WO2022104875A1 - 均温板上盖板的制备方法以及均温板 - Google Patents

均温板上盖板的制备方法以及均温板 Download PDF

Info

Publication number
WO2022104875A1
WO2022104875A1 PCT/CN2020/132134 CN2020132134W WO2022104875A1 WO 2022104875 A1 WO2022104875 A1 WO 2022104875A1 CN 2020132134 W CN2020132134 W CN 2020132134W WO 2022104875 A1 WO2022104875 A1 WO 2022104875A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover plate
upper cover
solution
capillary structure
structure layer
Prior art date
Application number
PCT/CN2020/132134
Other languages
English (en)
French (fr)
Inventor
陈晓杰
石一卉
方文兵
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022104875A1 publication Critical patent/WO2022104875A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces

Definitions

  • the present application relates to the technical field of heat dissipation, and in particular, to a method for preparing a cover plate on a temperature uniformity plate, and a temperature uniformity plate.
  • the manufacturing methods of the capillary structure of the cover plate on the vapor chamber mainly include copper powder sintering and copper mesh bonding.
  • the sintering process is complicated, the efficiency is low, and the price is high.
  • the capillary structure and the cover plate have poor bonding force, so that the capillary performance cannot be kept stable, the yield is not high, and it is difficult to produce on a large scale.
  • One of the objectives of the present application is to provide a method for preparing a cover plate on a vapor chamber.
  • a capillary structure is constructed on the inside of the vapor chamber by electrochemical deposition. The thickness of the structure is easy to control, the performance is good, and it is closely combined with the cover plate.
  • Electrochemical deposition is performed on the upper cover plate, and a capillary structure layer having a porous structure is formed by depositing on the inner wall of the upper cover plate, wherein the upper cover plate is used as the cathode of the electrochemical deposition; the capillary structure layer
  • the material is copper
  • the electrolyte of the electrochemical deposition includes 30 g/L-80 g/L copper sulfate, 150 g/L-200 g/L sulfuric acid, sulfate with a sulfate concentration of 0.04 mol/L-0.55 mol/L and a first additive of 11.5 mL/L-46.5 mL/L;
  • the first additive comprises a mixture of polyethylene glycol and polypropylene glycol of 10 mL/L-40 mL/L, polyethyleneimine of 1 mL/L-5 mL/L and polyethyleneimine of 0.5 mL/L-1.5 mL/L.
  • Gelatin wherein, the mass ratio of
  • the capillary structure layer is subjected to heat treatment to obtain a cover plate on the vapor chamber with the capillary structure layer.
  • the sulfate is selected from one or both of magnesium sulfate and potassium sulfate;
  • the temperature of the electrolyte is 20 °C-40 °C; the current density of the electrochemical deposition is 1 A/dm2-5 A/dm2; the time of the electrochemical deposition is 30 min-150 min.
  • a process of forming a hydrophilic protective layer on the surface of the capillary structure layer is also included.
  • the preparation process of the hydrophilic protective layer is as follows: preparing a hydrophilic solution, the hydrophilic solution comprising 30 g/L-50 g/L polyethylene glycol, 20 g/L-50 g /L of sodium metasilicate, 5 g/L-10 g/L urea, 3 g/L-10 g/L sodium benzoate and 0.2 g/L-0.8 g/L benzotriazole form hydrophilic on the surface of the capillary structure forming the hydrophilic solution layer, curing the hydrophilic solution layer, and forming the hydrophilic protective layer on the surface of the capillary structure layer.
  • the heat treatment process is as follows: the upper cover plate is placed in a vacuum or oxygen-free protective atmosphere to perform the heat treatment, the heat treatment temperature is 300°C-800°C, and the heat treatment time is 30 min -60 min.
  • a process of degreasing and/or rust removal on the upper cover plate is also included.
  • the degreasing process is as follows: placing the upper cover plate in a degreasing solution to act as a cathode for electrolysis, and washing the upper cover plate after completion to obtain the degreasing upper cover plate;
  • the rust removal process is as follows: soak the upper cover plate in a rust removal solution, and rinse the upper cover plate after completion to obtain the rust-removed upper cover plate.
  • the degreasing liquid is an alkaline solution with a pH value of 7-9; the temperature of the degreasing liquid is 50 °C-60 °C; the current density of the electrolysis is 2 A/dm2-5 A/dm2 ; the time of the electrolysis is 2 min-5 min.
  • the alkaline solution comprises 20 g/L-50 g/L of trisodium phosphate, 20 g/L-40 g/L sodium carbonate, 10 g/L-30 g/L sodium metasilicate and 1 ml/L-5 ml/L OP emulsifier.
  • the rust removal solution is a mixed acid solution;
  • the mixed acid solution includes 150 g/L-250 g/L sulfuric acid, 5 g/L-15 g/L nitric acid, 2 g/L-10 g/L hydrochloric acid, 5 g/L-10 g/L urea and 0.2 g/L-1 g/L benzotriazole; Soak time in 2 min-5 min.
  • the present application also provides a temperature equalization plate, comprising a lower cover plate and a cover plate on the temperature equalization plate prepared by the above method, the cover plate on the temperature equalization plate and the lower cover plate are combined to form an interior for storing a cooling medium
  • the sealed cavity, the capillary structure layer is located in the sealed cavity.
  • the capillary structure layer is formed by electrochemical deposition, which is not only simple, easy to control, and low cost, but also can obtain an ultra-thin capillary structure layer with a thickness of 0.03 mm-0.1 mm, which relieves the thickness limitation of traditional capillary structure manufacturing. It can be used for the manufacture of ultra-thin temperature chambers, which effectively saves the space occupied by the temperature chambers and widens the application range of the chambers.
  • the particle size can be obtained in the range of 20-200 ⁇ m, and the pore size of the pores is in the micrometer range.
  • Nanometer range 100nm ⁇ pore diameter ⁇ 100 ⁇ m
  • capillary structure with pore depth above 20 ⁇ m to produce significant capillary effect, thereby improving heat transfer efficiency.
  • FIG. 1 is a schematic diagram of an explosion structure of a vapor chamber according to a specific embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for preparing a cover plate on a temperature equalizing plate according to a specific embodiment of the present application.
  • FIG. 3 is an SEM image of a copper capillary structure layer generated in a specific embodiment of the present application.
  • FIG. 4 is a partial enlarged view of the image shown in FIG. 3 at a magnification of 500 times.
  • FIG. 5 is a topography diagram of the interface where the structure shown in FIG. 3 is bent at 180° diagonally.
  • the present application discloses a temperature equalizing plate, which includes a cover plate 01 and a lower cover plate 02 on the temperature equalizing plate.
  • the cavity is sealed, the inner wall of the cover plate 01 on the temperature equalizing plate is provided with a capillary structure layer 03 with a porous structure (only the capillary structure layer is shown in the figure, but the porous structure is not shown), the cover plate 01 and the lower cover plate on the temperature equalizing plate are
  • a support column 04 for supporting the capillary structure layer 03 is also arranged between 02 .
  • the thickness of the capillary structure layer 03 is 0.03 mm-0.1 mm, so as to manufacture an ultra-thin temperature chamber, which effectively saves the space occupied by the chamber and widens the application range of the chamber.
  • the thickness of the vapor chamber is 0.1 mm-0.8 mm.
  • the cover plate 01 and the lower cover plate 02 on the uniform temperature plate can be made of metal material or metal alloy material, which have higher heat exchange efficiency. In this specific embodiment, they are made of copper material or copper alloy material.
  • the material of the capillary structure layer 03 is copper material.
  • the supporting columns 04 include a plurality of them and are arranged in an array.
  • the cover plate 01 and the lower cover plate 02 on the temperature chamber can be assembled into a finished temperature chamber by welding.
  • the present application also provides a method for manufacturing a cover plate on the above-mentioned vapor chamber, including the following processes:
  • Step S1 making the upper cover 01 and the lower cover 02 of the temperature equalizing plate.
  • the upper cover plate 01 and/or the lower cover plate 02 with grooves are formed by etching. After the upper cover plate 01 and the lower cover plate 02 are covered, the grooves are formed for A closed cavity for storing cooling medium.
  • the base thickness of the upper cover plate 01 and the lower cover plate 02 may be between 0.05 mm and 0.4 mm.
  • the process of degreasing and/or rust removal on the upper cover plate 01 is also included, as follows.
  • Step S2 degreasing the upper cover plate 01 to remove the oil stains on the inner wall of the upper cover plate 01, so that the inner wall of the upper cover plate 01 is completely hydrophilic, so as to facilitate the timely discharge of the gas generated by the cathode in the subsequent electrochemical deposition, and to facilitate the control of the deposition rate. Crystal morphology and deposition rate.
  • the degreasing process is as follows: placing the upper cover plate 01 in a degreasing solution, as a cathode, electrolysis, and washing the upper cover plate 01 after completion to obtain the degreasing upper cover plate 01 .
  • a degreasing solution as a cathode
  • electrolysis and washing the upper cover plate 01 after completion to obtain the degreasing upper cover plate 01 .
  • the use of electrolysis to remove oil can strengthen the oil removal effect, and the oil removal speed is faster, so as to ensure that the inner wall of the upper cover plate 01 is completely hydrophilic in the subsequent electrochemical deposition.
  • the upper cover plate 01 is used as the cathode, and during electrolysis, hydrogen is released, the amount of hydrogen evolution is large, the hydrogen gas dispersion is good, the size of the bubbles is small, the emulsification effect is strong, the oil removal effect is good, the speed is fast, and the upper cover plate 01 is not corroded.
  • the degreasing liquid can be an alkaline solution with a pH value of 7-9.
  • the cathode can continuously generate hydrogen, so that the electrolysis reaction can be carried out continuously and rapidly.
  • the alkaline solution includes 20 g/L-50 g/L of trisodium phosphate, 20 g/L-40 g/L sodium carbonate, 10 g/L-30 g/L sodium metasilicate and 1 ml/L-5 ml/L OP emulsifier.
  • the combination of the above-mentioned phosphate, carbonate and metasilicate can keep the pH value of the electrolyte at 7-9 stably, and the OP emulsifier can evenly disperse the generated bubbles.
  • the current density of the electrolysis, the temperature of the electrolyte and the electrolysis time are process parameters that have a great influence on the quality of degreasing.
  • the temperature of the degreasing solution is 50 °C-60 °C
  • the current density of the electrolysis It is 2 A/dm 2 -5 A/dm 2
  • the electrolysis time is 2 min-5 min, which can provide better degreasing effect and faster degreasing speed.
  • Step S3 Derusting the upper cover plate 01 obtained in step S2 to remove impurities such as oxide scale on the inner wall of the upper cover plate 01 and improve the bonding strength of the capillary structure layer 03 and the upper cover plate 01 .
  • the upper cover plate 01 obtained in step S2 is soaked in a rust removing solution, and after completion, the upper cover plate 01 is rinsed to obtain the rust-removed upper cover plate 01 .
  • a mixed acid solution is used to remove rust, and the mixed acid solution includes sulfuric acid of 150 g/L-250 g/L, nitric acid of 5 g/L-15 g/L, 2 g/L-10 g/L hydrochloric acid, 5 g/L-10 g/L urea and 0.2 g/L-1 g/L benzotriazole.
  • the soaking time is 2 min-5 min.
  • Step S4 carry out electrochemical deposition on the upper cover plate 01, and deposit a capillary structure layer 02 with a porous structure on the inner wall of the upper cover plate 01, wherein the upper cover plate 01 is used as a cathode for electrochemical deposition, and the material of the capillary structure layer is: Copper, Electrochemical Deposition Electrolyte including 30 g/L-80 g/L copper sulfate, 150 g/L-200 g/L sulfuric acid, sulfate with a sulfate concentration of 0.04 mol/L-0.55 mol/L and 11.5 mL/L-46.5 mL/L the first additive.
  • the first additive comprises a mixture of polyethylene glycol and polypropylene glycol of 10 mL/L-40 mL/L, polyethyleneimine of 1 mL/L-5 mL/L and gelatin of 0.5 mL/L-1.5 mL/L, Wherein, the mass ratio of polyethylene glycol and polypropylene glycol is 1:0.1-1:2, and the preferred mass ratio is 1:0.5.
  • the anode can be made of the capillary structure layer 03 material or an inert material, specifically, a copper plate or an inert material.
  • the composition and component content of the electrolytically deposited electrolyte, and the parameters of the electrolytic deposition will affect the crystal morphology of the capillary structure layer 03 (for example, a compact film shape, granular, fibrous, dendritic, acicular, etc.), thickness, deposition speed, and deposition quality, etc. Therefore, the electrochemical deposition process is complex, and it is necessary to strictly control the electrolyte and electrochemical deposition parameters to obtain the target Deposition crystals on demand.
  • the capillary structure layer 02 includes granular crystals with pores between the granular crystals.
  • the nanometer range that is, 100 nm ⁇ pore diameter ⁇ 100 ⁇ m, and the depth of the pores is greater than or equal to 20 ⁇ m, the above-mentioned granular crystals with pores are formed to produce a significant capillary effect, thereby improving the heat transfer efficiency.
  • the copper sulfate concentration is made lower, the sulfuric acid concentration is made higher, and the sulfate anion is increased, so that the target demand can be obtained by deposition.
  • Crystal morphology and to achieve better deposition speed and deposition quality, the deposited crystal morphology can be further adjusted by adding specific first additives.
  • the mixture of polyethylene glycol and polypropylene glycol can provide better wettability of the electrolyte, so that the electrolyte can be fully contacted with the upper cover plate 01 as the cathode, and effectively discharge the cathode generated during the electrolysis process.
  • Gas to avoid the uncontrollable effect of gas on the deposited crystal morphology, polyethyleneimine can make the deposited crystal grains finer, increase the specific surface area of the capillary structure layer 03, in addition to producing the expected capillary effect, further improve the heat exchange efficiency , and the ultra-thin capillary structure layer 03 is obtained.
  • Gelatin mainly provides surface activity and dispersion, reduces the surface tension of the interface between the upper cover 01 and the electrolyte, makes deposition easier, and improves the dispersion uniformity of copper ions in the upper cover 01.
  • polyethyleneimine is also a complexing agent, and the complexing agent is easy to combine with the metal ions in the electrolyte, so that the metal ions exist in the form of complexes, which can reduce the sedimentation speed of the metal ions and control the thickness of the capillary structure layer 03
  • polyethylene glycol and polypropylene glycol are also surfactants, and complexing agents and surfactants can also interact to further ensure that the capillary structure layer 03 in the target shape is obtained.
  • the temperature of the electrolyte is 20 °C-40 °C; the current density of the electrochemical deposition is 1 A/dm 2 -5 A/dm 2 ; the time of electrochemical deposition is 30 min-150 min.
  • the sulfate is selected from one or both of magnesium sulfate and potassium sulfate.
  • Step S5 forming a hydrophilic protective layer on the surface of the capillary structure layer 03 to obtain a semi-finished upper cover plate 01 .
  • the hydrophilic protective layer can prevent the capillary structure layer 03 of metal from being placed for prolonged time to lose its hydrophilicity.
  • the process of forming the hydrophilic protective layer on the surface of the capillary structure layer 03 is: preparing a hydrophilic solution, and the hydrophilic solution includes 30 g/L-50 g/L polyethylene glycol, 20 g/L-50 g/L sodium metasilicate, 5 g/L-10 g/L urea, 3 g/L-10 g/L sodium benzoate and 0.2 g/L-0.8 g/L benzotriazole form a hydrophilic solution layer on the surface of the capillary structure, cure the hydrophilic solution layer, and form a hydrophilic solution layer on the surface of the capillary structure.
  • the surface of layer 03 forms a hydrophilic protective layer.
  • the hydrophilic solution layer is formed on the surface of the capillary structure, which can be realized by soaking, coating or spraying.
  • Step S6 heat-treating the capillary structure layer to obtain the cover plate 01 on the vapor chamber with the capillary structure layer 03 . Heat treatment can further strengthen the strength of the capillary structure.
  • the heat treatment process is as follows: the semi-finished upper cover plate 01 is placed in a vacuum or oxygen-free protective atmosphere (for example, hydrogen or inert gas, etc.) for heat treatment, and the heat treatment temperature is 300 °C-800 °C. The time is 30 min-60 min.
  • a vacuum or oxygen-free protective atmosphere for example, hydrogen or inert gas, etc.
  • the capillary structure layer is realized through the above technical scheme.
  • the degreasing process and the process of generating the capillary structure layer are carried out by electrochemical methods.
  • the drugs involved are common drugs, which are cheap and have a long service cycle.
  • the electrochemical method is easy to operate and equipment Simple, time-consuming and low-energy consumption, compared with traditional copper powder sintering or copper mesh bonding methods, the raw material price is low and easy to obtain, and at the same time, it does not require long-term high-temperature sintering, which greatly improves production efficiency.
  • the solution used is a weak alkaline degreasing solution
  • the ingredients include trisodium phosphate 50 g/L, sodium carbonate 20 g/L, sodium metasilicate 20 g/L, OP emulsifier 3 ml/L, solution
  • the temperature is 50 °C
  • the upper cover plate is put into the solution for cathodic electrolysis for 5 min
  • the current density is 2 A/dm 2 , and then it is immediately washed with pure water.
  • the solution is a rust remover with a mixed acid solution, the ingredients include sulfuric acid 200 g/L, nitric acid 10 g/L, hydrochloric acid 5 g/L, urea 10 g/L, benzotriazole 0.5 g/L.
  • the upper cover plate was soaked in this solution for 3 min at room temperature, and then washed immediately with pure water.
  • Electrochemical deposition of copper the solution used is copper sulfate 80 g/L, sulfuric acid 200 g/L, magnesium sulfate 20 g/L, potassium sulfate 30 g/L, a mixture of polyethylene glycol and polypropylene glycol (polyethylene glycol and The mass ratio of polypropylene glycol is 1:0.5) 40 mL/L, polyethyleneimine 5 mL/L, gelatin 1.5 mL/L, electrolytic copper is the anode, the upper cover plate is the cathode, and the deposition current density is 4 A/dm 2 , the deposition time is 150min, after the end, the upper cover plate is taken out and washed with pure water.
  • the solution used is copper sulfate 80 g/L, sulfuric acid 200 g/L, magnesium sulfate 20 g/L, potassium sulfate 30 g/L, a mixture of polyethylene glycol and polypropylene glycol (polyethylene glycol and
  • the solution used is an alkaline hydrophilic solution with a pH value of 8-10.
  • the ingredients include polyethylene glycol 40 g/L, sodium metasilicate 30 g/L, urea 10 g/L, sodium benzoate 5 g/L, benzotriazole 0.5 g/L.
  • the upper cover plate was soaked in the solution for 1 min, taken out, washed, and dried in a drying oven at 75 °C for 20 min.
  • the solution used is weak alkaline degreasing solution
  • the ingredients include trisodium phosphate 20 g/L, sodium carbonate 40 g/L, sodium metasilicate 30 g/L, OP emulsifier 3 ml/L, and the solution
  • the temperature was 50 °C
  • the upper cover plate was put into the solution for cathodic electrolysis for 3 min, and the current density was 3 A/dm 2 , and then it was immediately washed with pure water.
  • the solution is a rust remover with mixed acid solution, the ingredients include sulfuric acid 150 g/L, nitric acid 15 g/L, hydrochloric acid 5 g/L, urea 5 g/L, benzotriazole 0.8 g/L.
  • the upper cover plate was soaked in the solution for 5 min at room temperature, and then washed immediately with pure water.
  • Electrochemical deposition of copper the solution used is copper sulfate 60 g/L, sulfuric acid 180 g/L, magnesium sulfate 10 g/L, potassium sulfate 20 g/L, a mixture of polyethylene glycol and polypropylene glycol (polyethylene glycol and The mass ratio of polypropylene glycol is 1:0.5) 30 mL/L, polyethyleneimine 2.5 mL/L, gelatin 1 mL/L, electrolytic copper is the anode, the upper cover plate is the cathode, and the deposition current density is 3 A/dm 2 , the deposition time was 60 min, after which the upper cover was taken out and washed with pure water.
  • the solution used is an alkaline hydrophilic solution with a pH value of 8-10.
  • the ingredients include polyethylene glycol 20 g/L, sodium metasilicate 250 g/L, urea 10 g/L, sodium benzoate 2 g/L, benzotriazole 0.5 g/L.
  • the upper cover plate was soaked in the solution for 0.5 min, taken out, washed, and dried in a drying oven at 75 °C for 20 min.
  • the solution used is weak alkaline degreasing solution
  • the ingredients include trisodium phosphate 40 g/L, sodium carbonate 30 g/L, sodium metasilicate 10 g/L, OP emulsifier 1 ml/L, solution
  • the temperature was 60 °C
  • the upper cover plate was put into the solution for cathodic electrolysis for 2 min, and the current density was 5 A/dm 2 , and then it was immediately washed with pure water.
  • Derusting use a rust remover whose solution is a mixed acid solution.
  • the ingredients include sulfuric acid 250 g/L, nitric acid 5 g/L, hydrochloric acid 10 g/L, urea 10 g/L, and benzotriazole 1 g/L. L. The upper cover plate was soaked in this solution for 2 min at room temperature, and then washed immediately with pure water.
  • Electrochemical deposition of copper the solution used is copper sulfate 30 g/L, sulfuric acid 150 g/L, magnesium sulfate 15 g/L, potassium sulfate 15 g/L, a mixture of polyethylene glycol and polypropylene glycol (polyethylene glycol and The mass ratio of polypropylene glycol is 1:0.5) 20 mL/L, polyethyleneimine 1.5 mL/L, gelatin 0.5 mL/L, electrolytic copper is the anode, the upper cover plate is the cathode, and the deposition current density is 2 A/dm 2 , the deposition time was 30 min, after which the upper cover was taken out and washed with pure water.
  • the solution used is an alkaline hydrophilic solution with a pH value of 8-10.
  • the ingredients include polyethylene glycol 40 g/L, sodium metasilicate 30 g/L, urea 10 g/L, sodium benzoate 5 g/L, benzotriazole 0.5 g/L.
  • the upper cover plate was soaked in the solution for 0.5 min, taken out, washed, and dried in a drying oven at 75 °C for 20 min.
  • FIG. 3 is an SEM image of a copper capillary structure layer generated by a specific embodiment of the present application
  • FIG. 4 is a partial enlarged view of the structure shown in FIG. 3 magnified by 500 times. It can be seen from the figure that the copper capillary structure layer is The crystals are deposited and formed. The particle size of granular crystals is in the range of 20 ⁇ m-200 ⁇ m, and the granular crystals contain pores between them.
  • Fig. 5 is a cross-sectional topography diagram of Fig. 3 bent along a diagonal line of 180°. It can be seen from the figure that the capillary structure layer is not separated from the upper cover plate, and the structure is good. It can be seen that the capillary structure layer has a good structure. Good adhesion, no peeling, peeling and other problems, 100 The pore size of the pores is less than or equal to 100 ⁇ m, and the depth of the pores is greater than or equal to 20 ⁇ m.
  • Table 1 shows the morphological parameters and performance parameters of the temperature chambers obtained in Examples 1-3. It can be seen from Table 1 that the thickness of the capillary structure layer obtained in this application is thinner, which can be as low as 0.04 mm, and has a high vertical liquid absorption rate. In the prior art, the thickness of the capillary structure layer prepared by copper powder sintering or copper mesh bonding method is 0.3 In the range of mm to 0.5 mm, it can be seen that the method of the present application is not only simple in process, low in cost, but also capable of obtaining a uniform temperature plate that is closely combined with the upper cover plate, has stable and efficient performance, and is smaller in size.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Secondary Cells (AREA)

Abstract

一种均温板上盖板的制备方法、均温板上盖板以及均温板,均温板上盖板的制备方法包括以下过程:制作均温板的上盖板;对上盖板进行电化学沉积,在上盖板的内壁沉积形成具有多孔结构的毛细结构层,其中,上盖板作为电化学沉积的阴极;毛细结构层的材质为铜,电化学沉积的电解液包括30g/L-80g/L的硫酸铜、150g/L-200g/L的硫酸、硫酸根浓度为0.04mol/L-0.55mol/L的硫酸盐和11.5mL/L-46.5mL/L的第一添加剂;对毛细结构层进行热处理,得到具有毛细结构层的均温板上盖板。通过电化学沉积的方法在均温板内侧构建毛细结构,该方法操作便利,工艺简单,成本低,且构建的毛细结构厚度易控,性能良好,与盖板结合紧密,可用于制作超薄均温板,解决了传统方法的大部分工艺缺陷。

Description

均温板上盖板的制备方法以及均温板 技术领域
本申请涉及散热技术领域,具体涉及一种均温板上盖板的制备方法、以及均温板。
背景技术
目前业内的均温板上盖板毛细结构的制造方法主要有铜粉烧结和铜网粘结两种,烧结工艺复杂、效率低且价格高昂,而采用在均温板内侧粘结铜网方法得到的毛细结构与盖板结合力较差,使其毛细性能无法保持稳定,成品率不高,难以大规模生产。
技术问题
因此亟需开发一种工艺简单、成本低廉且与盖板结合紧密、性能稳定高效的毛细结构制作方法。
技术解决方案
本申请的目的之一在于提供一种均温板上盖板的制备方法,通过电化学沉积的方法在均温板内侧构建毛细结构,该方法操作便利,工艺简单,成本低,且构建的毛细结构厚度易控,性能良好,与盖板结合紧密,可用于制作超薄均温板,解决了传统方法的大部分工艺缺陷。
本申请的技术方案如下:
制作均温板的上盖板;
对所述上盖板进行电化学沉积,在所述上盖板的内壁沉积形成具有多孔结构的毛细结构层,其中,所述上盖板作为所述电化学沉积的阴极;所述毛细结构层的材质为铜,所述电化学沉积的电解液包括30 g/L-80 g/L的硫酸铜、150 g/L-200 g/L的硫酸、硫酸根浓度为0.04 mol/L-0.55 mol/L的硫酸盐和11.5 mL/L-46.5 mL/L的第一添加剂;所述第一添加剂包括10 mL/L-40 mL/L的聚乙二醇和聚丙二醇的混合物、1 mL/L-5 mL/L的聚乙烯亚胺和0.5 mL/L-1.5 mL/L的明胶,其中,所述聚乙二醇和所述聚丙二醇的质量比为1:0.1-1:2;
对所述毛细结构层进行热处理,得到具有毛细结构层的均温板上盖板。
优选的,所述硫酸盐选自硫酸镁和硫酸钾中的一种或两种;
优选的,所述电解液的温度为20 ℃-40 ℃;所述电化学沉积的电流密度为1 A/dm2-5 A/dm2;所述电化学沉积的时间为30 min-150 min。
优选的,所述热处理之前,还包括在所述毛细结构层的表面形成亲水性保护层的过程。
优选的,所述亲水性保护层的制备过程为:配制亲水性溶液,所述亲水性溶液包括30 g/L-50 g/L的聚乙二醇、20 g/L-50 g/L的偏硅酸钠、5 g/L-10 g/L的尿素、3 g/L-10 g/L的苯甲酸钠和0.2 g/L-0.8 g/L的苯并三氮唑,在所述毛细结构的表面形成亲水性溶液层,固化所述亲水性溶液层,在所述毛细结构层的表面形成所述亲水性保护层。
优选的,所述热处理的过程为:将所述上盖板置于真空或无氧保护气氛中进行所述热处理,所述热处理的温度为300 ℃-800 ℃,所述热处理的时间为30 min-60 min。
优选的,对所述上盖板进行所述电化学沉积之前,还包括对所述上盖板进行除油和/或除锈的过程。
优选的,所述除油的过程为:将所述上盖板置于除油液中,作为阴极,电解,完成后冲洗所述上盖板,得到除油后的上盖板;
所述除锈的过程为:将所述上盖板置于除锈液中浸泡,完成后冲洗所述上盖板,得到除锈后的上盖板。
优选的,所述除油液为pH值为7-9的碱性溶液;所述除油液的温度为50 ℃-60 ℃;所述电解的电流密度为2 A/dm2-5 A/dm2;所述电解的时间为2 min-5 min。
优选的,所述碱性溶液包括20 g/L-50 g/L的磷酸三钠、20 g/L-40 g/L的碳酸钠、10 g/L-30 g/L的偏硅酸钠和1 ml/L-5 ml/L的OP乳化剂。
优选的,所述除锈液为混合酸溶液;所述混合酸溶液包括150 g/L-250g/L的硫酸、5 g/L-15 g/L的硝酸、2 g/L-10 g/L的盐酸、5 g/L-10 g/L的尿素和0.2 g/L-1 g/L的苯并三氮唑;所述上盖板在所述除锈液中的浸泡时间为2 min-5 min。
本申请还提供了一种均温板,包括下盖板和上述方法制备的均温板上盖板,所述均温板上盖板和所述下盖板盖合形成内部用于存储冷却介质的密封腔体,所述毛细结构层位于所述密封腔体内。
有益效果
本申请的有益效果在于:
1)通过电化学沉积的方法形成毛细结构层,不仅工艺简单、易控且成本低廉,而且能够得到厚度为0.03 mm-0.1 mm的超薄毛细结构层,解除了传统毛细结构制造的厚度限制,可用于制造超薄均温板,有效节省了均温板的占用空间,拓宽了均温板的使用范围。
2)通过热处理,能够提高毛细结构层的强度,以及提高毛细结构层与上盖板的结合强度,得到性能稳定高效的毛细结构。
3)通过精选电解液的组份及组份含量,控制所生成的毛细结构层的晶体形态、厚度、沉积速度以及沉积质量等,能够得到粒径在20-200μm范围,孔隙的孔径在微-纳米范围(100nm≤孔径≤100μm),以及孔隙的深度在20μm以上的毛细结构,以产生显著的毛细效果,从而提高换热效率。
附图说明
图1是本申请一具体实施例的均温板的爆炸结构示意图。
图2是本申请一具体实施例的均温板上盖板的制备方法的流程示意图。
图3是本申请一具体实施例生成的铜毛细结构层的SEM图像。
图4是图3所示图像放大500倍的局部放大图。
图5是图3所示结构沿对角线弯折180°处的界面形貌图。
本发明的实施方式
下面结合附图和具体实施方式对本申请作进一步说明。
参考图1,本申请公开了一种均温板,包括均温板上盖板01和下盖板02,均温板上盖板01和下盖板02盖合形成内部用于存储冷却介质的密封腔体,均温板上盖板01的内壁设有具有多孔结构的毛细结构层03(图中仅体现毛细结构层,但未体现多孔结构),均温板上盖板01和下盖板02之间还设置有用于支撑毛细结构层03的支撑柱04。
在一具体实施例中,毛细结构层03的厚度为0.03 mm-0.1 mm,以制造超薄均温板,有效节省了均温板的占用空间,拓宽了均温板的使用范围。
在一具体实施例中,均温板的厚度为0.1 mm-0.8 mm。
在一具体实施例中,均温板上盖板01和下盖板02可以为金属材质或金属合金材质,其具有更高的换热效率,在本具体实施例中,为铜材质或铜合金材质。
毛细结构层03的材质为铜材质。
支撑柱04的包括多个且呈阵列排布。
均温板上盖板01和下盖板02可以通过焊接的方式组装成均温板成品。
参考图2,本申请还提供了一种上述均温板上盖板的制造方法,包括以下过程:
步骤S1:制作均温板的上盖板01和下盖板02。
为了制造超薄均温板,优选的,采用蚀刻的方法形成具有凹槽的上盖板01和/或下盖板02,上盖板01和下盖板02盖合后,凹槽形成用于存储冷却介质的密闭腔体。蚀刻前,上盖板01和下盖板02的基底厚度可以在0.05 mm-0.4 mm之间。
在进行电化学沉积之前,优选的,还包括对上盖板01进行除油和/或除锈的过程,具体如下。
步骤S2:对上盖板01进行除油,以去除上盖板01内壁的油污,使上盖板01内壁完全亲水,便于后续电化学沉积中及时排走阴极产生的气体,便于控制沉积的晶体的形态和沉积速度。
在一具体实施例中,除油的过程为:将上盖板01置于除油液中,作为阴极,电解,完成后冲洗上盖板01,得到除油后的上盖板01。采用电解的方式除油,可以强化除油效果,且除油速度更快,以确保上盖板01内壁在后续电化学沉积中完全亲水。将上盖板01作为阴极,电解时析出氢气,析氢量多,氢气分散性好,气泡尺寸小,乳化作用强烈,除油效果好,速度快,且不腐蚀上盖板01。
在一具体实施例中,除油液可以为pH值为7-9的碱性溶液,在碱性溶液中,可以保证阴极持续产生氢气,使电解反应持续、快速进行。
在一具体实施例中,碱性溶液包括20 g/L-50 g/L的磷酸三钠、20 g/L-40 g/L的碳酸钠、10 g/L-30 g/L的偏硅酸钠和1 ml/L-5 ml/L的OP乳化剂。在该碱性溶液中,上述配比的磷酸根、碳酸根和偏硅酸根相结合,能够使电解液的pH值稳定的保持在7-9,OP乳化剂可以使产生的气泡均匀分散。
电解的电流密度、电解液的温度与电解时间是对除油质量影响较大的工艺参数,优选的,在一具体实施例中,除油液的温度为50 ℃-60 ℃,电解的电流密度为2 A/dm 2-5 A/dm 2,电解的时间为2 min-5 min,能够提供较佳的除油效果以及较快的除油速度。
步骤S3:对步骤S2得到的上盖板01进行除锈,以去除上盖板01内壁的氧化皮等杂质,提高毛细结构层03与上盖板01的结合强度。
在一具体实施例中具体的,将步骤S2得到的上盖板01置于除锈液中浸泡,完成后冲洗上盖板01,得到除锈后的上盖板01。
在一具体实施例中,采用混合酸溶液进行除锈,混合酸溶液包括150 g/L-250g/L的硫酸、5 g/L-15 g/L的硝酸、2 g/L-10 g/L的盐酸、5 g/L-10 g/L的尿素和0.2 g/L-1 g/L的苯并三氮唑。浸泡的时间为2 min-5 min。
步骤S4:对上盖板01进行电化学沉积,在上盖板01的内壁沉积形成具有多孔结构的毛细结构层02,其中,上盖板01作为电化学沉积的阴极,毛细结构层的材质为铜,电化学沉积的电解液包括30 g/L-80 g/L的硫酸铜、150 g/L-200 g/L的硫酸、硫酸根浓度为0.04 mol/L-0.55 mol/L的硫酸盐和11.5 mL/L-46.5 mL/L的第一添加剂。第一添加剂包括10 mL/L-40 mL/L的聚乙二醇和聚丙二醇的混合物、1 mL/L-5 mL/L的聚乙烯亚胺和0.5 mL/L-1.5 mL/L的明胶,其中,聚乙二醇和聚丙二醇的质量比为1:0.1-1:2,优选质量比为1:0.5。
在本过程中,阳极可以为毛细结构层03材质或惰性材质,具体的,可以为铜板或惰性材质。
在本过程中,电化学沉积的电解液的组份及组份含量、电化学沉积的参数(电解液温度、电流密度、电解时间)等都会影响毛细结构层03的晶体形态(例如紧实薄膜型、颗粒状、纤维状、树枝状、针锥状等)、厚度、沉积速度以及沉积质量等,因此,电化学沉积过程是复杂的,需要严格控制电解液及电化学沉积参数,以获得目标需求的沉积晶体。
在本申请中,毛细结构层02包括颗粒状晶体,且颗粒状晶体之间含有孔隙,颗粒状晶体的粒径在20 μm-200 μm范围,优选40 μm-60 μm,孔隙的孔径在微-纳米范围,即100 nm≤孔隙的孔径≤100 μm,孔隙的深度大于等于20 μm,通过形成上述具有孔隙的颗粒状晶体,以产生显著的毛细效果,从而提高换热效率。
为了达到上述晶体的形态要求,使用特定的电解液配方和工艺参数,在本具体实施例中,使硫酸铜浓度较低,使硫酸浓度较高,以及增加硫酸根负离子,能够沉积得到目标需求的晶体形态以及实现较佳的沉积速度和沉积质量,通过添加特定的第一添加剂可以进一步调节沉积的晶体形态。
在本具体实施例中,聚乙二醇和聚丙二醇的混合物能够提供电解液较佳的润湿性,使电解液能够和作为阴极的上盖板01充分接触,有效排出阴极在电解过程中产生的气体,避免气体对沉积晶体形态产生不可控的影响,聚乙烯亚胺能够使沉积的晶粒细小化,增大毛细结构层03的比表面积,除产生预期的毛细效果外,进一步提高换热效率,以及得到超薄毛细结构层03。明胶主要提供表面活性作用以及分散作用,降低上盖板01与电解液界面的表面张力,使沉积更容易,以及提高铜离子在上盖板01的分散均匀度。另,聚乙烯亚胺也为络合剂,络合剂易与电解液中的金属离子结合,使金属离子以络合体形式存在,能够降低金属离子的沉降速度,控制毛细结构层03的厚度,聚乙二醇和聚丙二醇也为表面活性剂,络合剂和表面活性剂也可以相作用,进一步保证得到目标形态的毛细结构层03。
除了严格精选电解液外,还需严格精选与电解液相互配合的电解工艺参数,在一较佳实施例中,电解液的温度为20 ℃-40 ℃;电化学沉积的电流密度为1 A/dm 2-5 A/dm 2;电化学沉积的时间为30 min-150 min。
在一具体实施例中,硫酸盐选自硫酸镁和硫酸钾中的一种或两种。
步骤S5:在毛细结构层03的表面形成亲水性保护层得到半成品上盖板01。
在本过程中,由于铜的毛细结构层易被氧化而丧失亲水性,因此,亲水性保护层可以避免金属的毛细结构层03放置时间延长而丧失亲水性。
在一具体实施例中,在毛细结构层03的表面形成亲水性保护层的过程为:配制亲水性溶液,亲水性溶液包括30 g/L-50 g/L的聚乙二醇、20 g/L-50 g/L的偏硅酸钠、5 g/L-10 g/L的尿素、3 g/L-10 g/L的苯甲酸钠和0.2 g/L-0.8 g/L的苯并三氮唑,在毛细结构的表面形成亲水性溶液层,固化亲水性溶液层,在毛细结构层03的表面形成亲水性保护层。
在毛细结构的表面形成亲水性溶液层,可以通过浸泡、涂覆或喷淋的方式实现。
步骤S6:对毛细结构层进行热处理,得到具有毛细结构层03的均温板上盖板01。热处理可以进一步加固毛细结构的强度。
在一具体实施例中,热处理的过程为:将半成品上盖板01置于真空或无氧保护气氛(例如,氢气或惰性气体等)中进行热处理,热处理的温度为300 ℃-800 ℃,热处理的时间为30 min-60 min。
通过上述技术方案实现毛细结构层,除油过程和生成毛细结构层过程均采用电化学方法进行,涉及的药品为常见药品,价格低廉,使用周期长,另一方面,电化学方法操作简便、设备简单、耗时短、能耗低,比起传统的铜粉烧结或铜网粘结方法,原料价低易得,同时无需经过长时间的高温烧结,很大程度上提高生产效率。
以下为具体实施例。
实施例1
S1.上盖板和下盖板的制作:通过对铜片进行蚀刻得到,铜片的厚度在0.05 mm-0.4 mm之间。
S2.除油:使用溶液为弱碱性除油液,成份包括磷酸三钠50 g/L、碳酸钠20 g/L、偏硅酸钠20 g/L、OP乳化剂3 ml/L,溶液温度为50 ℃,将上盖板放入该溶液中阴极电解5 min,电流密度2 A/dm 2,而后立即用纯水清洗干净。
S3.除锈:使用溶液为混合酸溶液的除锈剂,成份包括硫酸200 g/L、硝酸10 g/L、盐酸5 g/L、尿素10 g/L、苯并三氮唑0.5 g/L。在室温下将上盖板放入该溶液中浸泡3 min,而后立即用纯水清洗干净。
S4.电化学沉积铜:使用溶液为硫酸铜80 g/L、硫酸 200 g/L、硫酸镁20 g/L、硫酸钾 30 g/L、聚乙二醇和聚丙二醇的混合物(聚乙二醇和聚丙二醇的质量比为1:0.5) 40 mL/L、聚乙烯亚胺5 mL/L、明胶1.5 mL/L,电解铜为阳极,上盖板为阴极,沉积电流密度为4 A/dm 2,沉积时间为150min,结束后取出上盖板,纯水洗净。
S5.形成亲水性保护层:使用溶液为pH值为8-10的碱性亲水性溶液,成份包括聚乙二醇40 g/L、偏硅酸钠30 g/L、尿素10 g/L、苯甲酸钠5 g/L、苯并三氮唑0.5 g/L。上盖板在该溶液中浸泡1 min,取出洗净,置于75 ℃干燥箱中烘干20 min。
S6.热处理:在真空条件下进行热处理,热处理的温度为680 ℃,时间为60 min。
实施例2
S1. 上盖板和下盖板的制作:通过对铜片进行蚀刻得到,铜片的厚度在0.05 mm-0.4 mm之间。
S2. 除油:使用溶液为弱碱性除油液,成份包括磷酸三钠20 g/L、碳酸钠40 g/L、偏硅酸钠30 g/L、OP乳化剂3 ml/L,溶液温度为50 ℃,将上盖板放入该溶液中阴极电解3 min,电流密度3 A/dm 2,而后立即用纯水清洗干净。
S3. 除锈:使用溶液为混合酸溶液的除锈剂,成份包括硫酸150 g/L、硝酸15 g/L、盐酸5 g/L、尿素5 g/L、苯并三氮唑0.8 g/L。在室温下将上盖板放入该溶液中浸泡5 min,而后立即用纯水清洗干净。
S4. 电化学沉积铜:使用溶液为硫酸铜60 g/L、硫酸 180 g/L、硫酸镁10 g/L、硫酸钾 20 g/L、聚乙二醇和聚丙二醇的混合物(聚乙二醇和聚丙二醇的质量比为1:0.5)30 mL/L、聚乙烯亚胺2.5 mL/L、明胶1 mL/L,电解铜为阳极,上盖板为阴极,沉积电流密度为3 A/dm 2,沉积时间为60 min,结束后取出上盖板,纯水洗净。
S5. 形成亲水性保护层:使用溶液为pH值为8-10的碱性亲水性溶液,成份包括聚乙二醇20 g/L、偏硅酸钠250 g/L、尿素10 g/L、苯甲酸钠2 g/L、苯并三氮唑0.5 g/L。上盖板在该溶液中浸泡0.5 min,取出洗净,置于75 ℃干燥箱中烘干20 min。
S6. 热处理:在氢气保护气氛下进行热处理,热处理的温度为680 ℃,时间为60 min。
实施例3
S1. 上盖板和下盖板的制作:通过对铜片进行蚀刻得到,铜片的厚度在0.05 mm-0.4 mm之间。
S2. 除油:使用溶液为弱碱性除油液,成份包括磷酸三钠40 g/L、碳酸钠30 g/L、偏硅酸钠10 g/L、OP乳化剂1 ml/L,溶液温度为60 ℃,将上盖板放入该溶液中阴极电解2 min,电流密度5 A/dm 2,而后立即用纯水清洗干净。
S3. 除锈:使用溶液为混合酸溶液的除锈剂,成份包括硫酸250 g/L、硝酸5 g/L、盐酸10 g/L、尿素10 g/L、苯并三氮唑1 g/L。在室温下将上盖板放入该溶液中浸泡2 min,而后立即用纯水清洗干净。
S4. 电化学沉积铜:使用溶液为硫酸铜30 g/L、硫酸 150 g/L、硫酸镁15 g/L、硫酸钾 15 g/L、聚乙二醇和聚丙二醇的混合物(聚乙二醇和聚丙二醇的质量比为1:0.5)20 mL/L、聚乙烯亚胺1.5 mL/L、明胶0.5 mL/L,电解铜为阳极,上盖板为阴极,沉积电流密度为2 A/dm 2,沉积时间为30 min,结束后取出上盖板,纯水洗净。
S5. 形成亲水性保护层:使用溶液为pH值为8-10的碱性亲水性溶液,成份包括聚乙二醇40 g/L、偏硅酸钠30 g/L、尿素10 g/L、苯甲酸钠5 g/L、苯并三氮唑0.5 g/L。上盖板在该溶液中浸泡0.5 min,取出洗净,置于75 ℃干燥箱中烘干20 min。
S6. 热处理:在氢气保护气氛下进行热处理,热处理的温度为680 ℃,时间为60 min。
实验例1
图3是本申请一具体实施例生成的铜毛细结构层的SEM图像,图4是图3所示结构放大500倍的局部放大图,从图中可以看出:铜毛细结构层是由颗粒状晶体沉积形成,颗粒状晶体的粒径在20 μm-200 μm范围,颗粒状晶体之间含有孔隙。
图5是图3中沿直线所示的对角线弯折180°的截面形貌图,从图中可以看到:毛细结构层未与上盖板分离,结构良好,可见,毛细结构层的结合力良好,未出现起皮、脱落等问题,100 nm≤孔隙的孔径≤100 μm,孔隙的深度大于等于20 μm。
表1为实施例1-3得到的均温板的形态参数和性能参数,从表1可以看到:本申请得到的毛细结构层的厚度更薄,可以低至0.04 mm,且具有较高的垂直吸液速率,现有技术中采用铜粉烧结或铜网粘结方法制备的毛细结构层的厚度在0.3 mm-0.5 mm范围,可见,本申请的方法不仅工艺简单、成本低廉且能够得到与上盖板结合紧密、性能稳定高效且尺寸更小的均温板。
Figure dest_path_image001
以上所述的仅是本申请的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本申请创造构思的前提下,还可以做出改进,但这些均属于本申请的保护范围。

Claims (12)

  1. 一种均温板上盖板的制备方法,其特征在于,包括以下过程:
    制作均温板的上盖板;
    对所述上盖板进行电化学沉积,在所述上盖板的内壁沉积形成具有多孔结构的毛细结构层,其中,所述上盖板作为所述电化学沉积的阴极;所述毛细结构层的材质为铜,所述电化学沉积的电解液包括30 g/L-80 g/L的硫酸铜、150 g/L-200 g/L的硫酸、硫酸根浓度为0.04 mol/L-0.55 mol/L的硫酸盐和11.5 mL/L-46.5 mL/L的第一添加剂;所述第一添加剂包括10 mL/L-40 mL/L的聚乙二醇和聚丙二醇的混合物、1 mL/L-5 mL/L的聚乙烯亚胺和0.5 mL/L-1.5 mL/L的明胶,其中,所述聚乙二醇和所述聚丙二醇的质量比为1:0.1-1:2;
    对所述毛细结构层进行热处理,得到具有毛细结构层的均温板上盖板。
  2. 根据权利要求1所述的方法,其特征在于,所述硫酸盐选自硫酸镁和硫酸钾中的一种或两种。
  3. 根据权利要求1所述的方法,其特征在于,所述电解液的温度为20 ℃-40 ℃;所述电化学沉积的电流密度为1 A/dm 2-5 A/dm 2;所述电化学沉积的时间为30 min-150 min。
  4. 根据权利要求1所述的方法,其特征在于,所述热处理之前,还包括在所述毛细结构层的表面形成亲水性保护层的过程。
  5. 根据权利要求4所述的方法,其特征在于,所述亲水性保护层的制备过程为:配制亲水性溶液,所述亲水性溶液包括30 g/L-50 g/L的聚乙二醇、20 g/L-50 g/L的偏硅酸钠、5 g/L-10 g/L的尿素、3 g/L-10 g/L的苯甲酸钠和0.2 g/L-0.8 g/L的苯并三氮唑,在所述毛细结构的表面形成亲水性溶液层,固化所述亲水性溶液层,在所述毛细结构层的表面形成所述亲水性保护层。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述热处理的过程为:将所述上盖板置于真空或无氧保护气氛中进行所述热处理,所述热处理的温度为300 ℃-800 ℃,所述热处理的时间为30 min-60 min。
  7. 根据权利要求1所述的方法,其特征在于,对所述上盖板进行所述电化学沉积之前,还包括对所述上盖板进行除油和/或除锈的过程。
  8. 根据权利要求7所述的方法,其特征在于,所述除油的过程为:将所述上盖板置于除油液中,作为阴极,电解,完成后冲洗所述上盖板,得到除油后的上盖板;
    所述除锈的过程为:将所述上盖板置于除锈液中浸泡,完成后冲洗所述上盖板,得到除锈后的上盖板。
  9. 根据权利要求8所述的方法,其特征在于,所述除油液为pH值为7-9的碱性溶液;所述除油液的温度为50 ℃-60 ℃;所述电解的电流密度为2 A/dm 2-5 A/dm 2;所述电解的时间为2 min-5 min。
  10. 根据权利要求9所述的方法,其特征在于,所述碱性溶液包括20 g/L-50 g/L的磷酸三钠、20 g/L-40 g/L的碳酸钠、10 g/L-30 g/L的偏硅酸钠和1 ml/L-5 ml/L的OP乳化剂。
  11. 根据权利要求8所述的方法,其特征在于,所述除锈液为混合酸溶液;所述混合酸溶液包括150 g/L-250g/L的硫酸、5 g/L-15 g/L的硝酸、2 g/L-10 g/L的盐酸、5 g/L-10 g/L的尿素和0.2 g/L-1 g/L的苯并三氮唑;所述上盖板在所述除锈液中的浸泡时间为2 min-5 min。
  12. 一种均温板,其特征在于,包括下盖板和权利要求1-11任一项所述方法制备得到的均温板上盖板,所述均温板上盖板和所述下盖板盖合形成内部用于存储冷却介质的密封腔体,所述毛细结构层位于所述密封腔体内。
PCT/CN2020/132134 2020-11-19 2020-11-27 均温板上盖板的制备方法以及均温板 WO2022104875A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011299917.8A CN112458503B (zh) 2020-11-19 2020-11-19 均温板上盖板的制备方法以及均温板
CN202011299917.8 2020-11-19

Publications (1)

Publication Number Publication Date
WO2022104875A1 true WO2022104875A1 (zh) 2022-05-27

Family

ID=74836740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132134 WO2022104875A1 (zh) 2020-11-19 2020-11-27 均温板上盖板的制备方法以及均温板

Country Status (2)

Country Link
CN (1) CN112458503B (zh)
WO (1) WO2022104875A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114086229B (zh) * 2021-10-27 2022-11-25 中山市仲德科技有限公司 一种制备吸液芯的槽液和吸液芯的制备方法
CN116497410A (zh) * 2023-04-27 2023-07-28 东莞领益精密制造科技有限公司 不锈钢均热板加工方法及均热板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998058989A1 (en) * 1997-06-20 1998-12-30 Coloplast A/S A hydrophilic coating and a method for the preparation thereof
CN101165449A (zh) * 2006-10-17 2008-04-23 黎艺文 一种热管及其制作方法
CN103556193A (zh) * 2013-10-31 2014-02-05 华南理工大学 紫铜表面超亲水结构制备方法及用该方法制造的紫铜微热管
CN107557825A (zh) * 2017-07-21 2018-01-09 林进东 铜粉金属镀层、金属基板、节能防胀爆散热装置及其制备工艺
CN109988471A (zh) * 2017-12-30 2019-07-09 广州华钻电子科技有限公司 一种环保亲水纳米涂料及其含亲水纳米涂层的热管
CN110724981A (zh) * 2019-10-10 2020-01-24 深圳先进电子材料国际创新研究院 一种全纳米孪晶组织结构的铜薄膜材料的制备方法
CN110769645A (zh) * 2019-10-11 2020-02-07 大连理工大学 超薄平板热管吸液芯及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6354916B1 (en) * 2000-02-11 2002-03-12 Nu Tool Inc. Modified plating solution for plating and planarization and process utilizing same
CN100413061C (zh) * 2004-06-07 2008-08-20 鸿富锦精密工业(深圳)有限公司 一种热管及其制造方法
US7232513B1 (en) * 2004-06-29 2007-06-19 Novellus Systems, Inc. Electroplating bath containing wetting agent for defect reduction
CN102019543B (zh) * 2009-09-18 2012-10-03 和硕联合科技股份有限公司 均温板及其制作方法
CN105887144B (zh) * 2016-06-21 2018-09-21 广东光华科技股份有限公司 电镀铜镀液及其电镀铜工艺
CN110572985A (zh) * 2019-08-20 2019-12-13 奇鋐科技股份有限公司 散热装置结合结构
CN111121510A (zh) * 2019-12-27 2020-05-08 东莞赛诺高德蚀刻科技有限公司 一种均温板及其制备方法
CN111836518B (zh) * 2020-07-06 2022-04-26 瑞声科技(南京)有限公司 均温板及均温板的加工方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998058989A1 (en) * 1997-06-20 1998-12-30 Coloplast A/S A hydrophilic coating and a method for the preparation thereof
CN101165449A (zh) * 2006-10-17 2008-04-23 黎艺文 一种热管及其制作方法
CN103556193A (zh) * 2013-10-31 2014-02-05 华南理工大学 紫铜表面超亲水结构制备方法及用该方法制造的紫铜微热管
CN107557825A (zh) * 2017-07-21 2018-01-09 林进东 铜粉金属镀层、金属基板、节能防胀爆散热装置及其制备工艺
CN109988471A (zh) * 2017-12-30 2019-07-09 广州华钻电子科技有限公司 一种环保亲水纳米涂料及其含亲水纳米涂层的热管
CN110724981A (zh) * 2019-10-10 2020-01-24 深圳先进电子材料国际创新研究院 一种全纳米孪晶组织结构的铜薄膜材料的制备方法
CN110769645A (zh) * 2019-10-11 2020-02-07 大连理工大学 超薄平板热管吸液芯及其制造方法

Also Published As

Publication number Publication date
CN112458503A (zh) 2021-03-09
CN112458503B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2022104875A1 (zh) 均温板上盖板的制备方法以及均温板
CN112359236B (zh) 一种利用钨粉制备高致密度钨铜合金金属材料的工艺
CN109336646A (zh) 一种覆铜氮化铝陶瓷基板的制造方法
CN100449038C (zh) 因瓦合金箔的制备方法
CN113201738B (zh) 一种选择性激光熔化AlSi10Mg成形工件的电化学表面处理方法
CN108774737B (zh) 一种泡沫金属基铅合金复合阳极材料的制备方法
CN112322938B (zh) 一种基于增材制造的镍基复合材料、制备方法及其成形方法
WO2022104882A1 (zh) 均温板上盖板的制备方法以及均温板
CN116282395A (zh) 碳纳米管修饰的锡锑电极在低共熔溶剂中电沉积制备的方法
CN114164419A (zh) 一种通过热分解法在阳极板上制备铂金活性层的方法
CN112813423A (zh) 一种均温板制作方法及均温板
JPS62263991A (ja) 鍍金物製造法
CN116275057B (zh) 基于粉末烧结制备具有微电偶的电子铝箔的腐蚀预处理方法
CN116329501B (zh) 一种铝电解电容器用中高压阳极铝箔熔融预锡化渗透处理的方法
CN114086229B (zh) 一种制备吸液芯的槽液和吸液芯的制备方法
Tian et al. Manufacturing microporous foam zinc materials with high porosity by electrodeposition
CN108179452A (zh) 一种表面无坑点缺陷的铝材及其制备方法
CN111962121B (zh) 一种快速构建钛基体三维多孔二氧化铅活性层的方法
CN115874231B (zh) 一种熔盐电解制备高硅钢的方法
CN114606488B (zh) 一种高效的锰系表调剂及其制备方法与应用
JP4835399B2 (ja) 高純度アルミニウム合金材
CN116970953A (zh) 一种电池正极集流体用微孔铝合金箔及其制备方法
CN116479496A (zh) 一种纳米多孔铝块体及其制备方法
CN117187732A (zh) 一种电极材料及其制备方法和应用
CN116641052A (zh) 一种TiMn合金阳极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962166

Country of ref document: EP

Kind code of ref document: A1