61798株それぞれの培養液から得られた18kDa精製画分(57594株由来プロテイングルタミナーゼ及び61798株由来プロテイングルタミナーゼ)について、以下の酵素学的性質を評価した。既存のクリセオバクテリウム・プロテオリティカム9670株由来のプロテイングルタミナーゼ(比較用PG)についても同様に以下の酵素学的性質を評価した。
Figure JPOXMLDOC01-appb-T000002
(4-1)プロテイングルタミナーゼ活性の測定
・N-ベンジルオキシカルボニル-L-グルタミニルグリシン(Z-Gln-Gly;ペプチド研究所)を0.2mol/Lリン酸塩バッファー(pH6.5)で溶解し、30mmol/Lに調製した溶液を基質溶液とした。
・活性を測定すべき酵素溶液0.1mLを試験管に入れ、37±0.5℃の恒温水槽中にて1分間放置後、あらかじめ37±0.5℃で10分間放置した基質溶液1mLを加え、直ちに混ぜた。
・この液を10分間放置することで酵素反応を行った後、0.4mol/Lトリクロロ酢酸溶液1mLを加えて酵素反応を停止した。
・測定ブランクは、試験管に酵素溶液0.1mLを加え、0.4mol/Lトリクロロ酢酸溶液1mL、基質溶液1mLの順に添加することで調製した。
・アンモニア-テストワコー(富士フィルム和光純薬)による発色反応を行い、波長630nmにおける吸光度の値をもとに、10分間の酵素反応によって遊離したアンモニアの定量を行った。
・1分間に1μmolのアンモニアを生成する酵素量を1単位(1U)と定義し、酵素反応によって遊離したアンモニア量から活性値を算出した。
(4-2)温度安定性試験
 精製画分を0.2mol/Lリン酸塩バッファー(pH6.5)で置換し、4℃での静置を10分、又は、40℃、50℃、60℃、65℃、70℃、又は75℃での加熱を10分行った後、(4-1)の方法で酵素反応を行ってプロテイングルタミナーゼ活性測定を行い、4℃条件に晒した精製画分のプロテイングルタミナーゼ活性を100%とした場合の、各温度での加熱条件に晒した精製画分のプロテイングルタミナーゼ活性の相対量を、プロテイングルタミナーゼ相対活性(%)として算出した。結果を図3に示す。図3に示す通り、65℃における比較用PGの相対活性が11%であったのに対し、57594株由来のプロテイングルタミナーゼの相対活性は65%、61798株由来のプロテイングルタミナーゼの相対活性は66%であり、耐熱性が顕著に向上していた。
(4-3)至適温度試験
 酵素反応温度を、37℃、50℃、55℃、60℃、65℃、又は70℃に変更したことを除いて(4-1)と同様の方法でプロテイングルタミナーゼ活性測定を行い、各精製画分の最大活性を示した温度条件(比較用PGについては60℃、57594株由来PG及び61798株由来PGについては65℃)におけるプロテイングルタミナーゼ活性を100%とした場合の、各温度条件に晒した精製画分におけるプロテイングルタミナーゼ活性の相対量を、プロテイングルタミナーゼ相対活性(%)として算出した。結果を図4に示す。図4に示すとおり、比較用PGの至適温度が60℃であったことに対し、57594株及び61798株由来のプロテイングルタミナーゼの至適温度は65℃に向上していた。
(4-4)pH安定性試験
 精製画分を、ブリトンロビンソンバッファーでpH2、3、4、5、6、7、8、9、10、11、又は12に調整し、各pH下、37℃で一晩(18時間)放置した後、(4-1)の方法で酵素反応を行ってプロテイングルタミナーゼ活性測定を行い、pH6の場合におけるプロテイングルタミナーゼ活性を100%とした場合の、各pH条件に晒した精製画分におけるプロテイングルタミナーゼ活性の相対量を、プロテイングルタミナーゼ相対活性(%)として算出した。結果を図5に示す。
(4-5)至適pH試験
 基質溶液のpHを、ブリトンロビンソンバッファーでpH2、3、4、5、6、7、8、9、10、11、又は12に調整し、各pH下で酵素反応を行ったことを除いて(4-1)と同様の方法でプロテイングルタミナーゼ活性測定を行い、pH6の場合におけるプロテイングルタミナーゼ活性を100%とした場合、各pH条件に晒した精製画分におけるプロテイングルタミナーゼ活性の相対量を、プロテイングルタミナーゼ相対活性(%)として算出した。結果を図6に示す。
(5)シーケンス
 57594株および61798株と近縁であることが推定されるChryseobacterium属細菌の配列情報から縮重プライマーを設計した。縮重プライマーを使用し、57594株及び61798株のゲノムDNAを鋳型にPrimeSTAR(R)GXL DNA Polymerase(タカラバイオ社製)を用いてPCRによりDNA断片を増幅させた。NucleoSpin(R)Gel and PCR Clean-up(タカラバイオ社製)により、増幅断片を回収し、縮重プライマーによるシーケンス解析を行った。その結果、57594株由来プロテイングルタミナーゼのアミノ酸配列(配列番号1);配列番号1をコードする構造遺伝子(配列番号3)を含む57594株由来プロテイングルタミナーゼ遺伝子周辺塩基配列(配列番号5);61798株由来プロテイングルタミナーゼのアミノ酸配列(配列番号2);及び配列番号2をコードする構造遺伝子(配列番号4)を含む61798株由来プロテイングルタミナーゼ遺伝子周辺塩基配列(配列番号6)を決定した。
[試験例2]
 本試験例では、実施例1の57594株由来プロテイングルタミナーゼ及び実施例2の61798株由来プロテイングルタミナーゼを用い、各種タンパク質材料の改質(脱アミド化)反応を行った。既存の比較例1のクリセオバクテリウム・プロテオリティカム9670株由来のプロテイングルタミナーゼ(比較用PG)についても同様に以下の各種タンパク質の改質(脱アミド化)反応を行った。
 具体的には、50mMリン酸バッファー(pH7.0)1mLに、タンパク質材料20mgを加えて懸濁し、プロテイングルタミナーゼを0.23mg/g-タンパク質となるよう加え(それぞれの成分のより詳細な添加量については表3に示す通りである)、55℃、60℃、65℃、又は70℃の条件で24時間反応した。その後、0.4Mトリクロロ酢酸溶液を1mL加えて反応停止させた。アンモニア-テストワコー(富士フイルム和光純薬)を用い、遊離アンモニア量を定量した。得られた遊離アンモニア量を、プロテイングルタミナーゼ添加前のタンパク質材料懸濁液についての遊離アンモニア量で除することで、タンパク質脱アミド化率を導出した。なお、プロテイングルタミナーゼ添加前のタンパク質材料懸濁液の遊離アンモニア量は、次のように測定した。酵素添加前のタンパク質材料懸濁液に3N濃硫酸を加え混合し、110℃、3時間の処理後、冷却して6N水酸化ナトリウムにて中和し、遠心分離にて上澄を得た。得られた上澄について、アンモニア-テストワコー(富士フイルム和光純薬)を用いて遊離アンモニア量を定量した。さらに、比較例1のPGを用いた場合のタンパク質脱アミド化率を1とした場合の各実施例におけるタンパク質脱アミド化率の倍数を、脱アミド化促進率として導出した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかな通り、いずれの食品材料についても、反応温度にかかわらず、比較例1のプロテイングルタミナーゼを用いた場合(比較例2~4)に比べて、実施例1の57594株由来プロテイングルタミナーゼ及び実施例2の61798株由来プロテイングルタミナーゼを用いた場合に優れたタンパク質脱アミド化率が認められた(実施例3~8)。中でも、エンドウ及び大豆のような食品材料の場合においては、反応温度が60℃の場合に特に高いタンパク質脱アミド化促進率が認められ(実施例3~6)、アルブミンの場合においては、反応温度が60℃、65℃、70℃、特に60℃の場合に高いタンパク質脱アミド化促進率が認められた(実施例7~8)。
[試験例3]
 本試験例では、実施例1の57594株由来プロテイングルタミナーゼ及び実施例2の61798株由来プロテイングルタミナーゼを用い、エンドウタンパク質の可溶化能を試験した。既存の比較例1のクリセオバクテリウム・プロテオリティカム9670株由来のプロテイングルタミナーゼ(比較用PG)についても同様に以下の可溶化能の試験を行った。
 具体的には、50mMリン酸バッファー(pH7.0)10mLに、エンドウタンパク質材料(タンパク質含量:82重量%)100mgを加えて懸濁し、プロテイングルタミナーゼを0.23mg/g-タンパク質となるよう加え(それぞれの成分のより詳細な添加量については表4に示す通りである)、65℃の条件で24時間反応した。
 サンプルを1mL抜き取り、0.4Mトリクロロ酢酸溶液を1mL加えて反応停止させた。アンモニア-テストワコー(富士フイルム和光純薬)を用い、遊離アンモニア量を定量した。得られた遊離アンモニア量を、プロテイングルタミナーゼ添加前のタンパク質材料懸濁液についての遊離アンモニア量で除することで、タンパク質脱アミド化率を導出した。結果を表4に示す。
 残りのサンプルについては、沸騰水中に反応組成物が入っている容器を浸し、加熱処理を施すことで反応を停止させた。精製水で脱塩を行い、凍結乾燥により脱アミド化蛋白(改質タンパク質)粉末を得た。得られた凍結乾燥脱アミド化蛋白(改質タンパク質)粉末2mgを、pH2~12のブリトンロビンソンバッファー1mLに溶解し、室温で30分間振とうさせた。15,000×gで5分間遠心分離し、上澄の溶解タンパク濃度をLowry法により測定した。また、比較例1のPGを用いた場合の溶解タンパク濃度を1とした場合の各実施例における溶解タンパク濃度の倍数を、タンパク質溶解促進率として導出した。結果を表4に示す(表4中、斜線に該当する部分はデータ無しである)。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなとおり、比較例1のプロテイングルタミナーゼを用いた場合(比較例5)に比べて、実施例1の57594株由来プロテイングルタミナーゼ及び実施例2の61798株由来プロテイングルタミナーゼを用いた場合に優れたタンパク質脱アミド化率が認められた(実施例9~10)。また、得られた改質タンパク質の溶解性が、いずれのpHにおいても比較例1のプロテイングルタミナーゼを用いた場合(比較例5)に比べても向上しており(実施例9~10)、タンパク質脱アミド化率の向上との相関が認められた。
[試験例4]
 本試験例では、実施例1の57594株由来プロテイングルタミナーゼ及び実施例2の61798株由来プロテイングルタミナーゼを用い、卵白アルブミンのアルカリ条件下における脱アミド化能を試験した。既存の比較例1のクリセオバクテリウム・プロテオリティカム9670株由来のプロテイングルタミナーゼ(比較用PG)についても同様に以下の脱アミド化能の試験を行った。
 具体的には、ブリトンロビンソンバッファー(pH7.0又はpH10.0)1mLに卵白アルブミン(タンパク質含量:81重量%)20mg加えて懸濁し、プロテイングルタミナーゼを0.23mg/g-タンパク質となるよう加え(それぞれの成分のより詳細な添加量については表5に示す通りである)、37℃で24時間反応した。その後、0.4Mトリクロロ酢酸溶液を1mL加えて反応停止させた。アンモニア-テストワコー(富士フイルム和光純薬)を用い、遊離アンモニア量を定量した。得られた遊離アンモニア量を、プロテイングルタミナーゼ添加前のタンパク質材料懸濁液についての遊離アンモニア量で除することで、タンパク質脱アミド化率を導出した。また、pH7で処理した場合のタンパク質脱アミド化率を1とした場合のpH10におけるタンパク質脱アミド化率の倍数を、アルカリ条件での脱アミド化促進率として導出した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5から明らかな通り、比較例1のプロテイングルタミナーゼを用いた場合(比較例6)に比べて、実施例1の57594株由来プロテイングルタミナーゼ及び実施例2の61798株由来プロテイングルタミナーゼを用いた場合に、アルカリ条件でのタンパク質脱アミド化促進率の向上が認められた(実施例11~12)。

Claims (9)

  1.  以下の(1)から(3)のいずれかに示すポリペプチドからなるプロテイングルタミナーゼ:
    (1)配列番号1又は2に示すアミノ酸配列からなるポリペプチド、
    (2)配列番号1又は2に示すアミノ酸配列において、1個又は数個のアミノ酸残基が置換、付加、挿入又は欠失されてなり、且つ配列番号1又は2に示すアミノ酸配列からなるポリペプチドと同等の耐熱性を示すポリペプチド、及び
    (3)配列番号1又は2に示すアミノ酸配列において、配列番号1又は2に示すアミノ酸配列に対する配列同一性が76%以上であり、且つ配列番号1又は2に示すアミノ酸配列からなるポリペプチドと同等の耐熱性を示すポリペプチド。
  2.  請求項1に記載のプロテイングルタミナーゼをコードしているDNA。
  3.  請求項2に記載のDNAを含む発現カセット又は組換えベクター。
  4.  請求項3に記載の発現カセット又は組換えベクターにより宿主を形質転換して得られる形質転換体。
  5.  請求項4に記載の形質転換体を培養する工程を含む、請求項1に記載のプロテイングルタミナーゼの製造方法。
  6.  請求項1に記載のプロテイングルタミナーゼを含む酵素剤。
  7.  請求項1に記載のプロテイングルタミナーゼを含む、タンパク質改質剤。
  8.  請求項1に記載のプロテイングルタミナーゼをタンパク質材料に作用させる工程を含む、改質されたタンパク質材料の製造方法。
  9.  前記タンパク質材料が食用である、請求項8に記載の製造方法。
PCT/JP2021/042625 2020-11-20 2021-11-19 耐熱性プロテイングルタミナーゼ WO2022107885A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/037,934 US20230416718A1 (en) 2020-11-20 2021-11-19 Thermotolerant protein glutaminase
EP21894756.2A EP4249590A1 (en) 2020-11-20 2021-11-19 Thermotolerant protein glutaminase
JP2022563844A JPWO2022107885A1 (ja) 2020-11-20 2021-11-19
CN202180072888.8A CN116829701A (zh) 2020-11-20 2021-11-19 耐热性蛋白质谷氨酰胺酶

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-193671 2020-11-20
JP2020193671 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022107885A1 true WO2022107885A1 (ja) 2022-05-27

Family

ID=81708033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042625 WO2022107885A1 (ja) 2020-11-20 2021-11-19 耐熱性プロテイングルタミナーゼ

Country Status (5)

Country Link
US (1) US20230416718A1 (ja)
EP (1) EP4249590A1 (ja)
JP (1) JPWO2022107885A1 (ja)
CN (1) CN116829701A (ja)
WO (1) WO2022107885A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050887A (ja) * 1998-06-04 2000-02-22 Amano Pharmaceut Co Ltd 新規蛋白質脱アミド酵素、それをコ―ドする遺伝子、その製造法並びにその用途
WO2009113628A1 (ja) 2008-03-14 2009-09-17 味の素株式会社 酵素によるタンパク質の改質方法
WO2010029685A1 (ja) 2008-09-09 2010-03-18 天野エンザイム株式会社 変異型酵素の設計法、調製法、及び変異型酵素
WO2012060409A1 (ja) 2010-11-05 2012-05-10 味の素株式会社 畜肉加工食品の製造方法及び畜肉加工食品改質用の酵素製剤
JP2013504323A (ja) * 2009-09-15 2013-02-07 フリーズランド ブランズ ビー.ブイ. 改良された熱安定性を有する食品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050887A (ja) * 1998-06-04 2000-02-22 Amano Pharmaceut Co Ltd 新規蛋白質脱アミド酵素、それをコ―ドする遺伝子、その製造法並びにその用途
WO2009113628A1 (ja) 2008-03-14 2009-09-17 味の素株式会社 酵素によるタンパク質の改質方法
WO2010029685A1 (ja) 2008-09-09 2010-03-18 天野エンザイム株式会社 変異型酵素の設計法、調製法、及び変異型酵素
JP2013504323A (ja) * 2009-09-15 2013-02-07 フリーズランド ブランズ ビー.ブイ. 改良された熱安定性を有する食品
WO2012060409A1 (ja) 2010-11-05 2012-05-10 味の素株式会社 畜肉加工食品の製造方法及び畜肉加工食品改質用の酵素製剤

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
DATABASE UniProtKB/TrEMBL NCBI; 11 December 2019 (2019-12-11), ANONYMOUS : "RecName: Full=Gln_deamidase_2 domain-containing protein {ECO:0000259|Pfam:PF18626}", XP055934039, Database accession no. A0A4Q1EZS4 *
DATABASE UniProtKB/TrEMBL NCBI; 18 July 2018 (2018-07-18), ANONYMOUS : "RecName: Full=Gln_deamidase_2 domain-containing protein {ECO:0000259|Pfam:PF18626};", XP055934034, Database accession no. A0A2S9CPY3 *
DATABASE UniProtKB/TrEMBL NCBI; 26 February 2020 (2020-02-26), ANONYMOUS : "RecName: Full=Gln_deamidase_2 domain-containing protein {ECO:0000259|Pfam:PF18626};", XP055934035, Database accession no. A0A5D8ZJA4 *
SANGER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 74, 1977, pages 5463
TATIANA A. TATSUSOVATHOMAS L. MADDEN, FEMS MICROBIOL. LETT., vol. 174, 1999, pages 247 - 250

Also Published As

Publication number Publication date
JPWO2022107885A1 (ja) 2022-05-27
CN116829701A (zh) 2023-09-29
EP4249590A1 (en) 2023-09-27
US20230416718A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
JP3769289B2 (ja) 新規蛋白質脱アミド酵素、それを生産する微生物、それをコードする遺伝子、その製造法及び用途
JP3609648B2 (ja) 新規蛋白質脱アミド酵素、それをコードする遺伝子、その製造法並びにその用途
JPH10508475A (ja) トリペプチジルアミノペプチダーゼ
JP4225721B2 (ja) アルカリプロテアーゼ
CN114107266A (zh) 耐热性提高的蛋白酶突变体及其编码基因和应用
JP7063807B2 (ja) 安定性に優れたリパーゼ活性を有するポリペプチド
CN111944790B (zh) 中性蛋白酶基因、中性蛋白酶及其制备方法和应用
WO2022107885A1 (ja) 耐熱性プロテイングルタミナーゼ
EP4361275A1 (en) Laccase
EP4361274A1 (en) Laccase
TWI759803B (zh) 新穎絲胺酸蛋白酶變異體
WO2023171778A1 (ja) 改変型プロテイングルタミナーゼ
WO2022244875A1 (ja) 加工オート飲食品又は食品素材の製造方法
WO2023176943A1 (ja) 改変型プロテイングルタミナーゼ
WO2023058765A1 (ja) 改変型トランスグルタミナーゼ
CN112877306A (zh) 一种超耐热葡葡糖氧化酶AtGOD及其基因和应用
WO2023157936A1 (ja) 改変型d-アルロース-3-エピメラーゼ
US7811784B2 (en) Transgenic organisms with lower growth temperature
JP4212340B2 (ja) アルカリプロテアーゼ
CN113699129B (zh) 一种热稳定性和催化活性提高的谷氨酰胺转氨酶变体
JP7311496B2 (ja) 改変型エステラーゼ及びその用途
US6541236B2 (en) Protein having glutaminase activity and gene encoding the same
WO2023090461A1 (ja) タンパク質脱アミド酵素
WO2024043203A1 (ja) 改変型エステラーゼ
CN116790564A (zh) 一种耐热型蛋白酶突变体及其编码基因和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894756

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180072888.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022563844

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18037934

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021894756

Country of ref document: EP

Effective date: 20230620