WO2022107769A1 - 薄膜の製造方法 - Google Patents

薄膜の製造方法 Download PDF

Info

Publication number
WO2022107769A1
WO2022107769A1 PCT/JP2021/042094 JP2021042094W WO2022107769A1 WO 2022107769 A1 WO2022107769 A1 WO 2022107769A1 JP 2021042094 W JP2021042094 W JP 2021042094W WO 2022107769 A1 WO2022107769 A1 WO 2022107769A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
raw material
hafnium
substrate
gas
Prior art date
Application number
PCT/JP2021/042094
Other languages
English (en)
French (fr)
Inventor
章浩 西田
雅子 畑▲瀬▼
智晴 吉野
佳毅 大江
千瑛 満井
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to CN202180077611.4A priority Critical patent/CN116529416A/zh
Priority to JP2022563774A priority patent/JPWO2022107769A1/ja
Priority to EP21894643.2A priority patent/EP4249629A1/en
Priority to IL302868A priority patent/IL302868A/en
Priority to US18/037,206 priority patent/US20240018655A1/en
Priority to KR1020237019212A priority patent/KR20230107613A/ko
Publication of WO2022107769A1 publication Critical patent/WO2022107769A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G27/00Compounds of hafnium
    • C01G27/02Oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a method for producing a thin film by an atomic layer deposition method (ALD method) using a hafnium compound having a specific aminoalkoxide as a ligand.
  • ALD method atomic layer deposition method
  • HfO 2 Hafnium oxide
  • DRAM dynamic random access memory
  • PWM metal oxide semiconductor field effect transistor
  • a thin film of HfO 2 is used.
  • the method for producing a thin film of HfO 2 include a sputtering method, an ion plating method, a MOD method such as a coating pyrolysis method and a sol-gel method, and a CVD method.
  • the atomic layer deposition method (sometimes called the ALD method) has many advantages such as excellent composition controllability and step coverage, suitability for mass production, and hybrid integration. Is the optimal manufacturing process.
  • the thin film forming raw material applicable to the ALD method needs to have a temperature region called an ALD window, and this temperature region needs to be sufficiently wide. Therefore, it is common general knowledge in the art that even a thin film forming raw material that can be used in the CVD method is not suitable for the ALD method in many cases.
  • Patent Document 1 discloses that a thin film of hafnium oxide is formed at 285 ° C. by the ALD method using tetraethylmethylaminohafnium (TEMAH) as the first precursor and O 2 as the second precursor. ..
  • TEMAH tetraethylmethylaminohafnium
  • Patent Document 2 discloses that an alkoxide compound having an amino alcohol as a ligand is used as a raw material for forming a thin film, and a thin film containing hafnium is formed by a CVD method.
  • Patent Document 3 discloses that the surface of a metal member is covered with a corrosion-resistant film formed by alternately laminating a TIO 2 film and an HfO 2 film. Further, Patent Document 3 discloses that an HfO 2 membrane is formed by repeating a step of alternately introducing HfCl 4 and H2O into a reaction vessel by the ALD method.
  • the ALD method has a step of adsorbing molecules of a raw material compound on the substrate surface on a substrate installed in a vacuum vessel, a film forming step of reacting the molecules adsorbed on the substrate surface with a reactive gas, and removing surplus molecules by purging.
  • the atomic layers are stacked one by one, and uniform film control at the level of one atomic layer becomes possible, and a film having high homogeneity and high step covering property can be formed.
  • the ALD method has a problem that it is difficult to form a film at a high temperature as compared with the CVD method, and carbon tends to remain in the film.
  • Patent Document 2 does not describe a specific example in which an alkoxide compound having an amino alcohol as a ligand is applied to the ALD method, and does not describe any production conditions when the ALD method is used.
  • HfCl 4 disclosed in Patent Document 3 has excellent heat resistance, it is said that HfCl 4 can be used as a raw material for thin film formation to produce a hafnium oxide thin film at a film formation temperature of about 300 to 500 ° C. There was a problem that chlorine remained in the film. Further, when HfCl 4 is decomposed, chlorine-based corrosive compounds (HCl, Cl 2 , etc.) may be generated. Further, since HfCl 4 is difficult to vaporize and is solid at room temperature, there is a problem that it is difficult to handle at the time of film formation.
  • an object of the present invention is to provide a method for producing a high quality hafnium atom-containing thin film (hereinafter referred to as "hafnium-containing thin film") having a small amount of residual carbon and residual chlorine by using the ALD method. And.
  • the present inventors have solved the above-mentioned problems by producing a hafnium-containing thin film by the ALD method under specific conditions using a raw material for forming a thin film containing a hafnium compound having a specific structure. We have found that it can be solved and have completed the present invention.
  • the present invention is a method for producing a thin film containing hafnium atoms on the surface of a substrate by an atomic layer deposition method.
  • Step 1 of forming a precursor thin film by adsorbing a raw material gas obtained by vaporizing a raw material for forming a thin film containing a hafnium compound represented by the following general formula (1) on the surface of a substrate.
  • Step 2 to exhaust the unreacted raw material gas
  • Step 3 of reacting the precursor thin film with a reactive gas at a temperature of 300 ° C. or higher and lower than 450 ° C. to form a thin film containing hafnium atoms on the surface of the substrate. It is a manufacturing method of a thin film containing.
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 3 and R 4 each independently represent an alkyl group having 1 to 3 carbon atoms. Represents.
  • the hafnium compound is preferably a hafnium compound in which R 1 is an ethyl group, R 2 is a hydrogen atom, and R 3 and R 4 are methyl groups.
  • the above step 1 is performed in a state where the substrate is heated to 300 ° C. or higher and lower than 450 ° C.
  • the reactive gas is an oxidizing gas and the thin film containing a hafnium atom is hafnium oxide.
  • the reactive gas is a gas containing at least one selected from the group consisting of water vapor, oxygen and ozone.
  • FIG. 1 is a schematic view showing an example of an ALD apparatus used in the method for producing a thin film of the present invention.
  • FIG. 2 is a schematic view showing another example of the ALD apparatus used in the method for producing a thin film of the present invention.
  • FIG. 3 is a schematic view showing another example of the ALD apparatus used in the method for producing a thin film of the present invention.
  • FIG. 4 is a schematic view showing another example of the ALD apparatus used in the method for producing a thin film of the present invention.
  • the method for producing the thin film of the present invention is a step of adsorbing a raw material gas obtained by vaporizing a raw material for forming a thin film containing a hafnium compound represented by the above general formula (1) on the surface of a substrate to form a precursor thin film. 1 and 2 for exhausting the unreacted raw material gas, and 3 for reacting the precursor thin film with the reactive gas at a temperature of 300 ° C. or higher and lower than 450 ° C. to form a hafnium-containing thin film on the surface of the substrate. And include.
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 3 and R 4 independently represent 1 to 3 carbon atoms, respectively.
  • the hafnium compound represented by the general formula (1) is used as a precursor for forming a thin film by the ALD method, it preferably has a melting point of 100 ° C. or lower and is liquid at room temperature. , It is more preferable because it is easy to handle. Further, the thermal decomposition start temperature of the hafnium compound by the differential scanning calorimeter (DSC) is preferably 300 ° C. or higher, and more preferably 350 ° C. or higher from the viewpoint of excellent heat resistance.
  • DSC differential scanning calorimeter
  • examples of the alkyl group having 1 to 3 carbon atoms represented by R 1 , R 2 , R 3 and R 4 include a methyl group, an ethyl group, an n-propyl group and an isopropyl group.
  • R 1 is a hydrogen atom, a methyl group or an ethyl group
  • R 2 is a hydrogen atom, a methyl group or an ethyl group
  • R 3 A hafnium compound in which is a methyl group or an ethyl group and R 4 is a methyl group or an ethyl group is preferable.
  • a hafnium compound in which R 1 , R 3 and R 4 are methyl groups and R 2 is a hydrogen atom is more preferable because it has excellent heat resistance.
  • the hafnium compound in which R 1 is an ethyl group, R 2 is a hydrogen atom and R 3 and R 4 are methyl groups has a low viscosity at room temperature, and the hafnium compound can be used. It is even more preferable because the transportability of the contained thin film-forming raw material can be improved and the productivity of the thin film obtained by using the thin film-forming raw material can be improved.
  • the hafnium compound represented by the above general formula (1) As a preferable specific example of the hafnium compound represented by the above general formula (1), the following No. 1 to No. 18, but the invention is not limited to these hafnium compounds. In addition, the following No. 1 to No. In the 18 hafnium compounds, "Me” represents a methyl group and “Et” represents an ethyl group.
  • the hafnium compound represented by the general formula (1) can be produced by utilizing a well-known reaction.
  • the hafnium compounds in which R 1 , R 3 and R 4 are methyl groups and R 2 is a hydrogen atom are tetrakis (ethylmethylamide) hafnium and 1-dimethylamino-2-. It can be obtained by reacting with propanol.
  • the hafnium compounds in which R 1 is an ethyl group, R 2 is a hydrogen atom and R 3 and R 4 are methyl groups are tetrakis (ethylmethylamide) hafnium and 1-. It can be obtained by reacting with dimethylamino-2-butanol.
  • the raw material for forming a thin film used in the method for producing a thin film of the present invention may contain a hafnium compound represented by the above general formula (1) as a precursor of the thin film, and the composition thereof is the target thin film. It depends on the composition. For example, when a thin film containing only hafnium is produced as a metal, the raw material for forming the thin film does not contain a metal compound other than hafnium and a metalloid compound. On the other hand, when producing a thin film containing hafnium and other metals and / or semi-metals, the raw material for forming the thin film is a compound containing a desired metal in addition to the hafnium compound represented by the above general formula (1). And / or a compound containing a semi-metal (hereinafter referred to as "another precursor”) can be contained.
  • another precursor a compound containing a semi-metal
  • the other precursors that can be used together with the hafnium compound represented by the above general formula (1) are not particularly limited and are thin films for the ALD method.
  • a well-known general precursor used as a raw material for forming can be used.
  • the other precursors described above include, for example, one or two types selected from the group consisting of compounds used as organic ligands such as alcohol compounds, glycol compounds, ⁇ -diketone compounds, cyclopentadiene compounds, and organic amine compounds.
  • organic ligands such as alcohol compounds, glycol compounds, ⁇ -diketone compounds, cyclopentadiene compounds, and organic amine compounds.
  • the above and compounds with silicon and metals can be mentioned.
  • the metal species of precursors include lithium, sodium, potassium, magnesium, calcium, strontium, barium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, iron, osmium, ruthenium, and cobalt.
  • Examples of the alcohol compound used as the organic ligand of the other precursors described above include methanol, ethanol, propanol, isopropyl alcohol, butanol, sec-butyl alcohol, isobutyl alcohol, tert-butyl alcohol, pentyl alcohol and isopentyl alcohol.
  • Tart-alkyl alcohols such as pentyl alcohol; 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, 2- (2-methoxyethoxy) ethanol, 2-methoxy-1-methylethanol, 2-methoxy-1 , 1-dimethylethanol, 2-ethoxy-1,1-dimethylethanol, 2-isopropoxy-1,1-dimethylethanol, 2-butoxy-1,1-dimethylethanol, 2- (2-methoxyethoxy) -1 , 1-Dimethylethanol, 2-propoxy-1,1-diethylethanol, 2-sec-butoxy-1,1-diethylethanol, 3-methoxy-1,1-dimethylpropanol and other ether alcohols; dimethylaminoethanol, Ethylmethylaminoethanol, diethylaminoethanol, dimethylamino-2-pentanol, ethylmethylamino-2-pentanol, dimethylamino-2-methyl-2-pentanol, ethyl
  • glycol compound used as the organic ligand of the other precursors described above examples include 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 2,4-hexanediol, and 2, 2-Dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 1,3-butanediol, 2,4-butanediol, 2,2-diethyl-1,3-butanediol , 2-Ethyl-2-butyl-1,3-propanediol, 2,4-pentanediol, 2-methyl-1,3-propanediol, 2-methyl-2,4-pentanediol, 2,4-hexane Examples thereof include diol, 2,4-dimethyl-2,4-pentanediol and the like.
  • Examples of the ⁇ -diketone compound used as the organic ligand of the other precursors described above include acetylacetone, hexane-2,4-dione, 5-methylhexane-2,4-dione, and heptane-2,4-dione.
  • cyclopentadiene compound used as the organic ligand of the above-mentioned other precursors examples include cyclopentadiene, methylcyclopentadiene, ethylcyclopentadiene, propylcyclopentadiene, isopropylcyclopentadiene, butylcyclopentadiene, sec-butylcyclopentadiene, and the like.
  • examples thereof include isobutylcyclopentadiene, tert-butylcyclopentadiene, dimethylcyclopentadiene, tetramethylcyclopentadiene, pentamethylcyclopentadiene and the like.
  • Examples of the organic amine compound used as the organic ligand of the above other precursors include methylamine, ethylamine, propylamine, isopropylamine, butylamine, sec-butylamine, tert-butylamine, isobutylamine, dimethylamine, diethylamine and dipropyl. Examples thereof include amines, diisopropylamines, ethylmethylamines, propylmethylamines and isopropylmethylamines.
  • the other precursors described above are known in the art, and their manufacturing methods are also known.
  • the above-mentioned inorganic salt of a metal or a hydrate thereof is reacted with an alkali metal alkoxide of the alcohol compound.
  • the precursor can be manufactured.
  • the inorganic salt of the metal or the hydrate thereof include a halide of the metal, a nitrate and the like.
  • the alkali metal alkoxide include sodium alkoxide, lithium alkoxide, potassium alkoxide and the like.
  • a method of vaporizing and supplying the raw material for thin film formation independently (hereinafter, also referred to as “single source method") and a multi-component raw material are desired in advance.
  • a method of vaporizing and supplying a mixed raw material mixed with the composition of (hereinafter, may be referred to as “cocktail sauce method”).
  • a compound whose thermal and / or oxidative decomposition behavior is similar to that of the hafnium compound represented by the general formula (1) is preferable.
  • the behavior of heat and / or oxidative decomposition is similar to that of the hafnium compound represented by the above general formula (1), and in addition, a chemical reaction or the like occurs at the time of mixing. Compounds that do not deteriorate are preferred.
  • a mixture of the hafnium compound represented by the above general formula (1) and another precursor or a mixed solution obtained by dissolving the mixture in an organic solvent is used as a raw material for forming a thin film. can do.
  • organic solvent a well-known general organic solvent can be used without any particular limitation.
  • organic solvent include acetate esters such as ethyl acetate, butyl acetate and methoxyethyl acetate; ethers such as tetrahydrofuran, tetrahydropyran, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, dibutyl ether and dioxane; methyl.
  • Ketones such as butylketone, methylisobutylketone, ethylbutylketone, dipropylketone, diisobutylketone, methylamylketone, cyclohexanone, methylcyclohexanone; hexane, cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, heptane, octane, toluene, Hydrocarbons such as xylene; 1-cyanopropane, 1-cyanobutane, 1-cyanohexane, cyanocyclohexane, cyanobenzene, 1,3-dicyanopropane, 1,4-dicyanobutane, 1,6-dicyanohexane, 1, Hydrocarbons having a cyano group such as 4-dicyanocyclohexane and 1,4-dicyanobenzene
  • the total amount of precursor in the raw material for forming a thin film is 0.01 mol / liter to 2.0 mol / liter. In particular, it may be adjusted to be 0.05 mol / liter to 1.0 mol / liter.
  • the total amount of the precursor represents the amount of the hafnium compound represented by the above general formula (1) when the raw material for forming the thin film does not contain a metal compound other than hafnium and a semi-metal compound (however, the thin film).
  • the forming raw material contains a hafnium compound other than the hafnium compound represented by the general formula (1), it represents the total amount thereof).
  • the raw material for thin film formation contains another precursor in addition to the hafnium compound represented by the above general formula (1), the sum of the hafnium compound represented by the above general formula (1) and the other precursors. Represents a quantity.
  • the raw material for forming a thin film is a nucleophile in order to improve the stability of the hafnium compound represented by the above general formula (1) and other precursors, if necessary. May be contained.
  • the nucleophile include ethylene glycol ethers such as glyme, diglyme, triglime, and tetraglyme, 18-crown-6, dicyclohexyl-18-crown-6, 24-crown-8, and dicyclohexyl-24-crown.
  • Crown ethers such as -8, dibenzo-24-crown-8, ethylenediamine, N, N'-tetramethylethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 1,1,4,7, Polyamines such as 7-pentamethyldiethylenetriamine, 1,1,4,7,10,10-hexamethyltriethylenetetramine, triethoxytriethyleneamine, cyclic polyamines such as cyclum and cyclone, pyridine, pyrrolidine, piperidine, morpholin.
  • N-Methylpyrrolidin N-Methylpiperidine, N-methylmorpholine, tetrahydrofuran, tetrahydropyran, 1,4-dioxane, oxazole, thiazole, oxathiolane and other heterocyclic compounds, methyl acetoacetate, ethyl acetoacetate, acetoacetate- Examples thereof include ⁇ -ketoesters such as 2-methoxyethyl or ⁇ -diketones such as acetylacetone, 2,4-hexanedione, 2,4-heptandione, 3,5-heptandione and dipivaloylmethane.
  • ⁇ -ketoesters such as 2-methoxyethyl or ⁇ -diketones
  • acetylacetone 2,4-hexanedione, 2,4-heptandione, 3,5-heptandione and dipivaloylmethane.
  • the amount of these nucleophilic reagents used is preferably in the range of 0.1 mol to 10 mol, preferably 1 mol to 4 mol, with respect to 1 mol of the total amount of precursor, from the viewpoint of easy adjustment of stability.
  • the range is more preferred.
  • the raw material for thin film formation does not contain impurity metal elements other than the constituents thereof, impurity halogens such as impurity chlorine, and impurity organics as much as possible.
  • the impurity metal element content is preferably 100 ppb or less for each element, more preferably 10 ppb or less, and the total amount is preferably 1 ppm or less, more preferably 100 ppb or less.
  • the impurity halogen content is preferably 100 ppm or less, more preferably 10 ppm or less, and even more preferably 1 ppm or less.
  • the total amount of impurity organic content is preferably 500 ppm or less, more preferably 50 ppm or less, and even more preferably 10 ppm or less.
  • Moisture causes particles to be generated in the raw material for ALD and particles to be generated during thin film formation. Therefore, precursors, organic solvents and nucleophilic reagents are used to reduce the water content of each. It is better to remove as much water as possible in advance.
  • the water content of each of the precursor, the organic solvent and the nucleophilic reagent is preferably 10 ppm or less, more preferably 1 ppm or less.
  • the raw material for forming a thin film contains as little particles as possible in order to reduce or prevent particle contamination of the formed thin film.
  • the number of particles larger than 0.3 ⁇ m is preferably 100 or less in 1 ml of a thin film forming raw material, preferably 0.2 ⁇ m. It is preferable that the number of larger particles is 100 or less in 1 ml of the thin film forming raw material because a uniform thin film can be easily obtained.
  • a raw material for forming a thin film in a raw material container as shown in FIG. 1 is vaporized by heating and / or depressurizing to obtain a raw material gas.
  • a device capable of supplying the raw material gas together with the carrier gas to the film forming chamber as needed, and as shown in FIG. 2, the raw material for forming a thin film is transported to the vaporization chamber in the form of a liquid or a solution. Examples thereof include an apparatus capable of vaporizing the raw material gas by heating and / or reducing the pressure in the vaporization chamber to obtain the raw material gas, and supplying the raw material gas to the film forming chamber.
  • the device is not limited to the single-wafer type device provided with the film forming chamber as shown in FIGS. 1 and 2, and a device capable of simultaneously processing a large number of sheets using a batch furnace can also be used.
  • Step 1 precursor thin film forming step
  • Step 3 a hafnium-containing thin film forming step
  • the method for producing a thin film of the present invention includes a step 4 (exhaust step) of exhausting the gas in the film forming chamber after the step 3.
  • step 1 precursor thin film forming step
  • step 2 exhaust step
  • step 3 hafnium-containing thin film forming step
  • step 4 exhaust step
  • Step 1 is a step of introducing the raw material gas obtained by vaporizing the above-mentioned thin film forming raw material into a film forming chamber in which the substrate is installed and adsorbing the raw material gas on the surface of the substrate to form a precursor thin film.
  • a method of introducing the raw material gas obtained by vaporizing the raw material for thin film formation into the film forming chamber in which the substrate is installed as shown in FIGS.
  • a container in which the raw material for thin film formation is stored (hereinafter, hereinafter, It is vaporized by heating and / or depressurizing in a “raw material container") to obtain a raw material gas, and the raw material gas is used as necessary together with a carrier gas such as argon, nitrogen, helium, etc., and a substrate is installed.
  • a carrier gas such as argon, nitrogen, helium, etc.
  • a liquid transport method in which a raw material for forming a thin film is vaporized into a raw material gas, and the raw material gas is introduced into a film forming chamber in which a substrate is installed.
  • the hafnium compound itself represented by the above general formula (1) can be used as a raw material for forming a thin film.
  • a hafnium compound represented by the above general formula (1) or a solution in which the hafnium compound is dissolved in an organic solvent can be used as a raw material for forming a thin film.
  • These raw materials for forming a thin film may further contain a nucleophilic reagent or the like.
  • the raw material for thin film formation is vaporized in the range of 50 ° C. or higher and 200 ° C. or lower from the viewpoint of handleability.
  • the pressure in the raw material container and the pressure in the vaporization chamber are 1 Pa or more and 10 from the viewpoint that the raw material for forming the thin film is easily vaporized. It is preferably 000 Pa or less.
  • the material of the substrate installed in the film forming chamber for example, silicon; silicon nitride, titanium nitride, tantalum nitride, titanium oxide, ruthenium oxide, zirconium oxide, hafnium oxide, lanthanum oxide and other ceramics; glass; metal.
  • Examples include metals such as cobalt and metallic ruthenium.
  • Examples of the shape of the substrate include plate-like, spherical, fibrous, and scaly shapes.
  • the surface of the substrate may be flat or may have a three-dimensional structure such as a trench structure.
  • the precursor thin film can be formed on the surface of the substrate by adsorbing the raw material gas on the surface of the substrate.
  • the substrate may be heated or the inside of the film forming chamber may be heated.
  • the conditions for forming the precursor thin film are not particularly limited, and for example, the adsorption temperature (base temperature), the system pressure, and the like can be appropriately determined according to the type of the thin film forming raw material.
  • Step 1 is preferably carried out in a state where the substrate is heated to 300 ° C. or higher, and more preferably carried out in a state where the substrate is heated to 300 ° C. or higher and lower than 450 ° C. from the viewpoint that a uniform precursor thin film can be easily obtained.
  • the system pressure is not particularly limited, but is preferably 1 Pa or more and 10,000 Pa or less, and more preferably 10 Pa or more and 1,000 Pa or less from the viewpoint that a uniform precursor thin film can be easily obtained.
  • Step 2 is a step of exhausting the unreacted raw material gas that has not been adsorbed on the surface of the substrate from the film forming chamber after forming the precursor thin film.
  • the raw material gas that has not been adsorbed is completely exhausted from the film forming chamber, but it is not always necessary to completely exhaust the raw material gas.
  • the exhaust method include a method of purging the inside of the film forming chamber system with an inert gas such as helium, nitrogen, and argon, a method of exhausting by depressurizing the inside of the system, and a method of combining these. ..
  • the degree of decompression in the case of depressurization is preferably in the range of 0.01 Pa or more and 300 Pa or less, and more preferably in the range of 0.01 Pa or more and 100 Pa or less from the viewpoint of promoting the exhaust of the raw material gas that has not been adsorbed.
  • Step 3 In step 3, after step 2, a reactive gas is introduced into the film forming chamber and deposited on the surface of the precursor thin film, that is, the substrate by the action of the reactive gas and the action of heat. This is a step of reacting a hafnium compound represented by 1 with a reactive gas to form a hafnium-containing thin film.
  • the reactive gas examples include oxidizing gas such as oxygen, ozone, nitrogen dioxide, nitrogen monoxide, steam, hydrogen peroxide, formic acid, acetic acid and anhydrous acetic acid, reducing gas such as hydrogen, monoalkylamine and dialkyl.
  • oxidizing gas such as oxygen, ozone, nitrogen dioxide, nitrogen monoxide, steam, hydrogen peroxide, formic acid, acetic acid and anhydrous acetic acid
  • reducing gas such as hydrogen, monoalkylamine and dialkyl.
  • organic amine compounds such as amines, trialkylamines and alkylenediamines
  • nitrided gases such as hydrazine and ammonia.
  • the reactive gas is preferably an oxidizing gas, and from the viewpoint that the reaction between the precursor thin film and the reactive gas is good, it is composed of a group consisting of water vapor, oxygen and ozone. More preferably, it is a gas containing at least one selected.
  • an oxidizing gas is used as the reactive gas, a hafnium oxide thin film is formed as the hafnium-containing thin film.
  • the temperature (base temperature) when the precursor thin film is reacted with the reactive gas is 300 ° C or higher and lower than 450 ° C, and from the viewpoint of obtaining a high-quality thin film with less residual carbon, 300 ° C or higher and lower than 430 ° C. Is preferable.
  • the pressure in the film forming chamber when this step is performed is preferably 1 Pa or more and 10,000 Pa or less, and 10 Pa or more and 1,000 Pa or less from the viewpoint of good reaction between the precursor thin film and the reactive gas. More preferred.
  • Step 4 is a step of exhausting unreacted reactive gas and by-product gas from the film forming chamber in order to produce a high-quality thin film after step 3. Ideally, the reactive gas and by-product gas are completely exhausted from the film forming chamber in this step, but it is not always necessary to completely exhaust them.
  • the exhaust method and the degree of decompression in the case of depressurization are the same as those in step 2 described above.
  • step 1 when the raw material gas is introduced into the film forming chamber, or when heating when forming the precursor thin film, the step.
  • step 2 when the reactive gas is introduced into the film forming chamber, when the reactive gas is reacted with the precursor thin film, when the reactive gas is exhausted in the system in the step 2 or 4, or between the above steps. ..
  • annealing treatment may be performed in an inert atmosphere, an oxidizing atmosphere or a reducing atmosphere in order to obtain better electrical characteristics. If step embedding is required, a reflow process may be provided.
  • the temperature is preferably 200 ° C. or higher and 1,000 ° C. or lower, and more preferably 250 ° C. or higher and 500 ° C. or lower from the viewpoint of suppressing heat damage to the thin film or the substrate.
  • the thin film produced by the method for producing a thin film of the present invention is coated with a substrate such as metal, oxide ceramics, nitride ceramics, glass, etc. by appropriately selecting other precursors, reactive gases, and production conditions. It can be a thin film of the desired type. Since the thin film of the present invention is excellent in electrical characteristics and optical characteristics, for example, it is used for electrode materials of memory elements typified by DRAM elements, resistance films, antimagnetic films used for recording layers of hard disks, and polymer electrolyte fuel cells. It can be widely used in the production of catalyst materials and the like.
  • test compounds were evaluated as follows.
  • Viscosity The viscosity at 25 ° C. was measured using a ball-dropping viscometer (manufactured by Antonio Par, product name: AMVn). The results are shown in Table 2.
  • Example 1 The above No. Using the hafnium compound of No. 4 as a raw material for forming a thin film, and using the ALD apparatus of FIG. 1, a thin film was produced on a silicon wafer as a substrate under the following conditions and steps. When the composition of the thin film was analyzed using X-ray photoelectron spectroscopy, it was confirmed that the thin film was a hafnium oxide thin film, and the residual carbon content in the thin film was less than the detection limit of 0.01 atm%. Further, when the film thickness of the thin film was measured by the X-ray reflectivity method, the thin film formed on the substrate was a smooth film with a film thickness of 2.5 nm, and the film thickness obtained per cycle was determined.
  • Step 1 The vapor of the raw material for thin film formation (raw material gas) vaporized under the conditions of the raw material container temperature of 150 ° C. and the pressure inside the raw material container of 26.67 Pa is introduced into the film forming chamber, and the system pressure is 26.67 Pa for 10 seconds.
  • the raw material gas is adsorbed on the surface of the substrate to form a precursor thin film.
  • Step 2 By argon purging for 15 seconds, the raw material gas that has not been adsorbed is exhausted from the system.
  • Step 3 A reactive gas is introduced into the film forming chamber, and the precursor thin film is reacted with the reactive gas at a system pressure of 100 Pa for 10 seconds.
  • Step 4 The unreacted reactive gas and by-product gas are exhausted from the system by argon purging for 15 seconds.
  • Example 2 A thin film was produced on a silicon wafer as a substrate by carrying out the same procedure as in Example 1 except that the reaction temperature of 350 ° C. was changed to 375 ° C. When the composition of the thin film was analyzed using X-ray photoelectron spectroscopy, it was confirmed that the thin film was a hafnium oxide thin film, and the residual carbon content in the thin film was less than the detection limit of 0.01 atm%.
  • Example 3 A thin film was produced on a silicon wafer as a substrate by carrying out the same procedure as in Example 1 except that the reaction temperature of 350 ° C. was changed to 425 ° C. When the composition of the thin film was analyzed using X-ray photoelectron spectroscopy, it was confirmed that the thin film was a hafnium oxide thin film, and the residual carbon content in the thin film was less than the detection limit of 0.01 atm%.
  • Example 1 A thin film was produced on a silicon wafer as a substrate by carrying out the same procedure as in Example 1 except that the reaction temperature was changed from 350 ° C. to 250 ° C.
  • the composition of the thin film was analyzed using X-ray photoelectron spectroscopy, the thin film was a hafnium oxide thin film, and the residual carbon content in the thin film was 4.76 atm%.
  • Example 2 A thin film was produced on a silicon wafer as a substrate in the same manner as in Example 1 except that the reaction temperature was changed from 350 ° C to 475 ° C, but it was confirmed that the thin film had thermal decomposition. Was done. Analysis of the thin film composition by X-ray photoelectron spectroscopy was not performed.
  • Example 4 No. A thin film was produced on a silicon wafer as a substrate by carrying out under the same conditions as in Example 1 except that the hafnium compound of No. 4 was changed to Comparative Compound 2.
  • the composition of the thin film was analyzed using X-ray electron spectroscopy, the thin film was a hafnium oxide thin film, but residual chlorine was detected.
  • the reaction temperature was raised from 200 ° C. to 400 ° C. every 50 ° C. to manufacture a thin film, the saturation temperature-dependent growth rate per cycle was plotted and the ALD window was observed, the temperature was 200 ° C. to 400 ° C. It was confirmed that it had an ALD window.
  • the present invention provides a high-quality hafnium-containing thin film containing less residual carbon and residual chlorine by producing a thin film under specific conditions using a thin film-forming raw material containing a specific hafnium compound. Can be done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Inorganic Insulating Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

原子層堆積法により、基体の表面に、ハフニウム原子を含有する薄膜を製造する方法であって、 下記一般式(1)で表されるハフニウム化合物を含有する薄膜形成用原料を気化させた原料ガスを、前記基体の表面に吸着させて前駆体薄膜を形成する工程1と、 未反応の原料ガスを排気する工程2と、 300℃以上450℃未満の温度にて、前記前駆体薄膜を反応性ガスと反応させて前記基体の表面に、ハフニウム原子を含有する薄膜を形成する工程3と、 を含む薄膜の製造方法を提供する。 (式中、R1及びR2は、各々独立して水素原子又は炭素原子数1~3のアルキル基を表し、R3及びR4は、各々独立して炭素原子数1~3のアルキル基を表す。)

Description

薄膜の製造方法
 本発明は、特定のアミノアルコキシドを配位子とするハフニウム化合物を用い、原子層堆積法(ALD法)により薄膜を製造する方法に関する。
 半導体製造プロセスにおいて、高キャパシタンス、低リーク電流及び低電力消費の性能要求を満たすために、高誘電率材料(High-k)が必要とされている。酸化ハフニウム(HfO2)は、高誘電率材料として知られており、広いバンドギャップ、高屈折率、強誘電特性、良好な熱安定性等の優れた性質を有する。そのため、HfO2は、ダイナミック・ランダム・アクセス・メモリ(DRAM)素子内キャパシタ誘導体、金属酸化物半導体電界効果トランジスタ(MOSFET)内のゲート絶縁体層、フラッシュメモリ回路内のトンネルゲート誘電体等を形成するために用いられている。
 上記に挙げた半導体用途において、HfO2の薄膜が用いられている。HfO2の薄膜の製造法としては、例えばスパッタリング法、イオンプレーティング法、塗布熱分解法やゾルゲル法等のMOD法、CVD法等が挙げられる。これらの中でも、組成制御性及び段差被覆性に優れること、量産化に適すること、ハイブリッド集積が可能である等多くの長所を有しているので、原子層堆積法(ALD法という場合もある)が最適な製造プロセスである。
 CVD法及びALD法のような気相薄膜形成法に用いることができる材料は種々報告されている。しかし、ALD法に適用可能な薄膜形成用原料は、ALDウィンドウと呼ばれる温度領域を有する必要があり、この温度領域が十分な広さであることが必要である。よって、CVD法に使用可能な薄膜形成用原料であっても、ALD法に適さない場合が多くあることは当該技術分野における技術常識である。
 特許文献1には、第1の前駆体としてテトラエチルメチルアミノハフニウム(TEMAH)及び第2の前駆体としてO2を用い、ALD法により285℃で酸化ハフニウムの薄膜を形成することが開示されている。
 特許文献2には、薄膜形成用原料として、アミノアルコールを配位子とするアルコキシド化合物を用い、CVD法によりハフニウムを含有する薄膜を形成することが開示されている。
 特許文献3には、TiO2膜とHfO2膜とが交互に積層されてなる耐食性膜で金属部材の表面を被覆することが開示されている。更に、特許文献3には、ALD法により、HfCl4とH2Oとを交互に反応容器に導入する工程を繰り返すことによりHfO2膜を形成することが開示されている。
特開2018-100446号公報 特許第4889481号 特許第6729437号
 ALD法は、真空容器内に設置した基体上に、原料化合物の分子を基体表面に吸着させる工程、基体表面に吸着した分子と反応性ガスとの反応による成膜工程、パージによる余剰分子を取り除く工程を繰り返し行うことによって、原子層を一層ずつ積み上げて、一原子層レベルの均一な膜制御が可能となり、均質性が高く且つ段差被覆性が高い膜を形成することができる。しかし、ALD法は、CVD法と比べると、高温での成膜が困難であり、膜中に炭素が残留しやすいという課題がある。
 特許文献1に開示されるハフニウム化合物(TEMAH)は、熱安定性が十分とは言えないため、ALD法により300℃を超える温度で薄膜を製造した場合、膜中に残留する炭素が多いという問題があった。
 特許文献2には、アミノアルコールを配位子とするアルコキシド化合物をALD法に適用した具体例は記載されておらず、ALD法を用いた場合の製造条件も何ら記載されていない。
 特許文献3に開示されるHfCl4は耐熱性に優れているため、HfCl4を薄膜形成用原料として用い、300~500℃程度の成膜温度で酸化ハフニウム薄膜を製造できるとされているが、膜中に塩素が残留するという問題があった。また、HfCl4は、分解すると塩素系の腐食性化合物(HCl、Cl2等)が発生する可能性がある。更に、HfCl4は、気化させ難く、常温で固体であるため、成膜時の取り扱い性が悪いという問題があった。
 従って、本発明は、ALD法を用いて、残留炭素及び残留塩素が少ない高品質な、ハフニウム原子を含有する薄膜(以下、「ハフニウム含有薄膜」と称する)を製造する方法を提供することを目的とする。
 本発明者等は、鋭意検討を重ねた結果、特定の構造を有するハフニウム化合物を含有する薄膜形成用原料を用い、特定の条件下でALD法によりハフニウム含有薄膜を製造することで、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、原子層堆積法により、基体の表面に、ハフニウム原子を含有する薄膜を製造する方法であって、
 下記一般式(1)で表されるハフニウム化合物を含有する薄膜形成用原料を気化させた原料ガスを、基体の表面に吸着させて前駆体薄膜を形成する工程1と、
 未反応の原料ガスを排気する工程2と、
 300℃以上450℃未満の温度にて、前駆体薄膜を反応性ガスと反応させて、基体の表面に、ハフニウム原子を含有する薄膜を形成する工程3と、
を含む薄膜の製造方法である。
Figure JPOXMLDOC01-appb-C000002
(式中、R1及びR2は、各々独立して水素原子又は炭素原子数1~3のアルキル基を表し、R3及びR4は、各々独立して炭素原子数1~3のアルキル基を表す。)
 本発明の薄膜の製造方法において、上記ハフニウム化合物は、R1がエチル基、R2が水素原子、R3及びR4がメチル基であるハフニウム化合物であることが好ましい。
 本発明の薄膜の製造方法において、上記工程1は、基体を300℃以上450℃未満に加熱した状態で行われることが好ましい。
 本発明の薄膜の製造方法において、上記反応性ガスが酸化性ガスであり、且つ上記ハフニウム原子を含有する薄膜が酸化ハフニウムであることが好ましい。
 本発明の薄膜の製造方法において、上記反応性ガスが、水蒸気、酸素及びオゾンからなる群から選択される少なくとも一種を含有するガスであることが好ましい。
 本発明によれば、残留炭素及び残留塩素が少ない高品質なハフニウム含有薄膜を製造することができる。
図1は、本発明の薄膜の製造方法に用いられるALD装置の一例を示す概略図である。 図2は、本発明の薄膜の製造方法に用いられるALD装置の別の例を示す概略図である。 図3は、本発明の薄膜の製造方法に用いられるALD装置の別の例を示す概略図である。 図4は、本発明の薄膜の製造方法に用いられるALD装置の別の例を示す概略図である。
 本発明の薄膜の製造方法について説明する。本発明の薄膜の製造方法は、上記一般式(1)で表されるハフニウム化合物を含有する薄膜形成用原料を気化させた原料ガスを、基体の表面に吸着させて前駆体薄膜を形成する工程1と、未反応の原料ガスを排気する工程2と、300℃以上450℃未満の温度にて、前駆体薄膜を反応性ガスと反応させて、基体の表面にハフニウム含有薄膜を形成する工程3とを含むものである。
 上記一般式(1)において、R1及びR2は、各々独立して水素原子又は炭素原子数1~3のアルキル基を表し、R3及びR4は、各々独立して炭素原子数1~3のアルキル基を表す。
 上記一般式(1)で表されるハフニウム化合物は、ALD法による薄膜を形成するためのプリカーサ(前駆体)として用いるため、融点が100℃以下であることが好ましく、常温で液体であることが、取り扱い性が容易になるのでより好ましい。また、ハフニウム化合物の示差走査熱量計(DSC)による熱分解開始温度が、300℃以上であることが好ましく、耐熱性が優れるという観点から、350℃以上であることがより好ましい。
 上記一般式(1)において、R1、R2、R3及びR4で表される炭素原子数1~3のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基が挙げられる。本発明の効果が顕著であるという観点から、上記一般式(1)において、R1が水素原子、メチル基又はエチル基であり、R2が水素原子、メチル基又はエチル基であり、R3がメチル基又はエチル基であり且つR4がメチル基又はエチル基であるハフニウム化合物が好ましい。特に、上記一般式(1)において、R1、R3及びR4がメチル基であり且つR2が水素原子であるハフニウム化合物は、耐熱性が優れるのでより好ましい。また、上記一般式(1)において、R1がエチル基であり、R2が水素原子であり且つR3及びR4がメチル基であるハフニウム化合物は、常温で粘度が低く、当該ハフニウム化合物を含有する薄膜形成用原料の輸送性を改善することができ、該薄膜形成用原料を用いて得られる薄膜の生産性を向上することができるのでさらにより好ましい。
 上記一般式(1)で表されるハフニウム化合物の好ましい具体例として、下記No.1~No.18が挙げられるが、本発明は、これらのハフニウム化合物によって限定されるものではない。なお、下記No.1~No.18のハフニウム化合物において、「Me」はメチル基を表し、「Et」はエチル基を表す。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 上記一般式(1)で表されるハフニウム化合物は、周知の反応を利用して製造することができる。例えば、上記一般式(1)において、R1、R3及びR4がメチル基であり、R2が水素原子であるハフニウム化合物は、テトラキス(エチルメチルアミド)ハフニウムと1-ジメチルアミノ-2-プロパノールとを反応させることで得ることができる。また、上記一般式(1)において、R1がエチル基であり、R2が水素原子であり且つR3及びR4がメチル基であるハフニウム化合物は、テトラキス(エチルメチルアミド)ハフニウムと1-ジメチルアミノ-2-ブタノールとを反応させることで得ることができる。
 本発明の薄膜の製造方法において用いられる薄膜形成用原料は、上記一般式(1)で表されるハフニウム化合物を、薄膜のプリカーサとして含有するものであればよく、その組成は目的とする薄膜の組成によって異なる。例えば、金属として、ハフニウムのみを含む薄膜を製造する場合、薄膜形成用原料は、ハフニウム以外の金属化合物及び半金属化合物を含有しない。一方、ハフニウムと、他の金属及び/又は半金属とを含む薄膜を製造する場合、薄膜形成用原料は、上記一般式(1)で表されるハフニウム化合物に加えて、所望の金属を含む化合物及び/又は半金属を含む化合物(以下、「他のプリカーサ」と称する)を含有することができる。
 複数のプリカーサを用いる多成分系のALD法の場合において、上記一般式(1)で表されるハフニウム化合物と共に用いることができる他のプリカーサとしては、特に制限を受けず、ALD法のための薄膜形成用原料に用いられる周知一般のプリカーサを用いることができる。
 上記の他のプリカーサとしては、例えば、アルコール化合物、グリコール化合物、β-ジケトン化合物、シクロペンタジエン化合物、有機アミン化合物等の有機配位子として用いられる化合物からなる群から選択される一種類又は二種類以上と、珪素や金属との化合物が挙げられる。また、プリカーサの金属種としては、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタニウム、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、マンガン、鉄、オスミウム、ルテニウム、コバルト、ロジウム、イリジウム、ニッケル、パラジウム、白金、銅、銀、金、亜鉛、アルミニウム、ガリウム、インジウム、ゲルマニウム、鉛、アンチモン、ビスマス、ラジウム、スカンジウム、ルテニウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム又はルテチウムが挙げられる。
 上記の他のプリカーサの有機配位子として用いられるアルコール化合物としては、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、sec-ブチルアルコール、イソブチルアルコール、tert-ブチルアルコール、ペンチルアルコール、イソペンチルアルコール、tert-ペンチルアルコール等のアルキルアルコール類;2-メトキシエタノール、2-エトキシエタノール、2-ブトキシエタノール、2-(2-メトキシエトキシ)エタノール、2-メトキシ-1-メチルエタノール、2-メトキシ-1,1-ジメチルエタノール、2-エトキシ-1,1-ジメチルエタノール、2-イソプロポキシ-1,1-ジメチルエタノール、2-ブトキシ-1,1-ジメチルエタノール、2-(2-メトキシエトキシ)-1,1-ジメチルエタノール、2-プロポキシ-1,1-ジエチルエタノール、2-sec-ブトキシ-1,1-ジエチルエタノール、3-メトキシ-1,1-ジメチルプロパノール等のエーテルアルコール類;ジメチルアミノエタノール、エチルメチルアミノエタノール、ジエチルアミノエタノール、ジメチルアミノ-2-ペンタノール、エチルメチルアミノ-2-ペンタノール、ジメチルアミノ-2-メチル-2-ペンタノール、エチルメチルアミノ-2-メチル-2-ペンタノール、ジエチルアミノ-2-メチル-2-ペンタノール等のジアルキルアミノアルコール類等が挙げられる。
 上記の他のプリカーサの有機配位子として用いられるグリコール化合物としては、例えば、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、2,4-ヘキサンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、1,3-ブタンジオール、2,4-ブタンジオール、2,2-ジエチル-1,3-ブタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2,4-ペンタンジオール、2-メチル-1,3-プロパンジオール、2-メチル-2,4-ペンタンジオール、2,4-ヘキサンジオール、2,4-ジメチル-2,4-ペンタンジオール等が挙げられる。
 上記の他のプリカーサの有機配位子として用いられるβ-ジケトン化合物としては、例えば、アセチルアセトン、ヘキサン-2,4-ジオン、5-メチルヘキサン-2,4-ジオン、ヘプタン-2,4-ジオン、2-メチルヘプタン-3,5-ジオン、5-メチルヘプタン-2,4-ジオン、6-メチルヘプタン-2,4-ジオン、2,2-ジメチルヘプタン-3,5-ジオン、2,6-ジメチルヘプタン-3,5-ジオン、2,2,6-トリメチルヘプタン-3,5-ジオン、2,2,6,6-テトラメチルヘプタン-3,5-ジオン、オクタン-2,4-ジオン、2,2,6-トリメチルオクタン-3,5-ジオン、2,6-ジメチルオクタン-3,5-ジオン、2,9-ジメチルノナン-4,6-ジオン、2-メチル-6-エチルデカン-3,5-ジオン、2,2-ジメチル-6-エチルデカン-3,5-ジオン等のアルキル置換β-ジケトン類;1,1,1-トリフルオロペンタン-2,4-ジオン、1,1,1-トリフルオロ-5,5-ジメチルヘキサン-2,4-ジオン、1,1,1,5,5,5-ヘキサフルオロペンタン-2,4-ジオン、1,3-ジパーフルオロヘキシルプロパン-1,3-ジオン等のフッ素置換アルキルβ-ジケトン類;1,1,5,5-テトラメチル-1-メトキシヘキサン-2,4-ジオン、2,2,6,6-テトラメチル-1-メトキシヘプタン-3,5-ジオン、2,2,6,6-テトラメチル-1-(2-メトキシエトキシ)ヘプタン-3,5-ジオン等のエーテル置換β-ジケトン類等が挙げられる。
 上記の他のプリカーサの有機配位子として用いられるシクロペンタジエン化合物としては、例えば、シクロペンタジエン、メチルシクロペンタジエン、エチルシクロペンタジエン、プロピルシクロペンタジエン、イソプロピルシクロペンタジエン、ブチルシクロペンタジエン、sec-ブチルシクロペンタジエン、イソブチルシクロペンタジエン、tert-ブチルシクロペンタジエン、ジメチルシクロペンタジエン、テトラメチルシクロペンタジエン、ペンタメチルシクロペンタジエン等が挙げられる。
 上記の他のプリカーサの有機配位子として用いられる有機アミン化合物としては、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、sec-ブチルアミン、tert-ブチルアミン、イソブチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、エチルメチルアミン、プロピルメチルアミン、イソプロピルメチルアミン等が挙げられる。
 上記の他のプリカーサは、当該技術分野において公知のものであり、その製造方法も公知である。製造方法の一例を挙げれば、例えば、有機配位子としてアルコール化合物を用いた場合には、先に述べた金属の無機塩又はその水和物と、該アルコール化合物のアルカリ金属アルコキシドとを反応させることによって、プリカーサを製造することができる。ここで、金属の無機塩又はその水和物としては、例えば、金属のハロゲン化物、硝酸塩等を挙げることができる。アルカリ金属アルコキシドとしては、例えば、ナトリウムアルコキシド、リチウムアルコキシド、カリウムアルコキシド等を挙げることができる。
 上述したような多成分系のALD法においては、薄膜形成用原料を各成分独立で気化、供給する方法(以下、「シングルソース法」と記載することもある)と、多成分原料を予め所望の組成で混合した混合原料を気化、供給する方法(以下、「カクテルソース法」と記載することもある)がある。シングルソース法の場合、上記の他のプリカーサとしては、熱及び/又は酸化分解の挙動が上記一般式(1)で表されるハフニウム化合物と類似している化合物が好ましい。カクテルソース法の場合、上記の他のプリカーサとしては、熱及び/又は酸化分解の挙動が上記一般式(1)で表されるハフニウム化合物と類似していることに加え、混合時に化学反応等による変質を起こさない化合物が好ましい。
 多成分系のALD法におけるカクテルソース法の場合、上記一般式(1)で表されるハフニウム化合物と、他のプリカーサとの混合物又は該混合物を有機溶剤に溶解した混合溶液を薄膜形成用原料とすることができる。
 上記の有機溶剤としては、特に制限を受けることはなく周知一般の有機溶剤を用いることができる。該有機溶剤としては、例えば、酢酸エチル、酢酸ブチル、酢酸メトキシエチル等の酢酸エステル類;テトラヒドロフラン、テトラヒドロピラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジブチルエーテル、ジオキサン等のエーテル類;メチルブチルケトン、メチルイソブチルケトン、エチルブチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン類;ヘキサン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、オクタン、トルエン、キシレン等の炭化水素類;1-シアノプロパン、1-シアノブタン、1-シアノヘキサン、シアノシクロヘキサン、シアノベンゼン、1,3-ジシアノプロパン、1,4-ジシアノブタン、1,6-ジシアノヘキサン、1,4-ジシアノシクロヘキサン、1,4-ジシアノベンゼン等のシアノ基を有する炭化水素類;ピリジン、ルチジン等が挙げられる。これらの有機溶剤は、溶質の溶解性、使用温度と沸点、引火点の関係等により、単独で用いてもよいし、又は二種類以上を混合して用いてもよい。
 本発明の薄膜の製造方法において、薄膜形成用原料が上記の有機溶剤を含む混合液である場合、薄膜形成用原料中におけるプリカーサ全体の量が0.01モル/リットル~2.0モル/リットル、特に0.05モル/リットル~1.0モル/リットルとなるように調整すればよい。
 ここで、プリカーサ全体の量とは、薄膜形成用原料が、ハフニウム以外の金属化合物及び半金属化合物を含有しない場合、上記一般式(1)で表されるハフニウム化合物の量を表す(ただし、薄膜形成用原料が、一般式(1)で表されるハフニウム化合物以外のハフニウム化合物を含有する場合、それらの合計量を表す)。薄膜形成用原料が、上記一般式(1)で表されるハフニウム化合物に加えて、他のプリカーサを含有する場合、上記一般式(1)で表されるハフニウム化合物と、他のプリカーサとの合計量を表す。
 また、本発明の薄膜の製造方法において、薄膜形成用原料は、必要に応じて、上記一般式(1)で表されるハフニウム化合物及び他のプリカーサの安定性を向上させるため、求核性試薬を含有してもよい。該求核性試薬としては、例えば、グライム、ジグライム、トリグライム、テトラグライム等のエチレングリコールエーテル類、18-クラウン-6、ジシクロヘキシル-18-クラウン-6、24-クラウン-8、ジシクロヘキシル-24-クラウン-8、ジベンゾ-24-クラウン-8等のクラウンエーテル類、エチレンジアミン、N,N’-テトラメチルエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、1,1,4,7,7-ペンタメチルジエチレントリアミン、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン、トリエトキシトリエチレンアミン等のポリアミン類、サイクラム、サイクレン等の環状ポリアミン類、ピリジン、ピロリジン、ピペリジン、モルホリン、N-メチルピロリジン、N-メチルピペリジン、N-メチルモルホリン、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン、オキサゾール、チアゾール、オキサチオラン等の複素環化合物類、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸-2-メトキシエチル等のβ-ケトエステル類又はアセチルアセトン、2,4-ヘキサンジオン、2,4-ヘプタンジオン、3,5-ヘプタンジオン、ジピバロイルメタン等のβ-ジケトン類が挙げられる。これら求核性試薬の使用量は、安定性の調整が容易であるという観点から、プリカーサ全体の量1モルに対して、0.1モル~10モルの範囲が好ましく、1モル~4モルの範囲がより好ましい。
 薄膜形成用原料には、これを構成する成分以外の不純物金属元素分、不純物塩素などの不純物ハロゲン分、及び不純物有機分が極力含まれないようにすることが望ましい。不純物金属元素分は、元素毎では100ppb以下が好ましく、10ppb以下がより好ましく、総量では、1ppm以下が好ましく、100ppb以下がより好ましい。特に、LSIのゲート絶縁膜、ゲート膜、バリア層として用いる場合は、得られる薄膜の電気的特性に影響のあるアルカリ金属元素及びアルカリ土類金属元素の含有量を少なくすることが必要である。不純物ハロゲン分は、100ppm以下が好ましく、10ppm以下がより好ましく、1ppm以下がさらにより好ましい。不純物有機分は、総量で500ppm以下が好ましく、50ppm以下がより好ましく、10ppm以下がさらにより好ましい。また、水分は、ALD用原料中でのパーティクル発生や、薄膜形成中におけるパーティクル発生の原因となるので、プリカーサ、有機溶剤及び求核性試薬については、それぞれの水分の低減のために、使用の際にあらかじめできる限り水分を取り除いた方がよい。プリカーサ、有機溶剤及び求核性試薬それぞれの水分量は、10ppm以下が好ましく、1ppm以下がより好ましい。
 また、薄膜形成用原料は、形成される薄膜のパーティクル汚染を低減又は防止するために、パーティクルが極力含まれないようにするのが好ましい。具体的には、液相での光散乱式液中粒子検出器によるパーティクル測定において、0.3μmより大きいパーティクルの数が薄膜形成用原料1ml中に100個以下であることが好ましく、0.2μmより大きいパーティクルの数が薄膜形成用原料1ml中に100個以下であることが、均一な薄膜が得られやすいので好ましい。
 本発明の薄膜の製造方法に用いられるALD装置の具体例としては、図1に示されるような、原料容器中の薄膜形成用原料を加熱及び/又は減圧することにより気化させて原料ガスとし、その原料ガスを、必要に応じてキャリアガスと共に、成膜チャンバーに供給することのできる装置や、図2に示されるように、薄膜形成用原料を液体又は溶液の状態で気化室まで輸送し、気化室で加熱及び/又は減圧することにより気化させて原料ガスとし、その原料ガスを成膜チャンバーに供給することのできる装置が挙げられる。なお、図1及び図2に示されるような成膜チャンバーを備えた枚葉式装置に限らず、バッチ炉を用いた多数枚同時処理可能な装置を用いることもできる。
 本発明の薄膜の製造方法は、基体が設置された成膜チャンバー(以下、「堆積反応部」と記載することもある)内に、上記の薄膜形成用原料を気化させた原料ガスを、基体の表面に吸着させて前駆体薄膜を形成する工程1(前駆体薄膜形成工程)と、未反応の原料ガスを排気する工程2(排気工程)と、反応性ガスを成膜チャンバー内に導入し、300℃以上450℃未満の温度にて、前駆体薄膜を反応性ガスと反応させて、基体の表面にハフニウム含有薄膜を形成する工程3(ハフニウム含有薄膜形成工程)とを含むものである。
 また、本発明の薄膜の製造方法は、工程3の後に、成膜チャンバー内のガスを排気する工程4(排気工程)を有することが好ましい。
 本発明の薄膜の製造方法では、工程1(前駆体薄膜形成工程)、工程2(排気工程)、工程3(ハフニウム含有薄膜形成工程)及び工程4(排気工程)を順に行う、一連の操作による堆積を1サイクルとし、このサイクルを繰り返すことで、薄膜の厚みを調整することができる。以下、本発明の薄膜の製造方法の各工程について説明する。
(工程1)
 工程1は、上記の薄膜形成用原料を気化させた原料ガスを、基体が設置された成膜チャンバー内へ導入し、原料ガスを、基体の表面に吸着させて前駆体薄膜を形成する工程である。薄膜形成用原料を気化させた原料ガスを、基体が設置された成膜チャンバー内へ導入する方法としては、図1及び図3に示すように、薄膜形成用原料が貯蔵される容器(以下、「原料容器」と称する)中で加熱及び/又は減圧することにより気化させて原料ガスとし、該原料ガスを、必要に応じてアルゴン、窒素、ヘリウム等のキャリアガスと共に、基体が設置された成膜チャンバー内へと導入する気体輸送法、並びに図2及び図4に示すように、薄膜形成用原料を液体又は溶液の状態で気化室まで輸送し、気化室で加熱及び/又は減圧することにより薄膜形成用原料を気化させて原料ガスとし、該原料ガスを基体が設置された成膜チャンバー内へと導入する液体輸送法がある。気体輸送法の場合、上記一般式(1)で表されるハフニウム化合物そのものを薄膜形成用原料とすることができる。液体輸送法の場合、上記一般式(1)で表されるハフニウム化合物、又は該ハフニウム化合物を有機溶剤に溶解した溶液を薄膜形成用原料とすることができる。これらの薄膜形成用原料は求核性試薬等を更に含んでいてもよい。
 また、上記気体輸送法及び液体輸送法以外にも、原料ガス導入工程に用いられる方法としては、複数のプリカーサを含む多成分系のALD法として、上述したようなシングルソース法とカクテルソース法があるが、いずれの導入方法を用いた場合においても、薄膜形成用原料は、取り扱い性の観点から50℃以上200℃以下の範囲で気化させることが好ましい。また、原料容器内又は気化室内で薄膜形成用原料を気化させて原料ガスとする場合の原料容器内の圧力及び気化室内の圧力は、薄膜形成用原料を気化させやすいという観点から、1Pa以上10,000Pa以下が好ましい。
 ここで、成膜チャンバーに設置される基体の材質としては、例えば、シリコン;窒化ケイ素、窒化チタン、窒化タンタル、酸化チタン、酸化ルテニウム、酸化ジルコニウム、酸化ハフニウム、酸化ランタン等のセラミックス;ガラス;金属コバルト、金属ルテニウム等の金属が挙げられる。基体の形状としては、板状、球状、繊維状、鱗片状が挙げられる。基体表面は、平面であってもよく、トレンチ構造等の三次元構造となっていてもよい。
 原料ガスを成膜チャンバー内に導入後、原料ガスを基体表面に吸着させることで、基体表面に前駆体薄膜を形成することができる。このとき、基体を加熱するか、又は成膜チャンバー内を加熱してもよい。前駆体薄膜を形成する時の条件は、特に限定されず、例えば、吸着温度(基体温度)、系圧力等を薄膜形成用原料の種類に応じて適宜決めることができる。工程1は、基体を300℃以上に加熱した状態で行われることが好ましく、均一な前駆体薄膜が得られやすいという観点から、300℃以上450℃未満に加熱した状態で行われることがより好ましい。系圧力は、特に制限されるものではないが、1Pa以上10,000Pa以下が好ましく、均一な前駆体薄膜が得られやすいという観点から、10Pa以上1,000Pa以下がより好ましい。
(工程2)
 工程2は、前駆体薄膜を形成後、基体の表面に吸着しなかった未反応の原料ガスを成膜チャンバーから排気する工程である。この工程では、吸着しなかった原料ガスが成膜チャンバーから完全に排気されるのが理想的であるが、必ずしも完全に排気する必要はない。排気方法としては、例えば、ヘリウム、窒素、アルゴン等の不活性ガスにより成膜チャンバーの系内をパージする方法、系内を減圧することで排気する方法、及びこれらを組み合わせた方法等が挙げられる。減圧する場合の減圧度は、0.01Pa以上300Pa以下の範囲が好ましく、吸着しなかった原料ガスの排気が促進されるという観点から0.01Pa以上100Pa以下の範囲がより好ましい。
(工程3)
 工程3は、工程2の後、成膜チャンバーに反応性ガスを導入して、反応性ガスの作用及び熱の作用により、前駆体薄膜、すなわち基体の表面に堆積させた上記一般式(1)で表されるハフニウム化合物を反応性ガスと反応させてハフニウム含有薄膜を形成する工程である。
 上記反応性ガスとしては、例えば、酸素、オゾン、二酸化窒素、一酸化窒素、水蒸気、過酸化水素、ギ酸、酢酸、無水酢酸等の酸化性ガス、水素等の還元性ガス、モノアルキルアミン、ジアルキルアミン、トリアルキルアミン、アルキレンジアミン等の有機アミン化合物、ヒドラジン、アンモニア等の窒化性ガスなどが挙げられる。これらの反応性ガスは、単独で用いてもよいし、又は二種類以上を混合して用いてもよい。本発明の薄膜の製造方法において、反応性ガスは、酸化性ガスであることが好ましく、前駆体薄膜と反応性ガスとの反応が良好であるという観点から、水蒸気、酸素及びオゾンからなる群から選択される少なくとも一種を含有するガスであることがより好ましい。反応性ガスとして酸化性ガスを用いる場合には、ハフニウム含有薄膜として、酸化ハフニウム薄膜が形成される。
 前駆体薄膜を反応性ガスと反応させる時の温度(基体温度)は、300℃以上450℃未満であり、残留炭素がより少ない高品質な薄膜が得られるという観点から、300℃以上430℃未満であることが好ましい。また、本工程が行われる際の成膜チャンバーにおける圧力は、1Pa以上10,000Pa以下が好ましく、前駆体薄膜と反応性ガスとの反応が良好となるという観点から、10Pa以上1,000Pa以下がより好ましい。
(工程4)
 工程4は、工程3の後、高品質な薄膜を製造するために、未反応の反応性ガス及び副生ガスを成膜チャンバーから排気する工程である。この工程では、反応性ガス及び副生ガスが成膜チャンバーから完全に排気されるのが理想的であるが、必ずしも完全に排気する必要はない。排気方法及び減圧する場合の減圧度は、上述した工程2と同様である。
 以上の工程1、工程2、工程3及び工程4の一連の操作を、1サイクルとし、このサイクルの回数で、得られるハフニウム含有薄膜の膜厚を調整することができる。
 また、本発明の薄膜の製造方法においては、図3及び図4に示すように、成膜チャンバー内では、プラズマ、光、電圧などのエネルギーを印加してもよく、触媒を用いてもよい。該エネルギーを印加する時期及び触媒を用いる時期は、特には限定されず、例えば、工程1において、原料ガスを成膜チャンバー内に導入する時、又は前駆体薄膜を形成する際の加熱時、工程3において、反応性ガスを成膜チャンバーに導入する時、又は反応性ガスと前駆体薄膜とを反応させる時、工程2又は4における系内の排気時でもよく、上記の各工程の間でもよい。
 また、本発明の薄膜の製造方法においては、薄膜の形成後に、より良好な電気特性を得るために、不活性雰囲気下、酸化性雰囲気下又は還元性雰囲気下でアニール処理を行ってもよく、段差埋め込みが必要な場合には、リフロー工程を設けてもよい。この場合の温度は、200℃以上1,000℃以下が好ましく、薄膜や基体への熱による損傷が抑制できるという観点から、250℃以上500℃以下がより好ましい。
 本発明の薄膜の製造方法で製造される薄膜は、他のプリカーサ、反応性ガス及び製造条件を適宜選択することにより、メタル、酸化物セラミックス、窒化物セラミックス、ガラス等の基体を被覆して、所望の種類の薄膜とすることができる。本発明の薄膜は電気特性及び光学特性に優れるため、例えば、DRAM素子に代表されるメモリー素子の電極材料、抵抗膜、ハードディスクの記録層に用いられる反磁性膜及び固体高分子形燃料電池用の触媒材料等の製造に広く用いることが可能である。
 以下、実施例をもって本発明を更に詳細に説明する。しかしながら、本発明は以下の実施例等によって制限を受けるものではない。
 下記の試験化合物について下記の評価を行った。
 No.4:テトラキス((1-ジメチルアミノ)プロパン-2-イル)オキシ)ハフニウム
 No.16:テトラキス((1-ジメチルアミノ)ブタン-2-イル)オキシ)ハフニウム
 比較化合物1:テトラキス(エチルメチルアミノ)ハフニウム(TEMAH)
 比較化合物2:四塩化ハフニウム(HfCl4
(1)融点評価
 目視によって、常圧、25℃における化合物の状態を観察した。結果を表1に示す。
(2)熱分解開始温度
 示差走査熱量計(DSC)を用いて、アルゴン流量20mL/分、昇温速度10℃/分、走査温度範囲を30℃~500℃として測定したDSCチャートにおいて、発熱又は吸熱の開始点を熱分解開始温度(℃)として評価した。結果を表1に示す。
(3)粘度
 落球式粘度計(Anton Paar社製、製品名:AMVn)を用いて、25℃における粘度を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 次に、各試験化合物を薄膜形成用原料として用いて薄膜を製造した。
〔実施例1〕
 上記No.4のハフニウム化合物を薄膜形成用原料として用い、図1のALD装置を用い、下記の条件及び工程で基体としてのシリコンウエハ上に薄膜を製造した。X線光電子分光法を用いて薄膜の組成を分析したところ、薄膜は、酸化ハフニウム薄膜であり、薄膜中の残留炭素量は、検出限界である0.01atm%よりも少ないことを確認した。また、X線反射率法を用いて薄膜の膜厚を測定したところ、基体上に形成された薄膜は、膜厚2.5nmの平滑な膜であり、1サイクルあたりに得られる膜厚は、約0.025nmであった。
 また、反応温度を200℃から50℃毎に400℃まで昇温した以外は、同一条件で薄膜を製造し、1サイクルあたりの飽和温度依存性成長速度をプロットしてALDウィンドウを観察したところ、250℃~350℃のALDウィンドウを有することが確認できた。
(条件)
 製造方法:ALD法
 反応温度(基体温度):350℃
 反応性ガス:オゾン
(工程)
 下記工程1~工程4からなる一連の工程を1サイクルとして、100サイクル繰り返した。
 工程1:原料容器温度150℃、原料容器内圧力26.67Paの条件で気化された薄膜形成用原料の蒸気(原料ガス)を成膜チャンバー内に導入し、系圧26.67Paで10秒間、基体表面に原料ガスを吸着させて前駆体薄膜を形成する。
 工程2:15秒間のアルゴンパージにより、吸着しなかった原料ガスを系内から排気する。
 工程3:反応性ガスを成膜チャンバー内に導入し、系圧力100Paで10秒間、前駆体薄膜を反応性ガスと反応させる。
 工程4:15秒間のアルゴンパージにより、未反応の反応性ガス及び副生ガスを系内から排気する。
〔実施例2〕
 反応温度350℃を375℃に変更したこと以外は、実施例1の条件と同様に実施して、基体としてのシリコンウエハ上に薄膜を製造した。X線光電子分光法を用いて薄膜の組成を分析したところ、薄膜は、酸化ハフニウム薄膜であり、薄膜中の残留炭素量は、検出限界である0.01atm%よりも少ないことを確認した。
〔実施例3〕
 反応温度350℃を425℃に変更したこと以外は、実施例1の条件と同様に実施して、基体としてのシリコンウエハ上に薄膜を製造した。X線光電子分光法を用いて薄膜の組成を分析したところ、薄膜は、酸化ハフニウム薄膜であり、薄膜中の残留炭素量は、検出限界である0.01atm%よりも少ないことを確認した。
〔比較例1〕
 反応温度350℃を250℃に変更したこと以外は、実施例1の条件と同様に実施して、基体としてのシリコンウエハ上に薄膜を製造した。X線光電子分光法を用いて薄膜の組成を分析したところ、薄膜は、酸化ハフニウム薄膜であり、薄膜中の残留炭素量は、4.76atm%であった。
〔比較例2〕
 反応温度350℃を475℃に変更したこと以外は、実施例1の条件と同様に実施して、基体としてのシリコンウエハ上に薄膜を製造したが、薄膜に熱分解が生じていることが確認された。X線光電子分光法による薄膜組成の分析は実施しなかった。
〔比較例3〕
 No.4のハフニウム化合物を比較化合物1に変更したこと以外は、実施例1と同一条件で実施して、基体としてのシリコンウエハ上に薄膜を製造した。X線電子分光法を用いて薄膜の組成を分析したところ、薄膜は、酸化ハフニウム薄膜であったが、残留炭素が検出された。
 また、反応温度を200℃から50℃毎に400℃まで昇温して薄膜を製造し、1サイクルあたりの飽和温度依存性成長速度をプロットしてALDウィンドウを観察したところ、200℃~250℃のALDウィンドウを有することを確認した。
〔比較例4〕
 No.4のハフニウム化合物を比較化合物2に変更したこと以外は、実施例1と同一条件で実施して、基体としてのシリコンウエハ上に薄膜を製造した。X線電子分光法を用いて薄膜の組成を分析したところ、薄膜は、酸化ハフニウム薄膜であったが、残留塩素が検出された。
 また、反応温度を200℃から50℃毎に400℃まで昇温して薄膜を製造し、1サイクルあたりの飽和温度依存性成長速度をプロットしてALDウィンドウを観察したところ、200℃~400℃のALDウィンドウを有することを確認した。
 以上より、本発明は、特定のハフニウム化合物を含有する薄膜形成用原料を用いて、特定の条件で薄膜を製造することで、残留炭素及び残留塩素が少ない高品質なハフニウム含有薄膜を製造することができる。

Claims (5)

  1.  原子層堆積法により、基体の表面に、ハフニウム原子を含有する薄膜を製造する方法であって、
     下記一般式(1)で表されるハフニウム化合物を含有する薄膜形成用原料を気化させた原料ガスを、前記基体の表面に吸着させて前駆体薄膜を形成する工程1と、
     未反応の原料ガスを排気する工程2と、
     300℃以上450℃未満の温度にて、前記前駆体薄膜を反応性ガスと反応させて、前記基体の表面に、ハフニウム原子を含有する薄膜を形成する工程3と、
    を含む薄膜の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1及びR2は、各々独立して水素原子又は炭素原子数1~3のアルキル基を表し、R3及びR4は、各々独立して炭素原子数1~3のアルキル基を表す。)
  2.  前記ハフニウム化合物は、R1がエチル基、R2が水素原子、R3及びR4がメチル基であるハフニウム化合物である、請求項1に記載の薄膜の製造方法。
  3.  前記工程1は、前記基体を300℃以上450℃未満に加熱した状態で行われる、請求項1又は2に記載の薄膜の製造方法。
  4.  前記反応性ガスが酸化性ガスであり、且つ前記ハフニウム原子を含有する薄膜が酸化ハフニウムである、請求項1~3の何れか一項に記載の薄膜の製造方法。
  5.  前記反応性ガスが、水蒸気、酸素及びオゾンからなる群から選択される少なくとも一種を含有するガスである、請求項1~4の何れか一項に記載の薄膜の製造方法。
PCT/JP2021/042094 2020-11-19 2021-11-16 薄膜の製造方法 WO2022107769A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180077611.4A CN116529416A (zh) 2020-11-19 2021-11-16 薄膜的制造方法
JP2022563774A JPWO2022107769A1 (ja) 2020-11-19 2021-11-16
EP21894643.2A EP4249629A1 (en) 2020-11-19 2021-11-16 Method for manufacturing thin film
IL302868A IL302868A (en) 2020-11-19 2021-11-16 A method for producing a thin layer
US18/037,206 US20240018655A1 (en) 2020-11-19 2021-11-16 Method of producing thin-film
KR1020237019212A KR20230107613A (ko) 2020-11-19 2021-11-16 박막의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-192299 2020-11-19
JP2020192299 2020-11-19
JP2021-020347 2021-02-12
JP2021020347 2021-02-12

Publications (1)

Publication Number Publication Date
WO2022107769A1 true WO2022107769A1 (ja) 2022-05-27

Family

ID=81709005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042094 WO2022107769A1 (ja) 2020-11-19 2021-11-16 薄膜の製造方法

Country Status (7)

Country Link
US (1) US20240018655A1 (ja)
EP (1) EP4249629A1 (ja)
JP (1) JPWO2022107769A1 (ja)
KR (1) KR20230107613A (ja)
IL (1) IL302868A (ja)
TW (1) TW202233878A (ja)
WO (1) WO2022107769A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429437B2 (ja) 1986-11-13 1992-05-18
JP2007088113A (ja) * 2005-09-21 2007-04-05 Sony Corp 半導体装置の製造方法
JP2007527621A (ja) * 2004-02-03 2007-09-27 インフィネオン テヒノロギーズ アーゲー 酸化ハフニウム層および酸窒化ハフニウム層または酸化ジルコニウム層および酸窒化ジルコニウム層のための前駆体としての溶解ハフニウムアルコキシドまたはジルコニウムアルコキシドの使用
JP4889481B2 (ja) 2004-02-18 2012-03-07 株式会社Adeka アルコキシド化合物、薄膜形成用原料及び薄膜の製造方法
JP2018100446A (ja) 2016-11-29 2018-06-28 エーエスエム アイピー ホールディング ビー.ブイ. 酸化物薄膜の堆積

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6729437B2 (ja) 2017-02-08 2020-07-22 株式会社デンソー 金属構造体およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429437B2 (ja) 1986-11-13 1992-05-18
JP2007527621A (ja) * 2004-02-03 2007-09-27 インフィネオン テヒノロギーズ アーゲー 酸化ハフニウム層および酸窒化ハフニウム層または酸化ジルコニウム層および酸窒化ジルコニウム層のための前駆体としての溶解ハフニウムアルコキシドまたはジルコニウムアルコキシドの使用
JP4889481B2 (ja) 2004-02-18 2012-03-07 株式会社Adeka アルコキシド化合物、薄膜形成用原料及び薄膜の製造方法
JP2007088113A (ja) * 2005-09-21 2007-04-05 Sony Corp 半導体装置の製造方法
JP2018100446A (ja) 2016-11-29 2018-06-28 エーエスエム アイピー ホールディング ビー.ブイ. 酸化物薄膜の堆積

Also Published As

Publication number Publication date
KR20230107613A (ko) 2023-07-17
JPWO2022107769A1 (ja) 2022-05-27
EP4249629A1 (en) 2023-09-27
TW202233878A (zh) 2022-09-01
IL302868A (en) 2023-07-01
US20240018655A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
TWI795553B (zh) 使用原子層堆積法用薄膜形成用原料之薄膜之製造方法
WO2021200219A1 (ja) 亜鉛化合物、薄膜形成用原料、薄膜及びその製造方法
WO2021085210A1 (ja) 新規化合物、該化合物を含有する薄膜形成用原料及び薄膜の製造方法
WO2022014344A1 (ja) 薄膜形成用原料、薄膜及び薄膜の製造方法
WO2021075397A1 (ja) 新規スズ化合物、該化合物を含有する薄膜形成用原料、該薄膜形成用原料を用いて形成される薄膜、該薄膜を製造するために該化合物をプリカーサとして用いる方法、及び該薄膜の製造方法
WO2018235530A1 (ja) 金属アルコキシド化合物、薄膜形成用原料及び薄膜の製造方法
WO2022107769A1 (ja) 薄膜の製造方法
WO2022107768A1 (ja) 薄膜の製造方法
WO2023276716A1 (ja) 薄膜形成用原料、薄膜及び薄膜の製造方法
WO2023090179A1 (ja) 原子層堆積法用薄膜形成用原料、薄膜、薄膜の製造方法及びルテニウム化合物
WO2021054160A1 (ja) 原子層堆積法のための薄膜形成原料及びそれを用いた亜鉛含有薄膜の製造方法
US20240060177A1 (en) Indium compound, thin-film forming raw material, thin film, and method of producing same
WO2022059571A1 (ja) 原子層堆積法用薄膜形成原料及び薄膜の製造方法
WO2021117540A1 (ja) 銅含有層の製造方法
WO2020203783A1 (ja) 薄膜形成用原料、薄膜の製造方法及び新規なスカンジウム化合物
WO2022220153A1 (ja) 原子層堆積法用薄膜形成用原料、薄膜、薄膜の製造方法及びルテニウム化合物
WO2023171489A1 (ja) 原子層堆積法用薄膜形成用原料、薄膜及び薄膜の製造方法
WO2021200218A1 (ja) 原子層堆積法用薄膜形成用原料及び薄膜の製造方法
EP3647460B1 (en) Thin film production method and novel compound
JP6691009B2 (ja) 金属炭化物含有薄膜形成用原料及び金属炭化物含有薄膜の製造方法
JP6704808B2 (ja) 薄膜形成用原料及び薄膜の製造方法
CN116529416A (zh) 薄膜的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022563774

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18037206

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180077611.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237019212

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021894643

Country of ref document: EP

Effective date: 20230619