WO2022105260A1 - 一种装置的温度控制系统及温度控制方法 - Google Patents

一种装置的温度控制系统及温度控制方法 Download PDF

Info

Publication number
WO2022105260A1
WO2022105260A1 PCT/CN2021/105380 CN2021105380W WO2022105260A1 WO 2022105260 A1 WO2022105260 A1 WO 2022105260A1 CN 2021105380 W CN2021105380 W CN 2021105380W WO 2022105260 A1 WO2022105260 A1 WO 2022105260A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
resistor
temperature control
comparator
control system
Prior art date
Application number
PCT/CN2021/105380
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
长春捷翼汽车零部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春捷翼汽车零部件有限公司 filed Critical 长春捷翼汽车零部件有限公司
Priority to CA3196722A priority Critical patent/CA3196722A1/en
Priority to US18/034,297 priority patent/US20240111319A1/en
Priority to MX2023005789A priority patent/MX2023005789A/es
Priority to EP21893412.3A priority patent/EP4250052A1/en
Priority to JP2023528517A priority patent/JP2023549824A/ja
Priority to KR1020237013724A priority patent/KR20230070507A/ko
Publication of WO2022105260A1 publication Critical patent/WO2022105260A1/zh
Priority to ZA2023/05695A priority patent/ZA202305695B/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1917Control of temperature characterised by the use of electric means using digital means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/22Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element being a thermocouple
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/24Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor

Definitions

  • the present invention relates to the technical field of electrical equipment, in particular to a temperature control system and a temperature control method of a device.
  • the power supply device generates heat when supplying power to the load.
  • heat dissipation measures are taken for the power supply device.
  • the temperature of the power supply device is acquired through a temperature acquisition device, and then the power supply device is cooled by a cooling method such as a heat sink, an air-cooled or a liquid-cooled radiator.
  • the sampling circuit of the temperature acquisition device usually uses a thermistor, which generates different resistance values according to the temperature change, and then obtains the temperature of the power supply device.
  • the current flowing through the thermistor is large, it usually affects the thermal resistance. Due to the sampling accuracy of the resistance, the thermistor cannot quickly sense the temperature change, resulting in an inaccurate temperature of the power supply device, which affects the work and service life of the power supply device.
  • the embodiments of the present invention provide a temperature control system and a temperature control method for a device, which can at least partially solve the problems in the prior art.
  • the present invention provides a temperature control system for a device, comprising a temperature detection module, a temperature control module and a temperature adjustment module, wherein:
  • the temperature detection module is used for detecting and obtaining the temperature at the current moment of the device
  • the temperature control module is used for obtaining the predicted temperature at the next moment according to the temperature at the current moment and the temperature prediction model, and according to the prediction at the next moment
  • the temperature and the temperature threshold value output a temperature adjustment instruction to the temperature adjustment module, and the temperature adjustment module performs temperature adjustment on the device according to the temperature adjustment instruction.
  • the present invention provides a temperature control method, comprising:
  • a temperature adjustment instruction is output to adjust the temperature of the device.
  • the present invention provides an electronic device, comprising a memory, a processor, and a computer program stored in the memory and running on the processor, the processor implementing the program described in any of the foregoing embodiments when the processor executes the program. Steps of a temperature control method.
  • the present invention provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of the temperature control method described in any one of the foregoing embodiments.
  • the temperature control system and temperature control method of the device include a temperature detection module, a temperature control module, and a temperature adjustment module.
  • the temperature and temperature prediction model obtains the predicted temperature at the next moment, and outputs the temperature adjustment instruction to the temperature adjustment module according to the predicted temperature at the next moment and the temperature threshold, and the temperature adjustment module adjusts the temperature of the device according to the temperature adjustment instruction to improve the temperature of the device.
  • the stability of the temperature during the working process can ensure the power conversion efficiency of the device.
  • FIG. 1 is a schematic structural diagram of a temperature control system of an apparatus provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a thermal resistance temperature measurement circuit provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a temperature control system of an apparatus provided by another embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a temperature detection accuracy processing unit provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a voltage follower circuit provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a feedback amplifying circuit provided by an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a filter circuit provided by an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a temperature control system of an apparatus provided by still another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a heating unit provided by an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a cooling unit according to an embodiment of the present invention.
  • FIG. 11 is a schematic flowchart of a temperature control method provided by an embodiment of the present invention.
  • FIG. 12 is a schematic flowchart of a temperature control method provided by another embodiment of the present invention.
  • FIG. 13 is a schematic flowchart of a temperature control method provided by still another embodiment of the present invention.
  • FIG. 14 is a temperature curve diagram of a device provided by an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a physical structure of an electronic device according to an embodiment of the present invention.
  • the devices in the embodiments of the present invention include, but are not limited to, AC-DC converters in DC charging piles, DC chargers, and other devices.
  • FIG. 1 is a schematic structural diagram of a temperature control system of a device provided by an embodiment of the present invention.
  • the temperature control system of the device provided by an embodiment of the present invention includes a temperature detection module 1, a temperature control module 2, and a temperature adjustment module.
  • Module 3 where:
  • the temperature detection module 1 is used to detect and obtain the current temperature of the device, and the temperature control module 2 is used to obtain the predicted temperature at the next moment according to the temperature at the current moment and the temperature prediction model, and according to the predicted temperature at the next moment and the temperature prediction model.
  • the temperature threshold value outputs a temperature adjustment instruction to the temperature adjustment module 3, and the temperature adjustment module 3 adjusts the temperature of the device according to the temperature adjustment instruction.
  • the temperature detection module 1 detects the temperature of the device in real time, obtains the current temperature of the device, and then sends the current temperature to the temperature control module 2 . After the temperature control module 2 receives the temperature at the current moment, the temperature at the current moment is input into the temperature prediction model, and the predicted temperature at the next moment can be obtained.
  • the temperature adjustment instruction is used to make the temperature adjustment module 3 cool down the device, If the predicted temperature at the next time is less than the temperature threshold and the second difference between the temperature threshold and the predicted temperature at the next time is greater than a second threshold, the temperature adjustment instruction is used to adjust the temperature Module 3 heats the device.
  • the temperature control module 2 sends the temperature adjustment instruction to the temperature adjustment module 3, and after the temperature adjustment module 3 receives the temperature adjustment instruction, it will perform temperature adjustment on the device according to the temperature adjustment instruction.
  • the temperature threshold is preset and set according to actual needs, which is not limited in this embodiment of the present invention.
  • the temperature adjustment command is preset.
  • the time interval between the current moment and the next moment is set according to actual needs, which is not limited in this embodiment of the present invention.
  • the temperature control system of the device includes a temperature detection module, a temperature control module and a temperature adjustment module.
  • the temperature detection module is used to detect and obtain the current temperature of the device, and the temperature control module is used to predict the current temperature and temperature according to the current moment.
  • the model obtains the predicted temperature at the next moment, and outputs the temperature adjustment instruction to the temperature adjustment module according to the predicted temperature and the temperature threshold at the next moment, and the temperature adjustment module adjusts the temperature of the device according to the temperature adjustment instruction, so as to improve the working process of the device. Temperature stability, so as to ensure the power conversion efficiency of the device.
  • the predicted temperature can be compensated, and the pre-control of the device temperature can be realized.
  • the temperature prediction model is obtained in advance.
  • the temperature control module can collect and obtain the historical temperature training data of the device, and then train and obtain the temperature prediction model based on the historical temperature training data and the initial model, so as to obtain the temperature prediction model.
  • a predictive model is configured into the temperature control module.
  • the initial model includes but is not limited to a neural network model, which is set according to actual needs, which is not limited in this embodiment of the present invention.
  • the temperature prediction model is obtained by self-learning based on historical temperature data.
  • the temperature control module may collect historical temperature data of the device, and then obtain the temperature prediction model by self-learning based on the historical temperature data.
  • the self-learning may use a machine learning model, which is set according to actual needs, which is not limited in the embodiment of the present invention.
  • the historical temperature data can be updated regularly, and the temperature prediction model can be obtained by self-learning again.
  • the obtained historical temperature data is used as historical temperature training data, and then based on the historical temperature data and the initial model, the temperature prediction model is obtained by training, and then the historical temperature data is periodically updated as the historical temperature training data, based on the historical temperature data.
  • the historical temperature data and the initial model are obtained by training to obtain the temperature prediction model.
  • the temperature detection module 1 includes a temperature detection unit 11, and the temperature detection unit 11 adopts a thermocouple temperature measurement circuit, a thermal resistance temperature measurement circuit or a temperature acquisition chip.
  • the thermocouple temperature measurement circuit, the thermal resistance temperature measurement circuit or the temperature acquisition chip can realize the temperature detection of the device.
  • the temperature collection chip is selected according to actual needs, which is not limited in the embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a thermal resistance temperature measurement circuit provided by an embodiment of the present invention.
  • the thermal resistance temperature measurement circuit provided by the embodiment of the present invention includes a resistor R1, capacitor C1 and thermistor TH1, the first end of the resistor R1 is connected to the power supply VCC, the second end of the resistor R1 is connected to the first end of the capacitor C1 and the first end of the thermistor TH1 respectively, the second end of the capacitor C1 is connected to terminal and the second terminal of the thermistor TH1 are grounded.
  • thermocouple temperature measurement circuit may adopt a circuit structure similar to that of FIG. 2 , by replacing the thermistor TH1 in FIG. 2 with a thermocouple.
  • FIG. 3 is a schematic structural diagram of a temperature control system of a device provided by another embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a temperature detection accuracy processing unit provided by an embodiment of the present invention.
  • the temperature detection module 1 further includes a temperature detection accuracy processing unit 12, and the temperature detection processing unit 12 includes a voltage follower circuit, a feedback amplifier circuit and a filter circuit, wherein:
  • the voltage follower circuit includes a first comparator 121 and a first capacitor 122.
  • the first end of the first comparator 121 is connected to the temperature detection unit 11, and the second end of the first comparator 121 is connected to the output of the first comparator 121.
  • the third terminal of the first comparator 121 is connected to the first power supply VCC1, the fourth terminal of the first comparator 121 is grounded, the first terminal of the first capacitor 122 is grounded, and the second terminal of the first capacitor 122 is connected to the first power supply VCC1.
  • the feedback amplifying circuit includes a second comparator 123, a first resistor 124, a second resistor 125 and a third resistor 126.
  • the first end of the first resistor 124 is connected to the output end of the first comparator 121, and the first resistor 124
  • the second end of the second comparator 123 is connected to the second end of the second comparator 123 , the first end of the second comparator 123 is connected to the first end of the third resistor 126 and the second end of the second resistor 125 respectively, the third resistor 126
  • the second terminal of the second comparator 123 is connected to the output terminal of the second comparator 123, the first terminal of the second resistor 125 is grounded, the third terminal of the second comparator 123 is connected to the first power supply VCC1, and the fourth terminal of the second comparator 123 is grounded ;
  • the filter circuit includes a fourth resistor 127, a second capacitor 128 and an inductor 129.
  • the first end of the fourth resistor 127 is connected to the output end of the second comparator 123, and the second end of the fourth resistor 127 is respectively connected to the second capacitor.
  • the first end of the inductor 128 is connected to the first end of the inductor 129 , the second end of the second capacitor 128 is grounded, and the second end of the inductor 129 is connected to the temperature control module 2 .
  • the voltage follower circuit plays the role of isolating the acquisition circuit and the post-processing circuit; the feedback amplifier circuit is used to proportionally amplify the isolated small signal to achieve the purpose of improving the accuracy; the filter circuit plays the role of filtering the signal and eliminating the circuit The role of conducted interference.
  • the temperature detection accuracy processing unit improves the accuracy of device temperature acquisition.
  • the temperature detection module 1 further includes a temperature detection accuracy processing unit 12 , the temperature detection processing unit 12 includes a voltage follower circuit, wherein:
  • the voltage follower circuit includes a first comparator 121 and a first capacitor 122.
  • the first end of the first comparator 121 is connected to the temperature detection unit 11, and the second end of the first comparator 121 is connected to the output of the first comparator 121.
  • the third terminal of the first comparator 121 is connected to the first power supply VCC1, the fourth terminal of the first comparator 121 is grounded, the first terminal of the first capacitor 122 is grounded, and the second terminal of the first capacitor 122 is connected to the first power supply VCC1.
  • a power supply VCC1, the output end of the first comparator 121 can be connected to the temperature control module 2.
  • FIG. 6 is a schematic structural diagram of a feedback amplifier circuit provided by an embodiment of the present invention.
  • the temperature detection module 1 further includes a temperature detection accuracy processing unit 12
  • the temperature detection processing unit 12 includes a feedback amplifier circuit, wherein:
  • the feedback amplifier circuit includes a second comparator 123, a first resistor 124, a second resistor 125 and a third resistor 126.
  • the second end of the first resistor 124 is connected to the second end of the second comparator 123, and the second compares
  • the first end of the comparator 123 is connected to the first end of the third resistor 126 and the second end of the second resistor 125 respectively, the second end of the third resistor 126 is connected to the output end of the second comparator 123, the second resistor 125
  • the first end of the second comparator 123 is grounded, the third end of the second comparator 123 is connected to the first power supply VCC1, the fourth end of the second comparator 123 is grounded, the first end of the first resistor 124 can be connected to the temperature detection unit 11, the second The output terminal of the comparator 123 can be connected to the temperature control module 2 .
  • FIG. 7 is a schematic structural diagram of a filter circuit provided by an embodiment of the present invention.
  • the temperature detection module 1 further includes a temperature detection accuracy processing unit 12 ,
  • the temperature detection processing unit 12 includes a filter circuit, wherein:
  • the filter circuit includes a fourth resistor 127, a second capacitor 128 and an inductor 129.
  • the second end of the fourth resistor 127 is connected to the first end of the second capacitor 128 and the first end of the inductor 129, respectively.
  • the second end is grounded, the second end of the inductor 129 is connected to the temperature control module 2 , and the first end of the fourth resistor 127 can be connected to the temperature detection unit 11 .
  • FIG. 8 is a schematic structural diagram of a temperature control system of a device provided by another embodiment of the present invention.
  • the temperature adjustment module 3 further includes a heating unit 31 and a cooling unit 32 , the heating unit 31 is used for heating the device to increase the temperature of the device, and the cooling unit 32 is used for cooling the device to lower the temperature of the device.
  • the temperature control system of the device provided by the embodiment of the present invention can realize both the heating and the cooling of the device through the temperature adjustment module, and is suitable for use in various weathers. Especially for a device installed outdoors, the device needs to be cooled in summer, and the temperature of the device needs to be raised in cold weather in winter to ensure the power conversion efficiency of the device.
  • the heating unit 31 can be heated by heating resistance wire, copper electric heating plate, aluminum electric heating plate, ceramic electric heating, stainless steel electric heating tube, controlled circulating air air passage heating or chemical reagent reaction Heating is achieved by heating, etc.
  • heating resistance wire, copper electric heating plate, aluminum electric heating plate, ceramic electric heating and stainless steel electric heating tube can cooperate with MOS tube for temperature adjustment and control heating, and supply air through a fan; the principle of circulating air duct heating is to control the cooling air
  • the opening and closing of the airway that is, closing the airway outlet when heating is required, so that the hot air around the electronic device is not discharged from the outside of the device but circulates inside the device to supplement heat for other non-heating electronic devices; chemical reagents are heated in this device.
  • a closed and independent chemical reaction unit is set up inside, and the feed amount of chemical reagents is controlled to control the reaction temperature, and then the air is circulated through the fan to the electronic devices where temperature compensation is required.
  • Chemical reagents such as CaO and H 2 O, CaO and H 2 O
  • the reaction to form CaOH2 can dissipate heat.
  • FIG. 9 is a schematic structural diagram of a heating unit provided by an embodiment of the present invention.
  • the heating unit 31 includes a heating resistance wire 311, a first MOS tube 312, a fifth resistor 313 and a sixth resistor 314, wherein:
  • the first end of the heating resistance wire 311 is connected to the second power supply VCC2, the second end of the heating resistance wire 311 is connected to the drain of the first MOS transistor 312, and the gate of the first MOS transistor 312 is respectively connected to the second power supply of the fifth resistor 313.
  • One end is connected to the first end of the sixth resistor 314 , the source of the first MOS transistor 312 is grounded to the second end of the fifth resistor 313 , and the second end of the sixth resistor 314 is connected to the temperature control module 2 .
  • the device When the device needs to be heated, the device can be heated by heating the resistance wire 311 to generate heat.
  • the heating resistance wire can be replaced by copper heating plate, aluminum heating plate, ceramic or stainless steel electric heating tube, and cooperate with MOS tube for temperature adjustment and control heating.
  • the cooling unit 32 can achieve cooling and cooling by means of liquid cooling circulation cooling, metal heat pipe conduction cooling, graphite sheet conduction cooling, semiconductor cooling, chemical reagent cooling or cooling fans.
  • liquid cooling cycle cooling is to use cooling liquid as a medium to take away heat through circulation, and then discharge excess heat through the radiator and cooling fan;
  • metal heat pipe conduction cooling and graphite sheet conduction cooling are to heat conduction parts (metal or graphite) It is attached to the surface of the device with strong heat generation, and then the excess heat conducted by the cooling fan is blown into the exhaust air duct and then discharged from the device; the semiconductor cooling is connected to the power supply to make the cold end close to the heating device, and the hot end is separated by the cooling fan.
  • the heat discharge device has the effect of dissipating heat inside the device; chemical reagent cooling is to set up a closed and independent chemical reaction unit inside the device, and absorb the surrounding heat through chemical reaction to reduce the excess heat around the heating electronic device to achieve the purpose of cooling the device.
  • FIG. 10 is a schematic structural diagram of a cooling unit according to an embodiment of the present invention. As shown in FIG. 10 , on the basis of the above embodiments, the cooling unit 32 further includes a second MOS transistor 321 , a seventh resistor 322 and a heat sink Fan 323, where:
  • the first end of the seventh resistor 322 and the drain of the second MOS transistor 321 are connected to the third power supply VCC3, the gate of the second MOS transistor 321 and the second end of the seventh resistor 322 are connected to the temperature control module 2, and the second MOS transistor 322 is connected to the temperature control module 2.
  • the source of 321 is connected to the first end of the cooling fan 323, and the second end of the cooling fan 323 is grounded.
  • the cooling fan 323 can be used to cool the device. It is understandable that other methods such as water cooling can also be used to cool down, and selection is made according to the actual situation, which is not limited in the embodiment of the present invention.
  • the temperature control module 2 adopts a microprocessor, a field programmable gate array (Field Programmable Gate Array, referred to as FPGA) or a complex programmable logic device (Complex Programmable Logic Device, referred to as CPLD) .
  • FPGA Field Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the analog acquisition pin of the analog-to-digital converter of the microprocessor is connected to the second end of the inductance 129 of the filter circuit, so that the temperature detection module 1 outputs the current temperature for acquisition.
  • the first control output pin of the microprocessor is respectively connected to the second end of the seventh resistor 322 and the gate of the second MOS transistor 321 to output a temperature adjustment command to control the fan 323 to rotate and cool down.
  • the second control output pin of the microprocessor is connected to the second end of the sixth resistor 314 to output a temperature adjustment command to control the heating resistor 311 to heat.
  • An embodiment of the present invention provides a charging system, including the temperature control system of the device described in any of the foregoing embodiments.
  • the device is an AC-DC converter provided in a charging pile, the charging pile can charge an electric vehicle, and the AC-DC converter in the charging pile is configured with the temperature control system of the device provided by the embodiment of the present invention.
  • the temperature detection module 1 can collect the temperature at the current moment of the AC-DC converter in real time, and the temperature control module 2 obtains the predicted temperature of the AC-DC converter at the next moment according to the temperature at the current moment and the temperature prediction model, and according to the next moment
  • the predicted temperature and the temperature threshold at the time output a temperature adjustment command to the temperature adjustment module 3, and the temperature adjustment module 3 will heat the AC-DC converter to make it work within a certain range of the temperature threshold.
  • the temperature detection module 1 can collect the temperature at the current moment of the AC-DC converter in real time, and the temperature control module 2 obtains the predicted temperature of the AC-DC converter at the next moment according to the temperature at the current moment and the temperature prediction model, and according to the next moment
  • the predicted temperature and the temperature threshold at the time output a temperature adjustment command to the temperature adjustment module 3, and the temperature adjustment module 3 will reduce the temperature of the AC-DC converter to make it work within a certain range of the temperature threshold.
  • the temperature control system of the device provided by the embodiment of the present invention will cool the AC-DC converter. , so that it works within a certain range of temperature thresholds.
  • the charging pile charges the electric vehicle at night. Since the outside temperature is low, the temperature control system of the device provided by the embodiment of the present invention heats the AC-DC converter to make it work within a certain range of the temperature threshold.
  • FIG. 11 is a schematic flowchart of a temperature control method provided by an embodiment of the present invention. As shown in FIG. 11 , the temperature control method provided by the embodiment of the present invention can be applied to the temperature control system of the device described in any of the above embodiments, include:
  • the temperature detection module can detect the temperature of the device in real time, obtain the current temperature of the device, and then send the current temperature to the temperature control module, and the temperature control module can receive the current temperature.
  • the temperature control module After acquiring the temperature at the current moment, the temperature control module inputs the temperature at the current moment into a temperature prediction model, so as to obtain the predicted temperature of the device at the next moment.
  • the temperature prediction model may be obtained by training based on historical temperature training data.
  • the temperature control module After obtaining the predicted temperature at the next moment, the temperature control module obtains a temperature adjustment instruction according to the predicted temperature at the next moment and the temperature threshold, and then sends the temperature adjustment instruction to the temperature adjustment The temperature adjustment module adjusts the temperature of the device according to the temperature adjustment instruction.
  • the output The temperature adjustment commands to lower the temperature of the device.
  • the temperature adjustment instruction is output to increase the temperature the temperature of the device.
  • the current temperature of the device is obtained, the predicted temperature at the next moment is obtained according to the current temperature and the temperature prediction model, and the temperature adjustment instruction is output according to the predicted temperature at the next moment and the temperature threshold to The temperature of the device is adjusted to improve the temperature stability of the device during operation, thereby ensuring the power conversion efficiency of the device.
  • the predicted temperature can be compensated, and the pre-control of the device temperature can be realized.
  • the temperature prediction model is obtained in advance.
  • the temperature control module can collect and obtain the historical temperature training data of the device, and then train and obtain the temperature prediction model based on the historical temperature training data and the initial model, so as to obtain the temperature prediction model.
  • a predictive model is configured into the temperature control module.
  • the initial model includes but is not limited to a neural network model, which is set according to actual needs, which is not limited in this embodiment of the present invention.
  • the temperature prediction model is obtained by self-learning based on historical temperature data.
  • the temperature control module may collect historical temperature data of the device, and then obtain the temperature prediction model by self-learning based on the historical temperature data.
  • the self-learning may use a machine learning model, which is set according to actual needs, which is not limited in the embodiment of the present invention.
  • the historical temperature data can be updated regularly, and the temperature prediction model can be obtained by self-learning again.
  • FIG. 12 is a schematic flowchart of a temperature control method provided by another embodiment of the present invention.
  • the temperature prediction model is obtained by training based on historical temperature training data
  • the temperature prediction model is obtained by training based on the historical temperature training data.
  • the steps of the temperature prediction model include:
  • the temperature of the device is collected at unit time intervals within a preset time period, and the temperature of the device at each moment can be obtained, and the server can obtain the temperature at each moment as the historical temperature Training data
  • the historical temperature training data includes the temperature at time a and the temperature at time a+1, the temperature at time a corresponds to the temperature at time a+1, a is a positive integer, a less than the data amount of the historical temperature training data.
  • the data amount of the historical temperature training data is set according to actual experience, which is not limited in the embodiment of the present invention.
  • the preset time period is set according to actual needs, which is not limited in the embodiment of the present invention.
  • the unit time interval may be set to 1 to 3 seconds, which is set according to actual experience, which is not limited in this embodiment of the present invention.
  • the server may divide the historical temperature training data into a training set and a validation set. Taking the temperature at the bth moment in the training set as the input data, and the temperature at the b+1th moment as the output data, the initial model can be trained to obtain the temperature prediction model to be determined, where b is a positive integer and b less than or equal to the amount of data in the training set.
  • the temperature at the f-th moment of the verification set is used as input data and input into the temperature prediction model to be determined, and the predicted temperature at the f+1-th moment can be output, where f is a positive integer and f is less than or equal to the amount of data in the verification set .
  • the predicted temperature prediction is accurate, If the absolute value of the difference between the temperature at the next moment and the predicted temperature at the next moment is greater than the deviation threshold, then the predicted temperature is inaccurate, and count the number of accurate temperature predictions and the number of inaccurate predictions in the verification set at each moment,
  • the prediction accuracy of the temperature prediction model to be determined can be obtained by calculation. If the prediction accuracy is greater than the accuracy threshold, the temperature prediction model to be determined is used as the temperature prediction model. Otherwise, adjust the parameters and/or the historical temperature training data and retrain the model.
  • the initial model includes but is not limited to a neural network model.
  • the deviation threshold is set according to actual experience, which is not limited in this embodiment of the present invention.
  • the accuracy threshold is set according to actual experience, which is not limited in this embodiment of the present invention.
  • the initial model adopts a three-layer neural network model
  • the three-layer neural network model can be expressed as follows:
  • m represents the predicted temperature at time t+1
  • m represents the number of hidden layer nodes
  • v i represents the connection weight from the ith hidden layer node to the output node
  • g represents the fine-tuning coefficient
  • ⁇ i (t) represents the ith
  • the connection weight function corresponding to the hidden layer node x(t) represents the temperature at time t
  • T represents the number of samples
  • x t represents the temperature at time t
  • ⁇ i represents the ith hidden layer neuron threshold
  • represents the output layer neuron threshold
  • i is a positive integer and i is less than or equal to m.
  • m is set according to actual needs, for example, set to 5 or 6, which is not limited in this embodiment of the present invention.
  • g is set according to actual needs, for example, set to 1, which is not limited in this embodiment of the present invention.
  • the initial value of the connection weight v i from the hidden layer node to the output node is 0.01
  • the initial value of the hidden layer neuron threshold ⁇ i is 0.002
  • the output layer neuron threshold ⁇ The initial value of is 0.03, the learning rate is 0.07 ⁇ 0.22, and the number of samples of historical temperature training data is 49 ⁇ 130.
  • the temperature prediction model obtained through the training of the three-layer neural network model has high temperature prediction efficiency and high accuracy.
  • FIG. 13 is a schematic flowchart of a temperature control method provided by still another embodiment of the present invention. As shown in FIG. 13 , on the basis of the above embodiments, further, the predicted temperature and temperature threshold according to the next moment , outputting a temperature adjustment instruction to adjust the temperature of the device includes:
  • the temperature control module compares the predicted temperature at the next moment with the temperature threshold, and if the predicted temperature at the next moment is greater than the temperature threshold, calculates the predicted temperature at the next moment minus the temperature threshold The first difference of the temperature threshold, and then compare the first difference with the first threshold. If the first difference is greater than the first threshold, it means that the predicted temperature at the next moment is too high, and it is necessary to For cooling, the temperature adjustment instruction can be output to reduce the temperature of the device, so as to realize the advance control of the temperature at the next moment.
  • the temperature control module sends a temperature adjustment instruction to the cooling unit of the temperature adjustment module, so as to reduce the temperature of the device, so that the actual temperature at the next moment is lower than the predicted temperature at the next moment, so as to satisfy the requirements of the The working temperature requirement of the device achieves the purpose of pre-adjusting the temperature of the device.
  • the temperature control module compares the predicted temperature at the next moment with the temperature threshold, and if the predicted temperature at the next moment is less than the temperature threshold, calculates the predicted temperature at the next moment minus the temperature threshold The second difference of the temperature threshold, and then compare the second difference with the second threshold. If the second difference is greater than the second threshold, it means that the predicted temperature at the next moment is too low, and it is necessary to When raising the temperature, the temperature adjustment instruction can be outputted to increase the temperature of the device, so as to realize the advance control of the temperature at the next moment.
  • the temperature control module sends a temperature adjustment instruction to the heating unit of the temperature adjustment module, so as to increase the temperature of the device, so that the actual temperature at the next moment is higher than the predicted temperature at the next moment, so as to satisfy the requirements of the The working temperature requirement of the device achieves the purpose of pre-adjusting the temperature of the device.
  • FIG. 14 is a temperature curve diagram of a device provided by an embodiment of the present invention.
  • the temperature control method provided by an embodiment of the present invention is used to control the temperature of a device, and 65° C. is the temperature threshold of the device, which is ideal Working temperature, as can be seen from Figure 14, the range of fluctuation of the actual temperature after adjustment at time t+1 around 65 °C is significantly smaller than the range of fluctuation of the predicted temperature at time t+1 around 65 °C, which significantly improves the working process of the device. temperature stability.
  • FIG. 15 is a schematic diagram of the physical structure of an electronic device provided by an embodiment of the present invention.
  • the electronic device 600 may include: a processor 100 and a memory 140 .
  • Memory 140 is coupled to processor 100 .
  • the processor 100 can invoke the logic instructions in the memory 140 to execute the following methods: obtain the temperature of the device at the current moment; obtain the predicted temperature at the next moment according to the temperature at the current moment and the temperature prediction model; wherein, the temperature prediction model is obtained by training based on historical temperature training data; according to the predicted temperature at the next moment and the temperature threshold, a temperature adjustment instruction is output to adjust the temperature of the device.
  • This embodiment discloses a computer program product, the computer program product includes a computer program stored on a non-transitory computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, the computer program
  • the methods provided by the above method embodiments can be performed, for example, including: obtaining the temperature of the device at the current moment; obtaining the predicted temperature at the next moment according to the temperature at the current moment and the temperature prediction model; wherein, the temperature prediction model is based on It is obtained by training the historical temperature training data; according to the predicted temperature at the next moment and the temperature threshold, a temperature adjustment instruction is output to adjust the temperature of the device.
  • This embodiment provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and the computer program enables the computer to execute the methods provided by the foregoing method embodiments, for example, including: acquiring the current moment of the device temperature; obtain the predicted temperature at the next moment according to the temperature at the current moment and the temperature prediction model; wherein, the temperature prediction model is obtained by training based on the historical temperature training data; according to the predicted temperature at the next moment and the temperature threshold , output a temperature adjustment command to adjust the temperature of the device.
  • the electronic device 600 may further include: a communication module 110 , an input unit 120 , an audio processing unit 130 , a display 160 , and a power supply 170 . It is worth noting that the electronic device 600 does not necessarily include all the components shown in FIG. 15 ; in addition, the electronic device 600 may also include components not shown in FIG. 15 , and reference may be made to the prior art. Notably, this figure is exemplary; other types of structures may be used in addition to or in place of this structure to implement telecommunication functions or other functions.
  • the processor 100 may include a microprocessor or other processor device and/or logic device that receives input and controls the operation of various components of the electronic device 600 .
  • the memory 140 may be, for example, one or more of a cache, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory or other suitable devices.
  • the above-mentioned information related to the failure can be stored, and a program executing the related information can also be stored.
  • the processor 100 can execute the program stored in the memory 140 to realize information storage or processing.
  • the input unit 120 provides input to the processor 100 .
  • the input unit 120 is, for example, a key or a touch input device.
  • the power supply 170 is used to provide power to the electronic device 600 .
  • the display 160 is used for displaying display objects such as images and characters.
  • the display 160 may be, for example, an LCD display, but is not limited thereto.
  • the memory 140 may be solid state memory such as read only memory (ROM), random access memory (RAM), SIM card, and the like. There may also be memories that retain information even when powered off, selectively erased and provided with more data, examples of memory 140 are sometimes referred to as EPROMs or the like. Memory 140 may also be some other type of device.
  • the memory 140 includes a buffer 141 (sometimes referred to as a buffer memory).
  • the memory 140 may include an application/function storage part 142 for storing application programs and function programs or for performing operations of the electronic device 600 through the processor 100 .
  • the memory 140 may also include a data store 143 for storing data such as contacts, digital data, pictures, sounds and/or any other data used by the electronic device.
  • the driver storage section 144 of the memory 140 may include various drivers of the electronic device for communication functions and/or for executing other functions of the electronic device (eg, a messaging application, a contact book application, etc.).
  • the communication module 110 includes a transmitter/receiver that transmits and receives signals via the antenna 111 .
  • the communication module 110 is coupled to the processor 100 to provide input signals and receive output signals, as may be the case with conventional mobile communication terminals.
  • multiple communication modules 110 may be provided in the same electronic device, such as a cellular network module, a Bluetooth module, and/or a wireless local area network module.
  • Communication module 110 is also coupled to speaker 131 and microphone 132 via audio processor 130 to provide audio output via speaker 131 and to receive audio input from microphone 132 to implement general telecommunications functions.
  • Audio processor 130 may include any suitable buffers, decoders, amplifiers, and the like.
  • the audio processor 130 is also coupled to the processor 100 so as to enable recording on the unit via the microphone 132 and for playback of sounds stored on the unit via the speaker 131 .
  • embodiments of the present invention may be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Control Of Temperature (AREA)
  • Feedback Control In General (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种装置的温度控制系统及温度控制方法,控制方法包括:温度检测模块(1)、温度控制模块(2)和温度调节模块(3),温度检测模块(1)用于检测获得装置的当前时刻温度,温度控制模块(2)用于根据当前时刻温度和温度预测模型,获得下一时刻的预测温度,并根据下一时刻的预测温度和温度阈值输出温度调节指令给温度调节模块(3),温度调节模块(3)根据温度调节指令对装置进行温度调节;温度预测模型是预先获得的。温度控制方法提高装置在工作过程中温度的稳定性,能够保证装置的电能转换效率。

Description

一种装置的温度控制系统及温度控制方法 技术领域
本发明涉及电气设备技术领域,具体涉及一种装置的温度控制系统及温度控制方法。
背景技术
众所周知,电源装置在为负载供电时自身会发热,为避免温度升高导致电源装置工作异常以及减少电源装置的使用寿命,会对电源装置采取散热措施。
现有技术中,会通过温度采集装置获取电源装置的温度,然后再通过散热片、风冷或液冷散热器等冷却方式对所述电源装置进行降温。温度采集装置的采样电路通常采用热敏电阻,由热敏电阻根据温度变化产生不同的阻值,进而获得电源装置的温度,但是当流过热敏电阻的电流较大时,通常会影响热敏电阻的采样精度,热敏电阻不能迅速感知到温度变化,导致获取的电源装置的温度不够准确,影响电源装置的工作以及使用寿命。
发明内容
针对现有技术中的问题,本发明实施例提供一种装置的温度控制系统及温度控制方法,能够至少部分地解决现有技术中存在的问题。
一方面,本发明提出一种装置的温度控制系统,包括温度检测模块、温度控制模块和温度调节模块,其中:
所述温度检测模块用于检测获得装置的当前时刻温度,所述温度控制模块用于根据所述当前时刻温度和温度预测模型,获得下一时刻的预测温度,并根据所述下一时刻的预测温度和温度阈值输出温度调节指令给所述温度调节模块,所述温度调节模块根据所述温度调节指令对所述装置进行温度调节。
另一方面,本发明提供一种温度控制方法,包括:
获取装置的当前时刻温度;
根据所述当前时刻温度以及温度预测模型,获得下一时刻的预测温度;
根据所述下一时刻的预测温度以及温度阈值,输出温度调节指令以调节所述装置的温度。
再一方面,本发明提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述任一实施例所述温度控制方法的步骤。
又一方面,本发明提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述任一实施例所述温度控制方法的步骤。
本发明实施例提供的装置的温度控制系统及温度控制方法,包括温度检测模块、温度控制模块和温度调节模块,温度检测模块用于检测获得装置的当前时刻温度,温度控制模块用于根据当前时刻温度和温度预测模型,获得下一时刻的预测温度,并根据下一时刻的预测温度和温度阈值输出温度调节指令给温度调节模块,温度调节模块根据温度调节指令对装置进行温度调节,以提高装置在工作过程中温度的稳定性,从而能够保证装置的电能转换效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本发明一实施例提供的装置的温度控制系统的结构示意图。
图2是本发明一实施例提供的热电阻测温电路的结构示意图。
图3是本发明另一实施例提供的装置的温度控制系统的结构示意图。
图4是本发明一实施例提供的温度检测精度处理单元的结构示意图。
图5是本发明一实施例提供的电压跟随电路的结构示意图。
图6是本发明一实施例提供的反馈放大电路的结构示意图。
图7是本发明一实施例提供的滤波电路的结构示意图。
图8是本发明再一实施例提供的装置的温度控制系统的结构示意图。
图9是本发明一实施例提供的加热单元的结构示意图。
图10是本发明一实施例提供的降温单元的结构示意图。
图11是本发明一实施例提供的温度控制方法的流程示意图。
图12是本发明另一实施例提供的温度控制方法的流程示意图。
图13是本发明再一实施例提供的温度控制方法的流程示意图。
图14是本发明一实施例提供的装置的温度曲线图。
图15是本发明一实施例提供的电子设备的实体结构示意图。
附图标记说明:
1-温度检测模块;                 2-温度控制模块;
3-温度调节模块;                 11-温度检测单元;
12-温度检测精度处理单元;        31-加热单元;
32-降温单元;                    121-第一比较器;
122-第一电容;                   123-第二比较器;
124-第一电阻;                   125-第二电阻;
126-第三电阻;                   127-第四电阻;
128-第二电容;                   129-电感;
311-加热电阻丝;                 312-第一MOS管;
313-第五电阻;                   314-第六电阻;
321-第二MOS管;                  322-第七电阻;
323-散热风扇。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明实施例的装置包括但不限于直流充电桩中的交流直流转换器,直流充电机等装置。
图1是本发明一实施例提供的装置的温度控制系统的结构示意图,如图1所示,本发明实施例提供的装置的温度控制系统,包括温度检测模块1、温度控制模块2和温度调节模块3,其中:
温度检测模块1用于检测获得装置的当前时刻温度,温度控制模块2用于根据所述当前时刻温度和温度预测模型,获得下一时刻的预测温度,并根据所述下一时刻的预测温度和温度阈值输出温度调节指令给温度调节模块3,温度调节模块3根据所述温度调节指令对所述装置进行温度调节。
具体地,温度检测模块1实时检测装置的温度,获得装置的当前时刻温度,然后将所述当前时刻温度发送给温度控制模块2。温度控制模块2接收到所述当前时刻温度之后,将所述当前时刻温度输入到所述温度预测模型中,可以获得下一时刻的预测温度,根据所述下一时刻的预测温度和温度阈值,获得温度调节指令,如果所述下一时刻的预测温度减去所述温度阈值的第一差值大于第一阈值,那么所述温度调节指令用于使温度调节模块3对所述装置进行降温,如果所述下一时刻的预测温度小于所述温度阈值并且所述温度阈值减去所述下一时刻的预测温度的第二差值大于第二阈值,那么所述温度调节指令用于使温度调节模块3对所述装置进行加热。温度控制模块2将所述温度调节指令发送到温度调节模块3,温度调节模块3接收到所述温度调节指令之后,会根据所述温度调节指令对所述装置进行温度调节。其中,所述温度阈值是预设的,根据实际需要进行设置,本发明实施例不做限定。所述温度调节指令是预设的。当前时刻与下一时刻之间的时间间隔根据实际需要进行设置,本发明实施例不做限定。
本发明实施例提供的装置的温度控制系统,包括温度检测模块、温度控制模块和温度调节模块,温度检测模块用于检测获得装置的当前时刻温度,温度控制模块用于根据当前时刻温度和温度预测模型,获得下一时刻的预测温度,并根据下一时刻的预测温度和温度阈值输出温度调节指令给温度调节模块,温度调节模块根据温度调节指令对装置进行温度调节,以提高装置在工作过程中温度的稳定性,从而能够保证装置的电能转换效率。此外,由于是通过下一时刻的预测温度对装置的温度进行调节,能够对预测温度进行补偿,实现对装置温度的预先调控。
在上述各实施例的基础上,进一步地,所述温度预测模型是预先获得的。
具体地,所述温度控制模块可以收集获得装置的历史温度训练数据,然后基于所述历史温度训练数据以及初始模型,训练获得所述温度预测模型,从而获得所述温度预测模型,将获得的温度预测模型配置到所述温度控制模块中。其中,所述初始模型包括但不限于神经网络模型,根据实际需要进行设置,本发明实施例不做限定。
在上述各实施例的基础上,进一步地,所述温度预测模型为基于历史温度数据自学习获得的。
具体地,所述温度控制模块可以收集装置的历史温度数据,然后基于历史温度数据自学习获得所述温度预测模型。其中,自学习可以采用机器学习模型,根据实际需要进行设置,本发明实施例不做限定。
可理解的是,由于装置的温度数据不断更新,可以定期更新历史温度数据,重新自学习获得所述温度预测模型。
例如,将获得的历史温度数据作为历史温度训练数据,然后基于所述历史温度数据以及初始模型,训练获得所述温度预测模型,然后再定期更新历史温度数据,作为历史温度训练数据,重新基于所述历史温度数据以及初始模型,训练获得所述温度预测模型。
在上述各实施例的基础上,进一步地,如图3所示,温度检测模块1包括温度检测单元11,温度检测单元11采用热电偶测温电路、热电阻测温电路或温度采集芯片,通过热电偶测温电路、热电阻测温电路或温度采集芯片能够实现装置的温度检测。其中,温度采集芯片根据实际需要进行选择,本发明实施例不做限定。
图2是本发明一实施例提供的热电阻测温电路的结构示意图,如图2所示,在上述各实施例的基础上,进一步地,本发明实施例提供的热电阻测温电路包括电阻R1、电容C1和热敏电阻TH1,电阻R1的第一端接电源VCC,电阻R1的第二端分别与电容C1的第一端和热敏电阻TH1的第一端相连,电容C1的第二端和热敏电阻TH1的第二端接地。
所述热电偶测温电路可以采用与图2类似的电路结构,将图2中的热敏电阻TH1替换为热电偶即可。
图3是本发明另一实施例提供的装置的温度控制系统的结构示意图,图4是本发明一实施例提供的温度检测精度处理单元的结构示意图,如图3和图4所示,在上述各实施例的基础上,进一步地,温度检测模块1还包括温度检测精度处理单元12,温度检测处理单元12包括电压跟随电路、反馈放大电路和滤波电路,其中:
所述电压跟随电路包括第一比较器121和第一电容122,第一比较器121的第一端与温度检测单元11相连,第一比较器121的第二端与第一比较器121的输出端相连,第一比较器121的第三端与第一电源VCC1相连,第一比较器121的第四端接地,第一电容122的第一端接地,第一电容122的第二端接第一电源VCC1;
所述反馈放大电路包括第二比较器123、第一电阻124、第二电阻125和第三电阻126,第一电阻124的第一端与第一比较器121的输出端相连,第一电阻124的第二端与第二比较器123的第二端相连,第二比较器123的第一端分别与第三电阻126的第一端和第二电阻125的第二端相连,第三电阻126的第二端与第二比较器123的输出端相 连,第二电阻125的第一端接地,第二比较器123的第三端接第一电源VCC1,第二比较器123的第四端接地;
所述滤波电路包括第四电阻127、第二电容128和电感129,第四电阻127的第一端与第二比较器123的输出端相连,第四电阻127的第二端分别与第二电容128的第一端和电感129的第一端相连,第二电容128的第二端接地,电感129的第二端与温度控制模块2相连。
其中,电压跟随电路起到实现采集电路与后级处理电路的隔离作用;反馈放大电路用于将隔离后的小信号进行比例放大,达到提高精度的目的;滤波电路起到实现信号滤波,排除线路传导干扰的作用。温度检测精度处理单元提高了装置温度采集的准确性。
图5是本发明一实施例提供的电压跟随电路的结构示意图,如图3和图5所示,在上述各实施例的基础上,进一步地,温度检测模块1还包括温度检测精度处理单元12,温度检测处理单元12包括电压跟随电路,其中:
所述电压跟随电路包括第一比较器121和第一电容122,第一比较器121的第一端与温度检测单元11相连,第一比较器121的第二端与第一比较器121的输出端相连,第一比较器121的第三端与第一电源VCC1相连,第一比较器121的第四端接地,第一电容122的第一端接地,第一电容122的第二端接第一电源VCC1,第一比较器121的输出端可以与温度控制模块2相连。
图6是本发明一实施例提供的反馈放大电路的结构示意图,如图3和图6所示,在上述各实施例的基础上,进一步地,温度检测模块1还包括温度检测精度处理单元12,温度检测处理单元12包括反馈放大电路,其中:
所述反馈放大电路包括第二比较器123、第一电阻124、第二电阻125和第三电阻126,第一电阻124的第二端与第二比较器123的第二端相连,第二比较器123的第一端分别与第三电阻126的第一端和第二电阻125的第二端相连,第三电阻126的第二端与第二比较器123的输出端相连,第二电阻125的第一端接地,第二比较器123的第三端接第一电源VCC1,第二比较器123的第四端接地,第一电阻124的第一端可以与温度检测单元11相连,第二比较器123的输出端可以与温度控制模块2相连。
图7是本发明一实施例提供的滤波电路的结构示意图,如图3和图7所示,在上述各实施例的基础上,进一步地,温度检测模块1还包括温度检测精度处理单元12,温度检测处理单元12包括滤波电路,其中:
所述滤波电路包括第四电阻127、第二电容128和电感129,第四电阻127的第二端分别与第二电容128的第一端和电感129的第一端相连,第二电容128的第二端接地,电感129的第二端与温度控制模块2相连,第四电阻127的第一端可以与温度检测单元11相连。
图8是本发明再一实施例提供的装置的温度控制系统的结构示意图,如图8所示,在上述各实施例的基础上,进一步地,温度调节模块3包括加热单元31和降温单元32,加热单元31用于加热装置,以提高装置的温度,降温单元32用于冷却装置,以降低装置的温度。
本发明实施例提供的装置的温度控制系统,通过温度调节模块既能实现装置的升温又能实现装置的降温,适用于各种天气使用。特别是对于设置在室外的装置,夏季需要对装置降温,冬季寒冷天气提高装置的温度以保证装置的电能转换效率。
在上述各实施例的基础上,进一步地,加热单元31可以通过加热电阻丝、铜电加热板、铝电加热板、陶瓷电加热、不锈钢电加热管、控制循环空气气道加热或化学试剂反应加热等方式实现加热。
其中,加热电阻丝、铜电加热板、铝电加热板、陶瓷电加热和不锈钢电加热管,可以配合MOS管进行温度调节控制加热,通过风扇送风;循环气道加热原理是控制散热空气气道的开闭,即需要加热时关闭气道排出口,使电子器件周围的热空气不要排出装置外部而是在本装置内部循环,为其它不发热电子器件补充热量;化学试剂加热即在本装置内部设置封闭独立的化学反应单元,控制化学试剂的进给量控制反应温度,再通过风扇送风循环到装置内需要温度补偿电子器件处,化学试剂例如CaO和H 2O,CaO和H 2O反应生成CaOH 2能够散发热量。
图9是本发明一实施例提供的加热单元的结构示意图,如图9所示,加热单元31包括加热电阻丝311、第一MOS管312、第五电阻313和第六电阻314,其中:
加热电阻丝311的第一端与第二电源VCC2相连,加热电阻丝311的第二端与第一MOS管312的漏极相连,第一MOS管312的栅极分别与第五电阻313的第一端和第六电阻314的第一端相连,第一MOS管312的源极和第五电阻313的第二端接地,第六电阻314的第二端连接温度控制模块2。
当装置需要加热时,可以通过加热电阻丝311发热使装置升温。加热电阻丝可以采用铜加热板、铝加热板、陶瓷或者不锈钢电加热管替换,配合MOS管进行温度调节控制加热。
在上述各实施例的基础上,进一步地,降温单元32可以通过液冷循环冷却、金属热管传导冷却、石墨片传导冷却、半导体冷却、化学试剂冷却或散热风扇等方式实现冷却降温。
其中,液冷循环冷却即采用冷却液做媒介通过循环方式将热量带走再通过散热器和散热风扇将多余热量排出装置;金属热管传导冷却与石墨片传导冷却是将热传导件(金属或者石墨)贴合发热强烈器件表面,再通过散热风扇将传导出来的多余热量吹入排风风道后排出装置;半导体冷却通过给其接入电源通电使其冷端靠近发热器件、热端靠散热风扇将热量排出装置起到装置内部散热效果;化学试剂冷却即在装置内部设置封闭独立的化学反应单元,通过化学反应吸收周围热量来降低发热电子器件周围的多余热量达到为装置降温目的。
图10是本发明一实施例提供的降温单元的结构示意图,如图10所示,在上述各实施例的基础上,进一步地,降温单元32包括第二MOS管321、第七电阻322和散热风扇323,其中:
第七电阻322的第一端和第二MOS管321的漏极连接第三电源VCC3,第二MOS管321的栅极和第七电阻322的第二端连接温度控制模块2,第二MOS管321的源极与散热风扇323的第一端相连,散热风扇323的第二端接地。
当装置需要降温的时候,可以通过散热风扇323使装置降温。可理解的是,还可以采用水冷等其他方式进行降温,根据实际情况进行选择,本发明实施例不做限定。
在上述各实施例的基础上,进一步地,温度控制模块2采用微处理器、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,简称CPLD)。
例如,微处理器的模数转换器的模拟量采集引脚与所述滤波电路的电感129的第二端相连,以采集温度检测模块1输出当前时刻温度。微处理器的第一控制输出引脚分别与第七电阻322的第二端和第二MOS管321的栅极相连,以输出温度调节指令控制风扇323旋转降温。微处理器的第二控制输出引脚与第六电阻314的第二端相连,以输出温度调节指令控制加热电阻311加热。
本发明实施例提供一种充电系统,包括上述任一实施例所述的装置的温度控制系统。
下面以一个具体的实施例来说明本发明实施例提供的装置的温度控制系统的应用场景。所述装置为充电桩内设置的交流直流转换器,充电桩可以为电动汽车充电,为所述电桩内的交流直流转换器配置本发明实施例提供的装置的温度控制系统。
当充电桩位于东北地区时室外时,冬季天气寒冷,室外温度低,夏季炎热,室外温度较高。充电桩在冬季为电动汽车充电时,由于外界温度较低,需要给交流直流转换器加热。温度检测模块1可以实时采集交流直流转换器的当前时刻温度,温度控制模块2根据所述当前时刻温度和温度预测模型,获得交流直流转换器的下一时刻的预测温度,并根据所述下一时刻的预测温度和温度阈值输出温度调节指令给温度调节模块3,温度调节模块3会加热交流直流转换器,使其工作在温度阈值的一定范围内。充电桩在夏季为电动汽车充电时,由于外界温度较高,再考虑到交流直流转换器本身工作时温度会升高,需要给交流直流转换器降温。温度检测模块1可以实时采集交流直流转换器的当前时刻温度,温度控制模块2根据所述当前时刻温度和温度预测模型,获得交流直流转换器的下一时刻的预测温度,并根据所述下一时刻的预测温度和温度阈值输出温度调节指令给温度调节模块3,温度调节模块3会降低交流直流转换器的温度,使其工作在温度阈值的一定范围内。
当充电桩位于新疆地区室外,且处于昼夜温差很大的时节。比如,充电桩在中午为电动汽车充电,由于外界温度较高,再考虑到交流直流转换器本身工作时温度会升高,本发明实施例提供的装置的温度控制系统会给交流直流转换器降温,使其工作在温度阈值的一定范围内。充电桩在夜晚为电动汽车充电,由于外界温度较低,本发明实施例提供的装置的温度控制系统给交流直流转换器加热,使其工作在温度阈值的一定范围内。
图11是本发明一实施例提供的温度控制方法的流程示意图,如图11所示,本发明实施例提供的温度控制方法,可以应用于上述任一实施例所述的装置的温度控制系统,包括:
S801、获取装置的当前时刻温度;
具体地,温度检测模块可以实时检测装置的温度,获得装置的当前时刻温度,然后将所述当前时刻温度发送给温度控制模块,所述温度控制模块可以接收所述当前时刻温度。
S802、根据所述当前时刻温度以及温度预测模型,获得下一时刻的预测温度;
具体地,所述温度控制模块在获取到所述当前时刻温度之后,将所述当前时刻温度输入到温度预测模型中,可以获得所述装置的下一时刻的预测温度。其中,所述温度预测模型可以是基于历史温度训练数据训练获得的。
S803、根据所述下一时刻的预测温度以及温度阈值,输出温度调节指令以调节所述装置的温度。
具体地,所述温度控制模块在获得所述下一时刻的预测温度之后,会根据所述下一时刻的预测温度以及温度阈值,获得温度调节指令,然后将所述温度调节指令发送给温度调节模块,所述温度调节模块会根据所述温度调节指令调节所述装置的温度。
例如,所述温度控制模块在判断获知所述下一时刻的预测温度大于所述温度阈值且所述下一时刻的预测温度减去所述温度阈值的第一差值大于第一阈值之后,输出所述温度调节指令以降低所述装置的温度。在判断获知所述下一时刻的预测温度小于所述温度阈值且所述温度阈值减去所述下一时刻的预测温度的第二差值大于第二阈值之后,输出所述温度调节指令以提高所述装置的温度。
本发明实施例提供的温度控制方法,获取装置的当前时刻温度,根据当前时刻温度以及温度预测模型,获得下一时刻的预测温度,根据下一时刻的预测温度以及温度阈值,输出温度调节指令以调节装置的温度,以提高装置在工作过程中温度的稳定性,从而能够保证装置的电能转换效率。此外,由于是通过下一时刻的预测温度对装置的温度进行调节,能够对预测温度进行补偿,实现对装置温度的预先调控。
在上述各实施例的基础上,进一步地,所述温度预测模型是预先获得的。
具体地,所述温度控制模块可以收集获得装置的历史温度训练数据,然后基于所述历史温度训练数据以及初始模型,训练获得所述温度预测模型,从而获得所述温度预测模型,将获得的温度预测模型配置到所述温度控制模块中。其中,所述初始模型包括但不限于神经网络模型,根据实际需要进行设置,本发明实施例不做限定。
在上述各实施例的基础上,进一步地,所述温度预测模型为基于历史温度数据自学习获得的。
具体地,所述温度控制模块可以收集装置的历史温度数据,然后基于历史温度数据自学习获得所述温度预测模型。其中,自学习可以采用机器学习模型,根据实际需要进行设置,本发明实施例不做限定。
可理解的是,由于装置的温度数据不断更新,可以定期更新历史温度数据,重新自学习获得所述温度预测模型。
图12是本发明另一实施例提供的温度控制方法的流程示意图,如图12所示,所述温度预测模型是基于历史温度训练数据训练获得的,基于所述历史温度训练数据训练获得所述温度预测模型的步骤包括:
S901、获取所述历史温度训练数据;
具体地,在装置正常工作时,在预设时间段内对装置进行单位时间间隔的温度采集,可以获得所述装置每个时刻的温度,所述服务器可以获取各个时刻的温度作为所述历史温度训练数据,所述历史温度训练数据包括第a个时刻的温度,以及第a+1个时刻的温度,第a个时刻的温度与第a+1个时刻的温度对应,a为正整数,a小于所述历史温度训练数据的数据量。其中,所述历史温度训练数据的数据量根据实际经验进行设置,本发明实施例不做限定。所述预设时间段根据实际需要进行设置,本发明实施例不做限定。所述单位时间间隔可以设置为1~3秒,根据实际经验进行设置,本发明实施例不做限定。
S902、根据所述历史温度训练数据以及初始模型,训练获得所述温度预测模型。
具体地,所述服务器在获得所述历史温度训练数据之后,可以将所述历史温度训练数据划分为训练集和验证集。将所述训练集中第b个时刻的温度作为输入数据,第b+1个时刻的温度作为输出数据,对所述初始模型进行训练,可以训练获得待确定温度预测模型,b为正整数且b小于等于所述训练集中的数据量。将验证集的第f个时刻的温度作为输入数据,输入到所述待确定温度预测模型中,可以输出第f+1个时刻的预测温度,f为正整数且f小于等于验证集中的数据量。对比所述训练集中各个时刻的下一时刻的温度与对应的预测温度,如果下一时刻的温度与下一时刻的预测温度的差值的绝对值小于等于偏差阈值,那么该预测温度预测准确,如果下一时刻的温度与下一时刻的预测温度的差值的绝对值大于偏差阈值,那么该预测温度不准确,统计所述验证集中各个时刻的温度预测准确的数量和预测不准确的数量,可以计算获得所述待确定温度预测模型的预测准确率。如果所述预测准确率大于准确率阈值,那么将所述待确定温度预测模型作为所述温度预测模型。否则,调整参数和/或历史温度训练数据,重新进行模型训练。其中,所述初始模型包括但不限于神经网络模型。所述偏差阈值根据实际经验进行设置,本发明实施例不做限定。所述准确率阈值根据实际经验进行设置,本发明实施例不做限定。
例如,所述初始模型采用三层神经网络模型,所述三层神经网络模型可以表示如下:
Figure PCTCN2021105380-appb-000001
其中,
Figure PCTCN2021105380-appb-000002
表示第t+1时刻的预测温度,m表示隐含层节点数,v i表示第i个隐含层节点到输出节点的连接权值,g表示微调系数,ω i(t)表示第i个隐含层节点对应的连接权函数,
Figure PCTCN2021105380-appb-000003
x(t)表示t时刻的温度,T表示样本数量,
Figure PCTCN2021105380-appb-000004
x t表示t时刻的温度,θ i表示第i个隐含层神经元阈值,θ表示输出层神经元阈值,i为正整数且i小于等于m。其中,m根据实际需要进行设置,例如设置为5或者6,本发明实施例不做限定。g根据实际需要进行设置,例如设置为1,本发明实施例不做限定。
比如,设置隐含节点数m为6,隐含层节点到输出节点的连接权值v i的初始值为0.01,隐含层神经元阈值θ i的初始值为0.002,输出层神经元阈值θ的初始值为0.03,学习速率为0.07~0.22,历史温度训练数据的样本数量为49~130。
通过三层神经网络模型训练获得的温度预测模型,温度的预测效率高且准确性高。
图13是本发明再一实施例提供的温度控制方法的流程示意图,如图13所示,在上述各实施例的基础上,进一步地,所述根据所述下一时刻的预测温度以及温度阈值,输出温度调节指令以调节所述装置的温度包括:
S8031、若判断获知所述下一时刻的预测温度大于所述温度阈值且所述下一时刻的预测温度减去所述温度阈值的第一差值大于第一阈值,则输出所述温度调节指令以降低所述装置的温度;
具体地,所述温度控制模块对比所述下一时刻的预测温度和所述温度阈值,如果所述下一时刻的预测温度大于所述温度阈值,那么计算所述下一时刻的预测温度减去所述温度阈值的第一差值,然后将所述第一差值与第一阈值进行比较,如果所述第一差值大于第一阈值,说明所述下一时刻的预测温度过高,需要降温,可以输出所述温度调节指令降低所述装置的温度,实现对下一时刻温度的提前控制。
例如,所述温度控制模块向温度调节模块的降温单元发送温度调节指令,以降低所述装置的温度,使所述下一时刻的实际温度低于所述下一时刻的预测温度,满足所述装置的工作温度要求,达到了对所述装置的温度预先调节的目的。
S8032、若判断获知所述下一时刻的预测温度小于所述温度阈值且所述温度阈值减去所述下一时刻的预测温度的第二差值大于第二阈值,则输出所述温度调节指令以提高所述装置的温度。
具体地,所述温度控制模块对比所述下一时刻的预测温度和所述温度阈值,如果所述下一时刻的预测温度小于所述温度阈值,那么计算所述下一时刻的预测温度减去所述温度阈值的第二差值,然后将所述第二差值与第二阈值进行比较,如果所述第二差值大于第二阈值,说明所述下一时刻的预测温度过低,需要升温,可以输出所述温度调节指令提高所述装置的温度,实现对下一时刻温度的提前控制。
例如,所述温度控制模块向温度调节模块的加热单元发送温度调节指令,以提高所述装置的温度,使所述下一时刻的实际温度高于所述下一时刻的预测温度,满足所述装置的工作温度要求,达到了对所述装置的温度预先调节的目的。
图14是本发明一实施例提供的装置的温度曲线图,如图14所示,采用本发明实施例提供的温度控制方法对某装置进行温度控制,65℃为该装置的温度阈值,即理想工作温度,由图14可知,t+1时刻调节后的实际温度围绕65℃上下波动的范围明显小于t+1时刻的预测温度围绕65℃上下波动的范围,明显提高了该装置在工作过程中温度的稳定性。
图15是本发明一实施例提供的电子设备的实体结构示意图,如图15所示,电子设备600可以包括:处理器100和存储器140。存储器140耦合到处理器100。处理器100可以调用存储器140中的逻辑指令,以执行如下方法:获取装置的当前时刻温度;根据所述当前时刻温度以及温度预测模型,获得下一时刻的预测温度;其中,所述温度预测模型是基于历史温度训练数据训练获得的;根据所述下一时刻的预测温度以及温度阈值,输出温度调节指令以调节所述装置的温度。
本实施例公开一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法实施例所提供的方法,例如包括:获取装置的当前时刻温度;根据所述当前时刻温度以及温度预测模型,获得下一时刻的预测温度;其中,所述温度预测模型是基于历史温度训练数据训练获得的;根据所述下一时刻的预测温度以及温度阈值,输出温度调节指令以调节所述装置的温度。
本实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机程序,所述计算机程序使所述计算机执行上述各方法实施例所提供的方法,例如包括:获 取装置的当前时刻温度;根据所述当前时刻温度以及温度预测模型,获得下一时刻的预测温度;其中,所述温度预测模型是基于历史温度训练数据训练获得的;根据所述下一时刻的预测温度以及温度阈值,输出温度调节指令以调节所述装置的温度。
如图15所示,电子设备600还可以包括:通信模块110、输入单元120、音频处理单元130、显示器160、电源170。值得注意的是,电子设备600也并不是必须要包括图15中所示的所有部件;此外,电子设备600还可以包括图15中没有示出的部件,可以参考现有技术。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
如图15所示,处理器100有时也称为控制器或操作控件,可以包括微处理器或其他处理器装置和/或逻辑装置,处理器100接收输入并控制电子设备600的各个部件的操作。
其中,存储器140,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存上述与失败有关的信息,此外还可存储执行有关信息的程序。并且处理器100可执行存储器140存储的该程序,以实现信息存储或处理等。
输入单元120向处理器100提供输入。输入单元120例如为按键或触摸输入装置。电源170用于向电子设备600提供电力。显示器160用于进行图像和文字等显示对象的显示。显示器160例如可为LCD显示器,但并不限于此。
存储器140可以是固态存储器,例如,只读存储器(ROM)、随机存取存储器(RAM)、SIM卡等。还可以是这样的存储器,其即使在断电时也保存信息,可被选择性地擦除且设有更多数据,存储器140的示例有时被称为EPROM等。存储器140还可以是某种其它类型的装置。存储器140包括缓冲器141(有时被称为缓冲存储器)。存储器140可以包括应用/功能存储部142,应用/功能存储部142用于存储应用程序和功能程序或用于通过处理器100执行电子设备600的操作的流程。
存储器140还可以包括数据存储部143,该数据存储部143用于存储数据,例如联系人、数字数据、图片、声音和/或任何其他由电子设备使用的数据。存储器140的驱动程序存储部144可以包括电子设备的用于通信功能和/或用于执行电子设备的其他功能(如消息传送应用、通讯录应用等)的各种驱动程序。
通信模块110包括经由天线111发送和接收信号的发送机/接收机。通信模块110耦合到处理器100,以提供输入信号和接收输出信号,这可以和常规移动通信终端的情况相同。
基于不同的通信技术,在同一电子设备中,可以设置有多个通信模块110,如蜂窝网络模块、蓝牙模块和/或无线局域网模块等。通信模块110还经由音频处理器130耦合到扬声器131和麦克风132,以经由扬声器131提供音频输出,并接收来自麦克风132的音频输入,从而实现通常的电信功能。音频处理器130可以包括任何合适的缓冲器、解码器、放大器等。另外,音频处理器130还耦合到处理器100,从而使得可以通过麦克风132能够在本机上录音,且使得可以通过扬声器131来播放本机上存储的声音。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在本说明书的描述中,参考术语“一个实施例”、“一个具体实施例”、“一些实施例”、“例如”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (21)

  1. 一种装置的温度控制系统,其特征在于,包括温度检测模块、温度控制模块和温度调节模块,其中:
    所述温度检测模块用于检测获得装置的当前时刻温度,所述温度控制模块用于根据所述当前时刻温度和温度预测模型,获得下一时刻的预测温度,并根据所述下一时刻的预测温度和温度阈值输出温度调节指令给所述温度调节模块,所述温度调节模块根据所述温度调节指令对所述装置进行温度调节。
  2. 根据权利要求1所述的温度控制系统,其特征在于,所述温度预测模型为基于历史温度数据自学习获得的。
  3. 根据权利要求1所述的温度控制系统,其特征在于,所述温度预测模型是预先获得的。
  4. 根据权利要求1所述的温度控制系统,其特征在于,所述温度检测模块包括温度检测单元,所述温度检测单元采用热电偶测温电路、热电阻测温电路或温度采集芯片。
  5. 根据权利要求4所述的温度控制系统,其特征在于,所述温度检测模块还包括温度检测精度处理单元,所述温度检测处理单元包括电压跟随电路,其中:
    所述电压跟随电路包括第一比较器和第一电容,所述第一比较器的第一端与所述温度检测单元相连,所述第一比较器的第二端与所述第一比较器的输出端相连,所述第一比较器的第三端与第一电源相连,所述第一比较器的第四端接地,所述第一电容的第一端接地,所述第一电容的第二端接所述第一电源。
  6. 根据权利要求4所述的温度控制系统,其特征在于,所述温度检测模块还包括温度检测精度处理单元,所述温度检测处理单元包括反馈放大电路,其中:
    所述反馈放大电路包括第二比较器、第一电阻、第二电阻和第三电阻,所述第一电阻的第二端与所述第二比较器的第二端相连,所述第二比较器的第一端分别与所述第二比较器的输出端和所述第二电阻的第二端相连,所述第二电阻的第一端接地,所述第二比较器的第三端接第一电源,所述第二比较器的第四端接地。
  7. 根据权利要求4所述的温度控制系统,其特征在于,所述温度检测模块还包括温度检测精度处理单元,所述温度检测处理单元包括滤波电路,其中:
    所述滤波电路包括第四电阻、第二电容和电感,所述第四电阻的第二端分别与所述第二电容的第一端和所述电感的第一端相连,所述第二电容的第二端接地,所述电感的第二端与所述温度控制模块相连。
  8. 根据权利要求1所述的温度控制系统,其特征在于,所述温度调节模块包括加热单元和降温单元。
  9. 根据权利要求8所述的温度控制系统,其特征在于,所述加热单元通过加热电阻丝、铜电加热板、铝电加热板、陶瓷电加热、不锈钢电加热管、控制循环空气气道加热或化学试剂反应加热实现加热。
  10. 根据权利要求8所述的温度控制系统,其特征在于,所述加热单元包括加热电阻丝、第一MOS管、第五电阻和第六电阻,其中:
    所述加热电阻丝的第一端与第二电源相连,所述加热电阻丝的第二端与所述第一MOS管的漏极相连,所述第一MOS管的栅极分别与所述第五电阻的第一端和所述第六电阻的第一端相连,所述第一MOS管的源极和所述第五电阻的第二端接地,所述第六电阻的第二端连接所述温度控制模块。
  11. 根据权利要求8所述的温度控制系统,其特征在于,所述降温单元通过液冷循环冷却、金属热管传导冷却、石墨片传导冷却、半导体冷却、化学试剂冷却或散热风扇实现冷却降温。
  12. 根据权利要求8所述的温度控制系统,其特征在于,所述降温单元包括第二MOS管、第七电阻和散热风扇,其中:
    所述第七电阻的第一端和所述第二MOS管的漏极连接第三电源,所述第二MOS管的栅极和所述第七电阻的第二端连接所述温度控制模块,所述第二MOS管的源极与所述散热风扇的第一端相连,所述散热风扇的第二端接地。
  13. 根据权利要求1至12任一项所述的温度控制系统,其特征在于,所述温度控制模块采用微处理器、现场可编程门阵列或复杂可编程逻辑器件。
  14. 一种充电系统,其特征在于,包括如权利要求1至13任一项所述的装置的温度控制系统。
  15. 一种温度控制方法,其特征在于,包括:
    获取装置的当前时刻温度;
    根据所述当前时刻温度以及温度预测模型,获得下一时刻的预测温度;
    根据所述下一时刻的预测温度以及温度阈值,输出温度调节指令以调节所述装置的温度。
  16. 根据权利要求15所述的方法,其特征在于,所述温度预测模型为基于历史温度数据自学习获得的。
  17. 根据权利要求15所述的方法,其特征在于,所述温度预测模型是预先获得的。
  18. 根据权利要求15所述的方法,其特征在于,所述温度预测模型是基于历史温度训练数据训练获得的,包括:
    获取所述历史温度训练数据;
    根据所述历史温度训练数据以及初始模型,训练获得所述温度预测模型。
  19. 根据权利要求15至18任一项所述的方法,其特征在于,所述根据所述下一时刻的预测温度以及温度阈值,输出温度调节指令以调节所述装置的温度包括:
    若判断获知所述下一时刻的预测温度大于所述温度阈值且所述下一时刻的预测温度减去所述温度阈值的第一差值大于第一阈值,则输出所述温度调节指令以降低所述装置的温度;
    若判断获知所述下一时刻的预测温度小于所述温度阈值且所述温度阈值减去所述下一时刻的预测温度的第二差值大于第二阈值,则输出所述温度调节指令以提高所述装置的温度。
  20. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求15至19任一项所述方法的步骤。
  21. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求15至19任一项所述方法的步骤。
PCT/CN2021/105380 2020-11-17 2021-07-09 一种装置的温度控制系统及温度控制方法 WO2022105260A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3196722A CA3196722A1 (en) 2020-11-17 2021-07-09 Temperature control system for device and temperature control method
US18/034,297 US20240111319A1 (en) 2020-11-17 2021-07-09 Temperature control system for device and temperature control method
MX2023005789A MX2023005789A (es) 2020-11-17 2021-07-09 Sistema y dispositivo de control de temperatura y metodo de control de temperatura.
EP21893412.3A EP4250052A1 (en) 2020-11-17 2021-07-09 Temperature control system for device and temperature control method
JP2023528517A JP2023549824A (ja) 2020-11-17 2021-07-09 装置の温度制御システム及び温度制御方法
KR1020237013724A KR20230070507A (ko) 2020-11-17 2021-07-09 장치의 온도 제어 시스템 및 온도 제어 방법
ZA2023/05695A ZA202305695B (en) 2020-11-17 2023-05-26 Temperature control system for device and temperature control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011286748.4A CN112416034A (zh) 2020-11-17 2020-11-17 一种装置的温度控制系统及温度控制方法
CN202011286748.4 2020-11-17

Publications (1)

Publication Number Publication Date
WO2022105260A1 true WO2022105260A1 (zh) 2022-05-27

Family

ID=74831286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105380 WO2022105260A1 (zh) 2020-11-17 2021-07-09 一种装置的温度控制系统及温度控制方法

Country Status (9)

Country Link
US (1) US20240111319A1 (zh)
EP (1) EP4250052A1 (zh)
JP (1) JP2023549824A (zh)
KR (1) KR20230070507A (zh)
CN (1) CN112416034A (zh)
CA (1) CA3196722A1 (zh)
MX (1) MX2023005789A (zh)
WO (1) WO2022105260A1 (zh)
ZA (1) ZA202305695B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114777958A (zh) * 2022-06-20 2022-07-22 深圳比特微电子科技有限公司 芯片散热状况检测方法、装置、电子设备及存储介质
CN116170019A (zh) * 2023-01-06 2023-05-26 深圳市西京电力科技有限公司 一种基于半导体热敏电阻的大功率电力电子器件
CN116811522A (zh) * 2023-07-05 2023-09-29 一汽解放汽车有限公司 整车热管理系统及整车热管理系统的控制方法
CN117199029A (zh) * 2023-11-07 2023-12-08 瑞森半导体科技(广东)有限公司 一种功率电源管理芯片及功率电源管理方法
CN117516629A (zh) * 2023-11-13 2024-02-06 美特文博(天津)科技有限公司 一种文物存储环境检测系统和储藏及展示装备
CN116170019B (zh) * 2023-01-06 2024-05-24 深圳市首创达电子科技有限公司 一种基于半导体热敏电阻的大功率电力电子器件

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112416034A (zh) * 2020-11-17 2021-02-26 长春捷翼汽车零部件有限公司 一种装置的温度控制系统及温度控制方法
CN114326855B (zh) * 2021-12-27 2023-04-14 成都海光集成电路设计有限公司 器件温度的控制方法及系统
CN114459143A (zh) * 2022-02-15 2022-05-10 佛山市顺德区美的饮水机制造有限公司 即热装置及其温度预测控制方法和装置、水处理装置
CN114647263A (zh) * 2022-03-11 2022-06-21 杭州新剑机器人技术股份有限公司 温度控制方法、系统以及机器人的驱动系统
CN115939583B (zh) * 2023-01-03 2023-07-21 深圳市派沃新能源科技股份有限公司 一种储能液冷系统及其控制方法
CN116243772B (zh) * 2023-03-23 2024-05-07 苏州市优凡文化科技有限公司 用于台式机的机箱温度预测系统
CN117389344A (zh) * 2023-09-25 2024-01-12 华为技术有限公司 用电设备及其表面温度控制方法、装置、介质和芯片系统
CN117055658B (zh) * 2023-10-11 2024-01-02 江苏徕德生物医药有限公司 用于泰瑞拉奉结晶生产过程的自适应温度控制系统及方法
CN117096504B (zh) * 2023-10-17 2024-01-26 厦门海辰储能科技股份有限公司 温度控制方法及装置、设备、存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2908206A1 (en) * 2014-02-12 2015-08-19 E.ON Energie Deutschland GmbH System, method and controller for regulation temperature
CN107539137A (zh) * 2016-06-27 2018-01-05 比亚迪股份有限公司 电动汽车中动力电池组的温度控制系统、方法及电动汽车
CN107817685A (zh) * 2017-12-05 2018-03-20 上海中信信息发展股份有限公司 智能温度监控方法、装置、系统及终端
CN109598371A (zh) * 2018-11-21 2019-04-09 北京航空航天大学 一种飞行器载电子设备的温度预测方法及系统
CN110956338A (zh) * 2019-12-16 2020-04-03 杭州昕华信息科技有限公司 一种温度自适应输出方法及介质
CN111854109A (zh) * 2020-06-11 2020-10-30 深圳市合信达控制系统有限公司 一种室内温度控制方法、装置、电子设备及存储介质
CN112416034A (zh) * 2020-11-17 2021-02-26 长春捷翼汽车零部件有限公司 一种装置的温度控制系统及温度控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5869406B2 (ja) * 2012-03-30 2016-02-24 株式会社大気社 熱交換システム、及び、コントローラ
CN105789719B (zh) * 2016-05-13 2020-07-31 金龙联合汽车工业(苏州)有限公司 电动汽车动力电池温度管理方法
CN106785216A (zh) * 2016-12-30 2017-05-31 深圳市麦澜创新科技有限公司 一种电池温度控制系统
CN208393149U (zh) * 2018-04-23 2019-01-18 河南永源新能源科技有限公司 具有温度控制功能的充电桩
CN109301396B (zh) * 2018-08-24 2020-07-28 中国矿业大学 一种电动汽车低温环境下电池保温系统及其控制方法
CN109980316A (zh) * 2019-02-27 2019-07-05 深圳市力通威电子科技有限公司 动力电池温度管理控制系统
CN110532600B (zh) * 2019-07-19 2021-10-08 北京航空航天大学 一种动力电池热管理系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2908206A1 (en) * 2014-02-12 2015-08-19 E.ON Energie Deutschland GmbH System, method and controller for regulation temperature
CN107539137A (zh) * 2016-06-27 2018-01-05 比亚迪股份有限公司 电动汽车中动力电池组的温度控制系统、方法及电动汽车
CN107817685A (zh) * 2017-12-05 2018-03-20 上海中信信息发展股份有限公司 智能温度监控方法、装置、系统及终端
CN109598371A (zh) * 2018-11-21 2019-04-09 北京航空航天大学 一种飞行器载电子设备的温度预测方法及系统
CN110956338A (zh) * 2019-12-16 2020-04-03 杭州昕华信息科技有限公司 一种温度自适应输出方法及介质
CN111854109A (zh) * 2020-06-11 2020-10-30 深圳市合信达控制系统有限公司 一种室内温度控制方法、装置、电子设备及存储介质
CN112416034A (zh) * 2020-11-17 2021-02-26 长春捷翼汽车零部件有限公司 一种装置的温度控制系统及温度控制方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114777958A (zh) * 2022-06-20 2022-07-22 深圳比特微电子科技有限公司 芯片散热状况检测方法、装置、电子设备及存储介质
CN114777958B (zh) * 2022-06-20 2022-10-28 深圳比特微电子科技有限公司 芯片散热状况检测方法、装置、电子设备及存储介质
CN116170019A (zh) * 2023-01-06 2023-05-26 深圳市西京电力科技有限公司 一种基于半导体热敏电阻的大功率电力电子器件
CN116170019B (zh) * 2023-01-06 2024-05-24 深圳市首创达电子科技有限公司 一种基于半导体热敏电阻的大功率电力电子器件
CN116811522A (zh) * 2023-07-05 2023-09-29 一汽解放汽车有限公司 整车热管理系统及整车热管理系统的控制方法
CN117199029A (zh) * 2023-11-07 2023-12-08 瑞森半导体科技(广东)有限公司 一种功率电源管理芯片及功率电源管理方法
CN117199029B (zh) * 2023-11-07 2024-01-12 瑞森半导体科技(广东)有限公司 一种功率电源管理芯片及功率电源管理方法
CN117516629A (zh) * 2023-11-13 2024-02-06 美特文博(天津)科技有限公司 一种文物存储环境检测系统和储藏及展示装备
CN117516629B (zh) * 2023-11-13 2024-04-26 美特文博(天津)科技有限公司 一种文物存储环境检测系统和储藏及展示装备

Also Published As

Publication number Publication date
EP4250052A1 (en) 2023-09-27
MX2023005789A (es) 2023-07-13
CA3196722A1 (en) 2022-05-27
US20240111319A1 (en) 2024-04-04
JP2023549824A (ja) 2023-11-29
CN112416034A (zh) 2021-02-26
KR20230070507A (ko) 2023-05-23
ZA202305695B (en) 2024-03-27

Similar Documents

Publication Publication Date Title
WO2022105260A1 (zh) 一种装置的温度控制系统及温度控制方法
JP6295867B2 (ja) 空調制御システム及び空調制御方法
CN107959085B (zh) 一种电池储能设备的温度调节方法及系统
CN112880030B (zh) 新风控制方法、装置及空调器
WO2017133455A1 (zh) 液冷设备的控制方法、装置以及系统
CN104733801A (zh) 动力电池热管理装置及方法
WO2023050814A1 (zh) 空调器控制方法、装置和电子设备
WO2019007218A1 (en) THERMAL MANAGEMENT SYSTEM
CN103457006B (zh) 一种储能电源的冷却控制方法、冷却控制装置及冷却系统
KR102507816B1 (ko) 배터리 충전 방법 및 시스템
CN105241021A (zh) 一种房间级空调调节方法、装置及控制器
CN109899935B (zh) 一种轨道交通制冷系统及其智能调节方法、装置
JP2019057455A5 (zh)
WO2023236888A1 (zh) 一种热管理控制方法、装置、整车控制器及介质
CN112467247A (zh) 一种动力电池热均衡方法、装置、系统、车辆及存储介质
KR20160051198A (ko) 이차 전지의 출력 조정 장치 및 방법
EP3344925B1 (en) Method and system for operating a thermal energy exchanger
CN101441486B (zh) 一种电热恒温水浴箱及水温控制方法
KR20200100884A (ko) 차량의 열관리장치 제어시스템 및 제어방법
CN105633497A (zh) 一种电动汽车锂离子电池低温充电加热系统及其加热方法
CN115556603B (zh) 适用于充电设备的散热方法及装置
WO2019062960A1 (zh) 车载电池的温度调节方法和温度调节系统
CN116565394A (zh) 一种储能系统温度控制方法、装置及储能系统
TWI811858B (zh) 溫度控制系統及其控制方法
JP3669755B2 (ja) 氷蓄熱空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21893412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237013724

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3196722

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023008008

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2023528517

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 112023008008

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230427

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021893412

Country of ref document: EP

Effective date: 20230619