WO2022102358A1 - 差圧測定装置および差圧測定方法 - Google Patents

差圧測定装置および差圧測定方法 Download PDF

Info

Publication number
WO2022102358A1
WO2022102358A1 PCT/JP2021/038654 JP2021038654W WO2022102358A1 WO 2022102358 A1 WO2022102358 A1 WO 2022102358A1 JP 2021038654 W JP2021038654 W JP 2021038654W WO 2022102358 A1 WO2022102358 A1 WO 2022102358A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential pressure
pressure
pipe
region
floor
Prior art date
Application number
PCT/JP2021/038654
Other languages
English (en)
French (fr)
Inventor
憲治 沖田
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to CN202180075710.9A priority Critical patent/CN116472442A/zh
Priority to US18/252,473 priority patent/US20230408356A1/en
Publication of WO2022102358A1 publication Critical patent/WO2022102358A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/16Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by purification, e.g. by filtering; by sterilisation; by ozonisation
    • F24F3/167Clean rooms, i.e. enclosed spaces in which a uniform flow of filtered air is distributed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure

Definitions

  • the supply of clean air there are a full-scale downflow method in which clean air is supplied from the entire surface of the ceiling portion 100a and a partial downflow method in which clean air is supplied from a part of the ceiling portion 100a (the example of FIG. 1 is a partial downflow method).
  • Flow method Further, regarding the arrangement of the grating floor plate 102, there are a case where the grating floor plate 102 is arranged on the entire surface of the floor and a case where the grating floor plate 102 is arranged on a part of the floor (the example of FIG. 1 is a case where the grating floor plate 102 is arranged on a part of the floor).
  • the clean air supplied from the clean air supply unit 101 passes through the above-floor region 100c and is exhausted to the underfloor region 100d through the opening 102a provided in the grating floor plate 102.
  • the exhausted air is collected from the return port 103, passed through a filter (not shown), cleaned, and guided to the ceiling portion 101 by the blower fan 104.
  • the clean air is supplied again toward the underfloor region 100d by the clean air supply unit 101. In this way, clean air is configured to circulate between the ceiling portion 100a and the underfloor region 100d.
  • the pressure in the above-floor region 100c is a relatively high positive pressure
  • the pressure in the underfloor region 100d is a relatively low negative pressure. Therefore, it is possible to prevent the air from flowing downward from above and the particles from diffusing upward.
  • the air volume of clean air is not uniform in the entire area of the floor area 100c, and is large in the area close to the return port 103, while it is small in the area away from the return port 103.
  • it is preferable that the air volume of the clean air is uniform in the entire region of the floor region 100c. Therefore, it is necessary to adjust the amount of air supplied from the clean air supply unit 101, the opening ratio of the opening 102a of the grating floor plate 102, and the like so that the air volume of the clean air becomes uniform.
  • the pressure difference between the pressure in the above-floor region 100c and the pressure in the underfloor region 100d is used as an index for adjustment.
  • a differential pressure measuring device differential pressure gauge
  • one port acquires the pressure in the above-floor region 100c
  • the other port acquires the pressure in the underfloor region 100d.
  • a method of measuring the differential pressure between the pressure in the above-floor region 100c and the pressure in the underfloor region 100d and adjusting the flow rate of clean air based on the measured differential pressure is described.
  • the present invention has been made in view of the above problems, and an object thereof is to accurately measure the above differential pressure even when the differential pressure between the pressure in the above-floor region and the pressure in the under-floor region is small. It is to propose a differential pressure measuring device and a differential pressure measuring method that can be performed.
  • the present invention that solves the above problems is as follows.
  • a differential pressure measuring device that measures the differential pressure between the pressure in the above-floor area and the pressure in the underfloor area in a room in which a grating floor plate is arranged on the floor.
  • a differential pressure measuring unit having a first port for acquiring the pressure in the above-floor region and a second port for acquiring the pressure in the underfloor region, and one end of the first pipe is connected to the first port.
  • a differential pressure measuring unit wherein one end of the second pipe is connected to the second port.
  • the differential pressure measuring device according to any one of [1] to [4] is arranged on the glazing floor plate in a room where the glazing floor plate is arranged on the floor, and the pressure in the above-floor region and the underfloor region are measured.
  • a differential pressure measuring method characterized by measuring the differential pressure from the pressure.
  • the differential pressure measuring device is a differential pressure measuring device that measures the differential pressure between the pressure in the above-floor region and the pressure in the under-floor region of a room in which a glazing floor plate is arranged on the floor, and obtains the pressure in the above-floor region.
  • a differential pressure measuring unit having a port 1 and a second port for acquiring the pressure in the underfloor region, one end of the first pipe is connected to the first port, and one end of the second pipe is the second.
  • the differential pressure measuring device is characterized in that it is provided with a cup forming the space of the above, and the distance in the device height direction between the other end of the first pipe and the other end of the second pipe is fixed.
  • the differential pressure measuring device is characterized in that the relative positional relationship in the device height direction between the other end of the first pipe and the other end of the second pipe is constant and does not change. There is.
  • the static pressure which is the pressure of air
  • the dynamic pressure obtained by converting the kinetic energy of air into pressure are the sum of the two pressures to be acquired for measuring the differential pressure. Total pressure is measured.
  • the clean air of the above-floor region 100c concentrates and passes through the opening 102a of the grating floor plate 102 in which the above-floor region 100c is partially arranged, and flows into the underfloor region 100d. Therefore, the flow velocity of air below the grating floor plate 102 increases.
  • the present inventors connect one end of a flexible pipe to the port for acquiring the pressure of the above-floor region 100c to acquire the pressure in the above-floor region 100c. It was thought that the position of the other end of the pipe would vary from measurement to measurement, which would lead to variations in the differential pressure value. Therefore, the present inventors have the other end of the pipe (first pipe) connected to the port (first port) for acquiring the pressure of 100c in the above-floor region and the port (first port) for acquiring the pressure in the underfloor region 100d. I came up with the idea of fixing the distance in the device height direction of the other end of the pipe (second pipe) connected to the port 2). In this way, the present invention was completed. Hereinafter, each configuration of the differential pressure measuring device according to the present invention will be described.
  • FIG. 2 shows a cross-sectional view of a suitable example of the differential pressure measuring device according to the present invention.
  • the differential pressure measuring device 1 shown in FIG. 2 includes a differential pressure measuring unit 11, a first pipe 12, a second pipe 13, a cup 14, and a packing 15.
  • the differential pressure measuring unit 11 has a first port 11a for acquiring the pressure in the above-floor region 100c and a second port 11b for acquiring the pressure in the underfloor region 100d.
  • One end 12a of the first pipe 12 is connected to the first port 11a, and one end 13a of the second pipe 13 is connected to the second port 11b.
  • the differential pressure measuring unit 11 measures the differential pressure from the difference between the acquired pressure in the above-floor region 100c and the pressure in the underfloor region 100d.
  • the differential pressure measuring unit 11 is not particularly limited as long as it can acquire the pressure in the above-floor region 100c and the pressure in the underfloor region 100d and measure the differential pressure, and is a conventionally known differential pressure measuring device (differential pressure gauge). Can be configured. However, since the value of the differential pressure between the pressure in the above-floor region 100c and the pressure in the underfloor region 100d of the clean room 100 is small, it is preferable that the differential pressure measuring unit 11 has a resolution of 0.1 Pa or less. By having a resolution of 0.1 Pa or less, it is possible to grasp the differential pressure between the pressure in the above-floor region 100c and the pressure in the under-floor region 100d with sufficient accuracy.
  • the first pipe 12 and the second pipe 13 can be made of soft vinyl chloride, a silicon tube, or the like.
  • the cup 14 is connected to the other end 13b of the second pipe 13. As shown in FIG. 3, the cup 14 is configured such that when the cup 14 is arranged on the grating floor plate 102, a pseudo underfloor region 100d space is formed between the cup 14 and the grating floor plate 102. Has been done. With this configuration, it is possible to suppress the dynamic pressure of the air flow in the underfloor region 100d and measure the static pressure in the underfloor region 100d.
  • the packing 15 is provided along the edge portion 14a of the cup 14. As a result, the airflow in the above-floor region 100c can be reduced from entering the space between the cup 14 and the grating floor plate 102, and the space can be made closer to the environment of the underfloor region 100d.
  • the cup 14 can be made of a material having sufficient strength that does not affect the measurement of the differential pressure, and can be made of a resin such as polypropylene or a lightweight metal such as aluminum.
  • the lateral length of the cup is 100 mm and the lateral direction (short side) of the cup 14 is toward the return port 103.
  • the cup is arranged in a direction in which the change with respect to the distance is small.
  • the area of 14 can be expanded to widen the stable measurement area and the measured value can be stabilized.
  • the height of the cup 14 is preferably 20 mm or more and 100 mm or less.
  • a pseudo underfloor region 100d space can be formed inside the cup, and the static pressure of the underfloor region 100d can be stably measured. Further, if the height of the cup 14 is 100 mm or less, the static pressure of the underfloor region 100d can be measured without impairing portability.
  • the distance between the other end 12b of the first pipe 12 and the other end 13b of the second pipe 13 in the device height direction is fixed. Is. This makes it possible to measure the differential pressure with higher accuracy.
  • the “distance in the device height direction from the other end 13b of the second pipe 13" means the first pipe when the cup 14 is placed on the horizontal plane so that its edge 14b is in contact with the horizontal plane. It means the difference between the height position of the central shaft of 12 at the other end 12b and the height position of the central shaft of the second pipe 13 at the other end 13b.
  • the distance in the device height direction between the other end 12b of the first pipe 12 and the other end 13b of the second pipe 13 is preferably 0 mm or more and 250 mm or less. As a result, the measurement error of the differential pressure can be reduced to 0.1 Pa or less.
  • the distance in the height direction of the device is more preferably 0 mm or more and 120 mm or less. As a result, the measurement error of the differential pressure can be set to 0.0 Pa.
  • the other end 12b of the first pipe 12 faces a direction intersecting with the height direction of the device.
  • the other end 12b of the first pipe 12 is the device height.
  • the other end 12b of the first pipe 12 faces a direction intersecting with the height direction of the device. As shown in FIG. 2, it is more preferable that the other end 12b of the first pipe 12 faces in a direction orthogonal to the height direction of the device.
  • a cover that suppresses the air flow to the other end 12b of the first pipe 12.
  • a cover is not particularly limited as long as it has air permeability and can reduce the momentum of the air flow to reduce the dynamic pressure.
  • the cover is, for example, a porous material having a large number of bubbles, a bubbler used for supplying air in a water tank, a dense cotton-like material, a metal material having a small through hole (for example, 0.05 to 1 mm in diameter), or a metal material. It can be composed of resin spheres.
  • Such a cover may be arranged above the other end 12b of the first pipe 12, or the metal material may be made into a box shape and the other end 12b of the first pipe 12 may be inserted into the box-shaped cover.
  • the entire differential pressure measuring device 1 may be housed in the box-shaped cover.
  • the box-shaped cover may be made by stacking boxes of different sizes in double or triple layers, and the other end 12b of the first pipe 12 or the differential pressure measuring device 1 is placed inside the innermost box-shaped cover. It may be arranged.
  • the differential pressure measuring device 1 can accurately measure the differential pressure even when the differential pressure between the pressure in the above-floor region 100c and the pressure in the underfloor region 100d is small. Further, since the differential pressure measuring device 1 is excellent in portability according to the present invention, it is possible to measure the differential pressure between the pressure in the above-floor region 100c and the pressure in the underfloor region 100d at various positions in the clean room 100.
  • the differential pressure measuring method according to the present invention is arranged on the glazing floor plate in the room where the glazing floor plate is arranged on the floor, and the difference between the pressure in the above-floor region and the pressure in the underfloor region is provided. It is characterized by measuring pressure.
  • the differential pressure measuring device 1 reduces the influence of dynamic pressure on the pressure in the underfloor region 100d in the pseudo underfloor region 100d space between the cup 14 and the grating floor plate 102. Can be done at. Thereby, even when the differential pressure between the pressure in the above-floor region 100c and the pressure in the underfloor region 100d is small, the differential pressure between the pressure in the above-floor region 100c and the pressure in the underfloor region 100d can be measured with high accuracy.
  • the edge portion 14a of the cup 14 is not arranged on the opening 102a of the grating floor plate 102 as much as possible, and it is arranged completely on the opening 102a. It is preferable not to do so. As a result, the space between the cup 14 and the grating floor plate 102 can be made closer to the actual space of the underfloor region 100d.
  • a differential pressure gauge (FP-1 type manufactured by Shibata Scientific Technology Co., Ltd.) is used as the differential pressure measuring unit 11 shown in FIG. 2, and the difference between the height position of the first port 11a and the height position of the second port 11b is the difference.
  • the first pipe 12 was not connected to the first port 11a, and one end 13a of the second pipe 13 was connected to the second port 11b. Then, in a state where the height position of the other end 13b of the second pipe 13 is 0 mm (reference example 1), 250 mm (reference example 2), and 500 mm (reference example 3) lower than the height position of the first port 11a. , The differential pressure was measured.
  • the measurement of the differential pressure was performed in a state where the other end 13b of the first port 11a and the second pipe 13 was arranged in the above-floor region 100c.
  • the differential pressure values were 0 Pa (Reference Example 1), 0.1 Pa (Reference Example 2), and 0.2 Pa (Reference Example 3).
  • the difference between the height position of the first port 11a (that is, the other end 12b of the first pipe 12) and the height position of the other end 13b of the second pipe 13 is 0 mm or more and 250 mm or less.
  • the differential pressure can be measured with a measurement error of 0.1 Pa, and in the case of 0 mm or more and 120 mm or less, the differential pressure can be measured with a measurement error of 0.0 Pa.
  • the differential pressure measuring device 1 shown in FIG. 2 Using the differential pressure measuring device 1 shown in FIG. 2, the differential pressure between the pressure in the above-floor region 100c and the pressure in the underfloor region 100d in the clean room 100 was measured. Specifically, a differential pressure gauge (FP-1 type manufactured by Shibata Scientific Technology Co., Ltd.) was used as the differential pressure measuring unit 11. Further, the first pipe 12 and the second pipe 13 were made of a silicon tube, and the cup 14 was made of polypropylene as a plastic material. The size of the cup 14 was 150 mm in length, 200 mm in width, and 50 mm in height.
  • FP-1 type manufactured by Shibata Scientific Technology Co., Ltd. was used as the differential pressure measuring unit 11.
  • the first pipe 12 and the second pipe 13 were made of a silicon tube
  • the cup 14 was made of polypropylene as a plastic material. The size of the cup 14 was 150 mm in length, 200 mm in width, and 50 mm in height.
  • FIG. 5 shows the relationship between the measured position of the differential pressure and the measured differential pressure in the invention example and the comparative example.
  • the differential pressure becomes smaller as the measurement position of the differential pressure moves away from the return port.
  • the comparative example when the position of the other end 12b of the second pipe from the return port 103 is 65 to 105 mm, the differential pressure is constant and the differential pressure cannot be measured correctly. I understand.
  • the differential pressure between the pressure in the above-floor region and the pressure in the underfloor region is small, the differential pressure can be measured accurately, which is useful in the semiconductor industry.
  • Differential pressure measuring device 11 Differential pressure measuring unit 12 First pipe 12a One end of the first pipe 12b The other end of the first pipe 13 Second pipe 13a One end of the second pipe 13b The other end of the second pipe 14 Cup 14a Edge 15 Packing 100 Clean room 100a Ceiling 100b Floor 100c Floor area 100d Underfloor area 101 Clean air supply 102 Grating floor plate 102a Opening 103 Return port 104 Blower fan

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

床上領域の圧力と床下領域の圧力との差圧が小さい場合にも、上記差圧を精度よく測定することができる差圧測定装置および差圧測定方法を提案する。差圧測定装置1は、床上領域100cの圧力を取得する第1のポート11aと床下領域100dの圧力を取得する第2のポート11bとを有する差圧測定部11であって、第1の配管12の一端12aが第1のポート11aに接続され、第2の配管13の一端13aが第2のポート11bに接続されている、差圧測定部11と、第2の配管13の他端13bが接続されており、グレーチング床板102上に配置した際に、グレーチング床板102との間に床下領域100dの圧力を測定するための空間を形成するカップ14とを備え、第1の配管12の他端12bと第2の配管13の他端13bとの間の装置高さ方向の距離が固定されていることを特徴とする。

Description

差圧測定装置および差圧測定方法
 本発明は、差圧測定装置および差圧測定方法に関する。
 従来、半導体デバイスは、室内の清浄度が所定の水準を満たすように構成されたクリーンルームにおいて製造されている。クリーンルームとしては、天井部から床下領域に向かって清浄な空気を供給し、床下領域の空気を回収して清浄化した後、天井部に導いて清浄空気を床下領域に向かって再度供給する循環型ダウンフロー方式のものが多く使用されている。
 図1は、循環型ダウンフロー方式のクリーンルームの一例の模式図を示している。図1に示したクリーンルーム100においては、天井部100aにFFU(Fan Filter Unit)などの清浄な空気を供給する清浄空気供給部101が配置されている。また、床100bには、複数の開口部102aを有するグレーチング床板102が配置されている。
 清浄な空気の供給に関して、天井部100aの全面から清浄な空気を供給する全面ダウンフロー方式と、天井部100aの一部から供給する部分ダウンフロー方式とが存在する(図1の例は部分ダウンフロー方式のもの)。また、グレーチング床板102の配置についても、床の全面に配置する場合と、一部に配置する場合とが存在する(図1の例は一部に配置する場合のもの)。
 また、クリーンルーム100の床下領域100dには、クリーンルーム100を上面視した際に、対向する一対の壁のそれぞれ、あるいは全体で1カ所または複数箇所に、床下領域100dに排気された空気を回収するリターン口103が設けられている。
 このようなクリーンルーム100において、清浄空気供給部101から供給された清浄な空気は、床上領域100cを通過し、グレーチング床板102に設けられた開口部102aを介して床下領域100dに排気される。排気された空気は、リターン口103から回収された後、フィルタ(図示せず)を通過して清浄化され、送風ファン104によって天井部101に導かれる。そして、清浄空気供給部101によって清浄な空気が再度床下領域100dに向かって供給される。こうして、清浄な空気が天井部100aと床下領域100dとの間を循環するように構成されている。
 このような構成のクリーンルーム100では、床上領域100cの圧力は比較的高い陽圧となり、床下領域100dの圧力は比較的低い陰圧となる。そのため、空気が上方から下方に流れてパーティクルが上方に拡散するのを抑制することができる。
 上記クリーンルーム100において、清浄な空気の風量は、床上領域100cの全領域において均一ではなく、リターン口103に近い領域で多い一方、リターン口103から離れた領域では少ない。クリーンルーム100では、清浄空気の風量は床上領域100cの全領域で均一であることが好ましい。そのため、清浄空気供給部101からの空気の供給量やグレーチング床板102の開口部102aの開口率などを調整して、清浄な空気の風量が均一となるように調整する必要がある。
 上記清浄空気の風量を調整するに当たって、床上領域100cの圧力と床下領域100dの圧力との差圧を指標として調整することが行われている。例えば、特許文献1には、差圧測定装置(差圧計)の2つのポートのうち、一方のポートにより床上領域100cの圧力を取得し、他方のポートにより床下領域100dの圧力を取得して、床上領域100cの圧力と床下領域100dの圧力との差圧を測定し、測定された差圧に基づいて清浄空気の流量を調節する方法が記載されている。
特開2004-218919号公報
 しかしながら、特許文献1に記載された方法では、差圧が大きい場合には精度よく差圧が測定できるが、差圧が小さい場合(例えば、0.1Paオーダー)には差圧を精度よく測定できないことが判明した。
 本発明は上記課題を鑑みてなされたものであり、その目的とするところは、床上領域の圧力と床下領域の圧力との差圧が小さい場合にも、上記差圧を精度よく測定することができる差圧測定装置および差圧測定方法を提案することにある。
 上記課題を解決する本発明は、以下の通りである。
[1]床にグレーチング床板が配置された部屋の床上領域の圧力と床下領域の圧力との差圧を測定する差圧測定装置であって、
 前記床上領域の圧力を取得する第1のポートと前記床下領域の圧力を取得する第2のポートとを有する差圧測定部であって、第1の配管の一端が前記第1のポートに接続され、第2の配管の一端が前記第2のポートに接続されている、差圧測定部と、
 前記第2の配管の他端が接続されており、前記グレーチング床板上に配置した際に、前記グレーチング床板との間に前記床下領域の圧力を測定するための空間を形成するカップと、
を備え、
 前記第1の配管の他端と前記第2の配管の前記他端との間の装置高さ方向の距離が固定されていることを特徴とする差圧測定装置。
[2]前記装置高さ方向の距離は0mm以上250mm以下である、前記[1]に記載の差圧測定装置。
[3]前記第1の配管の前記他端が装置高さ方向に対して交差する方向を向いている、前記[1]または[2]に記載の差圧測定装置。
[4]前記第1の配管の他端への気流を抑制するカバーをさらに有する、前記[1]~[3]のいずれか一項に記載の差圧測定装置。
[5]床にグレーチング床板が配置された部屋の前記グレーチング床板上に前記[1]~[4]のいずれか一項に記載の差圧測定装置を配置して床上領域の圧力と床下領域の圧力との差圧を測定することを特徴とする差圧測定方法。
 本発明によれば、床上領域の圧力と床下領域の圧力との差圧が小さい場合にも、上記差圧を精度よく測定することができる。
循環型ダウンフロー方式のクリーンルームの一例の模式図である。 本発明による差圧測定装置の好適な一例の断面図である。 本発明による差圧測定装置による効果を説明する図である。 実施例における差圧の測定位置を説明する図である。 発明例および比較例について、差圧の測定位置と測定された差圧との関係を示す図である。
(差圧測定装置)
 以下、図面を参照して、本発明の実施形態について説明する。本発明による差圧測定装置は、床にグレーチング床板が配置された部屋の床上領域の圧力と床下領域の圧力との差圧を測定する差圧測定装置であり、床上領域の圧力を取得する第1のポートと床下領域の圧力を取得する第2のポートとを有する差圧測定部であって、第1の配管の一端が第1のポートに接続され、第2の配管の一端が第2のポートに接続されている、差圧測定部と、第2の配管の他端が接続されており、グレーチング床板上に配置した際に、グレーチング床板との間に床下領域の圧力を測定するための空間を形成するカップとを備え、第1の配管の他端と第2の配管の他端との間の装置高さ方向の距離が固定されていることを特徴とする。言い換えると、本発明による差圧測定装置は、第1の配管の他端と第2の配管の他端との間の装置高さ方向の相対的な位置関係が一定で変化しないことを特徴としている。
 上述のように、特許文献1に記載された方法では、差圧測定装置を用いてクリーンルーム100の床上領域100cの圧力と床下領域100dの圧力との差圧を測定すると、差圧が小さい場合に精度よく測定することができない。本発明者は、上記差圧を精度よく測定できない原因について鋭意検討した結果、清浄な空気の気流が床上領域100cの圧力および床下領域100dの圧力の取得に影響を与えているのではないかと考えた。
 すなわち、差圧測定装置では、一般に、差圧を測定するために取得する2カ所の圧力として、空気の圧力である静圧と、空気の運動エネルギーを圧力に換算した動圧との和である全圧が測定される。図1に示したクリーンルーム100では、床上領域100cの清浄な空気が部分的に配置されたグレーチング床板102の開口部102aに集中して通過し、床下領域100dに流れ込む。そのため、グレーチング床板102の下方での空気の流速が大きくなる。上述のように、特許文献1に記載された方法では、床下領域100dの圧力を取得するポートは、グレーチング床板102下方の床下領域100dに配置されているため、取得される床下領域100dの圧力は動圧の影響を大きく受ける。
 しかしながら、クリーンルーム100内の清浄空気の気流の調整に必要なのは、床上領域100cの静圧と床下領域100dの静圧との差圧である。そこで、本発明者らは、床下領域100dの圧力を取得する際に、上述のような動圧の影響を低減する方途について鋭意検討した。その結果、一端が差圧測定装置における床下領域100dの圧力を取得するポートに接続された配管の他端にカップを接続することに想到した。そして、これにより、カップをグレーチング床板102上に配置した際に、カップとグレーチング床板102との間に擬似的な床下空間を構成することができ、清浄な空気の動圧の影響を低減して床下領域100dの圧力を取得することができることを見出した。
 また、本発明者らは、床下領域100dの圧力を取得する際に、床上領域100cの圧力を取得するポートに可撓性を有する配管の一端を接続して床上領域100cに圧力を取得すると、配管の他端の位置が測定毎にばらつき、それが差圧の値のばらつきに繋がると考えた。そこで、本発明者らは、床上領域の100cの圧力を取得するポート(第1のポート)に接続された配管(第1の配管)の他端と床下領域100dの圧力を取得するポート(第2のポート)に接続された配管(第2の配管)の他端の装置高さ方向の距離を固定することに想到した。こうして、本発明を完成させるに至った。以下、本発明による差圧測定装置の各構成について説明する。
 図2は、本発明による差圧測定装置の好適な一例の断面図を示している。図2に示した差圧測定装置1は、差圧測定部11と、第1の配管12と、第2の配管13と、カップ14と、パッキン15とを備える。
 差圧測定部11は、床上領域100cの圧力を取得する第1のポート11aと、床下領域100dの圧力を取得する第2のポート11bとを有している。第1のポート11aには、第1の配管12の一端12aが接続されており、第2のポート11bには、第2の配管13の一端13aが接続されている。差圧測定部11は、取得した床上領域100cの圧力と床下領域100dの圧力との差から差圧を測定する。
 差圧測定部11は、床上領域100cの圧力および床下領域100dの圧力を取得して、それらの差圧を測定することができれば特に限定されず、従来公知の差圧測定装置(差圧計)で構成することができる。ただし、クリーンルーム100の床上領域100cの圧力と床下領域100dの圧力との差圧の値が小さいことから、差圧測定部11が0.1Pa以下の分解能を有することが好ましい。0.1Pa以下の分解能を有することにより、十分な精度で床上領域100cの圧力と床下領域100dの圧力との差圧を把握できる。
 第1の配管12および第2の配管13は、軟質塩化ビニルやシリコンチューブなどで構成することができる。
 また、第2の配管13の他端13bにはカップ14が接続されている。図3に示すように、カップ14は、カップ14をグレーチング床板102上に配置した際に、カップ14とグレーチング床板102との間に、擬似的な床下領域100dの空間が形成されるように構成されている。このように構成することにより、床下領域100dの空気流の動圧を抑制して床下領域100dの静圧を測定することができる。
 なお、図2に示すように、カップ14の縁部14aに沿ってパッキン15が設けられていることが好ましい。これにより、床上領域100cの気流がカップ14とグレーチング床板102との間の空間に侵入するのを低減して、上記空間をより床下領域100dの環境に近い空間にすることができる。
 カップ14は、差圧の測定に影響を与えない十分な強度を有する材料で構成することができ、例えばポリプロピレンなどの樹脂や軽量な金属、例えばアルミニウムなどで構成することができる。
 また、カップ14のサイズについては、グレーチング床板102のサイズが縦600mm×横600mm程度の場合が多いことから、縦、横ともに100mm以上600mm以下であることが好ましい。縦、横ともに100mm以上であれば、床下領域100dの静圧を良好に取得することができる。また、縦、横ともに600mm以下であれば、1枚のグレーチング床板102上の異なる位置で差圧を細かく測定することができる。カップ14の寸法は、縦200mm、横100mmの場合に最も好ましい。床下領域100dのリターン口103に向かう方向に対して離れるほど差圧が小さくなる場合があるため、カップの横方向の長さを100mmとしてカップ14の横方向(短辺)をリターン口103方向に対して平行に配置にすることによって(図4参照)、より細かい差圧分布を確認することができる。一方、カップ14の縦方向の長さを200mmとしてカップ14の縦方向(長辺)をリターン口103方向に対して垂直に配置することによって(図4参照)、距離に対する変化が小さい方向にカップ14の面積を広げ、安定した計測面積を広くして測定値を安定化することができる。また、カップ14の高さは、20mm以上100mm以下であることが好ましい。カップ14の高さが20mm以上であれば、カップの内部に擬似的な床下領域100dの空間を形成して、床下領域100dの静圧の測定を安定して行うことができる。また、カップ14の高さが100mm以下であれば、携帯性を損なうことなく、床下領域100dの静圧を測定することができる。
 上述のような構成を有する差圧測定装置1において、第1の配管12の他端12bと、第2の配管13の他端13bとの装置高さ方向の距離が固定されていることが肝要である。これにより、差圧の測定をより高精度に行うことができる。なお、「第2の配管13の他端13bとの装置高さ方向の距離」とは、カップ14をその縁部14bが水平面に接触するように水平面に載置した際に、第1の配管12の中心軸の他端12bでの高さ位置と、第2の配管13の中心軸の他端13bでの高さ位置との差を意味している。
 また、床上領域100cの圧力を取得する第1のポート11aに接続された第1の配管12の他端12bおよび床下領域100dの圧力を取得する第2のポート11bに接続された第2の配管13の他端13bの位置を、本発明の差圧測定装置1上で固定することが好適である。
 上記第1の配管12の他端12bと第2の配管13の他端13bとの間の装置高さ方向の距離は、0mm以上250mm以下であることが好ましい。これにより、差圧の測定誤差を0.1Pa以下にすることができる。装置高さ方向の距離は、0mm以上120mm以下であることがより好ましい。これにより、差圧の測定誤差を0.0Paにすることができる。
 また、第1の配管12の他端12bは、図2に示すように、装置高さ方向に対して交差する方向を向いていることが好ましい。上述のように、清浄空気の気流の調整には床上領域100cの静圧と床下領域100dの静圧の差圧を測定する必要があるが、第1の配管12の他端12bが装置高さ方向に対して交差する方向に向くことにより、床上領域100cの圧力を取得する場合に、床下領域100dの圧力を取得する場合に比べて動圧の影響を受けにくい。
 ただし、第1の配管12の他端12bを鉛直方向上方に向ける場合には、第1の配管12の内部に清浄空気が入り込み、動圧の影響を大きく受ける。また、第1の配管12の他端12bを鉛直方向下方に向けた場合には、カップ14の表面で反射した空気流が第2の配管13内に入り込みやすくなり、動圧の影響が大きくなる。
 そのため、第1の配管12の他端12bは、装置高さ方向に対して交差する方向を向いていることが好ましい。図2に示すように、第1の配管12の他端12bは、装置高さ方向に対して直交する方向に向いていることがより好ましい。
 さらに第1の配管12の他端12bへの気流を抑制するカバーをさらに有することが好ましい。こうしたカバーとしては、通気性を有し、空気流の勢いを低減して動圧を低減することができれば特に限定されない。カバーは、例えば多数の気泡を有する多孔質素材、水槽などで空気の供給に使用されるバブラー、密度の高い綿状素材、小さな貫通孔(例えば、直径0.05~1mm)を有する金属材や樹脂の球体で構成することができる。このようなカバーを第1の配管12の他端12bの上方に配置してもよいし、上記金属材を箱状にして第1の配管12の他端12bを箱状のカバー内に挿入するか、差圧測定装置1全体を箱状カバー内に収容してもよい。また、箱状カバーは、大きさの異なる箱を二重、三重に重ねたものとしてもよく、最も内側の箱状カバーの内部に第1の配管12の他端12bまたは差圧測定装置1を配置してもよい。
 このように、本発明による差圧測定装置1により、床上領域100cの圧力と床下領域100dの圧力との差圧が小さい場合にも、差圧を精度よく測定することができる。また、本発明により差圧測定装置1は携帯性に優れるため、クリーンルーム100内の様々な位置にて床上領域100cの圧力と床下領域100dの圧力との差圧を測定することができる。
(差圧測定方法)
 次に、本発明による差圧測定方法について説明する。本発明による差圧測定方法は、床にグレーチング床板が配置された部屋のグレーチング床板上に、上述した本発明による差圧測定装置を配置して、床上領域の圧力と床下領域の圧力との差圧を測定することを特徴とする。
 上述のように、本発明による差圧測定装置1により、床下領域100dの圧力を、カップ14とグレーチング床板102との間の擬似的な床下領域100dの空間において、動圧の影響を低減した状態で行うことができる。これにより、床上領域100cの圧力と床下領域100dの圧力との差圧が小さい場合にも、床上領域100cの圧力と床下領域100dの圧力との差圧を高精度に測定することができる。
 上記本発明による差圧測定装置1をグレーチング床板102上に配置する際に、カップ14の縁部14aがグレーチング床板102の開口部102a上にできるだけ配置しないことが好ましく、開口部102a上に全く配置されないことが好ましい。これにより、カップ14とグレーチング床板102との間の空間をより実際の床下領域100dの空間により近づけることができる。
 以下、本発明の実施例について説明するが、本発明は実施例に限定されない。
 図2に示した差圧測定部11として差圧計(柴田化学社製FP-1型)を用い、第1のポート11aの高さ位置と第2のポート11bの高さ位置との差が差圧に与える影響について調べた。具体的には、第1のポート11aには第1の配管12を接続せず、第2のポート11bに第2の配管13の一端13aを接続した。そして、第2の配管13の他端13bの高さ位置が第1のポート11aの高さ位置よりも0mm(参考例1)、250mm(参考例2)、500mm(参考例3)低い状態で、差圧を測定した。上記差圧の測定は、第1のポート11aおよび第2の配管13の他端13bが床上領域100cに配置された状態で行った。その結果、差圧の値は0Pa(参考例1)、0.1Pa(参考例2)、0.2Pa(参考例3)となった。この結果から、第1のポート11a(すなわち、第1の配管12の他端12b)の高さ位置と、第2の配管13の他端13bの高さ位置との差が0mm以上250mm以下の場合には、0.1Paの測定誤差で差圧を測定でき、0mm以上120mm以下の場合には0.0Paの測定誤差で差圧を測定できることが分かる。
(発明例)
 図2に示した差圧測定装置1を用いて、クリーンルーム100内の床上領域100cの圧力と床下領域100dの圧力との差圧を測定した。具体的には、差圧測定部11として差圧計(柴田化学社製FP-1型)を用いた。また、第1の配管12および第2の配管13をシリコンチューブで構成し、カップ14はプラスチック素材のポリプロピレンで構成した。カップ14のサイズは、縦150mm、横200mm、高さ50mmとした。
 上記差圧測定装置1を、図4に示すようにリターン口103からの距離を変更して、床上領域100cの圧力と床下領域100dの圧力との差圧を測定した。得られた結果を図5に示す。
(比較例)
 発明例と同様に、床上領域100cの圧力と床下領域100dの圧力との差圧を測定した。ただし、差圧測定装置としては、図2に示した差圧測定装置1の差圧測定部11を取り出し、第1のポート11aに第1の配管12を接続せず、第2のポート11bに第2の配管13(長さ500mm)を接続したものを用い、測定の際に第2の配管13の他端13bをグレーチング床板102の開口部102aを介して床下領域100dに挿入した。その他の条件は、発明例と全て同じである。
 図5は、発明例および比較例について、差圧の測定位置と測定された差圧との関係を示している。図5から明らかなように、発明例については、差圧の測定位置がリターン口から離れるにつれて、差圧が小さくなることが分かる。これに対して、比較例については、第2の配管の他端12bのリターン口103からの位置が65~105mmの場合には、差圧が一定となり、差圧が正しく測定できていないことが分かる。
 本発明によれば、床上領域の圧力と床下領域の圧力との差圧が小さい場合にも、上記差圧を精度よく測定することができるため、半導体産業において有用である。
1 差圧測定装置
11 差圧測定部
12 第1の配管
12a 第1の配管の一端
12b 第1の配管の他端
13 第2の配管
13a 第2の配管の一端
13b 第2の配管の他端
14 カップ
14a 縁部
15 パッキン
100 クリーンルーム
100a 天井部
100b 床
100c 床上領域
100d 床下領域
101 清浄空気供給部
102 グレーチング床板
102a 開口部
103 リターン口
104 送風ファン
 

Claims (5)

  1.  床にグレーチング床板が配置された部屋の床上領域の圧力と床下領域の圧力との差圧を測定する差圧測定装置であって、
     前記床上領域の圧力を取得する第1のポートと前記床下領域の圧力を取得する第2のポートとを有する差圧測定部であって、第1の配管の一端が前記第1のポートに接続され、第2の配管の一端が前記第2のポートに接続されている、差圧測定部と、
     前記第2の配管の他端が接続されており、前記グレーチング床板上に配置した際に、前記グレーチング床板との間に前記床下領域の圧力を測定するための空間を形成するカップと、
    を備え、
     前記第1の配管の他端と前記第2の配管の前記他端との間の装置高さ方向の距離が固定されていることを特徴とする差圧測定装置。
  2.  前記第1の配管の他端と前記第2の配管の前記他端との間の前記装置高さ方向の距離は0mm以上250mm以下である、請求項1に記載の差圧測定装置。
  3.  前記第1の配管の前記他端が装置高さ方向に対して交差する方向を向いている、請求項1または2に記載の差圧測定装置。
  4.  前記第1の配管の他端への気流を抑制するカバーをさらに有する、請求項1~3のいずれか一項に記載の差圧測定装置。
  5.  床にグレーチング床板が配置された部屋の前記グレーチング床板上に請求項1~4のいずれか一項に記載の差圧測定装置を配置して、床上領域の圧力と床下領域の圧力との差圧を測定することを特徴とする差圧測定方法。
     
PCT/JP2021/038654 2020-11-12 2021-10-19 差圧測定装置および差圧測定方法 WO2022102358A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180075710.9A CN116472442A (zh) 2020-11-12 2021-10-19 压差测量装置及压差测量方法
US18/252,473 US20230408356A1 (en) 2020-11-12 2021-10-19 Differential pressure measuring device and differential pressure measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-188946 2020-11-12
JP2020188946A JP7396253B2 (ja) 2020-11-12 2020-11-12 差圧測定方法

Publications (1)

Publication Number Publication Date
WO2022102358A1 true WO2022102358A1 (ja) 2022-05-19

Family

ID=81602184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038654 WO2022102358A1 (ja) 2020-11-12 2021-10-19 差圧測定装置および差圧測定方法

Country Status (5)

Country Link
US (1) US20230408356A1 (ja)
JP (1) JP7396253B2 (ja)
CN (1) CN116472442A (ja)
TW (1) TWI805006B (ja)
WO (1) WO2022102358A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118649A (ja) * 1997-10-15 1999-04-30 Nagano Keiki Co Ltd 圧力発信器
JP2007220773A (ja) * 2006-02-15 2007-08-30 Hitachi High-Tech Control Systems Corp ミニエンバイロメント装置及びそれを用いたクリーンルーム設備
JP2009183853A (ja) * 2008-02-06 2009-08-20 Shin Nippon Air Technol Co Ltd 局所空間の空気清浄化装置
JP2009270752A (ja) * 2008-05-07 2009-11-19 Hitachi Plant Technologies Ltd 局所クリーントンネル
JP2012241961A (ja) * 2011-05-18 2012-12-10 Panasonic Corp クリーンルームの逆流防止装置
US20200166235A1 (en) * 2017-08-15 2020-05-28 Koninklijke Philips N.V. Ventilation unit, system and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2805601B1 (fr) 2000-02-29 2002-06-07 Aldes Aeraulique Groupe de ventilation auto-pilote a regulation electronique
JP2002257392A (ja) 2001-02-26 2002-09-11 Nec Kansai Ltd 循環送風システム
GB0426007D0 (en) * 2004-11-26 2004-12-29 Univ Gent Method and device for measuring pressure
JP5921361B2 (ja) 2012-06-25 2016-05-24 株式会社日立製作所 空調システムの風量測定装置
KR20180101781A (ko) 2017-03-06 2018-09-14 엘지전자 주식회사 공기조화기의 실외기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118649A (ja) * 1997-10-15 1999-04-30 Nagano Keiki Co Ltd 圧力発信器
JP2007220773A (ja) * 2006-02-15 2007-08-30 Hitachi High-Tech Control Systems Corp ミニエンバイロメント装置及びそれを用いたクリーンルーム設備
JP2009183853A (ja) * 2008-02-06 2009-08-20 Shin Nippon Air Technol Co Ltd 局所空間の空気清浄化装置
JP2009270752A (ja) * 2008-05-07 2009-11-19 Hitachi Plant Technologies Ltd 局所クリーントンネル
JP2012241961A (ja) * 2011-05-18 2012-12-10 Panasonic Corp クリーンルームの逆流防止装置
US20200166235A1 (en) * 2017-08-15 2020-05-28 Koninklijke Philips N.V. Ventilation unit, system and method

Also Published As

Publication number Publication date
CN116472442A (zh) 2023-07-21
TWI805006B (zh) 2023-06-11
TW202223347A (zh) 2022-06-16
JP2022077885A (ja) 2022-05-24
JP7396253B2 (ja) 2023-12-12
US20230408356A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
JP5127292B2 (ja) 局所空気清浄化装置
JP4770603B2 (ja) フィールドフローフラクショネーション装置
WO2006093130A1 (ja) 搬送物浮上ユニット、搬送物浮上装置、及びステージ装置
CN111556848A (zh) 分层非接触支撑平台
US20040112212A1 (en) Airflow feedback control method and apparatus for fan filter unit
WO2022102358A1 (ja) 差圧測定装置および差圧測定方法
US7426024B2 (en) System for inspecting a disk-shaped object
US20200118810A1 (en) Laminar flow device
JP2022545241A (ja) 粒子濃度センサ用サンプラデバイス
BR112014007783B1 (pt) Dispositivo de descarga de ar purificado
JP2016033437A (ja) クリーンブース
KR100714958B1 (ko) 공기 청정용 필터 테스트용 챔버 시스템
KR20120119880A (ko) 평균피토관 타입의 유량측정장치
JPS62211236A (ja) 板状体の保持装置
US20220082375A1 (en) System and method of measuring warpage of a workpiece on a noncontact support platform
JP6251315B2 (ja) 風量計測装置
CN114279504A (zh) 一种可反复消毒的高检测精度压差流量计
JP2004240082A (ja) 水力学実験装置
CN115253527B (zh) 用于支持环境控制的方法、层状气流过滤器装置以及用于产生层状气流的装置
KR101105873B1 (ko) 이동식 디지털 풍량 측정장치의 노즐 풍량 측정방법
KR20220106954A (ko) 유리판의 제조 방법
JP5543940B2 (ja) 開放型クリーンベンチ
CN108345079B (zh) 一种曝光用投影物镜以及光刻系统
CN209116718U (zh) 一种补风管及使用该补风管的硅片烘干系统
JP2010203846A (ja) 流速濃度計測装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891605

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180075710.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891605

Country of ref document: EP

Kind code of ref document: A1