JP5136514B2 - プラズマ処理装置およびプラズマ処理方法 - Google Patents

プラズマ処理装置およびプラズマ処理方法 Download PDF

Info

Publication number
JP5136514B2
JP5136514B2 JP2009126069A JP2009126069A JP5136514B2 JP 5136514 B2 JP5136514 B2 JP 5136514B2 JP 2009126069 A JP2009126069 A JP 2009126069A JP 2009126069 A JP2009126069 A JP 2009126069A JP 5136514 B2 JP5136514 B2 JP 5136514B2
Authority
JP
Japan
Prior art keywords
discharge
plasma
processing
potential change
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009126069A
Other languages
English (en)
Other versions
JP2010277695A (ja
Inventor
勝 野々村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009126069A priority Critical patent/JP5136514B2/ja
Publication of JP2010277695A publication Critical patent/JP2010277695A/ja
Application granted granted Critical
Publication of JP5136514B2 publication Critical patent/JP5136514B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は基板などの処理対象物をプラズマ処理するプラズマ処理装置およびプラズマ処理方法に関するものである。
電子部品が実装される基板などの処理対象物のクリーニングやエッチングなどの表面処理方法として、プラズマ処理が知られている。プラズマ処理においては、処理対象の基板を処理室を形成する真空チャンバ内に載置し、処理室内でプラズマ放電を発生させ、この結果発生したイオンや電子、ラジカルを基板の表面に作用させることにより、所望の表面処理が行われる。このプラズマ処理を良好な処理品質で安定して行うためには、予め処理目的に則して設定された放電条件に応じてプラズマが正しく発生していることが前提となるため、従来よりプラズマの発生状態を監視することを目的として、処理室内におけるプラズマ放電の状態を検出する放電検出センサを備えたプラズマ処理装置が知られている(特許文献1〜4参照)。
これらの特許文献に示す先行技術においては、処理室内におけるプラズマの状態変化に応じて誘発される電位変化を放電検出センサによって電位変化波形として検出し、検出結果を予め設定された閾値と比較することにより、プラズマ放電が正常に開始されたか否か、あるいは異常放電が発生しているか否かなどの所定項目について判定するようにしている。すなわち放電開始に際しては特有のパターンおよび振幅を有する電位変化が発生することから、高周波電力がONされたタイミングを起点とする所定の時間帯においてこの電位変化の波形が検出されることにより、処理室内において放電が正常に開始したと判定する。またプラズマ放電が継続して発生している状態において、特異な振幅値を有するピーク状の波形が検出されることにより、異常放電が発生したと判定される。そしてこのような判定を行うために、各プラズマ処理装置においては判定のための各種の時間パラメータ、例えば放電開始を検出するための上述の時間帯を規定する時間パラメータや、異常放電と見なされる特異な振幅値を有する波形を検出するための閾値などが予め設定される。
特開2009−48879号公報 特開2009−48880号公報 特開2009−48881号公報 特開2009−48882号公報
しかしながら、上述の先行技術においては、同一のプラズマ処理装置において生産対象に応じてプラズマ処理条件を変更すると、放電開始の判定や異常放電発生の判定などの判定結果が必ずしも正確に行われず、誤判定となる場合がある。放電検出センサによって検出される電位変化の波形は一様ではなく、プラズマ処理に適用される処理条件、すなわち処理圧力、プラズマ放電に用いられるガス種類、ガス流量など複数の条件因子に依存しており、さらに処理室内の汚損状態など経時的に変化する条件によっても変化するからである。
ところが従来技術においては、判定に用いられる時間パラメータや閾値などの判定パラメータは、極力広い範囲の処理条件に対応可能となるよう汎用性を重視して固定的に設定
されていた。このため、ユーザにおいて生産対象の品種に応じてプラズマ処理条件を変更した場合や装置状態が経時変化した場合などには、固定的に設定された判定パラメータは必ずしも目的にかなった適切なものであるとは限らず、結果として誤った判定結果を招く場合があった。
例えば、上述の異常放電の検出は、予め固定的に設定された時間パラメータで規定される時間帯の終了後に開始されるが、この時間パラメータの設定が不適切である場合には、以下のような不都合が生じる。すなわち設定された時間パラメータが適正時間よりも短い場合には、実際には正常な放電が開始されているにも拘わらず、放電が開始されていない旨の誤判定となる。また反対に時間パラメータが適正時間よりも長い場合には、実際の放電開始から時間パラメータで規定される時間が経過するまでの間に、異常放電の監視が行われない時間帯が発生することとなり、本来の目的に適った放電状態の検出を適正に行うことができない。このように、放電検出センサによって放電状態の監視を行う従来のプラズマ処理装置には、判定パラメータを固定的に設定することに起因して、放電状態の検出を適正に行うことが困難であるという問題があった。
そこで本発明は、放電検出センサによって放電状態の監視を行う構成において、放電状態の検出を適正に行うことができるプラズマ処理装置およびプラズマ処理方法を提供することを目的とする。
本発明のプラズマ処理装置は、処理対象物を収容する処理室を形成する真空チャンバと、前記処理室を真空排気する真空排気部と、前記処理室内にプラズマ放電発生用ガスを供給するガス供給部と、前記処理室内のプラズマ放電発生用ガスに対して高周波電力を作用させることによりプラズマ放電を発生させるプラズマ発生手段と、予め設定された処理条件に基づいて前記真空排気部および前記ガス供給部ならびに前記プラズマ発生手段を制御する制御部と、一方の面と他方の面とを有する板状部材であってその一方の面を前記処理室内で発生したプラズマ放電に対向する状態で前記真空チャンバに装着された誘電体部材および前記他方の面に配置されたプローブ電極を少なくとも有する放電検出センサと、前記プローブ電極に前記プラズマ放電の変化に応じて誘発される電位変化を検出してこのプラズマ放電の状態を判定するとともに前記制御部へ判定結果を出力するプラズマ放電監視部を備えたプラズマ処理装置であって、前記制御部は、前記処理条件に対応した前記電位変化のデータを取得するためのテスト放電を実行させるテスト放電実行部を備え、前記プラズマ放電監視部は、前記テスト放電によって取得された電位変化のデータを記憶する電位変化記憶部と、前記電位変化記憶部に記憶された電位変化のデータより前記プラズマ発生手段による高周波電力の出力が開始されてからプラズマ放電が開始した後にこのプラズマ放電が安定するまでの時間に基づいて設定される放電開始判定時間、前記高周波電力を出力してから前記放電開始判定時間が経過するまでの間において放電開始の有無を判定するために用いられる放電開始判定閾値および前記放電開始判定時間が経過した後において異常放電を検出するための閾値として用いられる異常放電判定閾値を設定する判定パラメータ設定部と、前記高周波電力を出力した直後から前記放電開始判定時間が経過するまでの間に検出された電位変化を前記放電開始判定閾値と比較することにより前記プラズマ放電が正常に開始されたか否かを判定し、前記放電開始判定時間が経過した後に検出された電位変化を前記異常放電判定閾値と比較することにより異常放電の有無を判定する放電状態判定部を備えた。
本発明のプラズマ処理方法は、処理対象物を収容する処理室を形成する真空チャンバと、前記処理室を真空排気する真空排気部と、前記処理室内にプラズマ放電発生用ガスを供給するガス供給部と、前記処理室内のプラズマ放電発生用ガスに対して高周波電力を作用させることによりプラズマ放電を発生させるプラズマ発生手段と、予め設定された処理条
件に基づいて前記真空排気部および前記ガス供給部ならびに前記プラズマ発生手段を制御する制御部と、一方の面と他方の面とを有する板状部材であってその一方の面を前記処理室内で発生したプラズマ放電に対向する状態で前記真空チャンバに装着された誘電体部材および前記他方の面に配置されたプローブ電極を少なくとも有する放電検出センサと、前記プローブ電極に前記プラズマ放電の変化に応じて誘発される電位変化を検出してこのプラズマ放電の状態を判定するとともに前記制御部へ判定結果を出力するプラズマ放電監視部とを備えたプラズマ処理装置によって、前記処理対象物のプラズマ処理を行うプラズマ処理方法であって、前記処理室内における処理圧力、前記プラズマ放電発生用ガスの種類、流量、前記高周波電力の出力を含むプラズマ処理の処理条件を設定する処理条件設定段階と、前記処理条件に対応した前記電位変化のデータを取得するためのテスト放電を実行するとともに、このテスト放電によって得られた電位変化のデータを電位変化記憶部に記憶する電位変化記憶段階と、前記電位変化記憶段階において電位変化記憶部に記憶された電位変化のデータより、前記プラズマ発生手段による高周波電力の出力が開始されてからプラズマ放電が開始した後にこのプラズマ放電が安定するまでの時間に基づいて設定される放電開始判定時間、前記高周波電力を出力してから前記放電開始判定時間が経過するまでの間において放電開始の有無を判定するために用いられる放電開始判定閾値および前記放電開始判定時間が経過した後において異常放電を検出するための閾値として用いられる異常放電判定閾値を設定する判定パラメータ設定段階と、前記処理対象物に対して前記処理条件の下でプラズマ処理を実行するプラズマ処理段階とを含み、前記プラズマ処理段階において、前記高周波電力を出力した直後から前記放電開始判定時間が経過するまでの間に検出された電位変化を前記放電開始判定閾値と比較することにより前記プラズマ放電が正常に開始されたか否かを判定する放電開始判定段階と、前記放電開始判定時間が経過した後に検出された電位変化を前記異常放電判定閾値と比較することにより異常放電の有無を判定する放電状態判定段階とを含む。
本発明によれば、プラズマ処理の実行に際して設定された処理条件によってテスト放電を実行してこの処理条件に対応した電位変化のデータを取得し、次いでこの電位変化のデータに基づいて放電開始判定時間、放電開始判定閾値および異常放電判定閾値などの判定パラメータを設定し、プラズマ処理実行段階において、高周波電力を出力した直後から放電開始判定時間が経過するまでの間に検出された電位変化を放電開始判定閾値と比較してプラズマ放電が正常に開始されたか否かを判定し、放電開始判定時間が経過した後に検出された電位変化を異常放電判定閾値と比較して異常放電の有無を判定する形態のプラズマ処理方法を採用することにより、判定パラメータを適正且つ容易に設定することができ、放電検出センサによって放電状態の監視を行う構成において、放電状態の検出を適正に行うことができる。
本発明の一実施の形態のプラズマ処理装置の断面図 本発明の一実施の形態のプラズマ処理装置に用いられる放電検出センサの構成説明図 本発明の一実施の形態のプラズマ処理装置の制御部の構成および機能を示すブロック図 本発明の一実施の形態のプラズマ処理装置における放電検出センサによって検出される電位変化波形の説明図 本発明の一実施の形態のプラズマ処理方法における判定パラメータ自動設定のフロー図 本発明の一実施の形態のプラズマ処理方法におけるテスト放電によって得られた放電波形を示すグラフ 本発明の一実施の形態のプラズマ処理方法におけるテスト放電によって得られた放電波形を示すグラフ
次に本発明の実施の形態を図面を参照して説明する。まず図1を参照してプラズマ処理装置の構造を説明する。図1において、真空チャンバ3は、水平なベース部1上に、蓋部2を昇降手段(図示省略)によって昇降自在に配設して構成されている。蓋部2が下降してベース部1の上面にシール部材4を介して当接した状態では真空チャンバ3は閉状態となり、ベース部1と蓋部2で囲まれる密閉空間は、処理対象物を収容しプラズマ処理を行う処理室3aを形成する。処理室3aには電極部5が配置されており、電極部5はベース部1に設けられた開口部1aに下方から絶縁部材6を介して装着されている。電極部5の上面には絶縁体7が装着されており、処理対象物である基板9は絶縁体7の上面にガイド部材8によって両側端部をガイドされて基板搬送方向(紙面垂直方向)に搬入される。
ベース部1に設けられた開孔1bには、管路11を介してベントバルブ12,真空計15,ガス供給バルブ13および真空バルブ14が接続されている。さらにガス供給バルブ13、真空バルブ14はそれぞれガス供給部16、真空ポンプ17と接続されている。真空ポンプ17を駆動した状態で真空バルブ14を開にすることにより、処理室3a内が真空排気される。このときの真空度は、真空計15によって検出される。真空バルブ14および真空ポンプ17は、処理室3a内を真空排気する真空排気部を構成する。またガス供給バルブ13を開状態にすることにより、ガス供給部16からプラズマ放電発生用ガスが処理室3a内に供給される。ガス供給部16は流量調整機能を内蔵しており、任意の供給量のプラズマ放電発生用ガスを処理室3a内に供給することができる。そしてベントバルブ12を開にすることにより、真空破壊時に処理室3a内に大気が導入される。
電極部5には整合器18を介して高周波電源部19が電気的に接続されている。真空排気された処理室3a内にガスを供給した状態で高周波電源部19を駆動することにより、電極部5には接地部10に接地された蓋部2との間に高周波電圧が印加され、これにより処理室3a内にはプラズマ放電が発生する。整合器18は、処理室3a内においてプラズマ放電を発生させるプラズマ放電回路と高周波電源部19のインピーダンスを整合させる機能を有している。電極部5、整合器18および高周波電源部19は、処理室3a内のプラズマ放電発生用ガスに対して高周波電力を作用させることによりプラズマ放電を発生させるプラズマ発生手段となっている。
蓋部2の側面には、真空チャンバ3の外部から処理室3aの内部を視認するためののぞき窓として機能する円形の開口部2aが設けられている。開口部2aには、誘電体部材21、プローブ電極ユニット22よりなる放電検出センサ23が、支持部材24によって蓋部2の外側から固定されている。ここで図2を参照して、放電検出センサ23の構成を説明する。蓋部2に設けられた開口部2aには、光学的に透明なガラスで製作された誘電体部材21が装着されている。処理室3aの内部では、電極部5と蓋部2との間にプラズマ放電が発生しており、誘電体部材21は一方の面が処理室3a内に発生したプラズマ放電に対向する姿勢で真空チャンバ3に設けられた開口部2aに装着されている。
誘電体部材21の他方の面、すなわち真空チャンバ3の外側向の面には、プローブ電極ユニット22が装着されている。プローブ電極ユニット22は、ガラス板22aの一方の面にプローブ電極22bを形成し、他方の面にシールド電極22cを形成した一体部品であり、プローブ電極ユニット22を誘電体部材21に装着して放電検出センサ23を形成する際には、プローブ電極22bを誘電体部材21の外面(他方の面)に密着させた状態で、導電性金属よりなる支持部材24によって蓋部2に支持されている。すなわち放電検出センサ23は、一方の面を処理室3a内に発生したプラズマ放電に対向するように真空チャンバ3に装着された板状の誘電体部材21およびこの誘電体部材21の他方の面に配
置されたプローブ電極22bを少なくとも有する構成となっている。プローブ電極22bは、検出導線22dを介してプラズマ放電監視部20に接続されている。
処理室3aの内部においてプラズマ放電が発生した状態では、プローブ電極22bは、誘電体部材21および処理室3a内で発生したプラズマPと誘電体部材21との界面に形成される空間電荷層であるシースSを介して、プラズマPと電気的に接続された状態となる。すなわち、図2に示すように、誘電体部材21によって形成されるコンデンサC1およびシースSに相当する容量のコンデンサC2およびプラズマPの有する抵抗Rを直列に接続した電気的な回路が形成され、プローブ電極22bにはプラズマPの状態に応じた電位が誘起される。本実施の形態においては、プローブ電極22bの電位を検出導線22dによってプラズマ放電監視部20に導き、プラズマPの状態に応じた電位変化をプラズマ放電監視部20によって監視することにより、処理室3a内におけるプラズマ放電状態の監視を行うようにしている。プラズマ放電監視部20は、プローブ電極22bに処理室3a内におけるプラズマ放電の変化に応じて誘発される電位変化を検出して、このプラズマ放電の状態を判定するとともに、制御部25(図3も参照)へ判定結果を出力する。
すなわち処理室3aの内部において、電極部5上に載置された基板9の周辺で異常放電などが発生すると、処理室3a内部のプラズマPの状態が変動する。この変動は上述の回路のインピーダンスを変化させることから、プローブ電極22bの電位変化として検出される。この電位変化の検出は極めて高感度であり、従来方法ではほとんど検知し得なかったような微弱な変動でも正確に検出することができるという特徴を有している。シールド電極22cはプローブ電極22bの外面側を電気的にシールドする機能を有しており、シールド電極22cに生じた電荷は接地された蓋部2に導電性の支持部材24を介して逃がされる。これにより、プローブ電極22bに誘発される電位変化に対するノイズが低減される。
本実施の形態においては、プローブ電極22b、シールド電極22cは、いずれもガラス板22aの表面にITOなどの透明な導電性物質を膜状にコーティングすることにより形成される。これにより、放電検出センサ23を開口部2aに装着した状態において、蓋部2の外側から開口部2aを介して処理室3a内部を視認できるようになっている。すなわち、本実施の形態に示す放電検出センサ23においては、誘電体部材21が真空チャンバ3の外部から処理室3a内を視認するための開口部2a(のぞき窓)に装着された光学的に透明なガラスから成り、プローブ電極22bが光学的に透明な導電性物質から成る構成を用いている。
このような構成により、処理室3aの内部を視認するのぞき窓と、プラズマ放電状態を監視するためのプローブ電極22bとを兼用させることができる。また誘電体部材21は処理室3a内のプラズマPに露呈されていることから表面の損耗が生じ、所定のインターバルで交換する必要がある。この場合においても、プローブ電極ユニット22と誘電体部材21とは別部品となっているため、消耗部品としての誘電体部材21のみを交換すればよく、プローブ電極ユニット22は交換する必要がない。
プラズマ処理装置は全体の動作制御を行う制御部25を備えている。制御部25が、ベントバルブ12、ガス供給バルブ13,真空バルブ14,真空計15,ガス供給部16、真空ポンプ17、高周波電源部19を制御することにより、プラズマ処理に必要な各動作が実行される。また制御部25はプラズマ放電監視部20を制御するとともに、プラズマ放電監視部20による検出結果を受信して必要な制御処理を行う機能を有する。制御部25には操作・入力部26および表示部27が接続されており、操作・入力部26はプラズマ処理実行に必要な各種操作入力や処理条件設定用のデータなどのデータ入力を行う。表示部27は操作・入力部26による入力時の操作画面の表示の他、制御部25がプラズマ
放電監視部20の検出結果に基づいて判定した判定結果の表示を行う。
次に図3を参照して、制御部25およびプラズマ放電監視部20の構成および機能を説明する。図3において制御部25は、処理条件記憶部39、プラズマ処理実行部40、テスト放電実行部41を備えている。処理条件記憶部39はプラズマ処理に際して設定される処理条件、すなわち処理室3a内における処理圧力、プラズマ放電発生用ガスの種類、流量、高周波電力の出力などのデータを記憶する。プラズマ処理実行部40は、設定された処理条件に基づいてベントバルブ12、ガス供給バルブ13,真空バルブ14,真空計15,ガス供給部16、真空ポンプ17、高周波電源部19を制御することにより、プラズマ処理を実行させる。テスト放電実行部41は、処理条件に対応した電位変化のデータを取得するためのテスト放電を実行させる。本実施の形態においては、プラズマ放電監視部20による放電開始判定や、異常放電判定などに用いられる判定パラメータを適正に設定することを目的として、プラズマ処理の処理条件が更新される度に、新たな処理条件に対応した電位変化のデータを取得するためのテスト放電を行わせ、取得された電位変化のデータを解析することによって、この処理条件に応じた適正な判定パラメータを設定するようにしている。
プラズマ放電監視部20は、AMP(増幅装置)31、A/D変換器32、電位変化記憶部33、判定パラメータ設定部34および放電状態判定部35を備えている。AMP31は、検出導線22dを介して伝達されるプローブ電極22bの電位変化を増幅する。A/D変換器32は、AMP31により増幅された電位変化信号をAD変換する。A/D変換器32によってAD変換された電圧変位信号、すなわち電圧変化を示すデジタル信号は、電位変化記憶部33に記憶される。テスト放電実行部41によって実行されるテスト放電によって取得された電位変化のデータも同様に電位変化記憶部33に記憶される。
放電状態判定部35は、電位変化記憶部33に記憶された電位変化のデータに基づいて、処理室3a内における放電状態を判定する処理を行う。すなわち放電状態判定部35は放電開始判定部35a、異常放電判定部35bおよび判定パラメータ記憶部35cを備えており、判定パラメータ記憶部35cには、判定パラメータである放電開始判定時間36(図中において放電開始判定時間TAと図示)、放電開始判定閾値37(上閾値V1、下閾値V2)、異常放電判定閾値38(上閾値V3、下閾値V4)が記憶されている。判定パラメータ設定部34は、放電状態判定部35による放電状態の判定において用いられる判定パラメータを、テスト放電によって取得され電位変化記憶部33に記憶された電位変化のデータに基づいて設定する機能を有している。
ここで、放電状態判定部35によって実行される放電状態の判定処理について、図4を参照して説明する。図4はこのプラズマ処理装置の運転時に放電検出センサ23によって検出される電位変化の波形を示している。まず高周波電源部19による高周波電源の印加開始に際しては、放電開始判定閾値37の上閾値V1、下閾値V2を超えて正負両側に振れる特有の波形パターンを示す波形W1が検出される。そして予めこの波形W1を検出すべき時間帯として設定された放電開始判定時間TA内に波形W1が検出されることにより、処理室3a内においてプラズマ放電が正常に開始されたと判定される。この判定処理は、放電開始判定部35aによって行われ、放電開始判定時間TA内に電位変化が上閾値V1、下閾値V2を超えることによって放電開始と判定される。
また放電開始判定時間TAが経過した後には、異常放電の有無が監視される。ここで異常放電とは、電極部5上に載置された基板9と電極部5との間に生じる不正常な放電であり、基板9に反り変形があって電極部5上に載置した状態において基板9と絶縁体7との間に隙間が生じている場合などに生じる。この場合には電位変化が正側または負側に、それぞれ異常放電判定閾値38の上閾値V3、下閾値V4を超えて振れる波形W2が検出さ
れることにより、処理室3a内において異常放電が発生したと判定される。この判定処理は、異常放電判定部35bによって行われ、放電開始判定時間TA経過後に電位変化が上閾値V3、下閾値V4を超えることによって異常放電の発生ありと判定される。
ここで、判定パラメータ設定部34によって実行される判定パラメータの自動設定処理について、図5のフローに即して図6,図7を参照して説明する。この判定パラメータの自動設定処理は、図1に示すプラズマ処理装置を用いて処理対象物である基板9を対象とするプラズマ処理方法において、新たに処理条件を更新した場合や、装置状態が経時変化して判定パラメータを更新する必要が生じた場合などに、プラズマ処理作業の開始に先立って実行される。
まず図5において、プラズマ処理の処理条件設定要求がなされる(ST1)。すなわちマシンオペレータに対して、新たな処理条件の選択入力を促す入力画面が表示部27に表示され、マシンオペレータは、表示部27の画面上に処理条件記憶部39から読み出されて表示された処理条件の諸項目、例えば処理圧力、プラズマ放電発生用ガスの種類、流量、高周波電力の出力値などについての選択操作や数値入力などを実行することにより、新たな処理条件を設定する(処理条件設定段階)。この設定入力を行うことにより、プラズマ処理装置はテスト放電実行の準備が完了し、テスト放電の開始入力を待機する状態となる。そしてここで開始入力が確認されたならば(ST2)、テスト放電のための1連の処理サイクルが開始される。
まず真空チャンバ3が閉じられ(ST3)、次いで真空バルブ14を開いて真空ポンプ17による真空排気を開始する(ST4)。そして処理室3a内の圧力が所定の圧力P1に到達するのを監視し(ST5)、圧力到達が確認されたならばガス供給バルブ13を開き、ガス供給部16から処理室3a内へのプラズマ放電発生用ガスの供給を開始する(ST6)。次いで処理室3a内の処理圧力を監視し(ST7)、処理条件で定められた設定圧力P2に安定したならば、高周波電源部19を作動させて高周波電力を出力するとともに、電位変化のデータを電位変化記憶部33に書き込むデータ記録処理を開始する(ST8)。すなわち、(ST3)〜(ST8)においては、処理条件に対応した電位変化のデータを取得するためのテスト放電を実行するとともに、このテスト放電によって得られた電位変化のデータを電位変化記憶部33に記憶する(電位変化記憶段階)。
この後、タイマにより放電時間が5秒経過するまで計時し(ST9)、5秒経過が確認されたならば、ガス供給バルブ13を閉じてプラズマ放電発生用ガスの供給を停止し(ST10)、次いで真空バルブ14を閉じて真空排気を停止し(ST11)、さらにベントバルブ12を開いて処理室3aを大気開放した後(ST12)、真空チャンバ3を開状態にする(ST13)。そして上述の処理サイクル数をカウントし(ST14)、放電回数が5回に到達するまで(ST2)以降の処理を反復実行する。(ST14)にて放電回数が5回に到達したことが確認されたならば、電位変化記憶部33に記憶された電位変化のデータを読み出して、以下に説明する判定パラメータの設定のためのデータ処理を、(ST15)〜(ST18)の処理手順にしたがって行う(判定パラメータ設定段階)。
このデータ処理について、図6,図7を参照して説明する。図6(a)は、(ST8)、(ST9)において高周波電力の印加開始から5秒経過までの間に取得された電位変化のデータを時系列的に示している。図6(a)に示すT11は、テスト放電において高周波電力が印加されてプラズマ放電が開始した後に、放電が安定するまでの初期時間を示しており、この初期時間T11の後のT10は、プラズマ放電が安定な状態で行われた安定放電時間を示している。判定パラメータ設定段階においては、まずテスト放電において取得された電位変化のデータから、安定放電時間T10に行われたプラズマ放電に対応する電位変化のデータにおける変動幅の大きさを求める。すなわちテスト放電によって得られ
たデータのうち、放電状態が最も安定していると考えられるテスト放電時間帯の終期[T](ここではテスト放電開始後4秒から5秒までの間)に取得されたデータを対象として、変動幅VBを求める。ここでは、取得された複数の電位変化のデータのばらつき範囲を示す変動幅VBの大きさを、ばらつき範囲の正電圧側の代表値である上方値V10と、負電圧側の代表値である下方値V12とによって規定するようにしている。
図6(b)は、図6(a)に示す電位変化のデータのうち、終期[T]に取得されたデータを拡大して示している。上方値V10,下方値V12は、終期[T]において取得された複数の電位変化のデータを統計的に処理することによって求められる。すなわち、終期[T]において実際に取得された複数のデータdのうち、0電位から正負それぞれの方向に離れる度合いが大きい順にk個(ここではk=3)のデータdを除外し、残余のデータの最大値、最小値を以て上方値V10,下方値V12とする。
すなわち図6(b)に示す例では、正電圧方向に離れる度合いが大きい順にd(+1)、2つのd(+2)の3個のデータdを除外し、残余のデータdのうちの最大値d(+4)の電圧値を以て上方値V10とする。同様に、負電圧方向に離れる度合いが大きい順にd(−1)、2つのd(−2)の3個のデータdを除外し、残余のデータdのうちの最小値d(−4)の電圧値を以て下方値V12とする。上述例において、データdを除外する個数kを小さく設定するほど、変動幅VBを厳密な意味で規定することになり、個数kを大きく設定するほど、変動幅VBをラフに規定することになる。
換言すれば、個数kの設定は、正規分布とみなされて統計的に取り扱われる複数のデータにおいて、正常範囲として取り込む上限値・下限値を標準偏差σの倍数(n)によって規定する際のn数の設定に相当する。すなわちこのようにして求められた上方値V10,下方値V12は、安定な状態で行われたプラズマ放電に対応する電位変化における変動幅VBの大きさを、統計的な代表値によって示す安定状態振幅データとなっている。
判定パラメータ設定段階においては、このようにして上方値V10,下方値V12の検出が行われる(ST15)。そして上方値V10,下方値V12に基づいて、放電開始判定閾値37(上閾値V1,下閾値V2)を算出する(ST16)。ここでは、放電開始判定閾値37(上閾値V1,下閾値V2)として、それぞれ上方値V10,下方値V12を定数倍(例えばV1=V10×1.5、V2=V12×1.5)した電圧値を用いるようにしている。次いで、異常放電判定閾値38(上閾値V3,下閾値V4)を算出する(ST17)。ここでは、上閾値V3として、放電開始判定閾値37の上閾値V1の電圧値をそのまま用いるようにしており、下閾値V4としては固定電圧値(例えば−3V)に設定するようにしている。
次に、放電開始判定時間TAの算出が行われる(ST18)。本実施の形態においては、放電開始判定時間TAをテスト放電の結果として求められる初期時間T11に基づいて設定するようにしている。初期時間T11は、以下に説明する方法によって決定される。すなわち、図6(a)に示す電位変化のデータを5秒経過後の時点から時系列的にテスト放電開始の時点に向かって遡及追跡し、(ST15)において決定された上方値V10,下方値V12で規定される変動幅VBからデータ値がはみ出すデータdの有無を検出する。
このとき、図7に示すように、変動幅VBから単発的にはみ出すデータdoが検出された場合には、これらを無視してさらにデータdを遡及追跡し、データ値が変動幅VBから同一方向(ここでは上方値V10を超えた正電圧側の方向)に所定個数(ここでは4個)連続してはみ出す一連の複数のデータdosが検出された場合には、これら複数のデータdosは、初期時間T11と安定放電時間T10との境界領域を構成すると判断する。そ
してこれら一連の複数のデータdosのうち、最初にデータ値が変動幅からはみ出したデータdosに対応するタイミングtsを、初期時間T11と安定放電時間T12とを区分する放電安定タイミングとして検出する。
すなわち、放電時間として予め設定された5秒からタイミングtsまで遡及した時間を安定放電時間T10として求め、次いで5秒から安定放電時間T10を減算することにより、初期時間T11を算出する。本実施の形態に示す例では、テスト放電を5回反復して実行するようにしているので、それぞれのテスト放電について求められた初期時間T11のうちの最長時間を採用し、さらにこの初期時間T11を定数倍(定数は経験値により適宜決定(例えば1.5倍))した時間を放電開始判定時間TAとして設定する。なおテスト放電を実行する回数は任意に設定可能であり、放電特性が安定している場合には1回のみ行えばよい。
上記構成において、判定パラメータ設定部34は、電位変化記憶部33に記憶された電位変化のデータより、プラズマ発生手段としての高周波電源部19による高周波電力の出力が開始されてからプラズマ放電が開始した後にこのプラズマ放電が安定するまでの時間(初期時間T11)に基づいて設定される放電開始判定時間TA、高周波電力を出力してから放電開始判定時間TAが経過するまでの間において放電開始の有無を判定するために用いられる放電開始判定閾値37(上閾値V1,下閾値V2)および放電開始判定時間TAが経過した後において異常放電を検出するための閾値として用いられる異常放電判定閾値38(上閾値V3,下閾値V4)を設定する処理を行う。
すなわち判定パラメータ設定部34は、テスト放電において取得された電位変化のデータから、安定な状態で行われたプラズマ放電に対応する電位変化における変動幅VBの大きさを統計的な代表値によって示す安定状態振幅データである上方値V10,下方値V12を検出する。そしてこれら安定状態振幅データに基づいて、放電開始判定閾値37(上閾値V1,下閾値V2)および異常放電判定閾値38(上閾値V3,下閾値V4)を設定する。さらに電位変化のデータを時系列的に遡及追跡して、データ値が変動幅VBから同一方向に所定個数連続してはみ出す一連の複数のデータのうち、最初にデータ値が変動幅VBからはみ出したデータdosに対応するタイミングtsを放電安定タイミングとして検出し、この放電安定タイミングに基づいて放電開始判定時間TAを設定する。
このようにして、判定パラメータの自動設定処理が完了したならば、実際の処理対象物である基板9に対して、新たに設定された処理条件の下でプラズマ処理が実行される(プラズマ処理段階)。このプラズマ処理段階において、放電状態判定部35は、以下の放電監視処理を実行する。すなわち高周波電源部19が高周波電力を出力した直後から、放電開始判定時間TAが経過するまでの間に検出された電位変化を放電開始判定閾値37と比較することにより、プラズマ放電が正常に開始されたか否かを判定する(放電開始判定段階)。そして放電開始判定時間TAが経過した後に検出された電位変化を異常放電判定閾値38と比較することにより、異常放電の有無を判定する処理を行う(放電状態判定段階)。
上記説明したように、本発明のプラズマ処理装置においては、プラズマ処理の実行に際して設定された処理条件によってテスト放電を実行してこの処理条件に対応した電位変化のデータを取得し、次いでこの電位変化のデータに基づいて放電開始判定時間、放電開始判定閾値および異常放電判定閾値などの判定パラメータを設定し、プラズマ処理実行段階において、高周波電力を出力した直後から放電開始判定時間が経過するまでの間に検出された電位変化を放電開始判定閾値と比較してプラズマ放電が正常に開始されたか否かを判定し、放電開始判定時間が経過した後に検出された電位変化を異常放電判定閾値と比較して異常放電の有無を判定する形態のプラズマ処理方法を採用するようにしている。
これにより、ユーザにおいて生産対象の品種に応じてプラズマ処理条件を変更した場合や装置状態が経時変化した場合などにおいても、判定パラメータを適正且つ容易に設定することができ、放電検出センサによって放電状態の監視を行う構成において、放電状態の検出を適正に行うことができる。
本発明のプラズマ処理装置およびプラズマ処理方法は、判定パラメータを適正且つ容易に設定することができ、放電検出センサによって放電状態の監視を行う構成において、放電状態の検出を適正に行うことができるという効果を有し、基板などを処理対象物としてプラズマ処理を行う分野に有用である。
2 蓋部
3 真空チャンバ
3a 処理室
5 電極部
8 ガイド部材
9 基板
15 真空計
16 ガス供給部
17 真空ポンプ
18 整合器
19 高周波電源部
22 プローブ電極ユニット
22b プローブ電極
23 放電検出センサ

Claims (4)

  1. 処理対象物を収容する処理室を形成する真空チャンバと、前記処理室を真空排気する真空排気部と、前記処理室内にプラズマ放電発生用ガスを供給するガス供給部と、前記処理室内のプラズマ放電発生用ガスに対して高周波電力を作用させることによりプラズマ放電を発生させるプラズマ発生手段と、予め設定された処理条件に基づいて前記真空排気部および前記ガス供給部ならびに前記プラズマ発生手段を制御する制御部と、一方の面と他方の面とを有する板状部材であってその一方の面を前記処理室内で発生したプラズマ放電に対向する状態で前記真空チャンバに装着された誘電体部材および前記他方の面に配置されたプローブ電極を少なくとも有する放電検出センサと、前記プローブ電極に前記プラズマ放電の変化に応じて誘発される電位変化を検出してこのプラズマ放電の状態を判定するとともに前記制御部へ判定結果を出力するプラズマ放電監視部を備えたプラズマ処理装置であって、
    前記制御部は、前記処理条件に対応した前記電位変化のデータを取得するためのテスト放電を実行させるテスト放電実行部を備え、
    前記プラズマ放電監視部は、前記テスト放電によって取得された電位変化のデータを記憶する電位変化記憶部と、前記電位変化記憶部に記憶された電位変化のデータより前記プラズマ発生手段による高周波電力の出力が開始されてからプラズマ放電が開始した後にこのプラズマ放電が安定するまでの時間に基づいて設定される放電開始判定時間、前記高周波電力を出力してから前記放電開始判定時間が経過するまでの間において放電開始の有無を判定するために用いられる放電開始判定閾値および前記放電開始判定時間が経過した後において異常放電を検出するための閾値として用いられる異常放電判定閾値を設定する判定パラメータ設定部と、前記高周波電力を出力した直後から前記放電開始判定時間が経過するまでの間に検出された電位変化を前記放電開始判定閾値と比較することにより前記プラズマ放電が正常に開始されたか否かを判定し、前記放電開始判定時間が経過した後に検出された電位変化を前記異常放電判定閾値と比較することにより異常放電の有無を判定する放電状態判定部を備えたことを特徴とするプラズマ処理装置。
  2. 前記判定パラメータ設定部は、前記テスト放電において取得された電位変化のデータから、安定な状態で行われたプラズマ放電に対応する電位変化における変動幅の大きさを統計的な代表値によって示す安定状態振幅データを検出し、前記安定状態振幅データに基づいて前記放電開始判定閾値および前記異常放電判定閾値を設定し、さらに前記電位変化のデータを時系列的に遡及追跡して、データ値が前記変動幅から同一方向に所定個数連続してはみ出す一連の複数のデータのうち最初にデータ値が前記変動幅からはみ出したデータに対応するタイミングを放電安定タイミングとして検出し、この放電安定タイミングに基づいて前記放電開始判定時間を設定することを特徴とする請求項1記載のプラズマ処理装置。
  3. 処理対象物を収容する処理室を形成する真空チャンバと、前記処理室を真空排気する真空排気部と、前記処理室内にプラズマ放電発生用ガスを供給するガス供給部と、前記処理室内のプラズマ放電発生用ガスに対して高周波電力を作用させることによりプラズマ放電を発生させるプラズマ発生手段と、予め設定された処理条件に基づいて前記真空排気部および前記ガス供給部ならびに前記プラズマ発生手段を制御する制御部と、一方の面と他方の面とを有する板状部材であってその一方の面を前記処理室内で発生したプラズマ放電に対向する状態で前記真空チャンバに装着された誘電体部材および前記他方の面に配置されたプローブ電極を少なくとも有する放電検出センサと、前記プローブ電極に前記プラズマ放電の変化に応じて誘発される電位変化を検出してこのプラズマ放電の状態を判定するとともに前記制御部へ判定結果を出力するプラズマ放電監視部とを備えたプラズマ処理装置によって、前記処理対象物のプラズマ処理を行うプラズマ処理方法であって、
    前記処理室内における処理圧力、前記プラズマ放電発生用ガスの種類、流量、前記高周
    波電力の出力を含むプラズマ処理の処理条件を設定する処理条件設定段階と、前記処理条件に対応した前記電位変化のデータを取得するためのテスト放電を実行するとともに、このテスト放電によって得られた電位変化のデータを電位変化記憶部に記憶する電位変化記憶段階と、
    前記電位変化記憶段階において電位変化記憶部に記憶された電位変化のデータより、前記プラズマ発生手段による高周波電力の出力が開始されてからプラズマ放電が開始した後にこのプラズマ放電が安定するまでの時間に基づいて設定される放電開始判定時間、前記高周波電力を出力してから前記放電開始判定時間が経過するまでの間において放電開始の有無を判定するために用いられる放電開始判定閾値および前記放電開始判定時間が経過した後において異常放電を検出するための閾値として用いられる異常放電判定閾値を設定する判定パラメータ設定段階と、前記処理対象物に対して前記処理条件の下でプラズマ処理を実行するプラズマ処理段階とを含み、
    前記プラズマ処理段階において、前記高周波電力を出力した直後から前記放電開始判定時間が経過するまでの間に検出された電位変化を前記放電開始判定閾値と比較することにより前記プラズマ放電が正常に開始されたか否かを判定する放電開始判定段階と、前記放電開始判定時間が経過した後に検出された電位変化を前記異常放電判定閾値と比較することにより異常放電の有無を判定する放電状態判定段階とを含むことを特徴とするプラズマ処理方法。
  4. 前記判定パラメータ設定段階において、前記テスト放電において取得された電位変化のデータから、安定な状態で行われたプラズマ放電に対応する電位変化における変動幅の大きさを統計的な代表値によって示す安定状態振幅データを検出し、前記安定状態振幅データに基づいて前記放電開始判定閾値および前記異常放電判定閾値を設定し、さらに前記電位変化のデータを時系列的に遡及追跡して、データ値が前記変動幅から同一方向に所定個数連続してはみ出す一連の複数のデータのうち最初にデータ値が前記変動幅からはみ出したデータに対応するタイミングを放電安定タイミングとして検出し、この放電安定タイミングに基づいて前記放電開始判定時間を設定することを特徴とする請求項3記載のプラズマ処理方法。
JP2009126069A 2009-05-26 2009-05-26 プラズマ処理装置およびプラズマ処理方法 Active JP5136514B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009126069A JP5136514B2 (ja) 2009-05-26 2009-05-26 プラズマ処理装置およびプラズマ処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009126069A JP5136514B2 (ja) 2009-05-26 2009-05-26 プラズマ処理装置およびプラズマ処理方法

Publications (2)

Publication Number Publication Date
JP2010277695A JP2010277695A (ja) 2010-12-09
JP5136514B2 true JP5136514B2 (ja) 2013-02-06

Family

ID=43424504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009126069A Active JP5136514B2 (ja) 2009-05-26 2009-05-26 プラズマ処理装置およびプラズマ処理方法

Country Status (1)

Country Link
JP (1) JP5136514B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9601397B1 (en) 2015-09-03 2017-03-21 Samsung Electronics Co., Ltd. Microwave probe, plasma monitoring system including the microwave probe, and method for fabricating semiconductor device using the system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3630931B2 (ja) * 1996-08-29 2005-03-23 富士通株式会社 プラズマ処理装置、プロセスモニタ方法及び半導体装置の製造方法
JP3779428B2 (ja) * 1997-05-10 2006-05-31 株式会社半導体エネルギー研究所 成膜方法および薄膜トランジスタの作製方法
JP2001250811A (ja) * 2000-03-06 2001-09-14 Matsushita Electric Ind Co Ltd プラズマ処理方法及び装置
JP3773189B2 (ja) * 2002-04-24 2006-05-10 独立行政法人科学技術振興機構 窓型プローブ、プラズマ監視装置、及び、プラズマ処理装置
JP2007214254A (ja) * 2006-02-08 2007-08-23 Renesas Technology Corp 半導体装置の製造方法およびプラズマ処理装置
JP4882916B2 (ja) * 2007-08-21 2012-02-22 パナソニック株式会社 プラズマ処理装置およびプラズマ処理装置におけるプラズマ放電状態監視方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9601397B1 (en) 2015-09-03 2017-03-21 Samsung Electronics Co., Ltd. Microwave probe, plasma monitoring system including the microwave probe, and method for fabricating semiconductor device using the system
US10566176B2 (en) 2015-09-03 2020-02-18 Samsung Electronics Co., Ltd. Microwave probe, plasma monitoring system including the microwave probe, and method for fabricating semiconductor device using the system

Also Published As

Publication number Publication date
JP2010277695A (ja) 2010-12-09

Similar Documents

Publication Publication Date Title
JP5012701B2 (ja) プラズマ処理装置およびプラズマ処理装置における放電状態監視方法
KR101606736B1 (ko) 플라즈마 프로세싱 챔버에서 플라즈마 불안정성을 검출하기 위한 패시브 용량성-결합된 정전식 (cce) 프로브 장치
JP4983575B2 (ja) プラズマ処理装置およびプラズマ処理方法
JP3630931B2 (ja) プラズマ処理装置、プロセスモニタ方法及び半導体装置の製造方法
KR20100045954A (ko) 플라즈마 처리장치 및 플라즈마 처리장치에서의 플라즈마 방전상태 감시방법
JP5427888B2 (ja) プラズマ処理チャンバ内のストライクステップを検出するための容量結合静電(cce)プローブ構成、それに関連する方法、及び、その方法を実行するコードを格納するプログラム格納媒体
JP2003318115A (ja) 窓型プローブ、プラズマ監視装置、及び、プラズマ処理装置
JP2009532916A (ja) Pifプロービング構成を用いるプラズマ処理の制御
JP5012316B2 (ja) プラズマ処理装置
JP2008288340A (ja) プラズマ処理装置、プラズマ処理方法、及び洗浄時期予測プログラム
US8585862B2 (en) Plasma processing device and plasma discharge state monitoring device
JP5136514B2 (ja) プラズマ処理装置およびプラズマ処理方法
KR20170040230A (ko) 플라즈마의 안정성 판정 방법 및 플라즈마 처리 장치
JP6731634B2 (ja) プラズマ処理装置およびプラズマ処理方法
WO2015029777A1 (ja) プラズマ処理装置及びプラズマ処理装置の監視方法
JP4882917B2 (ja) プラズマ処理装置
JP4882916B2 (ja) プラズマ処理装置およびプラズマ処理装置におけるプラズマ放電状態監視方法
JP5012318B2 (ja) プラズマ処理装置
JP5012317B2 (ja) プラズマ放電状態監視装置
JP2024016522A (ja) プラズマ処理装置およびプラズマ処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

R151 Written notification of patent or utility model registration

Ref document number: 5136514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3