WO2015029777A1 - プラズマ処理装置及びプラズマ処理装置の監視方法 - Google Patents

プラズマ処理装置及びプラズマ処理装置の監視方法 Download PDF

Info

Publication number
WO2015029777A1
WO2015029777A1 PCT/JP2014/071322 JP2014071322W WO2015029777A1 WO 2015029777 A1 WO2015029777 A1 WO 2015029777A1 JP 2014071322 W JP2014071322 W JP 2014071322W WO 2015029777 A1 WO2015029777 A1 WO 2015029777A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma processing
alarm
value
plasma
processing apparatus
Prior art date
Application number
PCT/JP2014/071322
Other languages
English (en)
French (fr)
Inventor
雅彦 折本
敦史 庄司
Original Assignee
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺ディスプレイプロダクト株式会社 filed Critical 堺ディスプレイプロダクト株式会社
Priority to US14/914,190 priority Critical patent/US9666417B2/en
Publication of WO2015029777A1 publication Critical patent/WO2015029777A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/10Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods using digital techniques
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/182Level alarms, e.g. alarms responsive to variables exceeding a threshold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/3299Feedback systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Definitions

  • the present invention relates to a plasma processing apparatus that detects an abnormality in plasma processing and outputs an alarm, and a plasma processing apparatus monitoring method.
  • a plasma that has a gas introduction system and an exhaust system in a reaction chamber, generates plasma in the reaction chamber using process gas and high-frequency power, and forms a thin film on the substrate.
  • a CVD apparatus, a dry etching apparatus that performs an etching process to a target shape, and the like are known.
  • a plasma processing apparatus is introduced into a reaction chamber for performing film formation or etching on a substrate, a gas introduction unit for introducing or mixing a plurality of gases including a process gas into the reaction chamber, and a reaction chamber. Equipped with an exhaust part for exhausting the processed gas, a pressure control valve for controlling the exhaust speed of the process gas to bring the reaction chamber to a predetermined pressure value, etc., and the pressure is detected by the detection signal of the vacuum gauge installed in the reaction chamber The opening of the pressure control valve is controlled from the controller to control the pressure in the reaction chamber.
  • a high-frequency power source is installed after pressure control
  • plasma is generated in the reaction chamber by applying high-frequency power to the upper electrode and the lower electrode, and placed on the lower electrode using it.
  • the processed substrate is processed.
  • a product generated in the reaction chamber during the film forming process and an etching product generated during the etching process are deposited in the reaction chamber.
  • This deposit not only generates particles in the reaction chamber, but also changes the capacity of the reaction chamber, and changes the process gas partial pressure due to outgas etc. from the deposit adhering to the reaction chamber. Processing characteristics are also changed. Therefore, it is necessary to periodically remove the product accumulated in the reaction chamber according to the processing amount and the operation time.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a plasma processing apparatus capable of detecting an abnormality and outputting an alarm in a plasma processing process, and a method for monitoring the plasma processing apparatus.
  • the plasma processing apparatus of the present application includes a processing container, a gas supply means for supplying gas into the processing container, a first electrode provided in the processing container, on which a substrate to be processed is placed, and the first electrode.
  • a plasma processing apparatus comprising a second electrode, and applying a high frequency voltage between the first and second electrodes to generate plasma in a processing vessel supplied with the gas to perform plasma processing on the substrate to be processed
  • determining means for determining whether or not an alarm is necessary, and alarm means for outputting an alarm when it is determined that an alarm is necessary.
  • the determination unit determines whether the time-dependent change tendency has a predetermined tendency, and determines that an alarm is necessary when it is determined that the predetermined trend has a predetermined tendency. It is characterized by being.
  • the determination unit determines whether the value is continuously increasing or decreasing, and when determining that the value is continuously increasing or decreasing, Means for specifying the maximum and minimum values of the value within a predetermined period including a period in which the value continuously increases or decreases, and whether or not the difference between the specified maximum and minimum values is equal to or greater than a threshold value And a means for determining that a warning is necessary when it is determined that the difference between the maximum value and the minimum value is greater than or equal to a threshold value.
  • the plasma processing apparatus of the present application is characterized in that the value indicating the characteristic is a current value of a current flowing through the first or second electrode through the plasma generated in the processing container.
  • the plasma processing apparatus of the present application is characterized in that the value indicating the characteristic is a plasma impedance in the processing container.
  • a high-frequency voltage is applied between the first and second electrodes arranged opposite to each other in the processing container, and plasma is generated by the gas introduced into the processing container.
  • the computer records values indicating characteristics of plasma processing performed on the substrate to be processed in time series, and the recorded values are recorded over time. It is characterized in that a change tendency is specified, whether or not an alarm is required is determined based on the specified temporal change trend, and an alarm is output when it is determined that an alarm is required.
  • the process can be interrupted immediately when the abnormality is detected, and the number of defective substrates generated is minimized. be able to.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a plasma processing apparatus according to the present embodiment.
  • the plasma processing apparatus according to the present embodiment is configured as a plasma CVD apparatus that processes a substrate K that is a substrate to be processed by, for example, plasma CVD.
  • the plasma processing apparatus is hermetically configured and has a chamber 1 into which a substrate K is carried.
  • a stage 3 that functions as a lower electrode is provided at the bottom of the chamber 1 via a dielectric plate 2 made of ceramics or the like.
  • the stage 3 is made of metal such as aluminum, for example, and places a substrate K as a substrate to be processed.
  • a grounded shower head 5 that functions as an upper electrode is provided facing the stage 3. That is, the parallel plate electrode is comprised by the stage 3 which functions as a lower electrode, and the shower head 5 which functions as an upper electrode.
  • the shower head 5 has a gas inlet 6 at the top, a gas diffusion space 7 inside, and a plurality of gas discharge holes 8 at the bottom.
  • a gas supply pipe 9 is connected to the gas inlet 6, and a gas supply unit 21 for supplying a processing gas is connected to the other end of the gas supply pipe 9. Then, the processing gas is supplied from the gas supply unit 21 into the chamber 1 through the gas supply pipe 9 and the shower head 5.
  • the processing gas for example, fluoronitride gas is used.
  • An exhaust pipe 22 is connected to the bottom of the chamber 1, and an exhaust mechanism 23 including a vacuum pump, a pressure adjustment valve and the like is connected to the exhaust pipe 22, and the inside of the chamber 1 is exhausted by the exhaust mechanism 23.
  • an exhaust mechanism 23 including a vacuum pump, a pressure adjustment valve and the like is connected to the exhaust pipe 22, and the inside of the chamber 1 is exhausted by the exhaust mechanism 23.
  • the inside of the chamber 1 is maintained at a predetermined degree of vacuum.
  • a high frequency power supply 11 is connected to the stage 3 functioning as a lower electrode via a matching circuit 12.
  • the high frequency power supply 11 supplies high frequency power having a frequency of 13.56 MHz, for example, to the stage 3.
  • a predetermined bias voltage is generated in the stage 3, and thereby ions are drawn into the substrate K.
  • each component of the plasma processing apparatus is connected to and controlled by a control unit 51 including a microprocessor (computer).
  • the control unit 51 has a control program for realizing various processes executed by the plasma processing apparatus under the control of the control unit 51, and causes each component of the plasma processing apparatus to execute processes according to processing conditions.
  • a recording unit 52 capable of storing a program (processing recipe) is connected.
  • the recording unit 52 includes a recording medium such as a hard disk and a memory.
  • various data such as control data and process parameters collected during operation of the plasma processing apparatus are associated with time. Recorded sequentially.
  • the processing recipe may be recorded in advance in the recording unit 52, or may be configured to be read into the recording unit 52 while being stored in a portable recording medium such as a CD-ROM or DVD. . Furthermore, you may make it transmit a recipe suitably from another apparatus via a dedicated line, for example. Then, if necessary, an arbitrary processing recipe is called from the recording unit 52 by an operator's instruction or the like and is executed by the control unit 51, so that a desired process in the plasma processing apparatus is performed under the control of the control unit 51. Is done.
  • a user interface 53 including a keyboard for an operator to input commands for managing the plasma processing apparatus, a display for visualizing and displaying the operating status of the plasma processing apparatus, and the like. Has been.
  • the control unit 51 identifies a tendency of the collected process parameters to change with time, and if it is determined that the specified tendency of change with time has a predetermined tendency, some abnormality has occurred in the chamber 1.
  • One of the features is that it is determined that there is an alarm and an alarm is output through the alarm unit 54. For this reason, the alarm part 54 has a means to output a sound and light, for example.
  • the plasma processing apparatus includes the independent alarm unit 54.
  • the configuration in which a message indicating that some abnormality has occurred in the chamber 1 is displayed on a display or the like provided in the user interface 53. It is good. Furthermore, it is good also as a structure provided with the communication means for transmitting the message to the effect that some abnormality has generate
  • a substrate K as a substrate to be processed is loaded into the chamber 1 from a loading / unloading port (not shown) and placed on the stage 3. Then, while exhausting the inside of the chamber 1 by the exhaust mechanism 23, the processing gas is introduced into the chamber 1 through the shower head 5 from the gas supply unit 21. After controlling the pressure of the processing gas introduced into the chamber 1, the high frequency power supply 11 applies high frequency power to the stage 3 functioning as the lower electrode via the matching circuit 12, thereby generating plasma in the chamber 1. Using this, a plasma treatment is performed on the substrate K placed on the stage 3.
  • FIG. 2 is a circuit diagram showing an equivalent circuit of the plasma processing apparatus during the plasma processing.
  • the equivalent circuit is connected in series with the plasma 100 having the plasma impedance Zp, the plasma sheath 120 on the lower electrode side, the plasma sheath 130 on the upper electrode side, and the plasma sheath 120 on the lower electrode side. It includes the susceptor 110 and the above-described high-frequency power source 11 and matching circuit 12.
  • a capacitor 121 that indicates the capacitance of the sheath portion
  • a diode 122 that indicates that the flow of current is restricted at this interface
  • a resistor 123 that indicates the resistance that ions receive at the sheath portion are in parallel.
  • the susceptor 110 is shown as a capacitor 111 configured by sandwiching a susceptor body between plasma and a lower electrode.
  • the plasma sheath 130 on the upper electrode side is the same as the plasma sheath 120 on the lower electrode side, and includes a capacitor 131 that indicates the capacitance of the sheath portion, a diode 132 that indicates that current flow is restricted at this interface, and a sheath portion. And a resistor 133 indicating the resistance received by ions is shown as a circuit connected in parallel.
  • an ion current flows through the resistor 123 of the plasma sheath 120, and a high frequency component of the current flows through the capacitor 111 through the susceptor 110.
  • high-frequency components of the current flowing through the susceptor 110 are collected, and the average value is recorded in the recording unit 52 in time series as one of the process parameters.
  • FIG. 3 is a graph showing the time course of the RF current average value.
  • the horizontal axis represents time and the vertical axis represents an RF current average value, which is one of the process parameters.
  • the average value of the six substrates K is adopted as the RF current average value.
  • the RF current average value changes from moment to moment due to changes in the state of plasma in the chamber 1, changes in the chamber capacity due to foreign matter in the chamber 1, and the like. Also, depending on the processing status such as when the number of processed plasma processing apparatuses is small or when the plasma processing apparatus is maintained, there is a time interval of a certain time or more between the process of the preprocessed substrate and the process of the current process substrate. May be vacant.
  • ⁇ Alarm rules can be set as appropriate based on such process parameter trends over time.
  • the RF current at the time of resuming the process may show a waveform similar to that when an abnormality occurs in the chamber 1, it is not determined that the first time at the time of resuming the process is increased)
  • An alarm rule is set to output an alarm when the difference between the maximum value and the minimum value of the 12 most recent points is 0.07 or more.
  • Such an alarm rule is input by an operator using the user interface 53 and recorded in the recording unit 52.
  • FIG. 4 is a flowchart showing a processing procedure of alarm determination processing executed by the control unit 51.
  • the control unit 51 sequentially reads out the process parameters (RF current average value) recorded in the recording unit 52 and performs the following processing procedure according to a preset alarm rule to determine whether or not alarm output is necessary. .
  • the control unit 51 sets the counter value i to 1 (step S11). Next, the control unit 51 determines whether or not the RF current average value Ave newly recorded in the recording unit 52 has been acquired (step S12). If not acquired (S12: NO), the RF current Wait until the average value Ave is acquired.
  • the control unit 51 inputs the RF current average value Ave into the variable X (i) (step S13). ).
  • control unit 51 determines whether or not the counter value i is 2 or more (step S14). When it is determined that the counter value i is not 2 or more (S14: NO), that is, when the counter value i is 1, the control unit 51 increments the counter value i by 1 (step S15). The process returns to step S12.
  • the control unit 51 determines whether or not the time difference regarding the variable X (i ⁇ 1) and the variable X (i) is less than 45 minutes (step S16). That is, in step S16, the control unit 51 determines that the time difference between the process from which the i ⁇ 1th RF current average value Ave is obtained and the process from which the i th RF current average value Ave is obtained is less than 45 minutes. Judge whether there is.
  • step S16 If it is determined in step S16 that the time difference regarding the variable X (i-1) and the variable X (i) is 45 minutes or more (S16: NO), the alarm rule indicates that the process of the pretreatment substrate is completed.
  • the control unit 51 returns the process to step S11 and restarts the determination process from the beginning because it is defined that the time and the process start time of the current substrate are not increased for 45 minutes or more. .
  • step S17 when the difference between the variable X (i) and the variable X (i-1) is 0 or less (S17: NO), the RF current average value is decreased. It does not meet the above-mentioned alarm rule condition that the value increases continuously six times or more. Therefore, the control unit 51 returns the process to step S11 and starts the determination process from the beginning.
  • step S17 When it is determined in step S17 that the difference between the variable X (i) and the variable X (i ⁇ 1) is greater than 0 (S17: YES), the control unit 51 determines whether the counter value i is 6 or more. It is determined whether or not (step S18). When the counter value i is less than 6 (S18: NO), the control unit 51 increments the counter value i by 1 (step S19), and then returns the process to step S12.
  • step S18 When it is determined in step S18 that the counter value i is 6 or more (S18: YES), the control unit 51 refers to the RF current average value recorded in the recording unit 52, and in the last 12 points. It is determined whether or not the difference between the maximum value and the minimum value of the RF current average value is 0.07 or more (step S20).
  • step S20 If it is determined in step S20 that the difference between the maximum and minimum RF current average values in the last 12 points is less than 0.07 (S20: NO), the alarm rule indicates that “RF current average value” Since the difference between the maximum value and the minimum value of the 12 most recent points is 0.07 or more ", the control unit 51 increments the counter value i by 1 (step S21). The process returns to step S12.
  • step S20 When it is determined in step S20 that the difference between the maximum and minimum RF current average values in the last 12 points is 0.07 or more (S20: YES), (a) RF current average value in the alarm rule Is continuously increased six times or more, and (b) the difference between the maximum value and the minimum value of the last 12 points of the RF current average value satisfies the two conditions of 0.07 or more.
  • the unit 51 outputs a warning by outputting a control command for operating the warning unit 54 (step S22).
  • FIG. 5 is an explanatory diagram for explaining an application example of an alarm rule.
  • the graph shown in FIG. 5 is the same as the graph shown in FIG. 3, and the horizontal axis represents time and the vertical axis represents the RF current average value, which is one of the process parameters. It is a thing.
  • the RF current average value continuously increases six times or more.
  • the difference between the maximum value and the minimum value of the 12 points closest to the RF current average value does not satisfy the condition of 0.07 or more, so that it is not a target for alarm output.
  • the period A includes a period in which the process end time of the preprocessed substrate and the process start time of the current process substrate are 45 minutes or more, and the RF current average value increases before and after this period. In the alarm determination process in this embodiment, it is not regarded as an increase.
  • the RF current average value continuously increases six times or more, and the condition that the difference between the maximum value and the minimum value of the 12 points closest to the RF current average value is 0.07 or more is satisfied. Since the process exists, it is the target of alarm output. That is, three processes indicated by white squares in the period B are targeted for alarm output.
  • the abnormality in the chamber 1 is monitored based on the tendency of the process parameters to change over time, so that the process can be interrupted immediately when an abnormality is detected, and a defective substrate is generated.
  • the number of sheets can be minimized.
  • a film unevenness inspection is performed after the deposition process and the photo process. For this reason, for example, when the required time from the three-layer deposition process to the film unevenness inspection is 10 hours and the number of processed sheets per unit time of the plasma processing apparatus is 6, the processing is performed when a defective substrate is found by the film unevenness inspection. Even if the process is interrupted, there is a possibility that about 60 defective substrates are produced. On the other hand, in the present application, since an immediate response is possible, the number of defective substrates generated can be suppressed to about one.
  • the alarm unit 54 outputs an alarm based on the process parameters collected by the plasma processing apparatus.
  • a CIM system CIM: Computer Integrated Manufacturing
  • the control unit 51 transmits an instruction from the CIM system to the plasma processing apparatus and transfers various data such as control data and process parameters of the plasma processing apparatus to the CIM system. Therefore, the CIM system or a computer connected to the CIM system may determine whether or not an alarm is necessary, and output an alarm when it is determined that an alarm is necessary.
  • the alarm rule is set for the RF current average value which is one of the process parameters.
  • the process parameter for setting the alarm rule is not limited to the RF current average value.
  • Other process parameters such as plasma impedance may be used.
  • the alarm rule is set for one process parameter.
  • the alarm rule may be set by combining a plurality of types of process parameters.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 プラズマ処理の処理工程において異常を検知し、警報を出力することができるプラズマ処理装置及びプラズマ処理装置の監視方法の提供。 処理容器、処理容器内にガスを供給するガス供給手段、記処理容器内に設けられ、被処理基板を載置する第1電極、及び第1電極に対向する第2電極を備え、第1及び第2電極間に高周波電圧を印加することにより、ガスを供給した処理容器内でプラズマを発生させて被処理基板にプラズマ処理を施すプラズマ処理装置において、被処理基板に対して施したプラズマ処理の特性を示す値を時系列的に記録する記録手段と、記録手段が記録した値の経時変化傾向を特定する手段と、特定した経時変化傾向に基づき、警報の要否を判定する判定手段と、警報を要と判定した場合、警報を出力する警報手段とを備える。

Description

プラズマ処理装置及びプラズマ処理装置の監視方法
 本発明は、プラズマ処理における異常を検知して警報を出力するプラズマ処理装置及びプラズマ処理装置の監視方法に関する。
 半導体デバイスを製造するプラズマ処理装置として、反応室にガスの導入系と排気系を備え、プロセスガスを用い、かつ高周波電力を用いて反応室にプラズマを発生させ、基板上に薄膜を形成するプラズマCVD装置や、目的の形状にエッチング加工を行うドライエッチング装置等が知られている。
 プラズマ処理装置は、基板上に成膜やエッチング処理を行うための反応室、反応室にプロセスガスを含む複数のガスの混合もしくは単独で導入するためのガス導入部と、反応室内部に導入されたプロセスガスを排気する排気部、プロセスガスの排気速度を制御して反応室内を所定の圧力値にするための圧力制御バルブ等を備え、反応室に設置されている真空計の検出信号により圧力制御コントローラから圧力制御バルブの開度を制御し、反応室の圧力を制御している。圧力制御した後、高周波電源が設置されている半導体製造装置においては、上部電極および下部電極に高周波電力が印加されることで反応室内にプラズマを発生させ、それを用いて下部電極上に載置されている基板にプロセス処理を施す。
 プラズマ処理装置では、成膜処理中に反応室内部で発生した生成物や、エッチング処理中に発生したエッチング生成物が、反応室内部に堆積する。この堆積物は、反応室内のパーティクルを発生させるだけでなく、反応室の容量を変化させ、また、反応室内部に付着した堆積物からのアウトガス等により、プロセスガス分圧を変化させ、プロセスの処理特性をも変化させてしまう。そのために、定期的に処理量や稼働時間に応じて反応室内に堆積した生成物を除去する必要がある。
特開2006-293433号公報
 従来、プロセス処理を行った基板の処理枚数や、処理時間が所定値に達した時点でメンテナンスを実施していた。しかしながら、現在の半導体処理のように、多品種を同一の半導体製造装置を用いてプロセス処理が施される場合には、品種毎に成膜の膜厚およびエッチング量の違いにより発生する生成物の堆積量は異なるため、従来の管理方法ではプロセス処理特性が変化していても、次の工程での検査までは確認できず、その間にもその半導体製造装置では、ロット処理され続けているため、その間のロスはかなり大きいものになる。
 本発明は、斯かる事情に鑑みてなされたものであり、プラズマ処理の処理工程において異常を検知し、警報を出力することができるプラズマ処理装置及びプラズマ処理装置の監視方法を提供することを目的とする。
 本願のプラズマ処理装置は、処理容器、該処理容器内にガスを供給するガス供給手段、前記処理容器内に設けられ、被処理基板を載置する第1電極、及び該第1電極に対向する第2電極を備え、前記第1及び第2電極間に高周波電圧を印加することにより、前記ガスを供給した処理容器内でプラズマを発生させて前記被処理基板にプラズマ処理を施すプラズマ処理装置において、前記被処理基板に対して施したプラズマ処理の特性を示す値を時系列的に記録する記録手段と、該記録手段が記録した値の経時変化傾向を特定する手段と、特定した経時変化傾向に基づき、警報の要否を判定する判定手段と、警報を要と判定した場合、警報を出力する警報手段とを備えることを特徴とする。
 本願のプラズマ処理装置は、前記判定手段は、前記経時変化傾向が予め定めた傾向を有するか否かを判断し、予め定めた傾向を有すると判断した場合、警報を要と判定するようにしてあることを特徴とする。
 本願のプラズマ処理装置は、前記判定手段は、前記値が連続的に増加又は減少しているか否かを判断する手段と、前記値が連続的に増加又は減少していると判断した場合、前記値が連続的に増加又は減少した期間を含む所定期間内で前記値の最大値及び最小値を特定する手段と、特定した最大値と最小値との差が閾値以上であるか否かを判断する手段とを備え、前記最大値と最小値との差が閾値以上であると判断した場合、警報を要と判定するようにしてあることを特徴とする。
 本願のプラズマ処理装置は、前記特性を示す値は、前記処理容器内に発生させたプラズマを通じて前記第1又は第2電極に流れた電流の電流値であることを特徴とする。
 本願のプラズマ処理装置は、前記特性を示す値は、前記処理容器内のプラズマインピーダンスであることを特徴とする。
 本願のプラズマ処理装置の監視方法は、処理容器内に対向配置した第1及び第2電極間に高周波電圧を印加し、前記処理容器内に導入したガスによりプラズマを発生させ、被処理基板に対してプラズマ処理を施すプラズマ処理装置をコンピュータにて監視する方法において、前記コンピュータは、前記被処理基板に対して施したプラズマ処理の特性を示す値を時系列的に記録し、記録した値の経時変化傾向を特定し、特定した経時変化傾向に基づき、警報の要否を判定し、警報を要と判定した場合、警報を出力することを特徴とする。
 本願によれば、プロセスパラメータの経時変化傾向に基づき処理容器内での異常を監視しているため、異常検出時にプロセスを即時的に中断することができ、不良基板の発生枚数を最小限に抑えることができる。
本実施の形態に係るプラズマ処理装置の概略構成を示す模式図である。 プラズマ処理を行っている際のプラズマ処理装置の等価回路を示す回路図である。 RF電流平均値の経時変化傾向を示すグラフである。 制御部が実行する警報判定処理の処理手順を示すフローチャートである。 アラームルールの適用例を説明する説明図である。
 以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。
 図1は本実施の形態に係るプラズマ処理装置の概略構成を示す模式図である。本実施の形態に係るプラズマ処理装置は、例えば、プラズマCVDにより被処理基板である基板Kを処理するプラズマCVD装置として構成される。
 プラズマ処理装置は、気密に構成され、基板Kが搬入されるチャンバ1を有している。チャンバ1内の底部には、セラミックス等からなる誘電体板2を介して下部電極として機能するステージ3が設けられている。ステージ3は、例えば、アルミニウム等の金属製であり、被処理基板としての基板Kを載置する。
 チャンバ1内の上部には、ステージ3に対向して上部電極として機能する接地されたシャワーヘッド5が設けられている。すなわち、下部電極として機能するステージ3と上部電極として機能するシャワーヘッド5とで平行平板電極を構成している。シャワーヘッド5は、上部にガス導入口6を有し、内部にガス拡散空間7を有し、底部に複数のガス吐出孔8を有している。ガス導入口6にはガス供給配管9が接続されており、このガス供給配管9の他端には処理ガスを供給するガス供給部21が接続されている。そして、ガス供給部21からガス供給配管9およびシャワーヘッド5を介して、処理ガスがチャンバ1内に供給される。処理ガスとしては、例えば、フロロナイトライドガスが用いられる。
 チャンバ1の底部には排気管22が接続されており、排気管22には、真空ポンプ、圧力調整バルブ等を含む排気機構23が接続されており、この排気機構23によりチャンバ1内が排気されてチャンバ1内が所定の真空度に維持されるようになっている。
 下部電極として機能するステージ3には、マッチング回路12を介して高周波電源11が接続されている。高周波電源11は、例えば、13.56MHzの周波数を有する高周波電力をステージ3に供給する。この結果、ステージ3に所定のバイアス電圧が生じ、これにより基板Kにイオンが引き込まれるように構成されている。
 プラズマ処理装置の各構成部は、図1に示すように、マイクロプロセッサ(コンピュータ)を備えた制御部51に接続されて制御される構成となっている。制御部51には、プラズマ処理装置で実行される各種処理を制御部51の制御にて実現するための制御プログラムや、処理条件に応じてプラズマ処理装置の各構成部に処理を実行させるためのプログラム(処理レシピ)を格納することが可能な記録部52が接続されている。この記録部52は、ハードディスク、メモリ等の記録媒体を有し、前述の各種プログラムの他、プラズマ処理装置の動作中に収集される制御データ、プロセスパラメータ等の各種データが時刻に対応付けられて逐次記録される。
 なお、処理レシピは記録部52に予め記録されているものであってもよく、CD-ROM、DVD等の可搬性の記録媒体に収容された状態で記録部52に読み込む構成であってもよい。さらに、他の装置から、例えば専用回線を介してレシピを適宜伝送させるようにしてもよい。そして、必要に応じて、作業者の指示等にて任意の処理レシピを記録部52から呼び出して制御部51に実行させることで、制御部51の制御下で、プラズマ処理装置での所望の処理が行われる。
 また、制御部51には、作業者がプラズマ処理装置を管理するためにコマンドの入力操作等を行うキーボードや、プラズマ処理装置の稼働状況を可視化して表示するディスプレイ等からなるユーザインタフェース53が接続されている。
 本実施の形態では、制御部51は、収集したプロセスパラメータの経時変化傾向を特定し、特定した経時変化傾向が予め定めた傾向を有すると判断した場合、チャンバ1内で何らかの異常が発生していると判定し、警報部54を通じて警報を出力させることを特徴の1つとしている。このため、警報部54は、例えば、音や光を出力する手段を有している。
 なお、本実施の形態では、プラズマ処理装置が独立した警報部54を備える構成としたが、ユーザインタフェース53が備えるディスプレイ等にチャンバ1内で何らかの異常が発生している旨のメッセージを表示させる構成としてもよい。更に、作業者が所持する携帯端末装置に対し、チャンバ1内で何らかの異常が発生している旨のメッセージを送信するための通信手段を備える構成としてもよい。
 このようなプラズマ処理装置を用いてプラズマ処理を行う場合、まず、図示しない搬入出口からチャンバ1内に被処理基板である基板Kを搬入し、ステージ3の上に載置する。そして、排気機構23によりチャンバ1内を排気しつつガス供給部21から処理ガスをシャワーヘッド5を介してチャンバ1内に導入する。チャンバ1内に導入した処理ガスの圧力を制御した後、高周波電源11が、マッチング回路12を介して、下部電極として機能するステージ3に対して高周波電力を印加することでチャンバ1内にプラズマを発生させ、それを用いてステージ3上に載置されている基板Kにプラズマ処理を施す。
 図2はプラズマ処理を行っている際のプラズマ処理装置の等価回路を示す回路図である。図2に示すように等価回路は、プラズマインピーダンスZpを有するプラズマ100と、下部電極側のプラズマシース120と、上部電極側のプラズマシース130と、下部電極側のプラズマシース120と直列に接続されたサセプタ110と、前述した高周波電源11及びマッチング回路12とを含む。
 下部電極側のプラズマシース120は、シース部分の容量を示すコンデンサ121と、この界面で電流の流れが制限されることを示すダイオード122と、シース部分でイオンが受ける抵抗を示す抵抗123とが並列に接続された回路として示されている。また、サセプタ110は、サセプタ本体をプラズマおよび下部電極で挟んで構成されるコンデンサ111として示されている。
 上部電極側のプラズマシース130は、下部電極側のプラズマシース120と同様であり、シース部分の容量を示すコンデンサ131と、この界面で電流の流れが制限されることを示すダイオード132と、シース部分でイオンが受ける抵抗を示す抵抗133とが並列に接続された回路として示されている。
 以上のような構成において、プラズマシース120の抵抗123にはイオン電流が流れ、サセプタ110には電流の高周波成分がコンデンサ111を介して流れる。本実施の形態では、サセプタ110に流れる電流の高周波成分を収集し、プロセスパラメータの1つとして、その平均値を記録部52に時系列的に記録する。
 図3はRF電流平均値の経時変化傾向を示すグラフである。図3に示すグラフは、横軸に時刻、縦軸にプロセスパラメータの1つであるRF電流平均値をとり、RF電流平均値の経時変化傾向を示したものである。ここで、RF電流平均値については、6枚の基板Kの平均値を採用している。
 RF電流平均値は、チャンバ1内のプラズマの状態の変化、チャンバ1内の異物に伴うチャンバ内容量の変化等に起因して時々刻々と変化する。また、プラズマ処理装置における処理枚数が少ない場合、プラズマ処理装置のメンテナンスを実施した場合等の処理状況によっては、前処理基板のプロセスと現処理基板のプロセスとの間に一定時間以上の時間間隔が空く場合がある。
 このようなプロセスパラメータの経時変化傾向を基にアラームルールを適宜設定することができる。本実施の形態では、例えば、(a)RF電流平均値が6回以上連続して増加した場合(ただし、前処理基板のプロセス終了時刻と現処理基板のプロセス開始時刻とが45分以上空いた場合、処理再開時のRF電流はチャンバ1内に異常が発生したときと近い波形を示すことがあるため、処理再開時の1回目は増加とは判断しない)、及び(b)RF電流平均値の直近の12点の最大値と最小値との差が0.07以上という2つの条件を満たす場合、警報を出力するというアラームルールを設定する。このようなアラームルールは、ユーザインタフェース53を用いて作業者により入力され、記録部52に記録される。
 図4は制御部51が実行する警報判定処理の処理手順を示すフローチャートである。制御部51は、記録部52に記録されているプロセスパラメータ(RF電流平均値)を逐次読み出し、予め設定されたアラームルールに従って、以下の処理手順を実行することにより警報出力の要否判定を行う。
 制御部51は、カウンタの値iを1に設定する(ステップS11)。次いで、制御部51は、記録部52に新たに記録されたRF電流平均値Aveを取得したか否かを判断し(ステップS12)、取得していない場合には(S12:NO)、RF電流平均値Aveを取得するまで待機する。
 記録部52に新たに記録されたRF電流平均値Aveを取得したと判断した場合(S12:YES)、制御部51は、そのRF電流平均値Aveを変数X(i)に入力する(ステップS13)。
 次いで、制御部51は、カウンタの値iが2以上であるか否かを判断する(ステップS14)。カウンタの値iが2以上でないと判断した場合(S14:NO)、すなわち、カウンタの値iが1の場合、制御部51は、カウンタの値iを1だけインクリメントした上で(ステップS15)、処理をステップS12へ戻す。
 カウンタの値iが2以上と判断した場合(S14:YES)、制御部51は、変数X(i-1)及び変数X(i)に関する時間差が45分未満か否かを判断する(ステップS16)。すなわち、制御部51は、ステップS16において、i-1番目のRF電流平均値Aveが得られたプロセスとi番目のRF電流平均値Aveが得られたプロセスとの間の時間差が45分未満であるか否かを判断する。
 ステップS16にて、変数X(i-1)及び変数X(i)に関する時間差が45分以上空いていると判断した場合(S16:NO)、上記アラームルールにて、「前処理基板のプロセス終了時刻と現処理基板のプロセス開始時刻とが45分以上空いた場合には増加と判断しない」ことを規定しているため、制御部51は、処理をステップS11へ戻して判定処理を最初からやり直す。
 ステップS16にて、変数X(i-1)及び変数X(i)に関する時間差が45分未満であると判断した場合(S16:YES)、制御部51は、変数X(i)と変数X(i-1)との差が0より大きいか否かを判断する(ステップS17)。すなわち、制御部51は、現処理基板のプロセスにて得られたRF電流平均値Ave(=X(i))は、前処理基板のプロセスにて得られたRF電流平均値Ave(=X(i-1))より増加したか否かを判断する。
 ステップS17にて、変数X(i)と変数X(i-1)との差が0以下の場合(S17:NO)、RF電流平均値は減少していることを示すため、「RF電流平均値が6回以上連続して増加」するという上記アラームルールの条件に適合しない。よって、制御部51は、処理をステップS11へ戻して判定処理を最初からやり直す。
 ステップS17にて、変数X(i)と変数X(i-1)との差が0より大きいと判断した場合(S17:YES)、制御部51は、カウンタの値iが6以上であるか否かを判断する(ステップS18)。カウンタの値iが6未満の場合(S18:NO)、制御部51は、カウンタの値iを1だけインクリメントした上で(ステップS19)、処理をステップS12へ戻す。
 ステップS18にて、カウンタの値iが6以上であると判断した場合(S18:YES)、制御部51は、記録部52に記録されているRF電流平均値を参照し、直近の12点中のRF電流平均値の最大値と最小値との差が0.07以上であるか否かを判断する(ステップS20)。
 ステップS20にて、直近の12点中のRF電流平均値の最大値と最小値との差が0.07未満と判断した場合(S20:NO)、上記アラームルールにて、「RF電流平均値の直近の12点の最大値と最小値との差が0.07以上」であることを規定しているため、制御部51は、カウンタの値iを1だけインクリメントした上で(ステップS21)、処理をステップS12へ戻す。
 ステップS20にて、直近の12点中のRF電流平均値の最大値と最小値との差が0.07以上と判断した場合(S20:YES)、上記アラームルールにおける(a)RF電流平均値が6回以上連続して増加した場合、及び(b)RF電流平均値の直近の12点の最大値と最小値との差が0.07以上という2つの条件を満たすことになるため、制御部51は、警報部54を作動させる制御命令を出力することにより、警報を出力させる(ステップS22)。
 図5はアラームルールの適用例を説明する説明図である。図5に示すグラフは、図3に示したグラフと同一であり、横軸に時刻、縦軸にプロセスパラメータの1つであるRF電流平均値をとり、RF電流平均値の経時変化傾向を示したものである。
 図5に示すグラフでは、期間A及び期間Bの2つの期間において、RF電流平均値が6回以上連続して増加している。このうち、期間Aでは、RF電流平均値の直近の12点の最大値と最小値との差が0.07以上という条件を満たさないので、警報出力の対象にはならない。また、期間Aには、前処理基板のプロセス終了時刻と現処理基板のプロセス開始時刻とが45分以上空いている期間が含まれており、この前後においてRF電流平均値は増加しているものの、本実施形態における警報判定処理では増加とはみなさない。
 一方、期間Bでは、RF電流平均値が6回以上連続して増加しており、しかもRF電流平均値の直近の12点の最大値と最小値との差が0.07以上という条件を満たすプロセスが存在するため、警報出力の対象となる。すなわち、期間Bにおいて白抜き四角で示した3回のプロセスが警報出力の対象となる。
 以上のように、本実施の形態では、プロセスパラメータの経時変化傾向に基づきチャンバ1内での異常を監視しているため、異常検出時にプロセスを即時的に中断することができ、不良基板の発生枚数を最小限に抑えることができる。
 従来では、デポ処理及びフォト処理の後に、膜ムラ検査を行っていた。このため、例えば、3層デポ処理から膜ムラ検査までの所要時間を10時間、プラズマ処理装置の単位時間あたりの処理枚数を6枚とした場合、膜ムラ検査で不良基板が見つかった時点で処理を中断したとしても、60枚程度の不良基板が作成されている虞がある。これに対し、本願では、即時対応が可能となるため、不良基板の発生枚数を1枚程度に抑えることができる。
 なお、本実施の形態では、プラズマ処理装置にて収集したプロセスパラメータに基づき、警報部54にて警報を出力する構成としたが、プラズマ処理装置の上位にCIMシステム(CIM : Computer Integrated Manufacturing)が接続されていることが一般的であり、前述の制御部51は、CIMシステムからの指示をプラズマ処理装置に伝達すると共に、プラズマ処理装置の制御データやプロセスパラメータ等の各種データをCIMシステムへ転送する機能を有しているので、このCIMシステム又はCIMシステムに接続されるコンピュータ等において、警報の要否を判定し、警報を要と判定した場合に警報を出力する構成としてもよい。
 また、本実施の形態では、プロセスパラメータの1つであるRF電流平均値についてアラームルールを設定する構成としたが、アラームルールを設定するプロセスパラメータはRF電流平均値に限定されるものではなく、プラズマインピーダンス等の他のプロセスパラメータであってもよい。この場合、プロセスパラメータの連続的な増加によって警報出力の要否を判定するのではなく、連続的な減少の有無により警報出力の要否を判定する構成であってもよい。
 更に、本実施の形態では、1つのプロセスパラメータについてアラームルールを設定する構成としたが、複数種のプロセスパラメータを組み合わせてアラームルールを設定する構成としてもよい。
 今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。また、各実施の形態で記載されている技術的特徴は、お互いに組み合わせることが可能である。
 1 チャンバ
 2 誘電体板
 3 ステージ
 5 シャワーヘッド
 6 ガス導入管
 7 ガス拡散空間
 8 ガス吐出孔
 9 ガス供給配管
 11 高周波電源
 12 マッチング回路
 21 ガス供給部
 22 排気管
 23 排気機構
 51 制御部
 52 記録部
 53 ユーザインタフェース
 54 警報部

Claims (6)

  1.  処理容器、該処理容器内にガスを供給するガス供給手段、前記処理容器内に設けられ、被処理基板を載置する第1電極、及び該第1電極に対向する第2電極を備え、前記第1及び第2電極間に高周波電圧を印加することにより、前記ガスを供給した処理容器内でプラズマを発生させて前記被処理基板にプラズマ処理を施すプラズマ処理装置において、
     前記被処理基板に対して施したプラズマ処理の特性を示す値を時系列的に記録する記録手段と、
     該記録手段が記録した値の経時変化傾向を特定する手段と、
     特定した経時変化傾向に基づき、警報の要否を判定する判定手段と、
     警報を要と判定した場合、警報を出力する警報手段と
     を備えることを特徴とするプラズマ処理装置。
  2.  前記判定手段は、前記経時変化傾向が予め定めた傾向を有するか否かを判断し、予め定めた傾向を有すると判断した場合、警報を要と判定するようにしてあることを特徴とする請求項1に記載のプラズマ処理装置。
  3.  前記判定手段は、
     前記値が連続的に増加又は減少しているか否かを判断する手段と、
     前記値が連続的に増加又は減少していると判断した場合、前記値が連続的に増加又は減少した期間を含む所定期間内で前記値の最大値及び最小値を特定する手段と、
     特定した最大値と最小値との差が閾値以上であるか否かを判断する手段と
     を備え、
     前記最大値と最小値との差が閾値以上であると判断した場合、警報を要と判定するようにしてあることを特徴とする請求項2に記載のプラズマ処理装置。
  4.  前記特性を示す値は、前記処理容器内に発生させたプラズマを通じて前記第1又は第2電極に流れた電流の電流値であることを特徴とする請求項1から請求項3の何れか1つに記載のプラズマ処理装置。
  5.  前記特性を示す値は、前記処理容器内のプラズマインピーダンスであることを特徴とする請求項1から請求項3の何れか1つに記載のプラズマ処理装置。
  6.  処理容器内に対向配置した第1及び第2電極間に高周波電圧を印加し、前記処理容器内に導入したガスによりプラズマを発生させ、被処理基板に対してプラズマ処理を施すプラズマ処理装置をコンピュータにて監視する方法において、
     前記コンピュータは、
     前記被処理基板に対して施したプラズマ処理の特性を示す値を時系列的に記録し、
     記録した値の経時変化傾向を特定し、
     特定した経時変化傾向に基づき、警報の要否を判定し、
     警報を要と判定した場合、警報を出力する
     ことを特徴とするプラズマ処理装置の監視方法。
PCT/JP2014/071322 2013-08-28 2014-08-12 プラズマ処理装置及びプラズマ処理装置の監視方法 WO2015029777A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/914,190 US9666417B2 (en) 2013-08-28 2014-08-12 Plasma processing apparatus and method for monitoring plasma processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013177104 2013-08-28
JP2013-177104 2013-08-28

Publications (1)

Publication Number Publication Date
WO2015029777A1 true WO2015029777A1 (ja) 2015-03-05

Family

ID=52586346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071322 WO2015029777A1 (ja) 2013-08-28 2014-08-12 プラズマ処理装置及びプラズマ処理装置の監視方法

Country Status (2)

Country Link
US (1) US9666417B2 (ja)
WO (1) WO2015029777A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531603A (zh) * 2015-09-10 2017-03-22 台湾积体电路制造股份有限公司 离子收集器、等离子体系统的控制方法及处理基板的方法
JPWO2018185832A1 (ja) * 2017-04-04 2019-11-14 株式会社Fuji 情報処理装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111932843A (zh) * 2020-07-01 2020-11-13 中国人民解放军海军工程大学 一种动设备在线监测报警限反复穿越方法
CN112458440B (zh) * 2020-11-18 2022-11-25 北京北方华创微电子装备有限公司 半导体工艺设备及其反应腔室和膜层沉积方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018274A (ja) * 2000-07-04 2002-01-22 Tokyo Electron Ltd 処理装置の運転方法及び処理装置の異常検出方法
JP2003264100A (ja) * 2001-11-30 2003-09-19 Alps Electric Co Ltd プラズマ処理装置及びプラズマ処理装置の整合回路設計システム
JP2003282542A (ja) * 2002-03-25 2003-10-03 Mitsubishi Electric Corp プラズマ処理装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7054786B2 (en) * 2000-07-04 2006-05-30 Tokyo Electron Limited Operation monitoring method for treatment apparatus
TW200300649A (en) 2001-11-27 2003-06-01 Alps Electric Co Ltd Plasma processing apparatus, its driving method, matching circuit design system, and plasma processing method
JP4693464B2 (ja) 2005-04-05 2011-06-01 株式会社東芝 品質管理システム、品質管理方法及びロット単位のウェハ処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018274A (ja) * 2000-07-04 2002-01-22 Tokyo Electron Ltd 処理装置の運転方法及び処理装置の異常検出方法
JP2003264100A (ja) * 2001-11-30 2003-09-19 Alps Electric Co Ltd プラズマ処理装置及びプラズマ処理装置の整合回路設計システム
JP2003282542A (ja) * 2002-03-25 2003-10-03 Mitsubishi Electric Corp プラズマ処理装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531603A (zh) * 2015-09-10 2017-03-22 台湾积体电路制造股份有限公司 离子收集器、等离子体系统的控制方法及处理基板的方法
US10553411B2 (en) 2015-09-10 2020-02-04 Taiwan Semiconductor Manufacturing Co., Ltd. Ion collector for use in plasma systems
US11581169B2 (en) 2015-09-10 2023-02-14 Taiwan Semiconductor Manufacturing Co., Ltd. Ion collector for use in plasma systems
US11996276B2 (en) 2015-09-10 2024-05-28 Taiwan Semiconductor Manufacturing Co., Ltd. Ion collector for use in plasma systems
JPWO2018185832A1 (ja) * 2017-04-04 2019-11-14 株式会社Fuji 情報処理装置

Also Published As

Publication number Publication date
US20160211123A1 (en) 2016-07-21
US9666417B2 (en) 2017-05-30

Similar Documents

Publication Publication Date Title
US8751196B2 (en) Abnormality detection system, abnormality detection method, recording medium, and substrate processing apparatus
JP3630931B2 (ja) プラズマ処理装置、プロセスモニタ方法及び半導体装置の製造方法
US7842189B2 (en) Treatment device, treatment device consumable parts management method, treatment system, and treatment system consumable parts management method
JP5646131B2 (ja) プラズマプロセス異常状態が発生した時に信号を生成する装置
KR101148605B1 (ko) 플라즈마 처리 장치
JP5712741B2 (ja) プラズマ処理装置、プラズマ処理方法及び記憶媒体
WO2015029777A1 (ja) プラズマ処理装置及びプラズマ処理装置の監視方法
KR101760975B1 (ko) 진공 장치, 그 압력 제어 방법 및 에칭 방법
KR102354672B1 (ko) 처리 장치의 유지 보수 제어 방법 및 제어 장치
JP2008288340A (ja) プラズマ処理装置、プラズマ処理方法、及び洗浄時期予測プログラム
JP2009049382A (ja) ドライエッチング方法およびドライエッチング装置
JP2008287999A (ja) プラズマ処理装置およびその制御方法
US20090061074A1 (en) Technology of detecting abnormal operation of plasma process
JP5876248B2 (ja) パーティクルモニタ方法、パーティクルモニタ装置
JP2006328510A (ja) プラズマ処理方法及び装置
KR101843443B1 (ko) 플라즈마 설비 및 그의 관리방법
JP7331750B2 (ja) 製造装置監視システムおよびそれを用いた半導体装置の製造方法
JP2020159949A (ja) 高周波供給装置及び高周波電力の供給方法
TWI814640B (zh) 真空處理裝置之清淨方法
JP5136514B2 (ja) プラズマ処理装置およびプラズマ処理方法
JP2005183756A (ja) プラズマ処理装置およびその管理方法
TW202420388A (zh) 控制程式、資訊處理程式、控制方法、資訊處理方法、電漿處理裝置、及資訊處理裝置
JP2023156153A (ja) 処理データの解析方法、および情報処理装置
JP2001135579A (ja) プラズマ処理装置
JP2007110020A (ja) プラズマエッチング処理における異常判定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839411

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14914190

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP