WO2017133455A1 - 液冷设备的控制方法、装置以及系统 - Google Patents

液冷设备的控制方法、装置以及系统 Download PDF

Info

Publication number
WO2017133455A1
WO2017133455A1 PCT/CN2017/071531 CN2017071531W WO2017133455A1 WO 2017133455 A1 WO2017133455 A1 WO 2017133455A1 CN 2017071531 W CN2017071531 W CN 2017071531W WO 2017133455 A1 WO2017133455 A1 WO 2017133455A1
Authority
WO
WIPO (PCT)
Prior art keywords
regulator
parameter
fluid
control
acquisition value
Prior art date
Application number
PCT/CN2017/071531
Other languages
English (en)
French (fr)
Inventor
柴宏生
刘帆
郭雨龙
徐永田
高磊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017133455A1 publication Critical patent/WO2017133455A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20281Thermal management, e.g. liquid flow control

Definitions

  • the present disclosure relates to the field of electronic device cooling control technology, for example, to a method, device, and system for controlling a liquid cooling device.
  • liquid cooling and cooling systems are gradually being applied to the heat dissipation in the field of electronic communication.
  • the power consumption of the individual devices is different. Real-time control.
  • the present disclosure can solve at least one of the technical problems in the related art to some extent.
  • the present disclosure proposes a method of controlling a liquid cooling apparatus.
  • the method realizes that the liquid cooling equipment control system adopts the fluid physical characteristics and the temperature characteristics of the equipment to control, achieves the effect of automatic adjustment of the system, improves the system control precision, and can effectively prevent the system from being out of adjustment.
  • the present disclosure also proposes a control device for a liquid cooling device.
  • the present disclosure also proposes a control system for a liquid cooling device.
  • the method for controlling a liquid cooling device includes: acquiring a fluid parameter acquisition value of the coolant in the liquid cooling pipeline, and according to the preset fluid parameter threshold and the fluid parameter collection value,
  • the regulator in the liquid-cooled pipeline performs an adjustment control; after performing an adjustment control on the regulator, acquiring a device parameter acquisition value of the device to be cooled; and on the basis of performing an adjustment control on the regulator,
  • the regulator is subjected to secondary adjustment control according to a preset device parameter threshold and the device parameter acquisition value.
  • the liquid cooling device control method of the embodiment of the present disclosure can obtain the fluid parameter acquisition value of the coolant in the liquid cooling pipeline, and adjust the regulator in the liquid cooling pipeline according to the preset fluid parameter threshold and the fluid parameter acquisition value. Performing an adjustment control, after performing an adjustment control on the regulator, acquiring the device parameter acquisition value of the device to be cooled, and collecting the value according to the preset device parameter threshold and the device parameter on the basis of performing an adjustment control on the regulator.
  • the regulator is subjected to secondary regulation control, that is, the two-parameter control scheme is adopted in the existing gear range, the fluid parameter is the main control parameter, and the equipment parameter is the auxiliary control parameter, which realizes the fluid physical property of the liquid cooling equipment control system and
  • the temperature parameters of the equipment are controlled by two parameters, which achieves the effect of automatic adjustment of the system, improves the system control precision, and can effectively prevent the system from being out of adjustment.
  • the control device for the liquid cooling device of the second aspect of the present disclosure includes: a first acquiring module configured to acquire a fluid parameter acquisition value of the cooling liquid in the liquid cooling pipeline; and an adjustment control module configured to be preset according to the preset The fluid parameter threshold and the fluid parameter acquisition value perform an adjustment control on the regulator in the liquid cooling pipeline; the second acquisition module is configured to perform an adjustment control on the regulator in the adjustment control module After that, the device parameter collection value of the device to be cooled is obtained; the adjustment control module is further configured to perform, according to the adjustment control of the regulator, the preset device parameter threshold and the device parameter collection value.
  • the regulator performs secondary adjustment control.
  • the control device of the liquid cooling device of the embodiment of the present disclosure can acquire the fluid parameter collection value of the coolant in the liquid cooling pipeline through the first acquiring module, and adjust the control module to the liquid according to the preset fluid parameter threshold and the fluid parameter collection value.
  • the regulator in the cold pipeline performs an adjustment control
  • the second acquisition module acquires the equipment parameter acquisition value of the equipment to be cooled after performing an adjustment control on the regulator
  • the adjustment control module performs an adjustment control on the regulator.
  • the regulator is subjected to secondary adjustment control, that is, a two-parameter control scheme is adopted in the existing gear range.
  • the liquid cooling equipment control system adopts the fluid physical characteristics and the equipment temperature characteristics to adjust the parameters, which achieves the automatic adjustment effect of the system and improves the system control precision. Effectively prevent system imbalance.
  • a control system for a liquid cooling apparatus includes: a liquid cooling main pipe configured to supply and supply liquid to the entire cabinet system by transmitting a cooling liquid; a liquid cooling branch line, the liquid cooling branch pipe a road connected to the liquid cooling main pipe, configured to supply and supply liquid to each of the equipment to be cooled in the entire cabinet system by transmitting the coolant in the liquid cooling main pipe; a fluid parameter collector, a fluid parameter collector is connected to the liquid-cooled branch line, configured to collect a fluid parameter acquisition value of the coolant in the liquid-cooled branch line; a device parameter collector, the device parameter collector, and the waiting The cooling device is connected to be configured to collect the device parameter collection value of the device to be cooled; the control device for the liquid cooling device according to the second aspect of the present disclosure, wherein the control device and the fluid parameter collector and device respectively a parameter collector connected; and a regulator connected to the control device, and the regulator is disposed on the liquid-cooled branch line, configured to receive the Braking means for transmitting a control
  • the control system of the liquid cooling device of the embodiment of the present disclosure can acquire the fluid parameter collection value of the coolant in the liquid cooling pipeline through the first acquiring module in the control device, and adjust the control module according to the preset fluid parameter threshold and the fluid parameter.
  • the collected value performs one adjustment control on the regulator in the liquid cooling pipeline
  • the second acquisition module acquires the equipment parameter acquisition value of the equipment to be cooled after performing an adjustment control on the regulator, and the adjustment control module adjusts the regulator once.
  • the regulator On the basis of control, the regulator is subjected to secondary adjustment control according to the preset equipment parameter threshold and the equipment parameter acquisition value, that is, the two-parameter control scheme is adopted in the existing gear range, and the fluid parameter is taken as the main control parameter, and the device parameter
  • the liquid cooling equipment control system adopts the fluid physical characteristics and the temperature characteristics of the equipment to control the two parameters, which achieves the automatic adjustment effect of the system, improves the system control precision, and can effectively prevent the system from being out of adjustment.
  • Embodiments of the present disclosure also provide a non-transitory computer readable storage medium storing computer executable instructions arranged to perform the above method.
  • An embodiment of the present disclosure further provides an electronic device, including:
  • At least one processor At least one processor
  • the memory stores instructions executable by the at least one processor, the instructions being At least one processor executes to cause the at least one processor to perform the method described above.
  • FIG. 1 is a flow chart of a method of controlling a liquid cooling apparatus according to an embodiment of the present disclosure
  • FIG. 2 is a flow chart of secondary adjustment control of a regulator in accordance with an embodiment of the present disclosure
  • FIG. 3 is a flow chart of a method of controlling a liquid cooling apparatus according to another embodiment of the present disclosure.
  • FIG. 4 is a flow chart of a method of controlling a liquid cooling apparatus according to still another embodiment of the present disclosure.
  • FIG. 5 is a structural block diagram of a control device of a liquid cooling apparatus according to an embodiment of the present disclosure
  • FIG. 6 is a structural block diagram of a control device of a liquid cooling device according to another embodiment of the present disclosure.
  • FIG. 7 is a structural block diagram of a control device of a liquid cooling device according to still another embodiment of the present disclosure.
  • FIG. 8 is a structural block diagram of a control system of a liquid cooling apparatus according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 1 is a flow chart of a method of controlling a liquid cooling apparatus according to an embodiment of the present disclosure.
  • the liquid cooling device control method of the embodiments of the present disclosure can be used in various fields of liquid cooling heat dissipation systems.
  • the present disclosure is exemplified by a liquid cooling heat dissipation system applied to a machine room. Understandably, below The liquid cooling system applied to the equipment room is only an example and is not intended to limit the present disclosure.
  • control method of the liquid cooling device may include:
  • S110 Acquire a fluid parameter acquisition value of the coolant in the liquid-cooled pipeline, and perform an adjustment control on the regulator in the liquid-cooled pipeline according to the preset fluid parameter threshold and the fluid parameter acquisition value.
  • the liquid cooling pipeline may be composed of a liquid cooling liquid supply main pipe, a liquid cooling liquid return main pipe, a liquid cooling liquid supply branch pipe, and a liquid cooling liquid return branch pipe.
  • the cold liquid supply main road and the liquid cold return main line form a liquid cooling main road for supplying and discharging liquid for the whole cabinet system
  • the liquid cooling liquid supply branch line and the liquid cooling liquid return branch line constitute a liquid cooling branch line. Used to supply and return fluid to each cabinet in the entire cabinet system.
  • a plurality of different gear intervals may be set according to the opening degree of the regulator, such as (0, 20%), (20%, 80%), (80%, 100%), and each gear interval can correspond to a preset fluid parameter threshold.
  • the preset fluid parameter threshold may be a threshold under the currently adjusted gear range.
  • the gear range of the current regulator may be determined, and the corresponding preset fluid parameter threshold is determined according to the current gear range, and passed through the signal collector.
  • the fluid parameter may be a temperature, pressure, flow, etc.
  • the fluid parameter threshold is compared for size, and the regulator in the liquid-cooled pipeline is subjected to an adjustment control according to the comparison result, for example, when the fluid parameter acquisition value is greater than a preset fluid parameter threshold, the regulator is positively adjusted. Control; when the fluid parameter acquisition value is less than the preset fluid parameter threshold, the regulator is inversely adjusted.
  • the regulator may be an electric regulating valve, a flow regulating valve or the like.
  • the forward adjustment may be to increase the opening degree of the regulator, or to reduce the opening degree of the regulator, whether to increase or decrease the opening degree of the regulator.
  • Which signal is represented by the fluid parameter can be determined, and the corresponding implementation can refer to the subsequent description.
  • the preset fluid parameter threshold may be a range value, and the difference between the maximum value and the minimum value in the range is small, that is, the fluid parameter threshold may be one having The range value of the small difference.
  • the device parameter collection value of the device to be cooled at this time can be obtained by a signal collector (such as a device signal collector).
  • a signal collector such as a device signal collector
  • the device parameter may be a temperature parameter or the like.
  • the device parameter threshold of the pre-device may be determined first, and then the device parameter threshold may be compared with the acquired device parameter acquisition value, and the regulator is performed on the basis of the adjustment result based on the comparison result. Secondary adjustment control.
  • the preset device parameter threshold may be a parameter value, or may be a logical calculation result of multiple parameter values, such as averaging, square variance, and the like.
  • the preset device parameter threshold may include a first device parameter threshold and a second device parameter threshold, where the first device parameter threshold is greater than the second device parameter threshold, wherein, in an embodiment of the present disclosure
  • the second adjustment control of the regulator ie, the above step S130
  • the second adjustment control of the regulator may include:
  • the first difference between the device parameter collection value and the first device parameter threshold may be calculated first, and then the preset difference may be compared with the regulator opening degree.
  • the opening of the regulator corresponding to the first difference is found in the relationship, and the regulator is subjected to forward adjustment control according to the opening degree of the regulator.
  • the second difference between the device parameter collection value and the second device parameter threshold may be calculated first, and then the preset difference and the regulator opening degree may be The opening degree of the regulator corresponding to the second difference is found in the correspondence relationship, and the regulator is inversely adjusted according to the opening degree of the regulator.
  • the device parameter acquisition value at this time can be obtained, and the device parameter acquisition value exceeds the threshold maximum value (ie, the first device parameter threshold value described above).
  • the threshold maximum value ie, the first device parameter threshold value described above.
  • the liquid cooling device control method of the embodiment of the present disclosure can obtain the fluid parameter acquisition value of the coolant in the liquid cooling pipeline, and adjust the regulator in the liquid cooling pipeline according to the preset fluid parameter threshold and the fluid parameter acquisition value. Performing an adjustment control, after performing an adjustment control on the regulator, acquiring the device parameter acquisition value of the device to be cooled, and collecting the value according to the preset device parameter threshold and the device parameter on the basis of performing an adjustment control on the regulator.
  • the regulator is subjected to secondary regulation control, that is, the two-parameter control scheme is adopted in the existing gear range, the fluid parameter is the main control parameter, and the equipment parameter is the auxiliary control parameter, which realizes the fluid physical property of the liquid cooling equipment control system and
  • the temperature parameters of the equipment are controlled by two parameters, which achieves the effect of automatic adjustment of the system, improves the system control precision, and can effectively prevent the system from being out of adjustment.
  • FIG. 3 is a flow chart of a method of controlling a liquid cooling apparatus according to another embodiment of the present disclosure.
  • the device parameters participate in the adjustment of the opening degree of the regulator if and only after the fluid parameter master has acted, that is, if and only if the value is collected according to the fluid parameters
  • the regulator can be adjusted twice according to the equipment parameter acquisition value.
  • the control method of the liquid cooling device may include:
  • S330 Perform positive adjustment control on the regulator when the fluid parameter acquisition value is greater than a preset fluid parameter threshold.
  • S340 Perform reverse adjustment control on the regulator when the fluid parameter acquisition value is less than a preset fluid parameter threshold.
  • the fluid parameter collection value may include but not It is limited to the temperature parameter acquisition value, pressure parameter acquisition value, or flow parameter acquisition value.
  • the above forward adjustment can be understood as increasing the opening degree of the regulator, and the reverse adjustment can be understood as reducing the opening degree of the regulator.
  • the forward adjustment can be understood as reducing the opening degree of the regulator, and the reverse adjustment can be understood as increasing the opening degree of the adjustment.
  • the forward adjustment is to open the regulator opening degree
  • the reverse adjustment is to close the regulator.
  • the opening degree when the fluid parameter acquisition value is the pressure parameter acquisition value or the flow parameter acquisition value, the positive adjustment is to close the opening of the small regulator, and the forward adjustment is to open the opening of the regulator.
  • S360 on the basis of performing one adjustment control on the regulator, performs secondary adjustment control on the regulator according to the preset device parameter threshold and the device parameter acquisition value.
  • the device parameter collection value of the device to be cooled may be obtained, and the The device parameter collection value is compared with the preset device parameter threshold.
  • an alarm signal may be generated, and the regulator is not required to automatically adjust and control the alarm signal, and the alarm signal is provided to the monitoring personnel, and the monitoring personnel judges according to the alarm signal.
  • the control method of the liquid cooling device of the embodiment of the present disclosure can adjust the regulator according to the device parameter acquisition value only if the regulator is subjected to one adjustment control according to the fluid parameter acquisition value, and when the fluid parameter is not When an action occurs and the device parameter collection value exceeds the budgeted device parameter threshold, only the alarm signal can be sent, and the regulator's opening adjustment control is not performed, thereby ensuring that the system adjusts the balance. Can effectively prevent system imbalance.
  • the control is performed on the basis of that shown in FIG. 4
  • the method can also include:
  • a plurality of different gear intervals can be set according to the opening degree of the regulator, such as (0, 20%), (20%, 80%), (80%, 100%).
  • the opening degree of the regulator such as (0, 20%), (20%, 80%), (80%, 100%).
  • cross-shift adjustment may occur, so it is necessary to detect whether the current opening of the regulator exceeds the limit in the current gear range.
  • the second alarm information may be generated, and the second alarm information is provided to the monitoring personnel, and the monitoring personnel according to the The second alarm information and the actual demand confirm whether the cross-gear operation is performed. If the monitoring personnel confirms that adjustment is required across the gear position, the gear position adjustment is performed.
  • the second alarm information may be stored for later searching and flipping, for example, the second alarm information may be stored in a database.
  • an embodiment of the present disclosure further provides a control device for the liquid cooling device, which is provided by the liquid cooling device according to the embodiment of the present disclosure.
  • the control method of the liquid cooling device provided by the embodiment is corresponding to the control method of the liquid cooling device, and the embodiment of the control method of the liquid cooling device is also applicable to the control device of the liquid cooling device provided in this embodiment, which is not detailed in this embodiment. description.
  • FIG. 5 is a block diagram showing the structure of a control device of a liquid cooling apparatus according to an embodiment of the present disclosure. As shown in FIG. 5, the control device of the liquid cooling device may include: a first acquisition module 10, an adjustment control module 20, and a second acquisition module 30.
  • the first acquisition module 10 can be configured to acquire a fluid parameter acquisition value of the coolant in the liquid-cooled line.
  • the adjustment control module 20 can be configured to collect a value pair according to a preset fluid parameter threshold and a fluid parameter The regulator in the liquid-cooled line performs an adjustment control.
  • the adjustment control module 20 may perform forward adjustment control on the regulator when the fluid parameter acquisition value is greater than a preset fluid parameter threshold, and when the fluid parameter acquisition value is less than a preset fluid parameter threshold , the reverse adjustment control of the regulator.
  • the fluid parameter acquisition value may include a temperature parameter acquisition value, a pressure parameter acquisition value, or a flow parameter acquisition value, and the like.
  • the forward adjustment is to increase the opening degree of the regulator, and the reverse adjustment is to reduce the opening degree of the regulator; when the fluid parameter is collected
  • the forward adjustment is to reduce the opening degree of the regulator, and the reverse adjustment is to increase the adjustment opening degree.
  • the second acquisition module 30 can be configured to acquire the device parameter acquisition value of the device to be cooled after the adjustment control module 20 performs an adjustment control on the regulator.
  • the adjustment control module 20 is further configured to perform secondary adjustment on the regulator according to the preset device parameter threshold and the device parameter acquisition value on the basis of performing one adjustment control on the regulator. control.
  • the preset device parameter threshold may include a first device parameter threshold and a second device parameter threshold, where the first device parameter threshold is greater than the second device parameter threshold, wherein the adjustment control module 20 collects the device parameters.
  • the first difference between the device parameter collection value and the first device parameter threshold is calculated, and the correspondence between the first difference and the preset difference and the regulator opening degree is calculated according to the first difference.
  • control device may further include: a third acquiring module 40, a determining module 50, and a first prompting module 60, in order to ensure that the system adjusts the balance and effectively prevents the system from being out of tune.
  • the third obtaining module 40 can be configured to acquire the device parameter collection value of the device to be cooled when the fluid parameter acquisition value is equal to the preset fluid parameter threshold.
  • the determining module 50 can be configured to determine whether the device parameter acquisition value exceeds a preset device parameter threshold.
  • the first prompt module 60 can be configured to determine, at the determining module 50, that the device parameter collection value exceeds the preset. When the device parameter threshold is reached, the first alarm message is generated and prompted.
  • control device may further include: a detecting module 70. And a second prompt module 80.
  • the detection module 70 can be configured to detect whether the opening of the regulator exceeds a limit under the current gear range.
  • the second prompting module 80 can be configured to generate a second alarm information and prompt when the detecting module 70 detects that the opening degree of the regulator exceeds the limit in the current gear position interval, wherein the monitoring personnel confirms according to the second alarm information and the actual demand. Whether to perform cross-gear operation. Therefore, manual manual adjustment is adopted in the inter-span adjustment, and the system can be adjusted to ensure the balance of the system while improving the system availability.
  • the control device of the liquid cooling device of the embodiment of the present disclosure can acquire the fluid parameter collection value of the coolant in the liquid cooling pipeline through the first acquiring module, and adjust the control module to the liquid according to the preset fluid parameter threshold and the fluid parameter collection value.
  • the regulator in the cold pipeline performs an adjustment control
  • the second acquisition module acquires the equipment parameter acquisition value of the equipment to be cooled after performing an adjustment control on the regulator
  • the adjustment control module performs an adjustment control on the regulator.
  • the regulator is subjected to secondary adjustment control, that is, the two-parameter control scheme is adopted in the existing gear range
  • the fluid parameter is the main control parameter
  • the device parameter is the auxiliary control parameter.
  • the liquid cooling equipment control system adopts the fluid physical characteristics and the temperature characteristics of the equipment to control the two parameters, which achieves the automatic adjustment effect of the system, improves the system control precision, and can effectively prevent the system from being out of adjustment.
  • the present disclosure also proposes a control system for a liquid cooling apparatus.
  • the control system of the liquid cooling apparatus may include: a liquid cooling main pipe 100 (not shown in FIG. 8), a liquid cooling branch pipe 200 (not shown in FIG. 8), and a fluid parameter collector 300.
  • the liquid-cooled main pipe 100 may be composed of a liquid-cooled liquid supply main pipe 110 and a liquid-cooled liquid return main pipe 120
  • the liquid-cooled branch pipe 200 (FIG. 8) Not shown) may consist of a liquid-cooled liquid supply branch line 210 and a liquid-cooled liquid return branch line 220.
  • the liquid-cooled main line 100 can be configured to supply and return liquid to the entire cabinet system by transferring coolant.
  • the liquid-cooled branch line 200 is connected to the liquid-cooled main line 100 and configured to pass the liquid cooling main line
  • the coolant in the system supplies and supplies liquid to each of the equipment to be cooled 700 in the entire cabinet system.
  • the fluid parameter harvester 300 can be configured to collect fluid parameter acquisition values for the coolant in the liquid cooled branch line 200.
  • the fluid parameter collector 300 is connected to the liquid-cooled branch line 200.
  • the fluid parameter collector 300 can be respectively connected to the liquid-cooled liquid supply branch line 210 and the liquid-cooled liquid return branch line 220. .
  • the device parameter collector 400 can be configured to collect device parameter acquisition values for the device to be cooled. As shown in FIG. 8 , the device parameter collector 400 is connected to the device to be cooled 700 . For example, the device parameter collector 400 can be disposed on the device to be cooled 700 .
  • control device 500 can be connected to the fluid parameter collector 300 and the device parameter collector 400, respectively.
  • the connection between the control device 500 and the fluid parameter collector 300 may be a wired connection or a wireless connection; similarly, the control device 500 and the device parameter collector 400 The connection between the two can be wired or wireless.
  • the regulator 600 is configured to receive a control signal transmitted by the control device 500 and to perform an adjustment control of the regulator in accordance with the control signal.
  • the regulator 600 is connected to the control device 500, and the regulator 600 is disposed on the liquid-cooled branch line 200.
  • the regulator 600 may be disposed on the liquid-cooled liquid supply branch line 210.
  • the regulator 600 may also be disposed on the liquid-cooled liquid return branch line 220.
  • control system of the liquid cooling device may include a plurality of subsystems and a liquid cooling main pipe, and each subsystem may cool each device to be cooled (such as a cabinet) in the entire cabinet system.
  • each subsystem may include a liquid cooling liquid supply branch line 210, a liquid cooling liquid return branch line 220, a fluid parameter collector 300, a device parameter collector 400, Control device 500 and regulator 600.
  • the control system of the liquid cooling device of the embodiment of the present disclosure can acquire the fluid parameter collection value of the coolant in the liquid cooling pipeline through the first acquiring module in the control device, and adjust the control module according to the preset fluid parameter threshold and the fluid parameter.
  • the collected value performs one adjustment control on the regulator in the liquid cooling pipeline
  • the second acquisition module acquires the equipment parameter acquisition value of the equipment to be cooled after performing an adjustment control on the regulator, and the adjustment control module adjusts the regulator once.
  • the regulator is subjected to secondary adjustment control according to the preset device parameter threshold value and the device parameter acquisition value, that is, the double is used in the existing gear position interval.
  • the parameter control scheme takes the fluid parameters as the main control parameters and the equipment parameters as the auxiliary control parameters.
  • the liquid cooling equipment control system adopts the fluid physical characteristics and the equipment temperature characteristics to control the parameters, which achieves the effect of automatic system adjustment and improves the system. Control accuracy, can effectively prevent system imbalance.
  • Embodiments of the present disclosure also provide a non-transitory computer readable storage medium storing computer executable instructions arranged to perform the method of any of the above embodiments.
  • the embodiment of the present disclosure further provides a schematic structural diagram of an electronic device.
  • the electronic device includes:
  • At least one processor 90 which is exemplified by a processor 90 in FIG. 9; and a memory 91, may further include a communication interface 92 and a bus 93.
  • the processor 90, the communication interface 92, and the memory 91 can complete communication with each other through the bus 93.
  • Communication interface 92 can be used for information transfer.
  • Processor 90 can invoke logic instructions in memory 91 to perform the methods of the above-described embodiments.
  • logic instructions in the memory 91 described above may be implemented in the form of a software functional unit and sold or used as a stand-alone product, and may be stored in a computer readable storage medium.
  • the memory 91 is a computer readable storage medium and can be used to store a software program, a computer executable program, a program instruction/module corresponding to the method in the embodiment of the present disclosure.
  • the processor 90 executes the function application and the data processing by executing the software programs, the instructions, and the modules stored in the memory 91, that is, the control method of the liquid cooling device in the above method embodiments.
  • the memory 91 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the terminal device, and the like. Further, the memory 91 may include a high speed random access memory, and may also include a nonvolatile memory.
  • the technical solution of the embodiments of the present disclosure may be embodied in the form of a software product stored in a storage medium, including one or more instructions for causing a computer device ( All or part of the steps of the method described in the embodiments of the present disclosure are performed by a personal computer, a server, or a network device.
  • the foregoing storage medium may be a non-transitory storage medium, including: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like.
  • first and second are used for the description only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality" is at least two, such as two, three, etc., unless explicitly defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed”, and the like, are to be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated or defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the meaning of the above terms in the present disclosure can be understood according to actual conditions.
  • the description of the terms “one embodiment”, “some embodiments”, “example”, or “some examples” and the like means the features, structures, materials or characteristics described in connection with the embodiments or examples. It is included in at least one embodiment or example of the present disclosure. In the present specification, the schematic representation of the above terms is not necessarily directed to the same embodiment or example. Furthermore, the described features, structures, materials, or characteristics may be combined in a suitable manner in any one or more embodiments or examples. In addition, various embodiments or examples described in the specification, as well as features of various embodiments or examples, may be combined and combined.
  • Any process or method description in the flowcharts or otherwise described herein may be understood to represent a module, segment or portion of code that includes one or more executable instructions for implementing the steps of a particular logical function or process.
  • the scope of the embodiments of the present disclosure includes additional implementations, in which the functions may be performed in a substantially simultaneous manner or in an inverse order depending on the functions involved, in the order shown or discussed, which should be The disclosed embodiments are understood by those skilled in the art.
  • a "computer readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with such an instruction execution system, apparatus, or device.
  • Examples of computer readable media may (non-exhaustive list) include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), read only Memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the present disclosure can be implemented in hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having a logic gate configured to implement a logic function on a data signal Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), and the like.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like. While the embodiments of the present disclosure have been shown and described above, it is understood that the foregoing embodiments are illustrative and are not to be construed as limiting the scope of the disclosure Real The examples are subject to changes, modifications, substitutions, and variations.
  • the control method, device and system of the liquid cooling device realize that the liquid cooling device control system adopts two parameters of fluid physical property and device temperature characteristic to control, achieves the effect of automatic system adjustment, improves system control precision, and can effectively Ground to prevent system imbalance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本公开提供了一种液冷设备的控制方法、装置以及系统,其中方法包括:获取液冷管路中的冷却液的流体参数采集值,并根据预设的流体参数阈值和流体参数采集值对液冷管路中的调节器进行一次调节控制;当对调节器进行一次调节控制之后,获取待冷却设备的设备参数采集值;以及在对调节器进行一次调节控制的基础上,根据预设的设备参数阈值和设备参数采集值对调节器进行二次调节控制。该方法实现了液冷设备控制系统采用流体物理特性以及设备温度特性双参数进行调控,达到了系统自动调节的效果,提高了系统调控精度,能够有效地防止系统失调。

Description

液冷设备的控制方法、装置以及系统 技术领域
本公开涉及电子设备冷却控制技术领域,例如涉及一种液冷设备的控制方法、装置以及系统。
背景技术
近些年来,随着互联网技术不断发展,通讯和IT等领域电子设备的集成度越来越高,规模越来越多,很大通信设备、网络设备以及数据设备都被集成在一个机柜中,整个机柜被集中设置在机房内,机柜内的热密度越来越高,整个机房的热负荷越来越大。
目前,液冷散热系统正在逐渐被应用到电子通讯领域的散热中。当机房内存在多个液冷设备时,由于单个设备运行功耗不同,需要对各个设备分别设置节流机构以进行流量平衡,且单个不同设备的业务量也随时改变,因此需要对节流结构进行实时调控。
相关技术中,对节流结构进行实时调控的实现方式主要有两种:一种是基本对节流结构进行无控制,采用最大流量设计,而这种方式设计会导致设计冗余较大,初期投资成本高等特点;另一种是采用流体物理特征(如压力、或温度)对节流机构进行控制,这种方式仅关注了流体的物理特征,而忽略了其他因素也可能导致的控制失调的情况,主要表现如下:采用流体压力控制,当液冷设备控制系统业务量突增时,系统无法及时调整节流机构,导致系统失调;采用流体温度控制,当系统新增业务单元时,易导致系统失调情况。
发明内容
本公开可以至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开提出一种液冷设备的控制方法。该方法实现了液冷设备控制系统采用流体物理特性以及设备温度特性双参数进行调控,达到了系统自动调节的效果,提高了系统调控精度,能够有效地防止系统失调。
本公开还提出一种液冷设备的控制装置。
本公开还提出一种液冷设备的控制系统。
本公开第一方面实施例的液冷设备的控制方法,包括:获取液冷管路中的冷却液的流体参数采集值,并根据预设的流体参数阈值和所述流体参数采集值对所述液冷管路中的调节器进行一次调节控制;当对所述调节器进行一次调节控制之后,获取待冷却设备的设备参数采集值;以及在对所述调节器进行一次调节控制的基础上,根据预设的设备参数阈值和所述设备参数采集值对所述调节器进行二次调节控制。
本公开实施例的液冷设备的控制方法,可获取液冷管路中的冷却液的流体参数采集值,并根据预设的流体参数阈值和流体参数采集值对液冷管路中的调节器进行一次调节控制,当对调节器进行一次调节控制之后,获取待冷却设备的设备参数采集值,并在对调节器进行一次调节控制的基础上,根据预设的设备参数阈值和设备参数采集值对调节器进行二次调节控制,即在现有档位区间内采用双参数控制方案,以流体参数为主要控制参数,设备参数为辅助控制参数,实现了液冷设备控制系统采用流体物理特性以及设备温度特性双参数进行调控,达到了系统自动调节的效果,提高了系统调控精度,能够有效地防止系统失调。
本公开第二方面实施例的液冷设备的控制装置,包括:第一获取模块,被配置为获取液冷管路中的冷却液的流体参数采集值;调节控制模块,被配置为根据预设的流体参数阈值和所述流体参数采集值对所述液冷管路中的调节器进行一次调节控制;第二获取模块,被配置为在所述调节控制模块对所述调节器进行一次调节控制之后,获取待冷却设备的设备参数采集值;所述调节控制模块还被配置为在对所述调节器进行一次调节控制的基础上,根据预设的设备参数阈值和所述设备参数采集值对所述调节器进行二次调节控制。
本公开实施例的液冷设备的控制装置,可通过第一获取模块获取液冷管路中的冷却液的流体参数采集值,调节控制模块根据预设的流体参数阈值和流体参数采集值对液冷管路中的调节器进行一次调节控制,第二获取模块在对调节器进行一次调节控制之后,获取待冷却设备的设备参数采集值,调节控制模块在对调节器进行一次调节控制的基础上,根据预设的设备参数阈值和设备参数采集值对调节器进行二次调节控制,即在现有档位区间内采用双参数控制方案, 以流体参数为主要控制参数,设备参数为辅助控制参数,实现了液冷设备控制系统采用流体物理特性以及设备温度特性双参数进行调控,达到了系统自动调节的效果,提高了系统调控精度,能够有效地防止系统失调。
本公开第三方面实施例的液冷设备的控制系统,包括:液冷主管路,被配置为通过传输冷却液为整个机柜系统进行供回液;液冷分支管路,所述液冷分支管路与所述液冷主管路相连,被配置为通过传输所述液冷主管路中的冷却液为所述整个机柜系统中的每个待冷却设备进行供回液;流体参数采集器,所述流体参数采集器与所述液冷分支管路相连,被配置为采集所述液冷分支管路中的冷却液的流体参数采集值;设备参数采集器,所述设备参数采集器与所述待冷却设备相连,被配置为采集所述待冷却设备的设备参数采集值;本公开第二方面实施例的液冷设备的控制装置,其中,所述控制装置分别与所述流体参数采集器和设备参数采集器相连;以及调节器,所述调节器与所述控制装置相连,且所述调节器被设置于所述液冷分支管路上,被配置为接收所述控制装置发送的控制信号,并根据所述控制信号对所述调节器进行调节控制。
本公开实施例的液冷设备的控制系统,可通过控制装置中的第一获取模块获取液冷管路中的冷却液的流体参数采集值,调节控制模块根据预设的流体参数阈值和流体参数采集值对液冷管路中的调节器进行一次调节控制,第二获取模块在对调节器进行一次调节控制之后,获取待冷却设备的设备参数采集值,调节控制模块在对调节器进行一次调节控制的基础上,根据预设的设备参数阈值和设备参数采集值对调节器进行二次调节控制,即在现有档位区间内采用双参数控制方案,以流体参数为主要控制参数,设备参数为辅助控制参数,实现了液冷设备控制系统采用流体物理特性以及设备温度特性双参数进行调控,达到了系统自动调节的效果,提高了系统调控精度,能够有效地防止系统失调。
本公开实施例还提供了一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述方法。
本公开实施例还提供了一种电子设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述 至少一个处理器执行,以使所述至少一个处理器执行上述的方法。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图概述
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中,
图1是根据本公开一个实施例的液冷设备的控制方法的流程图;
图2是根据本公开一个实施例的对调节器进行二次调节控制的流程图;
图3是根据本公开另一个实施例的液冷设备的控制方法的流程图;
图4是根据本公开又一个实施例的液冷设备的控制方法的流程图;
图5是根据本公开一个实施例的液冷设备的控制装置的结构框图;
图6是根据本公开另一个实施例的液冷设备的控制装置的结构框图;
图7是根据本公开又一个实施例的液冷设备的控制装置的结构框图;以及
图8是根据本公开一个实施例的液冷设备的控制系统的结构框图;以及
图9是根据本公开实施例的电子设备的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图描述本公开实施例的液冷设备的控制方法、装置以及系统。
图1是根据本公开一个实施例的液冷设备的控制方法的流程图。需要说明的是,本公开实施例的液冷设备的控制方法可用于各个领域的液冷散热系统中,作为一种示例,本公开以应用于机房的液冷散热系统中为例。可以理解,下面 以应用于机房的液冷散热系统中只是一种示例,并不能作为对本公开的限定。
如图1所示,该液冷设备的控制方法可以包括:
S110,获取液冷管路中的冷却液的流体参数采集值,并根据预设的流体参数阈值和流体参数采集值对液冷管路中的调节器进行一次调节控制。
需要说明的是,在本公开的实施例中,液冷管路可由液冷供液主管路、液冷回液主管路、液冷供液分支管路和液冷回液分支管路组成,液冷供液主管路、液冷回液主管路组成液冷主管路,用以为整个机柜系统进行供回液,液冷供液分支管路和液冷回液分支管路组成液冷分支管路,用以为整个机柜系统中的每个机柜进行供回液。
还需要说明的是,在本公开的实施例中,根据调节器的开度可设置多个不同的档位区间,如(0,20%)、(20%,80%)、(80%,100%),且每个档位区间可对应一个预设的流体参数阈值。可以理解,上述预设的流体参数阈值可为当前调节的档位区间下的阈值。
在本公开的实施例中,在液冷设备进行冷却的过程中,可确定当前调节器的档位区间,并根据该当前档位区间确定对应的预设的流体参数阈值,并通过信号采集器(如流体信号采集器)实时获取液冷管路中的冷却液的流体参数采集值,其中,该流体参数可以为温度、压力、流量等信号,之后,可将该流体参数采集值与该预设的流体参数阈值进行大小比较,并根据比较结果对液冷管路中的调节器进行一次调节控制,例如,当流体参数采集值大于预设的流体参数阈值时,对调节器进行正向调节控制;当流体参数采集值小于预设的流体参数阈值时,对调节器进行反向调节控制。其中,在本公开的实施例中,该调节器可以为电动调节阀、或流量调节阀等。
可以理解,在本公开的实施例中,上述正向调节可以是增大调节器的开度,也可以是减小调节器的开度,而不管是增大或减小调节器的开度均可由流体参数所代表的哪种信号决定,相应实现方式可参照后续描述。
还可以理解,在本公开的一个实施例中,上述预设的流体参数阈值可以是一个范围值,该范围中的最大值与最小值的差值很小,即该流体参数阈值可以是一个具有很小差值的范围值。
S120,当对调节器进行一次调节控制之后,获取待冷却设备的设备参数采 集值。
在根据流体参数采集值对调节器进行一次调节控制之后,可通过信号采集器(如设备信号采集器)获取此时待冷却设备的设备参数采集值。其中,在本公开的实施例中,该设备参数可为温度参数等。
S130,在对调节器进行一次调节控制的基础上,根据预设的设备参数阈值和设备参数采集值对调节器进行二次调节控制。
可先确定预先设备的设备参数阈值,之后,可将该设备参数阈值与获取到的设备参数采集值进行大小对比,并根据对比结果在对调节器进行一次调节控制的基础上,对调节器进行二次调节控制。需要说明的是,在本公开的实施例中,该预设的设备参数阈值可以为一个参数数值,也可以为多个参数数值的逻辑计算结果,例如求平均值、求方差值等。
在本公开的一个实施例中,预设的设备参数阈值可包括第一设备参数阈值和第二设备参数阈值,第一设备参数阈值大于第二设备参数阈值,其中,在本公开的实施例中,如图2所示,在如图1所示的基础上,根据预设的设备参数阈值和设备参数采集值对调节器进行二次调节控制(即上述步骤S130),可包括:
S131,当设备参数采集值大于或等于第一设备参数阈值时,计算设备参数采集值与第一设备参数阈值之间的第一差值,并根据第一差值以及预设的差值与调节器开度的对应关系对调节器进行正向调节控制。
当设备参数采集值超过第一设备参数阈值时,可先计算设备参数采集值与第一设备参数阈值之间的第一差值,之后,可从预设的差值与调节器开度的对应关系中找到与该第一差值对应的调节器的开度,并根据调节器的开度对调节器进行正向调节控制。
S132,当设备参数采集值小于第二设备参数阈值时,计算设备参数采集值与第二设备参数阈值之间的第二差值,并根据第二差值以及预设的差值与调节器开度的对应关系对调节器进行反向调节控制。
当设备参数采集值低于第二设备参数阈值时,可先计算设备参数采集值与第二设备参数阈值之间的第二差值,之后,可从预设的差值与调节器开度的对应关系中找到与该第二差值对应的调节器的开度,并根据该调节器的开度对调节器进行反向调节控制。
也就是说,在根据流体参数采集值对调节器进行一次调节控制之后,可获取此时的设备参数采集值,并在设备参数采集值超过阈值的最大值(即上述的第一设备参数阈值)时,对调节器进行正向调节控制,在设备参数采集值小于阈值的最小值(即上述的第二设备参数阈值)时,对调节器进行反向调节控制,直至设备参数采集值落在第二设备参数阈值与第一设备参数阈值之间,从而保证了液冷设备控制系统的调整平衡。
本公开实施例的液冷设备的控制方法,可获取液冷管路中的冷却液的流体参数采集值,并根据预设的流体参数阈值和流体参数采集值对液冷管路中的调节器进行一次调节控制,当对调节器进行一次调节控制之后,获取待冷却设备的设备参数采集值,并在对调节器进行一次调节控制的基础上,根据预设的设备参数阈值和设备参数采集值对调节器进行二次调节控制,即在现有档位区间内采用双参数控制方案,以流体参数为主要控制参数,设备参数为辅助控制参数,实现了液冷设备控制系统采用流体物理特性以及设备温度特性双参数进行调控,达到了系统自动调节的效果,提高了系统调控精度,能够有效地防止系统失调。
图3是根据本公开另一个实施例的液冷设备的控制方法的流程图。
为了保证系统调整平衡,在本公开的实施例中,当且仅当流体参数主控发生动作后,设备参数才参与调节器的开度调控,也就是说,当且仅当根据流体参数采集值对调节器进行一次调节控制之后,才可根据设备参数采集值对调节器进行二次调节,而当流体参数未发生动作,且设备参数采集值超过预算的设备参数阈值时,可只发送报警信号,不进行调节器的开度调节控制。如图3所示,该液冷设备的控制方法可以包括:
S310,获取液冷管路中的冷却液的流体参数采集值。
S320,将流体参数采集值与预设的流体参数阈值进行大小比较。
S330,当流体参数采集值大于预设的流体参数阈值时,对调节器进行正向调节控制。
S340,当流体参数采集值小于预设的流体参数阈值时,对调节器进行反向调节控制。
需要说明的是,在本公开的一个实施例中,该流体参数采集值可包括但不 限于温度参数采集值、压力参数采集值、或流量参数采集值等。其中,在本公开的实施例中,当流体参数采集值为温度参数采集值时,上述正向调节可理解为增大调节器的开度,反向调节可理解为减小调节器的开度;当流体参数采集值为压力参数采集值或流量参数采集值时,正向调节可理解为减小调节器的开度,反向调节可理解为增大调节的开度。
也就是说,在根据流体参数采集值对调节器进行调节控制时,当流体参数采集值为温度参数采集值时,正向调节为开大调节器的开度,反向调节为关小调节器的开度,当流体参数采集值为压力参数采集值或流量参数采集值时,正向调节关小调节器的开度,正向调节为开大调节器的开度。
S350,当对调节器进行一次调节控制之后,获取待冷却设备的设备参数采集值。
S360,在对调节器进行一次调节控制的基础上,根据预设的设备参数阈值和设备参数采集值对调节器进行二次调节控制。
S370,当流体参数采集值等于预设的流体参数阈值时,获取待冷却设备的设备参数采集值,并判断设备参数采集值是否超过预设的设备参数阈值。
当流体参数采集值等于预设的流体参数阈值,即流体参数采集值落在正常范围内,且未对调节器进行调节控制的情况下,可以获取待冷却设备的设备参数采集值,并将该设备参数采集值与预设的设备参数阈值进行大小比较。
可以理解,在本公开的实施例中,如果设备参数采集值未超过预设的设备参数阈值,即处于正常范围内,则可不进行处理。
S380,如果设备参数采集值超过预设的设备参数阈值,则生成第一报警信息并提示。
当判断设备参数采集值超过预设的设备参数阈值时,可生成报警信号,且不需要自动对调节器进行调节控制,并将该报警信号提供给监控人员,由监控人员根据该报警信号进行判断。
本公开实施例的液冷设备的控制方法,当且仅当根据流体参数采集值对调节器进行一次调节控制之后,才可根据设备参数采集值对调节器进行二次调节,而当流体参数未发生动作,且设备参数采集值超过预算的设备参数阈值时,可只发送报警信号,不进行调节器的开度调节控制,由此可保证系统调整平衡, 能够有效地防止系统失调。
为了保证系统调节平衡,并提高系统调控精度,在本公开的一个实施例中,如图4所示,在如图1所示的基础上,在对调节器进行调节控制的过程中,该控制方法还可包括:
S410,检测调节器的开度是否超过当前档位区间下的限制。
可以理解,在本公开的实施例中,根据调节器的开度可设置多个不同的档位区间,如(0,20%)、(20%,80%)、(80%,100%),在调节器的开度控制过程中,可能会出现跨档间调节,因此需检测调节器的当前开度是否超过当前档位区间下的限制。
S420,如果调节器的开度超过当前档位区间下的限制,则生成第二报警信息并提示,其中,监控人员根据第二报警信息以及实际需求确认是否进行跨档位操作。
为了保证系统调节平衡,并提高系统调控精度,当调节器的开度超过当前档位区间下的限制时,可生成第二报警信息,并将该第二报警信息提供给监控人员,监控人员根据第二报警信息以及实际需求确认是否进行跨档位操作,如果监控人员确认需跨档位进行调节,则再进行档位调节。可以理解,为了便于以后查找和翻阅,可对上述第二报警信息进行存储,例如,该第二报警信息可被存储于数据库中。
由此,在跨档间调节采取人工手动调节,可以通过人工判断在保证系统调节平衡的同时,还提高了系统的可用性。
与上述几种实施例提供的液冷设备的控制方法相对应,本公开的一种实施例还提供一种液冷设备的控制装置,由于本公开实施例提供的液冷设备的控制装置与上述几种实施例提供的液冷设备的控制方法相对应,因此在前述液冷设备的控制方法的实施方式也适用于本实施例提供的液冷设备的控制装置,在本实施例中不再详细描述。图5是根据本公开一个实施例的液冷设备的控制装置的结构框图。如图5所示,该液冷设备的控制装置可以包括:第一获取模块10、调节控制模块20和第二获取模块30。
第一获取模块10可被配置为获取液冷管路中的冷却液的流体参数采集值。
调节控制模块20可被配置为根据预设的流体参数阈值和流体参数采集值对 液冷管路中的调节器进行一次调节控制。
在本公开的实施例中,调节控制模块20在流体参数采集值大于预设的流体参数阈值时,可以对调节器进行正向调节控制,并在流体参数采集值小于预设的流体参数阈值时,对调节器进行反向调节控制。
在本公开的一个实施例中,流体参数采集值可包括温度参数采集值、压力参数采集值、或流量参数采集值等。其中,在本公开的实施例中,当流体参数采集值为温度参数采集值时,正向调节为增大调节器的开度,反向调节为减小调节器的开度;当流体参数采集值为压力参数采集值或流量参数采集值时,正向调节为减小调节器的开度,反向调节为增大调节的开度。
第二获取模块30可被配置为在调节控制模块20对调节器进行一次调节控制之后,获取待冷却设备的设备参数采集值。
其中,在本公开的实施例中,调节控制模块20还可被配置为在对调节器进行一次调节控制的基础上,根据预设的设备参数阈值和设备参数采集值对调节器进行二次调节控制。
在本公开的实施例中,预设的设备参数阈值可包括第一设备参数阈值和第二设备参数阈值,第一设备参数阈值大于第二设备参数阈值,其中,调节控制模块20在设备参数采集值大于或等于第一设备参数阈值时,计算设备参数采集值与第一设备参数阈值之间的第一差值,并根据第一差值以及预设的差值与调节器开度的对应关系对调节器进行正向调节控制,以及在设备参数采集值小于第二设备参数阈值时,计算设备参数采集值与第二设备参数阈值之间的第二差值,并根据第二差值以及预设的差值与调节器开度的对应关系对调节器进行反向调节控制。
为了保证系统调整平衡,有效地防止系统失调,在本公开的一个实施例中,如图6所示,该控制装置还可包括:第三获取模块40、判断模块50和第一提示模块60。
其中,第三获取模块40可被配置为在流体参数采集值等于预设的流体参数阈值时,获取待冷却设备的设备参数采集值。
判断模块50可被配置为判断设备参数采集值是否超过预设的设备参数阈值。
第一提示模块60可被配置为在判断模块50判断设备参数采集值超过预设 的设备参数阈值时,生成第一报警信息并提示。
为了保证系统调节平衡,并提高系统调控精度,在本公开的一个实施例中,在对所述调节器进行调节控制的过程中,如图7所示,该控制装置还可包括:检测模块70和第二提示模块80。
其中,检测模块70可被配置为检测调节器的开度是否超过当前档位区间下的限制。
第二提示模块80可被配置为在检测模块70检测调节器的开度超过当前档位区间下的限制时,生成第二报警信息并提示,其中,监控人员根据第二报警信息以及实际需求确认是否进行跨档位操作。由此,在跨档间调节采取人工手动调节,可以通过人工判断在保证系统调节平衡的同时,还提高了系统的可用性。
本公开实施例的液冷设备的控制装置,可通过第一获取模块获取液冷管路中的冷却液的流体参数采集值,调节控制模块根据预设的流体参数阈值和流体参数采集值对液冷管路中的调节器进行一次调节控制,第二获取模块在对调节器进行一次调节控制之后,获取待冷却设备的设备参数采集值,调节控制模块在对调节器进行一次调节控制的基础上,根据预设的设备参数阈值和设备参数采集值对调节器进行二次调节控制,即在现有档位区间内采用双参数控制方案,以流体参数为主要控制参数,设备参数为辅助控制参数,实现了液冷设备控制系统采用流体物理特性以及设备温度特性双参数进行调控,达到了系统自动调节的效果,提高了系统调控精度,能够有效地防止系统失调。
为了实现上述实施例,本公开还提出了一种液冷设备的控制系统。
图8是根据本公开一个实施例的液冷设备的控制系统的结构框图。如图8所示,该液冷设备的控制系统可以包括:液冷主管路100(图8中未示出)、液冷分支管路200(图8中未示出)、流体参数采集器300、设备参数采集器400、控制装置500和调节器600。其中,如图8所示,该液冷主管路100(图8中未示出)可由液冷供液主管路110和液冷回液主管路120组成,该液冷分支管路200(图8中未示出)可由液冷供液分支管路210和液冷回液分支管路220组成。
液冷主管路100可被配置为通过传输冷却液为整个机柜系统进行供回液。
液冷分支管路200与液冷主管路100相连,被配置为通过传输液冷主管路 中的冷却液为整个机柜系统中的每个待冷却设备700进行供回液。
流体参数采集器300可被配置为采集液冷分支管路200中的冷却液的流体参数采集值。其中,流体参数采集器300与液冷分支管路200相连,例如,如图8所示,流体参数采集器300可分别与液冷供液分支管路210和液冷回液分支管路220相连。
设备参数采集器400可被配置为采集待冷却设备的设备参数采集值。其中,如图8所示,设备参数采集器400与待冷却设备700相连,例如,设备参数采集器400可设置于待冷却设备700上。
控制装置500的功能描述可参照上述图5至图7中任一个实施例所述控制装置的功能描述。在此不再赘述。其中,如图8所示,控制装置500可分别与流体参数采集器300和设备参数采集器400相连。可选地,在本公开的实施例中,控制装置500与流体参数采集器300之间的连接可以是有线方式连接,也可以是无线方式连接;同理,控制装置500与设备参数采集器400之间的连接可以是有线方式连接,也可以是无线方式连接。
调节器600被配置为接收控制装置500发送的控制信号,并根据控制信号对调节器进行调节控制。其中,调节器600与控制装置500相连,且调节器600被设置于液冷分支管路200上,例如,如图8所示,调节器600可被设置于液冷供液分支管路210上,可选地,调节器600也可以被设置于液冷回液分支管路220上。
需要说明的是,液冷设备的控制系统可包括多个子系统和液冷主管路,每个子系统可为整个机柜系统中的每个待冷却设备(如机柜)进行冷却。例如,以两个子系统为例,如图8所示,每个子系统可包括液冷供液分支管路210、液冷回液分支管路220、流体参数采集器300、设备参数采集器400、控制装置500和调节器600。
本公开实施例的液冷设备的控制系统,可通过控制装置中的第一获取模块获取液冷管路中的冷却液的流体参数采集值,调节控制模块根据预设的流体参数阈值和流体参数采集值对液冷管路中的调节器进行一次调节控制,第二获取模块在对调节器进行一次调节控制之后,获取待冷却设备的设备参数采集值,调节控制模块在对调节器进行一次调节控制的基础上,根据预设的设备参数阈值和设备参数采集值对调节器进行二次调节控制,即在现有档位区间内采用双 参数控制方案,以流体参数为主要控制参数,设备参数为辅助控制参数,实现了液冷设备控制系统采用流体物理特性以及设备温度特性双参数进行调控,达到了系统自动调节的效果,提高了系统调控精度,能够有效地防止系统失调。
本公开实施例还提供了一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述任一实施例中的方法。
本公开实施例还提供了一种电子设备的结构示意图。参见图9,该电子设备包括:
至少一个处理器(processor)90,图9中以一个处理器90为例;和存储器(memory)91,还可以包括通信接口(Communications Interface)92和总线93。其中,处理器90、通信接口92、存储器91可以通过总线93完成相互间的通信。通信接口92可以用于信息传输。处理器90可以调用存储器91中的逻辑指令,以执行上述实施例的方法。
此外,上述的存储器91中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器91作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器90通过运行存储在存储器91中的软件程序、指令以及模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的液冷设备的控制方法。
存储器91可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器91可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可 以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
在本公开的描述中,需要理解的是,术语“第一”、“第二”仅用于描述,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据实际情况理解上述术语在本公开中的含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、或“一些示例”等的描述意指结合该实施例或示例描述的特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以实现在任何计算机可读 介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,″计算机可读介质″可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的示例可以(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有被配置为对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实 施例进行变化、修改、替换和变型。
工业实用性
本公开提供的液冷设备的控制方法、装置以及系统实现了液冷设备控制系统采用流体物理特性以及设备温度特性双参数进行调控,达到了系统自动调节的效果,提高了系统调控精度,能够有效地防止系统失调。

Claims (14)

  1. 一种液冷设备的控制方法,包括:
    获取液冷管路中的冷却液的流体参数采集值,并根据预设的流体参数阈值和所述流体参数采集值对所述液冷管路中的调节器进行一次调节控制;
    当对所述调节器进行一次调节控制之后,获取待冷却设备的设备参数采集值;以及
    在对所述调节器进行一次调节控制的基础上,根据预设的设备参数阈值和所述设备参数采集值对所述调节器进行二次调节控制。
  2. 如权利要求1所述的方法,其中,所述根据预设的流体参数阈值和所述流体参数采集值对所述液冷管路中的调节器进行一次调节控制,包括:
    当所述流体参数采集值大于所述预设的流体参数阈值时,对所述调节器进行正向调节控制;
    当所述流体参数采集值小于所述预设的流体参数阈值时,对所述调节器进行反向调节控制。
  3. 如权利要求2所述的方法,还包括:
    当所述流体参数采集值等于所述预设的流体参数阈值时,获取待冷却设备的设备参数采集值,并判断所述设备参数采集值是否超过所述预设的设备参数阈值;以及
    如果所述设备参数采集值超过所述预设的设备参数阈值,则生成第一报警信息并提示。
  4. 如权利要求2所述的方法,其中,所述流体参数采集值包括温度参数采集值、压力参数采集值、或流量参数采集值,其中,
    当所述流体参数采集值为所述温度参数采集值时,所述正向调节为增大所 述调节器的开度,所述反向调节为减小所述调节器的开度;
    当所述流体参数采集值为所述压力参数采集值或所述流量参数采集值时,所述正向调节为减小所述调节器的开度,所述反向调节为增大所述调节的开度。
  5. 如权利要求1所述的方法,其中,所述预设的设备参数阈值包括第一设备参数阈值和第二设备参数阈值,所述第一设备参数阈值大于所述第二设备参数阈值,其中,所述根据预设的设备参数阈值和所述设备参数采集值对所述调节器进行二次调节控制,包括:
    当所述设备参数采集值大于或等于所述第一设备参数阈值时,计算所述设备参数采集值与第一设备参数阈值之间的第一差值,并根据所述第一差值以及预设的差值与调节器开度的对应关系对所述调节器进行正向调节控制;
    当所述设备参数采集值小于所述第二设备参数阈值时,计算所述设备参数采集值与第二设备参数阈值之间的第二差值,并根据所述第二差值以及所述预设的差值与调节器开度的对应关系对所述调节器进行反向调节控制。
  6. 如权利要求1至5中任一项所述的方法,其中,在对所述调节器进行调节控制的过程中,所述方法还包括:
    检测所述调节器的开度是否超过当前档位区间下的限制;
    如果所述调节器的开度超过所述当前档位区间下的限制,则生成第二报警信息并提示,其中,监控人员根据所述第二报警信息以及实际需求确认是否进行跨档位操作。
  7. 一种液冷设备的控制装置,包括:
    第一获取模块,被配置为获取液冷管路中的冷却液的流体参数采集值;
    调节控制模块,被配置为根据预设的流体参数阈值和所述流体参数采集值对所述液冷管路中的调节器进行一次调节控制;
    第二获取模块,被配置为在所述调节控制模块对所述调节器进行一次调节控制之后,获取待冷却设备的设备参数采集值;
    所述调节控制模块还被配置为在对所述调节器进行一次调节控制的基础上,根据预设的设备参数阈值和所述设备参数采集值对所述调节器进行二次调节控制。
  8. 如权利要求7所述的装置,其中,所述调节控制模块在所述流体参数采集值大于所述预设的流体参数阈值时,对所述调节器进行正向调节控制,并在所述流体参数采集值小于所述预设的流体参数阈值时,对所述调节器进行反向调节控制。
  9. 如权利要求8所述的装置,还包括:
    第三获取模块,被配置为在所述流体参数采集值等于所述预设的流体参数阈值时,获取待冷却设备的设备参数采集值;
    判断模块,被配置为判断所述设备参数采集值是否超过所述预设的设备参数阈值;以及
    第一提示模块,被配置为在所述判断模块判断所述设备参数采集值超过所述预设的设备参数阈值时,生成第一报警信息并提示。
  10. 如权利要求8所述的装置,其中,所述流体参数采集值包括温度参数采集值、压力参数采集值、或流量参数采集值,其中,
    当所述流体参数采集值为所述温度参数采集值时,所述正向调节为增大所述调节器的开度,所述反向调节为减小所述调节器的开度;
    当所述流体参数采集值为所述压力参数采集值或所述流量参数采集值时,所述正向调节为减小所述调节器的开度,所述反向调节为增大所述调节的开度。
  11. 如权利要求7所述的装置,其中,所述预设的设备参数阈值包括第一 设备参数阈值和第二设备参数阈值,所述第一设备参数阈值大于所述第二设备参数阈值,其中,所述调节控制模块在所述设备参数采集值大于或等于所述第一设备参数阈值时,计算所述设备参数采集值与第一设备参数阈值之间的第一差值,并根据所述第一差值以及预设的差值与调节器开度的对应关系对所述调节器进行正向调节控制,以及在所述设备参数采集值小于所述第二设备参数阈值时,计算所述设备参数采集值与第二设备参数阈值之间的第二差值,并根据所述第二差值以及所述预设的差值与调节器开度的对应关系对所述调节器进行反向调节控制。
  12. 如权利要求7至11中任一项所述的装置,其中,在对所述调节器进行调节控制的过程中,所述装置还包括:
    检测模块,被配置为检测所述调节器的开度是否超过当前档位区间下的限制;
    第二提示模块,被配置为在所述检测模块检测所述调节器的开度超过所述当前档位区间下的限制时,生成第二报警信息并提示,其中,监控人员根据所述第二报警信息以及实际需求确认是否进行跨档位操作。
  13. 一种液冷设备的控制系统,包括:
    液冷主管路,被配置为通过传输冷却液为整个机柜系统进行供回液;
    液冷分支管路,所述液冷分支管路与所述液冷主管路相连,被配置为通过传输所述液冷主管路中的冷却液为所述整个机柜系统中的每个待冷却设备进行供回液;
    流体参数采集器,所述流体参数采集器与所述液冷分支管路相连,被配置为采集所述液冷分支管路中的冷却液的流体参数采集值;
    设备参数采集器,所述设备参数采集器与所述待冷却设备相连,被配置为 采集所述待冷却设备的设备参数采集值;
    如权利要求7至12中任一项所述的液冷设备的控制装置,其中,所述控制装置分别与所述流体参数采集器和设备参数采集器相连;以及
    调节器,所述调节器与所述控制装置相连,且所述调节器被设置于所述液冷分支管路上,被配置为接收所述控制装置发送的控制信号,并根据所述控制信号对所述调节器进行调节控制。
  14. 一种非暂态计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行权利要求1-6中任一项的方法。
PCT/CN2017/071531 2016-02-01 2017-01-18 液冷设备的控制方法、装置以及系统 WO2017133455A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610071385.XA CN107027267B (zh) 2016-02-01 2016-02-01 液冷设备的控制方法、装置以及系统
CN201610071385.X 2016-02-01

Publications (1)

Publication Number Publication Date
WO2017133455A1 true WO2017133455A1 (zh) 2017-08-10

Family

ID=59499336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071531 WO2017133455A1 (zh) 2016-02-01 2017-01-18 液冷设备的控制方法、装置以及系统

Country Status (2)

Country Link
CN (1) CN107027267B (zh)
WO (1) WO2017133455A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112524479A (zh) * 2020-11-27 2021-03-19 广州特种承压设备检测研究院 储氢气瓶气体置换系统、方法、装置和存储介质
CN113296588A (zh) * 2020-04-17 2021-08-24 阿里巴巴集团控股有限公司 一种浸没液体冷却系统的控制方法和装置、系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM578928U (zh) * 2017-12-13 2019-06-01 雙鴻科技股份有限公司 冷卻液分佈系統
CN109598028A (zh) * 2018-11-09 2019-04-09 东软睿驰汽车技术(沈阳)有限公司 一种液冷系统的流量调整方法和装置
CN109543261A (zh) * 2018-11-09 2019-03-29 东软睿驰汽车技术(沈阳)有限公司 一种液冷系统的结构优化方法及装置
CN113473822B (zh) * 2021-09-01 2021-11-23 中兴通讯股份有限公司 两相液冷测试系统和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633920A (zh) * 2012-08-27 2014-03-12 丰田自动车株式会社 用于旋转电机的控制设备和控制方法、旋转电机驱动系统
CN103644049A (zh) * 2013-12-24 2014-03-19 山东大学 液化天然气发动机进气温度控制系统及控制方法
JP2016211747A (ja) * 2015-04-28 2016-12-15 ダイキン工業株式会社 冷凍装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100032140A1 (en) * 2008-08-06 2010-02-11 Sun Microsystems, Inc. Liquid cooled rack with optimized liquid flow path driven by electronic cooling demand
CN101673090A (zh) * 2009-09-18 2010-03-17 中兴通讯股份有限公司 控制设备的方法、设备控制装置以及系统
CN104679191B (zh) * 2013-11-29 2017-12-08 技嘉科技股份有限公司 液冷散热装置及液冷散热控温方法
CN105094061A (zh) * 2014-04-29 2015-11-25 阿里巴巴集团控股有限公司 一种用于调节机房服务器温度的方法与设备
CN104460911A (zh) * 2014-12-22 2015-03-25 浪潮电子信息产业股份有限公司 一种散热控制方法、装置及系统
CN104602487B (zh) * 2014-12-24 2018-06-05 杭州华为数字技术有限公司 液冷换热系统
CN104822242B (zh) * 2015-04-08 2018-01-16 华为技术有限公司 一种液体冷却设备控制系统、方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633920A (zh) * 2012-08-27 2014-03-12 丰田自动车株式会社 用于旋转电机的控制设备和控制方法、旋转电机驱动系统
CN103644049A (zh) * 2013-12-24 2014-03-19 山东大学 液化天然气发动机进气温度控制系统及控制方法
JP2016211747A (ja) * 2015-04-28 2016-12-15 ダイキン工業株式会社 冷凍装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113296588A (zh) * 2020-04-17 2021-08-24 阿里巴巴集团控股有限公司 一种浸没液体冷却系统的控制方法和装置、系统
CN113296588B (zh) * 2020-04-17 2024-01-26 阿里巴巴集团控股有限公司 一种浸没液体冷却系统的控制方法和装置、系统
CN112524479A (zh) * 2020-11-27 2021-03-19 广州特种承压设备检测研究院 储氢气瓶气体置换系统、方法、装置和存储介质

Also Published As

Publication number Publication date
CN107027267A (zh) 2017-08-08
CN107027267B (zh) 2020-03-13

Similar Documents

Publication Publication Date Title
WO2017133455A1 (zh) 液冷设备的控制方法、装置以及系统
US10180665B2 (en) Fluid-cooled computer system with proactive cooling control using power consumption trend analysis
US9207732B1 (en) Optimized fan duty control for computing device
TWI719302B (zh) 將機器學習整合至控制系統
JP5777827B2 (ja) ポータブルコンピューティングデバイスにおけるバッテリ負荷管理のためのシステムおよび方法
US20110213735A1 (en) Selecting An Installation Rack For A Device In A Data Center
JP6883526B2 (ja) 電力供給を制御する方法及び装置
US20110029151A1 (en) Temperature adjustment system and method for a storage system
CN113204461B (zh) 一种服务器硬件监控的方法、装置、设备及可读介质
CN103856346A (zh) 节点调度方法、装置和系统
IES20150266A2 (en) Apparatus and methods for managing hot water in a hot water storage tank heating system
CN106776216A (zh) 刀片服务器的散热控制系统和方法
US10212860B2 (en) Adaptive automatic computer room air conditioners (CRAC) master control method and system
CN111538392B (zh) 一种风扇控制方法、装置、电子设备和可读存储介质
US8620621B2 (en) Maintenance of intelligent assets
JP7215070B2 (ja) 制御プログラム、制御方法および制御装置
CN103953854A (zh) 含蜡原油管道运行参数确定方法及装置
TW202034125A (zh) 伺服器系統、伺服器裝置及伺服器裝置的功耗管理方法
JP2020067206A (ja) トルク制御プログラム、トルク制御方法およびトルク制御装置
JP7185577B2 (ja) 蓄電池制御システム
US20220069382A1 (en) Adaptive fan speed control for thermal management of a battery
EP4242545A3 (en) Apparatus management device, heat source system, management device, and apparatus management system
CN109766655A (zh) 热力系统的运行状态分析方法和服务器
JP7204560B2 (ja) 蓄電池制御システム
CN109391623B (zh) 一种监控安全运营物联网云控制管理方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17746775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17746775

Country of ref document: EP

Kind code of ref document: A1