WO2022107671A1 - 海島複合ポリエステル繊維 - Google Patents

海島複合ポリエステル繊維 Download PDF

Info

Publication number
WO2022107671A1
WO2022107671A1 PCT/JP2021/041432 JP2021041432W WO2022107671A1 WO 2022107671 A1 WO2022107671 A1 WO 2022107671A1 JP 2021041432 W JP2021041432 W JP 2021041432W WO 2022107671 A1 WO2022107671 A1 WO 2022107671A1
Authority
WO
WIPO (PCT)
Prior art keywords
island
sea
polyester fiber
orientation parameter
fiber
Prior art date
Application number
PCT/JP2021/041432
Other languages
English (en)
French (fr)
Inventor
大輔 吉岡
亮輔 志岐
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202180077364.8A priority Critical patent/CN116490649A/zh
Priority to JP2021568802A priority patent/JPWO2022107671A1/ja
Publication of WO2022107671A1 publication Critical patent/WO2022107671A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent

Definitions

  • the present invention relates to a multi-island sea-island composite fiber composed of a polymer having three or more components.
  • Fibers using thermoplastic polymers such as polyester and polyamide have excellent mechanical properties and dimensional stability, so they are widely used not only for clothing but also for interiors, vehicle interiors, and industrial applications. Now that the applications of fibers are diversifying, the required characteristics are also diversified, and techniques for imparting emotional effects such as texture and bulkiness depending on the cross-sectional shape of the fibers have been proposed. Above all, “miniaturization of fibers” has a great effect on the characteristics of the fibers themselves and the characteristics after being made into a fabric, and is a mainstream technique from the viewpoint of controlling the cross-sectional shape of the fibers.
  • the limit is that the diameter of the obtained fibers is about several ⁇ m even if the spinning conditions are highly controlled.
  • the "Kaijima-type composite spinning method" for obtaining composite fibers is often used.
  • this composite spinning method a plurality of island polymers composed of sparingly soluble components are arranged on a sea polymer composed of an easily soluble component in a fiber cross section, and after making a fiber or a textile product, the island polymer is removed. It generates ultrafine fibers made of partial polymer.
  • This composite spinning method is widely used in the production of ultrafine fibers currently industrially produced because it can form a highly accurate yarn cross-sectional shape uniformly and uniformly in the traveling direction of the yarn.
  • Fibers with extreme fineness can exhibit a soft touch and fineness that cannot be obtained with ordinary fibers, so they are widely used as suede-like fabrics and wiping cloths in clothing applications.
  • a sea-island type composite fiber containing a sparingly soluble island in the sea part made of an easily soluble polymer, or a sparingly soluble ultrafine fiber is partitioned by the easily soluble polymer.
  • split fiber type composite fibers see, for example, Patent Documents 1 and 2.
  • the island portion is composed of two or more kinds of polymers having a shrinkage difference, and although it is an ultrafine fiber, it has excellent fiber physical characteristics, has good yarn-making property, and has a swelling feeling and flexibility when made into a cloth.
  • a sea-island type multi-component composite fiber having a soft texture has been proposed (see, for example, Patent Document 3).
  • the present invention solves the above-mentioned problems, and an object of the present invention is to provide ultrafine fibers having excellent high openness and bulkiness.
  • the present inventors have provided a suede-like material having excellent fiber opening and bulkiness by using a sea-island composite fiber that expresses a shrinkage difference due to islands having different orientations. I found out what I could do. That is, the present invention adopts the following configuration. ⁇ 1> It has a sea island structure having two or more different island parts from the sea part, the outer diameter of the island part is 1.0 to 7.0 ⁇ m, and the maximum of the island part with respect to the orientation parameter of the minimum orientation component.
  • a sea-island composite polyester fiber having an orientation parameter ratio (maximum orientation parameter / minimum orientation parameter) of 1.03 to 1.15 and an orientation parameter of the maximum orientation component of 4.0 to 8.5.
  • the sea-island composite polyester fiber of the present invention is a multi-island sea-island composite fiber having two or more types of islands having different orientations.
  • the sea-island composite polyester fiber of the present invention is an ultrafine fiber having excellent fiber-opening properties and bulkiness because the islands show a shrinkage difference due to the dissolution / removal treatment of the sea-based polymer. Therefore, the sea-island composite polyester fiber of the present invention makes it possible to obtain a suede-like material having excellent brushing uniformity and brushing thickness and having a good feel.
  • FIG. 1 is a schematic view showing the island portion arrangement of the cross section of the composite fiber according to the embodiment of the present invention.
  • the sea-island composite polyester fiber of the present invention is a sea-island type composite fiber having a sea-island structure having a sea part and an island part.
  • the polymer constituting the sea-island composite polyester fiber of the present invention contains at least three components, one of which is an easily eluted polymer constituting the sea portion.
  • the island is composed of at least two kinds of sparingly soluble polymers having different orientation parameters, and has a difference in yarn length after desealing (removal of the marine polymer) by alkaline treatment and dry heat treatment. As a result, the obtained fibers become ultrafine fibers having excellent openness and bulkiness.
  • polyester-based polymer for the island portion constituting the sea-island composite polyester fiber of the present invention.
  • polyester-based polymer examples include polyester obtained by copolymerizing an acid component and a diol component, as well as polylactic acid and the like.
  • Examples of the acid component include aliphatic dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, pimelli acid, suberic acid, sebacic acid and dodecanedioic acid, terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid.
  • Examples include aromatic dicarboxylic acids.
  • Examples of the diol component include alkylene glycols having 2 to 10 carbon atoms such as ethylene glycol, trimethylene glycol, and tetramethylene glycol.
  • Polyester is particularly preferably polyethylene terephthalate, polytrimethylene terephthalate, or polybutylene terephthalate.
  • polyesters may contain a copolymerization component capable of forming other ester bonds in a proportion of 20 mol% or less, more preferably 10 mol% or less, respectively, of a part of the diol component and the acid component.
  • copolymerizable compounds include dicarboxylic acids such as isophthalic acid, succinic acid, cyclohexanedicarboxylic acid, adipic acid, dimaic acid, sebacic acid, and 5-sodium sulfoisophthalic acid, ethylene glycol, diethylene glycol, butanediol, and neopentyl glycol.
  • diols such as cyclohexanedimethanol, polyethylene glycol and polypropylene glycol.
  • the polyester polymer may contain additives such as a matting agent, a flame retardant, an antistatic agent, and a pigment.
  • At least two types of polymers having different orientation parameters are used for the island portion of the sea-island composite polyester fiber of the present invention.
  • the islands of high alignment (high shrinkage) and low alignment (low shrinkage) in the composite fiber are opened by the Nicolling treatment, and different shrinkage mixed yarns of microfibers are obtained. Be done.
  • the orientation parameter referred to in the present invention is an index of the molecular orientation of the polymer, and the larger the value, the higher the molecular orientation.
  • a homopolyester polymer is suitable.
  • a copolymerized polyester such as isophthalic acid is preferable.
  • the outer diameter of the island portion is 1.0 to 7.0 ⁇ m.
  • the outer diameter of the island portion is 1.0 ⁇ m or more, diffused reflection on the fiber surface can be suppressed, and light dyeing when made into a fabric can be suppressed. Further, the bending rigidity is increased, and the fabric is bulky and has an excellent repulsive feeling.
  • the outer diameter of the island portion is 6.1 ⁇ m or less, a delicate touch and a soft feeling can be obtained.
  • the upper limit of the outer diameter of the island is preferably 6.5 ⁇ m or less, preferably 6.3 ⁇ m or less, 6.1 ⁇ m or less, 5.0 ⁇ m or less, 4.5 ⁇ m or less, and the lower limit is 1.5 ⁇ m in that order.
  • the above is preferable, and 2.0 ⁇ m or more is more preferable.
  • the sea-island composite polyester fiber of the present invention has 1. It is 03 to 1.15, and the orientation parameter of the maximum orientation component is 4.0 to 8.5.
  • the orientation parameter indicates the orientation of the molecular chains of each island, and the difference in orientation between the islands is large and the orientation of the high shrinkage is advanced. To increase. By increasing the contraction difference between the islands, voids are developed after desealing, and it becomes possible to enhance the fibrousness and bulkiness.
  • the orientation parameter ratio is more preferably 1.05 to 1.12.
  • the orientation parameter of the maximum orientation component is preferably 4.0 to 8.0, more preferably 4.5 to 8.0, further preferably 5.0 to 7.5, and 6.0 to 7. .0 is particularly preferred.
  • FIG. 1 shows the case of two types of islands (first island 1 and second island 2) as an example.
  • the sea-island composite polyester fiber of the present invention preferably has a yarn length difference of 15 to 40% after the de-sea treatment, which is subjected to alkaline treatment and dry heat treatment under the following conditions.
  • Alkaline treatment conditions Sodium hydroxide aqueous solution (concentration 1 g / L), 92 ° C, 30 minutes, no-load dry heat treatment conditions: 190 ° C, 1 minute, no-load
  • the difference in yarn length of the islands after desealing treatment is 15% or more. In that case, since the single yarn is easily pulled out in the raising process of the cloth, the bristles become long, the bulkiness is improved, and the raising thickness of the cloth becomes good.
  • the difference in yarn length between the islands after the desealing treatment is more preferably 20 to 35%.
  • the thread length difference of the islands is as follows, where the length of the shortest island is L1 and the length of the longest island is L2 among the islands in the fiber after the alkali treatment and the dry heat treatment. Calculated in (1).
  • the sea portion constituting the sea-island composite polyester fiber of the present invention contains polyester as a main component because alkali dissolution with caustic soda as a dissolving agent is widely performed industrially. More preferably, a copolymerized polyester in which isophthalic acid having a metal sulfonate group or a derivative thereof and polyalkylene glycol is used in combination is preferable, and a combination of 5-sodium sulfoisophthalic acid and polyethylene glycol is particularly preferable.
  • the content of isophthalic acid having a metal sulfonate group is preferably 5.0 to 15.0 mol%.
  • the content of isophthalic acid is 5.0 mol% or more, the elution of the sea portion during the desea treatment is improved, and the fusion between the single yarns due to the unelution of the sea component is suppressed. Further, when the content of isophthalic acid is 15 mol% or less, the softening of the polymer is suppressed and the process passability at the time of weaving / knitting becomes good.
  • the number average molecular weight of the polyalkylene glycol is preferably 500 to 2000.
  • the number average molecular weight is 500 or more, the elution of the sea portion during the desealing treatment is improved, and the fusion between the single yarns due to the unelution of the sea component is suppressed.
  • the molecular motion of the sea component during melt spinning is enhanced, the orientation of the islands is easy to proceed, the orientation parameters of the islands are appropriate values, and the difference in yarn length is expressed, resulting in openness and bulkiness. It is preferable because it is excellent in.
  • the number average molecular weight of the polyalkylene glycol is 2000 or less, the compatibility with the polyester is good and the silk-reeling property is excellent.
  • the content of the polyalkylene glycol is preferably 5.0 to 15.0% by weight in the polyester polymer.
  • the content of the polyalkylene glycol is 5.0% by weight or more, the elution of the sea portion at the time of desealing is improved, and the fusion between the single yarns due to the unelution of the sea component is suppressed.
  • the molecular motion of the sea component during melt spinning is enhanced, the orientation of the islands is easy to proceed, the orientation parameters of the islands are appropriate values, and the difference in yarn length is expressed, resulting in openness and bulkiness. It is preferable because it is excellent in. Even if the content of the polyalkylene glycol is larger than 15.0% by weight, the effect of improving the elution of the sea portion reaches a plateau.
  • the intrinsic viscosity of the sea part polymer (hereinafter referred to as IV) is preferably 0.50 to 0.75.
  • IV the intrinsic viscosity of the sea part polymer
  • the IV of the marine polymer is 0.75 or less, the concentration of stress on the marine portion during spinning is suppressed and the stress on the island portion increases, so that the orientation parameter of each island portion becomes an appropriate value. It is preferable because the yarn length difference is exhibited and the raw yarn is excellent in openness and bulkiness.
  • the IV of the more preferred marine polymer is 0.55 to 0.70.
  • a copolymerization component other than the above may be copolymerized at 10 mol% or less with respect to each of the marine polymer and the island polymer as long as the object of the present invention is not impaired. Further, if necessary, inorganic fine particles such as titanium dioxide may be added as a matting agent, and silica fine particles or the like may be added as a lubricant.
  • the cross-sectional shape of the island portion of the sea-island composite polyester fiber of the present invention is not particularly limited, and may be, for example, a round cross section, a flat cross section, a lens type cross section, or any other known irregular cross section.
  • the number of islands in the sea-island composite polyester fiber of the present invention is preferably 12 to 432 islands per single yarn.
  • the number of islands per single yarn is 12 or more, the islands can be arranged in the sea without gaps, and the morphological stability of the composite fiber is improved, which is preferable. Further, by setting the number of islands to 432 islands or less per single yarn, it is possible to avoid the fusion defect of the islands.
  • the sea part is dissolved and removed, the difference in contact time between the surface layer and the inner layer of the composite fiber with the dissolving agent of the island part is reduced, so that the fiber diameter variation of the fiber obtained from the island part is small and high-strength microfiber can be obtained. Is possible.
  • a more preferred range for the number of islands in the composite fiber is 32 to 192 islands per single yarn.
  • the weight ratio occupied by the sea portion is preferably 10 to 30%.
  • the weight ratio of the sea portion in the sea-island composite polyester fiber is more preferably 15 to 25%.
  • the method for producing a sea-island composite polyester fiber of the present invention is a two-step method in which the discharged polymer is once wound as an undrawn yarn and then stretched to a predetermined breaking elongation with a normal stretching machine, or once. It can be manufactured by any one-step method in which stretching is continued without winding. However, in consideration of quality stability and production stability in the fiber longitudinal direction, the direct spinning and drawing method is the most excellent.
  • an existing base for composite spinning can be used, but there are roughly three types of members, a measuring plate, a distribution plate, and a discharge plate described in Japanese Patent Application Laid-Open No. 2011-174215. It is preferable to use the laminated composite base because the sea-island composite fiber can be stably obtained.
  • the orientation parameter of the island part in addition to the above-mentioned selection of the sea part polymer, it can be preferably controlled by the intrinsic viscosity ratio of the island part polymer and the conditions of cooling solidification.
  • the intrinsic viscosity ratio of the polyester chips in the island is preferably 1.2 to 1.6, which is the value obtained by dividing the intrinsic viscosity of the high viscosity component by the intrinsic viscosity of the low viscosity component.
  • the orientation parameter ratio becomes an appropriate value due to the difference in spinning stress applied to different islands, and a difference in yarn length is exhibited to obtain a raw yarn having excellent fiber opening and bulkiness.
  • the intrinsic viscosity ratio is 1.6 or less, stress concentration on the high viscosity component is suppressed during spinning, the orientation parameter becomes an appropriate value, the shrinkage of the yarn is suppressed from increasing, and the quality is good. Can be a good fabric.
  • the distance from the base discharge surface to the cooling surface is set to 250 to 450 mm in order to control the cooling solidification of the discharged polymer and set the orientation parameter ratio of different islands to an appropriate value. It is preferable to do so.
  • the orientation of the islands is easily affected by the difference in viscosity during melting, and when the cooling start distance is 250 mm or more, the melting time is secured and the orientation difference between different island polymers is likely to occur. Is in the appropriate range. If the cooling start distance is long, the orientation parameter ratio becomes large, but if the cooling start distance is 450 mm or less, U% indicating thread spots in the longitudinal direction is a good value.
  • the orientation parameter of the island part can be set to an appropriate value.
  • the difference in thread length due to the difference in heat shrinkage is developed, and the fibrousness and bulkiness are improved when the cloth is made into a cloth, and the brushing uniformity which cannot be reached by the conventional thread is achieved.
  • a sea-island composite polyester fiber capable of obtaining a raised thickness can be obtained.
  • the sea-island composite polyester fiber of the present invention obtained as described above is preferably used for fabrics and clothing, and the fabric form can be selected according to the purpose such as woven fabric, knitted fabric, non-woven fabric, and clothing is also included.
  • the fabric form can be selected according to the purpose such as woven fabric, knitted fabric, non-woven fabric, and clothing is also included.
  • is the viscosity of the polymer solution
  • ⁇ 0 is the viscosity of OCP
  • t is the drop time of the solution (seconds)
  • d is the density of the solution (g / cm 3 )
  • t0 is the drop time of OCP (seconds).
  • D0 is the density of OCP (g / cm 3 ).
  • the sample for orientation measurement was subjected to resin embedding (bisphenol epoxy resin, cured for 24 hours) and then sectioned by a microtome.
  • the section thickness was 2.0 ⁇ m.
  • the section sample was cut at a slight inclination from the fiber axis so that the cut surface became elliptical, and the measurement was performed by selecting a place where the thickness of the elliptical minor axis became a constant thickness.
  • the measurement is performed in the microscopic mode, and the spot diameter of the laser at the sample position is 1 ⁇ m.
  • the orientation was measured under polarized conditions.
  • the band intensity ratio was calculated from the Raman band intensities obtained in each case under the vertical condition when the polarization direction was perpendicular to the fiber axis.
  • the island diameter of the circle in contact with the portion of the fiber cross section that is convex toward the outside is calculated as the island diameter.
  • Thread length difference The thread length difference was calculated by the following procedures (a) to (c).
  • (A) Take one filament of sea-island composite polyester fiber with a length of 15 to 20 cm, tie it at two places with an interval of about 5 cm to make a mark, and tie both ends of the filament to an appropriate metal frame with a length of about 10 cm. Fixed.
  • (B) The metal frame prepared in item (a) was immersed in a solution in which the sea portion of the easily eluted component can be eluted, and the sea portion was removed.
  • a sodium hydroxide aqueous solution (concentration 1 g / L) was used as the alkaline aqueous solution.
  • the alkaline aqueous solution was heated to 92 ° C. and the immersion time was 30 minutes. After that, the metal frame was taken out and the filament sample was washed with raw water.
  • C After heat-treating for 1 minute in a dryer at 190 ° C. and allowing to cool, filament samples were cut along two knots, and the islands were decomposed using tweezers, and each island was measured.
  • the length of the longest island was L2, the length of the shortest island was L1, and the thread length difference was calculated by the following formula (1).
  • the load was measured by applying a load of 0.1 g / dtex.
  • Thread length difference (%) (L2-L1) / L1 ⁇ 100 ... (1)
  • an easily elution marine polymer contains a component copolymerized with 5-sodium sulfoisophthalic acid in an amount of 8.0 mol% and polyethylene glycol having a number average molecular weight of 1000 in an amount of 9.0% by weight.
  • Elution polyethylene terephthalate (easy elution PET1) was prepared.
  • the island A polymer, the island B polymer, and the sea polymer were all melted at 265 ° C., 280 ° C., and 280 ° C. using an extruder, then weighed with a pump, and the temperature was maintained at 275 ° C. as the spinning temperature. It was made to flow into the mouthpiece as it was.
  • each polymer merges inside the mouthpiece, and the island polymer (island A polymer, island B polymer) is included in the sea part polymer, and the island part A (the first island indicated by reference numeral 1) as shown in FIG. 1 is included.
  • Part) and island part B (second island part indicated by reference numeral 2) formed a composite form in which they were scattered and discharged from the base.
  • the yarn discharged from the mouthpiece is cooled and solidified by an air cooling device so that the cooling start distance becomes 330 mm, then an oil agent is applied, and the yarn is picked up by a roll heated to 90 ° C. at a speed of 1200 m / min, and the magnification is 3.
  • the Kaijima composite polyester fiber was additionally twisted at 800 T / m in the S direction using a double twister twisting machine, and then a steam twisting set at 75 ° C. for 30 minutes was carried out and used for woven fabric warping.
  • a 56dtex-24 filament polytrimethylene terephthalate (PTT) / PET bimetal yarn was used as the weft.
  • weaving was performed with a raw machine density (warp: 222 threads / inch, weft: 97 threads / inch) using an air jet loom with a 5-sheet satin structure.
  • the obtained woven fabric was spread and continuously refined at 98 ° C., then subjected to a liquid flow relaxing treatment at 130 ° C., and an intermediate set was carried out at 180 ° C. Then, it was immersed in an aqueous sodium hydroxide solution (1 g / L) to carry out a desealing process.
  • the obtained woven fabric was brushed with a needle cloth raising machine and then finished set at 160 ° C. to obtain a suede-like woven fabric.
  • Table 1 shows the evaluation results of the obtained suede-like woven fabric.
  • PET3 polyethylene terephthalate
  • IV 0.56
  • Example 7 0.82 copolymer polyethylene terephthalate obtained by copolymerizing 7.1 mol% and 4.4 mol% of isophthalic acid and bisphenol A ethylene oxide adduct as the island A polymer for forming the island A with respect to the total acid components, respectively.
  • PET4 was prepared, and a sea-island composite polyester fiber having 70 dtex and 12 filaments was obtained by the same method as in Example 1 except that the intrinsic viscosity ratio was 1.60, and a suede-like woven fabric was obtained. The evaluation results are shown in Table 1.
  • Example 8 As an easily elution marine polymer, it contains a component copolymerized with 5-sodium sulfoisophthalic acid in an amount of 8.0 mol% and polyethylene glycol having a number average molecular weight of 1000 in an amount of 9.0% by weight.
  • a 70 dtex, 12-filament sea-island composite polyester fiber was obtained in the same manner as in Example 1 except that elution polyethylene terephthalate (easy elution PET2) was prepared, and a suede-like woven fabric was obtained. The evaluation results are shown in Table 2.
  • Example 9 As an easily elution marine polymer, it contains a component copolymerized with 5-sodium sulfoisophthalic acid in an amount of 8.0 mol% and polyethylene glycol having a number average molecular weight of 1000 in an amount of 9.0% by weight.
  • a 70 dtex, 12-filament sea-island composite polyester fiber was obtained in the same manner as in Example 1 except that elution polyethylene terephthalate (easy elution PET3) was prepared, and a suede-like woven fabric was obtained. The evaluation results are shown in Table 2.
  • Example 10 As an easily elution marine polymer, it contains a component copolymerized with 5-sodium sulfoisophthalic acid in an amount of 8.0 mol% and polyethylene glycol having a number average molecular weight of 500 in an amount of 9.0% by weight.
  • a 70 dtex, 12-filament sea-island composite polyester fiber was obtained in the same manner as in Example 1 except that elution polyethylene terephthalate (easy elution PET4) was prepared, and a suede-like woven fabric was obtained. The evaluation results are shown in Table 2.
  • Example 11 As an easily elution marine polymer, it contains a component copolymerized with 5-sodium sulfoisophthalic acid in an amount of 8.0 mol% and polyethylene glycol having a number average molecular weight of 2000 in an amount of 9.0% by weight.
  • a 70 dtex, 12-filament sea-island composite polyester fiber was obtained in the same manner as in Example 1 except that elution polyethylene terephthalate (easy elution PET5) was prepared, and a suede-like woven fabric was obtained. The evaluation results are shown in Table 2.
  • Example 13 As an easily elution marine polymer, it contains a component copolymerized with 5-sodium sulfoisophthalic acid in an amount of 8.0 mol% and polyethylene glycol having a number average molecular weight of 1000 in an amount of 15.0% by weight.
  • a 70 dtex, 12-filament sea-island composite polyester fiber was obtained in the same manner as in Example 1 except that elution polyethylene terephthalate (easy elution PET7) was prepared, and a suede-like woven fabric was obtained. The evaluation results are shown in Table 2.
  • the Kaishima composite polyester fiber of Comparative Example 1 had a small fiber outer diameter of 0.8 ⁇ m after desealing, the suede-like woven fabric was lightly dyed as a whole and was inferior in dyeability.
  • the Kaijima composite polyester fiber of Comparative Example 2 had a large fiber outer diameter of 7.5 ⁇ m after desealing, so that the suede-like woven fabric had a hard texture and was inferior in soft touch.
  • PET5 polyethylene terephthalate
  • IV 0.60
  • the sea-island composite polyester fiber of Comparative Example 3 has a low ratio (orientation parameter ratio) of the orientation parameter of the maximum orientation component to the orientation parameter of the minimum orientation component and a small difference in yarn length.
  • the brushed thickness and brushed uniformity of the woven fabric were inferior.
  • the Kaijima composite polyester fiber of Comparative Example 4 had a high orientation parameter and orientation parameter ratio of the maximum orientation component, and the shrinkage of the yarn was too large, so that the texture of the suede-like woven fabric became hard and the soft touch property was inferior.
  • Example 5 As an easily elution marine polymer, it contains a component copolymerized with 5-sodium sulfoisophthalic acid in an amount of 8.0 mol% and polyethylene glycol having a number average molecular weight of 1000 in an amount of 9.0% by weight.
  • a 70 dtex, 12-filament sea-island composite polyester fiber was obtained in the same manner as in Example 1 except that elution polyethylene terephthalate (easy elution PET8) was prepared, and a suede-like woven fabric was obtained. The evaluation results are shown in Table 3.
  • the Kaijima composite polyester fiber of Comparative Example 5 had a high orientation parameter and orientation parameter ratio of the maximum orientation component, and the shrinkage of the yarn was too large, so that the texture of the suede-like woven fabric became hard and the soft touch property was inferior.
  • Example 6 As an easily elution marine polymer, it contains a component copolymerized with 5-sodium sulfoisophthalic acid in an amount of 8.0 mol% and polyethylene glycol having a number average molecular weight of 1000 in an amount of 9.0% by weight.
  • a 70 dtex, 12-filament sea-island composite polyester fiber was obtained in the same manner as in Example 1 except that elution polyethylene terephthalate (easy elution PET9) was prepared, and a suede-like woven fabric was obtained. The evaluation results are shown in Table 3.
  • the Kaijima composite polyester fiber of Comparative Example 6 was inferior in the raised thickness and raised uniformity of the suede-like woven fabric because the orientation parameter of the maximum orientation component was low and the difference in yarn length was small.
  • Example 7 As an easily elution marine polymer, it contains a component copolymerized with 5-sodium sulfoisophthalic acid in an amount of 8.0 mol% and polyethylene glycol having a number average molecular weight of 4000 in an amount of 9.0% by weight.
  • a 70 dtex, 12-filament sea-island composite polyester fiber was obtained in the same manner as in Example 1 except that elution polyethylene terephthalate (easy elution PET10) was prepared, and a suede-like woven fabric was obtained. The evaluation results are shown in Table 3.
  • the Kaijima composite polyester fiber of Comparative Example 7 was inferior in the raised thickness and raised uniformity of the suede-like woven fabric because the orientation parameter of the maximum orientation component was low and the difference in yarn length was small. In addition, the strength of the yarn was low, and the durability of the suede-like woven fabric was inferior.
  • the Kaijima composite polyester fiber of Comparative Example 8 was inferior in the raised thickness and raised uniformity of the suede-like woven fabric because the orientation parameter of the maximum orientation component was low and the difference in yarn length was small.
  • the Kaijima composite polyester fiber of Comparative Example 9 was inferior in the raised thickness and raised uniformity of the suede-like woven fabric because the orientation parameter and the orientation parameter ratio of the maximum orientation component were low and the difference in yarn length was small. In addition, the strength of the yarn was low, and the durability of the suede-like woven fabric was inferior.
  • Example 10 A 70 dtex, 12-filament sea-island composite polyester fiber was obtained in the same manner as in Example 1 except that the cooling start distance of the yarn discharged from the mouthpiece was set to 200 mm, and a suede-like woven fabric was obtained. The evaluation results are shown in Table 3.
  • the sea-island composite polyester fiber of Comparative Example 10 was inferior in the raised thickness and raised uniformity of the suede-like woven fabric because the orientation parameter of the maximum orientation component was low and the difference in yarn length was small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Multicomponent Fibers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本発明は、配向性の異なる2種類以上の島部を有し、起毛均一性、起毛厚みに優れるスエード調素材が得られる海島複合ポリエステル繊維を提供する。本発明の海島複合ポリエステル繊維は、海部と2種類以上の異なる島部を持つ海島構造を有し、島部の外径が1.0~7.0μmであり、島部の、最小配向成分の配向パラメータに対する最大配向成分の配向パラメータの比(最大配向パラメータ/最小配向パラメータ)が1.03~1.15であり、かつ最大配向成分の配向パラメータが4.0~8.5である。

Description

海島複合ポリエステル繊維
 本発明は、3成分以上のポリマーからなる多島の海島複合繊維に関するものである。
 ポリエステルやポリアミドなどの熱可塑性ポリマーを用いた繊維は力学特性や寸法安定性に優れるため、衣料用途のみならずインテリアや車両内装、産業用途等幅広く利用されている。繊維の用途が多様化する現在において、その要求特性も多様なものとなり、繊維の断面形態によって風合い、嵩高性などといった感性的効果を付与する技術が提案されている。中でも、“繊維の極細化”は、繊維自身の特性や布帛とした後の特性に対する効果が大きく、繊維の断面形態制御という観点では主流の技術である。
 繊維の極細化には、単独ポリマーを紡糸した場合、その紡糸条件を高度に制御しても、得られる繊維の径を数μm程度とするのが限界であるので、一般的に、複合口金により複合繊維を得る“海島型の複合紡糸法”が良く採用されている。この複合紡糸法は、繊維断面において、易溶解成分からなる海部ポリマーに難溶解成分からなる島部ポリマーを複数配置しておき、繊維あるいは繊維製品とした後に、海部ポリマーを除去することで、島部ポリマーからなる極細繊維を発生させるものである。この複合紡糸法は、糸の走行方向において高精度な糸断面形態を均一かつ均質に形成できるため、現在工業的に生産されている極細繊維の製造において多く採用されている。
 極限的な細さを有する繊維は、一般の繊維では得ることができない柔軟なタッチやきめ細やかさを発現できるので、衣料用途では、スエード調布帛やワイピングクロスとして広く用いられている。
 極細繊維を容易に製造する手法としては、易溶解性ポリマーからなる海部中に難溶解性の島部を含有する海島型複合繊維や、難溶解性の極細繊維が易溶解性ポリマーで仕切られた割繊型複合繊維を利用することが広く知られている(例えば、特許文献1、2参照。)。これらの技術では、一度、複合繊維として巻き取った後、溶解剤に複合繊維もしくは布帛製品を浸漬させることで易溶解性ポリマーを除去し、難溶解性の極細繊維を得ることが可能となる。
 また、近年では島部が収縮差を有する2種類以上のポリマーから構成され、超極細繊維でありながら優れた繊維物性を有し、製糸性が良好で、布帛にした際に膨らみ感と柔軟性、ソフトな風合いを有した海島型多成分複合繊維が提案されている(例えば、特許文献3参照。)。
日本国特開2005-163234号公報 日本国特公昭48-28005号公報 日本国特開2015-183343号公報
 しかしながら、特許文献1、2記載の複合繊維を用いる場合は、極細繊維ならではのソフトタッチ感を有するものの、糸の嵩高さや開繊性が低く、スエード調布帛とした際に、起毛均一性や、起毛厚みが少ない課題があった。また、特許文献3記載の複合繊維でも、島成分の異なる成分の収縮差が小さいことから、嵩高さや開繊性が低く、スエード調布帛とした際に、起毛均一性や起毛厚みに満足するものが得られなかった。
 本発明は、上記問題を解決するものであり、高開繊性及び嵩高性に優れた極細繊維を提供することを課題とする。
 上記課題を解決するため、本発明者らは鋭意検討を行った結果、配向性が異なる島部により収縮差を発現する海島複合繊維によって、開繊性と嵩高性に優れたスエード調素材を提供できることを見い出した。すなわち、本発明は以下の構成を採用する。
<1>海部と2種類以上の異なる島部を持つ海島構造を有し、前記島部の外径が1.0~7.0μmであり、前記島部の、最小配向成分の配向パラメータに対する最大配向成分の配向パラメータの比(最大配向パラメータ/最小配向パラメータ)が1.03~1.15であり、かつ前記最大配向成分の配向パラメータが4.0~8.5である海島複合ポリエステル繊維。
<2>前記海島複合ポリエステル繊維を下記条件でアルカリ処理して乾熱処理した後の、下記式(1)で表される前記島部の糸長差が15~40%である、上記<1>記載の海島複合ポリエステル繊維。
 アルカリ処理条件:水酸化ナトリウム水溶液(濃度1g/L)、92℃、30分、無荷重
 乾熱処理条件:190℃、1分、無荷重
 糸長差(%)=(L2-L1)/L1×100 ・・・(1)
(式(1)中、L1は一番短い島部の長さ、L2は一番長い島部の長さである。)
<3>前記海部が金属スルホネート基を有するイソフタル酸またはその誘導体とポリアルキレングリコールとを共重合した共重合ポリエステルからなる、上記<1>または<2>に記載の海島複合ポリエステル繊維。
 本発明の海島複合ポリエステル繊維は、配向性の異なる2種類以上の島部を有した多島の海島複合繊維である。本発明の海島複合ポリエステル繊維は、海部ポリマーの溶解除去処理によって島部が収縮差を発現するので、開繊性と嵩高性に優れた極細繊維となる。よって、本発明の海島複合ポリエステル繊維により、起毛均一性と起毛厚みに優れる好触感なスエード調素材を得ることができる。
図1は、本発明の実施例の複合繊維断面の島部配置を示した模式図である。
 以下、本発明をさらに詳細に説明する。
 なお、本明細書において「~」で表される数値範囲は、その前後の数値を下限値及び上限値として含む意味で使用される。
 本発明の海島複合ポリエステル繊維は、海部と島部を持つ海島構造を有する海島型複合繊維である。
 本発明の海島複合ポリエステル繊維を構成するポリマーは少なくとも3成分を含み、そのうちの1成分は海部を構成する易溶出性ポリマーである。島部は配向パラメータの異なる少なくとも2種類の難溶解性ポリマーからなり、アルカリ処理と乾熱処理による脱海(海部ポリマーの除去)後、糸長差を有する。これにより、得られた繊維は開繊性と嵩高性に優れた極細繊維となる。
 本発明の海島複合ポリエステル繊維を構成する島部には、ポリエステル系ポリマーを用いることが好ましい。ポリエステル系ポリマーとしては、酸成分とジオール成分とを共重合させることによって得られるポリエステルの他、ポリ乳酸等も挙げられる。
 前記酸成分としては、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、ドデカン二酸等の脂肪族ジカルボン酸、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸といった芳香族ジカルボン酸等が挙げられる。前記ジオール成分としては、例えば、エチレングリコール、トリメチレングリコール、テトラメチレングリコールなどの炭素数2~10のアルキレングリコールが挙げられる。
 ポリエステルは、特に好ましくは、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレートが挙げられる。
 これらのポリエステルは、ジオール成分および酸成分の一部が各々、20mol%以下、より好ましくは10mol%以下の割合で他のエステル結合の形成が可能な共重合成分を含むものであってもよい。共重合可能な化合物として、例えばイソフタル酸、コハク酸、シクロヘキサンジカルボン酸、アジピン酸、ダイマ酸、セバシン酸、5-ナトリウムスルホイソフタル酸などのジカルボン酸類、エチレングリコール、ジエチレングリコール、ブタンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、ポリエチレングリコール、ポリプロピレングリコールなどのジオール類を挙げることができる。
 ポリエステル系ポリマーには、艶消剤、難燃剤、帯電防止剤、顔料などの添加物を含有していても構わない。
 本発明の海島複合ポリエステル繊維の島部には、配向パラメータが異なる少なくとも2種類のポリマーを用いる。複合繊維中に高配向(高収縮)成分と低配向(低収縮)成分の島部が混在することで、脱海処理により島部が開繊され、マイクロファイバー同士の異収縮混繊糸が得られる。
 本発明でいう配向パラメータとは、ポリマーの分子配向の指標であり、値が大きいほど分子配向が高いことを表わす。島部の配向パラメータは、レーザーラマン分光法で得られるラマンスペクトルにおいて、1615cm-1付近に認められるポリエステル系ポリマーの炭素-炭素二重結合(C=C)の伸縮に由来するラマンバンドの繊維軸と直交する偏光方位での強度と、1730cm-1付近に認められるポリエステル系ポリマーの炭素-酸素二重結合(C=O)の伸縮に由来するラマンバンドの繊維軸と直交する偏光方位でのバンド強度からバンド強度比を算出し、ポリエステル系ポリマーの一軸延伸フィルムのC=C伸縮およびC=O伸縮の繊維軸と直交する偏光方位のバンド強度比の解析結果を検量データとして用い、バンド強度比を下記式で示した配向パラメータに換算して出力することにより求める。
  バンド強度比=I1615垂直/I1730垂直
  配向パラメータ=-4.3143×バンド強度比+12.711(ポリエステル系ポリマーの一軸延伸フィルムの解析結果を検量データとして用い、線形相関をとった際の近似式)
 また、高配向、低配向とは、2種類以上の島部のうち、他の島部と比較して相対的に高かったり低かったりすることをいう。
 低収縮部に用いるポリマーとしては、ホモポリエステルポリマーが好適である。一方、高収縮部に用いるポリマーとしては、イソフタル酸等の共重合ポリエステルが好ましい。
 本発明の海島複合ポリエステル繊維において、島部の外径は1.0~7.0μmである。島部の外径を1.0μm以上とすることで、繊維表面の乱反射が抑えられ、布帛とした際の淡染化を抑制することができる。更には、曲げ剛性が大きくなり、嵩高かつ反発感に優れる布帛となる。一方、島部の外径を6.1μm以下とすることで、繊細な肌触りやソフト感が得られる。島部の外径は、その上限が6.5μm以下であるのが好ましく、以下順番に6.3μm以下、6.1μm以下、5.0μm以下、4.5μm以下が好ましく、下限が1.5μm以上であるのが好ましく、2.0μm以上がさらに好ましい。
 本発明の海島複合ポリエステル繊維は、島部の最小配向成分の配向パラメータに対する最大配向成分の配向パラメータの比(最大配向パラメータ/最小配向パラメータ、以下、「配向パラメータ比」ともいう。)が1.03~1.15であり、かつ最大配向成分の配向パラメータが4.0~8.5である。配向パラメータは、上記したように、各島部の分子鎖の配向性を示し、島部間での配向差が大きく、かつ高収縮部の配向が進んでいることが異なる島部間の収縮差を大きくする。島部間の収縮差が大きくなることにより、脱海後に空隙が発現し、開繊性・嵩高性を高めることが可能となる。配向パラメータ比をかかる範囲とするには、後述するような特定条件(島部の極限粘度比や海部ポリマーの組成など)で紡糸し、島部間の配向性をコントロールすることが必要である。配向パラメータ比は、さらに好ましくは1.05~1.12である。また、最大配向成分の配向パラメータは、4.0~8.0であるのが好ましく、4.5~8.0がより好ましく、5.0~7.5がさらに好ましく、6.0~7.0が特に好ましい。
 本発明の海島複合ポリエステル繊維の各島部の配置は、図1に示すように、海部中に点在に配置されることが均一開繊性と嵩高さの観点からは好ましい。なお、図1では2種類の島部(第1島部1と第2島部2)の場合を例に示している。
 本発明の海島複合ポリエステル繊維は、下記条件でアルカリ処理して乾熱処理した脱海処理後の島部の糸長差が、15~40%であることが好ましい。
 アルカリ処理条件:水酸化ナトリウム水溶液(濃度1g/L)、92℃、30分、無荷重
 乾熱処理条件:190℃、1分、無荷重
 脱海処理後の島部の糸長差が15%以上であると、布帛の起毛工程にて単糸が引き出されやすくなるため、毛足が長くなり、嵩高性が向上し、布帛の起毛厚みが良好となる。糸長差が40%以下であると、布帛全体の収縮による風合いの低下(粗剛感)が抑えられ、品位の良い布帛となる。脱海処理後の島部の糸長差は、より好ましくは20~35%である。
 なお、島部の糸長差は、アルカリ処理及び乾熱処理後の繊維における島部のうち、一番短い島部の長さをL1とし、一番長い島部の長さをL2とし、下記式(1)にて算出する。糸の長さ測定時、荷重は0.1g/dtexの荷重をかけて測定する。
  糸長差(%)=(L2-L1)/L1×100 ・・・(1)
 本発明の海島複合ポリエステル繊維を構成する海部は、溶解剤として苛性ソーダによるアルカリ溶解が工業的に広く行われている点より、ポリエステルを主成分とすることが好ましい。さらに好ましくは、金属スルホネート基を有するイソフタル酸またはその誘導体とポリアルキレングリコールとを併用する共重合ポリエステルが好適であり、5-ナトリウムスルホイソフタル酸とポリエチレングリコールの組み合わせが特に好ましい。
 金属スルホネート基を有するイソフタル酸の含有量は5.0~15.0mol%であるのが好ましい。イソフタル酸の含有量が5.0mol%以上であると、脱海処理時の海部の溶出性が向上し、海成分未溶出による単糸間の融着が抑制される。また、イソフタル酸の含有量が15mol%以下であると、ポリマーの軟化を抑制し、製織・編立時の工程通過性が良好となる。
 ポリアルキレングリコールの数平均分子量は500~2000であるのが好ましい。数平均分子量が500以上であることにより、脱海処理時の海部の溶出性が向上し、海成分未溶出による単糸間の融着が抑制される。更には、溶融紡糸時の海成分の分子運動性が高まるため、島部の配向が進みやすくなり、島部の配向パラメータは適切な値となり、糸長差が発現して開繊性・嵩高性に優れるため好ましい。ポリアルキレングリコールの数平均分子量が2000以下であることにより、ポリエステルとの相溶性が良好となり、製糸性に優れる。
 また、ポリアルキレングリコールの含有量は、ポリエステル系ポリマー中、5.0~15.0重量%であることが好ましい。ポリアルキレングリコールの含有量が5.0重量%以上であると、脱海時の海部の溶出性が向上し、海成分未溶出による単糸間の融着が抑制される。更には、溶融紡糸時の海成分の分子運動性が高まるため、島部の配向が進みやすくなり、島部の配向パラメータは適切な値となり、糸長差が発現して開繊性・嵩高性に優れるため好ましい。ポリアルキレングリコールの含有量を15.0重量%より大きくしても、海部の溶出性の向上効果は頭打ちとなる。
 また、海部としてポリエステルを配する場合、海部ポリマーの固有粘度(以下、IVと称する。)は0.50~0.75であることが好ましい。IVが0.50以上であると紡糸時に海部への応力が大きくなり、島部への応力集中が抑制されることから、各島部の配向パラメータが適切な値となり、糸の収縮性が大きくなることを抑制し品位の良好な布帛とすることができる。一方、海部ポリマーのIVが0.75以下であると紡糸時に海部への応力が集中することを抑制し、島部への応力が大きくなることから、各島部の配向パラメータが適切な値となり、糸長差が発現して開繊性・嵩高性に優れた原糸となることから好ましい。より好ましい海部ポリマーのIVは0.55~0.70である。
 本発明の目的を損なわない範囲において、海部ポリマー、島部ポリマーのそれぞれに対して、上記以外の共重合成分を10mol%以下で共重合してもよい。また、必要に応じて、艶消し剤として二酸化チタンなどの無機微粒子、滑剤としてシリカ微粒子などを添加してもよい。
 本発明の海島複合ポリエステル繊維の島部の断面形状は、特に限定されるものではなく、例えば、丸断面、偏平断面、レンズ型断面、その他公知の異形断面でもよい。
 本発明の海島複合ポリエステル繊維における島数は、単糸あたり12~432島であることが好ましい。単糸あたりの島数を12島以上にすると、島部を隙間なく海部中に配置させることが可能となるため、複合繊維の形態安定性が高くなるので好ましい。また、島数を単糸あたり432島以下とすることで、島部の融着欠点を回避させることが可能である。さらに海部を溶解除去時に複合繊維の表層と内層での島部の溶解剤への接触時間差が少なくなることで、島部から得られる繊維の繊維径バラツキが小さく、高強度なマイクロファイバーを得ることが可能となる。複合繊維中の島数の更に好ましい範囲は、単糸あたり32~192島である。
 また、本発明の海島複合ポリエステル繊維において、海部が占める重量割合は10~30%が好ましい。海部を10重量%以上含有することで、島部同士の融着を防ぐことができ、脱海処理の効率性に優れ、高強度かつ高品質な布帛を得ることができる。また、海部の含有量が30重量%以下であれば、海部の溶解除去時間を短縮することが可能であり、かつ溶出させるポリマー量も少なくなるため、マイクロファイバーの生産性を高くすることもできるので好ましい。海島複合ポリエステル繊維中の海部の重量割合は、より好ましい範囲が15~25%である。
 次に本発明の海島複合ポリエステル繊維の製造方法の一例を、具体的に説明する。
 本発明の海島複合ポリエステル繊維の製造方法は、吐出されたポリマーを、一旦未延伸糸として巻き取った後、通常の延伸機で所定の破断伸度となるように延伸する2工程法、または一旦巻き取ることなく引き続き延伸を行う1工程法のいずれによっても製造することができる。但し、繊維長手方向での品質安定性、生産安定性を考慮すると、直接紡糸延伸法による生産が最も優れている。
 繊維の製造に用いる口金は、既存の複合紡糸用口金を用いることができるが、日本国特開2011-174215号公報に記載されている計量プレート、分配プレート、吐出プレートの大きく3種類の部材が積層された複合口金を用いることで海島複合繊維を安定して得ることができるため好ましい。
 島部の配向パラメータをかかる範囲に制御するためには、前述した海部ポリマー選択に加えて、島部ポリマーの固有粘度比、冷却固化の条件で好ましく制御することができる。
 島部のポリエステルチップの固有粘度比は、高粘度成分の固有粘度を低粘度成分の固有粘度で割った値で1.2~1.6であることが好ましい。固有粘度比が1.2以上であると、異なる島部にかかる紡糸応力差により、配向パラメータ比が適切な値となり、糸長差を発現して開繊性及び嵩高性に優れた原糸となる。一方、固有粘度比が1.6以下であると、紡糸時に高粘度成分への応力集中が抑制され、配向パラメータが適切な値となり、糸の収縮性が大きくなることを抑制し、品位の良好な布帛とすることができる。
 繊維の製造において、吐出されたポリマーの冷却固化を制御し、異なる島部の配向パラメータ比を適切な値とするため、口金吐出面から冷却面までの距離(冷却開始距離)を250~450mmとすることが好ましい。島部の配向性は、溶融時の粘度差による影響を受けやすく、冷却開始距離が250mm以上であると、溶融時間が確保され異なる島部ポリマー間の配向差が生まれやすくなるため、配向パラメータ比は適切な範囲となる。冷却開始距離が長ければ、配向パラメータ比は大きくなるが、冷却開始距離が450mm以下であると長手方向の糸斑を示すU%が良好な値となる。
 上述の海部ポリマーへのポリアルキレングリコールの含有量、数平均分子量、海部ポリマーの固有粘度、島部ポリマーの固有粘度比、冷却開始距離を適用することにより、島部の配向パラメータを適切な値とすることができ、熱収縮率の差に起因した糸長差が発現し、布帛にした際に開繊性、嵩高性を高め、従来の糸では到底到達することができなかった起毛均一性と起毛厚みを得ることが可能となる海島複合ポリエステル繊維が得られる。
 以上のようにして得られる本発明の海島複合ポリエステル繊維は、布帛、衣料品に好ましく用いられ、布帛形態としては、織物、編物、不織布など目的に応じて選択でき、衣料も含まれる。布帛とした後に起毛加工を施すことで、スエードのような高級感のある素材となり、目的に応じて、シャツ、ブラウス、パンツ、スーツ、ブラウス、靴、鞄、基布材等に好適に用いることができる。
 以下、実施例により本発明をさらに詳細に説明する。
A.固有粘度(IV)
 下記式(2)よりポリマーの固有粘度を算出した。
 式(2)中の相対粘度ηrは、純度98%以上のO-クロロフェノール(OCP)10mL中に試料ポリマーを0.8g溶かし、25℃の温度にてオストワルド粘度計を用いて下記式(3)により求めた。
  固有粘度(IV)=0.0242ηr+0.2634 ・・・(2)
  ηr=η/η0=(t×d)/(t0×d0) ・・・(3)
[式(3)中、ηはポリマー溶液の粘度、η0はOCPの粘度、tは溶液の落下時間(秒)、dは溶液の密度(g/cm)、t0はOCPの落下時間(秒)、d0はOCPの密度(g/cm)である。]
 B.島部の配向パラメータ
 繊維試料を、レーザーラマン分光法にて測定し、1615cm-1付近に認められるポリエチレンテレフタレート(PET)の炭素-炭素二重結合(C=C)の伸縮に由来するラマンバンドの繊維軸と直交する偏光方位での強度と、1730cm-1付近に認められるPETの炭素-酸素二重結合(C=O)の伸縮に由来するラマンバンドの繊維軸と直交する偏光方位でのバンド強度からバンド強度比を算出し、一軸延伸PETフィルムのC=C伸縮およびC=O伸縮の繊維軸と直交する偏光方位のバンド強度比の解析結果を検量データとして用い、バンド強度比を配向パラメータに換算して出力した。
  バンド強度比=I1615垂直/I1730垂直
  配向パラメータ=-4.3143×バンド強度比+12.711(一軸延伸PETフィルムの解析結果を検量データとして用い、線形相関をとった際の近似式)
 なお、配向測定用の試料は樹脂包埋後(ビスフェノール系エポキシ樹脂、24時間硬化)、ミクロトームにより切片化した。切片厚みは2.0μmとした。切片試料は切断面が楕円形になるように繊維軸から僅かに傾けて切断し、楕円形の短軸の厚みが一定厚になる箇所を選択して測定した。測定は顕微モードで行い、試料位置におけるレーザーのスポット径は1μmである。配向の測定は偏光条件下で行った。偏光方向が繊維軸と直行する場合を垂直条件として、それぞれ得られるラマンバンド強度からバンド強度比を算出した。なお、各島部につき4回(n=4)の測定を行い、平均値を算出した。詳細条件を以下に示す。
(レーザーラマン分光法)
  装置; T-64000(Joobin Yvon/(株)堀場ジョバンイボン製)
  条件; 測定モード;顕微ラマン
  対物レンズ; ×100
  ビーム径; 1μm
  光源; Ar+レーザー/514.5nm
  レーザーパワー; 50mW
  回折格子; Single 1800gr/mm
  スリット; 100μm
  検出器; CCD/Jobin Yvon 1024×256
 C.島部の外径
 繊維試料の横断面をエポキシ樹脂で包埋し、ダイヤモンドナイフを具備したReichert-Nissei ultracut N(ウルトラミクロトーム)で切削した。その後、切削面をキーエンス(株)製マイクロスコープVHX-2000を用いて撮影し、得られた写真から単糸を無作為に5本抽出し、単糸あたり4個(n=4)の各島について長径を測定し、合計20個(n=20)の島径の算術平均を平均島径とした。また、島が異形断面の場合には、繊維断面形状の外側に向かって凸となっている部分と接する円の直径を島径として算出した。
 D.強度、伸度
 JIS L1013-2010-引張強さ及び伸び率に準じて繊維試料を測定し、引張強さ-伸び曲線を描いた。試験条件としては、試験機の種類は定速伸長形、つかみ間隔50cm、引張速度50cm/分にて行った。なお、切断時の引張強さが最高強さより小さい場合は、最高引張強さおよびそのときの伸びを測定した。強度は、下記式にて求めた。
  伸度=切断時の伸長(%)
  強度=切断時の引張強さ(cN)/繊度(dtex)
 E.繊度
 繊維試料を、温度25℃、湿度55%RHの雰囲気下で単位長さ当たりの重量を測定し、その値から10,000mに相当する重量を算出した。これを10回繰り返して測定し、その単純平均値の小数点以下を四捨五入した値を繊度とした。
 F.糸長差
 下記(a)~(c)の手順にて糸長差を算出した。
(a)長さ15~20cmの海島複合ポリエステル繊維のフィラメント1本を採取し、間隔約5cmにて2箇所結んで印をつけ、フィラメントの両端を長さ10cm程度の適当な金属枠に結んで固定した。
(b)易溶出成分の海部が溶出可能である溶液に(a)項で準備した金属枠を浸漬して海部を除去した。易溶出成分が金属スルホネート基を有するイソフタル酸またはその誘導体とポリアルキレングリコールとを組み合わせた共重合ポリエステルの場合には、アルカリ水溶液として水酸化ナトリウム水溶液(濃度1g/L)を用いた。また、アルカリ水溶液は92℃まで加熱し、浸漬時間は30分とした。その後金属枠を取り出し、原水にてフィラメントサンプルを洗浄した。
(c)190℃の乾燥機にて1分熱処理し、放冷後、結び目2箇所に沿ってフィラメントサンプルをカットし、ピンセットを用いて単島を分解して、各島部を測定した。一番長い島部の長さをL2、一番短い島部の長さをL1とし、下記式(1)にて糸長差を算出した。糸の長さ測定時、荷重は0.1g/dtexの荷重をかけて測定した。
  糸長差(%)=(L2-L1)/L1×100 ・・・(1)
 G.布帛評価(スエード調織物)
 (a)起毛厚み
 起毛厚みはJIS L1096-2010、8.4厚さ(A法)に準じて、スエード調織物の任意の5ヶ所の厚さを測定し、その平均値を算出した。0.16mm以上を起毛厚み合格とした。
 (b)起毛均一性
 スエード調織物について、繊維表面をキーエンス(株)製マイクロスコープVHX-2000にて観察し、検査者(5人)が評価した起毛均一性の結果を相対評価した。その結果は、各検査者の評価点の平均値をとり小数点以下は四捨五入して、平均値が、5をS、4をA、3をB、1~2をCとした。S、Aを起毛均一性合格とした。
 <評価基準>
  5点:非常に優れる
  4点:やや優れる
  3点:普通
  2点:やや劣る
  1点:劣る
 (c)ソフトタッチ性
 スエード調織物について、風合い評価の経験豊富な検査者(5人)が評価したソフトタッチ性の結果を相対評価した。その結果は、各検査者の評価点の平均値をとり小数点以下は四捨五入して、平均値が、5をS、4をA、3をB、1~2をCとした。S、Aをソフトタッチ性合格とした。
 <評価基準>
  5点:非常に優れる
  4点:やや優れる
  3点:普通
  2点:やや劣る
  1点:劣る
 (d)染色性
 分散染料を使用して染色したスエード調織物について、検査者(5人)が評価した染色性(濃染性)の結果を相対評価した。その結果は、各検査者の評価点の平均値をとり小数点以下は四捨五入して、平均値が、5をS、4をA、3をB、1~2をCとした。S、Aを染色性合格とした。
 (染色条件)
  染料; DinanixNavy S-2G200% 0.3%o.w.f.
  染色助剤; Tetrosin PEC 5.0%o.w.f.
        SunSalt 1.0%o.w.f.
  浴比; 1:100
  染色; 50℃で15分処理した後、1.6℃/分の速度で昇温し、98℃で20分処理する。
 <評価基準>
  5点:全体的に濃く染まっており、非常に優れる
  4点:やや優れる
  3点:普通
  2点:やや劣る
  1点:全体的に淡染であり、劣る
 〔実施例1〕
 (海島複合ポリエステル繊維の製造)
 島部A形成用の島部Aポリマーとしてイソフタル酸およびビスフェノールAエチレンオキサイド付加物を全酸成分に対してそれぞれ7.1mol%、4.4mol%共重合したIV=0.67の共重合ポリエチレンテレフタレート(PET1)を、島部B形成用の島部BポリマーとしてIV=0.51のポリエチレンテレフタレート(PET2)を準備し、固有粘度比が1.31となるようにした。易溶出性の海部ポリマーとして5-ナトリウムスルホイソフタル酸を8.0mol%、数平均分子量1000のポリエチレングリコールを9.0重量%となるように共重合した成分を含むIV=0.69のアルカリ易溶出性ポリエチレンテレフタレート(易溶出PET1)を準備した。
 島部Aポリマー、島部Bポリマー及び海部ポリマーをいずれもエクストルーダーを用いてそれぞれ265℃、280℃、280℃で溶融後、ポンプによる計量を行い、275℃を紡糸温度として、温度を保持したまま口金に流入させた。島部A、島部B及び海部の重量複合比は40/40/20とし、島数48島(島部A=24島、島部B=24島)、24ホールの海島複合用紡糸口金に流入させた。各ポリマーは、口金内部で合流し、海部ポリマー中に島部ポリマー(島部Aポリマー、島部Bポリマー)が包含され、図1に示すような、島部A(符号1で示す第1島部),島部B(符号2で示す第2島部)が点在配置した複合形態を形成し、口金から吐出された。口金から吐出された糸条は、冷却開始距離が330mmとなるよう空冷装置により冷却固化させたのち、油剤を付与し、速度1200m/分、90℃に加熱されたロールにて引き取り、倍率3.3倍にて延伸し、150℃にて加熱されたロールにて熱セット後、ワインダーにて3950m/分の速度にて巻取り、70dtex-12フィラメントの海島複合ポリエステル繊維を得た。得られた海島複合ポリエステル繊維について評価した結果を表1に示す。
 (スエード調織物の製造)
 次に海島複合ポリエステル繊維をダブルツイスター撚糸機を用いて、S方向に800T/mで追撚を施し、その後75℃×30分のスチーム撚止めセットを実施し、織物整経に用いた。緯糸には56dtex-24フィラメントのポリトリメチレンテレフタレート(PTT)/PETバイメタル糸を用いた。
 これらの経糸と緯糸を用いて、5枚サテン組織でエアージェット織機を用い、生機密度(経糸:222本/inch、緯糸:97本/inch)で製織した。次に、得られた製織生地を98℃で拡布連続精錬した後、130℃で液流リラックス処理を施し、180℃で中間セットを実施した。その後、水酸化ナトリウム水溶液(1g/L)中に浸漬し、脱海加工を実施した。得られた織物を針布起毛機で起毛加工を施した後、160℃で仕上げセットを施し、スエード調の織物を得た。得られたスエード調織物について、評価した結果を表1に示す。
 〔実施例2〕
 単糸あたりの島数が108島(島部A=54島、島部B=54島)となるように口金を変更した以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表1に示す。
 〔実施例3〕
 単糸あたりの島数が22島(島部A=11島、島部B=11島)となるように口金を変更した以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表1に示す。
 〔実施例4〕
 単糸あたりの島数が432島(島部A=216島、島部B=216島)となるように口金を変更した以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表1に示す。
 〔実施例5〕
 単糸あたりの島数が12島(島部A=6島、島部B=6島)となるように口金を変更した以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表1に示す。
 〔実施例6〕
 島部B形成用の島部BポリマーとしてIV=0.56のポリエチレンテレフタレート(PET3)を準備し、固有粘度比が1.20となるようにした以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表1に示す。
 〔実施例7〕
 島部A形成用の島部Aポリマーとしてイソフタル酸およびビスフェノールAエチレンオキサイド付加物を全酸成分に対してそれぞれ7.1mol%、4.4mol%共重合したIV=0.82の共重合ポリエチレンテレフタレート(PET4)を準備し、固有粘度比が1.60となるようにした以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表1に示す。
 〔実施例8〕
 易溶出性の海部ポリマーとして5-ナトリウムスルホイソフタル酸を8.0mol%、数平均分子量1000のポリエチレングリコールを9.0重量%となるように共重合した成分を含むIV=0.50のアルカリ易溶出性ポリエチレンテレフタレート(易溶出PET2)を準備した以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表2に示す。
 〔実施例9〕
 易溶出性の海部ポリマーとして5-ナトリウムスルホイソフタル酸を8.0mol%、数平均分子量1000のポリエチレングリコールを9.0重量%となるように共重合した成分を含むIV=0.75のアルカリ易溶出性ポリエチレンテレフタレート(易溶出PET3)を準備した以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表2に示す。
 〔実施例10〕
 易溶出性の海部ポリマーとして5-ナトリウムスルホイソフタル酸を8.0mol%、数平均分子量500のポリエチレングリコールを9.0重量%となるように共重合した成分を含むIV=0.69のアルカリ易溶出性ポリエチレンテレフタレート(易溶出PET4)を準備した以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表2に示す。
 〔実施例11〕
 易溶出性の海部ポリマーとして5-ナトリウムスルホイソフタル酸を8.0mol%、数平均分子量2000のポリエチレングリコールを9.0重量%となるように共重合した成分を含むIV=0.69のアルカリ易溶出性ポリエチレンテレフタレート(易溶出PET5)を準備した以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表2に示す。
 〔実施例12〕
 易溶出性の海部ポリマーとして5-ナトリウムスルホイソフタル酸を8.0mol%、数平均分子量1000のポリエチレングリコールを5.0重量%となるように共重合した成分を含むIV=0.69のアルカリ易溶出性ポリエチレンテレフタレート(易溶出PET6)を準備した以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表2に示す。
 〔実施例13〕
 易溶出性の海部ポリマーとして5-ナトリウムスルホイソフタル酸を8.0mol%、数平均分子量1000のポリエチレングリコールを15.0重量%となるように共重合した成分を含むIV=0.69のアルカリ易溶出性ポリエチレンテレフタレート(易溶出PET7)を準備した以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 〔比較例1〕
 単糸あたりの島数が720島(島部A=360島、島部B=360島)となるように口金を変更した以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表3に示す。
 比較例1の海島複合ポリエステル繊維は、脱海後の繊維外径が0.8μmと小さかったため、スエード調織物は全体的に淡染であり、染色性に劣るものであった。
 〔比較例2〕
 単糸あたりの島数が8島(島部A=4島、島部B=4島)となるように口金を変更した以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表3に示す。
 比較例2の海島複合ポリエステル繊維は、脱海後の繊維外径が7.5μmと大きかったため、スエード調織物の風合いは硬く、ソフトタッチ性に劣るものであった。
 〔比較例3〕
 島部B形成用の島部BポリマーとしてIV=0.60のポリエチレンテレフタレート(PET5)を準備し、固有粘度比が1.12となるようにした以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表3に示す。
 比較例3の海島複合ポリエステル繊維は、最大配向成分の配向パラメータと、最小配向成分の配向パラメータに対する最大配向成分の配向パラメータの比(配向パラメータ比)が低く、糸長差が小さいことから、スエード調織物の起毛厚みと起毛均一性に劣るものであった。
 〔比較例4〕
 島部A形成用の島部Aポリマーとしてイソフタル酸およびビスフェノールAエチレンオキサイド付加物を全酸成分に対してそれぞれ7.1mol%、4.4mol%共重合したIV=0.90の共重合ポリエチレンテレフタレート(PET6)を準備し、固有粘度比が1.76となるようにした以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表3に示す。
 比較例4の海島複合ポリエステル繊維は、最大配向成分の配向パラメータおよび配向パラメータ比が高く、糸の収縮が大きすぎるため、スエード調織物の風合いは硬くなり、ソフトタッチ性に劣るものであった。
 〔比較例5〕
 易溶出性の海部ポリマーとして5-ナトリウムスルホイソフタル酸を8.0mol%、数平均分子量1000のポリエチレングリコールを9.0重量%となるように共重合した成分を含むIV=0.40のアルカリ易溶出性ポリエチレンテレフタレート(易溶出PET8)を準備した以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表3に示す。
 比較例5の海島複合ポリエステル繊維は、最大配向成分の配向パラメータおよび配向パラメータ比が高く、糸の収縮が大きすぎるため、スエード調織物の風合いは硬くなり、ソフトタッチ性に劣るものであった。
 〔比較例6〕
 易溶出性の海部ポリマーとして5-ナトリウムスルホイソフタル酸を8.0mol%、数平均分子量1000のポリエチレングリコールを9.0重量%となるように共重合した成分を含むIV=0.80のアルカリ易溶出性ポリエチレンテレフタレート(易溶出PET9)を準備した以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表3に示す。
 比較例6の海島複合ポリエステル繊維は、最大配向成分の配向パラメータが低く、糸長差が小さいことから、スエード調織物の起毛厚みと起毛均一性に劣るものであった。
 〔比較例7〕
 易溶出性の海部ポリマーとして5-ナトリウムスルホイソフタル酸を8.0mol%、数平均分子量4000のポリエチレングリコールを9.0重量%となるように共重合した成分を含むIV=0.69のアルカリ易溶出性ポリエチレンテレフタレート(易溶出PET10)を準備した以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表3に示す。
 比較例7の海島複合ポリエステル繊維は、最大配向成分の配向パラメータが低く、糸長差が小さいことから、スエード調織物の起毛厚みと起毛均一性に劣るものであった。また、糸の強度が低く、スエード調織物の耐久性に劣っていた。
 〔比較例8〕
 易溶出性の海部ポリマーとして5-ナトリウムスルホイソフタル酸を8.0mol%、数平均分子量1000のポリエチレングリコールを3.0重量%となるように共重合した成分を含むIV=0.69のアルカリ易溶出性ポリエチレンテレフタレート(易溶出PET11)を準備した以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表3に示す。
 比較例8の海島複合ポリエステル繊維は、最大配向成分の配向パラメータが低く、糸長差が小さいことから、スエード調織物の起毛厚みと起毛均一性に劣るものであった。
 〔比較例9〕
 易溶出性の海部ポリマーとして5-ナトリウムスルホイソフタル酸を5.0mol%となるように共重合した成分を含むIV=0.55のアルカリ易溶出性ポリエチレンテレフタレート(易溶出PET12)を準備した以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表3に示す。
 比較例9の海島複合ポリエステル繊維は、最大配向成分の配向パラメータおよび配向パラメータ比が低く、糸長差が小さいことから、スエード調織物の起毛厚みと起毛均一性に劣るものであった。また、糸の強度が低く、スエード調織物の耐久性に劣っていた。
 〔比較例10〕
 口金から吐出された糸条の冷却開始距離を200mmとした以外は実施例1と同様の方法で、70dtex、12フィラメントの海島複合ポリエステル繊維を得、スエード調織物を得た。評価結果を表3に示す。
 比較例10の海島複合ポリエステル繊維は、最大配向成分の配向パラメータが低く、糸長差が小さいことから、スエード調織物の起毛厚みと起毛均一性に劣るものであった。
Figure JPOXMLDOC01-appb-T000003
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお、本出願は2020年11月20日付で出願された日本特許出願(特願2020-193153)に基づいており、その全体が引用により援用される。
1:第1島部(島部A)
2:第2島部(島部B)

Claims (3)

  1.  海部と2種類以上の異なる島部を持つ海島構造を有し、前記島部の外径が1.0~7.0μmであり、前記島部の、最小配向成分の配向パラメータに対する最大配向成分の配向パラメータの比(最大配向パラメータ/最小配向パラメータ)が1.03~1.15であり、かつ前記最大配向成分の配向パラメータが4.0~8.5である海島複合ポリエステル繊維。
  2.  前記海島複合ポリエステル繊維を下記条件でアルカリ処理して乾熱処理した後の、下記式(1)で表される前記島部の糸長差が15~40%である、請求項1記載の海島複合ポリエステル繊維。
     アルカリ処理条件:水酸化ナトリウム水溶液(濃度1g/L)、92℃、30分、無荷重
     乾熱処理条件:190℃、1分、無荷重
     糸長差(%)=(L2-L1)/L1×100 ・・・(1)
    (式(1)中、L1は一番短い島部の長さ、L2は一番長い島部の長さである。)
  3.  前記海部が金属スルホネート基を有するイソフタル酸またはその誘導体とポリアルキレングリコールとを共重合した共重合ポリエステルからなる、請求項1または2に記載の海島複合ポリエステル繊維。
PCT/JP2021/041432 2020-11-20 2021-11-10 海島複合ポリエステル繊維 WO2022107671A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180077364.8A CN116490649A (zh) 2020-11-20 2021-11-10 海岛复合聚酯纤维
JP2021568802A JPWO2022107671A1 (ja) 2020-11-20 2021-11-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-193153 2020-11-20
JP2020193153 2020-11-20

Publications (1)

Publication Number Publication Date
WO2022107671A1 true WO2022107671A1 (ja) 2022-05-27

Family

ID=81708836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041432 WO2022107671A1 (ja) 2020-11-20 2021-11-10 海島複合ポリエステル繊維

Country Status (4)

Country Link
JP (1) JPWO2022107671A1 (ja)
CN (1) CN116490649A (ja)
TW (1) TW202235711A (ja)
WO (1) WO2022107671A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551354A (en) * 1978-06-21 1980-01-08 Toray Ind Inc Three component conjugate fiber
JPS6414321A (en) * 1987-07-01 1989-01-18 Toray Industries Polyester ternary conjugate fiber
JPH0770827A (ja) * 1993-06-16 1995-03-14 Toray Ind Inc ポリエステル系3成分複合繊維
JPH09279418A (ja) * 1996-04-16 1997-10-28 Toray Ind Inc 3成分系複合繊維
JPH1088473A (ja) * 1996-09-12 1998-04-07 Toray Ind Inc 高密度嵩高布帛の製造方法
JP2000328359A (ja) * 1999-05-10 2000-11-28 Toray Ind Inc ポリエステル混繊糸の製造方法
JP2011157647A (ja) * 2010-01-29 2011-08-18 Teijin Fibers Ltd ワイピングクロス
JP2015183343A (ja) * 2014-03-26 2015-10-22 東レ株式会社 海島型多成分複合繊維

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551354A (en) * 1978-06-21 1980-01-08 Toray Ind Inc Three component conjugate fiber
JPS6414321A (en) * 1987-07-01 1989-01-18 Toray Industries Polyester ternary conjugate fiber
JPH0770827A (ja) * 1993-06-16 1995-03-14 Toray Ind Inc ポリエステル系3成分複合繊維
JPH09279418A (ja) * 1996-04-16 1997-10-28 Toray Ind Inc 3成分系複合繊維
JPH1088473A (ja) * 1996-09-12 1998-04-07 Toray Ind Inc 高密度嵩高布帛の製造方法
JP2000328359A (ja) * 1999-05-10 2000-11-28 Toray Ind Inc ポリエステル混繊糸の製造方法
JP2011157647A (ja) * 2010-01-29 2011-08-18 Teijin Fibers Ltd ワイピングクロス
JP2015183343A (ja) * 2014-03-26 2015-10-22 東レ株式会社 海島型多成分複合繊維

Also Published As

Publication number Publication date
JPWO2022107671A1 (ja) 2022-05-27
TW202235711A (zh) 2022-09-16
CN116490649A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
JP7135854B2 (ja) 偏心芯鞘複合繊維および混繊糸
JP4571541B2 (ja) 透湿防水性ポリエステル織物の製造方法
CN110268109B (zh) 热粘接性芯鞘型复合纤维以及经编针织物
CN109715869B (zh) 聚合物合金纤维及包含其的纤维结构体
JP2007308821A (ja) 研磨布用織物およびその製造方法および磁気デイスク研磨布
TW201934843A (zh) 可染性聚烯烴纖維及包含其之纖維構造體
JP5819620B2 (ja) ポリエステル極細繊維
EP4043623A1 (en) Sheath-core composite fiber and multifilament
JP4315009B2 (ja) 混繊糸およびそれからなる繊維製品
JP5718045B2 (ja) 染色性に優れたポリエステル繊維および繊維集合体
WO2022107671A1 (ja) 海島複合ポリエステル繊維
JP5096049B2 (ja) 研磨布用織物およびその製造方法および研磨布
JP3764132B2 (ja) 特殊断面繊維
JP2016172945A (ja) 凹凸表面を有する極細ポリエステル繊維ならびに海島型複合繊維
JP4922668B2 (ja) 防透性織編物およびその製造方法および繊維製品
JP2004315984A (ja) シートベルト用ウェビングおよびその製造方法
JP2019007096A (ja) ポリエステル系複合繊維及び繊維集合体
JP2007239146A (ja) 防透性に優れた複合仮撚加工糸及びその製造方法
JP2011157647A (ja) ワイピングクロス
JP3895190B2 (ja) カットパイル織編物用ポリエステル複合仮撚加工糸およびその製造方法
JP5065769B2 (ja) 研磨布用織物およびその製造方法および研磨布
JP2022113213A (ja) ポリエステル系複合混繊加工糸
JPH1150335A (ja) ポリエステル繊維とその製造方法
JP2009155791A (ja) 布帛の製造方法および布帛および繊維製品
JP5260376B2 (ja) 布帛および繊維製品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021568802

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894545

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180077364.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894545

Country of ref document: EP

Kind code of ref document: A1