WO2022104579A1 - 一种吡啶季铵盐导向合成的丝光沸石分子筛以及制备方法、应用 - Google Patents

一种吡啶季铵盐导向合成的丝光沸石分子筛以及制备方法、应用 Download PDF

Info

Publication number
WO2022104579A1
WO2022104579A1 PCT/CN2020/129676 CN2020129676W WO2022104579A1 WO 2022104579 A1 WO2022104579 A1 WO 2022104579A1 CN 2020129676 W CN2020129676 W CN 2020129676W WO 2022104579 A1 WO2022104579 A1 WO 2022104579A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
mordenite
preparation
mordenite molecular
reaction
Prior art date
Application number
PCT/CN2020/129676
Other languages
English (en)
French (fr)
Inventor
樊栋
田鹏
曹凯鹏
王林英
刘中民
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to PCT/CN2020/129676 priority Critical patent/WO2022104579A1/zh
Publication of WO2022104579A1 publication Critical patent/WO2022104579A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/26Mordenite type

Definitions

  • the present application relates to a mordenite zeolite molecular sieve for pyridine quaternary ammonium salt-oriented synthesis, a preparation method and an application, and belongs to the technical field of zeolite molecular sieve materials.
  • Mordenite molecular sieve is an important class of silica-alumina zeolite molecular sieve material, which is widely used in petroleum processing and fine chemical industry as an important adsorption and catalytic material.
  • the mordenite molecular sieve framework structure belongs to the orthorhombic system, Cmcm space group. Its skeleton consists of 12-membered rings parallel to the c-axis and 8-membered ring The channel is composed of 8-membered rings along the b-axis Side pockets are attached.
  • MOR molecular sieves mostly exhibit the characteristics of one-dimensional zeolite molecular sieves in practical catalytic reactions.
  • the unique pore structure and acid properties of mordenite molecular sieve make it widely used in catalytic reaction processes such as disproportionation of toluene to produce xylene, methanol and ammonia to produce methylamine, and carbonylation of dimethyl ether to produce methyl acetate.
  • Hydrothermal synthesis refers to the synthesis of the reactants in the solvent through a special chemical reaction under a certain temperature and pressure. The synthesis is usually carried out in a special closed vessel or an autoclave, and the reaction is in a subcritical or supercritical state.
  • zeolite molecular sieves with low Si/Al ratio often have endogenous defects such as poor thermal/hydrothermal stability. Increasing the ratio of silicon to aluminum is an effective means to improve the thermal and hydrothermal stability of zeolite molecular sieves.
  • tetraethylammonium hydroxide is still the most commonly used templating agent for the synthesis of high-silica mordenite.
  • the samples synthesized from tetraethylammonium hydroxide often have the disadvantages of large primary particle size and poor diffusion performance.
  • the stability and catalyst life in acid-catalyzed reactions, especially dimethyl ether carbonylation reactions, are still relatively poor, and the catalyst activity is relatively poor. There is also a lot of room for improvement.
  • the choice of template will affect the morphology, texture, acid strength, acid distribution and other physical and chemical properties of the synthesized mordenite zeolite through the interaction of host and guest, and then affect the performance of the corresponding mordenite products in catalysis and adsorption. .
  • the development of a new template agent and a new synthesis method for mordenite molecular sieve is an effective way to adjust the physicochemical properties and catalytic performance of mordenite molecular sieve products, and has important practical application significance.
  • a pyridine quaternary ammonium salt-directed synthesis mordenite molecular sieve the mordenite molecular sieve is a high-silica mordenite molecular sieve (the molar ratio of Si element and Al element in the framework is 10-60), and Using pyridinium quaternary ammonium compounds as templates, it has good catalytic performance.
  • a pyridine quaternary ammonium salt-oriented and synthesized mordenite molecular sieve wherein the anhydrous chemical composition of the mordenite molecular sieve is expressed as:
  • R represents a templating agent, and the templating agent is a pyridine quaternary ammonium salt compound
  • n represents the number of moles of templating agent R per mole of (Six Al)O 2x +2 , and the value range of n is 0.10 ⁇ n ⁇ 0.90;
  • M represents an alkali metal ion
  • m represents the number of moles of alkali metal ions per mole of (Six Al)O 2x +2 , and the value range of m is 0.10 ⁇ m ⁇ 0.90;
  • x is the molar ratio of Si element and Al element in the mordenite molecular sieve framework, and the value range of x is 10 ⁇ x ⁇ 60.
  • the application can obtain a high-silicon mordenite molecular sieve, and the high-silicon mordenite molecular sieve has the effects of good thermal stability and long catalytic life in the dimethyl ether carbonylation reaction.
  • the pyridine quaternary ammonium salt compound is an alkyl halide pyridine compound
  • the alkyl halide pyridine compound is selected from any one of the substances having the structural formula represented by formula II;
  • R 0 represents any one of C 2 -C 5 alkyl
  • X represents halogen
  • the alkyl pyridine halide compound is selected from the group consisting of 1-ethylpyridine chloride, 1-ethylpyridine bromide, 1-ethylpyridine iodide, 1-propylpyridine chloride, 1-propylpyridine Any of pyridine bromide and 1-propyl pyridinium iodide.
  • the molar ratio x of Si element and Al element in the mordenite molecular sieve framework is in the range of 10 ⁇ x ⁇ 26.
  • the high-silicon mordenite molecular sieve has better thermal stability.
  • the molar ratio x of Si element and Al element in the mordenite molecular sieve framework is in the range of 11 ⁇ x ⁇ 18.
  • the high-silica mordenite molecular sieve has the effect of longer catalytic life in the dimethyl ether carbonylation reaction.
  • the mordenite molecular sieve has a radial structure of stacked sheets of nanoparticles. Specifically, it is a lamellar radial structure in which nanoparticles are stacked in an orderly manner.
  • the mordenite molecular sieve X-ray diffraction pattern has characteristic peaks at the following positions:
  • the initial gel mixture containing silicon source, aluminum source, M source, seed crystal, deionized water and templating agent is crystallized to obtain the mordenite molecular sieve; wherein, the templating agent is a pyridine quaternary ammonium salt compound.
  • the preparation method of the initial gel mixture includes: first mixing the aluminum source, M source and deionized water, then adding silicon source, seed crystal and template agent in sequence, and stirring, to obtain the initial gel mixture.
  • a mordenite molecular sieve with a high silicon-aluminum ratio can be obtained.
  • the molar ratio of each component is:
  • the lower limit of the molar ratio of SiO 2 /Al 2 O 3 is selected from any of 20, 32, 36, 40, 50, 52, 55, and 90; SiO 2 /Al
  • the upper limit of the molar ratio of 2 O 3 is selected from any one of 32, 36, 40, 50, 52, 55, 90, and 120.
  • the lower limit of the molar ratio of M 2 O/Al 2 O 3 is selected from 0.9, 1.05, 2.1, 2.24, 2.4, 2.75, 3, 3.2, 3.6, 4, 4.4, 4.5, 5.4, 6, 6.5, 7.8, 7.92, 10 Any of , 12;
  • the upper limit of the molar ratio of M 2 O/Al 2 O 3 is selected from 1.05, 2.1, 2.24, 2.4, 2.75, 3, 3.2, 3.6, 4, 4.4, 4.5, 5.4, 6, 6.5 , 7.8, 7.92, 10, 12, 24.
  • the lower limit of the molar ratio of R/ Al2O3 is selected from 0.9, 1.2 , 3.2, 3.9, 4, 4.16, 4.2, 4.5, 4.8, 5.1, 5.4, 6, 7.2, 7.5, 7.8, 8.25, 8.8, 12, 13.5 Any value in; the upper limit of the molar ratio of R/Al 2 O 3 is selected from 1.2, 3.2, 3.9, 4, 4.16, 4.2, 4.5, 4.8, 5.1, 5.4, 6, 7.2, 7.5, 7.8, 8.25, 8.8 , 12, 13.5, or 30.
  • the lower limit of the molar ratio of H 2 O/Al 2 O 3 is selected from 140, 180, 224, 234, 390, 450, 480, 600, 715, 720, 750, 760, 800, 810, 880, 900, 920, 936 , 1200;
  • the upper limit of the molar ratio of H 2 O/Al 2 O 3 is selected from 180, 224, 234, 390, 450, 480, 600, 715, 720, 750, 760, 800, 810, 880 , 900, 920, 936, 1200, 2160.
  • the lower limit of the molar ratio of seed crystal mass/feeding SiO2 solid mass is selected from any value of 0.5wt%, 1wt%, 2wt%, 3wt%, 4wt%, 5wt%, 6wt%; seed crystal mass/feeding SiO2
  • the upper limit of the molar ratio of solid mass is selected from any value of 1 wt %, 2 wt %, 3 wt %, 4 wt %, 5 wt %, 6 wt %, and 8 wt %.
  • the molar ratio of each component is:
  • the molar ratio can make the molar ratio x of Si element and Al element in the mordenite molecular sieve framework be in the range of 10 ⁇ x ⁇ 26.
  • the molar ratio of each component is:
  • the molar ratio can make the molar ratio x of the Si element and the Al element in the mordenite molecular sieve framework be in the range of 11 ⁇ x ⁇ 18.
  • the silicon source includes one or a mixture of any of silica sol, silica, active silica, orthosilicate, water glass, metakaolin, and kaolin.
  • the silicon source is at least one of silica sol, silica, and active silica
  • the aluminum source includes one or a mixture of any of sodium metaaluminate, aluminum alkoxide, aluminum salt, metakaolin, and kaolin.
  • the aluminum source is sodium metaaluminate or an aluminum salt.
  • the M source is the hydroxide of M
  • the hydroxide of M is selected from at least one of lithium hydroxide, sodium hydroxide, potassium hydroxide and cesium hydroxide.
  • the hydroxide of M is at least one of sodium hydroxide and potassium hydroxide.
  • the seed crystal is selected from at least one of uncalcined mordenite raw powder, calcined mordenite, ball-milled mordenite, alkali-treated mordenite, and fluoride ion-etched mordenite.
  • the application does not strictly limit the preparation method of the uncalcined mordenite raw powder.
  • the uncalcined mordenite raw powder can be purchased from commercial mordenite molecular sieves, or can be prepared through relevant documents in the prior art, or synthesized according to this patent.
  • the mordenite molecular sieve can also be used as the seed crystal required for the next synthesis using the patented method.
  • GHSV 1500-12000ml Air/g molecular sieve/h
  • the present application does not strictly limit the preparation method of the ball-milled mordenite, and a possible preparation method is described below: the above-mentioned uncalcined mordenite raw powder is ball-milled for 1-10 hours using a planetary ball mill.
  • the present application does not strictly limit the preparation method of the alkali-treated mordenite, and a possible preparation method is described below: the above-mentioned uncalcined mordenite raw powder is treated with an aqueous sodium hydroxide solution of 0.2 to 1 mol/L at a temperature of 80 °C 1-24h.
  • the present application does not strictly limit the preparation method of the fluoride ion-etched mordenite.
  • the possible preparation method is described below: the above-mentioned uncalcined mordenite raw powder is mixed with 0.1-0.5mol/L ammonium fluoride aqueous solution at 60 °C temperature for 1-24h.
  • the crystallization conditions are: the crystallization temperature is 120-220° C.; 0.5-144 hours.
  • the lower limit of the crystallization temperature is independently selected from any value of 120°C, 130°C, 135°C, 145°C, 160°C, 170°C, 175°C, 180°C, 190°C, 200°C; crystallization
  • the upper limit of the temperature is independently selected from any value of 130°C, 135°C, 145°C, 160°C, 170°C, 175°C, 180°C, 190°C, 200°C, and 220°C.
  • the lower limit of the crystallization time is independently selected from any value in 0.5h, 15h, 24h, 30h, 40h, 46h, 48h, 50h, 57h, 60h, 70h, 72h, 80h, 106h, 110h; the upper limit of the crystallization time Independently selected from any of 15h, 24h, 30h, 40h, 46h, 48h, 50h, 57h, 60h, 70h, 72h, 80h, 106h, 110h, 144h.
  • the crystallization temperature preferably ranges from 120 to 200°C, and more preferably ranges from 150 to 180°C.
  • the crystallization time preferably ranges from 10 to 96 hours.
  • the crystallization is dynamic crystallization or static crystallization.
  • a catalyst is also provided, the catalyst is prepared from at least one of the mordenite molecular sieve according to any one of the above and the mordenite molecular sieve obtained according to any of the above-mentioned preparation methods get.
  • the catalyst can be obtained by exchanging the mordenite molecular sieve with ammonium ions and then calcining in air at 400-700°C.
  • the application of the above catalyst in acid catalyst reaction is also provided.
  • a catalyst for an acid-catalyzed reaction the catalyst is obtained from the above-mentioned mordenite molecular sieve, exchanged with ammonium ions, and then calcined in air at 400-700°C.
  • the acid-catalyzed reaction includes an ethanol-catalyzed dehydration reaction
  • the ethanol catalytic dehydration reaction includes: contacting and reacting a raw material containing ethanol with the catalyst to obtain diethyl ether;
  • reaction conditions of the ethanol catalytic dehydration reaction are as follows: the mass-volume ratio of the catalyst to the ethanol is 0.1-0.5 g/mL;
  • the reaction temperature is 120 ⁇ 170°C; the reaction time is 1 ⁇ 5h.
  • the application of the above catalyst in the catalytic reaction of producing methyl acetate by carbonylation of dimethyl ether is also provided.
  • a catalyst for producing methyl acetate by carbonylation of dimethyl ether is obtained.
  • the catalyst is obtained by exchanging the mordenite molecular sieve with ammonium ions and then calcining in air at 400-700°C.
  • the catalytic reaction for preparing methyl acetate by the carbonylation of dimethyl ether includes:
  • the mixed gas containing dimethyl ether and carbon monoxide is contacted and reacted with the catalyst to obtain methyl acetate;
  • reaction conditions are: the volume ratio of dimethyl ether and carbon monoxide is 1:5-9;
  • the space velocity of the mixed gas is 500 ⁇ 3500ml g -1 h -1 ;
  • the reaction temperature is 170 ⁇ 250 °C
  • the reaction pressure is 0.5 to 5 MPa.
  • C 2 -C 5 all represent the number of carbon atoms contained in the group.
  • a C 2 -C 5 alkyl group represents an alkyl group having 2 to 5 carbon atoms.
  • the application obtains a kind of pyridine chloride with 1-ethyl pyridine, 1-ethyl pyridine bromide, 1-ethyl pyridine iodide, 1-propyl pyridine chloride, 1-propyl pyridine bromide, 1-
  • One of the propylpyridine iodide is a mordenite molecular sieve with a template agent, and the molar ratio of Si element and Al element in the framework is 10-60.
  • the mordenite prepared in the present application is a pure phase mordenite molecular sieve crystal with high crystallinity, and the molecular sieve has a lamellar radial morphology with nanocrystalline grains stacked in an orderly manner, and has excellent diffusion performance (the diffusion coefficient can reach an order of magnitude of 10-17 m 2 / S).
  • the mordenite molecular sieve prepared in the present application exhibits excellent catalytic reaction performance in the catalytic dehydration reaction of ethanol, the conversion rate of ethanol reaches more than 96%, and the selectivity of diethyl ether reaches more than 93%.
  • the mordenite molecular sieve prepared in the present application exhibits excellent catalytic performance in the catalytic reaction of dimethyl ether carbonylation to produce methyl acetate, the conversion rate of dimethyl ether can reach more than 80%, and the methyl acetate selectivity can reach 99% above.
  • Fig. 1 is the X-ray diffraction pattern of the sample in embodiment 1;
  • Fig. 2 is the scanning electron microscope picture of the sample in embodiment 1;
  • Fig. 3 is the sample thermogravimetric spectrum in embodiment 1;
  • Fig. 4 is the X-ray diffraction pattern of the product in Comparative Example 1;
  • Fig. 5 is the X-ray diffraction pattern of the product in Comparative Example 2.
  • Figure 6 is a scanning electron microscope image of the product in Comparative Example 3.
  • Fig. 7 is the X-ray diffraction pattern of the product in Comparative Example 4.
  • FIG. 8 is an X-ray diffraction pattern of the product in Comparative Example 8.
  • the anhydrous chemical composition of the molecular sieve can be expressed as: nR ⁇ mM ⁇ (Six Al)O 2x +2 ,
  • R is a template molecule, selected from the group consisting of 1-ethyl Any of pyridine chloride, 1-ethylpyridinium bromide, 1-ethylpyridine iodide, 1-propylpyridine chloride, 1-propylpyridine bromide, and 1-propylpyridine iodide.
  • the molar ratio x of silicon element to aluminum element in the molecular sieve framework is 10-60;
  • the molar ratio x of silicon element to aluminum element in the molecular sieve framework is preferably 10-26;
  • the molar ratio x of silicon element to aluminum element in the molecular sieve framework is preferably 11-18.
  • Another object of the present application is to provide a method for synthesizing the above-mentioned mordenite molecular sieve.
  • the technical problem to be solved by the present invention is to directly use 1-ethylpyridine chloride, 1-ethylpyridine bromide, 1-ethylpyridine iodide, 1-propylpyridine chloride, 1-propylpyridine bromide, Any organic compound including 1-propyl pyridine iodide is used as a template agent, and the silicon source, aluminum source and alkali source used in the synthesis of conventional mordenite molecular sieve are used as raw materials, and pure phase mordenite molecular sieve is synthesized and prepared under hydrothermal synthesis conditions. .
  • the invention provides a hydrothermal synthesis method of the mordenite molecular sieve.
  • step b) put the initial gel mixture obtained after the treatment in step a) into a synthesis kettle, seal it, and heat it up to 120-220° C. for crystallization for 0.5-144 hours;
  • step b) After the crystallization in step b) is completed, the solid product is separated, washed and dried to obtain the mordenite molecular sieve.
  • the silicon source in the step a) is one or a mixture of any of silica sol, active silica, orthosilicate, water glass, and metakaolin; preferably, the silicon source is silicon At least one of sol, silica, and active silica.
  • the aluminum source in the step a) is one or any mixture of sodium metaaluminate, aluminum alkoxide, aluminum salt, and metakaolin; preferably, the aluminum source is sodium metaaluminate or aluminum Salt.
  • the hydroxide of the alkali metal M in the step a) is at least one of lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide; preferably, the hydroxide of the alkali metal is hydroxide At least one of sodium and potassium hydroxide.
  • the crystal seed in the described step a) is at least one of uncalcined mordenite original powder, calcined mordenite, ball-milled mordenite, alkali-treated mordenite, and fluoride ion-etched mordenite.
  • the seed crystal is at least one of uncalcined mordenite raw powder and alkali-treated mordenite.
  • the molar ratio of SiO 2 /Al 2 O 3 in the initial gel mixture is preferably in the range of 20-60, and further preferably in the range of 20-50.
  • the molar ratio of M 2 O/SiO 2 in the initial gel mixture is preferably in the range of 0.06-0.2, and further preferably in the range of 0.08-0.15.
  • the molar ratio of R/SiO 2 in the initial gel mixture of step a) preferably ranges from 0.05 to 0.2.
  • the molar ratio of H 2 O/SiO 2 in the initial gel mixture is preferably in the range of 7-30, and further preferably in the range of 8-20.
  • the preferred range of the crystallization temperature in the step b) is 120-200°C, and a further preferred range is 150-180°C.
  • the crystallization time in the step b) preferably ranges from 10 to 96 hours.
  • the crystallization process in the step b) can be performed statically or dynamically.
  • Another object of the present application is to provide an acid catalyst, which can be applied to acid-catalyzed reactions and exhibits good catalytic performance.
  • the acid-catalyzed reaction catalyst is obtained from at least one of the above-mentioned mordenite molecular sieves and the mordenite molecular sieves prepared according to any of the above-mentioned methods, through ammonium ion exchange, and then calcined in air at 400-700°C.
  • Another object of the present application is to also provide a catalyst for producing methyl acetate by carbonylation of dimethyl ether, which can be applied to the catalytic reaction of producing methyl acetate by carbonylation of dimethyl ether, and exhibits good catalytic performance.
  • the catalyst is obtained by at least one of the above-mentioned mordenite molecular sieves and the mordenite molecular sieves synthesized according to any of the above-mentioned methods, through ammonium ion exchange, and then calcined in air at 400-700°C.
  • the bulk elemental composition was measured by Magix2424 X-ray fluorescence analyzer (XRF) of Philips Company.
  • the instrument used for scanning electron microscope (SEM) test was Hitachi SU8020 field emission scanning electron microscope, and the accelerating voltage was 2kV.
  • the diffusion coefficients of the samples of Examples and Comparative Examples were measured by IGA-100 intelligent gravimetric analyzer of Hiden Analytical Company, and the probe molecule used was ethane molecule.
  • the weight change and heat flow analysis of the samples were carried out under the temperature-programmed conditions by using the SDTQ600 thermal analyzer from TA Company in the United States. Air atmosphere, flow rate 100ml/min.
  • the preparation method of the ball-milled mordenite seed crystals the above-mentioned uncalcined mordenite raw powder is ball-milled for 5 hours using a planetary ball mill.
  • Preparation method of alkali-treated mordenite seed crystals the above-mentioned uncalcined mordenite raw powder is treated with a 0.5 mol/L sodium hydroxide aqueous solution at a temperature of 80° C. for 12 hours.
  • Preparation method of fluoride ion etching-treated mordenite seed crystals the above-mentioned uncalcined mordenite raw powder is treated with a 0.3 mol/L ammonium fluoride aqueous solution at a temperature of 60° C. for 10 hours.
  • the above gel was transferred into a stainless steel reactor with a polytetrafluoroethylene lining, and the temperature was raised to 190 °C for crystallization under dynamic conditions for 30 h.
  • the obtained solid product was centrifuged, washed with deionized water until neutral, and heated to 110 °C Under air drying, the original powder (namely the mordenite molecular sieve in this application) is obtained.
  • XRD analysis of the product shows that the synthesized product has the characteristics of mordenite molecular sieve (see Figure 1 for the XRD spectrum).
  • the samples obtained in Example 1 were characterized by scanning electron microscopy. The scanning electron microscope image of the sample is shown in Figure 2. The sample exhibits a special morphology of lamellae with ordered stacking of nanoparticles.
  • the bulk silica-alumina composition of the molecular sieve crystals was analyzed by XRF, and the results are listed in Table 1.
  • the bulk Si/Al molar ratio of the sample of Example 1 was 15.5.
  • the CHN elemental analysis of the original powder sample of Example 1 showed that the C/N molar ratio was 7.01.
  • Thermogravimetric analysis of the original powder sample of Example 1 (the thermogravimetric spectrum is shown in Figure 3) shows that the organic weight loss accounts for 8% of the dry mass of the molecular sieve.
  • the inorganic element composition of CHN elemental analysis, thermogravimetric analysis and XRF determination is normalized, and the anhydrous chemical composition of the mordenite molecular sieve of Example 1 is obtained as 0.81R.0.20Na.(Si 15.5 Al)O 33 , wherein R is 1-Ethylpyridine bromide.
  • the 2 ⁇ corresponding to the characteristic peak in Fig. 1 is as follows, indicating that the synthesized product has the characteristics of mordenite molecular sieve.
  • Example 2-21 The specific batching ratio and crystallization conditions of Examples 2-21 are shown in Table 1, and the specific batching process is the same as that in Example 1.
  • the original powder samples synthesized in Example 2-21 were subjected to XRD analysis.
  • the X-ray diffraction pattern of the product had the characteristics of Figure 1, that is, the peak positions and shapes were basically the same, and the relative peak intensities of the diffraction peaks varied according to the synthesis conditions. It fluctuates within the range of ⁇ 10%, which proves that the synthesized products are all mordenite molecular sieves.
  • the bulk silica-alumina elemental composition of the molecular sieves of Example 2-21 was analyzed by XRF, and the corresponding bulk-phase silica-alumina compositions were listed in Table 1.
  • the anhydrous chemical composition of the mordenite molecular sieve is shown in Table 2.
  • Silicon source a silica sol, b active silica, c orthosilicate, d water glass, e metakaolin.
  • Aluminum sources f sodium metaaluminate, g aluminum alkoxides, h aluminum salts, i metakaolin.
  • Seed crystals I uncalcined mordenite raw powder, II calcined mordenite, III ball milled mordenite, IV alkali treated mordenite, V fluoride ion etching treated mordenite.
  • Crystallization conditions ⁇ dynamic crystallization, ⁇ static crystallization.
  • the amount of seed crystal added is the mass of seed crystal/solid mass of SiO 2 fed.
  • Example Anhydrous chemical composition 1 0.81R.0.2Na.(Si 15.5 Al)O 33 2 0.51R.0.49Na.(Si 22 Al)O 46 3 0.45R.0.55Na.(Si 10.2 Al)O 22.4 4 0.51R.0.49Na.(Si 13.2 Al)O 28.4 5 0.73R.0.27Na.(Si 14.1 Al)O 30.2 6 0.53R.0.47Na.(Si 24.3 Al)O 50.6 7 0.56R.0.44Na.(Si 25.5 Al)O 53 8 0.73R.0.27Na.(Si 43.6 Al)O 89.2 9 0.34R.0.33Na.(Si 56.6 Al)O 115.2 10 0.58R.0.42Na.(Si 14.3 Al)O 30.6
  • the initial gel with the molar ratio of 40SiO 2 :1Al 2 O 3 :6K 2 O:800H 2 O:6R:6wt% seed crystal was prepared, wherein R is 1-ethylpyridine bromide.
  • the aluminum source was changed to anhydrous aluminum chloride, the alkali source was changed to 90 wt% potassium hydroxide, and other raw materials were the same as those in Example 1.
  • the specific batching process and crystallization conditions are the same as those in Example 1.
  • the product is analyzed by XRD, and the X-ray diffraction spectrum of the product has the characteristics of Figure 1, that is, the peak position and shape are basically the same, which proves that the synthesized product is a mordenite molecular sieve.
  • the bulk Si/Al composition of the molecular sieve crystal was analyzed by XRF, and the bulk Si/Al molar ratio of the sample in Example 25 was 14.5.
  • Example 2 Except that the organic template agent is not added, other batching ratios, batching processes, and crystallization conditions are the same as in Example 1.
  • the resulting product was identified by XRD as a mixture of mordenite and ZSM-5.
  • the corresponding XRD patterns are shown in Figure 4.
  • Example 25 Except that the organic template agent is not added, other proportions of ingredients, ingredient process, and crystallization conditions are the same as in Example 25.
  • the resulting product was identified by XRD as a mixture of mordenite and ferrierite. The corresponding XRD patterns are shown in Figure 5.
  • the initial gel with the molar ratio of 40SiO 2 :1Al 2 O 3 :6Na 2 O:800H 2 O:6TEAOH:6wt% seed crystal was prepared. Only the templating agent was changed to 25wt% tetraethylammonium hydroxide (TEAOH) aqueous solution, and other raw materials were the same as those in Example 1. The specific batching process and crystallization conditions are the same as those in Example 1.
  • the product is analyzed by XRD, and the X-ray diffraction spectrum of the product has the characteristics of Figure 1, that is, the peak position and shape are basically the same, which proves that the synthesized product is a mordenite molecular sieve.
  • the scanning electron microscope image of the sample is shown in Figure 6. It can be seen from Figure 6 that when the template agent is changed to TEAOH, the morphology of the synthesized molecular sieve is a block crystal with a size of 2-3 microns, which is similar to the molecular sieve shape of the present application. The morphology difference is very large, and it can be seen that the template provided by the present application is very important to the morphology of the radial structure of the nanoparticle stacking sheets.
  • the initial gel was prepared with a molar ratio of 40SiO 2 :1Al 2 O 3 :6Na 2 O:800H 2 O:6R, where R was 1-ethylpyridine bromide.
  • Other raw materials are the same as in Example 1, except that no seed crystals are added.
  • the specific batching process and crystallization conditions are the same as those in Example 1.
  • the product is analyzed by XRD, and the obtained product is a mixture of mordenite and amorphous silica. The corresponding XRD patterns are shown in Figure 7.
  • Example 1 The sample obtained in Example 1 was calcined at 600°C in dry air for 4h, NH4NO3 was ion exchanged to remove sodium ions, and after calcination in air at 550°C for 4h, tableted and crushed into catalyst particles with a particle size of 20-40 mesh. 5.0 g of catalyst particles were weighed into a tank reactor equipped with 50 ml of ethanol to carry out ethanol dehydration reaction. The reaction temperature was set at 150°C, and the reaction was carried out under stirring. After 5 hours of reaction, the results show that the conversion rate of ethanol can reach 96%, and the selectivity of ether in the product is 93%.
  • Example 26 The catalyst particles prepared in Example 26, using ethane as a probe molecule, were analyzed and fitted with an intelligent gravimetric analyzer (IGA) to obtain an effective diffusion coefficient of 5.17 ⁇ 10 -17 m 2 /S.
  • IGA intelligent gravimetric analyzer
  • Example 1 The sample obtained in Example 1 was calcined in dry air at 600°C for 4h, NH4NO3 was ion exchanged to remove sodium ions, and after calcination in air at 550°C for 4h, tableted and crushed into catalyst particles with a particle size of 40-60 mesh. 1.0 g of catalyst particles were weighed into a fixed bed reactor for evaluation of dimethyl ether (abbreviated as DME) carbonylation reaction. At the beginning of the reaction, nitrogen was activated at 550 °C for 1 h, and then the temperature was lowered to 200 °C for the reaction.
  • DME dimethyl ether
  • the “induction period” in this embodiment refers to a short rising period in the front of the reaction time, followed by a longer steady-state period.
  • the mordenite molecular sieve product prepared in Comparative Example 3 was calcined in dry air at 600°C for 4h, NH 4 NO 3 was ion exchanged to remove sodium ions, and after calcination in air at 550° C for 4h, tableted and crushed into a catalyst with a particle size of 40-60 mesh particles.
  • 1.0 g of catalyst particles were weighed into a fixed bed reactor for evaluation of dimethyl ether (abbreviated as DME) carbonylation reaction. At the beginning of the reaction, nitrogen was activated at 550 °C for 1 h, and then the temperature was lowered to 200 °C for the reaction.
  • DME dimethyl ether
  • IGA intelligent gravimetric analyzer
  • the selection of the template has a great influence on the diffusion coefficient, and the pyridinium quaternary ammonium salt compound template provided in this application can greatly improve the diffusion coefficient of the molecular sieve (in the order of magnitude from 10 -19 to 10 -17 ).
  • Comparative Example 8 Except using pyridine instead of N-ethylpyridine bromide as the template agent, the proportion of ingredients, the ingredient process, and the crystallization conditions in Comparative Example 8 are the same as those in Example 1, and the products obtained are identified as mordenite and ZSM-5 type zeolite by XRD. mixture. The corresponding XRD patterns are shown in Figure 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

一种吡啶季铵盐导向合成的丝光沸石分子筛以及制备方法、应用。该丝光沸石分子筛无水化学组成表示为:nR.mM.(Si xAl)O 2x+2,其中,R表示模板剂,所述模板剂为吡啶季铵盐类化合物;n表示每摩尔(Si xAl)O 2x+2中模板剂R的摩尔数,n的取值范围0.10≤n≤0.90;M表示碱金属离子;m表示每摩尔(Si xAl)O 2x+2中碱金属离子的摩尔数,m的取值范围0.10≤m≤0.90;x为丝光沸石分子筛骨架中Si元素和Al元素的摩尔比,x的取值范围10≤x≤60。

Description

一种吡啶季铵盐导向合成的丝光沸石分子筛以及制备方法、应用 技术领域
本申请涉及一种吡啶季铵盐导向合成的丝光沸石分子筛以及制备方法、应用,属于沸石分子筛材料技术领域。
背景技术
丝光沸石分子筛是一类重要的硅铝沸石分子筛材料,作为重要的吸附和催化材料广泛应用于石油加工和精细化工领域。丝光沸石分子筛骨架结构归属于正交晶系,Cmcm空间群。其骨架由沿c轴方向平行的12元环
Figure PCTCN2020129676-appb-000001
和8元环
Figure PCTCN2020129676-appb-000002
孔道组成,两者通过沿b轴方向的8元环
Figure PCTCN2020129676-appb-000003
Figure PCTCN2020129676-appb-000004
侧口袋相连接。事实上,由于沿c轴方向的8元环孔道太窄导致无法穿透大多数分子,MOR分子筛在实际的催化反应中多表现为一维孔道沸石分子筛的特点。丝光沸石分子筛独特的孔道结构和酸性质,使得其广泛应用于甲苯岐化制二甲苯,甲醇和氨制甲胺,二甲醚羰基化制乙酸甲酯等催化反应过程。
迄今为止,水热合成方法仍然是合成包括丝光沸石在内的分子筛材料的主要途径。水热合成是指在一定温度和压强下,利用溶剂中的反应物经特殊的化学反应所进行的合成。合成通常在特定的密闭容器或高压合成釜中进行,反应处于亚临界或超临界的特点。低硅铝比的沸石分子筛在实际应用中,往往存在热/水热稳定性差等内生缺陷。提高硅铝比是改善沸石分子筛的热稳定性、水热稳定性的有效手段。20世纪60年代初期,美国Mobil公司的科学家们首先将有机胺或者季铵盐/季铵碱引入到了沸石分子筛合成体系中,成功制备得到了一系列高硅沸石分子筛,成为高硅沸石分子筛开发的里程碑。通常,对于Si/Al摩尔比不大于10的低硅丝光沸石,在由Na 2O/SiO 2/Al 2O 3/H 2O组成的纯无机体系下,通过水热合成方法即可制备合成,过程无需有机模板剂或有机结构导向剂的参与。但是,迄今为止,在Si/Al摩尔比大于10的高硅丝光沸石的合成尝试中,初始凝胶中有机胺或者季铵盐/季铵碱等有机模板剂的参与仍然是必不可少的。
迄今为止,四乙基氢氧化铵仍然是合成高硅丝光沸石最常用的模板剂。但四乙基氢氧化铵合成的样品,往往具有初级粒子尺寸大,扩散性能差的缺点,在酸催化反应特别是二甲醚羰基化反应中的稳定性和催化剂寿命仍然相对较差,催化剂活性也有很大提升空间。模板剂的选择会通过主客体作用的方式对合成得到丝光沸石分子筛的形貌、织构、酸强度、酸分布等物理化学性质产生影响,并进而影响相应丝光沸石产品在催化和吸附中的性能。开发丝光沸石分子筛的新型模板剂和新合成方法,是调变丝光沸石分子筛产品物化性质和催化性能的有效途径,具有重要的实际的应用意义。
发明内容
根据本申请的一个方面,提供了一种吡啶季铵盐导向合成的丝光沸石分子筛,该丝光沸石分子筛为高硅丝光沸石分子筛(骨架中Si元素和Al元素的摩尔比在10-60),并且以吡啶季铵盐类化合物为模板剂,具有良好的催化性能。
一种吡啶季铵盐导向合成的丝光沸石分子筛,所述丝光沸石分子筛无水化学组成表示为:
nR.mM.(Si xAl)O 2x+2式Ⅰ
其中,在式Ⅰ中,R表示模板剂,所述模板剂为吡啶季铵盐类化合物;
n表示每摩尔(Si xAl)O 2x+2中模板剂R的摩尔数,n的取值范围0.10≤n≤0.90;
M表示碱金属离子;
m表示每摩尔(Si xAl)O 2x+2中碱金属离子的摩尔数,m的取值范围0.10≤m≤0.90;
x为丝光沸石分子筛骨架中Si元素和Al元素的摩尔比,x的取值范围10≤x≤60。
本申请可以得到高硅丝光沸石分子筛,高硅丝光沸石分子筛具有热稳定性好、二甲醚羰基化反应中催化寿命长的效果。
可选地,所述吡啶季铵盐类化合物为烷基卤化吡啶类化合物;
所述烷基卤化吡啶类化合物选自具有式Ⅱ所示结构式的物质中的任一种;
Figure PCTCN2020129676-appb-000005
其中,在式Ⅱ中,R 0表示C 2-C 5烷基中的任一种;
X表示卤素。
可选地,所述烷基卤化吡啶类化合物选自包括1-乙基氯化吡啶、1-乙基溴化吡啶、1-乙基碘化吡啶、1-丙基氯化吡啶、1-丙基溴化吡啶、1-丙基碘化吡啶中的任一种。
优选地,所述丝光沸石分子筛骨架中Si元素和Al元素的摩尔比x的取值范围10≤x≤26。
当硅铝比为10≤x≤26时,高硅丝光沸石分子筛具有更好的热稳定性。
进一步优选地,所述丝光沸石分子筛骨架中Si元素和Al元素的摩尔比x的取值范围11≤x≤18。
当硅铝比为11≤x≤18时,高硅丝光沸石分子筛具有二甲醚羰基化反应中催化寿命更长的效果。
可选地,所述丝光沸石分子筛具有纳米颗粒堆叠片层的放射状结构。具体为纳米颗粒有序堆叠的片层放射状结构。
可选地,所述丝光沸石分子筛X射线衍射图谱在以下位置具有特征峰:
Figure PCTCN2020129676-appb-000006
根据本申请的第二方面,还提供了一种上述任一项所述的丝光沸石分子筛的制备方法,包括以下步骤:
将含有硅源、铝源、M源、晶种、去离子水和模板剂的初始凝胶混合物,晶化,得到所述丝光沸石分子筛;其中,所述模板剂为吡啶季铵盐类化合物。
可选地,所述初始凝胶混合物的制备方法包括:先将铝源、M源与去离子水混合,之后依次加入硅源、晶种、模板剂,搅拌,得到所述初始凝胶混合物。采用该顺序加料,可以得到高硅铝比的丝光沸石分子筛。
可选地,所述初始凝胶混合物中,各组分的摩尔比为:
SiO 2/Al 2O 3=20-120;M 2O/Al 2O 3=0.5-25,其中M为碱金属离子;R/Al 2O 3=0.5-30;H 2O/Al 2O 3=120-2200;晶种质量/投料SiO 2固体质量=0.1~8%。
具体地,所述初始凝胶混合物中,SiO 2/Al 2O 3的摩尔比的下限选自20、32、36、40、50、52、55、90中的任一值;SiO 2/Al 2O 3的摩尔比的上限选自32、36、40、50、52、55、90、120中的任一值。
M 2O/Al 2O 3的摩尔比的下限选自0.9、1.05、2.1、2.24、2.4、2.75、3、3.2、3.6、4、4.4、4.5、5.4、6、6.5、7.8、7.92、10、12中的任一值;M 2O/Al 2O 3的摩尔比的上限选自1.05、2.1、2.24、2.4、2.75、3、3.2、3.6、4、4.4、4.5、5.4、6、6.5、7.8、7.92、10、12、24中的任一值。
R/Al 2O 3的摩尔比的下限选自0.9、1.2、3.2、3.9、4、4.16、4.2、4.5、4.8、5.1、5.4、6、7.2、7.5、7.8、8.25、8.8、12、13.5中的任一值;R/Al 2O 3的摩尔比的上限选自1.2、3.2、3.9、4、4.16、4.2、4.5、4.8、5.1、5.4、6、7.2、7.5、7.8、8.25、8.8、12、13.5、30中的任一值。
H 2O/Al 2O 3的摩尔比的下限选自140、180、224、234、390、450、480、600、715、720、750、760、800、810、880、900、920、936、1200中的任一值;H 2O/Al 2O 3的摩尔比的上限选自180、224、234、390、450、480、600、715、720、750、760、800、810、880、900、920、936、1200、2160中的任一值。
晶种质量/投料SiO 2固体质量的摩尔比的下限选自0.5wt%、1wt%、2wt%、3wt%、4wt%、5wt%、6wt%中的任一值;晶种质量/投料SiO 2固体质量的摩尔比的上限选自1wt%、2wt%、3wt%、4wt%、5wt%、6wt%、8wt%中的任一值。
优选地,所述初始凝胶混合物中,各组分的摩尔比为:
SiO 2/Al 2O 3=20-60;M 2O/Al 2O 3=2-12;R/Al 2O 3=3-12;H 2O/Al 2O 3=140-1500;晶种质量/投料SiO 2固体质量=0.5~8%。
该摩尔比可以使得丝光沸石分子筛骨架中Si元素和Al元素的摩尔比x的取值范围为10≤x≤26。
进一步优选地,所述初始凝胶混合物中,各组分的摩尔比为:
SiO 2/Al 2O 3=30-40;M 2O/Al 2O 3=2-12;R/Al 2O 3=3-12;H 2O/Al 2O 3=140-1500;晶种质量/投料SiO 2固体质量=0.5~6%。
该摩尔比可以使得丝光沸石分子筛骨架中Si元素和Al元素的摩尔比x的取值范围为11≤x≤18。
可选地,所述硅源包括硅溶胶、白炭黑、活性二氧化硅、正硅酸酯、水玻璃、偏高岭土、高岭土中的一种或任意几种的混合物。
优选地,所述硅源为硅溶胶、白炭黑、活性二氧化硅中的至少一种
可选地,所述铝源包括偏铝酸钠、烷氧基铝、铝盐、偏高岭土、高岭土中的一种或任意几种的混合物。
优选地,所述铝源为偏铝酸钠或铝盐。
可选地,所述M源为M的氢氧化物;
所述M的氢氧化物选自氢氧化锂、氢氧化钠、氢氧化钾、氢氧化铯中的至少一种。
优选地,M的氢氧化物为氢氧化钠和氢氧化钾的至少一种。
可选地,所述晶种选自未焙烧的丝光沸石原粉、焙烧的丝光沸石、球磨处理的丝光沸石、碱处理的丝光沸石、氟离子刻蚀处理的丝光沸石中的至少一种。
本申请对未焙烧的丝光沸石原粉的制备方法不做严格限定,未焙烧的丝光沸石原粉可购买商业丝光沸石分子筛、或者可通过现有技术中相关文献制备、或者依据本专利合成得到的丝光沸石分子筛也可作为下次利用本专利方法合成需要的晶种。
本申请对焙烧的丝光沸石的制备方法不做严格限定,下面介绍可能的制备方法:将上述未焙烧的丝光沸石原粉在马弗炉或管式炉中,空气气氛下(GHSV=1500-12000ml空气/g分子筛/h),450~600℃温度下焙烧2~24h。
本申请对球磨处理的丝光沸石的制备方法不做严格限定,下面介绍可能的制备方法:将上述未焙烧的丝光沸石原粉,利用行星式球磨机进行球磨处理1-10h。
本申请对碱处理的丝光沸石的制备方法不做严格限定,下面介绍可能的制备方法:将上述未焙烧的丝光沸石原粉,利用0.2~1mol/L的氢氧化钠水溶液在80℃温度下处理1-24h。
本申请对氟离子刻蚀处理的丝光沸石的制备方法不做严格限定,下面介绍可能的制备方法:将上述未焙烧的丝光沸石原粉,利用0.1~0.5mol/L的氟化铵水溶液在60℃温度下处理1-24h。
可选地,所述晶化的条件为:晶化温度为120~220℃;0.5~144小时。
可选地,晶化温度的下限独立地选自120℃、130℃、135℃、145℃、160℃、170℃、175℃、180℃、190℃、200℃中的任一值;晶化温度的上限独立地选自130℃、135℃、145℃、160℃、170℃、175℃、180℃、190℃、200℃、220℃中的任一值。
晶化时间的下限独立地选自0.5h、15h、24h、30h、40h、46h、48h、50h、57h、60h、70h、72h、80h、106h、110h中的任一值;晶化时间的上限独立地选自15h、24h、30h、40h、46h、48h、50h、57h、60h、70h、72h、80h、106h、110h、144h中的任一值。
优选地,晶化温度优选范围为120~200℃,进一步优选的范围为150~180℃。
晶化时间优选范围为10~96小时。
可选地,所述晶化为动态晶化或者静态晶化。
根据本申请的第三方面,还提供了一种催化剂,所述催化剂由上述任一项所述的丝光沸石分子筛、根据上述任一项所述制备方法得到的丝光沸石分子筛中的至少一种制备得到。
可选地,将所述丝光沸石分子筛,经铵离子交换,再经400~700℃空气中焙烧,即可得到所述催化剂。
根据本申请的第四方面,还提供了上述催化剂在酸催化剂反应中的应用。
具体地,一种酸催化反应的催化剂,所述催化剂由上述丝光沸石分子筛,经铵离子交换,再经 400~700℃空气中焙烧得到。
所述酸催化反应包括乙醇催化脱水反应;
所述乙醇催化脱水反应包括:将含有乙醇的原料与所述催化剂接触、反应,得到乙醚;
所述乙醇催化脱水反应的反应条件为:催化剂与乙醇的质量体积比为0.1~0.5g/mL;
反应温度为120~170℃;反应时间为1~5h。
根据本申请的第五方面,还提供了上述催化剂在在二甲醚羰基化制乙酸甲酯催化反应中的应用。
具体地,一种二甲醚羰基化制乙酸甲酯的催化剂,所述催化剂上述丝光沸石分子筛,经铵离子交换,再经400~700℃空气中焙烧得到。
所述二甲醚羰基化制乙酸甲酯催化反应包括:
将含有二甲醚和一氧化碳的混合气,与所述催化剂接触、反应,得到乙酸甲酯;
所述反应条件为:二甲醚和一氧化碳的体积比为1:5~9;
所述混合气的空速为500~3500ml g -1h -1
反应温度为170~250℃,
反应压力为0.5~5MPa。
本申请中,“C 2~C 5”中的下标均表示基团所包含的碳原子数。比如,C 2~C 5烷基表示碳原子数为2~5的烷基。
本申请能产生的有益效果包括:
1)本申请获得一种以1-乙基氯化吡啶、1-乙基溴化吡啶、1-乙基碘化吡啶、1-丙基氯化吡啶、1-丙基溴化吡啶、1-丙基碘化吡啶中的一种为模板剂的丝光沸石分子筛,骨架中Si元素和Al元素的摩尔比在10-60。
2)本申请制备的丝光沸石是高结晶度纯相丝光沸石分子筛晶体,且分子筛呈纳米晶粒有序堆叠的片层放射状形貌,扩散性能优异(扩散系数可达到数量级10 -17m 2/S)。
3)本申请制备的丝光沸石分子筛,在乙醇催化脱水反应中表现出优良的催化反应性能,乙醇的转化率达到96%以上,乙醚的选择性达到93%以上。
4)本申请制备的丝光沸石分子筛在二甲醚羰基化制乙酸甲酯催化反应中表现出优良的催化性能,二甲醚的转化率可达到80%以上,乙酸甲酯选择性可达到99%以上。
附图说明
图1为实施例1中的样品的X射线衍射图谱;
图2为实施例1中的样品的扫描电子显微镜图;
图3为实施例1中的样品热重谱图;
图4为对比例1中的产物的X射线衍射图谱;
图5为对比例2中的产物的X射线衍射图谱;
图6为对比例3中的产物的扫描电子显微镜图;
图7为对比例4中的产物的X射线衍射图谱;
图8为对比例8中的产物的X射线衍射图谱。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买。
下面介绍可能的实施方式:
本申请的目的在于提供一种丝光沸石分子筛,该分子筛的无水化学组成可表示为:nR·mM·(Si xAl)O 2x+2,R为模板剂分子,选自包括1-乙基氯化吡啶、1-乙基溴化吡啶、1-乙基碘化吡啶、1-丙基氯化吡啶、1-丙基溴化吡啶、1-丙基碘化吡啶在内任意一种。n为每摩尔(Si xAl)O 2x+2中模板剂R的摩尔数n=0.01-0.80;M为碱金属离子,m为每摩尔(Si xAl)O 2x+2中碱金属离子的摩尔数,m=0.20-0.99;x为丝光沸石分子筛骨架中Si元素和Al元素的摩尔比,x=10-60。
所述的分子筛X射线衍射图谱在以下位置具有特征峰:
Figure PCTCN2020129676-appb-000007
Figure PCTCN2020129676-appb-000008
所述分子筛骨架中硅元素与铝元素的摩尔比x在10-60;
进一步地,所述分子筛骨架中硅元素与铝元素的摩尔比x优选10-26;
更进一步地,所述分子筛骨架中硅元素与铝元素的摩尔比x优选11-18。
本申请的另一目的在于提供一种上述丝光沸石分子筛的合成方法。
本发明所要解决的技术问题是直接以1-乙基氯化吡啶、1-乙基溴化吡啶、1-乙基碘化吡啶、1-丙基氯化吡啶、1-丙基溴化吡啶、1-丙基碘化吡啶在内任意一种有机化合物作为模板剂,以常规丝光沸石分子筛合成所用的硅源、铝源、碱源为原料,在水热合成条件下合成制备纯相丝光沸石分子筛。本发明提供该丝光沸石分子筛的水热合成方法。
所述的丝光沸石分子筛的合成方法,该方法的合成步骤如下:
a)硅源、铝源、碱金属M的氢氧化物、晶种、去离子水和模板剂R混合,形成具有如下摩尔配比的初始凝胶混合物:
SiO 2/Al 2O 3=20-120;M 2O/SiO 2=0.05-0.30,其中M为碱金属;R/SiO 2=0.03-0.60;
H 2O/SiO 2=7-40;晶种质量/投料SiO 2固体质量=0.1~8%;
b)将步骤a)处理后得到的初始凝胶混合物于装入合成釜,密闭,升温到120~220℃下晶化0.5~144小时;
c)待步骤b)晶化完成后,固体产物经分离、洗涤、干燥后即得所述的丝光沸石分子筛。
其中,所述步骤a)中的硅源为硅溶胶、活性二氧化硅、正硅酸酯、水玻璃、偏高岭土中的一种或任意几种的混合物;优选地,所述硅源为硅溶胶、白炭黑、活性二氧化硅中的至少一种。
所述步骤a)中的铝源为偏铝酸钠、烷氧基铝、铝盐、偏高岭土中的一种或任意几种的混合物;优选地,所述铝源为偏铝酸钠或铝盐。
所述步骤a)中的碱金属M的氢氧化物为氢氧化锂、氢氧化钠、氢氧化钾、氢氧化铯中的至少一种;优选地,所述碱金属的氢氧化物为氢氧化钠和氢氧化钾的至少一种。
所述步骤a)中的晶种为未焙烧的丝光沸石原粉、焙烧的丝光沸石、球磨处理的丝光沸石、碱处 理的丝光沸石、氟离子刻蚀处理的丝光沸石中的至少一种。优选地,所述晶种为未焙烧的丝光沸石原粉和碱处理的丝光沸石中的至少一种。
所述步骤a)初始凝胶混合物中SiO 2/Al 2O 3的摩尔比优选范围为20-60,进一步的优选范围为20-50。
所述步骤a)初始凝胶混合物中M 2O/SiO 2的摩尔比优选范围为0.06-0.2,进一步的优选范围为0.08-0.15。
所述步骤a)初始凝胶混合物中R/SiO 2的摩尔比优选范围为0.05-0.2。
所述步骤a)初始凝胶混合物中H 2O/SiO 2的摩尔比优选范围为7-30,进一步的优选范围为8-20。
所述步骤b)中的晶化温度优选范围为120~200℃,进一步的优选范围为150~180℃。
所述步骤b)中的晶化时间优选范围为10~96小时。
所述步骤b)中的晶化过程可以在静态进行,也可以在动态进行。
本申请的又一目的在于提供了一种酸催化剂,该催化剂可以应用于酸催化反应,并表现出良好的催化性能。
所述酸催化反应催化剂由上述的丝光沸石分子筛、根据上述任一方法制备的丝光沸石分子筛中的至少一种,经铵离子交换、再经400~700℃空气中焙烧得到。
本申请的又一目的在于还提供了一种二甲醚羰基化制乙酸甲酯催化剂,该催化剂可以应用于二甲醚羰基化制乙酸甲酯催化反应,并表现出良好的催化性能。
所述催化剂由上述的丝光沸石分子筛、根据上述任一方法合成的丝光沸石分子筛中的至少一种,经铵离子交换、再经400~700℃空气中焙烧得到。
本申请的实施例中分析方法如下:
X射线粉末衍射物相分析(XRD)测试采用荷兰帕纳科(PANalytical)公司的X’PertPROX射线衍射仪,Cu靶,Kα辐射源(λ=0.15418nm),电压40KV,电流40mA。
实施例中体相元素组成测定采用Philips公司的Magix2424X型射线荧光分析仪(XRF)测定。
扫描电子显微镜(SEM)测试所采用仪器为HitachiSU8020场发射扫描电镜,加速电压为2kV。
实施例和对比例样品的扩散系数采用HidenAnalytical公司的IGA-100智能重量分析仪测定,采用的探针分子为乙烷分子。
采用美国TA公司的SDTQ600热分析仪对样品进行程序升温条件下的重量变化和热流分析。空气气氛,流速100ml/min。
气体样品分析采用美国安捷伦(Agilent)公司6890GC型气相色谱仪进行在线分析,色谱柱为安捷伦(Agilent)公司PoraPLOTQ毛细柱。
未焙烧的丝光沸石原粉晶种的制备方法:参见文献(ACS CATALYSIS,2020,10,3372-3380)。
焙烧的丝光沸石晶种的制备方法:将利用上述文献方法制备的丝光沸石原粉分子筛,在马弗炉或管式炉中,空气气氛下(GHSV=1500ml空气/g分子筛/h),500℃温度下焙烧12h。
球磨处理的丝光沸石晶种的制备方法:将上述未焙烧的丝光沸石原粉,利用行星式球磨机进行球磨处理5h。
碱处理的丝光沸石晶种的制备方法:将上述未焙烧的丝光沸石原粉,利用0.5mol/L的氢氧化钠水溶液在80℃温度下处理12h。
氟离子刻蚀处理的丝光沸石晶种的制备方法:将上述未焙烧的丝光沸石原粉,利用0.3mol/L的氟化铵水溶液在60℃温度下处理10h。
实施例1
初始凝胶中各原料的摩尔比例和晶化条件见表1。首先将1.06g偏铝酸钠和1.26g氢氧化钠固体溶解于29.5g去离子水中,带溶液混合均匀后,将32.92g硅溶胶(27wt%)在搅拌的状态下,缓慢滴加到上述溶液。继续向该混合物中一次加入0.48g未焙烧的丝光沸石原粉晶种和4.23g1-乙基溴化吡啶,之后将形成的初始凝胶继续在室温下继续搅拌直至均匀。将上述凝胶转移放入带聚四氟内衬的不锈钢反应釜中,升温至190℃在动态条件下晶化30h,所得固体产物经离心分离,用去离子水洗涤至中性,在110℃下空气中干燥,得到原粉(即本申请中的丝光沸石分子筛)。产品做XRD分析,结果表明合成产物具有丝光沸石分子筛的特征(XRD谱图见图1)。对实施例1所得到的样品进行扫描电镜表征。样品的扫描电子显微镜图如图2所示,样品呈现纳米颗粒有序堆叠的片层放射状特殊形貌。
采用XRF分析分子筛晶体的体相硅铝组成,结果列于表1。实施例1样品的体相Si/Al摩尔比为15.5。
对实施例1原粉样品进行CHN元素分析,显示C/N摩尔比7.01。对实施例1原粉样品进行热重分析(热重谱图见图3),显示有机失重占分子筛干基质量的8%。将CHN元素分析、热重分析和XRF测定的无机元素组成归一化,得到实施例1的丝光沸石分子筛的无水化学组成为0.81R.0.20Na.(Si 15.5Al)O 33,其中R为1-乙基溴化吡啶。
对实施例1丝光沸石原粉样品进行 13CMASNMR分析,仅发现归属于1-乙基溴化吡啶的特征碳共振峰,说明1-乙基溴化吡啶在晶化过程保持结构完整,且作为模板剂被包裹到所得丝光沸石分子筛的孔道之中。
图1特征峰对应的2θ如下,表明合成产物具有丝光沸石分子筛的特征。
Figure PCTCN2020129676-appb-000009
Figure PCTCN2020129676-appb-000010
实施例2-21
实施例2-21的具体配料比例和晶化条件见表1,具体配料过程同实施例1。对实施例2-21合成得到原粉样品做XRD分析,产品的X-射线衍射谱图具有图1的特征,即峰位置和形状基本相同,依合成条件的变化衍射峰的相对峰强对在±10%范围内波动,证明合成产物均为丝光沸石分子筛。
采用XRF分析实施例2-21分子筛的体相硅铝元素组成,相应的体相硅铝组成列于表1。丝光沸石分子筛的无水化学组成见表2所示。
表1 分子筛初始凝胶配料、晶化条件及产物体相和表面硅铝元素组成*
Figure PCTCN2020129676-appb-000011
Figure PCTCN2020129676-appb-000012
*:硅源: a硅溶胶、 b活性二氧化硅、 c正硅酸酯、 d水玻璃、 e偏高岭土。
铝源: f偏铝酸钠、 g烷氧基铝、 h铝盐、 i偏高岭土。
模板剂: K1-乙基氯化吡啶、 L1-乙基溴化吡啶、 M1-乙基碘化吡啶、 N1-丙基氯化吡啶、 O1-丙基溴化化吡啶、 P1-丙基碘化化吡啶。
晶种: I未焙烧的丝光沸石原粉、 II焙烧的丝光沸石、 III球磨处理的丝光沸石、 IV碱处理的丝光沸石、 V氟离子刻蚀处理的丝光沸石。
晶化条件:α动态晶化、β静态晶化。
晶种的添加量为晶种质量/投料SiO 2固体质量。
表2 丝光沸石分子筛的无水化学组成
实施例 无水化学组成
1 0.81R.0.2Na.(Si 15.5Al)O 33
2 0.51R.0.49Na.(Si 22Al)O 46
3 0.45R.0.55Na.(Si 10.2Al)O 22.4
4 0.51R.0.49Na.(Si 13.2Al)O 28.4
5 0.73R.0.27Na.(Si 14.1Al)O 30.2
6 0.53R.0.47Na.(Si 24.3Al)O 50.6
7 0.56R.0.44Na.(Si 25.5Al)O 53
8 0.73R.0.27Na.(Si 43.6Al)O 89.2
9 0.34R.0.33Na.(Si 56.6Al)O 115.2
10 0.58R.0.42Na.(Si 14.3Al)O 30.6
11 0.49R.0.51Na.(Si 14.8Al)O 31.6
12 0.81R.0.19Na.(Si 13.9Al)O 29.8
13 0.65R.0.35Na.(Si 15.6Al)O 33.2
14 0.53R.0.47Na.(Si 12.3Al)O 26.6
15 0.57R.0.43Na.(Si 12.5Al)O 27
16 0.17R.0.83Na.(Si 12.1Al)O 26.2
17 0.73R.0.27Na.(Si 12.9Al)O 27.8
18 0.54R.0.46Na.(Si 14.3Al)O 30.6
19 0.43R.0.57Na.(Si 14.5Al)O 31
20 0.89R.0.11Na.(Si 12.9Al)O 27.8
21 0.61R.0.39Na.(Si 12.6Al)O 27.2
实施例24
分别取实施例1-23的合成样品3g,放入塑料烧杯中,于冰水浴条件下加入3mL40%的氢氟酸溶液溶解分子筛骨架,然后加入15mL三氯甲烷溶解其中的有机物。将有机物用GC-MS分析组成显示其中所含的有机物均为对应合成过程中采用的模板剂R。
实施例25
配制摩尔配比为40SiO 2:1Al 2O 3:6K 2O:800H 2O:6R:6wt%晶种的初始凝胶,其中R为1-乙基溴化吡啶。将铝源更改为无水氯化铝,碱源更改为90wt%的氢氧化钾,其他原料同实施例1。具体配料过程和晶化条件同实施例1。产品做XRD分析,产品的X-射线衍射谱图具有图1的特征,即峰位置和形状基本相同,证明合成产物为丝光沸石分子筛。
采用XRF分析分子筛晶体的体相硅铝组成,实施例25样品的体相Si/Al摩尔比为14.5。
对比例1
除不添加有机模板剂之外,其他配料比例和配料过程,以及晶化条件同实施例1。所得产物经XRD鉴定为丝光沸石和ZSM-5的混合物。相应XRD图谱见图4。
对比例2
除不添加有机模板剂之外,其他配料比例和配料过程,以及晶化条件同实施例25。所得产物经XRD鉴定为丝光沸石和镁碱沸石的混合物。相应XRD谱图见图5。
对比例3
配制摩尔配比为40SiO 2:1Al 2O 3:6Na 2O:800H 2O:6TEAOH:6wt%晶种的初始凝胶。仅将模板剂更改 为25wt%的四乙基氢氧化铵(TEAOH)水溶液,其他原料同实施例1。具体配料过程和晶化条件同实施例1。产品做XRD分析,产品的X-射线衍射谱图具有图1的特征,即峰位置和形状基本相同,证明合成产物为丝光沸石分子筛。
样品的扫描电子显微镜图如图6所示,由图6可以看出,当模板剂改为TEAOH时,合成的分子筛形貌为尺寸在2~3微米的块状晶体,与本申请的分子筛形貌差别非常大,可见,本申请提供的模板剂对形成纳米颗粒堆叠片层的放射状结构的形貌至关重要。
对比例4
配制摩尔配比为40SiO 2:1Al 2O 3:6Na 2O:800H 2O:6R的初始凝胶,其中R为1-乙基溴化吡啶。除不再添加晶种外,其他原料同实施例1。具体配料过程和晶化条件同实施例1。产品做XRD分析,所得产物为丝光沸石和无定形氧化硅的混合物。相应XRD图谱见图7。
实施例26
将实施例1得到的样品于600℃通入干燥空气焙烧4h,NH 4NO 3离子交换去除钠离子,550℃空气中焙烧4h后,压片、破碎为粒度为20~40目的催化剂颗粒。称取5.0g催化剂颗粒加入装有50ml乙醇的釜式反应器,进行乙醇脱水反应。反应温度设定在150℃,反应在搅拌状态下进行。反应5h后,结果显示,乙醇转化率可达96%,产物中乙醚选择性为93%。
实施例27
将实施例26中制备得到的催化剂颗粒,采用乙烷作为探针分子,利用智能重量分析仪(IGA)分析拟合得到其有效扩散系数为5.17×10 -17m 2/S。
实施例28
将实施例1得到的样品于600℃通入干燥空气焙烧4h,NH 4NO 3离子交换去除钠离子,550℃空气中焙烧4h后,压片、破碎为粒度为40~60目的催化剂颗粒。称取1.0g催化剂颗粒装入固定床反应器中进行二甲醚(简写为DME)羰基化反应评价。反应开始时在550℃下通氮气活化1h,然后降温至200℃进行反应。混合气(DME/CO/N 2=2/14/84,体积比),气体空速为3000mlg -1h -1(STP),反应压力为2.0Mpa。经过3h诱导期后,取样得到DME的转化率和产物中乙酸甲酯的选择性。二甲醚的转化率80%,乙酸甲酯选择性99%。经过3h诱导期后,反应进入稳态期,100h内二甲醚选择性维持80%,乙酸甲酯选择性维持在99%,无明显失活现象。
本实施例中的“诱导期”是指反应时间的前面一小段上升期,后面还有较长时间的稳态期。
对比例5
将商业购买的丝光沸石分子筛品(购自南开大学分子筛厂)于600℃通入干燥空气焙烧4h,NH 4NO 3离子交换去除钠离子,550℃空气中焙烧4h后,压片、破碎为粒度为40~60目的催化剂颗粒。称取1.0g催化剂颗粒装入固定床反应器中进行二甲醚(简写为DME)羰基化反应评价。反 应开始时在550℃下通氮气活化1h,然后降温至200℃进行反应。混合气(DME/CO/N 2=2/14/84,体积比),气体空速为3000mlg -1h -1(STP),反应压力为2.0Mpa。经过3h诱导期后,取样得到DME的转化率和产物中乙酸甲酯的选择性。二甲醚的转化率只有25%,乙酸甲酯选择性也只有90%。催化剂在反应3到10h内,二甲醚转化率下降到只有5%,乙酸甲酯选择性下降到只有30%,催化剂失活速率明显快于实施例28。
对比例6
将对比例3制备的丝光沸石分子筛品于600℃通入干燥空气焙烧4h,NH 4NO 3离子交换去除钠离子,550℃空气中焙烧4h后,压片、破碎为粒度为40~60目的催化剂颗粒。称取1.0g催化剂颗粒装入固定床反应器中进行二甲醚(简写为DME)羰基化反应评价。反应开始时在550℃下通氮气活化1h,然后降温至200℃进行反应。混合气(DME/CO/N 2=2/14/84,体积比),气体空速为3000mlg -1h -1(STP),反应压力为2.0Mpa。经过3h诱导期后,取样得到DME的转化率和产物中乙酸甲酯的选择性。二甲醚的转化率只有45%,乙酸甲酯选择性也只有88%。催化剂在反应3到15h内,二甲醚转化率下降到只有10%,乙酸甲酯选择性下降到只有45%,催化剂失活速率明显快于实施例28。
对比例7
将对比例6中制备得到的催化剂颗粒,采用乙烷作为探针分子,利用智能重量分析仪(IGA)分析拟合得到其有效扩散系数为2.60×10 -19m 2/S。
由此可知,模板剂的选择对扩散系数的影响非常大,本申请提供的吡啶季铵盐类化合物模板剂可以大大提高分子筛的扩散系数(数量级由10 -19提高至10 -17)。
对比例8 吡啶作为模板剂
除用吡啶代替N-乙基溴化吡啶作为模板剂外,对比例8中的配料比例以及配料过程,以及晶化条件同实施例1,所得产物经XRD鉴定为丝光沸石和ZSM-5型沸石的混合物。相应XRD谱图见图8。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (23)

  1. 一种吡啶季铵盐导向合成的丝光沸石分子筛,其特征在于,所述丝光沸石分子筛无水化学组成表示为:
    nR.mM.(Si xAl)O 2x+2   式Ⅰ
    其中,在式Ⅰ中,R表示模板剂,所述模板剂为吡啶季铵盐类化合物;
    n表示每摩尔(Si xAl)O 2x+2中模板剂R的摩尔数,n的取值范围0.10≤n≤0.90;
    M表示碱金属离子;
    m表示每摩尔(Si xAl)O 2x+2中碱金属离子的摩尔数,m的取值范围0.10≤m≤0.90;
    x为丝光沸石分子筛骨架中Si元素和Al元素的摩尔比,x的取值范围10≤x≤60。
  2. 根据权利要求1所述的丝光沸石分子筛,其特征在于,所述吡啶季铵盐类化合物为烷基卤化吡啶类化合物;
    所述烷基卤化吡啶类化合物选自具有式Ⅱ所示结构式的物质中的任一种;
    Figure PCTCN2020129676-appb-100001
    其中,在式Ⅱ中,R 0表示C 2-C 5烷基中的任一种;
    X表示卤素。
  3. 根据权利要求2所述的丝光沸石分子筛,其特征在于,所述烷基卤化吡啶类化合物选自包括1-乙基氯化吡啶、1-乙基溴化吡啶、1-乙基碘化吡啶、1-丙基氯化吡啶、1-丙基溴化吡啶、1-丙基碘化吡啶中的至少一种。
  4. 根据权利要求1所述的丝光沸石分子筛,其特征在于,所述丝光沸石分子筛骨架中Si元素和Al元素的摩尔比x的取值范围10≤x≤26。
  5. 根据权利要求1所述的丝光沸石分子筛,其特征在于,所述丝光沸石分子筛具有纳米颗粒堆叠片层的放射状结构。
  6. 根据权利要求1所述的丝光沸石分子筛,其特征在于,所述丝光沸石分子筛X射线衍射图谱在以下位置具有特征峰:
    Figure PCTCN2020129676-appb-100002
    Figure PCTCN2020129676-appb-100003
  7. 权利要求1至6任一项所述的丝光沸石分子筛的制备方法,其特征在于,所述制备方法包括以下步骤:
    将含有硅源、铝源、M源、晶种、去离子水和模板剂的初始凝胶混合物,晶化,得到所述丝光沸石分子筛;
    其中,所述模板剂为吡啶季铵盐类化合物。
  8. 根据权利要求7所述的制备方法,其特征在于,所述初始凝胶混合物的制备方法包括:
    先将铝源、M源与去离子水混合,之后依次加入硅源、晶种、模板剂,搅拌,得到所述初始凝胶混合物。
  9. 根据权利要求7所述的制备方法,其特征在于,所述初始凝胶混合物中,各组分的摩尔比为:
    SiO 2/Al 2O 3=20-120;
    M 2O/Al 2O 3=0.5-25,其中M为碱金属离子;
    R/Al 2O 3=0.5-30;
    H 2O/Al 2O 3=120-2200;
    晶种质量/投料SiO 2固体质量=0.1~8%。
  10. 根据权利要求9所述的制备方法,其特征在于,所述初始凝胶混合物中,各组分的摩尔比为:
    SiO 2/Al 2O 3=20-60;
    M 2O/Al 2O 3=2-12;
    R/Al 2O 3=3-12;
    H 2O/Al 2O 3=140-1500;
    晶种质量/投料SiO 2固体质量=0.5~8%。
  11. 根据权利要求7所述的制备方法,其特征在于,所述硅源包括硅溶胶、白炭黑、活性二氧化硅、正硅酸酯、水玻璃、偏高岭土、高岭土中的一种或任意几种的混合物。
  12. 根据权利要求7所述的制备方法,其特征在于,所述铝源包括偏铝酸钠、烷氧基铝、铝盐、偏高岭土、高岭土中的一种或任意几种的混合物。
  13. 根据权利要求7所述的制备方法,其特征在于,所述M源为M的氢氧化物;
    所述M的氢氧化物选自氢氧化锂、氢氧化钠、氢氧化钾、氢氧化铯中的至少一种。
  14. 根据权利要求7所述的制备方法,其特征在于,所述晶种选自未焙烧的丝光沸石原粉、焙烧的丝光沸石、球磨处理的丝光沸石、碱处理的丝光沸石、氟离子刻蚀处理的丝光沸石中的至少一种。
  15. 根据权利要求7所述的制备方法,其特征在于,所述晶化的条件为:晶化温度为120~220℃;晶化时间0.5~144小时。
  16. 根据权利要求15所述的制备方法,其特征在于,所述晶化温度为150~180℃。
  17. 根据权利要求7所述的制备方法,其特征在于,所述晶化为动态晶化或者静态晶化。
  18. 一种催化剂,其特征在于,所述催化剂由权利要求1-6任一项所述的丝光沸石分子筛、根据权利要求7-17任一项所述制备方法得到的丝光沸石分子筛中的至少一种制备得到。
  19. 根据权利要求18所述的催化剂,其特征在于,将所述丝光沸石分子筛,经铵离子交换,再经400~700℃空气中焙烧,即可得到所述催化剂。
  20. 权利要求18所述的催化剂在酸催化反应中的应用。
  21. 根据权利要求20所述的应用,其特征在于,所述酸催化反应包括乙醇催化脱水反应;
    所述乙醇催化脱水反应包括:将含有乙醇的原料与所述催化剂接触、反应,得到乙醚;
    所述乙醇催化脱水反应的反应条件为:催化剂与乙醇的质量体积比为0.1~0.5g/mL;
    反应温度为120~170℃;反应时间为1~5h。
  22. 权利要求18所述的催化剂在二甲醚羰基化制乙酸甲酯催化反应中的应用。
  23. 根据权利要求22所述的应用,其特征在于,所述二甲醚羰基化制乙酸甲酯催化反应包括:
    将含有二甲醚和一氧化碳的混合气,与所述催化剂接触、反应,得到乙酸甲酯;
    所述反应条件为:二甲醚和一氧化碳的体积比为1:5~9;
    所述混合气的空速为500~3500ml g -1h -1
    反应温度为170~250℃
    反应压力为0.5~5MPa。
PCT/CN2020/129676 2020-11-18 2020-11-18 一种吡啶季铵盐导向合成的丝光沸石分子筛以及制备方法、应用 WO2022104579A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/129676 WO2022104579A1 (zh) 2020-11-18 2020-11-18 一种吡啶季铵盐导向合成的丝光沸石分子筛以及制备方法、应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/129676 WO2022104579A1 (zh) 2020-11-18 2020-11-18 一种吡啶季铵盐导向合成的丝光沸石分子筛以及制备方法、应用

Publications (1)

Publication Number Publication Date
WO2022104579A1 true WO2022104579A1 (zh) 2022-05-27

Family

ID=81708089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129676 WO2022104579A1 (zh) 2020-11-18 2020-11-18 一种吡啶季铵盐导向合成的丝光沸石分子筛以及制备方法、应用

Country Status (1)

Country Link
WO (1) WO2022104579A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4205052A (en) * 1979-02-01 1980-05-27 Mobil Oil Corporation Manufacture of synthetic mordenite
CN1837046A (zh) * 2006-04-24 2006-09-27 南开大学 纳米丝光沸石分子筛的合成方法
CN101519217A (zh) * 2008-02-28 2009-09-02 中国石油化工股份有限公司 一种小晶粒丝光沸石的制备方法
CN103025658A (zh) * 2010-07-01 2013-04-03 日本化学工业株式会社 沸石的制造方法
CN106032281A (zh) * 2015-03-17 2016-10-19 中国科学院大连化学物理研究所 一种具有介孔和微孔的丝光沸石的制备方法及应用
CN111250164A (zh) * 2018-11-30 2020-06-09 中国科学院大连化学物理研究所 改性mor分子筛催化剂制备方法及其应用、煤基乙醇制乙烯方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4205052A (en) * 1979-02-01 1980-05-27 Mobil Oil Corporation Manufacture of synthetic mordenite
CN1837046A (zh) * 2006-04-24 2006-09-27 南开大学 纳米丝光沸石分子筛的合成方法
CN101519217A (zh) * 2008-02-28 2009-09-02 中国石油化工股份有限公司 一种小晶粒丝光沸石的制备方法
CN103025658A (zh) * 2010-07-01 2013-04-03 日本化学工业株式会社 沸石的制造方法
CN106032281A (zh) * 2015-03-17 2016-10-19 中国科学院大连化学物理研究所 一种具有介孔和微孔的丝光沸石的制备方法及应用
CN111250164A (zh) * 2018-11-30 2020-06-09 中国科学院大连化学物理研究所 改性mor分子筛催化剂制备方法及其应用、煤基乙醇制乙烯方法

Similar Documents

Publication Publication Date Title
KR101795354B1 (ko) 제올라이트의 제조 방법
US8840864B2 (en) Method of preparing ZSM-5 zeolite using nanocrystalline ZSM-5 seeds
US10252917B2 (en) Method for preparing Y type molecular sieve having high silica to alumina ratio
EP0142348B1 (en) Process for preparing a zeolite of the l type using organic templates
WO2022104580A1 (zh) 丝光沸石分子筛以及制备方法、应用
CN106032281A (zh) 一种具有介孔和微孔的丝光沸石的制备方法及应用
WO2016145619A1 (zh) 一种具有介孔和微孔的丝光沸石的制备方法及应用
CN106608635A (zh) 一种zsm-48分子筛的制备方法
KR101924731B1 (ko) 알루미노실리케이트 제올라이트 pst-21, pst-22 및 그 제조 방법과 및 이를 촉매로 이용한 1-부텐 이성질화 방법
JP2017502912A (ja) 高シリカアルミナ比のNaY型分子篩の製造方法及びその製品
CN106587102A (zh) Zsm-12型沸石分子筛的合成方法
US5192520A (en) Synthesis of aluminosilicate zeolites of faujasite structure
WO2022104579A1 (zh) 一种吡啶季铵盐导向合成的丝光沸石分子筛以及制备方法、应用
CN114014335B (zh) 一种硅锗utl型大孔分子筛及其制备方法
CN114516643B (zh) 一种吡啶季铵盐导向合成的丝光沸石分子筛以及制备方法、应用
JP4882202B2 (ja) 高シリカモルデナイトの合成方法
US11472711B2 (en) Process for preparing an IZM-2 zeolite in the presence of a mixture of nitrogenous organic structuring agents in hydroxide form and of bromide and of an alkali metal chloride
KR102281324B1 (ko) 제올라이트 pst-32 및 그 제조방법
CN111825102B (zh) 一种高硅y分子筛的干胶转化合成方法
CN104556134B (zh) 一种用于甲醇制丙烯反应的分子筛的合成方法
CN111825104B (zh) 晶种法制备高硅y分子筛
Mohamed et al. Synthesis of ZSM-5 zeolite of improved bulk and surface properties via mixed templates
JP4470003B2 (ja) 高シリカモルデナイトおよびその合成方法
CN115806300B (zh) 一种薄片丝光沸石分子筛及其制备方法和应用
CN114516641B (zh) 一种丝光沸石分子筛及其制备方法、应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961870

Country of ref document: EP

Kind code of ref document: A1