WO2022100538A1 - 等离子体浸没离子注入设备 - Google Patents

等离子体浸没离子注入设备 Download PDF

Info

Publication number
WO2022100538A1
WO2022100538A1 PCT/CN2021/129216 CN2021129216W WO2022100538A1 WO 2022100538 A1 WO2022100538 A1 WO 2022100538A1 CN 2021129216 W CN2021129216 W CN 2021129216W WO 2022100538 A1 WO2022100538 A1 WO 2022100538A1
Authority
WO
WIPO (PCT)
Prior art keywords
process chamber
ion implantation
immersion ion
plasma immersion
air
Prior art date
Application number
PCT/CN2021/129216
Other languages
English (en)
French (fr)
Inventor
王桂滨
韦刚
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Publication of WO2022100538A1 publication Critical patent/WO2022100538A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • the present invention relates to the technical field of semiconductor processing, in particular, to a plasma immersion ion implantation device.
  • Plasma-related processes mainly include cleaning, etching, grinding, deposition, and doping, among which plasma doping is called Plasma Immersion Ion Implantation (PIII for short).
  • Plasma immersion ion implantation equipment has been widely used in the doping process of modern electronic and optical devices.
  • the plasma immersion ion implantation system is to directly immerse the target to be doped in the plasma containing the dopant, and apply a specific negative voltage to the target to make the dopant ions in the plasma enter the target. surface.
  • the chamber wall of the process chamber is grounded, and the base set in the process chamber is electrically connected to the bias power supply.
  • the plasma formed in the chamber and the chamber walls of the process chamber form a bias voltage path.
  • the plasma distributed in the process chamber corresponds to the wafer at different radii.
  • the equivalent current at different positions on the plasma is different (ie, the equivalent current of the plasma is different at different positions in the radial direction of the process chamber), thereby reducing the doping uniformity.
  • the present invention aims to solve at least one of the technical problems existing in the prior art, and proposes a plasma immersion ion implantation device, which can improve the uniformity of wafer doping and effectively improve the uniformity of implantation dose.
  • an embodiment of the present invention provides a plasma immersion ion implantation device, including:
  • a process chamber in which a pedestal is provided, the pedestal includes a bearing surface for carrying a wafer, the cavity of the process chamber is grounded, and the pedestal is electrically connected to a bias power supply;
  • a medium cylinder which is arranged on the top of the process chamber and communicates with the process chamber
  • a uniform air component is made of a first conductive material and is arranged on the top of the medium cylinder, and the lower surface of the uniform air component has a uniform air area exposed to the inside of the medium cylinder, and the uniform air area is There are a plurality of gas outlets distributed in the middle to transport process gas into the medium cylinder;
  • a coupling coil arranged around the outer periphery of the medium cylinder, and electrically connected to the excitation power source;
  • the conductive parts are respectively in electrical conduction with the homogeneous air part and the cavity of the process chamber.
  • an insulating protection member covering the entire inner surface of the process chamber is provided in the process chamber, and the insulation protection member is used to protect the cavity of the process chamber and provide protection for the cavity of the process chamber.
  • the body is electrically isolated from the base.
  • the insulating protection component is made of a non-metal insulating material.
  • the non-metal insulating material includes silicon carbide or quartz.
  • the orthographic projection of the uniform air region on the bearing surface completely coincides with the bearing surface.
  • the first conductive material includes a non-metallic conductive material.
  • the plasma immersion ion implantation equipment further includes a support assembly, the support assembly is fixedly connected with the cavity of the process chamber, and is located on the outer side of the medium cylinder to support the uniform gas component,
  • the support assembly is made of a second conductive material, and is used as the conductive member to be electrically connected to the air-distribution member and the cavity of the process chamber, respectively.
  • the second conductive material includes metal or metal coated with a conductive layer on the surface.
  • the support assembly includes at least three support members, and the at least three support members are evenly distributed around the medium cylinder along the circumferential direction of the air-distributing member.
  • each of the support members includes a support body, and the support body is fixedly connected with the cavity of the process chamber; and a horizontal support portion is formed on the support body for supporting the uniform gas and a limiting member is arranged on the horizontal support portion to limit the position of the uniform air member on the horizontal support member.
  • the uniform air component and the base are arranged concentrically, and the air uniform component includes a uniform air body and a uniform air cavity, an air inlet hole and a plurality of air outlet holes formed in the air uniform body, in,
  • the air inlet end of the air inlet hole is connected with the air source, and the air outlet end of the air inlet hole is communicated with the uniform air chamber;
  • the air inlet end of the air outlet hole is used for communicating with the uniform air chamber, and the air outlet end of each air outlet hole is used as the air outlet to communicate with the inside of the medium cylinder.
  • the inner diameter of the medium window gradually increases from top to bottom.
  • the angle between the inner side wall of the medium barrel and the axis of the medium barrel is greater than or equal to 15° and less than or equal to 60°; the medium barrel
  • the height of the medium cylinder is greater than or equal to 100mm and less than or equal to 210mm; the thickness of the side wall of the medium cylinder is greater than or equal to 20mm and less than or equal to 40mm.
  • the plasma immersion ion implantation equipment further includes an ignition diagnosis device, and the ignition diagnosis device includes:
  • a photosensitive sensor for detecting the light intensity in the process chamber in real time and feeding back a light intensity signal
  • the signal processing unit is used for receiving the light intensity signal, and judging whether plasma is generated in the process chamber according to the change of the light intensity signal, if yes, execute the process; if not, issue an alarm.
  • the photosensitive sensor includes a photoresistor.
  • an observation window is arranged in the cavity of the process chamber, and the photosensitive sensor is arranged outside the observation window.
  • the bias power supply includes a pulsed DC power supply, and the pulse frequency of the pulsed DC power supply is greater than or equal to 1 kHz and less than or equal to 100 kHz; the duration of the rising edge and the duration of the falling edge in the pulse cycle of the pulsed DC power supply are both less than or equal to 100 kHz. 10ns; the output voltage of the pulsed DC power supply is greater than or equal to 0.5kV and less than or equal to 10kV.
  • the cavity of the process chamber is grounded, and the gas-sparing component is made of a first conductive material, and the lower surface has a gas-sparing area exposed to the inside of the medium cylinder, and uses conductive
  • the components are electrically connected to the homogeneous part and the cavity of the process chamber respectively, so that the cavity, the conductive part and the homogeneous part of the process chamber can be electrically connected to each other, so that the plasma,
  • a bias circuit is formed between the homogeneous part, the conductive part and the cavity of the process chamber.
  • the path of the equivalent current changes in the bias circuit, that is, at least a part of the equivalent current will pass through the homogeneous part and conductive parts before flowing into the cavity of the process chamber.
  • the equivalent current paths corresponding to different positions in the radial direction of the process chamber can be made the same, so that the distance between the surface of the wafer placed on the susceptor and the air distribution area of the air distribution part can be improved at each position in the radial direction of the process chamber.
  • the consistency of the equivalent current can improve the uniformity of the wafer doping and effectively improve the uniformity of the implantation dose.
  • the above-mentioned uniform gas component can simultaneously deliver process gas to the medium cylinder at different positions in the radial direction of the process chamber through a plurality of gas outlets distributed in the uniform gas area, so that the uniformity of plasma distribution can be improved, and further Improve wafer doping uniformity.
  • FIG. 1 is a structural diagram of a plasma immersion ion implantation device according to an embodiment of the present invention.
  • Fig. 2 is the top sectional view of the uniform gas component adopted in the embodiment of the present invention.
  • FIG. 3 is a partial side view of the support member used in the embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a bias circuit of a plasma immersion ion implantation device provided by an embodiment of the present invention.
  • FIG. 5 is a structural diagram of a medium cylinder and a uniform air component adopted in an embodiment of the present invention.
  • FIG. 6 is a density distribution diagram of plasma in the radial direction obtained by using the plasma immersion ion implantation apparatus provided by the embodiment of the present invention.
  • a plasma immersion ion implantation (Plasma Immersion Ion Implantation, hereinafter referred to as PIII) equipment provided by an embodiment of the present invention includes a process chamber 1, a dielectric cylinder 4, a uniform gas component 5, a coupling coil 6 and a conductive part.
  • a base 2 is provided in the process chamber 1, the base 2 includes a bearing surface for carrying wafers, and the cavity of the process chamber 1 is grounded.
  • the cavity of the process chamber 1 may include a chamber wall 1a and the annular adapter 1b arranged on the top of the chamber wall 1a are electrically connected, and the chamber wall 1a is grounded.
  • the base 2 is electrically connected to the bias power supply 3; the medium cylinder 4 is arranged on the top of the process chamber 1 and communicates with the process chamber 1. Specifically, the top of the process chamber 1 is open, and the above-mentioned annular adapter 1b is used for The medium cylinder 4 is supported, and both the upper and lower ends of the medium cylinder 4 are open, and the lower end of the medium cylinder 4 communicates with the upper end of the process chamber 1 .
  • the medium cylinder 4 is, for example, quartz, which does not contain metal elements, so that the introduction of metal contamination due to the plasma corroding the inner surface of the medium cylinder can be avoided.
  • the coupling coil 6 is arranged around the medium cylinder 4 and is electrically connected to the excitation power source 8 through the matching device 7 .
  • the excitation power source 8 is used to apply excitation power to the coupling coil 6 so that the coupling coil 6 generates excitation energy, and is coupled to the inside of the medium cylinder 4 through the medium cylinder 4 to excite the process gas inside the medium cylinder 4 to form plasma.
  • the excitation power supply 8 is, for example, a radio frequency power supply, and its frequency is, for example, 13.56 MHz.
  • the coupling coil 6 includes a plurality of single-turn coils, and the plurality of single-turn coils are arranged at intervals along the axis of the medium cylinder 4 and are connected in parallel with each other; and, the plurality of single-turn coils are arranged coaxially and are connected to The radial spacing between the media cartridges 4 is the same. With this arrangement, the density of plasma distribution in the edge region of the process chamber 1 can be further increased.
  • coupling coils of any other structure can also be used, such as conical cylindrical helical coils.
  • the homogeneous air component 5 is arranged on the top of the medium cylinder 4, and is made of a first conductive material, and the first conductive material includes a non-metallic conductive material, such as silicon.
  • silicon is conductive and does not contain Metal elements, so that the introduction of metal contamination due to plasma corrosion of the inner surface of the sparging member 5 can be avoided.
  • the lower surface of the homogeneous component 5 has a homogeneous area 55 exposed to the inside of the medium cylinder 4 , and a plurality of air outlets 54 are distributed in the homogeneous area 55 for the radial direction of the process chamber 1 .
  • the process gas is transported into the medium cylinder 4 from different positions, so that the plasma distribution uniformity can be improved, and the wafer doping uniformity can be further improved.
  • the uniform air component 5 is disposed concentrically with the base 2 , and the air uniform component 5 includes a uniform air body 51 and a uniform air cavity 52 formed in the air uniform body 51 . , an air inlet hole 53 and a plurality of air outlet holes (that is, used as air outlet 54), wherein the air inlet end of the air inlet hole 53 is connected with the air source 20, and the air outlet end of the air inlet hole 53 is communicated with the uniform air cavity 52; each The air inlet end of the air outlet 54 is communicated with the uniform air chamber 52 , and the air outlet end of each air outlet 54 is communicated with the interior of the medium cylinder 4 .
  • the process gas provided by the gas source 20 enters the uniform air chamber 52 through the air inlet holes 53 , and then enters the medium cylinder 4 uniformly through each air outlet 54 .
  • a second sealing ring 17 is provided between the medium cylinder 4 and the process chamber 1 (ie, the annular adapter 1b) to seal the gap between the two. seal.
  • the conductive parts are in electrical conduction with the homogeneous part 5 and the cavity of the process chamber 1 respectively.
  • the plasma immersion ion implantation apparatus further includes a support assembly 9 , and the support assembly 9 is fixedly connected to the cavity of the process chamber 1 , For example, it is fixed on the annular adapter 1b to support the homogeneous component 5, and the supporting component 9 is made of the second conductive material, and is used as the above-mentioned conductive component to be connected with the homogeneous component 5 (ie, the homogeneous body 51 ) and the homogeneous component 5 respectively.
  • the cavity of the process chamber 1 (eg, the annular adapter 1b) is electrically connected.
  • the above-mentioned support assembly 9 can not only play a supporting role, but also play a conductive role, which simplifies the device structure.
  • the second conductive material includes metal or metal coated with a conductive layer on the surface, and the conductive layer can increase electrical conductivity to ensure good electrical conductivity.
  • the conductive layer can be at least one layer, and the conductive layer is, for example, a material with good conductivity such as silver or gold.
  • each support member may have various structures.
  • each support member includes a support body 91 , and the support body 91 is fixed to the cavity of the process chamber 1 (eg, the annular adapter 1 b ).
  • the way of connection and fixed connection is, for example: a boss 9b is arranged on the lower end of the support body 91, the boss 9b is superimposed on the annular adapter 1b, and the boss 9b is connected to the annular adapter 1b by the first screw 19. fixed together.
  • a horizontal support portion 92 is formed on the support body 91 , and the horizontal support portion 92 is, for example, a bent structure formed on the upper end of the support body 91 for supporting the aeration body 51 of the aeration member 5 , and at the horizontal support portion A limiting member 9a is provided on the 92 to limit the position of the homogeneous air body 51 of the homogeneous air member 5 on the horizontal support member 92 .
  • the second screw 20 is used to fix the limiting member 9a and the air-distribution body 51 together.
  • the support component 9 can not only play a supporting role, but also play a conductive role.
  • the embodiment of the present invention is not limited to this. In practical applications, a separate support can also be provided. components and conductive parts.
  • the chamber wall 1a of the process chamber 1 , the annular adapter 1b , the support assembly 9 and the homogeneous part 5 are electrically connected to each other, and the chamber wall 1a is grounded, and the base 2 is electrically connected to the bias power supply 3 . connected, so as to form a bias circuit between the bias power supply 3, the susceptor 2, the plasma formed in the process chamber, the uniform gas part 5, the support assembly 9 and the chamber wall 1a of the process chamber 1, the bias circuit and the chamber wall 1a of the process chamber 1.
  • the path of the equivalent current is changed, that is, at least a part of the equivalent current will flow into the chamber wall 1a of the process chamber 1 after passing through the homogeneous part 5 and the support assembly 9 .
  • the equivalent current paths corresponding to different positions in the radial direction of the process chamber 1 can be made the same, so that the distance between the surface of the wafer placed on the susceptor 2 and the air distribution area 55 of the air distribution part 5 can be improved in the process chamber 1
  • the uniformity of the equivalent current at each position in the radial direction can improve the uniformity of the wafer doping and effectively improve the uniformity of the implantation dose.
  • an insulating protection part 18 covering the entire inner surface of the process chamber 1 is provided in the process chamber 1 .
  • the component 18 is made of non-metal insulating material, and is used to electrically isolate the chamber wall 1a of the process chamber 1 from the base 2 . In this way, in the bias circuit, most of the equivalent current of the base 2 does not directly flow into the chamber wall 1a closest to the base 2, but flows from bottom to top to the back of the homogeneous part 5 and the support assembly 9 , flows into the chamber wall 1 a of the process chamber 1 , so that the consistency of the equivalent current at each position in the radial direction of the process chamber 1 can be further improved.
  • the insulating protection member 18 is made of a non-metal insulating material, the introduction of metal contamination due to the plasma corrosion of the inner surface of the process chamber 1 can be avoided.
  • the non-metal insulating material includes, for example, silicon carbide or quartz and the like.
  • the above-mentioned insulating protective component 18 may also include a protective component body, and the entire inner surface of the protective component body is covered with a non-metal insulating layer.
  • the body of the protective component can be made of suitable materials according to specific needs, such as non-metallic materials such as graphite, silicon carbide or quartz.
  • the non-metal insulating layer includes, for example, silicon carbide or quartz, or the like.
  • the projection of the air-distribution area 55 of the air-distribution component 5 on the bearing surface completely coincides with the bearing surface.
  • the air-distribution area 55 is a circle, and the center of the circle is the center of the bearing surface. coincide, and the diameter of the circle is the same as the diameter of the bearing surface.
  • an equivalent bias circuit as shown by the curved arrow in FIG. 4 can be formed.
  • the equivalent current at each position in the radial direction of the process chamber 1 is consistent, so that the doping uniformity of the wafer can be more effectively improved, and the ion dose implanted into the wafer surface can be approximately the same, thereby effectively improving the implant dose. uniformity.
  • the above-mentioned bearing surface of the base 2 refers to an area on the base 2 for placing the wafer, and the shape and size of the area are consistent with the shape and size of the wafer.
  • the support component 9 can not only play a supporting role, but also play a conductive role.
  • the embodiment of the present invention is not limited to this. In practical applications, a separate support can also be provided. components and conductive parts.
  • the inner diameter of the medium barrel 4 increases gradually from top to bottom, that is, the medium barrel 4 is in the shape of a conical ring, which helps to expand the diffusion range of the plasma in the lateral direction, so that the The density of plasma distribution in the edge region of the process chamber 1 can be increased.
  • the angle a between the inner side wall of the medium barrel 4 and the axis of the medium barrel 4 is greater than or equal to 15° and less than or equal to 60°;
  • the height of the cylinder 4 is greater than or equal to 100 mm and less than or equal to 210 mm; the thickness of the side wall of the medium cylinder 4 is greater than or equal to 20 mm and less than or equal to 40 mm.
  • the diffusion range of the plasma in the lateral direction can be effectively expanded, so that the distribution density of the plasma in the edge region of the process chamber 1 can be increased.
  • curve A is the plasma obtained by using the existing plasma immersion ion implantation equipment, and the plasma density distribution curve along the radial direction of the susceptor in the process chamber from the center to the edge;
  • curve B For the plasma obtained by using the plasma immersion ion implantation equipment provided by the embodiment of the present invention, the plasma density distribution curve along the radial direction of the susceptor in the process chamber from the center to the edge direction. Comparing curve A and curve B, it can be seen that the plasma distribution density of curve B in the edge region of the process chamber is significantly improved compared to curve A, thereby reducing the difference with the plasma distribution density in the central region of the process chamber, Further, the uniformity of plasma distribution density is improved.
  • the plasma immersion ion implantation apparatus further includes an ignition diagnosis device, and the ignition diagnosis device includes a photosensor 10 and a signal processing unit 11 , wherein the photosensor 10 It is used to detect the light intensity in the process chamber 1 in real time, and the signal processing unit 11 feeds back the light intensity signal; the signal processing unit 11 is used to receive the light intensity signal, and judge whether plasma is generated in the process chamber 1 according to the change of the light intensity signal , and send the judgment result to the machine process control unit 12; the machine process control unit 12 is used to execute the process when the judgment result is that plasma is generated; when the judgment result is that no plasma is generated, an alarm is issued.
  • the ignition diagnosis device includes a photosensor 10 and a signal processing unit 11 , wherein the photosensor 10 It is used to detect the light intensity in the process chamber 1 in real time, and the signal processing unit 11 feeds back the light intensity signal; the signal processing unit 11 is used to receive the light intensity signal, and judge whether plasma is generated in the process chamber 1 according to the change of the light intensity signal ,
  • the signal processing unit 11 and the machine process control unit 12 can also be integrated together.
  • Using the photosensitive sensor 10 and the signal processing unit 11 to determine whether plasma is generated in the process chamber 1 can be used as a basis for judging whether to execute the next process flow, for example, it can be used as a basis for judging whether the plasma is successfully ignited, ensuring that the The step of turning on the bias power supply is not performed before the plasma is ignited, so that the problem of sparking damage to the wafer and equipment caused by applying a high-frequency pulse bias to the substrate when the plasma is not ignited can be avoided.
  • the photosensor 10 includes, for example, a photoresistor.
  • a photoresistor When the process chamber 1 is in a non-luminous state, the light intensity in the process chamber 1 is very weak, and the resistance value of the photoresistor is very high at this time.
  • the signal processing unit 11 can determine whether the plasma is successfully ignited according to the resistance value change used for the feedback of the photoresistor.
  • an observation window (not shown in the figure) is provided in the cavity of the process chamber 1 (for example, the side wall of the chamber wall 1a), and the photosensitive sensor 10 is provided outside the observation window , to avoid being corroded by plasma.
  • the bias power supply 3 includes a pulsed DC power supply, and the pulse frequency of the pulsed DC power supply 3 is Greater than or equal to 1kHz and less than or equal to 100kHz; both the rising edge duration and the falling edge duration in the pulse cycle of the pulsed DC power supply 3 are less than 10ns; the output voltage of the pulsed DC power supply 3 is greater than or equal to 0.5kV and less than or equal to 10kV.
  • the plasma immersion ion implantation apparatus further includes an implanted ion collection device 13 and a current signal integration processing unit 14, wherein the implanted ion collection device 13 is, for example, a Faraday cup, the shape of which is similar to a round cup, And it is arranged on one side of the base 2 .
  • the current signal integration processing unit 14 is used to calculate the ion implantation dose in real time and send it to the machine tool process control unit 12 . By means of the implanted ion collection device 13 and the current signal integration processing unit 14, the ion implantation dose can be accurately detected and obtained.
  • the cavity of the process chamber is grounded, and the homogeneous gas component is made of the first conductive material, and the lower surface has a homogeneous gas exposed to the inside of the medium cylinder area, and the conductive parts are electrically connected to the homogeneous part and the cavity of the process chamber respectively, so that the cavity of the process chamber, the conductive parts and the homogeneous part can be electrically connected to each other, so that the bias power supply, the base, the process cavity A bias circuit is formed between the formed plasma, the uniform gas component, the conductive component and the cavity of the process chamber.
  • the path of the equivalent current changes in the bias circuit, that is, at least a part of the equivalent current It will flow into the cavity of the process chamber after passing through the homogeneous part and the conductive part.
  • the equivalent current paths corresponding to different positions in the radial direction of the process chamber can be made the same, so that the distance between the surface of the wafer placed on the susceptor and the air distribution area of the air distribution part can be improved at each position in the radial direction of the process chamber.
  • the consistency of the equivalent current can improve the uniformity of the wafer doping and effectively improve the uniformity of the implantation dose.
  • the above-mentioned uniform gas component can simultaneously deliver process gas to the medium cylinder at different positions in the radial direction of the process chamber through a plurality of gas outlets distributed in the uniform gas area, so that the uniformity of plasma distribution can be improved, and further Improve wafer doping uniformity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Plasma Technology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

一种等离子体浸没离子注入设备,该设备包括工艺腔(1),在工艺腔(1)中设置有基座(2),该基座(2)包括用于承载晶圆的承载面,并且工艺腔(1)的腔体接地,基座(2)与偏压电源(3)电连接;介质筒(4),设置在工艺腔(1)的顶部,且与工艺腔(1)连通,并且,介质筒(4)的内径由上而下逐渐增大;匀气部件(5),采用第一导电材料制成,且设置在介质筒(4)的顶部,并且匀气部件(5)的下表面具有暴露于介质筒(4)内部的匀气区域(55),且匀气区域(55)中分布有多个出气口(54),用以向介质筒(4)中输送工艺气体;耦合线圈(6),环绕设置在介质筒(4)的外周,且与激励电源(8)电连接;以及导电部件,分别与匀气部件(5)和工艺腔(1)的腔体电导通。

Description

等离子体浸没离子注入设备 技术领域
本发明涉及半导体加工技术领域,具体地,涉及一种等离子体浸没离子注入设备。
背景技术
近年来,集成电路正朝着高度集成化快速发展,等离子体相关技术的应用在其中起到了至关重要的作用。等离子体相关制程主要包括清洗、刻蚀、研磨、沉积及掺杂等,其中等离子体掺杂被称为等离子体浸没离子注入(Plasma Immersion Ion Implantation,简称PIII)。等离子体浸没离子注入设备已经被广泛应用于现代电子及光学装置的掺杂制程中。
等离子体浸没离子注入系统是将需要被掺杂的目标物直接浸没在包含掺杂剂的等离子体中,并通过给目标物施加特定负电压,使等离子体中的掺杂剂离子进入到目标物表面。
对于现有的等离子体浸没离子注入系统,其工艺腔的腔室壁接地,并且设置在工艺腔中的基座与偏压电源电连接,在进行工艺时,偏压电源、基座、在工艺腔中形成的等离子体和工艺腔的腔室壁形成了偏压通路。但是,由于置于基座上的晶圆在不同半径上的位置点与距离该位置点最近的腔室壁之间的间距不同,这使得分布在工艺腔中的等离子体对应晶圆在不同半径上的位置点处的等效电流不同(即,等离子体在工艺腔的径向上不同位置处的等效电流不同),从而降低了掺杂均匀性。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种等离 子体浸没离子注入设备,其可以提高晶圆掺杂均匀性,以及有效提升注入剂量的均匀性。
为实现上述目的,本发明实施例提供了一种等离子体浸没离子注入设备,包括:
工艺腔,在所述工艺腔中设置有基座,所述基座包括用于承载晶圆的承载面,并且所述工艺腔的腔体接地,所述基座与偏压电源电连接;
介质筒,设置在所述工艺腔的顶部,且与所述工艺腔连通;
匀气部件,采用第一导电材料制成,且设置在所述介质筒的顶部,并且所述匀气部件的下表面具有暴露于所述介质筒内部的匀气区域,且所述匀气区域中分布有多个出气口,用以向所述介质筒中输送工艺气体;
耦合线圈,环绕设置在所述介质筒的外周,且与激励电源电连接;以及
导电部件,分别与所述匀气部件和所述工艺腔的腔体电导通。
可选的,在所述工艺腔内设置有覆盖所述工艺腔的整个内表面的绝缘保护部件,所述绝缘保护部件用于保护所述工艺腔的腔体,并对所述工艺腔的腔体与所述基座电隔离。
可选的,所述绝缘保护部件采用非金属绝缘材料制作。
可选的,所述非金属绝缘材料包括碳化硅或石英。
可选的,所述匀气区域在所述承载面上的正投影与所述承载面完全重合。
可选的,所述第一导电材料包括非金属导电材料。
可选的,所述等离子体浸没离子注入设备还包括支撑组件,所述支撑组件与所述工艺腔的腔体固定连接,且位于所述介质筒的外侧,用以支撑所述匀气部件,并且所述支撑组件采用第二导电材料制作,且用作所述导电部件分别与所述匀气部件和所述工艺腔的腔体电导通。
可选的,所述第二导电材料包括金属或者表面镀有导电层的金属。
可选的,所述支撑组件包括至少三个支撑件,且至少三个支撑件沿所述匀气部件的圆周方向均匀分布在所述介质筒的周围。
可选的,每个所述支撑件均包括支撑本体,所述支撑本体与所述工艺腔的腔体固定连接;且在所述支撑本体上形成有水平支撑部,用于支撑所述匀气部件,并且在所述水平支撑部上设置有限位部件,用以限定所述匀气部件在所述水平支撑部件上的位置。
可选的,所述匀气部件与所述基座同心设置,且所述匀气部件包括匀气本体和形成在所述匀气本体中的匀气腔、进气孔和多个出气孔,其中,
所述进气孔的进气端与气源连接,所述进气孔的出气端与所述匀气腔连通;
所述出气孔的进气端用于与所述匀气腔连通,每个所述出气孔的出气端用作所述出气口与所述介质筒的内部连通。
可选的,所述介质窗的内径由上而下逐渐增大。
可选的,在所述介质筒的轴向横截面上,所述介质筒的内侧壁与所述介质筒的轴线之间的夹角大于等于15°,且小于等于60°;所述介质筒的高度大于等于100mm,且小于等于210mm;所述介质筒的侧壁厚度大于等于20mm,且小于等于40mm。
可选的,所述等离子体浸没离子注入设备还包括起辉诊断装置,所述起辉诊断装置包括:
光敏感应器,用于实时检测所述工艺腔中的光强,并反馈光强信号;以及
信号处理单元,用于接收所述光强信号,并根据所述光强信号的变化判断所述工艺腔中是否产生等离子体,若是,则执行工艺;若否,则发出报警。
可选的,所述光敏感应器包括光敏电阻。
可选的,在所述工艺腔的腔体中设置有观察窗,所述光敏感应器设置在 所述观察窗的外侧。
可选的,所述偏压电源包括脉冲直流电源,所述脉冲直流电源的脉冲频率大于等于1kHz,且小于等于100kHz;所述脉冲直流电源的脉冲周期中的上升沿时长和下降沿时长均小于10ns;所述脉冲直流电源输出的电压大于等于0.5kV,且小于等于10kV。
本发明实施例的有益效果:
本发明实施例提供的等离子体浸没离子注入设备,其工艺腔的腔体接地,且匀气部件采用第一导电材料制成,且下表面具有暴露于介质筒内部的匀气区域,并且利用导电部件分别与匀气部件和工艺腔的腔体电导通,可以使工艺腔的腔体、导电部件和匀气部件相互电导通,从而在偏压电源、基座、工艺腔中形成的等离子体、匀气部件、导电部件和工艺腔的腔体之间形成偏压回路,该偏压回路与现有技术相比,等效电流的路径发生的变化,即至少一部分等效电流会经过匀气部件和导电部件之后,才流入工艺腔的腔体。这样,可以使工艺腔的径向上不同位置对应的等效电流路径相同,从而可以提高从基座上放置的晶圆表面到匀气部件的匀气区域之间,在工艺腔的径向上各个位置的等效电流的一致性,从而可以提高晶圆掺杂均匀性,以及有效提升注入剂量的均匀性。此外,上述匀气部件还能够通过分布在匀气区域中的多个出气口在工艺腔的径向上的不同位置同时向介质筒中输送工艺气体,从而可以提高等离子体的分布均匀性,进而可以进一步提高晶圆掺杂均匀性。
附图说明
图1为本发明实施例提供的等离子体浸没离子注入设备的结构图;
图2为本发明实施例采用的匀气部件的俯视剖面图;
图3为本发明实施例采用的支撑部件的局部侧视图;
图4为本发明实施例提供的等离子体浸没离子注入设备的偏压回路示意 图;
图5为本发明实施例采用的介质筒和匀气部件的结构图;
图6为采用本发明实施例提供的等离子体浸没离子注入设备获得的等离子体在径向上的密度分布图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图对本发明实施例提供的等离子体浸没离子注入设备进行详细描述。
请参阅图1,本发明实施例提供的等离子体浸没离子注入(Plasma Immersion Ion Implantation,以下简称PIII)设备,该PIII设备包括工艺腔1、介质筒4、匀气部件5、耦合线圈6和导电部件。其中,在工艺腔1中设置有基座2,该基座2包括用于承载晶圆的承载面,并且工艺腔1的腔体接地,具体地,工艺腔1的腔体可以包括腔室壁1a和设置在该腔室壁1a顶部的环形转接件1b,二者电导通,且腔室壁1a接地。基座2与偏压电源3电连接;介质筒4设置在工艺腔1的顶部,且与工艺腔1连通,具体来说,工艺腔1的顶部是敞开的,上述环形转接件1b用于支撑介质筒4,并且介质筒4的上端和下端均是敞开的,且介质筒4的下端与工艺腔1的上端连通。介质筒4例如为石英,其不包含金属元素,从而可以避免因等离子体腐蚀介质筒的内表面而引入金属污染。
在本实施例中,耦合线圈6环绕设置在介质筒4的周围,且通过匹配器7与激励电源8电连接。激励电源8用于向耦合线圈6加载激励功率,以使耦合线圈6产生激励能量,并通过介质筒4耦合至介质筒4的内部,以激发介质筒4内部的工艺气体形成等离子体。激励电源8例如为射频电源,其频率例如为13.56MHz。在一些可选的实施例中,耦合线圈6包括多个单匝线圈,多个单匝线圈沿介质筒4的轴线间隔设置,且相互并联;并且,多个单 匝线圈同轴设置,且与介质筒4之间的径向间距相同。这样设置,可以进一步提高等离子体在工艺腔1的边缘区域分布的密度。当然,在实际应用中,还可以采用其他任意结构的耦合线圈,例如圆锥柱状螺旋线圈。
匀气部件5设置在介质筒4的顶部,其采用第一导电材料制成,该第一导电材料包括非金属导电材料,例如硅,对于高频交流电来说,硅是导电的,而且不包含金属元素,从而可以避免因等离子体腐蚀匀气部件5的内表面而引入金属污染。如图2所示,该匀气部件5的下表面具有暴露于介质筒4内部的匀气区域55,该匀气区域55中分布有多个出气口54,用以在工艺腔1的径向上的不同位置向介质筒4中输送工艺气体,从而可以提高等离子体的分布均匀性,进而可以提高晶圆掺杂均匀性。
在一些可选的实施例中,如图1所示,匀气部件5与基座2同心设置,该匀气部件5包括匀气本体51和形成在该匀气本体51中的匀气腔52、进气孔53和多个出气孔(即用作出气口54),其中,进气孔53的进气端与气源20连接,进气孔53的出气端与匀气腔52连通;每个出气口54的进气端与匀气腔52连通,每个出气口54的出气端与介质筒4的内部连通。由气源20提供的工艺气体经由进气孔53进入匀气腔52,然后经由各个出气口54均匀地进入介质筒4中。
在一些可选的实施例中,为了保证介质筒4的内部和工艺腔1处于封闭状态,如图5所示,在匀气部件5与介质筒4之间设置有第一密封圈16,用以对二者之间的间隙进行密封;并且,在介质筒4与工艺腔1(即,环形转接件1b)之间设置有第二密封圈17,用以对二者之间的间隙进行密封。
导电部件分别与匀气部件5和工艺腔1的腔体电导通。该导电部件的结构可以有多种,例如,在本实施例中,如图3所示,等离子体浸没离子注入设备还包括支撑组件9,该支撑组件9与工艺腔1的腔体固定连接,例如固定在环形转接件1b上,用以支撑匀气部件5,并且支撑组件9采用第二导电 材料制作,且用作上述导电部件分别与匀气部件5(即,匀气本体51)和工艺腔1的腔体(例如,环形转接件1b)电导通。上述支撑组件9既能够起到支撑作用,又能够起到导电作用,简化了设备结构。在一些实施例中,第二导电材料包括金属或者表面镀有导电层的金属,该导电层可以起到增加电导通性的作用,以保证良好的导电性能。导电层可以为至少一层,且导电层例如为银或金等导电性能良好的材料。
上述支撑组件9的结构可以有多种,例如,如图2所示,支撑组件9包括至少三个支撑件,且至少三个支撑件沿匀气部件5的圆周方向均匀分布在介质筒4的周围,以保证匀气部件5的受力均匀,实现稳定地支撑匀气部件5。每个支撑件的结构可以有多种,例如,如图3所示,每个支撑件均包括支撑本体91,该支撑本体91与工艺腔1的腔体(例如,环形转接件1b)固定连接,固定连接的方式例如为:在支撑本体91的下端设置凸台9b,该凸台9b叠置在环形转接件1b上,并通过第一螺钉19将凸台9b与环形转接件1b固定在一起。而且,在支撑本体91上形成有水平支撑部92,该水平支撑部92例如为形成在支撑本体91上端的弯折结构,用于支撑匀气部件5的匀气本体51,并且在水平支撑部92上设置有限位部件9a,用以限定匀气部件5的匀气本体51在水平支撑部件92上的位置。可选的,利用第二螺钉20将限位部件9a与匀气本体51固定在一起。
需要说明的是,在本实施例中,支撑组件9既能够起到支撑作用,又能够起到导电作用,但是,本发明实施例并不局限于此,在实际应用中,也可以单独设置支撑组件和导电部件。
在本实施例中,工艺腔1的腔室壁1a、环形转接件1b、支撑组件9和匀气部件5相互电导通,且腔室壁1a接地,并且基座2与偏压电源3电连接,从而在偏压电源3、基座2、工艺腔中形成的等离子体、匀气部件5、支撑组件9和工艺腔1的腔室壁1a之间形成偏压回路,该偏压回路与现有技术相比, 等效电流的路径发生的变化,即至少一部分等效电流会经过匀气部件5和支撑组件9之后,才流入工艺腔1的腔室壁1a。这样,可以使工艺腔1的径向上不同位置对应的等效电流路径相同,从而可以提高从基座2上放置的晶圆表面到匀气部件5的匀气区域55之间,在工艺腔1的径向上各个位置的等效电流的一致性,从而可以提高晶圆掺杂均匀性,以及有效提升注入剂量的均匀性。
在一些可选的实施例中,在工艺腔1内设置有覆盖工艺腔1的整个内表面的绝缘保护部件18,该绝缘保护部件18用于保护工艺腔1的腔室壁1a,并且绝缘保护部件18采用非金属绝缘材料制作,用于对工艺腔1的腔室壁1a与基座2电隔离。这样,在偏压回路中,基座2的绝大部分等效电流不会直接流入距离基座2最近的腔室壁1a,而是由下而上流动至匀气部件5和支撑组件9之后,才流入工艺腔1的腔室壁1a,从而可以进一步提高工艺腔1的径向上各个位置的等效电流的一致性。同时,由于绝缘保护部件18采用非金属绝缘材料制作,可以避免因等离子体腐蚀工艺腔1的内表面而引入金属污染。该非金属绝缘材料例如包括碳化硅或石英等等。当然,在实际应用中,上述绝缘保护部件18也可以包括保护部件本体,并在该保护部件本体的整个内表面上覆盖非金属绝缘层。在这种情况下,保护部件本体可以根据具体需要选择合适的材料制作,例如石墨、碳化硅或石英等的非金属材料。非金属绝缘层例如包括碳化硅或石英等等。
在一些可选的实施例中,匀气部件5的匀气区域55在承载面上的投影与该承载面完全重合,例如,匀气区域55为圆形,圆形的圆心与承载面的圆心相重合,且圆形的直径与承载面的直径一致。这样设置,可以形成如图4中曲线箭头所示的等效偏压回路,该等效偏压回路中,从基座2上放置的晶圆表面到匀气部件5的匀气区域之间,在工艺腔1的径向上各个位置的等效电流一致,从而可以更有效地提高晶圆掺杂均匀性,以及可以使注入到晶圆 表面的离子剂量也大致相同,进而可以有效提升注入剂量的均匀性。需要说明的是,上述基座2的承载面是指基座2上用于放置晶圆的区域,该区域的形状和尺寸与晶圆的形状和尺寸一致。
需要说明的是,在本实施例中,支撑组件9既能够起到支撑作用,又能够起到导电作用,但是,本发明实施例并不局限于此,在实际应用中,也可以单独设置支撑组件和导电部件。
在一些实施例中,如图5所示,介质筒4的内径由上而下逐渐增大,即,介质筒4呈圆锥环体,这样有助于扩大等离子体在横向上的扩散范围,从而可以提高等离子体在工艺腔1的边缘区域分布的密度。在一些可选的实施例中,在介质筒4的轴向横截面上,介质筒4的内侧壁与介质筒4的轴线之间的夹角a大于等于15°,且小于等于60°;介质筒4的高度大于等于100mm,且小于等于210mm;介质筒4的侧壁厚度大于等于20mm,且小于等于40mm。在该尺寸范围内,可以有效扩大等离子体在横向上的扩散范围,从而可以提高等离子体在工艺腔1的边缘区域分布的密度。
如图6所示,A曲线为采用现有的等离子体浸没离子注入设备获得的等离子体,其在工艺腔中沿基座的径向,自中心向边缘方向的等离子体密度分布曲线;B曲线为采用本发明实施例提供的等离子体浸没离子注入设备获得的等离子体,其在工艺腔中沿基座的径向,自中心向边缘方向的等离子体密度分布曲线。对比曲线A和曲线B可知,曲线B在工艺腔的边缘区域的等离子体分布密度相对于曲线A有了显著提高,从而减小了与工艺腔的中心区域的等离子体分布密度之间的差异,进而提高了等离子体分布密度的均匀性。
在一些可选的实施例中,如图1所示,等离子体浸没离子注入设备还包括起辉诊断装置,该起辉诊断装置包括光敏感应器10和信号处理单元11,其中,光敏感应器10用于实时检测工艺腔1中的光强,并信号处理单元11反馈光强信号;信号处理单元11用于接收该光强信号,并根据光强信号的变 化判断工艺腔1中是否产生等离子体,并将判断结果发送至机台工艺控制单元12;机台工艺控制单元12用于在判断结果为产生等离子体时,执行工艺;在判断结果为未产生等离子体时,发出报警。当然,在实际应用中,信号处理单元11和机台工艺控制单元12也可以集成在一起。通过利用光敏感应器10和信号处理单元11判断工艺腔1中是否产生等离子体,可以作为是否执行接下来的工艺流程的一个判断依据,例如可以作为是否等离子体起辉成功的判断依据,保证在等离子体起辉之前不会执行开启偏压电源的步骤,从而可以避免因未起辉时向基片施加高频脉冲偏压而造成的对晶圆及设备打火损伤问题。
在一些可选的实施例中,光敏感应器10例如包括光敏电阻。当工艺腔1处于未起辉状态时,工艺腔1内的光强很弱,此时光敏电阻的阻值很高。当腔室起辉成功时,工艺腔1内的光强瞬间增大,此时光敏电阻的阻值瞬间减小。基于此,信号处理单元11可以根据用于光敏电阻反馈的阻值变化判断是否等离子体起辉成功,例如在光敏电阻的阻值降低到某一阈值后,即判定等离子体起辉成功。
在一些可选的实施例中,在工艺腔1的腔体(例如腔室壁1a的侧壁)中设置有观察窗(图中未示出),光敏感应器10设置在该观察窗的外侧,以避免被等离子体腐蚀。
在一些可选的实施例中,为了使掺杂进入晶圆表面的离子能量分布更加集中,有利于控制掺杂的离子能量,偏压电源3包括脉冲直流电源,该脉冲直流电源3的脉冲频率大于等于1kHz,且小于等于100kHz;脉冲直流电源3的脉冲周期中的上升沿时长和下降沿时长均小于10ns;脉冲直流电源3输出的电压大于等于0.5kV,且小于等于10kV。
在一些可选的实施例中,等离子体浸没离子注入设备还包括注入离子收集装置13和电流信号积分处理单元14,其中,注入离子收集装置13例如为 一法拉第杯,其外形类似圆杯状,且设置在基座2的一侧。电流信号积分处理单元14用于实时计算离子注入剂量,并发送至机台工艺控制单元12。借助注入离子收集装置13和电流信号积分处理单元14,可以准确地检测获得离子注入剂量。
综上所述,本发明实施例提供的等离子体浸没离子注入设备,其工艺腔的腔体接地,且匀气部件采用第一导电材料制成,且下表面具有暴露于介质筒内部的匀气区域,并且利用导电部件分别与匀气部件和工艺腔的腔体电导通,可以使工艺腔的腔体、导电部件和匀气部件相互电导通,从而在偏压电源、基座、工艺腔中形成的等离子体、匀气部件、导电部件和工艺腔的腔体之间形成偏压回路,该偏压回路与现有技术相比,等效电流的路径发生的变化,即至少一部分等效电流会经过匀气部件和导电部件之后,才流入工艺腔的腔体。这样,可以使工艺腔的径向上不同位置对应的等效电流路径相同,从而可以提高从基座上放置的晶圆表面到匀气部件的匀气区域之间,在工艺腔的径向上各个位置的等效电流的一致性,从而可以提高晶圆掺杂均匀性,以及有效提升注入剂量的均匀性。此外,上述匀气部件还能够通过分布在匀气区域中的多个出气口在工艺腔的径向上的不同位置同时向介质筒中输送工艺气体,从而可以提高等离子体的分布均匀性,进而可以进一步提高晶圆掺杂均匀性。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (16)

  1. 一种等离子体浸没离子注入设备,其特征在于,包括:
    工艺腔,在所述工艺腔中设置有基座,所述基座包括用于承载晶圆的承载面,并且所述工艺腔的腔体接地,所述基座与偏压电源电连接;
    介质筒,设置在所述工艺腔的顶部,且与所述工艺腔连通;
    匀气部件,采用第一导电材料制成,且设置在所述介质筒的顶部,并且所述匀气部件的下表面具有暴露于所述介质筒内部的匀气区域,且所述匀气区域中分布有多个出气口,用以向所述介质筒中输送工艺气体;
    耦合线圈,环绕设置在所述介质筒的外周,且与激励电源电连接;以及
    导电部件,分别与所述匀气部件和所述工艺腔的腔体电导通。
  2. 根据权利要求1所述的等离子体浸没离子注入设备,其特征在于,在所述工艺腔内设置有覆盖所述工艺腔的整个内表面的绝缘保护部件,所述绝缘保护部件采用非金属绝缘材料制作,用于对所述工艺腔的腔体与所述基座电隔离。
  3. 根据权利要求2所述的等离子体浸没离子注入设备,其特征在于,所述非金属绝缘材料包括碳化硅或石英。
  4. 根据权利要求1所述的等离子体浸没离子注入设备,其特征在于,所述匀气区域在所述承载面上的正投影与所述承载面完全重合。
  5. 根据权利要求1所述的等离子体浸没离子注入设备,其特征在于,所述第一导电材料包括非金属导电材料。
  6. 根据权利要求1所述的等离子体浸没离子注入设备,其特征在于, 所述等离子体浸没离子注入设备还包括支撑组件,所述支撑组件与所述工艺腔的腔体固定连接,且位于所述介质筒的外侧,用以支撑所述匀气部件,并且所述支撑组件采用第二导电材料制作,且用作所述导电部件分别与所述匀气部件和所述工艺腔的腔体电导通。
  7. 根据权利要求6所述的等离子体浸没离子注入设备,其特征在于,所述第二导电材料包括金属或者表面镀有导电层的金属。
  8. 根据权利要求6所述的等离子体浸没离子注入设备,其特征在于,所述支撑组件包括至少三个支撑件,且至少三个支撑件沿所述匀气部件的圆周方向均匀分布在所述介质筒的周围。
  9. 根据权利要求8所述的等离子体浸没离子注入设备,其特征在于,每个所述支撑件均包括支撑本体,所述支撑本体与所述工艺腔的腔体固定连接;且在所述支撑本体上形成有水平支撑部,用于支撑所述匀气部件,并且在所述水平支撑部上设置有限位部件,用以限定所述匀气部件在所述水平支撑部件上的位置。
  10. 根据权利要求1所述的等离子体浸没离子注入设备,其特征在于,所述匀气部件与所述基座同心设置,且所述匀气部件包括匀气本体和形成在所述匀气本体中的匀气腔、进气孔和多个出气孔,其中,
    所述进气孔的进气端用于与气源连接,所述进气孔的出气端与所述匀气腔连通;
    所述出气孔的进气端与所述匀气腔连通,每个所述出气孔的出气端用作所述出气口与所述介质筒的内部连通。
  11. 根据权利要求1所述的等离子体浸没离子注入设备,其特征在于, 所述介质窗的内径由上而下逐渐增大。
  12. 根据权利要求11所述的等离子体浸没离子注入设备,其特征在于,在所述介质筒的轴向横截面上,所述介质筒的内侧壁与所述介质筒的轴线之间的夹角大于等于15°,且小于等于60°;所述介质筒的高度大于等于100mm,且小于等于210mm;所述介质筒的侧壁厚度大于等于20mm,且小于等于40mm。
  13. 根据权利要求1所述的等离子体浸没离子注入设备,其特征在于,所述等离子体浸没离子注入设备还包括起辉诊断装置,所述起辉诊断装置包括:
    光敏感应器,用于实时检测所述工艺腔中的光强,并反馈光强信号;以及
    信号处理单元,用于接收所述光强信号,并根据所述光强信号的变化判断所述工艺腔中是否产生等离子体,若是,则执行工艺;若否,则发出报警。
  14. 根据权利要求13所述的等离子体浸没离子注入设备,其特征在于,所述光敏感应器包括光敏电阻。
  15. 根据权利要求13所述的等离子体浸没离子注入设备,其特征在于,在所述工艺腔的腔体中设置有观察窗,所述光敏感应器设置在所述观察窗的外侧。
  16. 根据权利要求1所述的等离子体浸没离子注入设备,其特征在于,所述偏压电源包括脉冲直流电源,所述脉冲直流电源的脉冲频率大于等于1kHz,且小于等于100kHz;所述脉冲直流电源的脉冲周期中的上升沿时长和下降沿时长均小于10ns;所述脉冲直流电源输出的电压大于等于0.5kV, 且小于等于10kV。
PCT/CN2021/129216 2020-11-11 2021-11-08 等离子体浸没离子注入设备 WO2022100538A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011253730.4 2020-11-11
CN202011253730.4A CN112376029B (zh) 2020-11-11 2020-11-11 等离子体浸没离子注入设备

Publications (1)

Publication Number Publication Date
WO2022100538A1 true WO2022100538A1 (zh) 2022-05-19

Family

ID=74582249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129216 WO2022100538A1 (zh) 2020-11-11 2021-11-08 等离子体浸没离子注入设备

Country Status (3)

Country Link
CN (1) CN112376029B (zh)
TW (1) TWI806230B (zh)
WO (1) WO2022100538A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114927440A (zh) * 2022-05-27 2022-08-19 北京北方华创微电子装备有限公司 一种控温装置及半导体工艺设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112376029B (zh) * 2020-11-11 2022-10-21 北京北方华创微电子装备有限公司 等离子体浸没离子注入设备
CN113555268B (zh) * 2021-07-14 2024-05-17 北京北方华创微电子装备有限公司 半导体工艺设备及刻蚀方法
CN113871283B (zh) * 2021-09-28 2024-05-17 北京北方华创微电子装备有限公司 半导体工艺设备及其工艺腔室

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577211A (zh) * 2008-05-09 2009-11-11 中微半导体设备(上海)有限公司 抗等离子体腐蚀的反应室部件、其制造方法以及包含该部件的等离子体反应室
JP2010016319A (ja) * 2008-07-07 2010-01-21 Tokyo Electron Ltd プラズマ処理装置のチャンバー内部材の温度制御方法、チャンバー内部材及び基板載置台、並びにそれを備えたプラズマ処理装置
CN104205299A (zh) * 2012-04-26 2014-12-10 应用材料公司 用于控制基板均匀度的方法及设备
US20170076921A1 (en) * 2015-09-15 2017-03-16 Lam Research Corporation Metrology Methods to Detect Plasma in Wafer Cavity and Use of the Metrology for Station-to-Station and Tool-to-Tool Matching
CN107369604A (zh) * 2016-05-12 2017-11-21 北京北方华创微电子装备有限公司 反应腔室及半导体加工设备
CN209447761U (zh) * 2017-10-24 2019-09-27 应用材料公司 半导体处理腔室
CN112376029A (zh) * 2020-11-11 2021-02-19 北京北方华创微电子装备有限公司 等离子体浸没离子注入设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2929275B2 (ja) * 1996-10-16 1999-08-03 株式会社アドテック 透磁コアを有する誘導結合型−平面状プラズマの発生装置
US7465478B2 (en) * 2000-08-11 2008-12-16 Applied Materials, Inc. Plasma immersion ion implantation process
US20050205211A1 (en) * 2004-03-22 2005-09-22 Vikram Singh Plasma immersion ion implantion apparatus and method
US7691755B2 (en) * 2007-05-15 2010-04-06 Applied Materials, Inc. Plasma immersion ion implantation with highly uniform chamber seasoning process for a toroidal source reactor
CN102296276A (zh) * 2010-06-25 2011-12-28 中国科学院微电子研究所 等离子体浸没离子注入设备
CN102312210A (zh) * 2010-07-05 2012-01-11 中国科学院微电子研究所 一种等离子体浸没离子注入系统
US8906163B2 (en) * 2010-12-07 2014-12-09 Lam Research Corporation Methods and apparatus for integrating and controlling a plasma processing system
JP5892684B2 (ja) * 2011-06-28 2016-03-23 株式会社アルバック イオン注入法及び磁気記録媒体の製造方法
CN102424955B (zh) * 2011-11-29 2013-05-22 中国科学院微电子研究所 一种新型匀气结构
CN105655220B (zh) * 2014-11-12 2018-01-02 中微半导体设备(上海)有限公司 电感耦合型等离子体处理装置
CN105789009B (zh) * 2014-12-26 2018-05-25 北京北方华创微电子装备有限公司 用于等离子刻蚀设备的上盖和等离子刻蚀设备
CN108292603B (zh) * 2016-01-06 2022-06-28 东芝三菱电机产业系统株式会社 气体供给装置
CN110582155A (zh) * 2018-06-08 2019-12-17 北京北方华创微电子装备有限公司 等离子体启辉的检测装置及方法、工艺腔室

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577211A (zh) * 2008-05-09 2009-11-11 中微半导体设备(上海)有限公司 抗等离子体腐蚀的反应室部件、其制造方法以及包含该部件的等离子体反应室
JP2010016319A (ja) * 2008-07-07 2010-01-21 Tokyo Electron Ltd プラズマ処理装置のチャンバー内部材の温度制御方法、チャンバー内部材及び基板載置台、並びにそれを備えたプラズマ処理装置
CN104205299A (zh) * 2012-04-26 2014-12-10 应用材料公司 用于控制基板均匀度的方法及设备
US20170076921A1 (en) * 2015-09-15 2017-03-16 Lam Research Corporation Metrology Methods to Detect Plasma in Wafer Cavity and Use of the Metrology for Station-to-Station and Tool-to-Tool Matching
CN107369604A (zh) * 2016-05-12 2017-11-21 北京北方华创微电子装备有限公司 反应腔室及半导体加工设备
CN209447761U (zh) * 2017-10-24 2019-09-27 应用材料公司 半导体处理腔室
CN112376029A (zh) * 2020-11-11 2021-02-19 北京北方华创微电子装备有限公司 等离子体浸没离子注入设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114927440A (zh) * 2022-05-27 2022-08-19 北京北方华创微电子装备有限公司 一种控温装置及半导体工艺设备
CN114927440B (zh) * 2022-05-27 2023-10-13 北京北方华创微电子装备有限公司 一种控温装置及半导体工艺设备

Also Published As

Publication number Publication date
TWI806230B (zh) 2023-06-21
CN112376029B (zh) 2022-10-21
TW202220016A (zh) 2022-05-16
CN112376029A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
WO2022100538A1 (zh) 等离子体浸没离子注入设备
US7224568B2 (en) Plasma processing method and plasma processing apparatus
TWI622081B (zh) 電漿處理裝置及電漿處理方法
US5998932A (en) Focus ring arrangement for substantially eliminating unconfined plasma in a plasma processing chamber
KR100502268B1 (ko) 플라즈마처리장치 및 방법
US8425791B2 (en) In-chamber member temperature control method, in-chamber member, substrate mounting table and plasma processing apparatus including same
KR200479295Y1 (ko) 플라즈마 처리 챔버의 가동 기판 지지 어셈블리를 위한 소모성 격리 링
US6887340B2 (en) Etch rate uniformity
KR102411050B1 (ko) 엠보싱된 상단 플레이트 및 냉각 채널들을 갖는 정전 척
US11430636B2 (en) Plasma processing apparatus and cleaning method
TWI658750B (zh) 用於處理工件的電漿反應裝置
JP2010021404A (ja) プラズマ処理装置
TW201508806A (zh) 等離子體處理裝置
KR102432857B1 (ko) 플라즈마 처리 장치 및 이를 이용한 반도체 소자의 제조 방법
KR20130018457A (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
WO2022089475A1 (zh) 半导体工艺设备及其法拉第杯
KR20190035589A (ko) 플라즈마 처리 방법 및 플라즈마 처리 장치
TW202137393A (zh) 電漿處理裝置
TWI791874B (zh) 電漿蝕刻方法及電漿處理裝置
JP2005167283A (ja) プラズマ処理装置及びプラズマ処理方法
JP7090149B2 (ja) プラズマ処理装置及びプラズマエッチング方法
TW202004831A (zh) 電漿處理裝置
JP2001319920A (ja) プラズマ処理装置および処理方法
US20120298302A1 (en) Vacuum plasma pprocessing chamber with a wafer chuck facing downward above the plasma
TW202029336A (zh) 電漿處理裝置及蝕刻方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 28.09.23.

122 Ep: pct application non-entry in european phase

Ref document number: 21891063

Country of ref document: EP

Kind code of ref document: A1