CN112458440A - 半导体工艺设备及其反应腔室和膜层沉积方法 - Google Patents

半导体工艺设备及其反应腔室和膜层沉积方法 Download PDF

Info

Publication number
CN112458440A
CN112458440A CN202011296600.9A CN202011296600A CN112458440A CN 112458440 A CN112458440 A CN 112458440A CN 202011296600 A CN202011296600 A CN 202011296600A CN 112458440 A CN112458440 A CN 112458440A
Authority
CN
China
Prior art keywords
deposition
reaction chamber
module
signal
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011296600.9A
Other languages
English (en)
Other versions
CN112458440B (zh
Inventor
秦海丰
兰云峰
师帅涛
王环宇
张芳
张文强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Naura Microelectronics Equipment Co Ltd
Original Assignee
Beijing Naura Microelectronics Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Naura Microelectronics Equipment Co Ltd filed Critical Beijing Naura Microelectronics Equipment Co Ltd
Priority to CN202011296600.9A priority Critical patent/CN112458440B/zh
Publication of CN112458440A publication Critical patent/CN112458440A/zh
Priority to EP21893925.4A priority patent/EP4249633A4/en
Priority to KR1020237014074A priority patent/KR102641211B1/ko
Priority to JP2023528533A priority patent/JP7402383B2/ja
Priority to TW110142781A priority patent/TWI786949B/zh
Priority to PCT/CN2021/131150 priority patent/WO2022105778A1/zh
Application granted granted Critical
Publication of CN112458440B publication Critical patent/CN112458440B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32926Software, data control or modelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32972Spectral analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/3299Feedback systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0683Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating measurement during deposition or removal of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明提供一种半导体工艺设备的反应腔室、半导体工艺设备和膜层沉积方法,其中,反应腔室包括:监测模块、沉积模块以及控制模块;沉积模块用于在一个沉积周期中执行多次沉积步骤,每次沉积步骤均包括:向反应腔室中通入前驱体以及对反应腔室施加射频电场,以在反应腔室中生成等离子体,并通过等离子体在待加工工件上沉积目标膜层;监测模块用于在沉积模块每次执行沉积步骤时,监测反应腔室中等离子体光源的亮度,并根据等离子体光源的亮度,生成第一信号;控制模块用于根据第一信号,判断沉积模块所沉积的目标膜层的厚度是否异常,若是,则发出异常报警信号。本发明有利于改善目标膜层的厚度与目标厚度产生偏差的问题。

Description

半导体工艺设备及其反应腔室和膜层沉积方法
技术领域
本发明涉及半导体加工技术领域,具体涉及一种半导体工艺设备的反应腔室、半导体工艺设备和膜层沉积方法。
背景技术
SiO2薄膜是半导体工艺上最常用的薄膜之一,传统的沉积SiO2薄膜的方法如氧化工艺需要在高温环境下进行,温度通常超过1000
℃,而高温环境可能会导致产生不良副产物,进而影响薄膜覆盖率。
等离子体增强原子层沉积(Plasma Enhanced Atomic Layer Deposition,PEALD)可以实现在低温环境下沉积SiO2薄膜,温度一般在70℃~300℃,相较于氧化工艺,等离子体增强原子层沉积具有更好的薄膜覆盖率,且对薄膜厚度的控制更加精确。
目前,PEALD沉积SiO2薄膜通常采用双二乙基胺基硅烷(SAM24)和氧气(O2)作为前驱体,图1为传统的采用PEALD沉积SiO2薄膜的流程图,如图1所示,沉积过程包括:S1’、使前驱体进入反应腔室;S2’、在反应腔室中施加射频电场,以将SAM24断裂为小分子,氧分子激发形成活性氧原子和氧自由基等多种活性基团,SAM24的断裂小分子和氧的活性基团发生反应形成SiO2薄膜。上述过程作为一次循环,而实际工艺中通常需要重复多次循环,以使形成的SiO2薄膜厚度满足实际需要。
但是,在反应腔室中施加射频电场时,可能会出现启辉延迟,甚至启辉失败等异常,在多次循环中只要有一次循环出现异常,就会导致生成的SiO2薄膜厚度与目标厚度出现偏差,进而导致片间厚度一致性差,影响产品质量。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种半导体工艺设备的反应腔室、半导体工艺设备和膜层沉积方法。
为了实现上述目的,本发明提供一种半导体工艺设备的反应腔室,其中,包括:监测模块、沉积模块以及与所述监测模块连接的控制模块;
所述沉积模块用于在一个沉积周期中执行多次沉积步骤,每次沉积步骤均包括:向所述反应腔室中通入前驱体以及对反应腔室施加射频电场,以在所述反应腔室中生成等离子体,并通过所述等离子体在待加工工件上沉积目标膜层;
所述监测模块用于在所述沉积模块每次执行所述沉积步骤时,监测所述反应腔室中等离子体光源的亮度,并根据所述等离子体光源的亮度,生成第一信号;
所述控制模块用于根据至少一次所述沉积步骤中所生成的所述第一信号,判断所述沉积模块所沉积的所述目标膜层的厚度是否异常,若是,则发出异常报警信号。
可选地,所述控制模块还用于在判断出所述目标膜层的厚度异常时,控制所述沉积模块补充执行至少一次所述沉积步骤。
可选地,所述控制模块具体用于:
根据至少一次所述沉积步骤中所生成的所述第一信号判断所述沉积模块在施加所述射频电场时是否发生启辉异常,若是,则确定目标膜层的厚度异常。
可选地,所述第一信号为与所述反应腔室中等离子体光源的亮度负相关的电压信号。
可选地,所述控制模块包括:处理子模块和控制子模块,所述监测模块和所述控制子模块均与所述处理子模块连接;
所述处理子模块用于判断所述第一信号是否超出预设范围,若是,则生成第二信号;
所述控制子模块用于统计所述处理子模块在所述沉积周期内生成的所述第二信号的次数,当所述处理子模块在所述沉积周期内生成的所述第二信号的次数大于0时,则确定在施加所述射频电场时发生启辉异常。
可选地,所述沉积模块与所述控制子模块连接,
所述控制子模块还用于:当所述处理子模块在所述沉积周期内生成的所述第二信号的次数大于0时,根据所述处理子模块在所述沉积周期内生成的所述第二信号的次数,控制所述沉积模块补充执行至少一次所述沉积步骤。
可选地,所述沉积模块补充执行所述沉积步骤的次数与所述处理子模块在所述沉积周期内生成的所述第二信号的次数相同。
可选地,所述反应腔室的侧壁上设置有监测口,所述监测模块位于所述反应腔室外,所述监测模块通过所述监测口监测所述反应腔室中等离子体光源的亮度。
可选地,所述反应腔室中设置有用于承载所述待加工工件的基座,所述沉积模块包括设置在所述反应腔室顶部的上电极和设置在所述基座中的下电极,所述上电极和所述下电极用于响应于驱动信号施加所述射频电场,所述监测口位于所述下电极与所述上电极之间。
本发明还提供一种半导体工艺设备,其中,包括上述的反应腔室。
本发明还提供一种膜层沉积方法,其中,所述膜层沉积方法包括:
在一个沉积周期中,执行多次沉积步骤,每次沉积步骤均包括:向所述反应腔室中通入前驱体以及对反应腔室施加射频电场,以在所述反应腔室中形成等离子体光源,并通过所述等离子体光源在待加工工件上沉积目标膜层;
在每次执行所述沉积步骤时,监测所述反应腔室中等离子体光源的亮度,并根据所述等离子体光源的亮度,生成第一信号;
根据至少一次所述沉积步骤中所生成的所述第一信号,判断沉积的所述目标膜层的厚度是否异常,若是,则发出异常报警信号。
可选地,所述膜层沉积方法还包括:
当所述目标膜层的厚度异常时,补充执行至少一次所述沉积步骤。
有益效果:
采用本发明的反应腔室,其可以通过反应腔室中的等离子光源的亮度判断出沉积的目标膜层的厚度是否异常,并在目标膜层的厚度异常后发出异常报警信号,以便于补充沉积步骤,进而改善目标膜层的厚度与目标厚度产生偏差的问题。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1为传统的采用PEALD沉积SiO2薄膜的流程图;
图2为本发明实施例提供的反应腔室的结构示意图之一;
图3为本发明实施例提供的反应腔室的结构示意图之二;
图4为本发明实施例提供的检测模块的电路结构示意图;
图5为本发明实施例提供的监测过程的示意图;
图6为本发明实施例提供的膜层沉积方法的流程图之一;
图7为本发明实施例提供的膜层沉积方法的流程图之二。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明提供一种半导体工艺设备的反应腔室,图2为本发明实施例提供的反应腔室的结构示意图之一,图3为本发明实施例提供的反应腔室的结构示意图之二,结合图2和图3所示,反应腔室1包括:监测模块2、控制模块3和沉积模块4,监测模块2与控制模块3连接。沉积模块4用于在一个沉积周期中执行多次沉积步骤,每次沉积步骤均包括:向反应腔室中通入前驱体以及对反应腔室施加射频电场,以在反应腔室中生成等离子体光源,并通过等离子体光源在待加工工件7上沉积目标膜层。监测模块2用于在沉积模块4每次执行沉积步骤时,监测反应腔室1中等离子体光源的亮度,并根据等离子体光源的亮度,生成第一信号。控制模块3用于根据至少一次沉积步骤中所生成的第一信号,判断沉积模块4所沉积的目标膜层的厚度是否异常,若是,则发出异常报警信号。
在本发明实施例中,反应腔室可以应用于SiO2薄膜沉积工艺,包括但不限于等离子体增强原子层沉积(Plasma Enhanced Atomic Layer Deposition,PEALD)工艺。前驱体可以包括源气体(例如双二乙基胺基硅烷SAM24)和反应气体(例如氧气O2)。当沉积模块4施加射频电场时,前驱体中源气体在射频电场中激发成等离子进而发光,从而生成等离子体光源,若沉积模块4在施加射频电场时发生启辉异常(例如启辉失败),反应腔室1中等离子体光源的亮度将会与正常启辉时等离子体光源的亮度不同,监测模块2可以根据等离子体光源的亮度生成与之相关的第一信号,例如,第一信号可以为电压信号,第一信号的大小与等离子体光源的亮度相关。在本发明实施例中,监测模块2在每次沉积步骤中均生成第一信号,而控制模块3则可以根据至少一次沉积步骤中生成的第一信号的大小判断出反应腔室1中等离子体光源的亮度是否异常(例如亮度过低),若是,则可以确定沉积的目标膜层的厚度异常。
采用本发明实施例的反应腔室,其可以通过等离子光源的亮度判断出沉积的目标膜层的厚度是否异常,并在目标膜层的厚度异常时发出异常报警信号,以便于采取补偿操作,例如,补充沉积步骤,进而改善沉积的目标膜层的厚度与目标厚度产生偏差的问题。
下面结合图2至图5对本发明实施例的反应腔室的具体结构进行详细说明。
在一些具体实施例中,控制模块3还用于在判断出所述目标膜层的厚度异常时,控制沉积模块4补充执行至少一次沉积步骤,从而减小沉积的目标膜层的厚度与目标厚度之间的偏差。
发明人在研究中发现,在PEALD沉积工艺中,导致目标膜层厚度异常的主要因素是沉积模块4启辉是否正常,当沉积模块4启辉正常时,反应腔室1中的前驱体中的SAM24可以断裂成小分子,氧分子可以激发形成活性氧原子和氧自由基等多种活性基团,SAM24小分子与活性基团反应后形成目标膜层。而当沉积模块4启辉异常时,则会导致沉积目标膜层失败,进而导致目标膜层的厚度异常。
因此,在一些具体实施例中,当沉积模块4启辉异常时,即可确定目标膜层的厚度异常,具体地,控制模块3具体用于:根据至少一次沉积步骤中所生成的第一信号判断沉积模块4在施加射频电场时是否发生启辉异常,若是,则确定目标膜层的厚度异常。
在一些具体实施例中,第一信号为与反应腔室1中等离子体光源的亮度负相关的电压信号,图4为本发明实施例提供的检测模块2的电路结构示意图,如图4所示,监测模块2包括降压电路21、光敏电阻RM(光敏二极管)和信号生成电路22,降压电路21用于将第一电压端V1提供的24V电压降低,以供信号生成电路22使用,光敏电阻RM的阻值随反应腔室1中等离子体光源的亮度发生变化,信号生成电路22用于根据降压电路21生成的电压信号和光敏电阻RM的阻值,生成第一信号,在本发明实施例中,第一信号可以为模拟量信号,当然,为使输出信号可以满足多种需要,信号生成电路22除输出模拟量信号外,也可以输出脉冲信号,例如,如图4所示,具体地:
在本发明实施例中,降压电路21包括第一比较器M1、二极管D、电感T、第一电容C1、第二电容C2、第三电容C3、第一发光二极管L1和第一电阻R1。其中,第一比较器M1的第一端与第一电压端V1连接,第一比较器M1的第二端与第二电压端V2连接,第一比较器M1的第三端与电感T的第二端、第一电容C1的第二端、第二电容C2的第二端、第三电容C3的第二端和第一发光二极管L1的第一端连接,第一比较器M1的第四端与第二电压端V2连接,第一比较器M1的输出端与电感T的第一端和二极管D的第二端连接,二极管D的第一端、第一电容C1的第一端和第二电容C2的第一端均与第二电压端V2连接,第三电容C3的第一端、第一电阻R1的第一端均与接地端连接,第一发光二极管L1的第二端与第一电阻R1的第二端连接。
信号生成电路22包括:滑动变阻器R'、第二电阻R2、第三电阻R3、第四电阻R4、第四电容C4、第二比较器M2和第二发光二极管L2。第二比较器M2的第一端与第二电阻R2的第一端、光敏电阻Rm的第二端、第四电容C4的第二端和第一输出端AO连接,第二比较器M2的第二端与滑动变阻器R'的第三端连接,第二比较器M2的第三端与滑动变阻器R'的第二端、第二电阻R2的第二端、第三电阻R3的第二端和第二发光二极管L2的第一端连接。第二比较器M2的第四端与滑动变阻器R'的第一端、光敏电阻Rm的第一端和第四电容C4的第一端连接。第二比较器M2的输出端与第三电阻R3的第一端、第四电阻R4的第一端和第二输出端DO连接。
在本发明实施例中,从第一输出端AO输出的电压信号即为第一信号,当反应腔室1中等离子体光源的亮度较高时,光敏电阻Rm的阻值较低,光敏电阻Rm的分压也较低,从而在第一输出端AO输出一个较低的模拟量信号;当反应腔室1中等离子体光源的亮度较低时,光敏电阻Rm的阻值较高,光敏电阻Rm的分压也较高,从而在第一输出端AO输出一个较高的模拟量信号。
当反应腔室1中等离子体光源的亮度较高时,光敏电阻Rm的阻值较低,光敏电阻Rm的分压也较低,第二比较器M2的第一端接收到的电压较低,当低于第二端接收到的电压时,第二比较器M2输出低电平,表示等离子体光源的亮度正常;当反应腔室1中等离子体光源的亮度较低时,光敏电阻Rm的阻值较高,光敏电阻Rm的分压也较高,第二比较器M2的第一端接收到的电压较高,当高于第二端接收到的电压时,第二比较器M2输出高电平,表示等离子体光源的亮度异常。
其中,当第二比较器M2输出低电平时,第二发光晶体管L2可以发光,当第二比较器M2输出高电平时,可以熄灭,从而进行提示。
需要说明的是,上述示例中,是以第二比较器M2为NPN型为例进行说明的,并不构成对本发明实施例中第二比较器M2型号的显示,在实际产品中昂,第二比较器M2还可以采用其他型号,在此不作限制。
在本发明实施例中,滑动变阻器R'的阻值可调,从而可以调节监测的灵敏度。
结合图2和图3所示,在一些具体实施例中,控制模块3包括:处理子模块31和控制子模块32,监测模块2与和控制子模块32均与处理子模块31连接。
在本发明实施例中,监测模块2和处理子模块31可以集成在印制电路板A(PrintedCircuit Board,PCB)上,并安装在反应腔室1上,控制子模块32可以集成在可编程逻辑控制器B(Programmable Logic Controller,PLC)中。印制电路板A的长宽比设置为5/3。
在一些具体实施例中,反应腔室还可以包括保护壳体6,印制电路板A可以设置在保护壳体6中,从而将印制电路板A处理子模块31与外界间隔开,以对印制电路板A形成处理子模块31保护。印制电路板A可以通过信号线与可编程逻辑控制器B连接。例如,保护壳体6上设置有用于传输信号的端口,印制电路板A与该端口连接,信号线包括插头C,信号线通过插头C与设置在保护壳体6上的端口连接,从而实现印制电路板A与可编程逻辑控制器B的连接。其中,信号线的插头C可以采用四针插头。
在本发明实施例中,通过使监测模块2和处理子模块31集成在印制电路板A上,可以降低生产成本,并且提高安装便利性。
在本发明实施例中,处理子模块31用于判断第一信号是否超出预设范围,若是,则生成第二信号;若否,则生成第三信号。控制子模块32用于统计处理子模块31在沉积周期内生成的第二信号的次数,当处理子模块31在沉积周期内生成的第二信号的次数大于0时,则确定在施加射频电场时发生启辉异常。
在本发明实施例中,处理子模块31可以包括滤波电路,预设范围可以为沉积模块4在正常启辉时,反应腔室1中等离子光源的亮度所对应的电压信号的范围。第二信号和第三信号可以为数字信号,例如,第二信号为数字信号“1”,第三信号为数字信号“0”。当控制子模块32接收到第二信号时,控制子模块32可以进行累计计数,并在每次接收到第二信号后,将当前的累计值+1,如此,当控制子模块32接收的第二信号的次数(也即累计值)大于0时,则说明在沉积周期内,至少有一次沉积步骤中,反应腔室1中的等离子体光源的亮度为异常亮度,此时,控制子模块32确定沉积模块4在施加射频电场时发生启辉异常,进而发出异常启辉信号,以提醒工作人员采取相应措施,或者,控制子模块32根据异常启辉信号执行预设的操作。
在一些具体实施例中,沉积模块2与控制子模块32连接,控制子模块32根据异常启辉信号执行预设的操作,具体可以包括:当处理子模块31在沉积周期内生成的第二信号的次数大于0时,控制子模块32根据处理子模块31在沉积周期内生成的第二信号的次数,控制沉积模块4补充执行至少一次沉积步骤。
在本发明实施例中,以目标膜层为SiO2膜层,目标厚度为
Figure BDA0002785618160000091
为例,在一个沉积周期内,每经过一次沉积步骤,待加工工件7上即形成一定厚度(例如
Figure BDA0002785618160000092
)的SiO2,在一个沉积周期内,通过执行预定次数(例如13次)的沉积步骤,即可在待加工工件7上形成目标厚度的SiO2膜层。而在一个沉积周期内,处理子模块31每生成一次第二信号,则说明沉积模块4在施加射频电场时发生了启辉异常,而沉积模块4的启辉异常将导致在本次沉积步骤中,在待加工工件7上形成SiO2的厚度小于
Figure BDA0002785618160000093
进而导致最终形成的SiO2膜层小于目标厚度,也即,目标膜层的厚度异常。因此,在本发明实施例中,当处理子模块31在沉积周期内生成第二信号时,控制子模块32则控制沉积模块4至少补充执行一次沉积步骤,以补偿由于沉积模块4启辉失败导致的SiO2膜层小于目标膜层的问题。
应当理解的是,在本发明实施例中,补充执行的沉积步骤与在沉积周期内常规执行的沉积步骤相同,均包括向反应腔室1中通入前驱气体和射频电场。而控制子模块32控制沉积模块4具体补充执行沉积步骤的次数则可以根据实际需要确定,例如,在一些具体实施例中,沉积模块4补充执行沉积步骤的次数与处理子模块31在沉积周期内生成的第二信号的次数相同,从而使沉积模块4补充执行沉积步骤的次数与沉积模块4在沉积周期内启辉异常的次数相同,进而最大限度的补偿SiO2膜层厚度不足的问题。
在本发明实施例中,反应腔室可以对沉积过程进行监控,并在沉积模块4发生启辉异常时自动进行补偿,从而可以改善由于沉积模块4启辉异常而导致的膜层的实际厚度与目标厚度之间产生偏差的问题,进而提高了工艺结果的稳定性,有利于提高片间厚度一致性。
在一些具体实施例中,反应腔室1的侧壁上设置有监测口5,监测模块2位于反应腔室1外,监测模块2通过监测口5监测反应腔室1中等离子体光源的亮度。
在一些具体实施例中,监测模块2可以覆盖在监测口5上,从而遮挡住监测口5的至少一部分,避免外界环境光对监测模块2造成干扰。
在一些具体实施例中,反应腔室1中设置有用于承载待加工工件7的基座8,沉积模块4包括设置在反应腔室1顶部的上电极41和设置在基座8中的下电极42,上电极41和下电极42用于响应于驱动信号施加射频电场,监测口5位于下电极42与上电极41之间。
在一些具体实施例中,反应腔室1还包括进气机构43,进气机构43用于向反应腔1室中通入前驱体。上电极41、下电极42和进气机构43可以与可编程逻辑控制器B连接,上电极41和下电极42还与射频电源V连接,从而在可编程逻辑控制器B的控制下,执行沉积步骤。
采用本发明实施例的反应腔室,其沉积形成的膜层厚度均匀性<0.4%,厚度偏差
Figure BDA0002785618160000101
具有较好的成膜质量。
图5为本发明实施例提供的监测过程的示意图,下面结合图2至图5对本发明实施例的反应腔室的沉积过程进行说明。
在沉积工艺开始前,上位机下发工艺菜单和工艺开始指令到可编程逻辑控制器B,工艺菜单中记载了为实现目标厚度需要进行的沉积步骤的次数,可编程逻辑控制器B根据工艺菜单控制沉积模块4执行沉积步骤,上位机进入等待状态。
沉积步骤具体可以包括以下步骤:
第一步,进气机构43向反应腔1室中通入源气体(例如SAM24),源气体在惰性气体(例如氩气Ar)的携带下进入反应腔室1中并吸附在待加工工件7表面。此时,监测模块4可以开始进行监测。
第二步,在源气体充分吸附后采用吹扫气体吹扫反应腔室1和进气机构43,以尽可能减少源气体在其他位置的残留。
第三步,上电极41和下电极42与射频电源V导通,上电极41与下电极42之间施加射频电场,同时通入反应气体(例如氧气O2),在射频电场的作用下,源气体的大分子断裂为小分子,氧气分子激发形成活性氧原子和氧自由基等多种活性基团。源气体的断裂小分子和氧的活性基团发生反应在待加工工件上形成SiO2材料。
在本步骤中,监测模块2可以输出与等离子光源的亮度负相关的第一信号,第一信号可以是电压信号,例如,若沉积模块4发生启辉异常,反应腔室1中等离子光源的亮度较低,监测模块2则生成较大的第一信号;若沉积模块4未发生启辉异常,反应腔室1中等离子光源的亮度较高,监测模块2则生成较小的第一信号。处理子模块31对第一信号进行滤波后,将较大的第一信号处理成第二信号,第二信号可以是数字信号“1”。
第四步,再次对反应腔室1和进气机构43进行吹扫。至此完成一个完整的沉积步骤。
一个沉积步骤完成后进行第2次循环,直至上位机下发到可编程逻辑控制器B的沉积步骤的次数全部运行完成,至此为一个沉积周期。
在上述沉积周期中,控制子模块32对处理子模块31生成第二信号的次数进行统计,在上述沉积周期结束后,若控制子模块32统计出处理子模块31生成第二信号的次数大于0时,控制子模块32根据处理子模块31生成第二信号的次数,控制沉积模块4补充进行上述沉积步骤,补充的次数与处理子模块31生成第二信号的次数相同,从而补偿由于启辉异常导致的SiO2膜层的厚度与目标厚度的偏差。同时,控制子模块32还向上位机发送启辉异常信号,启辉异常信号可以包括启辉异常的次数以及补充执行沉积步骤的次数,上位机在接收到启辉异常信号后,可以继续保持在等待状态,停止向可编程逻辑控制器B下发新的指令。
当补充执行沉积步骤完成后,可编程逻辑控制器B可以向上位机发送补充完成信号,上位机在接收到补充完成信号后,则停止等待状态,并下发新的指令,以进行其它工艺步骤。
本发明实施例还提供一种膜层沉积方法,图6为本发明实施例提供的膜层沉积方法的流程图之一,如图6所示,该膜层沉积方法包括:
S1、在一个沉积周期中,执行多次沉积步骤,每次沉积步骤均包括:向所述反应腔室中通入前驱体以及对反应腔室施加射频电场,以在反应腔室中形成等离子体光源,并通过等离子体光源在待加工工件上沉积目标膜层。
具体地,前驱体包括源气体和反应气体,在步骤S1中,可以先向反应腔室中通入源气体,在源气体充分吸附在待加工工件表面后,对反应腔室施加射频电场,同时通入反应气体。在每执行完一次沉积步骤后,均判断完成的沉积步骤的次数是否达到目标次数,若是则执行步骤S3,若否,则继续执行步骤S1。
S2、在每次执行沉积步骤时,监测反应腔室中等离子体光源的亮度,并根据等离子体光源的亮度,生成第一信号。
S3、根据至少一次沉积步骤中所生成的第一信号,判断沉积的目标膜层的厚度是否异常,若是,则发出异常报警信号,从而告知用户和/或系统,以便进行补偿操作;若否,则可以发出沉积正常信号,告知用户和/或系统可以进行下一步工艺。
采用本发明实施例的膜层沉积方法,其可以通过等离子体光源的亮度判断沉积的目标膜层的厚度是否异常,并在目标膜层的厚度异常后发出异常报警信号,以便于补充沉积步骤,进而改善沉积膜层的厚度与目标厚度产生偏差的问题。
在一些具体实施例中,第一信号为与反应腔室中等离子光源的亮度负相关的电压信号,图7为本发明实施例提供的膜层沉积方法的流程图之二,如图7所示,步骤S3包括:
S31、判断第一信号是否超出预设范围,若是,则生成第二信号;若否,则生成第三信号。
在步骤S32中,第二信号和第三信号可以为数字信号,例如,第二信号为数字信号“1”,第三信号为数字信号“0”。
S32、统计在沉积周期内生成的第二信号的次数。
S33、判断在沉积周期内生成的第二信号的次数是否大于0,若是,则确定在施加射频电场时发生启辉异常,进而确定目标膜层的厚度异常,并发出异常报警信号;若否,则发出沉积正常信号。
在一些具体实施例中,膜层沉积方法还包括:
S4、当在沉积周期内生成的第二信号的次数大于0时,根据在沉积周期内生成的第二信号的次数,补充执行至少一次沉积步骤。
当补充执行沉积步骤完成后,可以发送补充完成信号,以便进行其它工艺步骤。
在一些具体实施例中,补充执行沉积步骤的次数与在沉积周期内生成的第二信号的次数相同。
本发明实施例还提供一种半导体加工设备,其中,包括上述的反应腔室。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (12)

1.一种半导体工艺设备的反应腔室,其特征在于,包括:监测模块、沉积模块以及与所述监测模块连接的控制模块;
所述沉积模块用于在一个沉积周期中执行多次沉积步骤,每次所述沉积步骤均包括:向所述反应腔室中通入前驱体以及对所述反应腔室施加射频电场,以在所述反应腔室中生成等离子体光源,并通过所述等离子体光源在待加工工件上沉积目标膜层;
所述监测模块用于在所述沉积模块每次执行所述沉积步骤时,监测所述反应腔室中所述等离子体光源的亮度,并根据所述等离子体光源的亮度,生成第一信号;
所述控制模块用于根据至少一次所述沉积步骤中所生成的所述第一信号,判断所述沉积模块所沉积的所述目标膜层的厚度是否异常,若是,则发出异常报警信号。
2.根据权利要求1所述的反应腔室,其特征在于,所述控制模块还用于在判断出所述目标膜层的厚度异常时,控制所述沉积模块补充执行至少一次所述沉积步骤。
3.根据权利要求1所述的反应腔室,其特征在于,所述控制模块具体用于:
根据至少一次所述沉积步骤中所生成的所述第一信号判断所述沉积模块在施加所述射频电场时是否发生启辉异常,若是,则确定目标膜层的厚度异常。
4.根据权利要求3所述的反应腔室,其特征在于,所述监测模块包括光敏电阻或光敏二极管,所述第一信号为与所述反应腔室中等离子体光源的亮度负相关的电压信号。
5.根据权利要求4所述的反应腔室,其特征在于,所述控制模块包括:处理子模块和控制子模块,所述监测模块和所述控制子模块均与所述处理子模块连接;
所述处理子模块用于判断所述第一信号是否超出预设范围,若是,则生成第二信号;
所述控制子模块用于统计所述处理子模块在所述沉积周期内生成的所述第二信号的次数,当所述处理子模块在所述沉积周期内生成的所述第二信号的次数大于0时,则确定在施加所述射频电场时发生启辉异常。
6.根据权利要求5所述的反应腔室,其特征在于,所述沉积模块与所述控制子模块连接,
所述控制子模块还用于:当所述处理子模块在所述沉积周期内生成的所述第二信号的次数大于0时,根据所述处理子模块在所述沉积周期内生成的所述第二信号的次数,控制所述沉积模块补充执行至少一次所述沉积步骤。
7.根据权利要求6所述的反应腔室,其特征在于,所述沉积模块补充执行所述沉积步骤的次数与所述处理子模块在所述沉积周期内生成的所述第二信号的次数相同。
8.根据权利要求1所述的反应腔室,其特征在于,所述反应腔室的侧壁上设置有监测口,所述监测模块位于所述反应腔室外,所述监测模块通过所述监测口监测所述反应腔室中等离子体光源的亮度。
9.根据权利要求8所述的反应腔室,其特征在于,所述反应腔室中设置有用于承载所述待加工工件的基座,所述沉积模块包括设置在所述反应腔室顶部的上电极和设置在所述基座中的下电极,所述上电极和所述下电极用于响应于驱动信号施加所述射频电场,所述监测口位于所述下电极与所述上电极之间。
10.一种半导体工艺设备,其特征在于,包括权利要求1至9中任一项所述的反应腔室。
11.一种膜层沉积方法,其特征在于,应用于权利要求1至9中任一项所述的半导体工艺设备的反应腔室,所述膜层沉积方法包括:
在一个沉积周期中,执行多次沉积步骤,每次所述沉积步骤均包括:向所述反应腔室中通入前驱体以及对所述反应腔室施加射频电场,以在所述反应腔室中形成等离子体光源,并通过所述等离子体光源在待加工工件上沉积目标膜层;
在每次执行所述沉积步骤时,监测所述反应腔室中等离子体光源的亮度,并根据所述等离子体光源的亮度,生成第一信号;
根据至少一次所述沉积步骤中所生成的所述第一信号,判断沉积的所述目标膜层的厚度是否异常,若是,则发出异常报警信号。
12.根据权利要求11所述的膜层沉积方法,其特征在于,所述膜层沉积方法还包括:
当所述目标膜层的厚度异常时,补充执行至少一次所述沉积步骤。
CN202011296600.9A 2020-11-18 2020-11-18 半导体工艺设备及其反应腔室和膜层沉积方法 Active CN112458440B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202011296600.9A CN112458440B (zh) 2020-11-18 2020-11-18 半导体工艺设备及其反应腔室和膜层沉积方法
EP21893925.4A EP4249633A4 (en) 2020-11-18 2021-11-17 SEMICONDUCTOR PROCESSING APPARATUS, REACTION CHAMBER THEREFOR, AND FILM LAYER DEPOSITION METHOD
KR1020237014074A KR102641211B1 (ko) 2020-11-18 2021-11-17 반도체 공정 디바이스 및 이의 반응 챔버와 박막층 증착 방법
JP2023528533A JP7402383B2 (ja) 2020-11-18 2021-11-17 半導体プロセス装置、並びにその反応チャンバ及び膜層堆積方法
TW110142781A TWI786949B (zh) 2020-11-18 2021-11-17 半導體製程設備及其反應腔室和膜層沉積方法
PCT/CN2021/131150 WO2022105778A1 (zh) 2020-11-18 2021-11-17 半导体工艺设备及其反应腔室和膜层沉积方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011296600.9A CN112458440B (zh) 2020-11-18 2020-11-18 半导体工艺设备及其反应腔室和膜层沉积方法

Publications (2)

Publication Number Publication Date
CN112458440A true CN112458440A (zh) 2021-03-09
CN112458440B CN112458440B (zh) 2022-11-25

Family

ID=74836172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011296600.9A Active CN112458440B (zh) 2020-11-18 2020-11-18 半导体工艺设备及其反应腔室和膜层沉积方法

Country Status (6)

Country Link
EP (1) EP4249633A4 (zh)
JP (1) JP7402383B2 (zh)
KR (1) KR102641211B1 (zh)
CN (1) CN112458440B (zh)
TW (1) TWI786949B (zh)
WO (1) WO2022105778A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113416945A (zh) * 2021-06-24 2021-09-21 北京北方华创微电子装备有限公司 原子层沉积设备的进气装置及原子层沉积设备
WO2022105778A1 (zh) * 2020-11-18 2022-05-27 北京北方华创微电子装备有限公司 半导体工艺设备及其反应腔室和膜层沉积方法
CN115305461A (zh) * 2022-09-29 2022-11-08 江苏邑文微电子科技有限公司 异常工况下晶圆长膜的自动控制方法与装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166784A (en) * 1978-04-28 1979-09-04 Applied Films Lab, Inc. Feedback control for vacuum deposition apparatus
US5810963A (en) * 1995-09-28 1998-09-22 Kabushiki Kaisha Toshiba Plasma processing apparatus and method
US5846373A (en) * 1996-06-28 1998-12-08 Lam Research Corporation Method for monitoring process endpoints in a plasma chamber and a process monitoring arrangement in a plasma chamber
US20190115190A1 (en) * 2017-10-17 2019-04-18 Lam Research Corporation Methods and Systems for Controlling Plasma Glow Discharge in a Plasma Chamber
CN208949405U (zh) * 2018-09-14 2019-06-07 德淮半导体有限公司 等离子体沉积装置
CN110582155A (zh) * 2018-06-08 2019-12-17 北京北方华创微电子装备有限公司 等离子体启辉的检测装置及方法、工艺腔室
WO2020167601A2 (en) * 2019-02-13 2020-08-20 Lam Research Corporation Anomalous plasma event detection and mitigation in semiconductor processing

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040053203A (ko) 1998-04-23 2004-06-23 샌디아 코포레이션 플라스마 처리 동작을 감시하기 위한 방법 및 장치
JP2006188729A (ja) 2005-01-05 2006-07-20 Hitachi Kokusai Electric Inc 基板処理装置
JP2008202107A (ja) 2007-02-21 2008-09-04 Hitachi Kokusai Electric Inc 基板処理装置
KR101012090B1 (ko) * 2008-10-31 2011-02-07 (주)화백엔지니어링 플라즈마 공정 모니터링 장치 및 플라즈마 공정 모니터링방법
JP4575984B2 (ja) * 2009-02-12 2010-11-04 三井造船株式会社 原子層成長装置および薄膜形成方法
CN103031546B (zh) * 2011-09-29 2016-01-20 中国科学院微电子研究所 一种原子层沉积设备及其使用方法
KR20140136154A (ko) * 2013-05-20 2014-11-28 광운대학교 산학협력단 증착공정에서 증착 두께 및 균일도를 실시간으로 측정하는 방법 및 장치
US9666417B2 (en) * 2013-08-28 2017-05-30 Sakai Display Products Corporation Plasma processing apparatus and method for monitoring plasma processing apparatus
JP6195528B2 (ja) 2014-02-19 2017-09-13 東京エレクトロン株式会社 プラズマ処理装置及びその運転方法
KR101553149B1 (ko) * 2014-03-26 2015-09-14 (주)쎄미시스코 두께 변화 측정 장치
JP6524753B2 (ja) 2015-03-30 2019-06-05 東京エレクトロン株式会社 プラズマ処理装置、プラズマ処理方法及び記憶媒体
CN106567044A (zh) * 2015-10-08 2017-04-19 北京北方微电子基地设备工艺研究中心有限责任公司 薄膜制备腔室及薄膜制备方法
KR20180073700A (ko) 2015-11-16 2018-07-02 도쿄엘렉트론가부시키가이샤 진보된 광학 센서 및 플라즈마 챔버용 방법
JP6890459B2 (ja) 2017-04-14 2021-06-18 東京エレクトロン株式会社 プラズマ処理装置及び制御方法
US10697059B2 (en) 2017-09-15 2020-06-30 Lam Research Corporation Thickness compensation by modulation of number of deposition cycles as a function of chamber accumulation for wafer to wafer film thickness matching
US10886155B2 (en) 2019-01-16 2021-01-05 Applied Materials, Inc. Optical stack deposition and on-board metrology
CN112458440B (zh) 2020-11-18 2022-11-25 北京北方华创微电子装备有限公司 半导体工艺设备及其反应腔室和膜层沉积方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166784A (en) * 1978-04-28 1979-09-04 Applied Films Lab, Inc. Feedback control for vacuum deposition apparatus
US5810963A (en) * 1995-09-28 1998-09-22 Kabushiki Kaisha Toshiba Plasma processing apparatus and method
US5846373A (en) * 1996-06-28 1998-12-08 Lam Research Corporation Method for monitoring process endpoints in a plasma chamber and a process monitoring arrangement in a plasma chamber
US20190115190A1 (en) * 2017-10-17 2019-04-18 Lam Research Corporation Methods and Systems for Controlling Plasma Glow Discharge in a Plasma Chamber
CN110582155A (zh) * 2018-06-08 2019-12-17 北京北方华创微电子装备有限公司 等离子体启辉的检测装置及方法、工艺腔室
CN208949405U (zh) * 2018-09-14 2019-06-07 德淮半导体有限公司 等离子体沉积装置
WO2020167601A2 (en) * 2019-02-13 2020-08-20 Lam Research Corporation Anomalous plasma event detection and mitigation in semiconductor processing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022105778A1 (zh) * 2020-11-18 2022-05-27 北京北方华创微电子装备有限公司 半导体工艺设备及其反应腔室和膜层沉积方法
CN113416945A (zh) * 2021-06-24 2021-09-21 北京北方华创微电子装备有限公司 原子层沉积设备的进气装置及原子层沉积设备
CN115305461A (zh) * 2022-09-29 2022-11-08 江苏邑文微电子科技有限公司 异常工况下晶圆长膜的自动控制方法与装置

Also Published As

Publication number Publication date
JP7402383B2 (ja) 2023-12-20
CN112458440B (zh) 2022-11-25
JP2023546522A (ja) 2023-11-02
KR20230074564A (ko) 2023-05-30
WO2022105778A1 (zh) 2022-05-27
TW202221164A (zh) 2022-06-01
TWI786949B (zh) 2022-12-11
KR102641211B1 (ko) 2024-02-29
EP4249633A1 (en) 2023-09-27
EP4249633A4 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
CN112458440B (zh) 半导体工艺设备及其反应腔室和膜层沉积方法
JP5547763B2 (ja) プラズマ生成方法、この方法を用いた薄膜形成方法及びプラズマ生成装置
US7625609B2 (en) Formation of silicon nitride film
US5902403A (en) Method and apparatus for cleaning a chamber
KR100948985B1 (ko) 반도체 처리용 성막 장치, 그 사용 방법 및 컴퓨터로 판독가능한 매체
US10679831B2 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
US20060220574A1 (en) Plasma processing method and apparatus, and autorunning program for variable matching unit
US20160293390A1 (en) Plasma processing apparatus, plasma processing method, and recording medium
KR101528289B1 (ko) 질화 티탄막의 형성 방법
WO2019165296A1 (en) Rf current measurement in semiconductor processing tool
KR102257369B1 (ko) 플라스마 이상 판정 방법, 반도체 장치의 제조 방법 및 기판 처리 장치
US20210090861A1 (en) Substrate processing apparatus and method of manufacturing semiconductor device
KR20210019057A (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
CN112992641A (zh) 基板处理方法
TW202036711A (zh) 用於將對基板體電阻率變動響應之沉積或蝕刻速率變化降低的射頻功率補償
KR101869949B1 (ko) 복합막 증착방법 및 기판 처리 장치
TW202044324A (zh) 半導體處理中之異常電漿事件的偵測及緩解
CN114141663A (zh) 半导体工艺腔室和下电极电位控制方法
JP5052638B2 (ja) 成膜方法
US20220293394A1 (en) Ignition method and plasma processing apparatus
US20230215692A1 (en) Arcing Reduction in Wafer Bevel Edge Plasma Processing
KR101555849B1 (ko) 배치 처리 시스템 및 이의 세정 방법
JP5129112B2 (ja) 半導体装置の製造方法および半導体製造装置
KR20050010137A (ko) 플라즈마 공정 장치 및 그 이상 제어 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant