WO2022105778A1 - 半导体工艺设备及其反应腔室和膜层沉积方法 - Google Patents

半导体工艺设备及其反应腔室和膜层沉积方法 Download PDF

Info

Publication number
WO2022105778A1
WO2022105778A1 PCT/CN2021/131150 CN2021131150W WO2022105778A1 WO 2022105778 A1 WO2022105778 A1 WO 2022105778A1 CN 2021131150 W CN2021131150 W CN 2021131150W WO 2022105778 A1 WO2022105778 A1 WO 2022105778A1
Authority
WO
WIPO (PCT)
Prior art keywords
deposition
module
signal
chamber body
reaction chamber
Prior art date
Application number
PCT/CN2021/131150
Other languages
English (en)
French (fr)
Inventor
秦海丰
兰云峰
师帅涛
王环宇
张芳
张文强
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Priority to EP21893925.4A priority Critical patent/EP4249633A4/en
Priority to KR1020237014074A priority patent/KR102641211B1/ko
Priority to JP2023528533A priority patent/JP7402383B2/ja
Publication of WO2022105778A1 publication Critical patent/WO2022105778A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32926Software, data control or modelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32972Spectral analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/3299Feedback systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0683Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating measurement during deposition or removal of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the technical field of semiconductor processing, in particular to a reaction chamber of semiconductor processing equipment, semiconductor processing equipment and a film deposition method.
  • Silicon dioxide (SiO 2 ) thin film is one of the most commonly used thin films in semiconductor technology.
  • Plasma Enhanced Atomic Layer Deposition (PEALD) method can realize the deposition of SiO 2 film in a low temperature environment, and the temperature is generally 70 °C ⁇ 300 °C. Compared with the oxidation process, the PEALD method has better performance. Film coverage, and more precise control of film thickness.
  • PEALD Plasma Enhanced Atomic Layer Deposition
  • FIG. 1 is a flow chart of traditional PEALD method for depositing SiO 2 thin films, as shown in Figure 1
  • the deposition process at least includes: step S1', making the SAM24 precursor enter the reaction chamber and adsorbed on the wafer surface; step S2', making the O2 precursor enter the reaction chamber, and applying a radio frequency electric field in the reaction chamber , in order to break the macromolecules of SAM24 into small molecules, the oxygen molecules are excited to form various active groups such as active oxygen atoms and oxygen radicals, and the broken small molecules of SAM24 react with the active groups of oxygen to form SiO2 films.
  • the above-mentioned process is regarded as one cycle, and in the actual process, it is usually necessary to repeat multiple cycles, so that the thickness of the formed SiO 2 film can meet the actual needs.
  • the present invention aims to solve at least one of the technical problems existing in the prior art, and provides a reaction chamber of a semiconductor process equipment, a semiconductor process equipment and a film deposition method.
  • the present invention provides a reaction chamber of a semiconductor process equipment, which includes: a chamber body, a monitoring module, a deposition module and a control module; wherein,
  • the deposition module for performing multiple deposition steps in one deposition cycle in the chamber body
  • the monitoring module is connected to the chamber body, and is used to monitor the brightness of the plasma light source generated inside the chamber body every time the deposition module performs the deposition step, and monitor the brightness of the plasma light source generated inside the chamber body according to the plasma light source.
  • the brightness of generates the first signal
  • the control module is connected with the monitoring module, and is used for determining whether the thickness of the target film layer obtained after performing the deposition steps for many times is abnormal according to the first signal corresponding to the deposition step at least once, and if so, then Execute the exception handling process.
  • the exception handling process specifically includes:
  • the control module sends out an abnormal alarm signal; and/or, controls the deposition module to additionally perform the deposition step at least once.
  • control module is specifically used for:
  • the first signal corresponding to at least one of the deposition steps it is determined whether there is an abnormal plasma ignition in the deposition step, and if so, the thickness of the target film layer is determined to be abnormal, and the abnormal processing flow is executed. .
  • control module includes: a processing sub-module and a control sub-module, both the monitoring module and the control sub-module are connected to the processing sub-module; wherein,
  • the processing sub-module is used to judge whether the first signal corresponding to the deposition step exceeds a preset range each time, and if so, generates a second signal corresponding to the deposition step this time;
  • the control sub-module is configured to count the number of times the second signal is generated by the processing sub-module in the deposition period, when the number of times the second signal is generated by the processing sub-module in the deposition period When it is greater than 0, it is determined that the thickness of the target film layer is abnormal, and the abnormality processing flow is executed.
  • the exception handling process specifically includes:
  • the control sub-module controls the deposition module to additionally perform the deposition step at least once according to the number of times the second signal is generated by the processing sub-module within the deposition cycle.
  • the deposition module additionally performs the deposition step as many times as the processing sub-module generates the second signal during the deposition cycle.
  • the monitoring module includes a photoresistor or a photodiode, and the first signal is a voltage signal negatively correlated with the brightness of the plasma light source.
  • a monitoring port is provided on the side wall of the chamber body, the monitoring module is located outside the chamber body, and the monitoring module monitors the plasma light source in the chamber body through the monitoring port. brightness.
  • At least one of the monitoring module and the control module is integrated on a printed circuit board, and the printed circuit board is mounted on the chamber body and located outside the chamber body;
  • the reaction chamber further includes a protective casing, which is covered around the printed circuit board and used to isolate the printed circuit board from the outside world; and, in the protective casing There are ports for transmitting signals.
  • the present invention also provides a semiconductor process equipment, which includes the above-mentioned reaction chamber of the semiconductor process equipment, wherein the deposition module includes an air inlet device and an upper electrode device, wherein the chamber body is provided with a carrier for carrying the base of the wafer; the air inlet device is used for feeding the precursor into the chamber body; the upper electrode device is used for exciting the precursor to form plasma.
  • the semiconductor processing equipment is applied to a plasma enhanced atomic layer deposition equipment.
  • the present invention also provides a film deposition method, wherein, applied to the reaction chamber of the above-mentioned semiconductor process equipment, the film deposition method includes:
  • the deposition module performs multiple deposition steps in one deposition cycle in the chamber body
  • each time the deposition module performs the deposition step monitoring the brightness of the plasma light source generated inside the chamber body, and generating a first signal according to the brightness of the plasma light source;
  • the first signal corresponding to at least one of the deposition steps it is determined whether the thickness of the target film layer obtained after performing the deposition steps for several times is abnormal, and if so, the abnormal processing flow is executed.
  • the exception handling process specifically includes:
  • the monitoring module monitors the brightness of the plasma light source generated inside the chamber body every time the deposition module performs the deposition step, and determines the brightness according to the plasma light source.
  • the brightness of the volume light source generates a first signal
  • the control module determines whether the thickness of the target film obtained after performing multiple deposition steps is abnormal according to the above-mentioned first signal corresponding to at least one deposition step, and if so, executes the abnormality processing flow. Therefore, the abnormality processing can be performed in time after the thickness of the target film layer is abnormal, thereby improving the problem of deviation between the thickness of the target film layer and the target thickness.
  • Fig. 1 is the flow chart of traditionally adopting PEALD to deposit SiO2 thin film
  • FIG. 2 is one of the schematic structural diagrams of the reaction chamber provided by the embodiment of the present invention.
  • FIG. 3 is a second schematic structural diagram of a reaction chamber provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a circuit structure of a monitoring module provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a monitoring process provided by an embodiment of the present invention.
  • FIG. 6 is one of the flowcharts of the film deposition method provided by the embodiment of the present invention.
  • FIG. 7 is the second flowchart of the film deposition method provided by the embodiment of the present invention.
  • FIG. 2 is one of the structural schematic diagrams of the reaction chamber provided by the embodiment of the present invention
  • FIG. 3 is the second structural schematic diagram of the reaction chamber provided by the embodiment of the present invention. As shown in FIGS.
  • the reaction chamber includes: a chamber body 1 , a monitoring module 2 , a control module 3 and a deposition module 4 , wherein the deposition module 4 is used to perform a deposition cycle in the chamber body 1 Multiple deposition steps, specifically, the chamber body 1 is provided with a base 8 for carrying wafers 7; the deposition module 4 includes, for example, an air inlet device 43 and an upper electrode device, and each deposition step includes, for example: an air inlet device 43 is used to pass the precursor into the chamber body 1; the upper electrode device is used to apply a radio frequency electric field to the chamber body 1 to excite the precursor in the chamber body 1 to form plasma, so as to be able to deposit on the wafer 7 target film.
  • the deposition module 4 includes, for example, an air inlet device 43 and an upper electrode device, and each deposition step includes, for example: an air inlet device 43 is used to pass the precursor into the chamber body 1; the upper electrode device is used to apply a radio frequency electric field to the chamber body 1 to excite the precursor
  • the monitoring module 2 is connected to the chamber body 1 for monitoring the brightness of the plasma light source generated inside the chamber body 1 every time the deposition module 4 performs a deposition step, and generates a first signal according to the brightness of the plasma light source.
  • the detection module 2 can detect the brightness of the plasma light source in real time, or can also detect the brightness of the plasma light source at regular intervals.
  • the control module 3 is configured to determine whether the thickness of the target film layer obtained after performing the multiple deposition steps is abnormal according to the first signals corresponding to the multiple deposition steps, and if so, execute the abnormal processing flow.
  • the above reaction chamber can be applied to a SiO 2 thin film deposition process, including but not limited to a plasma enhanced atomic layer deposition (PEALD) process.
  • the precursor may include a source gas (eg, bis-diethylaminosilane SAM24) and a reactive gas (eg, oxygen gas, O 2 ).
  • a source gas eg, bis-diethylaminosilane SAM24
  • a reactive gas eg, oxygen gas, O 2
  • a radio frequency electric field is applied to the upper electrode device in the deposition module 4
  • the source gas in the precursor is excited into a plasma in the radio frequency electric field and then emits light, thereby generating a plasma light source.
  • the brightness of the plasma light source in the chamber body 1 will be different from the brightness of the plasma light source during normal ignition, and the monitoring module 2 can generate a first signal related to the brightness of the plasma light source, such as , the first signal may be a voltage signal, and the magnitude of the first signal is related to the brightness of the plasma light source.
  • the monitoring module 2 generates a first signal in each deposition step
  • the control module 3 can determine the plasma light source in the reaction chamber according to the magnitude of the first signal generated in at least one deposition step Whether the brightness of the target film is abnormal (for example, the brightness is too low), and if so, it can be determined that the thickness of the deposited target film layer is abnormal.
  • the reaction chamber of the embodiment of the present invention it can judge whether the thickness of the deposited target film is abnormal through the brightness of the plasma light source, and perform abnormal processing in time when the thickness of the target film is abnormal, thereby improving the deposited target film.
  • the problem of deviation between the thickness and the target thickness is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, buty of the thickness of the deposited target film is abnormal through the brightness of the plasma light source, and perform abnormal processing in time when the thickness of the target film is abnormal, thereby improving the deposited target film. The problem of deviation between the thickness and the target thickness.
  • the above exception handling process specifically includes:
  • the control module 3 sends an abnormal alarm signal; and/or, the deposition module 4 is controlled to additionally perform the above deposition step at least once.
  • the thickness of the target film layer can be increased to reduce the deviation between the thickness of the deposited target film layer and the target thickness.
  • the SAM24 in the precursor in the reaction chamber is normal. It can be broken into small molecules, and oxygen molecules can be excited to form various active groups such as active oxygen atoms and oxygen free radicals.
  • the SAM24 small molecules react with the active groups to form the target film layer.
  • the deposition module 4 is abnormally illuminated, the deposition of the target film layer will fail, and the thickness of the target film layer will be abnormal.
  • the deposition module 4 when the deposition module 4 starts abnormally, it can be determined that the thickness of the target film layer is abnormal. Whether there is an abnormal plasma ignition in the deposition step, if so, determine the abnormal thickness of the target film, and execute the abnormal processing flow.
  • the first signal is a voltage signal negatively correlated with the brightness of the plasma light source in the reaction chamber.
  • FIG. 4 is a schematic diagram of the circuit structure of the monitoring module 2 provided by the embodiment of the present invention, as shown in FIG. 4 ,
  • the monitoring module 2 includes a step-down circuit 21, a photoresistor RM (photosensitive diode) and a signal generation circuit 22, wherein the step-down circuit 21 is used to reduce the 24V voltage provided by the first voltage terminal V1 for use by the signal generation circuit 22,
  • the resistance value of the photoresistor RM changes with the brightness of the plasma light source in the chamber body 1.
  • the signal generating circuit 22 is used to generate the first signal according to the voltage signal generated by the step-down circuit 21 and the resistance value of the photoresistor RM.
  • the first signal can be an analog signal.
  • the signal generating circuit 22 can also output a pulse signal in addition to the analog signal, for example, as shown in FIG. 4 . ,specifically:
  • the step-down circuit 21 includes a first comparator M1, a diode D, an inductor T, a first capacitor C1, a second capacitor C2, a third capacitor C3, a first light emitting diode L1 and a first resistor R1.
  • the first terminal of the first comparator M1 is connected to the first voltage terminal V1
  • the second terminal of the first comparator M1 is connected to the second voltage terminal V2
  • the third terminal of the first comparator M1 is connected to the first terminal of the inductor T.
  • the signal generating circuit 22 includes: a sliding varistor R', a second resistor R2, a third resistor R3, a fourth resistor R4, a fourth capacitor C4, a second comparator M2 and a second light emitting diode L2.
  • the first end of the second comparator M2 is connected to the first end of the second resistor R2, the second end of the photoresistor Rm, the second end of the fourth capacitor C4 and the first output end AO, and the first end of the second comparator M2
  • the two ends are connected to the third end of the sliding varistor R', the third end of the second comparator M2 is connected to the second end of the sliding varistor R', the second end of the second resistor R2, the second end of the third resistor R3 and The first end of the second light emitting diode L2 is connected.
  • the fourth end of the second comparator M2 is connected to the first end of the sliding varistor R', the first end of the photoresistor Rm and the first end of the fourth capacitor C4.
  • the output terminal of the second comparator M2 is connected to the first terminal of the third resistor R3, the first terminal of the fourth resistor R4 and the second output terminal DO.
  • the voltage signal output from the first output terminal AO is the first signal.
  • the resistance value of the photoresistor Rm is low, and the photoresistor Rm
  • the partial pressure of is also lower, so that a lower analog signal is output at the first output terminal AO; when the brightness of the plasma light source in the chamber body 1 is lower, the resistance value of the photoresistor Rm is higher, and the photoresistor Rm
  • the partial pressure of AO is also higher, so that a higher analog signal is output at the first output terminal AO.
  • the second comparator M2 When the brightness of the plasma light source in the chamber body 1 is high, the resistance value of the photoresistor Rm is low, the partial voltage of the photoresistor Rm is also low, and the voltage received by the first end of the second comparator M2 is low, When it is lower than the voltage received at the second end, the second comparator M2 outputs a low level, indicating that the brightness of the plasma light source is normal; when the brightness of the plasma light source in the chamber body 1 is low, the resistance of the photoresistor Rm The value is higher, the voltage division of the photoresistor Rm is also higher, the voltage received at the first end of the second comparator M2 is higher, when it is higher than the voltage received at the second end, the second comparator M2 outputs a high voltage Flat, indicating that the brightness of the plasma light source is abnormal.
  • the second comparator M2 when the second comparator M2 outputs a low level, the second light-emitting transistor L2 can emit light, and when the second comparator M2 outputs a high level, it can be turned off, thereby prompting.
  • the second comparator M2 is an NPN type for illustration, and does not constitute a display of the second comparator M2 type in the embodiment of the present invention.
  • the second comparator M2 The device M2 can also adopt other models, which are not limited here.
  • the resistance value of the sliding varistor R' is adjustable, so that the monitoring sensitivity can be adjusted.
  • control module 3 includes a processing sub-module 31 and a control sub-module 32 , and the monitoring module 2 and the control sub-module 32 are both connected to the processing sub-module 31 .
  • At least one of the monitoring module 2 and the processing sub-module 31 may be integrated on a printed circuit board (Printed Circuit Board, PCB) A, installed on the chamber body 1, and located in the chamber Outside body 1.
  • the control submodule 32 may be integrated in a programmable logic controller B (Programmable Logic Controller, PLC).
  • the aspect ratio of PCB A is set to 5/3.
  • the reaction chamber may further include a protective casing 6, and the protective casing 6 is covered around the printed circuit board A, so as to separate the printed circuit board A from the outside, so as to prevent the printed circuit board A from being exposed to the outside. Circuit board A is protected.
  • the printed circuit board A can be connected with the programmable logic controller B through signal lines.
  • the protective casing 6 is provided with a port for transmitting signals, the printed circuit board A is connected to the port, the signal wire includes a plug C, and the signal wire is connected to the port provided on the protective casing 6 through the plug C, so as to realize The connection between printed circuit board A and programmable logic controller B.
  • the plug C of the signal line can be a four-pin plug.
  • the production cost can be reduced and the installation convenience can be improved.
  • the processing sub-module 31 is configured to determine whether the first signal corresponding to each deposition step exceeds a preset range, and if so, generate a second signal corresponding to the deposition step.
  • the control sub-module 32 is used to count the number of times of the second signal generated by the processing sub-module 31 in the deposition period, and when the number of times of the second signal generated by the processing sub-module 31 in the deposition period is greater than 0, then determine the thickness of the target film layer exception, and execute the exception handling process.
  • a third signal corresponding to this deposition step is generated.
  • the processing sub-module 31 may include a filter circuit, and the preset range may be the range of the voltage signal corresponding to the brightness of the plasma light source in the chamber body 1 when the deposition module 4 is normally activated.
  • the second signal and the third signal may be digital signals, for example, the second signal is a digital signal "1", and the third signal is a digital signal "0".
  • the control sub-module 32 can perform a cumulative count, and each time after receiving the second signal, the current cumulative value is +1.
  • control sub-module 32 receives the first signal When the number of times (that is, the cumulative value) of the two signals is greater than 0, it means that in at least one deposition step in the deposition cycle, the brightness of the plasma light source in the chamber body 1 is abnormal. At this time, the control sub-module 32 It is determined that the thickness of the target film layer is abnormal, and then the abnormal processing flow is executed.
  • the deposition module 2 is connected to the control sub-module 32, and the above exception handling process specifically includes: the control sub-module 32 controls the deposition module 2 according to the number of second signals generated by the processing sub-module 31 in the deposition cycle. Supplementally perform at least one deposition step. Specifically, it may include: when the number of times of the second signal generated by the processing sub-module 31 in the deposition period is greater than 0, the control sub-module 32 controls the deposition module 4 to supplement the number of second signals generated by the processing sub-module 31 in the deposition period according to the number of times the processing sub-module 31 generates the second signal in the deposition period Perform at least one deposition step.
  • the target film layer is a SiO 2 film layer
  • the target thickness is For example, in one deposition cycle, after each deposition step, a certain thickness (for example, a certain thickness) is formed on the wafer 7 ) of the SiO 2 film layer, in one deposition cycle, by performing the deposition steps for a predetermined number of times (for example, 13 times), the SiO 2 film layer of the target thickness can be formed on the wafer 7 .
  • a certain thickness for example, a certain thickness
  • the SiO 2 film layer of the target thickness can be formed on the wafer 7 .
  • each time the processing sub-module 31 generates the second signal it means that the deposition module 4 has an abnormal ignition when the radio frequency electric field is applied, and the abnormal ignition of the deposition module 4 will cause the deposition in this deposition step.
  • the thickness of SiO 2 formed on wafer 7 is less than As a result, the thickness of the finally formed SiO 2 film layer is smaller than the target thickness, that is, the thickness of the target film layer is abnormal. Therefore, in the embodiment of the present invention, when the processing sub-module 31 generates the second signal during the deposition period, the control sub-module 32 controls the deposition module 4 to perform at least one additional deposition step to compensate for the failure of the deposition module 4 to start illuminating.
  • the SiO 2 layer is smaller than the target layer.
  • the additionally executed deposition steps are the same as the conventionally executed deposition steps in the deposition cycle, including feeding a precursor gas into the chamber body 1 and loading a radio frequency electric field.
  • the number of times that the control sub-module 32 controls the deposition module 4 to perform additional deposition steps can be determined according to actual needs.
  • the number of additional deposition steps performed by the deposition module 4 is the same as the number of additional deposition steps performed by the processing sub-module 31 during the deposition cycle.
  • the number of times of generating the second signal is the same, so that the number of times the deposition module 4 supplements the deposition step is the same as the number of times the deposition module 4 starts abnormally during the deposition cycle, thereby maximizing the compensation for the insufficient thickness of the SiO 2 film.
  • the reaction chamber can monitor the deposition process, and automatically compensate when the deposition module 4 has an abnormal ignition, so that the thickness and the thickness of the target film caused by the abnormal ignition of the deposition module 4 can be improved.
  • the problem of deviation between target thicknesses, thereby improving the stability of the process results, is conducive to improving the consistency of thicknesses between sheets.
  • a monitoring port 5 is provided on the side wall of the chamber body 1 , the monitoring module 2 is located outside the chamber body 1 , and the monitoring module 2 monitors the brightness of the plasma light source in the chamber body 1 through the monitoring port 5 .
  • the monitoring module 2 may cover the monitoring port 5 , so as to block at least a part of the monitoring port 5 , so as to prevent the external ambient light from causing interference to the monitoring module 2 .
  • a base 8 for carrying wafers 7 is provided in the reaction chamber, and the upper electrode device in the deposition module 4 includes an upper electrode 41 arranged on the top of the chamber body 1 and an upper electrode 41 electrically connected thereto.
  • the radio frequency power supply V wherein the upper radio frequency power supply V applies a radio frequency electric field to the interior of the chamber body 1 through the upper electrode 41 .
  • a lower electrode 42 is provided in the base 8 , which can be grounded, for example, and the monitoring port 5 is located between the lower electrode 42 and the upper electrode 41 .
  • the reaction chamber further includes an air inlet device 43 , and the air inlet device 43 is used for introducing the precursor into the chamber body 1 .
  • the upper electrode 41 , the lower electrode 42 and the air inlet device 43 can be connected to the programmable logic controller B, and under the control of the programmable logic controller B, the deposition step is performed.
  • the thickness uniformity of the film layer formed by the deposition is less than 0.4%, and the thickness deviation Has better film quality.
  • FIG. 5 is a schematic diagram of a monitoring process provided by an embodiment of the present invention. The deposition process of the reaction chamber according to the embodiment of the present invention will be described below with reference to FIGS. 2 to 5 .
  • the host computer issues a process menu and a process start command to the programmable logic controller B.
  • the process menu records the number of deposition steps that need to be performed to achieve the target thickness.
  • the programmable logic controller B according to the process menu
  • the deposition module 4 is controlled to execute the deposition step, and the upper computer enters the waiting state.
  • the deposition step may specifically include the following steps:
  • the gas inlet device 43 feeds the source gas (eg, SAM24 ) into the chamber body 1 , and the source gas is carried by the inert gas (eg, Ar) into the chamber body 1 and adsorbed on the surface of the wafer 7 .
  • the monitoring module 4 can start monitoring.
  • the chamber body 1 and the air inlet device 43 are purged with a purge gas, so as to reduce the residue of the source gas in other positions as much as possible.
  • the radio frequency power supply V is turned on to apply a radio frequency electric field between the upper electrode 41 and the lower electrode 42, and at the same time, a reactive gas (such as oxygen O 2 ) is introduced.
  • a reactive gas such as oxygen O 2
  • the macromolecules of the source gas are broken into Small molecules, oxygen molecules are excited to form various reactive groups such as reactive oxygen atoms and oxygen free radicals.
  • the broken small molecules of the source gas react with the reactive groups of oxygen to form a SiO2 film layer on the wafer 7 .
  • the monitoring module 2 can output a first signal negatively correlated with the brightness of the plasma light source, and the first signal can be a voltage signal.
  • the first signal can be a voltage signal.
  • the processing sub-module 31 processes the larger first signal into a second signal, and the second signal may be a digital signal "1".
  • the chamber body 1 and the air inlet device 43 are purged again. This completes a complete deposition step.
  • the second cycle is performed until the number of deposition steps sent by the host computer to the programmable logic controller B is all completed, and this is one deposition cycle.
  • the control sub-module 32 counts the number of times the processing sub-module 31 generates the second signal. After the above deposition cycle ends, if the control sub-module 32 counts the number of times the processing sub-module 31 generates the second signal is greater than 0 , the control sub-module 32 controls the deposition module 4 to perform the above-mentioned deposition steps according to the number of times the processing sub-module 31 generates the second signal, and the number of supplements is the same as the number of times the processing sub-module 31 generates the second signal, thereby compensating for the abnormal start-up The resulting deviation of the thickness of the SiO 2 layer from the target thickness.
  • control sub-module 32 also sends the abnormal start signal to the upper computer.
  • the abnormal start signal may include the number of times of abnormal start and the number of times the deposition step is supplemented.
  • the upper computer can continue to keep the In the waiting state, stop issuing new instructions to the programmable logic controller B.
  • the programmable logic controller B can send a supplemental completion signal to the upper computer. After receiving the supplementary completion signal, the upper computer stops the waiting state and issues new instructions to perform other process steps. .
  • FIG. 6 is one of the flowcharts of the film deposition method provided by the embodiment of the present invention. As shown in FIG. 6 , the film deposition method includes:
  • the deposition module 4 performs multiple deposition steps in one deposition cycle in the chamber body 1;
  • each deposition step includes: feeding a precursor into the chamber body 1 and applying a radio frequency electric field to the reaction chamber to form a plasma light source in the reaction chamber, and using the plasma light source on the wafer Deposit the target layer.
  • the precursor includes a source gas and a reaction gas.
  • the source gas may be introduced into the reaction chamber first, and after the source gas is fully adsorbed on the surface of the wafer, a radio frequency electric field is applied to the reaction chamber, while the into the reaction gas.
  • step S3 it is determined whether the number of completed deposition steps reaches the target number, and if so, step S3 is performed, and if not, step S1 is continued.
  • the first signal corresponding to at least one deposition step it is determined whether the thickness of the target film layer obtained after performing multiple deposition steps is abnormal, and if so, the abnormality processing flow.
  • a deposition normal signal may be sent to inform the user and/or the system that the next process can be performed.
  • the film deposition method of the embodiment of the present invention it can judge whether the thickness of the deposited target film layer is abnormal through the brightness of the plasma light source, and issue an abnormal alarm signal after the thickness of the target film layer is abnormal, so as to facilitate the supplementary deposition step, Further, the problem of deviation between the thickness of the deposited film and the target thickness is improved.
  • step S3 includes:
  • S33 Determine whether the number of times of the second signal generated in the deposition period is greater than 0, and if so, determine that the thickness of the target film layer is abnormal, and execute the abnormality processing flow.
  • a third signal is generated.
  • the second signal and the third signal may be digital signals, eg, the second signal is a digital signal "1", and the third signal is a digital signal "0".
  • the film deposition method further includes:
  • replenishment complete signal may be sent for other process steps.
  • the deposition step is additionally performed the same number of times the second signal is generated during the deposition cycle.
  • Embodiments of the present invention further provide a semiconductor processing equipment, which includes the above-mentioned reaction chamber.
  • the deposition module 4 includes an air inlet device 43 and an upper electrode device, wherein, the chamber body 1 is provided with a base 8 for carrying wafers; the air inlet device 43 is used to feed the chamber body 1 The precursor is passed through; the upper electrode device is used to excite the precursor to form a plasma.
  • the above-mentioned upper electrode device may include an upper electrode 41 disposed on the top of the chamber body 1 and an upper radio frequency power supply V electrically connected thereto, wherein the upper radio frequency power supply V loads the interior of the chamber body 1 with radio frequency through the upper electrode 41 electric field.
  • a lower electrode 42 is provided in the base 8, which can be grounded, for example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

一种半导体工艺设备的反应腔室、半导体工艺设备和膜层沉积方法,其中,反应腔室包括:腔室本体(1)、监测模块(2)、沉积模块(4)以及控制模块(3);其中,沉积模块(4)用于在腔室本体(1)中执行在一个沉积周期中的多次沉积步骤;监测模块(2)与腔室本体(1)连接,用于在沉积模块(4)每次执行沉积步骤时,监测腔室本体(1)内部产生的等离子体光源的亮度,并根据等离子体光源的亮度,生成第一信号;控制模块(3)与监测模块(2)连接,用于根据至少一次沉积步骤对应的第一信号,判断执行多次沉积步骤后获得的目标膜层的厚度是否异常,若是,则执行异常处理流程。该方法有利于改善目标膜层的厚度与目标厚度产生偏差的问题。

Description

半导体工艺设备及其反应腔室和膜层沉积方法 技术领域
本发明涉及半导体加工技术领域,具体涉及一种半导体工艺设备的反应腔室、半导体工艺设备和膜层沉积方法。
背景技术
二氧化硅(SiO 2)薄膜是半导体工艺上最常用的薄膜之一,传统的沉积SiO 2薄膜的方法如氧化工艺需要在高温环境下进行,温度通常超过1000℃,而高温环境可能会产生不良副产物,进而影响薄膜覆盖率。
等离子体增强原子层沉积(Plasma Enhanced Atomic Layer Deposition,以下简称PEALD)方法可以实现在低温环境下沉积SiO 2薄膜,温度一般在70℃~300℃,相较于氧化工艺,PEALD方法具有更好的薄膜覆盖率,且对薄膜厚度的控制更加精确。
目前,采用PEALD方法沉积SiO 2薄膜通常采用双二乙基胺基硅烷(SAM24)和氧气(O 2)作为前驱体,图1为传统的采用PEALD方法沉积SiO 2薄膜的流程框图,如图1所示,沉积过程至少包括:步骤S1′、使SAM24前驱体进入反应腔室并吸附在晶圆表面;步骤S2′、使O 2前驱体进入反应腔室,并在反应腔室中施加射频电场,以将SAM24的大分子断裂为小分子,氧分子激发形成活性氧原子和氧自由基等多种活性基团,SAM24的断裂小分子和氧的活性基团发生反应形成SiO 2薄膜。上述过程作为一次循环,而实际工艺中通常需要重复多次循环,以使形成的SiO 2薄膜厚度满足实际需要。
但是,在反应腔室中施加射频电场时,可能会出现启辉延迟,甚至启辉失败等异常,在多次循环中只要有一次循环出现异常,就可能会导致生成的SiO 2薄膜厚度与目标厚度出现偏差,进而导致片间厚度一致性差,影响产品 质量。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种半导体工艺设备的反应腔室、半导体工艺设备和膜层沉积方法。
为了实现上述目的,本发明提供一种半导体工艺设备的反应腔室,其中,包括:腔室本体、监测模块、沉积模块以及控制模块;其中,
所述沉积模块用于在所述腔室本体中执行在一个沉积周期中的多次沉积步骤;
所述监测模块与所述腔室本体连接,用于在所述沉积模块每次执行所述沉积步骤时,监测所述腔室本体内部产生的等离子体光源的亮度,并根据所述等离子体光源的亮度,生成第一信号;
所述控制模块与所述监测模块连接,用于根据至少一次所述沉积步骤对应的所述第一信号,判断执行多次所述沉积步骤后获得的目标膜层的厚度是否异常,若是,则执行异常处理流程。
可选地,所述异常处理流程,具体包括:
所述控制模块发出异常报警信号;和/或,控制所述沉积模块补充执行至少一次所述沉积步骤。
可选地,所述控制模块具体用于:
根据至少一次所述沉积步骤对应的所述第一信号,判断是否有所述沉积步骤发生等离子体启辉异常,若有,则确定所述目标膜层的厚度异常,并执行所述异常处理流程。
可选地,所述控制模块包括:处理子模块和控制子模块,所述监测模块和所述控制子模块均与所述处理子模块连接;其中,
所述处理子模块用于判断每次所述沉积步骤对应的所述第一信号是否 超出预设范围,若是,则生成与该次所述沉积步骤对应的第二信号;
所述控制子模块用于统计所述处理子模块在所述沉积周期内生成的所述第二信号的次数,当所述处理子模块在所述沉积周期内生成的所述第二信号的次数大于0时,则确定所述目标膜层的厚度异常,并执行所述异常处理流程。
可选地,所述异常处理流程,具体包括:
所述控制子模块根据所述处理子模块在所述沉积周期内生成的所述第二信号的次数,控制所述沉积模块补充执行至少一次所述沉积步骤。
可选地,所述沉积模块补充执行所述沉积步骤的次数与所述处理子模块在所述沉积周期内生成的所述第二信号的次数相同。
可选地,所述监测模块包括光敏电阻或光敏二极管,所述第一信号为与所述等离子体光源的亮度负相关的电压信号。
可选地,所述腔室本体的侧壁上设置有监测口,所述监测模块位于所述腔室本体外,所述监测模块通过所述监测口监测所述腔室本体中等离子体光源的亮度。
可选地,所述监测模块和所述控制模块中的至少一者集成在印制电路板上,所述印制电路板安装在所述腔室本体上,且位于所述腔室本体外;
所述反应腔室还包括保护壳体,所述保护壳体罩设在所述印制电路板的周围,用于将所述印制电路板与外界隔开;并且,在所述保护壳体上设置有用于传输信号的端口。
本发明还提供一种半导体工艺设备,其中,包括上述的半导体工艺设备的反应腔室,其中,所述沉积模块包括进气装置和上电极装置,其中,所述腔室本体中设置有用于承载晶圆的基座;所述进气装置用于向所述腔室本体内通入前驱体;所述上电极装置用于激发所述前驱体形成等离子体。
可选地,所述半导体工艺设备应用于等离子体增强原子层沉积设备。
本发明还提供一种膜层沉积方法,其中,应用于上述的半导体工艺设备的反应腔室,所述膜层沉积方法包括:
所述沉积模块在所述腔室本体中执行在一个沉积周期中的多次沉积步骤;
在所述沉积模块每次执行所述沉积步骤时,监测所述腔室本体内部产生的等离子体光源的亮度,并根据所述等离子体光源的亮度,生成第一信号;
根据至少一次所述沉积步骤对应的所述第一信号,判断执行多次所述沉积步骤后获得的目标膜层的厚度是否异常,若是,则执行异常处理流程。
可选地,所述异常处理流程,具体包括:
发出异常报警信号;和/或,控制所述反应腔室补充执行至少一次所述沉积步骤。
本发明的有益效果:
本发明提供的半导体工艺设备及其反应腔室和膜层沉积方法的技术方案中,监测模块在沉积模块每次执行沉积步骤时,监测腔室本体内部产生的等离子体光源的亮度,并根据等离子体光源的亮度,生成第一信号,控制模块根据至少一次沉积步骤对应的上述第一信号,判断执行多次沉积步骤后获得的目标膜层的厚度是否异常,若是,则执行异常处理流程。由此,可以在目标膜层的厚度出现异常后及时进行异常处理,进而改善目标膜层的厚度与目标厚度产生偏差的问题。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1为传统的采用PEALD沉积SiO 2薄膜的流程图;
图2为本发明实施例提供的反应腔室的结构示意图之一;
图3为本发明实施例提供的反应腔室的结构示意图之二;
图4为本发明实施例提供的监测模块的电路结构示意图;
图5为本发明实施例提供的监测过程的示意图;
图6为本发明实施例提供的膜层沉积方法的流程图之一;
图7为本发明实施例提供的膜层沉积方法的流程图之二。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明提供一种半导体工艺设备的反应腔室,图2为本发明实施例提供的反应腔室的结构示意图之一,图3为本发明实施例提供的反应腔室的结构示意图之二,结合图2和图3所示,反应腔室包括:腔室本体1、监测模块2、控制模块3和沉积模块4,其中,沉积模块4用于在腔室本体1中执行在一个沉积周期中的多次沉积步骤,具体地,腔室本体1中设置有用于承载晶圆7的基座8;沉积模块4例如包括进气装置43和上电极装置,每次沉积步骤例如均包括:进气装置43用于向腔室本体1中通入前驱体;上电极装置用于对腔室本体1施加射频电场,以激发腔室本体1中的前驱体形成等离子体,以能够在晶圆7上沉积目标膜层。监测模块2与腔室本体1连接,用于在沉积模块4每次执行沉积步骤时,监测腔室本体1内部产生的等离子体光源的亮度,并根据等离子体光源的亮度,生成第一信号。可选的,检测模块2可以实时检测等离子体光源的亮度,或者也可以每间隔一定的时间检测等离子体光源的亮度。控制模块3用于根据多次沉积步骤对应的第一信号,判断执行多次沉积步骤后所获得的目标膜层的厚度是否异常,若是,则执行异常处理流程。
在一些可选的实施例中,上述反应腔室可以应用于SiO 2薄膜沉积工艺, 包括但不限于等离子体增强原子层沉积(Plasma Enhanced Atomic Layer Deposition,PEALD)工艺。前驱体可以包括源气体(例如双二乙基胺基硅烷SAM24)和反应气体(例如氧气O 2)。当沉积模块4中的上电极装置施加射频电场时,前驱体中源气体在射频电场中激发成等离子体进而发光,从而生成等离子体光源,若上电极装置在施加射频电场时发生启辉异常(例如启辉失败),腔室本体1中等离子体光源的亮度将会与正常启辉时等离子体光源的亮度不同,监测模块2可以根据等离子体光源的亮度生成与之相关的第一信号,例如,第一信号可以为电压信号,第一信号的大小与等离子体光源的亮度相关。
在本发明实施例中,监测模块2在每次沉积步骤中均生成第一信号,而控制模块3则可以根据至少一次沉积步骤中生成的第一信号的大小判断出反应腔室中等离子体光源的亮度是否异常(例如亮度过低),若是,则可以确定沉积的目标膜层的厚度异常。
采用本发明实施例的反应腔室,其可以通过等离子光源的亮度判断出沉积的目标膜层的厚度是否异常,并在目标膜层的厚度异常时及时进行异常处理,进而改善沉积的目标膜层的厚度与目标厚度产生偏差的问题。
在一些可选的实施例中,上述异常处理流程,具体包括:
控制模块3发出异常报警信号;和/或,控制沉积模块4补充执行至少一次上述沉积步骤。
通过控制沉积模块4补充执行至少一次上述沉积步骤,可以增加目标膜层的厚度,以减小沉积的目标膜层的厚度与目标厚度之间的偏差。
发明人在研究中发现,在PEALD沉积工艺中,导致目标膜层厚度异常的主要因素是沉积模块4启辉是否正常,当沉积模块4启辉正常时,反应腔室中的前驱体中的SAM24可以断裂成小分子,氧分子可以激发形成活性氧原子和氧自由基等多种活性基团,SAM24小分子与活性基团反应后形成目标 膜层。而当沉积模块4启辉异常时,则会导致沉积目标膜层失败,进而导致目标膜层的厚度异常。
因此,在一些具体实施例中,当沉积模块4启辉异常时,即可确定目标膜层的厚度异常,具体地,控制模块3具体用于:根据至少一次沉积步骤对应的第一信号,判断是否有沉积步骤发生等离子体启辉异常,若有,则确定目标膜层的厚度异常,并执行异常处理流程。
在一些具体实施例中,第一信号为与反应腔室中等离子体光源的亮度负相关的电压信号,图4为本发明实施例提供的监测模块2的电路结构示意图,如图4所示,监测模块2包括降压电路21、光敏电阻RM(光敏二极管)和信号生成电路22,其中,降压电路21用于将第一电压端V1提供的24V电压降低,以供信号生成电路22使用,光敏电阻RM的阻值随腔室本体1中等离子体光源的亮度发生变化,信号生成电路22用于根据降压电路21生成的电压信号和光敏电阻RM的阻值,生成第一信号,在本发明实施例中,第一信号可以为模拟量信号,当然,为使输出信号可以满足多种需要,信号生成电路22除输出模拟量信号外,也可以输出脉冲信号,例如,如图4所示,具体地:
在本发明实施例中,降压电路21包括第一比较器M1、二极管D、电感T、第一电容C1、第二电容C2、第三电容C3、第一发光二极管L1和第一电阻R1。其中,第一比较器M1的第一端与第一电压端V1连接,第一比较器M1的第二端与第二电压端V2连接,第一比较器M1的第三端与电感T的第二端、第一电容C1的第二端、第二电容C2的第二端、第三电容C3的第二端和第一发光二极管L1的第一端连接,第一比较器M1的第四端与第二电压端V2连接,第一比较器M1的输出端与电感T的第一端和二极管D的第二端连接,二极管D的第一端、第一电容C1的第一端和第二电容C2的第一端均与第二电压端V2连接,第三电容C3的第一端、第一电阻R1的第一端 均与接地端连接,第一发光二极管L1的第二端与第一电阻R1的第二端连接。
信号生成电路22包括:滑动变阻器R'、第二电阻R2、第三电阻R3、第四电阻R4、第四电容C4、第二比较器M2和第二发光二极管L2。第二比较器M2的第一端与第二电阻R2的第一端、光敏电阻Rm的第二端、第四电容C4的第二端和第一输出端AO连接,第二比较器M2的第二端与滑动变阻器R'的第三端连接,第二比较器M2的第三端与滑动变阻器R'的第二端、第二电阻R2的第二端、第三电阻R3的第二端和第二发光二极管L2的第一端连接。第二比较器M2的第四端与滑动变阻器R'的第一端、光敏电阻Rm的第一端和第四电容C4的第一端连接。第二比较器M2的输出端与第三电阻R3的第一端、第四电阻R4的第一端和第二输出端DO连接。
在本发明实施例中,从第一输出端AO输出的电压信号即为第一信号,当腔室本体1中等离子体光源的亮度较高时,光敏电阻Rm的阻值较低,光敏电阻Rm的分压也较低,从而在第一输出端AO输出一个较低的模拟量信号;当腔室本体1中等离子体光源的亮度较低时,光敏电阻Rm的阻值较高,光敏电阻Rm的分压也较高,从而在第一输出端AO输出一个较高的模拟量信号。
当腔室本体1中等离子体光源的亮度较高时,光敏电阻Rm的阻值较低,光敏电阻Rm的分压也较低,第二比较器M2的第一端接收到的电压较低,当低于第二端接收到的电压时,第二比较器M2输出低电平,表示等离子体光源的亮度正常;当腔室本体1中等离子体光源的亮度较低时,光敏电阻Rm的阻值较高,光敏电阻Rm的分压也较高,第二比较器M2的第一端接收到的电压较高,当高于第二端接收到的电压时,第二比较器M2输出高电平,表示等离子体光源的亮度异常。
其中,当第二比较器M2输出低电平时,第二发光晶体管L2可以发光,当第二比较器M2输出高电平时,可以熄灭,从而进行提示。
需要说明的是,上述示例中,是以第二比较器M2为NPN型为例进行说明的,并不构成对本发明实施例中第二比较器M2型号的显示,在实际产品中,第二比较器M2还可以采用其他型号,在此不作限制。
在本发明实施例中,滑动变阻器R'的阻值可调,从而可以调节监测的灵敏度。
结合图2和图3所示,在一些具体实施例中,控制模块3包括:处理子模块31和控制子模块32,监测模块2与和控制子模块32均与处理子模块31连接。
在本发明实施例中,监测模块2和处理子模块31中的至少一者可以集成在印制电路板(Printed Circuit Board,PCB)A上,并安装在腔室本体1上,且位于腔室本体1外。控制子模块32可以集成在可编程逻辑控制器B(Programmable Logic Controller,PLC)中。印制电路板A的长宽比设置为5/3。
在一些具体实施例中,反应腔室还可以包括保护壳体6,该保护壳体6罩设在印制电路板A的周围,以将印制电路板A与外界间隔开,从而对印制电路板A进行保护。印制电路板A可以通过信号线与可编程逻辑控制器B连接。例如,保护壳体6上设置有用于传输信号的端口,印制电路板A与该端口连接,信号线包括插头C,信号线通过插头C与设置在保护壳体6上的端口连接,从而实现印制电路板A与可编程逻辑控制器B的连接。其中,信号线的插头C可以采用四针插头。
在本发明实施例中,通过使监测模块2和处理子模块31中的至少一者集成在印制电路板A上,可以降低生产成本,并且提高安装便利性。
在本发明实施例中,处理子模块31用于判断每次沉积步骤对应的第一信号是否超出预设范围,若是,则生成与该次沉积步骤对应的第二信号。控制子模块32用于统计处理子模块31在沉积周期内生成的第二信号的次数, 当处理子模块31在沉积周期内生成的第二信号的次数大于0时,则确定目标膜层的厚度异常,并执行异常处理流程。
可选的,若每次沉积步骤对应的第一信号未超出预设范围,则生成与该次沉积步骤对应的第三信号。
在本发明实施例中,处理子模块31可以包括滤波电路,预设范围可以为沉积模块4在正常启辉时,腔室本体1中等离子光源的亮度所对应的电压信号的范围。第二信号和第三信号可以为数字信号,例如,第二信号为数字信号“1”,第三信号为数字信号“0”。当控制子模块32接收到第二信号时,控制子模块32可以进行累计计数,并在每次接收到第二信号后,将当前的累计值+1,如此,当控制子模块32接收的第二信号的次数(也即累计值)大于0时,则说明在沉积周期内,至少有一次沉积步骤中,腔室本体1中的等离子体光源的亮度为异常亮度,此时,控制子模块32确定目标膜层的厚度异常,进而执行异常处理流程。
在一些具体实施例中,沉积模块2与控制子模块32连接,上述异常处理流程,具体包括:控制子模块32根据处理子模块31在沉积周期内生成的第二信号的次数,控制沉积模块2补充执行至少一次沉积步骤。具体可以包括:当处理子模块31在沉积周期内生成的第二信号的次数大于0时,控制子模块32根据处理子模块31在沉积周期内生成的第二信号的次数,控制沉积模块4补充执行至少一次沉积步骤。
在本发明实施例中,以目标膜层为SiO 2膜层,目标厚度为
Figure PCTCN2021131150-appb-000001
为例,在一个沉积周期内,每经过一次沉积步骤,晶圆7上即形成一定厚度(例如
Figure PCTCN2021131150-appb-000002
)的SiO 2膜层,在一个沉积周期内,通过执行预定次数(例如13次)的沉积步骤,即可在晶圆7上形成目标厚度的SiO 2膜层。而在一个沉积周期内,处理子模块31每生成一次第二信号,则说明沉积模块4在施加射频电场时发生了启辉异常,而沉积模块4的启辉异常将导致在本次沉积步骤中,在晶圆7 上形成SiO 2的厚度小于
Figure PCTCN2021131150-appb-000003
进而导致最终形成的SiO 2膜层的厚度小于目标厚度,也即,目标膜层的厚度异常。因此,在本发明实施例中,当处理子模块31在沉积周期内生成第二信号时,控制子模块32则控制沉积模块4至少补充执行一次沉积步骤,以补偿由于沉积模块4启辉失败导致的SiO 2膜层小于目标膜层的问题。
应当理解的是,在本发明实施例中,补充执行的沉积步骤与在沉积周期内常规执行的沉积步骤相同,均包括向腔室本体1中通入前驱气体,并加载射频电场。而控制子模块32控制沉积模块4具体补充执行沉积步骤的次数则可以根据实际需要确定,例如,在一些具体实施例中,沉积模块4补充执行沉积步骤的次数与处理子模块31在沉积周期内生成的第二信号的次数相同,从而使沉积模块4补充执行沉积步骤的次数与沉积模块4在沉积周期内启辉异常的次数相同,进而最大限度的补偿SiO 2膜层厚度不足的问题。
在本发明实施例中,反应腔室可以对沉积过程进行监控,并在沉积模块4发生启辉异常时自动进行补偿,从而可以改善由于沉积模块4启辉异常而导致的目标膜层的厚度与目标厚度之间产生偏差的问题,进而提高了工艺结果的稳定性,有利于提高片间厚度一致性。
在一些具体实施例中,腔室本体1的侧壁上设置有监测口5,监测模块2位于腔室本体1外,监测模块2通过监测口5监测腔室本体1中等离子体光源的亮度。
在一些具体实施例中,监测模块2可以覆盖在监测口5上,从而遮挡住监测口5的至少一部分,避免外界环境光对监测模块2造成干扰。
在一些具体实施例中,反应腔室中设置有用于承载晶圆7的基座8,沉积模块4中的上电极装置包括设置在腔室本体1顶部的上电极41和与之电连接的上射频电源V,其中,上射频电源V通过上电极41向腔室本体1的内部加载射频电场。
可选的,在该基座8中设置有下电极42,其例如可以接地,监测口5位于下电极42与上电极41之间。
在一些具体实施例中,反应腔室还包括进气装置43,进气装置43用于向腔室本体1中通入前驱体。上电极41、下电极42和进气装置43可以与可编程逻辑控制器B连接,在可编程逻辑控制器B的控制下,执行沉积步骤。
采用本发明实施例的反应腔室,其沉积形成的膜层厚度均匀性<0.4%,厚度偏差
Figure PCTCN2021131150-appb-000004
具有较好的成膜质量。
图5为本发明实施例提供的监测过程的示意图,下面结合图2至图5对本发明实施例的反应腔室的沉积过程进行说明。
在沉积工艺开始前,上位机下发工艺菜单和工艺开始指令到可编程逻辑控制器B,工艺菜单中记载了为实现目标厚度需要进行的沉积步骤的次数,可编程逻辑控制器B根据工艺菜单控制沉积模块4执行沉积步骤,上位机进入等待状态。
沉积步骤具体可以包括以下步骤:
第一步,进气装置43向腔室本体1中通入源气体(例如SAM24),源气体在惰性气体(例如氩气Ar)的携带下进入腔室本体1中并吸附在晶圆7表面。此时,监测模块4可以开始进行监测。
第二步,在源气体充分吸附后采用吹扫气体吹扫腔室本体1和进气装置43,以尽可能减少源气体在其他位置的残留。
第三步,射频电源V开启,以在上电极41与下电极42之间施加射频电场,同时通入反应气体(例如氧气O 2),在射频电场的作用下,源气体的大分子断裂为小分子,氧气分子激发形成活性氧原子和氧自由基等多种活性基团。源气体的断裂小分子和氧的活性基团发生反应在晶圆7上形成SiO2膜层。
在本步骤中,监测模块2可以输出与等离子光源的亮度负相关的第一信 号,第一信号可以是电压信号,例如,若沉积模块4发生启辉异常,腔室本体1中等离子光源的亮度较低,监测模块2则生成较大的第一信号;若沉积模块4未发生启辉异常,腔室本体1中等离子光源的亮度较高,监测模块2则生成较小的第一信号。处理子模块31对第一信号进行滤波后,将较大的第一信号处理成第二信号,第二信号可以是数字信号“1”。
第四步,再次对腔室本体1和进气装置43进行吹扫。至此完成一个完整的沉积步骤。
一个沉积步骤完成后进行第2次循环,直至上位机下发到可编程逻辑控制器B的沉积步骤的次数全部运行完成,至此为一个沉积周期。
在上述沉积周期中,控制子模块32对处理子模块31生成第二信号的次数进行统计,在上述沉积周期结束后,若控制子模块32统计出处理子模块31生成第二信号的次数大于0时,控制子模块32根据处理子模块31生成第二信号的次数,控制沉积模块4补充进行上述沉积步骤,补充的次数与处理子模块31生成第二信号的次数相同,从而补偿由于启辉异常导致的SiO 2膜层的厚度与目标厚度的偏差。同时,控制子模块32还向上位机发送启辉异常信号,启辉异常信号可以包括启辉异常的次数以及补充执行沉积步骤的次数,上位机在接收到启辉异常信号后,可以继续保持在等待状态,停止向可编程逻辑控制器B下发新的指令。
当补充执行沉积步骤完成后,可编程逻辑控制器B可以向上位机发送补充完成信号,上位机在接收到补充完成信号后,则停止等待状态,并下发新的指令,以进行其它工艺步骤。
本发明实施例还提供一种膜层沉积方法,图6为本发明实施例提供的膜层沉积方法的流程图之一,如图6所示,该膜层沉积方法包括:
S1、沉积模块4在腔室本体1中执行在一个沉积周期中的多次沉积步骤;
具体地,每次沉积步骤均包括:向腔室本体1中通入前驱体,并对反应 腔室施加射频电场,以在反应腔室中形成等离子体光源,并通过等离子体光源在晶圆上沉积目标膜层。
具体地,前驱体包括源气体和反应气体,在步骤S1中,可以先向反应腔室中通入源气体,在源气体充分吸附在晶圆表面后,对反应腔室施加射频电场,同时通入反应气体。在每执行完一次沉积步骤后,均判断完成的沉积步骤的次数是否达到目标次数,若是则执行步骤S3,若否,则继续执行步骤S1。
S2、在每次执行沉积步骤时,监测反应腔室中等离子体光源的亮度,并根据等离子体光源的亮度,生成第一信号。
S3、根据至少一次沉积步骤对应的第一信号,判断执行多次沉积步骤后获得的目标膜层的厚度是否异常,若是,则异常处理流程。
可选的,若执行多次沉积步骤后获得的目标膜层的厚度没有异常,则可以发出沉积正常信号,告知用户和/或系统可以进行下一步工艺。
采用本发明实施例的膜层沉积方法,其可以通过等离子体光源的亮度判断沉积的目标膜层的厚度是否异常,并在目标膜层的厚度异常后发出异常报警信号,以便于补充沉积步骤,进而改善沉积膜层的厚度与目标厚度产生偏差的问题。
在一些具体实施例中,第一信号为与反应腔室中等离子光源的亮度负相关的电压信号,图7为本发明实施例提供的膜层沉积方法的流程图之二,如图7所示,步骤S3包括:
S31、判断第一信号是否超出预设范围,若是,则生成第二信号;S32、统计在沉积周期内生成的第二信号的次数。
S33、判断在沉积周期内生成的第二信号的次数是否大于0,若是,则确定目标膜层的厚度异常,并执行异常处理流程。
可选的,在步骤S31中,若第一信号没有超出预设范围,则生成第三信 号。例如,第二信号和第三信号可以为数字信号,例如,第二信号为数字信号“1”,第三信号为数字信号“0”。
在一些具体实施例中,膜层沉积方法还包括:
S4、当在沉积周期内生成的第二信号的次数大于0时,根据在沉积周期内生成的第二信号的次数,补充执行至少一次沉积步骤。
当补充执行沉积步骤完成后,可以发送补充完成信号,以便进行其它工艺步骤。
在一些具体实施例中,补充执行沉积步骤的次数与在沉积周期内生成的第二信号的次数相同。
本发明实施例还提供一种半导体加工设备,其中,包括上述的反应腔室。其中,如图2所示,沉积模块4包括进气装置43和上电极装置,其中,腔室本体1中设置有用于承载晶圆的基座8;进气装置43用于向腔室本体1内通入前驱体;上电极装置用于激发前驱体形成等离子体。
具体地,上述上电极装置可以包括设置在腔室本体1顶部的上电极41和与之电连接的上射频电源V,其中,上射频电源V通过上电极41向腔室本体1的内部加载射频电场。
可选的,在该基座8中设置有下电极42,其例如可以接地。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (13)

  1. 一种半导体工艺设备的反应腔室,其特征在于,包括:腔室本体、监测模块、沉积模块以及控制模块;其中,
    所述沉积模块用于在所述腔室本体中执行在一个沉积周期中的多次沉积步骤;
    所述监测模块与所述腔室本体连接,用于在所述沉积模块每次执行所述沉积步骤时,监测所述腔室本体内部产生的等离子体光源的亮度,并根据所述等离子体光源的亮度,生成第一信号;
    所述控制模块与所述监测模块连接,用于根据至少一次所述沉积步骤对应的所述第一信号,判断执行多次所述沉积步骤后获得的目标膜层的厚度是否异常,若是,则执行异常处理流程。
  2. 根据权利要求1所述的反应腔室,其特征在于,所述异常处理流程,具体包括:
    所述控制模块发出异常报警信号;和/或,控制所述沉积模块补充执行至少一次所述沉积步骤。
  3. 根据权利要求1或2所述的反应腔室,其特征在于,所述控制模块具体用于:
    根据至少一次所述沉积步骤对应的所述第一信号,判断是否有所述沉积步骤发生等离子体启辉异常,若有,则确定所述目标膜层的厚度异常,并执行所述异常处理流程。
  4. 根据权利要求3所述的反应腔室,其特征在于,所述控制模块包括:处理子模块和控制子模块,所述监测模块和所述控制子模块均与所述处理子模块连接;其中,
    所述处理子模块用于判断每次所述沉积步骤对应的所述第一信号是否超出预设范围,若是,则生成与该次所述沉积步骤对应的第二信号;
    所述控制子模块用于统计所述处理子模块在所述沉积周期内生成的所述第二信号的次数,当所述处理子模块在所述沉积周期内生成的所述第二信号的次数大于0时,则确定所述目标膜层的厚度异常,并执行所述异常处理流程。
  5. 根据权利要求4所述的反应腔室,其特征在于,所述异常处理流程,具体包括:
    所述控制子模块根据所述处理子模块在所述沉积周期内生成的所述第二信号的次数,控制所述沉积模块补充执行至少一次所述沉积步骤。
  6. 根据权利要求5所述的反应腔室,其特征在于,所述沉积模块补充执行所述沉积步骤的次数与所述处理子模块在所述沉积周期内生成的所述第二信号的次数相同。
  7. 根据权利要求1所述的反应腔室,其特征在于,所述监测模块包括光敏电阻或光敏二极管,所述第一信号为与所述等离子体光源的亮度负相关的电压信号。
  8. 根据权利要求1所述的反应腔室,其特征在于,所述腔室本体的侧壁上设置有监测口,所述监测模块位于所述腔室本体外,所述监测模块通过所述监测口监测所述腔室本体中等离子体光源的亮度。
  9. 根据权利要求1,7或8所述的反应腔室,其特征在于,所述监测模块和所述控制模块中的至少一者集成在印制电路板上,所述印制电路板安装在所述腔室本体上,且位于所述腔室本体外;
    所述反应腔室还包括保护壳体,所述保护壳体罩设在所述印制电路板的周围,用于将所述印制电路板与外界隔开;并且,在所述保护壳体上设置有用于传输信号的端口。
  10. 一种半导体工艺设备,其特征在于,包括权利要求1至9中任一项所述的反应腔室,其中,所述沉积模块包括进气装置和上电极装置,其中,所述腔室本体中设置有用于承载晶圆的基座;所述进气装置用于向所述腔室本体内通入前驱体;所述上电极装置用于激发所述前驱体形成等离子体。
  11. 根据权利要求10所述的半导体工艺设备,其特征在于,所述半导体工艺设备应用于等离子体增强原子层沉积设备。
  12. 一种膜层沉积方法,其特征在于,应用于权利要求1至9中任一项所述的半导体工艺设备的反应腔室,所述膜层沉积方法包括:
    所述沉积模块在所述腔室本体中执行在一个沉积周期中的多次沉积步骤;
    在所述沉积模块每次执行所述沉积步骤时,监测所述腔室本体内部产生的等离子体光源的亮度,并根据所述等离子体光源的亮度,生成第一信号;
    根据至少一次所述沉积步骤对应的所述第一信号,判断执行多次所述沉积步骤后获得的目标膜层的厚度是否异常,若是,则执行异常处理流程。
  13. 根据权利要求12所述的膜层沉积方法,其特征在于,所述异常处理流程,具体包括:
    发出异常报警信号;和/或,控制所述反应腔室补充执行至少一次所述沉积步骤。
PCT/CN2021/131150 2020-11-18 2021-11-17 半导体工艺设备及其反应腔室和膜层沉积方法 WO2022105778A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21893925.4A EP4249633A4 (en) 2020-11-18 2021-11-17 SEMICONDUCTOR PROCESSING APPARATUS, REACTION CHAMBER THEREFOR, AND FILM LAYER DEPOSITION METHOD
KR1020237014074A KR102641211B1 (ko) 2020-11-18 2021-11-17 반도체 공정 디바이스 및 이의 반응 챔버와 박막층 증착 방법
JP2023528533A JP7402383B2 (ja) 2020-11-18 2021-11-17 半導体プロセス装置、並びにその反応チャンバ及び膜層堆積方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011296600.9A CN112458440B (zh) 2020-11-18 2020-11-18 半导体工艺设备及其反应腔室和膜层沉积方法
CN202011296600.9 2020-11-18

Publications (1)

Publication Number Publication Date
WO2022105778A1 true WO2022105778A1 (zh) 2022-05-27

Family

ID=74836172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131150 WO2022105778A1 (zh) 2020-11-18 2021-11-17 半导体工艺设备及其反应腔室和膜层沉积方法

Country Status (6)

Country Link
EP (1) EP4249633A4 (zh)
JP (1) JP7402383B2 (zh)
KR (1) KR102641211B1 (zh)
CN (1) CN112458440B (zh)
TW (1) TWI786949B (zh)
WO (1) WO2022105778A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115305461A (zh) * 2022-09-29 2022-11-08 江苏邑文微电子科技有限公司 异常工况下晶圆长膜的自动控制方法与装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112458440B (zh) * 2020-11-18 2022-11-25 北京北方华创微电子装备有限公司 半导体工艺设备及其反应腔室和膜层沉积方法
CN113416945B (zh) * 2021-06-24 2022-10-21 北京北方华创微电子装备有限公司 原子层沉积设备的进气装置及原子层沉积设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166784A (en) * 1978-04-28 1979-09-04 Applied Films Lab, Inc. Feedback control for vacuum deposition apparatus
US5846373A (en) * 1996-06-28 1998-12-08 Lam Research Corporation Method for monitoring process endpoints in a plasma chamber and a process monitoring arrangement in a plasma chamber
CN103031546A (zh) * 2011-09-29 2013-04-10 中国科学院微电子研究所 一种原子层沉积设备及其使用方法
CN104947040A (zh) * 2014-03-26 2015-09-30 塞米西斯科株式会社 厚度变化测量装置及其方法
CN106567044A (zh) * 2015-10-08 2017-04-19 北京北方微电子基地设备工艺研究中心有限责任公司 薄膜制备腔室及薄膜制备方法
CN208949405U (zh) * 2018-09-14 2019-06-07 德淮半导体有限公司 等离子体沉积装置
CN110582155A (zh) * 2018-06-08 2019-12-17 北京北方华创微电子装备有限公司 等离子体启辉的检测装置及方法、工艺腔室
WO2020167601A2 (en) * 2019-02-13 2020-08-20 Lam Research Corporation Anomalous plasma event detection and mitigation in semiconductor processing
CN112458440A (zh) * 2020-11-18 2021-03-09 北京北方华创微电子装备有限公司 半导体工艺设备及其反应腔室和膜层沉积方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5810963A (en) * 1995-09-28 1998-09-22 Kabushiki Kaisha Toshiba Plasma processing apparatus and method
EP1105703A4 (en) * 1998-04-23 2005-08-03 Sandia Corp METHOD AND DEVICE FOR MONITORING PLASMA MACHINING PROCESSES
JP2006188729A (ja) * 2005-01-05 2006-07-20 Hitachi Kokusai Electric Inc 基板処理装置
JP2008202107A (ja) * 2007-02-21 2008-09-04 Hitachi Kokusai Electric Inc 基板処理装置
KR101012090B1 (ko) * 2008-10-31 2011-02-07 (주)화백엔지니어링 플라즈마 공정 모니터링 장치 및 플라즈마 공정 모니터링방법
JP4575984B2 (ja) * 2009-02-12 2010-11-04 三井造船株式会社 原子層成長装置および薄膜形成方法
KR20140136154A (ko) * 2013-05-20 2014-11-28 광운대학교 산학협력단 증착공정에서 증착 두께 및 균일도를 실시간으로 측정하는 방법 및 장치
US9666417B2 (en) * 2013-08-28 2017-05-30 Sakai Display Products Corporation Plasma processing apparatus and method for monitoring plasma processing apparatus
JP6195528B2 (ja) * 2014-02-19 2017-09-13 東京エレクトロン株式会社 プラズマ処理装置及びその運転方法
JP6524753B2 (ja) * 2015-03-30 2019-06-05 東京エレクトロン株式会社 プラズマ処理装置、プラズマ処理方法及び記憶媒体
US10692705B2 (en) * 2015-11-16 2020-06-23 Tokyo Electron Limited Advanced optical sensor and method for detecting an optical event in a light emission signal in a plasma chamber
JP6890459B2 (ja) * 2017-04-14 2021-06-18 東京エレクトロン株式会社 プラズマ処理装置及び制御方法
US10697059B2 (en) * 2017-09-15 2020-06-30 Lam Research Corporation Thickness compensation by modulation of number of deposition cycles as a function of chamber accumulation for wafer to wafer film thickness matching
US10777386B2 (en) * 2017-10-17 2020-09-15 Lam Research Corporation Methods for controlling plasma glow discharge in a plasma chamber
US10886155B2 (en) * 2019-01-16 2021-01-05 Applied Materials, Inc. Optical stack deposition and on-board metrology

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166784A (en) * 1978-04-28 1979-09-04 Applied Films Lab, Inc. Feedback control for vacuum deposition apparatus
US5846373A (en) * 1996-06-28 1998-12-08 Lam Research Corporation Method for monitoring process endpoints in a plasma chamber and a process monitoring arrangement in a plasma chamber
CN103031546A (zh) * 2011-09-29 2013-04-10 中国科学院微电子研究所 一种原子层沉积设备及其使用方法
CN104947040A (zh) * 2014-03-26 2015-09-30 塞米西斯科株式会社 厚度变化测量装置及其方法
CN106567044A (zh) * 2015-10-08 2017-04-19 北京北方微电子基地设备工艺研究中心有限责任公司 薄膜制备腔室及薄膜制备方法
CN110582155A (zh) * 2018-06-08 2019-12-17 北京北方华创微电子装备有限公司 等离子体启辉的检测装置及方法、工艺腔室
CN208949405U (zh) * 2018-09-14 2019-06-07 德淮半导体有限公司 等离子体沉积装置
WO2020167601A2 (en) * 2019-02-13 2020-08-20 Lam Research Corporation Anomalous plasma event detection and mitigation in semiconductor processing
CN112458440A (zh) * 2020-11-18 2021-03-09 北京北方华创微电子装备有限公司 半导体工艺设备及其反应腔室和膜层沉积方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4249633A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115305461A (zh) * 2022-09-29 2022-11-08 江苏邑文微电子科技有限公司 异常工况下晶圆长膜的自动控制方法与装置

Also Published As

Publication number Publication date
CN112458440A (zh) 2021-03-09
EP4249633A1 (en) 2023-09-27
JP2023546522A (ja) 2023-11-02
KR20230074564A (ko) 2023-05-30
CN112458440B (zh) 2022-11-25
EP4249633A4 (en) 2024-04-10
KR102641211B1 (ko) 2024-02-29
TWI786949B (zh) 2022-12-11
TW202221164A (zh) 2022-06-01
JP7402383B2 (ja) 2023-12-20

Similar Documents

Publication Publication Date Title
WO2022105778A1 (zh) 半导体工艺设备及其反应腔室和膜层沉积方法
JP3768575B2 (ja) Cvd装置及びチャンバ内のクリーニングの方法
KR102460602B1 (ko) Rf 밸런싱을 사용하는 멀티스테이션 플라즈마 반응기
US9583318B2 (en) Plasma processing apparatus, plasma processing method, and recording medium
US10679831B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
TW201443984A (zh) 清洗方法、半導體裝置之製造方法、基板處理裝置、以及記錄媒體及清洗結束判定方法
KR20200116162A (ko) 반도체 프로세싱 툴에서 rf 전류 측정
US11295959B2 (en) Method of determining plasma abnormality, method of manufacturing semiconductor device, and substrate processing apparatus
KR20210019057A (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
WO2015029777A1 (ja) プラズマ処理装置及びプラズマ処理装置の監視方法
TW202044324A (zh) 半導體處理中之異常電漿事件的偵測及緩解
CN113529057B (zh) 半导体制造方法及多片式沉积设备
JPH09289202A (ja) 気相成長方法及びその装置
US20240243019A1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
CN114141663A (zh) 半导体工艺腔室和下电极电位控制方法
CN118653138A (zh) 沉积成膜的异常检测方法、沉积成膜方法及沉积成膜系统
JP2001329369A (ja) 真空処理装置および真空処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237014074

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023528533

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021893925

Country of ref document: EP

Effective date: 20230619