WO2022102626A1 - 紫外線硬化性組成物およびその用途 - Google Patents

紫外線硬化性組成物およびその用途 Download PDF

Info

Publication number
WO2022102626A1
WO2022102626A1 PCT/JP2021/041223 JP2021041223W WO2022102626A1 WO 2022102626 A1 WO2022102626 A1 WO 2022102626A1 JP 2021041223 W JP2021041223 W JP 2021041223W WO 2022102626 A1 WO2022102626 A1 WO 2022102626A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
reactive functional
ultraviolet
curable composition
Prior art date
Application number
PCT/JP2021/041223
Other languages
English (en)
French (fr)
Inventor
琢哉 小川
▲ユン▼珍 朴
Original Assignee
ダウ・東レ株式会社
ダウ シリコーンズ コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダウ・東レ株式会社, ダウ シリコーンズ コーポレーション filed Critical ダウ・東レ株式会社
Priority to KR1020237018570A priority Critical patent/KR20230104906A/ko
Priority to CN202180068549.2A priority patent/CN116323748A/zh
Priority to JP2022561945A priority patent/JPWO2022102626A1/ja
Publication of WO2022102626A1 publication Critical patent/WO2022102626A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/306Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3254Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen
    • C08G59/3281Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings

Definitions

  • the present invention is an ultraviolet curable composition
  • an ultraviolet curable composition comprising actinic rays, for example an ultraviolet latitude ray curable composition curable by ultraviolet or electron beam, in particular an organic silicon compound, preferably an organosilane and / or an organopolysiloxane.
  • the present invention relates to an ultraviolet curable composition in which the cured product obtained from the cured product has a low refractive index and is excellent in coatability.
  • the curable composition of the present invention has a low refractive index of 1.45 or less, and is suitable as an insulating material for electronic devices and electric devices, particularly as a material for use as a coating agent. Further, it has excellent coatability and excellent wettability to a substrate, and is useful as an inkjet printing material.
  • Silicone resin has been used as a coating agent, potting agent, insulating material, etc. for electronic devices and electric devices due to its high heat resistance and excellent chemical stability.
  • silicone resins UV curable silicone compositions have also been reported so far.
  • Touch panels are used in various display devices such as mobile devices, industrial equipment, and car navigation systems. In order to improve the detection sensitivity, it is necessary to suppress the electrical influence from light emitting parts such as light emitting diodes (LEDs) and organic EL devices (OLEDs), and usually an insulating layer is provided between the light emitting part and the touch screen. Be placed.
  • LEDs light emitting diodes
  • OLEDs organic EL devices
  • thin display devices such as OLEDs have a structure in which many functional thin layers are laminated.
  • studies have begun to improve the brightness of the entire display device by combining a layer having a high refractive index and a layer having a low refractive index and laminating them on a touch screen layer.
  • an inkjet printing method is adopted as a processing method for an organic layer. Therefore, there is a demand for a material that can be processed by the inkjet printing method for the above-mentioned insulating layer.
  • Japanese Unexamined Patent Publication No. 2019-73588 describes a photocurable resin composition comprising an unsaturated bond-containing aromatic compound and a compound having a mercapto group
  • Japanese Unexamined Patent Publication No. 2020-26515 discloses an unsaturated bond-containing naphthalene compound.
  • a photocurable resin composition containing the above as a main component is disclosed. Any composition can be applied by an inkjet method, but the cured product has a refractive index of 1.60 or more, which is characterized by a high refractive index.
  • Japanese Patent Application Laid-Open No. 6200591 describes a sealant for an electronic device for inkjet coating, which comprises an ultraviolet curable functional group-containing polysiloxane silicone and a specific curable compound
  • Japanese Patent Application Laid-Open No. 2019-189844 describes polyfunctionality.
  • a photocurable resin composition for an electronic device containing a cationically polymerizable compound and a specific monofunctional cationically polymerizable compound is disclosed.
  • JP-A-2019-73588 Japanese Unexamined Patent Publication No. 2020-26515 Japanese Patent No. 6200591 Japanese Unexamined Patent Publication No. 2019-189844
  • the cured product has a low refractive index of 1.45 or less and has excellent workability for coating on a substrate.
  • an ultraviolet curable composition having a low viscosity is still required.
  • the present invention provides a curable composition containing a silicon atom, particularly an ultraviolet curable composition, in which the product obtained by curing has a low refractive index and also has excellent workability when applied to a substrate. It is what we are trying to provide.
  • the UV curable composition obtained by using one or more organic silicon compounds (A) having one or more UV reactive functional groups on average in one molecule has a low viscosity. It was completed by discovering that it has excellent workability when applied to a substrate and that the cured product exhibits a low refractive index.
  • the curable composition of the present invention comprises (A1) one or more organosilicon compounds having two or more UV-reactive functional groups on average in one molecule, particularly organopolysiloxane, as the component (A).
  • organosilicon compounds having one UV-reactive functional group in one molecule particularly one or more organosilicon compounds selected from the group consisting of organosilanes and organopolysiloxanes.
  • a mass of 100/0 to 0/100 (A1 / A2) of one or more organosilicon compounds selected from the group consisting of the component (A1) and the component (A2). Can be used as a ratio. That is, in the curable composition of the present invention, the component (A1) and (A2) may be used in combination as the component (A), or the component (A1) or the component (A2) may be used alone. You can also.
  • one reactive functional group capable of reacting with the UV-reactive functional group of the component (A2) preferably one UV-reactive functional group per molecule. It is preferable to use a compound having many, preferably two or more, in combination.
  • the present invention relates to an ultraviolet curable composition
  • an ultraviolet curable composition comprising an organic silicon compound, particularly an ultraviolet curable organopolysiloxane composition, although the composition is cured by the formation of a bond by an ultraviolet curable functional group.
  • the curing method is not limited to ultraviolet irradiation, and any method capable of causing a curing reaction by the ultraviolet curable functional group can be used, for example, the composition of the present invention is cured by using electron beam irradiation. You may.
  • the ultraviolet curable composition of the present invention contains one or more organic silicon compounds (A) having one or more ultraviolet reactive functional groups on average in one molecule, and uses an E-type viscometer at 25 ° C.
  • the viscosity of the whole composition measured in 1) was 80 mPa ⁇ s or less, the composition did not contain an organic solvent, and the refractive index measured at 25 ° C. and a wavelength of 589 nm of the cured product when the composition was cured was 1.45. It is characterized by the following. Unless otherwise specified in the present specification, the viscosity of a substance is a value measured using an E-type viscometer at 25 ° C.
  • the ultraviolet reactive functional group contained in the component (A) of the present invention is preferably a cationically polymerizable reactive group. Further, the cationically polymerizable reactive group is preferably an epoxy group-containing group.
  • the ratio of the component (A) in the ultraviolet curable composition of the present invention is preferably 80% or more of the total mass of the composition.
  • the component (A) of the present invention comprises (A1) one or more organic silicon compounds having two or more UV-reactive functional groups on average in one molecule, preferably an organopolysiloxane, and (A2) one.
  • One or more organic silicon compounds having one UV-reactive functional group in the molecule preferably one or more organic silicon compounds selected from the group consisting of organosilanes and organopolysiloxanes, 100/0 to 0 It is preferably contained in a mass ratio of / 100 (A1 / A2). Therefore, the component (A) can be only the component (A1), only the component (A2), or a combination of the components (A1) and (A2).
  • the above component (A2) has an average composition formula: R c R'd SiO (4-cd) / 2 (2)
  • R is an ultraviolet reactive functional group
  • R' is a group selected from a monovalent hydrocarbon group excluding an ultraviolet reactive functional group, a hydroxyl group, and an alkoxy group.
  • c and d are numbers that satisfy the following conditions: 1 ⁇ c + d ⁇ 4 and 0.05 ⁇ c / (c + d) ⁇ 0.25, and the number of R in the molecule is 1.
  • It is preferably an organosilicon compound selected from the group consisting of linear, branched or cyclic organosilanes and organopolysiloxanes represented by.
  • the ratio of the component (A2) contained in the ultraviolet curable composition of the present invention is preferably 80% by mass or more of the entire composition.
  • the above component (A1) has an average composition formula: R a R'b SiO (4-ab) / 2 (1)
  • R is an ultraviolet reactive functional group
  • R' is a group selected from a monovalent hydrocarbon group excluding an ultraviolet reactive functional group, a hydroxyl group, and an alkoxy group.
  • a and b are numbers that satisfy the following conditions: 1 ⁇ a + b ⁇ 3 and 0.01 ⁇ a / (a + b) ⁇ 0.34, and have at least two Rs in the molecule.
  • It is preferably a linear, branched, or cyclic organopolysiloxane represented by.
  • the component (A1) has a viscosity at 25 ° C. of 1 to 1000 mPa. s.
  • the organosilicon compound of the component (A2) has the following formula (3'): (Of all R 1 to R 8 groups in the formula, only one UV-reactive functional group is present in the molecule; the other R 1 to R 8 are independently substituted or substituted with fluorine, respectively.
  • Organopolysiloxane represented by a monovalent hydrocarbon group; n is a number greater than or equal to 0 and less than or equal to 3).
  • Cyclic organopolysiloxane represented by (has only one UV-reactive functional group), Or, the following formula (5'): RSiR'3 (5') (In the formula, R is an ultraviolet reactive functional group, and R'is a group selected from a monovalent hydrocarbon group, a hydroxyl group, and an alkoxy group excluding the ultraviolet reactive functional group.) It is preferably a silicon-containing compound having one ultraviolet-reactive functional group in the molecule, which is selected from the group consisting of organosilanes represented by.
  • the organosilicon compound of the above component (A1) has the following formula (3) :.
  • R 1 to R 8 groups are UV-reactive functional groups per molecule; the other R 1 to R 8 are independently substituted or substituted with fluorine, respectively.
  • It is a monovalent hydrocarbon group;
  • n is a numerical value in which the viscosity of the organopolysiloxane represented by the formula (3) is 1 to 1000 mPa ⁇ s at 25 ° C., and n may be 0).
  • Organopolysiloxane represented by Average unit formula: (R 3 SiO 1/2 ) e (R 2 SiO 2/2 ) f (RSiO 3/2 ) g (SiO 4/2 ) h (4)
  • R is a group independently selected from an ultraviolet reactive functional group and an unsubstituted or fluorine-substituted monovalent hydrocarbon group, and at least two of all R are ultraviolet reactive.
  • Organopolysiloxane represented by The following formula (5): (In the formula, R is a group independently selected from an ultraviolet reactive functional group and an unsubstituted or fluorine-substituted monovalent hydrocarbon group, and x is an integer of 3 to 10 and is in the molecule.
  • Cyclic organopolysiloxane represented by (has at least two UV-reactive functional groups), And one or more organopolysiloxanes having UV-reactive functional groups selected from the group consisting of a mixture of two or more organopolysiloxanes arbitrarily selected from them.
  • the number of ultraviolet reactive functional groups of the above component (A1) is 2 on average per molecule.
  • the component (A2) is an organopolysiloxane having one ultraviolet-reactive functional group in the molecule.
  • the viscosity of the entire composition measured at 25 ° C. using an E-type viscometer is preferably 80 mPa ⁇ s or less, particularly preferably in the range of 5 to 30 mPa ⁇ s.
  • the component (A) is (A2) 1,1,1,3,5,5,5-heptamethyl-3- [2- (3,4-epoxycyclohexyl) ethyl] trisiloxane, or (A2). Mixture of 1,1,1,3,5,5,5-heptamethyl-3- [2- (3,4-epoxycyclohexyl) ethyl] trisiloxane and at least one compound selected from the following (A1). The mass ratio thereof is preferably in the range of 100/0 to 20/80 (A2 / A1).
  • the mass ratio of the above component (A2) to the component (A1) is in a particularly preferable range, and the ratio of the component (A1) to the total amount of the component (A2) and the component (A1) is more than 80% by mass and 100 mass. Even if it is%, the curable composition of the present invention can be obtained. That is, only the component (A1) may be used as the component (A).
  • the curable composition of the present invention contains (A2) 1,1,1,3,5,5,5-heptamethyl-3- [2- (2) as the component (A).
  • 3,4-Epoxycyclohexyl) ethyl] trisiloxane is contained in the range of 50 to 95% by mass of the whole composition.
  • the composition further has (B) one or more, preferably two or more UV reactive functional groups in one molecule and has a silicon atom.
  • the mass ratio of the component (B) to the total of the component (A1), the component (A2), and the component (B) is less than 20%.
  • the component (A) may be only the component (A1), only the component (A2), or a combination of the component (A1) and the component (A2), but the component (A). ), It is particularly preferable to use the component (B) when the component (A2) having one ultraviolet reactive functional group in one molecule is used and the component (A1) is not used.
  • the present invention further provides an insulating coating agent containing the above UV curable composition.
  • the UV curable composition of the present invention is useful as an insulating coating agent.
  • the present invention further provides a method of using the cured product of the above UV curable composition as an insulating coating layer.
  • the present invention further provides a display device including a layer made of a cured product of the above ultraviolet curable composition, for example, a liquid crystal display or an organic EL display.
  • the ultraviolet curable composition of the present invention contains one or more organic silicon compounds (component (A)) having one or more ultraviolet reactive functional groups on average in one molecule as an essential component, and if necessary. It can contain a component selected from a photocationic polymerization initiator and various additives. However, the curable composition of the present invention is characterized by not containing an organic solvent.
  • organosilicon compound is used as a term meaning a concept including an organosilane, an organosiloxane oligomer, and an organopolysiloxane.
  • polysiloxane refers to a siloxane unit (Si—O) having a degree of polymerization of 2 or more, that is, having two or more Si—O bonds on average per molecule, and polysiloxane refers to polysiloxane. From siloxane oligomers such as disiloxane, trisiloxane, and tetrasiloxane, siloxane polymers with higher degree of polymerization are included.
  • the component (A) is (A1) one or more organic silicon compounds having two or more UV-reactive functional groups on average in one molecule, and (A2) one UV-reactive functional group in one molecule.
  • One or more selected from one or more organic silicon compounds having a group, and the ratio of the (A1) component / (A2) component can be selected in the range of 100/0 to 0/100.
  • the component (A) is a component having only one ultraviolet-reactive functional group in one molecule (for example, a component consisting of only the component (A2))
  • the cross-linking reaction of the composition as a whole proceeds.
  • one molecule contains a compound having one or more, preferably two or more UV-reactive functional groups and no silicon atom as a cross-linking component.
  • the component (A) contains one or more organic silicon compounds having two or more ultraviolet reactive functional groups on average in one molecule (A1), even if the component (B) does not exist.
  • the cross-linking reaction proceeds as a whole composition. That is, the component (B) is a cross-linking component that may be arbitrarily used depending on the type of the component (A).
  • Component (A) an organosilicon compound having one or more ultraviolet reactive functional groups on average in one molecule
  • the ultraviolet reactive functional group contained in the component (A) is particularly preferably a cationically polymerizable functional group, and more preferably an epoxy group-containing group.
  • the component (A) is preferably one or more organosilicon compounds selected from the group consisting of the component (A1) and the component (A2) described below.
  • the component (A1) and the component (A2) can be used alone or in combination as the component (A), and the ratio of the component (A1) to the component (A2) is 100/0 to 0/100 (A1). / A2) can be the mass ratio. This mass ratio is preferably 100/20 to 0/100 (A1 / A2).
  • An embodiment in which only the component (A2) is used as the component (A) is also one of the preferred embodiments.
  • the component (A) has a viscosity at 25 ° C. of 1 to 1000 mPa. It is preferably s, more preferably 1 to 500 mPa ⁇ s, particularly preferably 1 to 100 mPa ⁇ s, and 1 to 50 mPa. Most preferably, it is s.
  • the component (A) contains 1 to 20 silicon atoms, preferably 1 to 4 per molecule.
  • Component (A1) Organosilicon compound having two or more UV-reactive functional groups on average in one molecule>
  • the organosilicon compound of the component (A1) has the following average composition formula: R a R'b SiO (4-ab) / 2 (1) It is a linear, branched, or cyclic, preferably linear or branched, particularly preferably linear organopolysiloxane represented by.
  • R is an ultraviolet reactive functional group
  • R' is a group selected from a monovalent hydrocarbon group, a hydroxyl group, and an alkoxy group, excluding the ultraviolet reactive functional group.
  • a and b have the following conditions: 1 ⁇ a + b ⁇ 3 and 0.01 ⁇ a / (a + b) ⁇ 0.34, preferably 2 ⁇ a + b ⁇ 3 and 0.05 ⁇ a / (a + b) ⁇ 0.34. It is a number to meet.
  • the ultraviolet reactive functional group represented by R in the formula (1) is an organic group capable of forming a bond between each other by irradiation with ultraviolet rays in the presence or absence of a photoinitiator.
  • the ultraviolet reactive functional group include a radically polymerizable group and a cationically polymerizable group.
  • the radically polymerizable group is not particularly limited as long as it is a functional group capable of forming a new bond, particularly a bond between radically polymerizable groups by a radical reaction mechanism, but for example, an acrylic group, a methacryl group, a maleimide group, and these.
  • An organic group containing any of the groups can be mentioned.
  • Specific examples include groups such as acrylic oxypropyl, methacryloxypropyl, acrylamidepropyl, methacrylamidepropyl, and 3- (N-maleimide) propyl as radically polymerizable groups.
  • the UV-reactive functional group is preferably an epoxy group-containing group.
  • Particularly preferred groups include glycidyloxyalkyl groups such as glycidyloxypropyl groups and epoxycyclohexylalkyl groups, particularly 3,4-epoxycyclohexylethyl groups.
  • the linear, branched, or cyclic organopolysiloxane represented by the above average composition formula has at least two ultraviolet reactive functional groups (R) on average per molecule.
  • the number of UV-curable groups is preferably 2 to 6, more preferably 2 to 4, particularly preferably 2 to 3, and most preferably 2 on average per molecule.
  • R' is a monovalent hydrocarbon group, which includes an unsubstituted monovalent hydrocarbon group and a fluorine-substituted monovalent hydrocarbon group.
  • An unsubstituted or fluorine-substituted monovalent hydrocarbon group is preferably a group selected from an unsubstituted or fluorine-substituted alkyl, cycloalkyl, arylalkyl, and aryl group having 1 to 20 carbon atoms. be.
  • Examples of the above-mentioned alkyl group include groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, sec-butyl, pentyl and octyl, but a methyl group is particularly preferable.
  • Examples of the cycloalkyl group include cyclopentyl, cyclohexyl and the like.
  • Examples of the arylalkyl group include a benzyl group and a phenylethyl group. Examples of the aryl group include a phenyl group and a naphthyl group.
  • fluorine-substituted monovalent hydrocarbon groups examples include 3,3,3-trifluoropropyl, 3,3,4,4,5,5,6,6,6-nonafluorohexyl groups. ..
  • a 3,3,3-trifluoropropyl group is preferable.
  • the organopolysiloxane represented by the above formula (1) has a viscosity at 25 ° C. of 1 to 1000 mPa. s, 1 to 500 mPa ⁇ s, or 1 to 100 mPa ⁇ s, most preferably 1 to 50 mPa ⁇ s.
  • the viscosity of the organopolysiloxane can be adjusted by changing the ratio of a and b in the formula (1) and the molecular weight.
  • the organopolysiloxane represented by the formula (1) has an average of 2 to 20 silicon atoms, and more preferably 2 to 5 silicon atoms per molecule.
  • the organopolysiloxane of component (A1) is The following formula (3): It is a compound represented by.
  • the organopolysiloxane represented by the formula (3) has an average of two or more ultraviolet reactive functional groups per molecule.
  • two or more are UV-reactive functional groups per molecule.
  • UV-reactive functional groups are organic groups that can form bonds between each other upon irradiation with UV light in the presence or absence of a photoinitiator. Examples of the ultraviolet reactive functional group include a radically polymerizable group and a cationically polymerizable group.
  • the radically polymerizable group is not particularly limited as long as it is a functional group capable of forming a new bond, particularly a bond between radically polymerizable groups by a radical reaction mechanism, but for example, an acrylic group, a methacryl group, a maleimide group, and these.
  • An organic group containing any of the groups can be mentioned. Specific examples include groups such as acrylic oxypropyl, methacryloxypropyl, acrylamidepropyl, methacrylamidepropyl, and 3- (N-maleimide) propyl as radically polymerizable groups.
  • the ultraviolet reactive functional group is preferably one or more epoxy group-containing groups.
  • Particularly preferred groups include a glycidyloxyalkyl group, in particular a 3-glycidyloxypropyl group, an epoxycyclohexylalkyl group, and in particular a 3,4-epoxycyclohexylethyl group.
  • R 1 to R 8 other than the ultraviolet reactive functional group are independently unsubstituted or substituted with fluorine, preferably unsubstituted or substituted with 1 to 20 carbon atoms.
  • Examples of the cycloalkyl group include cyclopentyl, cyclohexyl and the like.
  • Examples of the arylalkyl group include a benzyl group and a phenylethyl group.
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • Examples of fluorine-substituted monovalent hydrocarbon groups include 3,3,3-trifluoropropyl, 3,3,4,4,5,5,6,6,6-nonafluorohexyl groups. ..
  • As the monovalent hydrocarbon group substituted with fluorine a 3,3,3-trifluoropropyl group is preferable.
  • the number of ultraviolet reactive functional groups contained in the organopolysiloxane of the formula (3) which is the component (A1) is 2 to 6, preferably 2 to 5, and more preferably 2 to 4 per molecule as a whole. It is particularly preferably 2 to 3, and most preferably 2.
  • one of R 1 to R 3 and one of R 6 to R 8 in the formula (3) are ultraviolet reactive functional groups. Further, it is particularly preferable that only one of R 1 to R 3 and one of R 6 to R 8 in the formula (3) are ultraviolet reactive functional groups.
  • the viscosity of the organopolysiloxane represented by the formula (3) at 25 ° C. is preferably 1 to 1000 mPa ⁇ s, more preferably 1 to 500 mPa ⁇ s, and particularly preferably 1 to 100 mPa ⁇ s. Most preferably, it is a value of 1 to 50 mPa ⁇ s.
  • the number of silicon atoms per molecule is preferably 2 to 20, particularly preferably 2 to 5, so that the compound of the formula (3) has a desired viscosity.
  • the organopolysiloxane of the formula (3) can be used alone or as a mixture of two or more.
  • the viscosity of the mixture at 25 ° C. is the above-mentioned viscosity.
  • the compound of the above formula (1) may be an organopolysiloxane represented by the following average unit formula (4).
  • R is a group independently selected from an ultraviolet reactive functional group and an unsubstituted or fluorine-substituted monovalent hydrocarbon group, and at least two of all R are ultraviolet rays. It is a reactive functional group, (g + h) is a positive number, e is 0 or a positive number, and f is a number in the range of 0 to 10.
  • the UV reactive functional group and the monovalent hydrocarbon group are as defined for the formula (1) above. Further, the preferable viscosity of the organopolysiloxane represented by the formula (4) is also as specified above for the organopolysiloxane represented by the formula (1).
  • the number of ultraviolet reactive functional groups contained in the organopolysiloxane represented by the formula (4) is preferably 2 to 5, more preferably 2 to 4, particularly preferably 2 to 3, and most preferably 2 to 3 per molecule. Is two.
  • the organopolysiloxane represented by the formula (4) preferably has 2 to 20, particularly 2 to 5 silicon atoms per molecule.
  • organopolysiloxane represented by the above formula (1), particularly the formula (3) or the formula (4) are 1,3-bis [2- (3,4-epoxycyclohexyl) ethyl] -1, 1,3,3-Tetramethyldisiloxane, 1,5-bis [2- (3,4-epoxycyclohexyl) ethyl] -1,1,3,3,5,5-hexamethyltrisiloxane, methyl (Tris) [2- (3,4-epoxycyclohexyl) ethyl] dimethylsiloxy) silane, tetraxane ([2- (3,4-epoxycyclohexyl) ethyl] dimethylsiloxy) silane, 1,3-bis (3-glycidoxypropyl) )-1,1,3,3-Tetramethyldisiloxane, 1,5-bis (3-glycidoxypropyl) -1,1,3,3,5,5-hexamethyltrisilox
  • R is a group independently selected from an ultraviolet reactive functional group and an unsubstituted or fluorine-substituted monovalent hydrocarbon group, and x is an integer of 3 to 10 and is in the molecule. It may be a cyclic organopolysiloxane represented by (having at least two UV-reactive functional groups).
  • the ultraviolet reactive functional group represented by R in the formula (5) and the unsubstituted or fluorine-substituted monovalent hydrocarbon group are as defined in the above formula (1).
  • the preferable viscosity of the organopolysiloxane represented by the formula (5) is also as specified above for the organopolysiloxane represented by the formula (1).
  • cyclic organopolysiloxane represented by the formula (5) include 1,3,5-trimethyl-1,3,5-tri [2- (3,4-epoxycyclohexyl) ethyl] cyclotrisiloxane.
  • 1,3,5-trimethyl-1,3,5-tri (3-glycidoxypropyl) cyclotrisiloxane 1,3,5,7-tetramethyl-1,3,5,7-tetra [2- (3,4-epoxycyclohexyl) ethyl] cyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetra (3-glycidoxypropyl) cyclotetrasiloxane, 1,3 5,7,9-Pentamethyl-1,3,5,7,9-Penta [2- (3,4-epylcyclohexyl) ethyl] cyclopentasiloxane, 1,3,5,7,9-pentamethyl-1, Examples thereof include 3,5,7,9-penta (3-glycidoxypropyl) cyclopentasiloxane.
  • the organopolysiloxane represented by the above-mentioned formulas (1), (3) to (5) can be used as the component (A1) either individually or in combination of two or more.
  • the component (A1) one or more selected from the group consisting of an organopolysiloxane represented by the above formula (3), a cyclic organopolysiloxane represented by the formula (5), and a combination thereof. It is preferable to use an organosilicon compound.
  • the viscosity of the component (A1) is preferably 1 to 1000 mPa ⁇ s, 1 to 500 mPa ⁇ s, 1 to 100 mPa ⁇ s, and preferably 1 to 50 mPa ⁇ s when the viscosity of the whole component (A1) is 25 ° C.
  • the component (A1) can be used as the component (A2) and / or the component (B) even if the viscosity of the component (A1) is high to some extent.
  • a low-viscosity compound the desired viscosity of the composition as a whole can be obtained.
  • Particularly preferable compounds as the component (A1) are 1,3-bis [2- (3,4-epoxycyclohexyl) ethyl] -1,1,3,3-tetramethyldisiloxane and 1,5-bis [2-. (3,4-Epoxycyclohexyl) ethyl] -1,1,3,3,5,5-hexamethyltrisiloxane, methyl (Tris [2- (3,4-epoxycyclohexyl) ethyl] dimethylsiloxy) silane, tetrakis ([2- (3,4-epoxycyclohexane) ethyl] dimethylsiloxy) silane, 1,3,5,7-tetramethyl-1,3,5,7-tetra [2- (3,4-epoxycyclohexane) Ethyl] -Cyclotetrasiloxane, 1,3-bis (3-glycidoxypropyl) -1,1,3,3-tetramethyld
  • Component (A2) Organosilicon compound having one ultraviolet reactive functional group in one molecule
  • the component (A2) is an organosilicon compound having one ultraviolet-reactive functional group in one molecule in an organosilane or an organopolysiloxane skeleton, and is mainly a crosslink of a cured product obtained from the composition of the present invention. It has the effect of controlling the density, adjusting the physical properties of the cured product, and at the same time reducing the viscosity of the composition. Its molecular structure can be arbitrary as long as this purpose can be achieved.
  • the organosilicon compound of the component (A2) is The following average composition formula; R c R'd SiO (4-cd) / 2 (2)
  • R is an ultraviolet curable functional group, R'is a group selected from monovalent hydrocarbon groups, hydroxyl groups, and alkoxy groups, excluding UV curable functional groups.
  • c and d are numbers that satisfy the following conditions: 1 ⁇ c + d ⁇ 4 and 0.05 ⁇ c / (c + d) ⁇ 0.25.
  • the number of R in the molecule is 1.
  • Organosilane represented by, or linear, branched, or cyclic organopolysiloxane One kind selected from the group consisting of these organosilanes and organopolysiloxanes may be used, or any two or more kinds may be used in combination.
  • the ultraviolet reactive functional group represented by R in the formula (2) is an organic group capable of forming a bond between each other by irradiation with ultraviolet rays in the presence or absence of a photoinitiator.
  • the ultraviolet reactive functional group include a radically polymerizable group and a cationically polymerizable group.
  • the radically polymerizable group is not particularly limited as long as it is a functional group capable of forming a new bond, particularly a bond between radically polymerizable groups by a radical reaction mechanism, but for example, an acrylic group, a methacryl group, a maleimide group, and these.
  • An organic group containing any of the groups can be mentioned.
  • Specific examples include groups such as acrylic oxypropyl, methacryloxypropyl, acrylamidepropyl, methacrylamidepropyl, and 3- (N-maleimide) propyl as radically polymerizable groups.
  • the ultraviolet reactive functional group is preferably one or more epoxy group-containing groups.
  • Particularly preferred groups include glycidyloxyalkyl groups, in particular glycidyloxypropyl groups, epoxycyclohexylalkyl groups, and in particular 3,4-epoxycyclohexylethyl groups.
  • the organosilicon compound represented by the above average composition formula has one ultraviolet reactive functional group (R) in one molecule.
  • the monovalent hydrocarbon group represented by R'in the formula (2) is a group independently selected from the group consisting of an unsubstituted monovalent hydrocarbon group and a fluorine-substituted monovalent hydrocarbon group.
  • An unsubstituted or fluorine-substituted monovalent hydrocarbon group is preferably a group selected from an unsubstituted or fluorine-substituted alkyl, cycloalkyl, arylalkyl, and aryl group having 1 to 20 carbon atoms. be.
  • Examples of the above-mentioned alkyl group include groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, sec-butyl, pentyl and octyl, but a methyl group is particularly preferable.
  • Examples of the cycloalkyl group include cyclopentyl, cyclohexyl and the like.
  • Examples of the arylalkyl group include a benzyl group and a phenylethyl group. Examples of the aryl group include a phenyl group and a naphthyl group.
  • fluorine-substituted monovalent hydrocarbon groups examples include 3,3,3-trifluoropropyl, 3,3,4,4,5,5,6,6,6-nonafluorohexyl groups. ..
  • a 3,3,3-trifluoropropyl group is preferable.
  • the organosilicon compound represented by the above formula (2) preferably has a viscosity at 25 ° C. of 1 to 500 mPa ⁇ s, more preferably 1 to 100 mPa ⁇ s, and 1 to 50 mPa ⁇ s. Is particularly preferred.
  • the viscosity of the organosilicon compound can be adjusted by changing the ratio of c and d in the formula (2) and the molecular weight.
  • the organosilicon compound represented by the above formula (2) is preferably a compound having 1 to 20 silicon atoms per molecule, preferably 1 to 4 silicon atoms.
  • the organosilicon compound of component (A2) is The following formula (3'): It is an organopolysiloxane compound represented by.
  • one of all R 1 to R 8 groups is an ultraviolet reactive functional group.
  • the UV reactive functional group is an organic group capable of forming a bond between each other by irradiation with UV light in the presence or absence of a photoinitiator.
  • the ultraviolet curable functional group include a radically polymerizable group and a cationically polymerizable group.
  • the radically polymerizable group is not particularly limited as long as it is a functional group capable of forming a new bond, particularly a bond between radically polymerizable groups by a radical reaction mechanism, but for example, an acrylic group, a methacryl group, a maleimide group, and these.
  • An organic group containing any of the groups can be mentioned.
  • Specific examples include groups such as acrylic oxypropyl, methacryloxypropyl, acrylamidepropyl, methacrylamidepropyl, and 3- (N-maleimide) propyl as radically polymerizable groups.
  • the ultraviolet reactive functional group is preferably one or more epoxy group-containing groups.
  • Particularly preferred groups include glycidyloxyalkyl groups, such as glycidyloxypropyl groups, epoxycyclohexylalkyl groups, especially 3,4-epoxycyclohexylethyl groups.
  • R 1 to R 8 other than the ultraviolet reactive functional group are independently unsubstituted or substituted with fluorine, preferably an unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms. Alternatively, it is a group selected from an alkyl, cycloalkyl, arylalkyl, and aryl group substituted with fluorine. Examples of the above-mentioned alkyl group include groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, sec-butyl, pentyl and octyl, but a methyl group is particularly preferable.
  • Examples of the cycloalkyl group include cyclopentyl, cyclohexyl and the like.
  • Examples of the arylalkyl group include a benzyl group and a phenylethyl group.
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • Examples of fluorine-substituted monovalent hydrocarbon groups include 3,3,3-trifluoropropyl, 3,3,4,4,5,5,6,6,6-nonafluorohexyl groups. ..
  • As the monovalent hydrocarbon group substituted with fluorine a 3,3,3-trifluoropropyl group is preferable.
  • the organopolysiloxane represented by the formula (3') has one ultraviolet reactive functional group in one molecule.
  • the position of the UV curable functional group in the organopolysiloxane represented by the formula (3') there is no limitation on the position of the UV curable functional group, that is, one of the molecular terminal groups, that is, R 1 to R 3 , or R 6 to R 8 . Only one may be an ultraviolet reactive functional group, and only one of the non-terminal groups R 4 to R 5 in the formula (3') may be an ultraviolet reactive functional group.
  • N in the formula (3') is preferably a value in which the viscosity of the organopolysiloxane represented by the formula (3') at 25 ° C. is 1 to 500 mPa ⁇ s, and is preferably a value in which the viscosity is 1 to 100 mPa ⁇ s. It is more preferable that the value is 1 to 50 mPa ⁇ s, and it is particularly preferable that the value is 1 to 50 mPa ⁇ s.
  • a person skilled in the art can easily determine the value of n without requiring excessive trial and error so that the viscosity of the organopolysiloxane of the formula (3') is within the above-mentioned viscosity range.
  • the number of silicon atoms per molecule is preferably 2 to 20, and even more preferably 2 to 5, so that the compound of the formula (3') has a desired viscosity.
  • the organopolysiloxane of the formula (3') can be used alone or as a mixture of two or more.
  • the viscosity of the mixture at 25 ° C. is 1 to 500 mPa ⁇ s, preferably 1 to 100 mPa ⁇ s, more preferably 1 to 50 mPa ⁇ s, and particularly preferably 5 to 20 mPa. ⁇ S.
  • organopolysiloxane having one ultraviolet-reactive functional group in the molecule represented by the formula (3') include 1- [2- (3,4-epoxycyclohexal) ethyl] -1,1. , 3,3,3-Pentamethyldisiloxane, 1- [2- (3,4-epoxycyclohexyl) ethyl] -1,1,3,3,5,5,5-heptamethyltrisiloxane, 3-[ 2- (3,4-epoxycyclohexyl) ethyl] -1,1,1,1,3,5,5,5-heptamethyltrisiloxane, and 1- [2- (3,4-epoxycyclohexyl) ethyl] -1 , 1,3,3,5,5,7,7,7-Nonamethyltetrasiloxane, 1- (3-glycidoxypropyl) -1,1,3,3,3-pentamethyldisiloxane, 1- (3-glycidoxypropyl)
  • the organosilicon compound of the above formula (2) may be a cyclic organopolysiloxane represented by the following formula (4').
  • formula (4') R is a group independently selected from an ultraviolet reactive functional group and an unsubstituted or fluorine-substituted monovalent hydrocarbon group, and x is an integer of 3 to 5. , Has only one UV reactive functional group in the molecule.
  • the ultraviolet reactive functional group and monovalent hydrocarbon group are as defined in the above formula (2).
  • the preferable viscosity of the cyclic organopolysiloxane represented by the formula (4') is also as specified for the organopolysiloxane represented by the formula (2) above. Therefore, the viscosity at 25 ° C. is preferably 1 to 500 mPa ⁇ s, more preferably 1 to 100 mPa ⁇ s, and particularly preferably 1 to 50 mPa ⁇ s.
  • cyclic organopolysiloxane represented by the formula (4') include [2- (3,4-epoxycyclohexane) ethyl] -pentamethylcyclotrisiloxane and [2- (3,4-epoxycyclohexane).
  • the component (A2) may be an organosilane represented by the following formula (5').
  • R is an ultraviolet reactive functional group
  • R' is a group selected from a monovalent hydrocarbon group, a hydroxyl group, and an alkoxy group excluding the ultraviolet reactive functional group.
  • the ultraviolet reactive functional group and the monovalent hydrocarbon group are as defined in the above formula (2), and the alkoxy group has 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms, and more preferably 1 to 6 carbon atoms. It is an alkoxy group of 3 or a cycloalkyl group having 5 to 20 carbon atoms. Specifically, a methoxy group, an ethoxy group, an isopropoxy group, a cyclopentyl group, or a cyclohexyl group is preferable.
  • the preferable viscosity of the organosilane represented by the formula (5') is the same as the viscosity previously defined for the organopolysiloxane represented by the formula (2). Therefore, the viscosity at 25 ° C. is preferably 1 to 500 mPa ⁇ s, more preferably 1 to 100 mPa ⁇ s, and particularly preferably 1 to 50 mPa ⁇ s.
  • organosilane represented by the formula (5') include [2- (3,4-epoxycyclohexyl) ethyl] triethylsilane, [2- (3,4-epoxycyclohexyl) ethyl] dimethylphenylsilane, and the like.
  • organosilicon compounds represented by the above-mentioned formulas (2), (3'), (4'), or (5') may be used alone or in combination of two or more.
  • the composition of the present invention comprises an organosilicon compound represented by the formula (2), (3'), (4'), or (5'), and a mixture of two or more kinds arbitrarily selected from them.
  • the mass ratio may be any mass ratio in the range of 100/0 to 0/100 (A1 / A2), but the mass ratio of the component (A2) is 100% by mass of the total amount of the component (A1) and the component (A2).
  • the ratio is 50% by mass or more, preferably 65% by mass or more, more preferably 70% by mass or more, and most preferably 75% by mass or more.
  • the ratio of the component (A) to the total mass of the composition is preferably 80% by mass or more, preferably 85% by mass or more, and particularly preferably 90% by mass or more.
  • the curable composition of the present invention may consist of only the component (A), and therefore the upper limit of this ratio is 100% by mass.
  • the component (A1) and the component (A2) are used in combination as the component (A), the following compound as the component (A1): 1,3-bis [2- (3,4-epoxide cyclohexane) ethyl] -1,1,3,3-tetramethyldisiloxane, 1,5-bis [2- (3,4-epoxide cyclohexyl) ethyl] -1,1,3,3,5,5-hexamethyltrisiloxane, methyl (Tris [2- (3,4-epoxide cyclohexane) ethyl] dimethylsiloxy) silane, tetrakis ([2- (3,4-epoxide) epoxide) Cyclohexyl) ethyl] dimethylsiloxy) silane, 1,3,5,7-tetramethyl-1,3,5,7-tetra [2- (3,4-epoxide cyclohexane) ethyl] -cyclo
  • 3,5,5,5-Heptamethyl-3- [2- (3,4-epoxide cyclohexane) ethyl] trisiloxane is preferably used in combination, and the mass ratio of the component (A2) to the component (A1) is preferable. Is in the range of 100/0 to 20/80 (A2 / A1), more preferably 100/0 to 50/50, and particularly preferably 100/0 to 75/25. However, the mass ratio of the component (A1) to the component (A2) is a value that defines a particularly preferable range, and the curable composition of the present invention may be prepared using only the above component (A1). can.
  • the curable composition of the present invention contains (A2) 1,1,1,3,5,5,5-heptamethyl-3- [2- (3,4-epoxycyclohexyl) ethyl] trisiloxane as the component (A).
  • the amount thereof is in the range of 50 to 95% of the total mass of the curable composition, preferably in the range of 65 to 95%, and more preferably in the range of 75 to 95%.
  • the UV-reactive functional group of the component (A1) and the UV-reactive functional group of the component (A2) have the same reaction. It is preferably a sex functional group. Therefore, when the UV-reactive functional group of the component (A1) is a radical-polymerizable group, it is preferable that the UV-reactive functional group of the component (A2) is also a radical-polymerizable group.
  • the ultraviolet reactive functional group of the component (A1) is a cationically polymerizable group
  • the ultraviolet reactive functional group of the component (A2) is also preferably a cationically polymerizable group. It is preferable that both the components (A1) and (A2) have a cationically polymerizable reactive group as an ultraviolet reactive functional group.
  • Component (B) A compound having one or more ultraviolet reactive functional groups in one molecule and no silicon atom
  • the curable composition of the present invention has one or more ultraviolet reactive functional groups in one molecule and silicon in addition to the above-mentioned component (A) or component (A1) and / or component (A2).
  • a compound having no atom (component (B)) may be further added.
  • the component (B) in addition to the component (A2).
  • the curability of the composition may be improved.
  • the ultraviolet reactive functional group possessed by the component (B) can be the same as those listed in relation to the components (A), (A1), and (A2).
  • the difference between the component (B) and the component (A), the component (A1), and the component (A2) is that the latter has a silicon atom in the molecule, whereas the component (B) has a silicon atom in the molecule. It is a point that does not have.
  • the chemical structure of the compound is not particularly limited as long as it does not contain a silicon atom in the molecule and has one or more of the above-mentioned ultraviolet reactive functional groups in the molecule, and any compound can be used as the component (B). ..
  • an organic compound having an epoxy group in the molecule particularly a compound having an epoxy group and not having a cyclic structure
  • Preferred specific examples of the component (B) are 2-ethylhexyl glycidyl ether, glycidyl lauryl ether, ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,2-epoxydecane. , 1,2-epoxided decane, and 1,7-octadiene diepoxide, but are not limited thereto.
  • 1,2-epoxydodecane, 1,7-octadiendiepoxide, and 1,4-butanediol diglycidyl ether are particularly preferable.
  • an organic compound having a radically polymerizable reactive group as an ultraviolet reactive functional group in the molecule can also be mentioned.
  • Specific examples thereof include known (meth) acrylic acid ester compounds having one radically polymerizable reactive group in the molecule, and (meth) acrylic acid ester compounds having two or more radically polymerizable reactive groups.
  • the ultraviolet reactive functional group possessed by the component (B) is a functional group of the same type as the ultraviolet reactive functional group possessed by the component (A) or the component (A1) and / or the component (A2) used in combination with the component (B). It is preferable to have. Therefore, for example, when the ultraviolet reactive functional group of the component (A1) and / or the component (A2) is a radically polymerizable group, the ultraviolet reactive functional group of the component (B) is also a radically polymerizable group. It is preferable to have.
  • the ultraviolet reactive functional group of the component (A1) and / or the component (A2) is a cationically polymerizable group
  • the ultraviolet reactive functional group of the component (B) is also a cationically polymerizable group. Is preferable. It is preferable that the component (A1) and / or the component (A2) and the component (B) both have a cationically polymerizable reactive group as an ultraviolet reactive functional group, particularly preferably an epoxy group.
  • the viscosity of the component (B) is preferably 1 to 1000 mPa ⁇ s, more preferably 1 to 500 mPa ⁇ s at 25 ° C. s, particularly preferably 1 to 100 mPa ⁇ s, most preferably 1 to 50 mPa ⁇ s.
  • component (B) When the component (B) is used in addition to the above components (A1) and / or (A2), the components (A1), (A2), and the component (B) contained in the curable composition of the present invention are used.
  • the mass ratio of component (B) to the total amount is less than 20%, preferably less than 10%, particularly preferably less than 5%.
  • composition containing no organic solvent composition containing no organic solvent
  • free of organic solvent means that the content of the organic solvent is less than 0.05% by mass of the whole composition, preferably below the analysis limit by using an analysis method such as gas chromatography. Say something.
  • the desired viscosity can be achieved without using an organic solvent.
  • a photopolymerization initiator can be added to the ultraviolet curable composition of the present invention, if desired.
  • a photocationic polymerization initiator is used as the photopolymerization initiator.
  • a photocationic polymerization initiator a compound capable of producing a Bronsted acid or a Lewis acid by irradiation with ultraviolet rays or an electron beam, a so-called photoacid generator, is known, and an acid is generated by irradiation with ultraviolet rays or the like, and the acid is generated.
  • a photoradical polymerization initiator can be used as the photopolymerization initiator.
  • free radicals are generated by irradiation with ultraviolet rays or electron beams, which can cause a radical polymerization reaction to cure the composition of the present invention.
  • a polymerization initiator is usually unnecessary.
  • Photocationic polymerization initiator used in the curable composition of the present invention can be arbitrarily selected from those known in the art and is not particularly limited. Strong acid-generating compounds such as diazonium salt, sulfonium salt, iodonium salt, and phosphonium salt are known as photocationic polymerization initiators, and these can be used.
  • photocationic polymerization initiators are bis (4-tert-butylphenyl) iodonium hexafluorophosphate, cyclopropyldiphenylsulfonium tetrafluoroborate, dimethylphenacylsulfonium tetrafluoroborate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroarce.
  • the amount of the photocationic polymerization initiator added to the curable composition of the present invention is not particularly limited as long as the desired photocuring reaction occurs, but is generally the total amount of the components (A) of the present invention.
  • the ultraviolet reactive functional group of the component (A) is a photocationic polymerizable initiator such as an epoxy group
  • the photoradical polymerization initiator described below is used. It can also be used together. The combined use of both initiators may improve the curability of the UV curable organopolysiloxane composition. It was
  • the photo-radical polymerization initiator is roughly classified into a photo-cracking type and a hydrogen abstraction type, and the photo-radical polymerization initiator used in the composition of the present invention is the present technology. It can be arbitrarily selected from those known in the field and used, and is not particularly limited to a specific one. Examples of photoradical polymerization initiators are acetophenone, p-anisyl, benzyl, benzoin, benzophenone, 2-benzoylbenzoic acid, 4,4'-bis (diethylamino) benzophenone, 4,4'-bis (dimethylamino) benzophenone.
  • Benzoyl methyl ether benzoin isopropyl ether, benzoin isobutyl ether, benzoin ethyl ether, 4-benzoyl benzoic acid, 2,2'-bis (2-chlorophenyl) -4,4', 5,5'-tetraphenyl-1, 2'-biimidazole, methyl 2-benzoyl benzoate, 2- (1,3-benzodioxol-5-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2-benzyl -2- (dimethylamino) -4'-morpholinobtyrophenone, ( ⁇ ) -phenylquinone, 2-chlorothioxanthone, 4,4'-dichlorobenzophenone, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2- Phenylacetophenone, 2,4-diethylthioxanthene-9
  • Omnirad 651, 184, 1173, 2959, 127, 907, 369, 369E, 379EG alkylphenone-based photopolymerization initiator, IGM Resins BV
  • Omnirad TPO. H, TPO-L, and 819 Alkylphosphinoxide Photoinitiator, IGM RESINS BV
  • Omnirad MBF and 754 Intramolecular Hydrogen Extraction Initiator, IGM Resins BV
  • Irgacre OXE01 and OXE02 Oxim ester-based non-radical polymerization initiator, BASF
  • the amount of the photoradical polymerization initiator added to the composition of the present invention is not particularly limited as long as the desired photopolymerization reaction or photocuring reaction occurs, but is generally the total mass of the composition of the present invention. On the other hand, it is used in an amount of 0.01 to 5% by mass, preferably 0.05 to 1% by mass.
  • a photosensitizer can also be used in combination with the above-mentioned photocationic polymerization initiator or photoradical polymerization initiator.
  • the use of a sensitizer can increase the photon efficiency of the polymerization reaction and allow longer wavelength light to be used in the polymerization reaction than when only the photoinitiator is used. It is known to be particularly effective when the coating thickness is relatively thick or when a relatively long wavelength LED light source is used.
  • sensitizer examples include anthracene compounds, phenothiazine compounds, perylene compounds, cyanine compounds, merocyanine compounds, coumarin compounds, benzilidenketone compounds, (thio) xanthene or (thio) xanthone compounds, for example, isopropyl.
  • Thioxanthone, 2,4-diethylthioxanthone, squalium-based compounds, (thia) pyrylium-based compounds, porphyrin-based compounds and the like are known, and any photosensitizer is used in the curable composition of the present invention. be able to.
  • the cured product obtained from the curable composition of the present invention has the molecular chain length of the component (A) or the component (A1) and / or the component (A2), the number of UV-reactive functional groups per molecule, and the intramolecule. Depending on the position of the UV-reactive functional group and the molecular structure, the desired physical properties of the cured product and the curing rate of the curable composition can be obtained, and the viscosity of the curable composition can be designed to be a desired value. Is. Further, a cured product obtained by curing the curable composition of the present invention is also included in the scope of the present invention.
  • the shape of the cured product obtained from the composition of the present invention is not particularly limited, and may be a thin film-shaped coating layer or a molded product such as a sheet, and may be a specific portion in an uncured state. It may be injected into a laminate and cured to form a filler, or it may be used as a sealing material for a laminate or a display device, or as an intermediate layer.
  • the cured product obtained from the composition of the present invention is particularly preferably in the form of a thin film coating layer, and particularly preferably an insulating coating layer.
  • the curable composition of the present invention is suitable for use as a coating agent or potting agent, particularly an insulating coating agent or potting agent for electronic devices and electrical devices.
  • the viscosity of the entire composition measured at 25 ° C. using an E-type viscometer is 80 mPa ⁇ s or less, preferably 30 mPa. s or less, more preferably 20 mPa. It is preferably s or less.
  • the cured product obtained by curing the curable composition of the present invention has a characteristic that the refractive index measured at 25 ° C. and a wavelength of 589 nm is 1.45 or less.
  • the cured product obtained by curing the curable composition of the present invention can be designed so that its relative permittivity is less than 3.0, less than 2.8, and the like, and the curing of the present invention can be achieved.
  • the sex composition can also be used to form a coating layer with a low relative permittivity.
  • the viscosity of the entire composition is E-type viscosity in order to have fluidity and workability suitable for applying the composition to a substrate. As measured using a meter, it is preferably 80 mPa ⁇ s or less, more preferably 1 to 60 mPa ⁇ s, still more preferably 5 to 30 mPa ⁇ s, and particularly preferably 5 to 20 mPa ⁇ s at 25 ° C.
  • a compound having a preferable viscosity can be used as each component so that the viscosity of the entire composition has the desired viscosity.
  • one molecule having the above-mentioned component (B) has one or more ultraviolet reactive functional groups.
  • a compound containing no silicon atom may be added to the composition, or the amount thereof may be adjusted.
  • the content of the component (B) in the curable composition of the present invention suppresses an increase in the refractive index, so that the mass ratio of the component (B) to the total of the component (A) and the component (B) is less than 50%. It is preferable that the amount is.
  • the mass ratio of the component (B) to the total of the components (A) and (B) is preferably less than 20%, more preferably less than 10%, still more preferably less than 5%.
  • Component (C) When the ultraviolet curable organopolysiloxane composition of the present invention is applied to the surface of a substrate as a coating agent by any method, the wettability of the composition to the substrate is improved to obtain a defect-free coating film.
  • a component (C) selected from the following can be further added to the composition of the present invention containing the above-mentioned components. It is particularly preferable to use an inkjet printing method as a method for coating the composition of the present invention on a substrate. Therefore, the component (C) is a component that improves the wettability of the ultraviolet curable organopolysiloxane composition of the present invention to the substrate, and particularly significantly improves the inkjet printing characteristics.
  • the component (C) is at least one compound selected from the group consisting of the following (C1), (C2), and (C3).
  • the component (C1) does not contain a silicon atom and is a non-acrylic nonionic surfactant, that is, a non-acrylic nonionic surfactant.
  • the non-acrylic type means that the surfactant does not have a (meth) acrylate group in its molecule.
  • Organic nonionic surfactants such as glycerin fatty acid ester, sorbitan fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, alkyl glycoside, and acetylene glycol polyether as surfactants that can be used as the component (C1).
  • Examples thereof include an activator, a fluorine-based nonionic surfactant, and the like, and one or a combination of two or more of these can be used.
  • Specific examples of the component (C1) include the Emargen series and Leodor series manufactured by Kao Co., Ltd., the Surfinol 400 series manufactured by Ebonic Industries, and the Orfin E series manufactured by Nissin Chemical Industry Co., Ltd. as organic nonionic surfactants.
  • Examples of the fluorine-based nonionic surfactant include FC-4400 series manufactured by 3M and Megafuck 550 and 560 series manufactured by DIC Corporation. Among these, the surfinol 400 series and the olfin E series, which are alkynol polyethers, are particularly preferable.
  • the component (C2) is a nonionic surfactant containing a silicon atom and having an HLB value of 4 or less.
  • the HLB value is a value indicating the degree of affinity of the surfactant with water and the organic compound, and here, the HLB value is a value defined by the Griffin method (20 ⁇ the sum of the formula amounts of the hydrophilic part). / Molecular weight) is used.
  • Silicone polyether having a polyether as a hydrophilic part, glycerol silicone having a (di) glycerol derivative as a hydrophilic part, carbinol silicone having a hydroxyethoxy group as a hydrophilic part, and the like are known as silicon-containing nonionic surfactants. ..
  • surfactants those having an HLB value of 4 or less, that is, those having a mass fraction of a hydrophilic portion of 20% by mass or less are preferably used in the composition of the present invention.
  • carbinol silicone is particularly preferable.
  • the component (C3) is a silicone oil having a viscosity of 90 mPa ⁇ s or less at 25 ° C.
  • silicone oil both-ended trimethylsilyl-polydimethylsiloxane, both-ended dimethylvinylsilyl-polydimethylsiloxane, both-ended trimethylsilyl-dimethylsiloxy / methylvinylsiloxy copolymer, and both-ended dimethylvinylsilyl-dimethylsiloxy / methylvinylsiloxy are used.
  • Polymer trimethylsilyl-dimethylsiloxy / methylphenylsiloxy copolymer at both ends, trimethylsilyl-dimethylsiloxy / diphenylsiloxy copolymer at both ends, dimethylvinylsilyl-dimethylsiloxy / methylphenylsiloxy copolymer at both ends, dimethylvinyl at both ends
  • Examples thereof include a silyl-dimethylsiloxy / diphenylsiloxy copolymer, and both-ended trimethylsilyl-polydimethylsiloxane and both-ended dimethylvinylsilyl-polydimethylsiloxane can be preferably used.
  • the preferable viscosity range of the silicone oil is 2 to 50 mPa ⁇ s, the more preferable range is 2 to 30 mPa ⁇ s, and the more preferable viscosity range is 5 to 20 mPa ⁇ s.
  • the viscosity value here is a value measured at 25 ° C. using the rotational viscometer described in the examples.
  • the above-mentioned components (C1) to (C3) can use one or a combination of two or more of them.
  • the amount of the component (C) to be blended in the curable composition is not particularly limited, but the total amount of the above-mentioned component (A) and the component (B), if present, is set to 100% by mass, and the total amount is used.
  • the total of the components (C1) to (C3) (collectively referred to as the component (C)) is 0.05% by mass or more and 1% by mass or less.
  • the amount of the component (C) is less than 0.05% by mass with respect to the total amount of the components (A) and (B) of 100% by mass, the effect of improving the wettability of the curable composition to the substrate is effective. In some cases, it may not be sufficiently obtained, and if the amount of the component (C) exceeds 1% by mass with respect to the total amount of the components (A) and (B) of 100% by mass, the cured product to the component (C) is obtained after curing. This is because there is a risk of bleeding out.
  • the silicone oil of the component (C3) may be used alone, or the component (C3) may be used in combination with one or more components selected from the group consisting of the component (C1) and the component (C2). It is preferable to use the component (C3) alone as the component (C).
  • additives may be added to the composition of the present invention, if desired.
  • additional additives include, but are not limited to, the following.
  • An adhesion promoter can be added to the composition of the present invention in order to improve the adhesiveness and adhesion to the substrate in contact with the composition.
  • an adhesiveness-imparting agent is added to the curable composition of the present invention. Is preferable.
  • the adhesion promoter any known adhesion promoter can be used as long as it does not inhibit the curing reaction of the composition of the present invention.
  • adhesion promoters examples include trialkoxysiloxy groups (eg, trimethoxysiloxy groups, triethoxysyroxy groups) or trialkoxysilylalkyl groups (eg, trimethoxysilylethyl groups, triethoxysilylethyl).
  • Group and an organosilane having a hydrosilyl group or an alkenyl group (for example, a vinyl group or an allyl group), or an organosiloxane oligomer having a linear structure, a branched structure or a cyclic structure having about 4 to 20 silicon atoms; trialkyl.
  • Organosilane having a syroxy group or a trialkoxysilylalkyl group and a methacryloxyalkyl group for example, 3-methacryloxypropyl group
  • a linear structure, a branched structure or a cyclic structure having about 4 to 20 silicon atoms for example, 3-methacryloxypropyl group
  • Siloxane oligomer trialkoxysiloxy group or trialkoxysilylalkyl group and epoxy group bonded alkyl group (eg, 3-glycidoxypropyl group, 4-glycidoxybutyl group, 2- (3,4-epoxycyclohexyl) ethyl group , 3- (3,4-epoxycyclohexyl) propyl group) or a linear structure, a branched structure or a cyclic structure organosiloxane oligomer having about 4 to 20 silicon atoms; a trialkoxysilyl group (for example, Organic compounds having two or more (trimethoxyryl group, triethoxysilyl group); reactants of aminoalkyltrialkoxysilane and epoxy group-bonded alkyltrialkylsilane, epoxy group-containing ethylpolysilicates, and specific examples thereof.
  • alkyl group eg, 3-glycidoxypropyl group, 4-glycidoxy
  • the amount of the adhesion accelerator added to the curable composition of the present invention is not particularly limited, but since it does not promote the curing characteristics of the curable composition or the discoloration of the cured product, a total of 100 of the components (A) and (B). It is preferably in the range of 0.01 to 5 parts by mass, or in the range of 0.01 to 2 parts by mass with respect to the mass part.
  • additives may be added to the composition of the present invention in addition to the above-mentioned adhesive-imparting agent or in place of the adhesive-imparting agent.
  • Additives that can be used include leveling agents, silane coupling agents not included in the above-mentioned adhesive-imparting agents, UV absorbers, antioxidants, polymerization inhibitors, fillers (reinforcing fillers, insulation). Functional fillers such as sex fillers and thermally conductive fillers) and the like.
  • suitable additives can be added to the compositions of the present invention.
  • a thixotropic agent may be added to the composition of the present invention, particularly when used as a potting agent or a sealing material.
  • the cured product obtained from the ultraviolet curable organopolysiloxane composition of the present invention can have a low refractive index, which is 1.45 or less as measured at 25 ° C. and a wavelength of 589 nm.
  • the ultraviolet curable organopolysiloxane composition of the present invention can be cured not only by ultraviolet rays but also by using an electron beam, which is also one aspect of the present invention.
  • the curable composition of the present invention has a low viscosity and is particularly useful as a material for forming an insulating layer constituting various articles, particularly electronic devices and electric devices.
  • the composition of the present invention is composed by applying it on a substrate or sandwiching it between two substrates made of a material that at least one of them allows ultraviolet rays or an electron beam to pass therethrough, and irradiating the composition with ultraviolet rays or an electron beam.
  • An insulating layer can be formed by curing an object. In that case, pattern formation may be performed when the composition of the present invention is applied to the substrate, and then the composition may be cured, or ultraviolet rays or electron beams may be applied when the composition is applied to the substrate and cured.
  • an insulating layer having a desired pattern by leaving the cured portion and the uncured portion by the irradiation of the above and then removing the uncured portion with a solvent.
  • the cured layer according to the present invention when it is an insulating layer, it can be designed to have a low relative permittivity of less than 3.0.
  • the curable composition of the present invention is particularly suitable as a material for forming an insulating layer of a display device such as a touch panel and a display because the cured product obtained from the curable composition has good transparency.
  • the insulating layer may form any desired pattern as described above, if necessary. Therefore, a display device such as a touch panel and a display including an insulating layer obtained by curing the ultraviolet curable organopolysiloxane composition of the present invention is also one aspect of the present invention.
  • the curable composition of the present invention an article can be coated and then cured to form an insulating coating layer (insulating film). Therefore, the composition of the present invention can be used as an insulating coating agent. Further, a cured product formed by curing the curable composition of the present invention can also be used as an insulating coating layer.
  • the insulating film formed from the curable composition of the present invention can be used for various purposes. In particular, it can be used as a constituent member of an electronic device or as a material used in a process of manufacturing an electronic device. Electronic devices include electronic devices such as semiconductor devices and magnetic recording heads.
  • the curable composition of the present invention comprises an insulating film for semiconductor devices such as LSIs, system LSIs, DRAMs, SDRAMs, DRAMs, D-RDRAMs, and multi-chip module multilayer wiring boards, interlayer insulating films for semiconductors, and etching stopper films. It can be used as a surface protective film, a buffer coat film, a passivation film in an LSI, a cover coat of a flexible copper-clad plate, a solder resist film, and a surface protective film for an optical device.
  • the ultraviolet curable composition of the present invention is suitable for use as a potting agent, particularly an insulating potting agent for electronic devices and electric devices, in addition to being used as a coating agent.
  • composition of the present invention can be used as a material for forming a coating layer on the surface of a substrate, particularly by using an inkjet printing method, in which case the composition of the present invention contains the above-mentioned component (C). It is particularly preferable to do so.
  • the ultraviolet curable composition of the present invention and the cured product thereof will be described in detail with reference to Examples.
  • the measurements and evaluations in the examples and comparative examples were performed as follows.
  • Viscosity of curable composition The viscosity (mPa ⁇ s) of the composition at 25 ° C. was measured using a rotational viscometer (E-type viscometer VISCONIC EMD manufactured by Tokimec Co., Ltd.).
  • Refractive index of curable composition and its cured product A digital refractometer (RX-7000 ⁇ , manufactured by Atago Co., Ltd.) was used to measure the refractive index (nD) of the cured product at 25 ° C.
  • the ultraviolet curable compositions (Examples 1 to 3) of the present invention have a viscosity suitable for being applied to a substrate as a coating agent at 25 ° C., and have high transparency.
  • the refractive index of the cured product is 1.45 or less.
  • the refractive index of the cured product is 1.46 or more, or the curability is insufficient.
  • the ultraviolet curable composition of the present invention is particularly suitable for the above-mentioned applications, particularly as a material for forming an insulating layer of a display device such as a touch panel and a display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Silicon Polymers (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)

Abstract

[課題]硬化して得られる生成物が低い屈折率を有するとともに、基材に塗布するときに優れた作業性を有する、ケイ素原子を含む紫外線硬化性組成物を提供する。 [解決手段]本発明の紫外線硬化性組成物は、一分子中に平均して1個以上の紫外線反応性官能基を有する1種以上の有機ケイ素化合物(A)を含み、E型粘度計を用いて25℃で測定した組成物全体の粘度が80mPa・s以下であり、かつ組成物中に有機溶剤を含まず、硬化後の硬化物の25℃、波長589nmで測定した屈折率が1.45以下であることを特徴とする。

Description

紫外線硬化性組成物およびその用途
 本発明は、化学線(actinic rays)、例えば紫外線又は電子線によって硬化可能な紫外緯線硬化性組成物、特に、有機ケイ素化合物、好ましくはオルガノシラン及び/又はオルガノポリシロキサンを含む紫外線硬化性組成物、特に、それから得られる硬化物が低い屈折率を有し、塗布性に優れる紫外線硬化性組成物に関する。本発明の硬化性組成物は、屈折率が低く1.45以下であり、電子デバイス及び電気デバイスのための絶縁材料として、特にコーティング剤として用いるための材料として適している。さらに、優れた塗布性及び基材への優れた濡れ性を有しており、インクジェット印刷材料として有用である。
 シリコーン樹脂はその高い耐熱性及び優れた化学安定性により、これまでにも電子デバイス及び電気デバイスのためのコーティング剤、ポッティング剤、及び絶縁材料等として用いられてきている。シリコーン樹脂のなかで、紫外線硬化性シリコーン組成物についてもこれまでに報告されている。
 タッチパネルは、モバイルデバイス、産業機器、カーナビゲーション等の様々な表示装置に利用されている。その検知感度向上のためには、発光ダイオード(LED)、有機ELデバイス(OLED)等の発光部位からの電気的影響を抑制する必要があり、発光部とタッチスクリーンの間には通常絶縁層が配置される。
 一方、OLED等の薄型表示装置は、多くの機能性薄層が積層された構造を有している。近年、屈折率の高い層と低い層を組み合わせ、タッチスクリーン層に積層させることにより、表示装置全体の輝度を向上させる検討が始まっている。また、生産性向上を目的とし、有機層の加工法としてインクジェット印刷法が採用されている。そのため、上記の絶縁層に関しても、インクジェット印刷法で加工できる材料が求められている。
 特開2019-73588号公報には、不飽和結合含有芳香族化合物と、メルカプト基を有する化合物からなる光硬化性樹脂組成物が、特開2020-26515号公報には、不飽和結合含有ナフタレン化合物を主成分とする光硬化性樹脂組成物が開示されている。いずれの組成物も、インクジェット法により塗布することができるが、その硬化物の屈折率は1.60以上であり、高い屈折率であることを特徴としている。
 一方、特許6200591号公報には、紫外線硬化性官能基含有ポリシロキサンシリコーンと、特定の硬化性化合物からなるインクジェット塗布用電子デバイス用封止剤が、特開2019-189844号公報には、多官能カチオン重合性化合物と特定の単官能カチオン重合性化合物を含む電子デバイス用光硬化性樹脂組成物が開示されている。これらの特許文献には、組成物の硬化後の屈折率については記載されていないが、硬化性組成物中のモノマー構造に基づいて屈折率を計算すると、いずれもの場合も1.48以上の値となる。
特開2019-73588号公報 特開2020-26515号公報 特許6200591号公報 特開2019-189844号公報
 上述したように、紫外線硬化性オルガノポリシロキサン組成物はいくつか知られているが、その硬化物が1.45以下の低い屈折率を有するとともに、基材に塗布するための優れた作業性、特に低粘度を備えた紫外線硬化性組成物が今なお求められている。本発明は、硬化して得られる生成物が低い屈折率を有するとともに、基材に塗布するときに優れた作業性を併せもち、ケイ素原子を含む硬化性組成物、特に紫外線硬化性組成物を提供しようとするものである。
 本発明は、一分子中に平均して1個以上の紫外線反応性官能基を有する1種以上の有機ケイ素化合物(A)を用いることによって得られる紫外線硬化性組成物が、低い粘度を有し、基材へ塗布する場合の作業性に優れ、かつその硬化物が低い屈折率を示すことを発見して完成したものである。本発明の硬化性組成物は、特に、成分(A)として、(A1)一分子中に平均して2個以上の紫外線反応性官能基を有する1種以上の有機ケイ素化合物、特にオルガノポリシロキサン及び(A2)一分子中に1個の紫外線反応性官能基を有する1種以上の有機ケイ素化合物、特にオルガノシラン及びオルガノポリシロキサンからなる群から選択される1種以上の有機ケイ素化合物を用いることが好ましい。本発明の組成物の成分(A)として、成分(A1)及び成分(A2)からなる群から選択される1種以上の有機ケイ素化合物を100/0~0/100(A1/A2)の質量比で用いることができる。すなわち、本発明の硬化性組成物には成分(A)として、成分(A1)及び(A2)を組み合わせて用いてもよく、また、成分(A1)又は成分(A2)をそれぞれ単独で用いることもできる。成分(A)として成分(A2)のみを用いる場合には、成分(A2)が有する紫外線反応性官能基と反応しうる反応性官能基、好ましくは紫外線反応性官能基を1分子あたり1個より多く、好ましくは2個以上有する化合物を併用することが好ましい。
 本発明は有機ケイ素化合物を含んでなる紫外線硬化性組成物、特に紫外線硬化性オルガノポリシロキサン組成物に関するものであり、本組成物は紫外線硬化性官能基による結合の形成によって硬化するものであるが、その硬化方法は紫外線照射に限定されず、この紫外線硬化性官能基が硬化反応を起こすことができる任意の方法を用いることができ、たとえば電子線照射を用いて本発明の組成物を硬化させてもよい。
 本発明の紫外線硬化性組成物は、一分子中に平均して1個以上の紫外線反応性官能基を有する1種以上の有機ケイ素化合物(A)を含み、E型粘度計を用いて25℃で測定した組成物全体の粘度が80mPa・s以下であり、かつ組成物は有機溶剤を含まず、組成物が硬化したときの硬化物の25℃、波長589nmで測定した屈折率が1.45以下であることを特徴とするものである。
 なお、本明細書において別段の規定がない限り、物質の粘度は25℃においてE型粘度計を使用して測定した値である。
 本発明の成分(A)が有する紫外線反応性官能基は、カチオン重合性反応基であることが好ましい。さらに、カチオン重合性反応基はエポキシ基含有基であることが好ましい。
 本発明の紫外線硬化性組成物中の成分(A)の比率は、組成物全体の質量の80%以上であることが好ましい。
 本発明の上記成分(A)は、(A1)一分子中に平均して2個以上の紫外線反応性官能基を有する1種以上の有機ケイ素化合物、好ましくはオルガノポリシロキサン、および(A2)一分子中に1個の紫外線反応性官能基を有する1種以上の有機ケイ素化合物、好ましくはオルガノシラン及びオルガノポリシロキサンからなる群から選択される1種以上の有機ケイ素化合物を、100/0~0/100(A1/A2)の質量比で含むことが好ましい。したがって、成分(A)は成分(A1)のみ、成分(A2)のみ、又は成分(A1)と(A2)の組み合わせであることができる。
 上記成分(A2)は、平均組成式:
R’SiO(4-c―d)/2 (2)
(式中、Rは、紫外線反応性官能基であり、
 R’は、紫外線反応性官能基を除く一価炭化水素基、水酸基、及びアルコキシ基から選ばれる基であり、
 c及びdは次の条件:1<c+d≦4及び0.05≦c/(c+d)≦0.25を満たす数であり、分子中のRの数は1である。)
で表される直鎖状、分岐状、又は環状のオルガノシラン及びオルガノポリシロキサンからなる群から選択される有機ケイ素化合物であることが好ましい。
 本発明の紫外線硬化性組成物中に含まれる成分(A2)の比率は、組成物全体の80質量%以上であることが好ましい。
 上記成分(A1)は、平均組成式:
R’SiO(4-a―b)/2 (1)
(式中、Rは、紫外線反応性官能基であり、
 R’は、紫外線反応性官能基を除く一価炭化水素基、水酸基、及びアルコキシ基から選ばれる基であり、
 a及びbは次の条件:1≦a+b≦3及び0.01≦a/(a+b)≦0.34を満たす数であり、分子中に少なくとも2個のRを有する。)
で表される直鎖状、分岐状、又は環状のオルガノポリシロキサンであることが好ましい。
 成分(A1)は25℃における粘度が1~1000mPa.sである。
 成分(A2)の有機ケイ素化合物は、下記式(3’):
Figure JPOXMLDOC01-appb-C000005
(式中、全てのR~R基のうち、紫外線反応性官能基は分子中に1個のみ存在し;その他のRからRはそれぞれ独立に、非置換又はフッ素で置換された一価炭化水素基であり;nは、0以上3以下の数値である)で表されるオルガノポリシロキサン、
 または、下記式(4’):
Figure JPOXMLDOC01-appb-C000006
(式中、Rは、それぞれ独立に、紫外線反応性官能基及び非置換又はフッ素で置換された一価炭化水素基から選ばれる基であり、xは、3~5の整数であり、分子中に1個のみの紫外線反応性官能基を有する)で表される環状オルガノポリシロキサン、
 または、下記式(5’):
   RSiR’ (5’)
(式中、Rは、紫外線反応性官能基であり、R’は、前記紫外線反応性官能基を除く一価炭化水素基、水酸基、及びアルコキシ基から選ばれる基である)
で表されるオルガノシランからなる群から選択される、紫外線反応性官能基を分子中に1個有する含ケイ素化合物であることが好ましい。
 また、上記成分(A1)の有機ケイ素化合物が、下記式(3):
Figure JPOXMLDOC01-appb-C000007
(式中、全てのR~R基のうち1分子当たり平均して2個以上は紫外線反応性官能基であり;その他のRからRはそれぞれ独立に、非置換又はフッ素で置換された一価炭化水素基であり;nは、式(3)で表されるオルガノポリシロキサンの粘度が25℃において1~1000mPa・sとなる数値であり、nは0であってもよい)で表されるオルガノポリシロキサン、
 平均単位式:
(RSiO1/2)(RSiO2/2)(RSiO3/2)(SiO4/2)  (4)
 (式中、Rは、それぞれ独立に、紫外線反応性官能基及び非置換又はフッ素で置換された一価炭化水素基から選ばれる基であり、全てのRのうち、少なくとも2個は紫外線反応性官能基であり、(g+h)は正数であり、eは0又は正数であり、fは0~10の範囲内の数である。)
で表されるオルガノポリシロキサン、
 下記式(5):
Figure JPOXMLDOC01-appb-C000008
(式中、Rは、それぞれ独立に、紫外線反応性官能基及び非置換又はフッ素で置換された一価炭化水素基から選ばれる基であり、xは、3~10の整数であり、分子中に少なくとも2個の紫外線反応性官能基を有する)で表される環状オルガノポリシロキサン、
 及びそれらから任意に選択される2種以上のオルガノポリシロキサンの混合物からなる群から選択される、紫外線反応性官能基を有する1種類以上のオルガノポリシロキサンであることが好ましい。
 上記成分(A1)の紫外線反応性官能基の数が、一分子当たり平均して2個であることが好ましい。
 上記成分(A2)が、紫外線反応性官能基を分子中に1個有するオルガノポリシロキサンであることが好ましい。
 本発明の紫外線硬化性組成物は、E型粘度計を用いて25℃で測定した組成物全体の粘度が80mPa・s以下、特に5~30mPa・sの範囲であることが好ましい。
 上記成分(A)は、(A2)1,1,1,3,5,5,5-ヘプタメチル-3-[2-(3,4-エポキシシクロヘキシル)エチル]トリシロキサンであるか、(A2)1,1,1,3,5,5,5-ヘプタメチル-3-[2-(3,4-エポキシシクロヘキシル)エチル]トリシロキサンと、以下の(A1)から選ばれる少なくとも一種の化合物との混合物であり、その質量比が100/0~20/80(A2/A1)の範囲であることが好ましい。
 (A1):
1,3-ビス[2-(3,4-エポキシシクロヘキシル)エチル]-1,1,3,3-テトラメチルジシロキサン、1,5-ビス[2-(3,4-エポキシシクロヘキシル)エチル]-1,1,3,3,5,5-ヘキサメチルトリシロキサン、メチル(トリス[2-(3,4-エポキシシクロヘキシル)エチル]ジメチルシロキシ)シラン、テトラキス([2-(3,4-エポキシシクロヘキシル)エチル]ジメチルシロキシ)シラン、1,3,5,7-テトラメチル-1,3,5,7-テトラ[2-(3,4-エポキシシクロヘキシル)エチル]-シクロテトラシロキサン、1,3-ビス(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサン、1,5-ビス(3-グリシドキシプロピル)-1,1,3,3,5,5-ヘキサメチルトリシロキサン、メチル[トリス(3-グリシドキシプロピル)ジメチルシロキシ]シラン、テトラキス[(3-グリシドキシプロピル)ジメチルシロキシ]シラン、1,3,5,7-テトラメチル-1,3,5,7-テトラ(3-グリシドキシプロピル)-シクロテトラシロキサン。
 しかし、上記の成分(A2)と成分(A1)の質量比は特に好ましい範囲であり、成分(A2)と成分(A1)の合計量に対する成分(A1)の割合が80質量%より多く100質量%であっても、本発明の硬化性組成物を得ることができる。すなわち、成分(A)として成分(A1)のみを用いてもよい。
 本発明の一つの好ましい態様では、本発明の硬化性組成物は、上記成分(A)として、(A2)1,1,1,3,5,5,5-ヘプタメチル-3-[2-(3,4-エポキシシクロヘキシル)エチル]トリシロキサンを、組成物全体の50~95質量%の範囲内で含む。
 本発明の紫外線硬化性組成物の一つの好ましい態様では、組成物はさらに、(B)一分子中に1個以上、好ましくは2個以上の紫外線反応性官能基を有し且つケイ素原子を有しない化合物を含有し、成分(A1)、成分(A2)、および成分(B)の合計に対する成分(B)の質量比率が20%未満である。
 上記成分(B)を用いる場合、成分(A)は成分(A1)のみ、成分(A2)のみ、又は成分(A1)及び成分(A2)の組み合わせのいずれであってもよいが、成分(A)として一分子中に1個の紫外線反応性官能基を有する成分(A2)を用いて成分(A1)を用いない場合には、成分(B)を用いることが特に好ましい。
 本発明はさらに、上記の紫外線硬化性組成物を含有する、絶縁性コーティング剤を提供する。本発明の紫外線硬化性組成物は、絶縁性コーティング剤として有用である。
 本発明はさらに、上記の紫外線硬化性組成物の硬化物を絶縁性コーティング層として使用する方法を提供する。
 本発明はさらに、上記の紫外線硬化性組成物の硬化物からなる層を含む表示装置、例えば、液晶ディスプレイ、有機ELディスプレイを提供する。
 以下、本発明の構成についてさらに詳細に説明する。
 本発明の紫外線硬化性組成物は、一分子中に平均して1個以上の紫外線反応性官能基を有する1種以上の有機ケイ素化合物(成分(A))を必須成分として含み、必要に応じて、光カチオン重合開始剤及び各種添加剤から選択される成分を含むことができる。但し、本発明の硬化性組成物は、有機溶剤を含まないことを特徴とする。
 本明細書において、「有機ケイ素化合物」の用語は、オルガノシラン、オルガノシロキサンオリゴマー、及びオルガノポリシロキサンを含む概念を意味する用語として用いる。
 本明細書において、「ポリシロキサン」の用語はシロキサン単位(Si-O)の重合度が2以上、すなわち一分子当たり平均でSi-O結合を2個以上有するものを指し、ポリシロキサンには、ジシロキサン、トリシロキサン、テトラシロキサン等のシロキサンオリゴマーから、より高重合度のシロキサン重合体が含まれる。
 成分(A)は、(A1)一分子中に平均して2個以上の紫外線反応性官能基を有する1種以上の有機ケイ素化合物、および(A2)一分子中に1個の紫外線反応性官能基を有する1種以上の有機ケイ素化合物から選択される1種類または2種類以上であり、(A1)成分/(A2)成分の比率は100/0~0/100の範囲で選択可能である。ここで、成分(A)が一分子中に1個の紫外線反応性官能基しか有しない成分(例えば、成分(A2)のみからなるもの)である場合、組成物全体としての架橋反応を進行させるため、(B)一分子中に1個以上、好ましくは2個以上の紫外線反応性官能基を有し且つケイ素原子を有しない化合物を架橋成分として含むことが好ましい。なお、成分(A)が、(A1)一分子中に平均して2個以上の紫外線反応性官能基を有する1種以上の有機ケイ素化合物を含む場合、成分(B)が存在しなくても、組成物全体として架橋反応が進行する。すなわち、成分(B)は、成分(A)の種類に応じて、任意で使用してよい架橋成分である。
〔成分(A):一分子中に平均して1個以上の紫外線反応性官能基を有する有機ケイ素化合物〕
 成分(A)として用いる紫外線反応性官能基を有する有機ケイ素化合物、好ましくはオルガノシラン及びオルガノポリシロキサンから選択される1種以上の化合物は、一分子あたり平均して1個以上の紫外線反応性官能基を有するものであり、この目的を達成できる限りその分子構造は任意のものであることができる。成分(A)が有する紫外線反応性官能基は、特にカチオン重合性官能基であることが好ましく、エポキシ基含有基であることがさらに好ましい。
 成分(A)はさらに具体的には、以下に説明する成分(A1)及び成分(A2)からなる群から選択される1種以上の有機ケイ素化合物であることが好ましい。
 成分(A1)及び成分(A2)は、それぞれを単独で又は組み合わせて成分(A)として用いることができ、成分(A1)と成分(A2)の割合は、100/0~0/100(A1/A2)の質量比であることができる。この質量比は100/20~0/100(A1/A2)であることが好ましい。成分(A)として成分(A2)のみを用いる態様も好ましい態様の一つである。
 成分(A)は25℃における粘度が1~1000mPa.sであることが好ましく、より好ましくは1~500mPa・s、特に好ましくは1~100mPa・sであり、1~50mPa.sであることが最も好ましい。
 また、成分(A)は一分子当たり、ケイ素原子を1~20、好適には1~4含む。
<成分(A1):一分子中に平均して2個以上の紫外線反応性官能基を有する有機ケイ素化合物>
 成分(A1)の有機ケイ素化合物は下記平均組成式:
  RR’SiO(4-a―b)/2 (1)
で表される直鎖状、分岐状、又は環状の、好ましくは直鎖状又は分岐状の、特に好ましくは直鎖状のオルガノポリシロキサンである。
 式(1)中、
 Rは、紫外線反応性官能基であり、
 R’は、紫外線反応性官能基を除く、一価炭化水素基、水酸基、及びアルコキシ基から選ばれる基であり、
 a及びbは次の条件:1≦a+b≦3及び0.01≦a/(a+b)≦0.34、好ましくは2≦a+b≦3及び0.05≦a/(a+b)≦0.34を満たす数である。
 式(1)のRが表す紫外線反応性官能基は、光開始剤の存在下又は不存在下で、紫外線の照射によって互いの間に結合を生じることができる有機基である。紫外線反応性官能基の例として、ラジカル重合性基及びカチオン重合性基を挙げることができる。ラジカル重合性基はラジカル反応機構によって新たな結合、特にラジカル重合性基どうしの間の結合を形成しうる官能基であれば特に限定されないが、例えば、アクリル基、メタクリル基、マレイミド基、及びこれらいずれかの基を含有する有機基を挙げることができる。具体例としては、アクリルオキシプロピル、メタクリルオキシプロピル、アクリルアミドプロピル、メタクリルアミドプロピル、及び3-(N-マレイミド)プロピルなどの基がラジカル重合性基として挙げられる。カチオン重合性基としては、ビニルエーテル基、エポキシ基含有基、オキセタン基含有基などの基、例えば、CH2=CH-O-(CH2)n-(nは3~20の整数である)、グリシジルオキシ-(CH2)n-(nは3~20の整数である)、3,4-エポキシシクロヘキシル-(CH2)n-(nは2~20の整数である)などの基が挙げられる。
 紫外線反応性官能基はエポキシ基含有基であることが好ましい。特に好ましい基として、グリシジルオキシアルキル基、例えば、グリシジルオキシプロピル基、及びエポキシシクロヘキシルアルキル基、特に3,4-エポキシシクロヘキシルエチル基を挙げることができる。上記平均組成式で表される直鎖状、分岐状、又は環状のオルガノポリシロキサンは、一分子当たり平均して少なくとも2個の紫外線反応性官能基(R)を有する。紫外線硬化性基の数は、一分子当たり平均して、好ましくは2~6、さらに好ましくは2~4、特に好ましくは2~3個、最も好ましくは2個である。
 R’は一価の炭化水素基であり、これには非置換の一価炭化水素基及びフッ素で置換された一価炭化水素基が含まれる。非置換又はフッ素で置換された一価炭化水素基は、好ましくは炭素原子数が1~20の非置換又はフッ素で置換されたアルキル、シクロアルキル、アリールアルキル、及びアリール基から選択される基である。前記のアルキル基としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、tert-ブチル、sec-ブチル、ペンチル、オクチルなどの基が挙げられるが、メチル基が特に好ましい。前記シクロアルキル基としては、シクロペンチル、シクロヘキシルなどが挙げられる。前記アリールアルキル基としては、ベンジル、フェニルエチル基などが挙げられる。前記アリール基としてはフェニル基、ナフチル基などが挙げられる。フッ素で置換された一価炭化水素基の例としては、3,3,3-トリフルオロプロピル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基が挙げられる。フッ素で置換された一価炭化水素基としては3,3,3-トリフルオロプロピル基が好ましい。
 上記式(1)で表されるオルガノポリシロキサンは、その25℃における粘度が、1~1000mPa.s、1~500mPa・s、又は1~100mPa・s、最も好ましくは1~50mPa・sである。式(1)のa及びbの割合並びに分子量を変えることによってオルガノポリシロキサンの粘度を調節することができる。
 式(1)で表されるオルガノポリシロキサンは一分子当たり平均で好ましくは2~20個、さらに好ましくは2~5個のケイ素原子を有する。
 一つの好ましい態様では、成分(A1)のオルガノポリシロキサンは、
下記式(3):
Figure JPOXMLDOC01-appb-C000009
で表される化合物である。
 上記式(1)で表される化合物と同様に、式(3)で表されるオルガノポリシロキサンは、一分子当たり平均して2個以上の紫外線反応性官能基を有する。式(3)中、全てのR~R基のうち、一分子当たり平均して2つ以上は紫外線反応性官能基である。紫外線反応性官能基は、光開始剤の存在下又は不存在下で、紫外線の照射によって互いの間に結合を生じることができる有機基である。紫外線反応性官能基の例として、ラジカル重合性基及びカチオン重合性基を挙げることができる。ラジカル重合性基はラジカル反応機構によって新たな結合、特にラジカル重合性基どうしの間の結合を形成しうる官能基であれば特に限定されないが、例えば、アクリル基、メタクリル基、マレイミド基、及びこれらいずれかの基を含有する有機基を挙げることができる。具体例としては、アクリルオキシプロピル、メタクリルオキシプロピル、アクリルアミドプロピル、メタクリルアミドプロピル、及び3-(N-マレイミド)プロピルなどの基がラジカル重合性基として挙げられる。カチオン重合性基としては、ビニルエーテル基、エポキシ基含有基、オキセタン基含有基などの基、例えば、CH2=CH-O-(CH2)n-(nは3~20の整数である)、グリシジルオキシ-(CH2)n-(nは3~20の整数である)、3,4-エポキシシクロヘキシル-(CH2)n-(nは2~20の整数である)などの基が挙げられる。
 紫外線反応性官能基としては、1種以上のエポキシ基含有基であることが好ましい。特に好ましい基として、グリシジルオキシアルキル基、特に3-グリシジルオキシプロピル基、エポキシシクロヘキシルアルキル基、特に3,4-エポキシシクロヘキシルエチル基を挙げることができる。
 式(3)中、紫外線反応性官能基以外のRからRはそれぞれ独立に、非置換又はフッ素で置換された一価炭化水素基、好ましくは炭素原子数が1~20の非置換又はフッ素で置換されたアルキル、シクロアルキル、アリールアルキル、及びアリール基から選択される基である。前記のアルキル基としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、tert-ブチル、sec-ブチル、ペンチル、オクチルなどの基が挙げられるが、メチル基が特に好ましい。前記シクロアルキル基としては、シクロペンチル、シクロヘキシルなどが挙げられる。前記アリールアルキル基としては、ベンジル、フェニルエチル基などが挙げられる。前記アリール基としてはフェニル基、ナフチル基などが挙げられる。フッ素で置換された一価炭化水素基の例としては、3,3,3-トリフルオロプロピル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基が挙げられる。フッ素で置換された一価炭化水素基としては3,3,3-トリフルオロプロピル基が好ましい。式(3)のオルガノポリシロキサンにフッ素原子を導入することによって、本発明の組成物から得られる硬化物の屈折率をさらに低下させることができる場合がある。
 成分(A1)である式(3)のオルガノポリシロキサンが有する紫外線反応性官能基の数は、全体として一分子当たり平均して2~6、好ましくは2~5、さらに好ましくは2~4、特に好ましくは2~3であり、最も好ましくは2である。
 特に、式(3)中のR~Rのうち1つと、R~Rのうち1つが紫外線反応性官能基であることが好ましい。さらに、式(3)中のR~Rのうち一つと、R~Rのうち一つのみが紫外線反応性官能基であることが特に好ましい。
 式(3)のnは、式(3)で表されるオルガノポリシロキサンの25℃における粘度が好ましくは1~1000mPa・s、さらに好ましくは1~500mPa・s、特に好ましくは1~100mPa・s、最も好ましくは1~50mPa・sとなる値である。当業者であれば、式(3)のオルガノポリシロキサンの粘度が前述の粘度範囲となるように、nの値を過度の試行錯誤を必要とすることなく容易に決定することができる。しかし、一般には、式(3)の化合物が所望の粘度となるように、一分子当たりのケイ素原子の数が2~20、特に2~5であることが好ましい。
 式(3)のオルガノポリシロキサンは、1種で、又は2種以上の混合物として用いることができる。2種以上のオルガノポリシロキサンを混合物として用いる場合、その混合物の25℃における粘度が上述した粘度であることが好ましい。
 また、上記式(1)の化合物は、下記平均単位式(4)で表されるオルガノポリシロキサンであってもよい。
 平均単位式:
 (RSiO1/2)(RSiO2/2)(RSiO3/2)(SiO4/2) (4)
 式(4)中、Rは、それぞれ独立に、紫外線反応性官能基及び非置換又はフッ素で置換された一価炭化水素基から選ばれる基であり、全てのRのうち、少なくとも2個は紫外線反応性官能基であり、(g+h)は正数であり、eは0又は正数であり、fは0~10の範囲内の数である。
 紫外線反応性官能基及び一価炭化水素基は、上で式(1)について定義したとおりである。また、式(4)で表されるオルガノポリシロキサンの好ましい粘度も上において式(1)で表されるオルガノポリシロキサンについて規定したとおりである。
 式(4)で表されるオルガノポリシロキサンが有する紫外線反応性官能基の数は、一分子当たり、好ましくは2~5、さらに好ましくは2~4、特に好ましくは2~3であり、最も好ましくは2個である。
 式(4)で表されるオルガノポリシロキサンは、一分子当たり、2~20、特に2~5個のケイ素原子を有することが好ましい。
 上記式(1)、特に式(3)または式(4)で表されるオルガノポリシロキサンの具体例としては、1,3-ビス[2-(3,4-エポキシシクロヘキシル)エチル]-1,1,3,3-テトラメチルジシロキサン、1,5-ビス[2-(3,4-エポキシシクロヘキシル)エチル]-1,1,3,3,5,5-ヘキサメチルトリシロキサン、メチル(トリス[2-(3,4-エポキシシクロヘキシル)エチル]ジメチルシロキシ)シラン、テトラキス([2-(3,4-エポキシシクロヘキシル)エチル]ジメチルシロキシ)シラン、1,3-ビス(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサン、1,5-ビス(3-グリシドキシプロピル)-1,1,3,3,5,5-ヘキサメチルトリシロキサン、メチル[トリス(3-グリシドキシプロピル)ジメチルシロキシ]シラン、テトラキス[(3-グリシドキシプロピル)ジメチルシロキシ]シラン、両末端(3,4-エポキシシクロヘキシルエチルジメチルシリル)-ポリジメチルシロキサン、両末端(3-グリシドキシプロピルジメチルシリル)-ポリジメチルシロキサン、両末端トリメチルシリル-ジメチルシロキシ/(メチル-3,4-エポキシシクロヘキシルエチルシロキシ)共重合体、両末端トリメチルシリル-ジメチルシロキシ/(メチル-3-グリシドキシプロピルシロキシ)共重合体、両末端(3,4-エポキシシクロヘキシルエチルジメチルシリル)-ジメチルシロキシ/(メチル-3,4-エポキシシクロヘキシルエチルシロキシ)共重合体、両末端(3-グリシドキシプロピルジメチルシリル)-ジメチルシロキシ/(メチル-3-グリシドキシプロピルシロキシ)共重合体が挙げられる。
 また、上記式(1)の化合物は、下記式(5):
Figure JPOXMLDOC01-appb-C000010
(式中、Rは、それぞれ独立に、紫外線反応性官能基及び非置換又はフッ素で置換された一価炭化水素基から選ばれる基であり、xは、3~10の整数であり、分子中に少なくとも2個の紫外線反応性官能基を有する)で表される環状オルガノポリシロキサンであってもよい。
 式(5)のRが表しうる紫外線反応性官能基及び非置換又はフッ素で置換された一価炭化水素基は、前記式(1)について定義したとおりである。
 また、式(5)で表されるオルガノポリシロキサンの好ましい粘度も上において式(1)で表されるオルガノポリシロキサンについて規定したとおりである。
 式(5)で表される環状オルガノポリシロキサンの具体例としては、1,3,5-トリメチル-1,3,5-トリ[2-(3,4-エポキシシクロヘキシル)エチル]シクロトリシロキサン、1,3,5-トリメチル-1,3,5-トリ(3-グリシドキシプロピル)シクロトリシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラ[2-(3,4-エポキシシクロヘキシル)エチル]シクロテトラシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラ(3-グリシドキシプロピル)シクロテトラシロキサン、1,3,5,7,9-ペンタメチル-1,3,5,7,9-ペンタ[2-(3,4-エポキシシクロヘキシル)エチル]シクロペンタシロキサン、1,3,5,7,9-ペンタメチル-1,3,5,7,9-ペンタ(3-グリシドキシプロピル)シクロペンタシロキサンが挙げられる。
 上述した式(1)、(3)~(5)で表されるオルガノポリシロキサンは、それぞれ1種を単独で、又は任意に2種以上を組み合わせて成分(A1)として用いることができる。
 成分(A1)としては、特に、上記式(3)で表されるオルガノポリシロキサン、式(5)で表される環状オルガノポリシロキサン、及びそれらの組み合わせからなる群から選択される1種以上の有機ケイ素化合物を用いることが好ましい。
 成分(A1)は、成分(A1)全体の粘度が25℃において好ましくは、1~1000mPa・s、1~500mPa・s、1~100mPa・s、好適には1~50mPa・sである。
 成分(A1)は、成分(A2)及び/又は成分(B)と組み合わせて用いる場合、成分(A1)の粘度がある程度高粘度であっても、成分(A2)及び/又は成分(B)として低粘度の化合物を用いることによって、組成物全体として所望する粘度にすることができる。
 成分(A1)として特に好ましい化合物は、1,3-ビス[2-(3,4-エポキシシクロヘキシル)エチル]-1,1,3,3-テトラメチルジシロキサン、1,5-ビス[2-(3,4-エポキシシクロヘキシル)エチル]-1,1,3,3,5,5-ヘキサメチルトリシロキサン、メチル(トリス[2-(3,4-エポキシシクロヘキシル)エチル]ジメチルシロキシ)シラン、テトラキス([2-(3,4-エポキシシクロヘキシル)エチル]ジメチルシロキシ)シラン、1,3,5,7-テトラメチル-1,3,5,7-テトラ[2-(3,4-エポキシシクロヘキシル)エチル]-シクロテトラシロキサン、1,3-ビス(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサン、1,5-ビス(3-グリシドキシプロピル)-1,1,3,3,5,5-ヘキサメチルトリシロキサン、メチル[トリス(3-グリシドキシプロピル)ジメチルシロキシ]シラン、テトラキス[(3-グリシドキシプロピル)ジメチルシロキシ]シラン、及び1,3,5,7-テトラメチル-1,3,5,7-テトラ(3-グリシドキシプロピル)-シクロテトラシロキサンからなる群から選択される1つの化合物又は2以上の化合物の組み合わせである。
〔成分(A2):一分子中に1個の紫外線反応性官能基を有する有機ケイ素化合物〕
 成分(A2)は、オルガノシラン又はオルガノポリシロキサン骨格に、一分子中に1個の紫外線反応性官能基を有する有機ケイ素化合物であり、主に、本発明の組成物から得られる硬化物の架橋密度を制御し、硬化物の物性を調節し、同時に、当該組成物の粘度を低減させる効果を有する。この目的を達成できる限りその分子構造は任意のものであることができる。一例として、成分(A2)の有機ケイ素化合物は、
下記平均組成式;
  RR’SiO(4-c―d)/2 (2)
(式中、Rは、紫外線硬化性官能基であり、
 R’は、紫外線硬化性官能基を除く、一価炭化水素基、水酸基、及びアルコキシ基から選ばれる基であり、
 c及びdは次の条件:1≦c+d≦4及び0.05≦c/(c+d)≦0.25を満たす数である。また、分子中のRの数は1である。)
で表されるオルガノシラン、あるいは直鎖状、分岐状、又は環状のオルガノポリシロキサンである。これらのオルガノシラン及びオルガノポリシロキサンからなる群から選択される1種を用いることも、任意の2種以上を組み合わせて用いることもできる。
 式(2)のRが表す紫外線反応性官能基は、光開始剤の存在下又は不存在下で、紫外線の照射によって互いの間に結合を生じることができる有機基である。紫外線反応性官能基の例として、ラジカル重合性基及びカチオン重合性基を挙げることができる。ラジカル重合性基はラジカル反応機構によって新たな結合、特にラジカル重合性基どうしの間の結合を形成しうる官能基であれば特に限定されないが、例えば、アクリル基、メタクリル基、マレイミド基、及びこれらいずれかの基を含有する有機基を挙げることができる。具体例としては、アクリルオキシプロピル、メタクリルオキシプロピル、アクリルアミドプロピル、メタクリルアミドプロピル、及び3-(N-マレイミド)プロピルなどの基がラジカル重合性基として挙げられる。カチオン重合性基としては、ビニルエーテル基、エポキシ基含有基、オキセタン基含有基などの基、例えば、CH2=CH-O-(CH2)n-(nは3~20の整数である)、グリシジルオキシ-(CH2)n-(nは3~20の整数である)、3,4-エポキシシクロヘキシル-(CH2)n-(nは2~20の整数である)などの基が挙げられる。
 紫外線反応性官能基としては、1種以上のエポキシ基含有基であることが好ましい。特に好ましい基として、グリシジルオキシアルキル基、特に、グリシジルオキシプロピル基、エポキシシクロヘキシルアルキル基、特に3,4-エポキシシクロヘキシルエチル基を挙げることができる。上記平均組成式で表される有機ケイ素化合物は、一分子中1個の紫外線反応性官能基(R)を有する。
 式(2)のR’が表す一価炭化水素基は、それぞれ独立に、非置換の一価炭化水素基とフッ素で置換された一価炭化水素基からなる群から選択される基である。非置換又はフッ素で置換された一価炭化水素基は、好ましくは炭素原子数が1~20の非置換又はフッ素で置換されたアルキル、シクロアルキル、アリールアルキル、及びアリール基から選択される基である。前記のアルキル基としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、tert-ブチル、sec-ブチル、ペンチル、オクチルなどの基が挙げられるが、メチル基が特に好ましい。前記シクロアルキル基としては、シクロペンチル、シクロヘキシルなどが挙げられる。前記アリールアルキル基としては、ベンジル、フェニルエチル基などが挙げられる。前記アリール基としてはフェニル基、ナフチル基などが挙げられる。フッ素で置換された一価炭化水素基の例としては、3,3,3-トリフルオロプロピル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基が挙げられる。フッ素で置換された一価炭化水素基としては3,3,3-トリフルオロプロピル基が好ましい。式(2)のオルガノポリシロキサンにフッ素原子を導入することによって、本発明の組成物から得られる硬化物の屈折率をさらに低下させることができる場合がある。
 上記式(2)で表される有機ケイ素化合物は、その25℃における粘度が1~500mPa・sであることが好ましく、1~100mPa・sであることがさらに好ましく、1~50mPa・sであることが特に好ましい。式(2)のc及びdの割合並びに分子量を変えることによって、有機ケイ素化合物の粘度を調節することができる。
 上記式(2)で表される有機ケイ素化合物は一分子当たり1~20個、好ましくは1~4個のケイ素原子を有する化合物であることが好ましい。
 一つの好ましい態様では、成分(A2)の有機ケイ素化合物は、
下記式(3’):
Figure JPOXMLDOC01-appb-C000011
で表されるオルガノポリシロキサン化合物である。
 上記式(2)で表される化合物と同様に、式(3’)で表されるオルガノポリシロキサンは、全てのR~R基のうち1つが紫外線反応性官能基である。
 上記式(2)で表される化合物と同様に、紫外線反応性官能基は、光開始剤の存在下又は不存在下で、紫外線の照射によって互いの間に結合を生じることができる有機基である。紫外線硬化性官能基の例として、ラジカル重合性基及びカチオン重合性基を挙げることができる。ラジカル重合性基はラジカル反応機構によって新たな結合、特にラジカル重合性基どうしの間の結合を形成しうる官能基であれば特に限定されないが、例えば、アクリル基、メタクリル基、マレイミド基、及びこれらいずれかの基を含有する有機基を挙げることができる。具体例としては、アクリルオキシプロピル、メタクリルオキシプロピル、アクリルアミドプロピル、メタクリルアミドプロピル、及び3-(N-マレイミド)プロピルなどの基がラジカル重合性基として挙げられる。カチオン重合性基としては、ビニルエーテル基、エポキシ基含有基、オキセタン基含有基などの基、例えば、CH2=CH-O-(CH2)n-(nは3~20の整数である)、グリシジルオキシ-(CH2)n-(nは3~20の整数である)、3,4-エポキシシクロヘキシル-(CH2)n-(nは2~20の整数である)などの基が挙げられる。
 紫外線反応性官能基としては、1種以上のエポキシ基含有基であることが好ましい。特に好ましい基として、グリシジルオキシアルキル基、例えば、グリシジルオキシプロピル基、エポキシシクロヘキシルアルキル基、特に3,4-エポキシシクロヘキシルエチル基を挙げることができる。
 式(3’)中、紫外線反応性官能基以外のRからRはそれぞれ独立に、非置換又はフッ素で置換された一価炭化水素基、好ましくは炭素原子数が1~20の非置換又はフッ素で置換されたアルキル、シクロアルキル、アリールアルキル、及びアリール基から選択される基である。前記のアルキル基としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、tert-ブチル、sec-ブチル、ペンチル、オクチルなどの基が挙げられるが、メチル基が特に好ましい。前記シクロアルキル基としては、シクロペンチル、シクロヘキシルなどが挙げられる。前記アリールアルキル基としては、ベンジル、フェニルエチル基などが挙げられる。前記アリール基としてはフェニル基、ナフチル基などが挙げられる。フッ素で置換された一価炭化水素基の例としては、3,3,3-トリフルオロプロピル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基が挙げられる。フッ素で置換された一価炭化水素基としては3,3,3-トリフルオロプロピル基が好ましい。式(3’)のオルガノポリシロキサンにフッ素原子を導入することによって、本発明の組成物から得られる硬化物の屈折率をさらに低下させることができる場合がある。
 式(3’)で表されるオルガノポリシロキサンは、一分子中1個の紫外線反応性官能基を有する。
 式(3’)で表されるオルガノポリシロキサン中の紫外線硬化性官能基の位置については制限がなく、分子末端基、すなわちR~Rのうち1つ、またはR~Rのうち1つのみが紫外線反応性官能基であってもよく、また、式(3’)中の非末端基R~Rのうち一つのみを紫外線反応性官能基とすることもできる。
 式(3’)のnは、式(3’)で表されるオルガノポリシロキサンの25℃における粘度が1~500mPa・sとなる値であることが好ましく、1~100mPa・sとなる値であることがさらに好ましく、1~50mPa・sとなる値であることが特に好ましい。当業者であれば、式(3’)のオルガノポリシロキサンの粘度が前述の粘度範囲となるように、nの値を過度の試行錯誤を必要とすることなく容易に決定することができる。一般には、式(3’)の化合物が所望の粘度となるように、一分子当たりのケイ素原子の数が2~20であることが好ましく、2~5であることがさらに好ましい。
 式(3’)のオルガノポリシロキサンは、1種で、又は2種以上の混合物として用いることができる。2種以上のオルガノポリシロキサンを混合物として用いる場合、その混合物の25℃における粘度が1~500mPa・s、好ましくは1~100mPa・s、さらに好ましくは1~50mPa・s、特に好ましくは5~20mPa・sである。
  式(3’)で表される、紫外線反応性官能基を分子中に1個有するオルガノポリシロキサンの具体例としては、1-[2-(3,4-エポキシシクロヘキシル)エチル]-1,1,3,3,3-ペンタメチルジシロキサン、1-[2-(3,4-エポキシシクロヘキシル)エチル]-1,1,3,3,5,5,5-ヘプタメチルトリシロキサン、3-[2-(3,4-エポキシシクロヘキシル)エチル]-1,1,1,3,5,5,5-ヘプタメチルトリシロキサン、及び1-[2-(3,4-エポキシシクロヘキシル)エチル]-1,1,3,3,5,5,7,7,7-ノナメチルテトラシロキサン、1-(3-グリシドキシプロピル)-1,1,3,3,3-ペンタメチルジシロキサン、1-(3-グリシドキシプロピル)-1,1,3,3,5,5,5-ヘプタメチルトリシロキサン、3-(3-グリシドキシプロピル)-1,1,1,3,5,5,5-ヘプタメチルトリシロキサン、及び1-(3-グリシドキシプロピル)-1,1,3,3,5,5,7,7,7-ノナメチルテトラシロキサンが挙げられる。
 また、上記式(2)の有機ケイ素化合物は、下記式(4’)で表される環状オルガノポリシロキサンであってもよい。
 式:
Figure JPOXMLDOC01-appb-C000012
 式(4’)中、Rは、それぞれ独立に、紫外線反応性官能基及び非置換又はフッ素で置換された一価炭化水素基から選ばれる基であり、xは、3~5の整数であり、分子中に1個のみの紫外線反応性官能基を有する。
 紫外線反応性官能基及び一価炭化水素基は、上記式(2)について定義したとおりである。
 式(4’)で表される環状オルガノポリシロキサンの好ましい粘度も上において式(2)で表されるオルガノポリシロキサンについて規定したとおりである。したがって、25℃における粘度が1~500mPa・sであることが好ましく、1~100mPa・sであることがさらに好ましく、1~50mPa・sであることが特に好ましい。
 式(4’)で表される環状オルガノポリシロキサンの具体例としては、[2-(3,4-エポキシシクロヘキシル)エチル]-ペンタメチルシクロトリシロキサン、[2-(3,4-エポキシシクロヘキシル)エチル]-ヘプタメチルシクロテトラシロキサン、[2-(3,4-エポキシシクロヘキシル)エチル]-ノナメチルシクロペンタシロキサン、3-グリシドキシプロピル-ペンタメチルシクロトリシロキサン、3-グリシドキシプロピル-ヘプタメチルシクロテトラシロキサン、3-グリシドキシプロピル-ノナメチルシクロペンタシロキサンが挙げられる。
 さらに、成分(A2)は、下記式(5’)で表されるオルガノシランであってもよい。
 式: RSiR’  (5’)
 式(5’)中、Rは、紫外線反応性官能基であり、R’は、紫外線反応性官能基を除く一価炭化水素基、水酸基、及びアルコキシ基から選ばれる基である。
 紫外線反応性官能基及び一価炭化水素基は、前記式(2)について定義したとおりであり、アルコキシ基は、炭素数1~20、好ましくは炭素数1~6、さらに好ましくは炭素数1~3のアルコキシ基、あるいは炭素数5~20のシクロアルキル基である。具体的には、メトキシ基、エトキシ基、イソプロポキシ基、シクロペンチル基、又はシクロヘキシル基が好ましい。
 また、式(5’)で表されるオルガノシランの好ましい粘度は、先に式(2)で表されるオルガノポリシロキサンについて規定した粘度と同じである。したがって、25℃における粘度が1~500mPa・sであることが好ましく、1~100mPa・sであることがさらに好ましく、1~50mPa・sであることが特に好ましい。
 式(5’)で表されるオルガノシランの具体例としては、[2-(3,4-エポキシシクロヘキシル)エチル]トリエチルシラン、[2-(3,4-エポキシシクロヘキシル)エチル]ジメチルフェニルシラン、[2-(3,4-エポキシシクロヘキシル)エチル]ジメチルオクチルシラン、[2-(3,4-エポキシシクロヘキシル)エチル]ジメチルシクロヘキシルシラン、[2-(3,4-エポキシシクロヘキシル)エチル]トリヘキシルシラン、[2-(3,4-エポキシシクロヘキシル)エチル]トリブチルシラン、3-グリシドキシプロピルトリエチルシラン、3-グリシドキシプロピルジメチルフェニルシラン、3-グリシドキシプロピルジメチルオクチルシラン、3-グリシドキシプロピルジメチルシクロヘキシルシラン、3-グリシドキシプロピルトリヘキシルシラン、3-グリシドキシプロピルトリブチルシランが挙げられる。
 上述した式(2)、(3’)、(4’)、または(5’)で表される有機ケイ素化合物は、それぞれ1種を単独で、又は任意に2種以上を組み合わせて用いることができる。すなわち、式(2)、(3’)、(4’)、または(5’)で表される有機ケイ素化合物、及びそれらから任意に選択される2種以上の混合物を、本発明の組成物の成分(A2)として用いることができる。
 成分(A2)として、式(3’)で表されるオルガノポリシロキサン、式(4’)で表される環状オルガノポリシロキサン、及びそれらの組み合わせから選択される有機ケイ素化合物を用いることが好ましい。
 成分(A2)として、1,1,1,3,5,5,5-ヘプタメチル-3-[2-(3,4-エポキシシクロヘキシル)エチル]トリシロキサンを用いることが特に好ましい。
 成分(A)として上記成分(A1)のみ、又は上記成分(A2)のみを用いること、あるいは成分(A1)と成分(A2)を併用することができ、上記成分(A1)及び(A2)の質量比は100/0~0/100(A1/A2)の範囲の任意の質量比であってよいが、成分(A1)と成分(A2)の総量100質量%に対し、成分(A2)の割合が50質量%以上、好ましくは65質量%以上、さらに好ましくは70質量%以上、最も好ましくは75質量%以上である。
 また、本発明の硬化性組成物は、組成物全体の質量に対して、成分(A)の比率が80質量%以上、好ましくは85質量%以上、特に90質量%以上であることが好ましい。本発明の硬化性組成物は成分(A)のみからなるものでもよく、従って、この比率の上限は100質量%である。
 成分(A)として成分(A1)と成分(A2)を併用する場合、成分(A1)として以下の化合物:
1,3-ビス[2-(3,4-エポキシシクロヘキシル)エチル]-1,1,3,3-テトラメチルジシロキサン、1,5-ビス[2-(3,4-エポキシシクロヘキシル)エチル]-1,1,3,3,5,5-ヘキサメチルトリシロキサン、メチル(トリス[2-(3,4-エポキシシクロヘキシル)エチル]ジメチルシロキシ)シラン、テトラキス([2-(3,4-エポキシシクロヘキシル)エチル]ジメチルシロキシ)シラン、1,3,5,7-テトラメチル-1,3,5,7-テトラ[2-(3,4-エポキシシクロヘキシル)エチル]-シクロテトラシロキサン、1,3-ビス(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサン、1,5-ビス(3-グリシドキシプロピル)-1,1,3,3,5,5-ヘキサメチルトリシロキサン、メチル[トリス(3-グリシドキシプロピル)ジメチルシロキシ]シラン、テトラキス[(3-グリシドキシプロピル)ジメチルシロキシ]シラン、及び1,3,5,7-テトラメチル-1,3,5,7-テトラ(3-グリシドキシプロピル)-シクロテトラシロキサン
からなる群から選択される1種の化合物又は2種以上の化合物の組み合わせと、成分(A2)として1,1,1,3,5,5,5-ヘプタメチル-3-[2-(3,4-エポキシシクロヘキシル)エチル]トリシロキサンを併用することが好ましく、成分(A2)と成分(A1)の質量比は、好ましくは100/0~20/80(A2/A1)、さらに好ましくは100/0~50/50、特に好ましくは100/0~75/25の範囲である。しかし、この成分(A1)と成分(A2)の質量比は特に好ましい範囲を規定した値であって、上記の成分(A1)のみを用いて、本発明の硬化性組成物を調製することもできる。
 本発明の硬化性組成物が、成分(A)として(A2)1,1,1,3,5,5,5-ヘプタメチル-3-[2-(3,4-エポキシシクロヘキシル)エチル]トリシロキサンを含む場合、その量は硬化性組成物全体の質量の50~95%の範囲内であり、好ましくは65~95%、さらに好ましくは75~95%の範囲である。
 成分(A)として、上述した成分(A1)と成分(A2)を併用する場合は、成分(A1)が有する紫外線反応性官能基と成分(A2)が有する紫外線反応性官能基は同種の反応性官能基であることが好ましい。したがって、成分(A1)が有する紫外線反応性官能基がラジカル重合性基である場合には、成分(A2)が有する紫外線反応性官能基もラジカル重合性基であることが好ましい。また、成分(A1)が有する紫外線反応性官能基がカチオン重合性基である場合には、成分(A2)が有する紫外線反応性官能基もカチオン重合性基であることが好ましい。成分(A1)及び(A2)が両方とも紫外線反応性官能基としてカチオン重合性反応基を有することが好ましい。
〔成分(B):一分子中に1個以上の紫外線反応性官能基を有し、ケイ素原子を有しない化合物〕
 本発明の硬化性組成物には、上記成分(A)、あるいは成分(A1)及び/又は成分(A2)に加えて、一分子中に1個以上の紫外線反応性官能基を有し且つケイ素原子を有しない化合物(成分(B))をさらに添加してもよい。特に成分(A)として成分(A2)のみを用いる場合には、成分(A2)に加えて成分(B)を用いることが好ましい。成分(A2)に成分(B)を併用することによって、組成物の硬化性が改善される場合がある。
 成分(B)が有する紫外線反応性官能基は、成分(A)、(A1)、及び(A2)に関連して挙げたものと同じものであることができる。成分(B)と成分(A)、成分(A1)、及び成分(A2)との違いは、後者は分子内にケイ素原子を有するのに対して、成分(B)は分子内にケイ素原子を有しない点である。分子内にケイ素原子を含まず、上述した紫外線反応性官能基を分子内に1つ以上有する化合物であれば、その化学構造は特に限定されず任意の化合物を成分(B)として用いることができる。
 成分(B)としては、分子内にエポキシ基を有する有機化合物、特にエポキシ基を有し、環状構造を有さない化合物を用いることができる。成分(B)の好ましい具体例としては、2-エチルヘキシルグリシジルエーテル、グリシジルラウリルエーテル、エチレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,2-エポキシデカン、1,2-エポキシドデカン、及び1,7-オクタジエンジエポキシドを挙げることができるが、これらに限定されない。成分(B)としては、1,2-エポキシドデカン、1,7-オクタジエンジエポキシド、1,4-ブタンジオールジグリシジルエーテルが特に好ましい。
 成分(B)として、分子内に紫外線反応性官能基としてラジカル重合性反応基を有する有機化合物も挙げることができる。その具体例としては、分子内にラジカル重合性反応基を1個有する公知の(メタ)アクリル酸エステル化合物、ラジカル重合性反応基を2個以上有する(メタ)アクリル酸エステル化合物が挙げられる。
 成分(B)が有する紫外線反応性官能基は、成分(B)と組み合わせて用いる成分(A)あるいは成分(A1)及び/又は成分(A2)が有する紫外線反応性官能基と同種の官能基であることが好ましい。したがって、例えば、成分(A1)及び/又は成分(A2)が有する紫外線反応性官能基がラジカル重合性基である場合には、成分(B)が有する紫外線反応性官能基もラジカル重合性基であることが好ましい。また、成分(A1)及び/又は成分(A2)が有する紫外線反応性官能基がカチオン重合性基である場合には、成分(B)が有する紫外線反応性官能基もカチオン重合性基であることが好ましい。成分(A1)及び/又は成分(A2)と成分(B)は、両方とも紫外線反応性官能基としてカチオン重合性反応基、特に好ましくはエポキシ基を有することが好ましい。
 成分(B)の粘度は、25℃において、好ましくは1~1000mPa・s、さらに好ましくは1~500mPa.s、特に好ましくは1~100mPa・s、最も好ましくは1~50mPa・sである。
 上記成分(A1)及び/又は(A2)に加えて、成分(B)を用いる場合には、本発明の硬化性組成物に含まれる成分(A1)、(A2)、及び成分(B)の合計量に対する成分(B)の質量比率は、20%未満、好ましくは10%未満、特に好ましくは5%未満である。
〔有機溶剤を含まない組成物〕
 本明細書において、有機溶剤を含まないとは、有機溶剤の含有量が組成物全体の0.05質量%未満であり、好ましくは、ガスクロマトグラフィーなどの分析方法を使用して分析限界以下であることをいう。本発明においては、成分(A)及び成分(B)の分子構造及び分子量を調節することによって、有機溶剤を用いなくても、所望の粘度を達成することができる。
〔光重合開始剤〕
 本発明の紫外線硬化性組成物には、上記成分(A)に加えて、所望により光重合開始剤を添加することができる。その場合、成分(A)が有する紫外線反応性官能基がエポキシ又はビニルエーテルなどを含むカチオン重合性官能基である場合には、光重合開始剤として、光カチオン重合開始剤を用いる。光カチオン重合開始剤としては、紫外線又は電子線の照射によってブレンステッド酸又はルイス酸を生成することができる化合物、いわゆる光酸発生剤が公知であり、紫外線などの照射によって酸が発生し、その酸がカチオン重合性官能基どうしの反応を引き起こすことが知られている。また、紫外線反応性官能基がラジカル重合性官能基である場合は、光重合開始剤として光ラジカル重合開始剤を用いることができる。光ラジカル重合開始剤は、紫外線又は電子線の照射によってフリーラジカルが発生し、それがラジカル重合反応を引き起こして本発明の組成物を硬化させることができる。電子線照射によって本発明の組成物を硬化させる場合には、重合開始剤は通常不要である。
(1)光カチオン重合開始剤
 本発明の硬化性組成物に用いる光カチオン重合開始剤は、当技術分野で公知のものから任意に選択して用いることができ、特に特定のものに限定されない。光カチオン重合開始剤には、ジアゾニウム塩、スルホニウム塩、ヨードニウム塩、ホスホニウム塩などの強酸発生化合物が知られており、これらを用いることができる。光カチオン重合開始剤の例として、ビス(4-tert-ブチルフェニル)ヨードニウム ヘキサフルオロホスフェート、シクロプロピルジフェニルスルホニウム テトラフルオロボレート、ジメチルフェナシルスルホニウム テトラフルオロボレート、ジフェニルヨードニウム ヘキサフルオロホスフェート、ジフェニルヨードニウム ヘキサフルオロアルセナート、ジフェニルヨードニウム テトラフルオロメタンスルホネート、2-(3,4-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-[2-(フラン-2-イル)ビニル]-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、4-イソプロピル-4’-メチルジフェニルヨードニウム テトラキス(ペンタフルオロフェニル)ボレート、2-[2-(5-メチルフラン-2-イル)ビニル]-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシスチリル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、4-ニトロベンゼンジアゾニウム テトラフルオロボレート、トリフェニルスルホニウム テトラフルオロボレート、トリフェニルスルホニウムブロマイド、トリ-p-トリルスルホニウム ヘキサフルオロホスフェート、トリ-p-トリルスルホニウム トリフルオロメタンスルホネート、ジフェニルヨードニウム トリフラート、トリフェニルスルホニウム トリフラート、ジフェニルヨードニウム ナイトレート、ビス(4-tert-ブチルフェニル)ヨードニウム パーフルオロ-1-ブタンスルホネート、ビス(4-tert-ブチルフェニル)ヨードニウム トリフラート、トリフェニルスルホニウムパーフルオロ-1-ブタンスルホナート、N-ヒドロキシナフタルイミド トリフラート、p-トルエンスルホネート、ジフェニルヨードニウム p-トルエンスルホネート、(4-tert-ブチルフェニル)ジフェニルスルホニウム トリフラート、トリス(4-tert-ブチルフェニル)スルホニウム トリフラート、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシミド ペルフルオロ-1-ブタンスルホナート、(4-フェニルチオフェニル)ジフェニルスルホニウム トリフラート、及び4-(フェニルチオ)フェニルジフェニルスルホニウム トリエチルトリフルオロホスフェートなどが挙げられるがこれらに限定されない。光カチオン重合開始剤として、上記化合物のほかにも、Omnicat 250、Omnicat 270(以上、IGM Resins B.V.社)、CPI-310B, IK-1(以上、サンアプロ株式会社)、DTS-200 (みどり化学株式会社)、及びIrgacure 290(BASF社)などの市販されている光開始剤を挙げることができる。
 本発明の硬化性組成物に添加する光カチオン重合開始剤の量は、目的とする光硬化反応が起こる限り、特に限定されないが、一般的には、本発明の成分(A)の合計量に対して0.1~10質量%、好ましくは0.2~5質量%、特に0.5~4質量%の量で、光カチオン重合開始剤を用いることが好ましい。
 成分(A)が有する紫外線反応性官能基がエポキシ基などの光カチオン重合性開始剤である場合、重合開始剤として上述した光カチオン重合開始剤に加えて、以下で述べる光ラジカル重合開始剤を併用することもできる。両方の開始剤を併用することによって紫外線硬化性オルガノポリシロキサン組成物の硬化性が向上する場合がある。 
(2)光ラジカル重合開始剤
 光ラジカル重合開始剤は、大きく分けて光開裂型と水素引き抜き型のものが知られているが、本発明の組成物に用いる光ラジカル重合開始剤は、当技術分野で公知のものから任意に選択して用いることができ、特に特定のものに限定されない。光ラジカル重合開始剤の例としては、アセトフェノン、p-アニシル、ベンジル、ベンゾイン、ベンゾフェノン、2-ベンゾイル安息香酸、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾインエチルエーテル、4-ベンゾイル安息香酸、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、メチル2-ベンゾイルベンゾエート、2-(1,3-ベンゾジオキソール-5-イル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-ベンジル-2-(ジメチルアミノ)-4’-モルホリノブチロフェノン、(±)-カンファーキノン、2-クロロチオキサントン、4,4’-ジクロロベンゾフェノン、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,4-ジエチルチオキサンテン-9-オン、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、エチル(2,4,6-トリメチルベンゾイル)フェニルホスフィネート、1,4-ジベンゾイルベンゼン、2-エチルアントラキノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-4’-(2-ヒドロキシエトキシ)-2-メチルプロピオフェノン、2-イソプロピルチオキサントン、リチウム フェニル(2,4,6-トリメチルベンゾイル)ホスフィナート、2-メチル-4’-(メチルチオ)-2-モルホリノプロピオフェノン、2-イソニトロソプロピオフェノン、2-フェニル-2-(p-トルエンスルホニルオキシ)アセトフェノン、及びフェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシドなどが挙げられるがこれらに限定されない。また、光ラジカル重合開始剤として上記化合物の他に、Omnirad 651, 184, 1173, 2959, 127, 907, 369, 369E, 及び379EG(アルキルフェノン系光重合開始剤、IGM Resins B.V.社)、Omnirad TPO H, TPO-L,及び819(アシルフォスフィンオキサイド系光重合開始剤、IGM RESINS B.V.社)、Omnirad MBF及び754(分子内水素引き抜き型光重合開始剤、IGM Resins B.V.社)、Irgacure OXE01及びOXE02(オキシムエステル系非会重合開始剤、BASF社)などの開始剤を挙げることができる。
 本発明の組成物に添加する光ラジカル重合開始剤の量は、目的とする光重合反応あるいは光硬化反応が起こる限り、特に限定されないが、一般的には、本発明の組成物の総質量に対して0.01~5質量%、好ましくは0.05~1質量%の量で用いられる。
 また、上記光カチオン重合開始剤又は光ラジカル重合開始剤と組み合わせて光増感剤を用いることもできる。増感剤の使用は、重合反応の光量子効率を高めることができ、光開始剤のみを用いた場合と比べて、より長波長の光を重合反応に利用できるようになるために、組成物のコーティング厚さが比較的厚い場合、又は比較的長波長のLED光源を使用する場合に特に有効であることが知られている。増感剤としては、アントラセン系化合物、フェノチアジン系化合物、ペリレン系化合物、シアニン系化合物、メロシアニン系化合物、クマリン系化合物、ベンジリデンケトン系化合物、(チオ)キサンテンあるいは(チオ)キサントン系化合物、例えば、イソプロピルチオキサントン、2,4-ジエチルチオキサントン、スクアリウム系化合物、(チア)ピリリウム系化合物、ポルフィリン系化合物などが知られており、これらに限らず任意の光増感剤を本発明の硬化性組成物に用いることができる。
 本発明の硬化性組成物から得られる硬化物は、成分(A)あるいは成分(A1)及び/又は成分(A2)の分子鎖長、一分子当たりの紫外線反応性官能基の数、分子内の紫外線反応性官能基の位置、及び分子構造に応じて、所望する硬化物の物性、及び硬化性組成物の硬化速度が得られ、硬化性組成物の粘度が所望の値になるように設計可能である。また、本発明の硬化性組成物を硬化させて得られる硬化物も、本発明の範囲に包含される。さらに、本発明の組成物から得られる硬化物の形状は特に制限されず、薄膜状のコーティング層であってもよく、シート状等の成型物であってもよく、未硬化状態で特定の部位に注入して硬化させ、充填物を形成させてもよく、積層体又は表示装置等のシール材、中間層として使用してもよい。本発明の組成物から得られる硬化物は、薄膜状のコーティング層の形態であることが特に好ましく、絶縁性コーティング層であることが特に好ましい。
 本発明の硬化性組成物は、コーティング剤又はポッティング剤、特に、電子デバイス及び電気デバイスのための絶縁性コーティング剤又はポッティング剤として用いるのに適している。
 本発明の硬化性組成物は、E型粘度計を用いて25℃で測定した組成物全体の粘度が80mPa・s以下、好ましくは30mPa.s以下、さらに好ましくは20mPa.s以下であることが好ましい。
 本発明の硬化性組成物を硬化させて得られる硬化物は、25℃、波長589nmで測定した屈折率が1.45以下であるという特徴を有する。
 所望により、本発明の硬化性組成物を硬化させて得られる硬化物は、その比誘電率が、3.0未満、2.8未満等となるように設計することができ、本発明の硬化性組成物は低い比誘電率を有するコーティング層を形成することにも利用可能である。
 本発明の硬化性組成物をコーティング剤として用いる場合に、組成物を基材に適用するために適した流動性及び作業性を備えているためには、組成物全体の粘度が、E型粘度計を使用して測定して、25℃において好ましくは80mPa・s以下、より好ましくは1~60mPa・s、さらに好ましくは5~30mPa・s、特に好ましくは5~20mPa・sである。硬化性組成物全体の粘度を所望の粘度に調整するためには、組成物全体の粘度が所望する粘度を有するように、好ましい粘度を有する化合物を各成分として用いることができる。
 硬化性組成物の粘度の調整、塗布性の向上、および硬化物物性の調整を行うために、上述した成分(B)である一分子中に1個以上の紫外線反応性官能基を有し、ケイ素原子を含有しない化合物を組成物に添加してもよく、あるいはその添加量を調節してもよい。本発明の硬化性組成物中の成分(B)の含有量は、屈折率の増加を抑制するため、成分(A)及び成分(B)の合計に対する成分(B)の質量比率が50%未満となる量であることが好ましい。成分(A)及び(B)の合計に対して成分(B)の質量比率が20%未満であることが好ましく、10%未満であることがより好ましく、5%未満であることがさらに好ましい。
〔成分(C)〕
 本発明の紫外線硬化性オルガノポリシロキサン組成物をコーティング剤として基材表面に任意の方法を用いて適用したときに、基材への組成物の濡れ性を向上させて、欠陥のない塗膜を形成させるためには、上述した成分を含む本発明の組成物にさらに以下のものから選択される成分(C)を添加することができる。本発明の組成物を基材にコーティングするための方法として、インクジェット印刷法を使用することが特に好ましい。したがって、成分(C)は、本発明の紫外線硬化性オルガノポリシロキサン組成物の基材への濡れ性を向上させ、特にインクジェット印刷特性を著しく改良せしめる成分である。成分(C)は、以下の(C1)、(C2)、および(C3)からなる群より選択される少なくとも1種の化合物である。
 (i)成分(C1)
 成分(C1)は、ケイ素原子を含まず、アクリル系でない非イオン性界面活性剤、すなわち非アクリル系非イオン性界面活性剤である。非アクリル系とは、界面活性剤がその分子内に(メタ)アクリレート基を有していないものをいう。成分(C1)として用いることができる界面活性剤として、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、アルキルグリコシド、アセチレングリコールポリエーテル等の有機系非イオン性界面活性剤、およびフッ素系非イオン性界面活性剤等を挙げることができ、これらの1種又は2種以上を組み合わせて用いることができる。成分(C1)の具体例としては、有機系非イオン性界面活性剤として花王株式会社製エマルゲンシリーズ、同レオドールシリーズ、エボニックインダストリーズ製サーフィノール400シリーズ、日信化学工業株式会社製オルフィンEシリーズが挙げられ、フッ素系非イオン性界面活性剤として3M製FC-4400シリーズ、DIC株式会社製メガファック550および560シリーズが挙げられる。
 これらの中でも、特にアルキノールポリエーテルである、サーフィノール400シリーズ、オルフィンEシリーズが好ましい。
 (ii)成分(C2)は、ケイ素原子を含み、HLB値が4以下の非イオン性界面活性剤である。ここで、HLB値とは、界面活性剤の水と有機化合物への親和性の程度を表す値であり、ここではHLB価として、グリフィン法で定義する値(20×親水部の式量の総和/分子量)を用いる。親水部としてポリエーテルを有するシリコーンポリエーテル、親水部として(ジ)グリセロール誘導体を有するグリセロールシリコーン、親水部としてヒドロキシエトキシ基を有するカルビノールシリコーン等がケイ素含有非イオン性界面活性剤として知られている。これらの界面活性剤の中で、HLB値が4以下のもの、すなわち、親水部の質量分率が20質量%以下のものを、本発明の組成物に用いることが好ましい。これらの中でも、特にカルビノールシリコーンが好ましい。
 (iii)成分(C3)は、25℃における粘度が90mPa・s以下のシリコーンオイルである。シリコーンオイルとしては、両末端トリメチルシリル-ポリジメチルシロキサン、両末端ジメチルビニルシリル-ポリジメチルシロキサン、両末端トリメチルシリル-ジメチルシロキシ/メチルビニルシロキシ共重合体、両末端ジメチルビニルシリル-ジメチルシロキシ/メチルビニルシロキシ共重合体、両末端トリメチルシリル-ジメチルシロキシ/メチルフェニルシロキシ共重合体、両末端トリメチルシリル-ジメチルシロキシ/ジフェニルシロキシ共重合体、両末端ジメチルビニルシリル-ジメチルシロキシ/メチルフェニルシロキシ共重合体、両末端ジメチルビニルシリル-ジメチルシロキシ/ジフェニルシロキシ共重合体等が挙げられるが、両末端トリメチルシリル-ポリジメチルシロキサン、両末端ジメチルビニルシリル-ポリジメチルシロキサンが好ましく使用できる。当該シリコーンオイルの好ましい粘度範囲は、2~50mPa・s、より好ましい範囲は2~30mPa・s、さらに好ましい粘度範囲は5~20mPa・sである。なお、ここでの粘度の値は実施例に記載した回転粘度計を使用して25℃において測定した値である。
 上述した成分(C1)~(C3)はそれらのうちの1つ又は2つ以上の組み合わせを用いることができる。硬化性組成物への成分(C)の配合量は特に限定されないが、上述した成分(A)と、存在する場合には成分(B)との合計量を100質量%として、その合計量に対して成分(C1)~(C3)の合計(これらをまとめて成分(C)という)が0.05質量%以上かつ1質量%以下であることが好ましい。成分(C)の量が成分(A)及び(B)の合計量100質量%に対して0.05質量%未満であると、硬化性組成物の基材への濡れ性を向上させる効果が十分得られない場合があり、また、成分(C)の量が成分(A)及び(B)の合計量100質量%に対して1質量%を超えると、硬化後に硬化物から成分(C)のブリードアウトが起こるおそれがあるからである。
 成分(C)として、成分(C3)のシリコーンオイルを単独で、又は成分(C3)を成分(C1)及び成分(C2)からなる群から選択される1つ以上の成分と組み合わせて用いることが好ましく、成分(C)として成分(C3)を単独で用いることが特に好ましい。
<その他の添加剤>
 上記成分に加えて、所望によりさらなる添加剤を本発明の組成物に添加してもよい。添加剤としては、以下に挙げるものを例示できるが、これらに限定されない。
〔接着性付与剤〕
 本発明の組成物には、組成物に接触している基材に対する接着性や密着性を向上させるために接着促進剤を添加することができる。本発明の硬化性組成物をコーティング剤、シーリング材などの、基材に対する接着性又は密着性が必要な用途に用いる場合には、本発明の硬化性組成物に接着性付与剤を添加することが好ましい。この接着促進剤としては、本発明の組成物の硬化反応を阻害しない限り、任意の公知の接着促進剤を用いることができる。
 本発明において用いることができる接着促進剤の例として、トリアルコキシシロキシ基(例えば、トリメトキシシロキシ基、トリエトキシシロキシ基)もしくはトリアルコキシシリルアルキル基(例えば、トリメトキシシリルエチル基、トリエトキシシリルエチル基)と、ヒドロシリル基もしくはアルケニル基(例えば、ビニル基、アリル基)を有するオルガノシラン、またはケイ素原子数4~20程度の直鎖状構造、分岐状構造又は環状構造のオルガノシロキサンオリゴマー;トリアルコキシシロキシ基もしくはトリアルコキシシリルアルキル基とメタクリロキシアルキル基(例えば、3-メタクリロキシプロピル基)を有するオルガノシラン、またはケイ素原子数4~20程度の直鎖状構造、分岐状構造又は環状構造のオルガノシロキサンオリゴマー;トリアルコキシシロキシ基もしくはトリアルコキシシリルアルキル基とエポキシ基結合アルキル基(例えば、3-グリシドキシプロピル基、4-グリシドキシブチル基、2-(3,4-エポキシシクロヘキシル)エチル基、3-(3,4-エポキシシクロヘキシル)プロピル基)を有するオルガノシランまたはケイ素原子数4~20程度の直鎖状構造、分岐状構造又は環状構造のオルガノシロキサンオリゴマー;トリアルコキシシリル基(例えば、トリメトキシリル基、トリエトキシシリル基)を二個以上有する有機化合物;アミノアルキルトリアルコキシシランとエポキシ基結合アルキルトリアルコキシシランの反応物、エポキシ基含有エチルポリシリケートが挙げられ、具体的には、ビニルトリメトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、ハイドロジェントリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、1,6-ビス(トリエトキシシリル)ヘキサン、1,3-ビス[2-(トリメトキシシリル)エチル]-1,1,3,3-テトラメチルジシロキサン、3-グリシドキシプロピルトリエトキシシランと3-アミノプロピルトリエトキシシランの反応物、シラノール基封鎖メチルビニルシロキサンオリゴマーと3-グリシドキシプロピルトリメトキシシランの縮合反応物、シラノール基封鎖メチルビニルシロキサンオリゴマーと3-メタクリロキシプロピルトリエトキシシランの縮合反応物、トリス(3-トリメトキシシリルプロピル)イソシアヌレートが挙げられる。
 本発明の硬化性組成物に添加する接着促進剤の量は特に限定されないが、硬化性組成物の硬化特性や硬化物の変色を促進しないことから、成分(A)及び(B)の合計100質量部に対して、0.01~5質量部の範囲内、あるいは、0.01~2質量部の範囲内であることが好ましい。
〔その他の添加剤〕
 本発明の組成物には、上述した接着性付与剤に加えて、あるいは接着性付与剤に代えて、所望によりその他の添加剤を添加してもよい。用いることができる添加剤としては、レベリング剤、上述した接着性付与剤として挙げたものに含まれないシランカップリング剤、紫外線吸収剤、酸化防止剤、重合禁止剤、フィラー(補強性フィラー、絶縁性フィラー、および熱伝導性フィラー等の機能性フィラー)などが挙げられる。必要に応じて、適切な添加剤を本発明の組成物に添加することができる。また、本発明の組成物には必要に応じて、特にポッティング剤又はシール材として用いる場合には、チキソ性付与剤を添加してもよい。
〔本発明の組成物の硬化物の屈折率〕
 本発明の紫外線硬化性オルガノポリシロキサン組成物から得られる硬化物は低い屈折率を有することができ、その屈折率は25℃、波長589nmで測定して1.45以下である。
〔用途〕
 本発明の紫外線硬化性オルガノポリシロキサン組成物は、紫外線による硬化だけでなく、電子線を用いて硬化させることもでき、それも本発明の一つの態様である。
 本発明の硬化性組成物は低粘度であり、様々な物品、特に電子デバイス及び電気デバイスを構成する絶縁層を形成するための材料として特に有用である。本発明の組成物は、基材上に塗布して、あるいは少なくとも一方が紫外線又は電子線を通す材料からなる2つの基材で挟持して、組成物に紫外線又は電子線を照射することによって組成物を硬化させて絶縁層を形成することができる。その場合、本発明の組成物を基材に塗布するときにパターン形成を行い、その後組成物を硬化させることも、また、組成物を基材に塗布して、硬化させるときに紫外線又は電子線の照射によって硬化した部分と未硬化の部分を残し、その後で未硬化の部分を溶媒で除去することによって所望するパターンの絶縁層を形成することもできる。特に、本発明に係る硬化層が絶縁層である場合、3.0未満の低い比誘電率を有するように設計することができる。
 本発明の硬化性組成物は、それから得られる硬化物の透明性が良好であることから、タッチパネル、及びディスプレイなどの表示装置の絶縁層を形成するための材料として特に適している。この場合、絶縁層は、必要に応じて上述したように所望する任意のパターンを形成してもよい。したがって、本発明の紫外線硬化性オルガノポリシロキサン組成物を硬化させて得られる絶縁層を含むタッチパネル及びディスプレイなどの表示装置も本発明の一つの態様である。
 また、本発明の硬化性組成物を用いて、物品をコーティングした後に硬化させて、絶縁性のコーティング層(絶縁膜)を形成することができる。したがって、本発明の組成物は絶縁性コーティング剤として用いることができる。また、本発明の硬化性組成物を硬化させて形成した硬化物を絶縁性コーティング層として使用することもできる。
 本発明の硬化性組成物から形成される絶縁膜は様々な用途に用いることができる。特に電子デバイスの構成部材として、あるいは電子デバイスを製造する工程で用いる材料として用いることができる。電子デバイスには、半導体装置、磁気記録ヘッドなどの電子機器が含まれる。例えば、本発明の硬化性組成物は、半導体装置、例えばLSI、システムLSI、DRAM、SDRAM、RDRAM、D-RDRAM、及びマルチチップモジュール多層配線板の絶縁皮膜、半導体用層間絶縁膜、エッチングストッパー膜、表面保護膜、バッファーコート膜、LSIにおけるパッシベーション膜、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、光学装置用の表面保護膜として用いることができる。
 また、本発明の紫外線硬化性組成物はコーティング剤として用いるほかに、ポッティング剤、特に、電子デバイス及び電気デバイスのための絶縁性ポッティング剤として用いるのに適している。
 本発明の組成物は、特にインクジェット印刷法を使用して基材表面にコーティング層を形成するための材料として用いることができ、その場合、本発明の組成物は上述した成分(C)を含有することが特に好ましい。
 以下で実施例に基づいて本発明をさらに説明するが、本発明は以下の実施例に限定されない。
 本発明の紫外線硬化性組成物、及びその硬化物を実施例により詳細に説明する。また、実施例、比較例中の測定及び評価は次のようにして行った。
[硬化性組成物の粘度]
 回転粘度計(トキメック株式会社製、E型粘度計VISCONIC EMD)を使用して、25℃における組成物の粘度(mPa・s)を測定した。
[硬化性組成物およびその硬化物の屈折率]
 デジタル屈折計(株式会社アタゴ製、RX-7000α)を使用し、25℃における硬化物の屈折率(nD)を測定した。
[硬化性組成物及びそれから得られた硬化物の外観]
 目視によって、硬化性組成物及びそれから得られた硬化物の外観を観察して評価した。
[硬化性組成物の調製]
 下記表1に記載した量の各材料を褐色プラスチック製容器に入れ、プラネタリーミキサーを使用して良く混合し、硬化性組成物を調製した。
[硬化性組成物の硬化]
 厚さ0.18mmのスペーサーを挟んだ二枚のガラス基板の間に、約0.2gの硬化性ン組成物を注入した。外側から片方のガラス基板を通して、波長405nmのLED光を2J/cmのエネルギー量で照射することにより、組成物を硬化させて、一辺30mm、厚さ0.18mmの板状の硬化物を作製した。
[実施例及び比較例]
 下記の各成分を用いて、表1に示す組成(質量部)の紫外線硬化性組成物を調製した。
(A1a)1,3-ビス[2-(3,4-エポキシシクロヘキシル)エチル]-1,1,3,3-テトラメチルジシロキサン
(A1b)1,3-ビス(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサン
(A2)1,1,1,3,5,5,5-ヘプタメチル-3-[2-(3,4-エポキシシクロヘキシル)エチル]トリシロキサン
(B1)1,2-エポキシドデカン
(B2)1,7-オクタジエンジエポキシド
(C)下記の成分から構成される触媒マスターバッチ
 C:(C1)/(X)/(A2)=30/2.4/67.6(質量比)
 (C1):4-イソプロピル-4’-メチルジフェニルヨードニウム テトラキス(ペンタフルオロフェニル)ボレート
 (X):2-イソプロピルチオキサントン
Figure JPOXMLDOC01-appb-T000013
 表1に示したとおり、本発明の紫外線硬化性組成物(実施例1~3)は、25℃においてコーティング剤として基材に塗布するために適した粘度を有し、かつ透明性が高い。また、硬化物の屈折率は1.45以下である。一方、成分(A2)を含まない組成物(比較例1及び2)においては、硬化物の屈折率が1.46以上であるか、硬化性が不十分である。
 本発明の紫外線硬化性組成物は、上述した用途、特に、タッチパネル、及びディスプレイなどの表示装置の絶縁層を形成するための材料として特に適している。

Claims (20)

  1.  一分子中に平均して1個以上の紫外線反応性官能基を有する1種以上の有機ケイ素化合物(A)を含み、E型粘度計を用いて25℃で測定した組成物全体の粘度が80mPa・s以下であり、かつ組成物中に有機溶剤を含まず、硬化後の硬化物の25℃、波長589nmで測定した屈折率が1.45以下であることを特徴とする、紫外線硬化性組成物。
  2.  紫外線反応性官能基が、カチオン重合性官能基である、請求項1に記載の紫外線硬化性組成物。
  3.  紫外線反応性官能基が、エポキシ基含有基である、請求項1または2に記載の紫外線硬化性組成物。
  4.  硬化性組成物中の成分(A)の比率が80質量%以上である、請求項1~3のいずれか1項に記載の紫外線硬化性組成物。
  5.  成分(A)が、(A1)一分子中に平均して2個以上の紫外線反応性官能基を有する1種以上の有機ケイ素化合物及び(A2)一分子中に1個の紫外線反応性官能基を有する1種以上の有機ケイ素化合物からなる群から選択される1種以上の有機ケイ素化合物を、100/0~0/100(A1/A2)の質量比で含む、請求項1~4のいずれか1項に記載の紫外線硬化性組成物。
  6.  成分(A2)が、平均組成式:
    R’SiO(4-c―d)/2 (2)
    (式中、Rは、紫外線反応性官能基であり、
     R’は、紫外線反応性官能基を除く一価炭化水素基、水酸基、及びアルコキシ基から選ばれる基であり、
     c及びdは次の条件:1<c+d≦4及び0.05≦c/(c+d)≦0.25を満たす数であり、分子中のRの数は1である。)
    で表される直鎖状、分岐状、又は環状のオルガノシラン及びオルガノポリシロキサンからなる群から選択される有機ケイ素化合物である、請求項5に記載の紫外線硬化性組成物。
  7.  組成物中の成分(A2)の比率が80質量%以上である、請求項5又は6に記載の紫外線硬化性組成物。
  8.  成分(A1)が、平均組成式:
    R’SiO(4-a―b)/2 (1)
    (式中、Rは、紫外線反応性官能基であり、
     R’は、紫外線反応性官能基を除く一価炭化水素基、水酸基、及びアルコキシ基から選ばれる基であり、
     a及びbは次の条件:1≦a+b≦3及び0.01≦a/(a+b)≦0.34を満たす数であり、分子中に少なくとも2個のRを有する。)
    で表される直鎖状、分岐状、又は環状のオルガノポリシロキサンである、請求項5~7のいずれか1項に記載の紫外線硬化性組成物。
  9.  成分(A2)の有機ケイ素化合物が、下記式(3’):
    Figure JPOXMLDOC01-appb-C000001
    (式中、全てのR~R基のうち、紫外線反応性官能基は分子中に1個のみ存在し;その他のRからRはそれぞれ独立に、非置換又はフッ素で置換された一価炭化水素基であり;nは、0以上3以下の数値である)で表されるオルガノポリシロキサン、
    または、下記式(4’):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは、それぞれ独立に、紫外線反応性官能基及び非置換又はフッ素で置換された一価炭化水素基から選ばれる基であり、xは、3~5の整数であり、分子中に1個のみの紫外線反応性官能基を有する)で表される環状オルガノポリシロキサン、
    または、下記式(5’):
      RSiR’ (5’)
    (式中、Rは、紫外線反応性官能基であり、R’は、前記紫外線反応性官能基を除く一価炭化水素基、水酸基、及びアルコキシ基から選ばれる基である)で表されるオルガノシランからなる群から選択される、紫外線反応性官能基を分子中に1個有する含ケイ素化合物である、請求項5~8のいずれか1項に記載の紫外線硬化性組成物。
  10.  成分(A1)の有機ケイ素化合物が、下記式(3):
    Figure JPOXMLDOC01-appb-C000003
    (式中、全てのR~R基のうち1分子当たり平均して2個以上は紫外線反応性官能基であり;その他のRからRはそれぞれ独立に、非置換又はフッ素で置換された一価炭化水素基であり;nは、式(3)で表されるオルガノポリシロキサンの粘度が25℃において1~1000mPa・sとなる数値であり、nは0であってもよい)で表されるオルガノポリシロキサン、
     平均単位式:
    (RSiO1/2)(RSiO2/2)(RSiO3/2)(SiO4/2)  (4)
     (式中、Rは、それぞれ独立に、紫外線反応性官能基及び非置換又はフッ素で置換された一価炭化水素基から選ばれる基であり、全てのRのうち、少なくとも2個は紫外線反応性官能基であり、(g+h)は正数であり、eは0又は正数であり、fは0~10の範囲内の数である。)
    で表されるオルガノポリシロキサン、
     下記式(5):
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは、それぞれ独立に、紫外線反応性官能基及び非置換又はフッ素で置換された一価炭化水素基から選ばれる基であり、xは、3~10の整数であり、分子中に少なくとも2個の紫外線反応性官能基を有する)で表される環状オルガノポリシロキサン、
    及びそれらから任意に選択される2種以上のオルガノポリシロキサンの混合物からなる群から選択される、紫外線反応性官能基を有する1種類以上のオルガノポリシロキサンである、請求項5~9のいずれか1項に記載の紫外線硬化性組成物。
  11.  成分(A1)の紫外線反応性官能基の数が、一分子当たり平均して2個である、請求項5~10のいずれか1項に記載の紫外線硬化性組成物。
  12.  成分(A2)が、紫外線反応性官能基を分子中に1個有するオルガノポリシロキサンである、請求項5~11のいずれか1項に記載の紫外線硬化性組成物。
  13.  E型粘度計を用いて25℃で測定した組成物全体の粘度が5~30mPa・sの範囲である、請求項1~12のいずれか1項に記載の紫外線硬化性組成物。
  14.  成分(A)が、(A2)1,1,1,3,5,5,5-ヘプタメチル-3-[2-(3,4-エポキシシクロヘキシル)エチル]トリシロキサンであるか、又は(A2)1,1,1,3,5,5,5-ヘプタメチル-3-[2-(3,4-エポキシシクロヘキシル)エチル]トリシロキサンと、以下の(A1)から選ばれる少なくとも一種の化合物との混合物であり、その質量比が100/0~20/80(A2/A1)の範囲である、請求項5~13のいずれか1項に記載の紫外線硬化性組成物:
    (A1):
    1,3-ビス[2-(3,4-エポキシシクロヘキシル)エチル]-1,1,3,3-テトラメチルジシロキサン、1,5-ビス[2-(3,4-エポキシシクロヘキシル)エチル]-1,1,3,3,5,5-ヘキサメチルトリシロキサン、メチル(トリス[2-(3,4-エポキシシクロヘキシル)エチル]ジメチルシロキシ)シラン、テトラキス([2-(3,4-エポキシシクロヘキシル)エチル]ジメチルシロキシ)シラン、1,3,5,7-テトラメチル-1,3,5,7-テトラ[2-(3,4-エポキシシクロヘキシル)エチル]-シクロテトラシロキサン、1,3-ビス(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサン、1,5-ビス(3-グリシドキシプロピル)-1,1,3,3,5,5-ヘキサメチルトリシロキサン、メチル[トリス(3-グリシドキシプロピル)ジメチルシロキシ]シラン、テトラキス[(3-グリシドキシプロピル)ジメチルシロキシ]シラン、1,3,5,7-テトラメチル-1,3,5,7-テトラ(3-グリシドキシプロピル)-シクロテトラシロキサン。
  15.  成分(A)として(A2)1,1,1,3,5,5,5-ヘプタメチル-3-[2-(3,4-エポキシシクロヘキシル)エチル]トリシロキサンを、組成物全体の50~95質量%の範囲内で含む、請求項5~14のいずれか1項に記載の紫外線硬化性組成物。
  16.  さらに、(B)一分子中に1個以上の紫外線反応性官能基を有し、ケイ素原子を有しない化合物を含有し、成分(A1)、成分(A2)、および成分(B)の合計に対する成分(B)の質量比率が20%未満である、請求項5~15のいずれか1項に記載の紫外線硬化性組成物。
  17.  成分(A)として成分(A2)のみを含む、又は成分(A)として成分(A1)及び成分(A2)を組み合わせて含む、請求項16に記載の紫外線硬化性組成物。
  18.  請求項1~17のいずれか1項に記載の紫外線硬化性組成物を含む、絶縁性コーティング剤。
  19.  請求項1~17のいずれか1項に記載の紫外線硬化性組成物の硬化物を絶縁性コーティング層として使用する方法。
  20.  請求項1~17のいずれか1項に記載の紫外線硬化性組成物の硬化物からなる層を含む表示装置。
PCT/JP2021/041223 2020-11-10 2021-11-09 紫外線硬化性組成物およびその用途 WO2022102626A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237018570A KR20230104906A (ko) 2020-11-10 2021-11-09 자외선 경화성 조성물 및 그의 용도
CN202180068549.2A CN116323748A (zh) 2020-11-10 2021-11-09 紫外线固化性组合物及其用途
JP2022561945A JPWO2022102626A1 (ja) 2020-11-10 2021-11-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020187165 2020-11-10
JP2020-187165 2020-11-10

Publications (1)

Publication Number Publication Date
WO2022102626A1 true WO2022102626A1 (ja) 2022-05-19

Family

ID=81602315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041223 WO2022102626A1 (ja) 2020-11-10 2021-11-09 紫外線硬化性組成物およびその用途

Country Status (4)

Country Link
JP (1) JPWO2022102626A1 (ja)
KR (1) KR20230104906A (ja)
CN (1) CN116323748A (ja)
WO (1) WO2022102626A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071133A1 (ja) * 2022-09-27 2024-04-04 ダウ・東レ株式会社 紫外線硬化性組成物およびその用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143248A (ja) * 1995-11-20 1997-06-03 Toyo Ink Mfg Co Ltd 紫外線硬化型樹脂組成物およびこれを含む被覆剤
JP2005023258A (ja) * 2003-07-04 2005-01-27 Toagosei Co Ltd 硬化性組成物及び反射防止膜
JP2005336421A (ja) * 2004-05-31 2005-12-08 Dow Corning Toray Co Ltd 活性エネルギー線硬化型オルガノポリシロキサン樹脂組成物、光伝送部材およびその製造方法
JP2007002194A (ja) * 2005-06-27 2007-01-11 Nippon Kayaku Co Ltd フッ素含有ポリシロキサン、それを用いる感光性樹脂組成物及びその硬化物
JP2007119744A (ja) * 2005-09-28 2007-05-17 Toray Ind Inc 熱硬化性樹脂組成物
JP2013203805A (ja) * 2012-03-27 2013-10-07 Nippon Synthetic Chem Ind Co Ltd:The 活性エネルギー線硬化性樹脂組成物およびそれを用いたコーティング剤、ならびに積層体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62591U (ja) 1985-06-19 1987-01-06
JP6981163B2 (ja) 2017-10-13 2021-12-15 Jsr株式会社 硬化性組成物
JP7235482B2 (ja) 2018-04-20 2023-03-08 積水化学工業株式会社 電子デバイス用光硬化性樹脂組成物
JP2020026515A (ja) 2018-08-10 2020-02-20 Jsr株式会社 硬化性組成物及び化合物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143248A (ja) * 1995-11-20 1997-06-03 Toyo Ink Mfg Co Ltd 紫外線硬化型樹脂組成物およびこれを含む被覆剤
JP2005023258A (ja) * 2003-07-04 2005-01-27 Toagosei Co Ltd 硬化性組成物及び反射防止膜
JP2005336421A (ja) * 2004-05-31 2005-12-08 Dow Corning Toray Co Ltd 活性エネルギー線硬化型オルガノポリシロキサン樹脂組成物、光伝送部材およびその製造方法
JP2007002194A (ja) * 2005-06-27 2007-01-11 Nippon Kayaku Co Ltd フッ素含有ポリシロキサン、それを用いる感光性樹脂組成物及びその硬化物
JP2007119744A (ja) * 2005-09-28 2007-05-17 Toray Ind Inc 熱硬化性樹脂組成物
JP2013203805A (ja) * 2012-03-27 2013-10-07 Nippon Synthetic Chem Ind Co Ltd:The 活性エネルギー線硬化性樹脂組成物およびそれを用いたコーティング剤、ならびに積層体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071133A1 (ja) * 2022-09-27 2024-04-04 ダウ・東レ株式会社 紫外線硬化性組成物およびその用途

Also Published As

Publication number Publication date
JPWO2022102626A1 (ja) 2022-05-19
CN116323748A (zh) 2023-06-23
KR20230104906A (ko) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2021066084A1 (ja) 紫外線硬化性オルガノポリシロキサン組成物およびその用途
JPWO2020090346A1 (ja) 紫外線硬化性オルガノポリシロキサン組成物およびその用途
WO2009041711A1 (en) Curable resin composition for molded bodies, molded body, and production method thereof
JP5771148B2 (ja) 硬化成型体の製造方法及び硬化成型体
WO2021167053A1 (ja) 無溶剤型の光硬化性液状組成物、その硬化物、それを含む光学充填剤、およびその硬化物からなる層を含む表示装置
JP6850408B2 (ja) ラジカル重合性官能基を有するシルセスキオキサン誘導体、その組成物および低硬化収縮性硬化膜
CN107057366B (zh) 一种可uv固化的有机聚硅氧烷组合物及其在制备半导体电子器件中的应用
WO2022102626A1 (ja) 紫外線硬化性組成物およびその用途
WO2022202498A1 (ja) 紫外線硬化性組成物およびその用途
WO2022203042A1 (ja) 紫外線硬化性組成物及びその用途
KR20230161492A (ko) 자외선 경화성 조성물 및 그의 용도
JP7485496B2 (ja) 硬化性シリコーン組成物およびその用途
WO2022102622A1 (ja) 紫外線硬化性オルガノポリシロキサン組成物およびその用途
WO2023224118A1 (ja) 紫外線硬化性組成物およびその用途
US20240174889A1 (en) Ultraviolet-curable composition and use thereof
KR20240052977A (ko) 고에너지선 경화성 조성물 및 그의 용도
WO2023037941A1 (ja) 高エネルギー線硬化性組成物およびその用途
WO2024071133A1 (ja) 紫外線硬化性組成物およびその用途
WO2024063069A1 (ja) 紫外線硬化性組成物およびその用途
WO2024063068A1 (ja) 紫外線硬化性組成物およびその用途
KR20240023137A (ko) 이중 경화성 실리콘 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891872

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561945

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237018570

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891872

Country of ref document: EP

Kind code of ref document: A1