WO2022095472A1 - 一种电动车辆充电控制装置及方法 - Google Patents

一种电动车辆充电控制装置及方法 Download PDF

Info

Publication number
WO2022095472A1
WO2022095472A1 PCT/CN2021/102340 CN2021102340W WO2022095472A1 WO 2022095472 A1 WO2022095472 A1 WO 2022095472A1 CN 2021102340 W CN2021102340 W CN 2021102340W WO 2022095472 A1 WO2022095472 A1 WO 2022095472A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
temperature
electric vehicle
temperature threshold
equal
Prior art date
Application number
PCT/CN2021/102340
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
长春捷翼汽车零部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春捷翼汽车零部件有限公司 filed Critical 长春捷翼汽车零部件有限公司
Priority to KR1020237012674A priority Critical patent/KR20230076134A/ko
Priority to EP21888175.3A priority patent/EP4242051A4/en
Priority to CA3196680A priority patent/CA3196680A1/en
Priority to MX2023005158A priority patent/MX2023005158A/es
Priority to JP2023527085A priority patent/JP2023548701A/ja
Publication of WO2022095472A1 publication Critical patent/WO2022095472A1/zh
Priority to ZA2023/04809A priority patent/ZA202304809B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/302Cooling of charging equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • This article relates to the technical field of electric vehicle charging, and in particular, to an electric vehicle charging control device and method.
  • the embodiments herein provide an electric vehicle charging control device and method, which are used to solve the problems of slow charging speed and low charging efficiency caused by temperature changes in electric vehicle charging in the prior art.
  • This paper provides an electric vehicle charging control method, including,
  • the first operating temperature is greater than or equal to the first temperature threshold and less than the second temperature threshold, and the second operating temperature is greater than or equal to the fourth temperature threshold and less than the fifth temperature threshold, the first charge output to the electric vehicle will be the power is reduced to the second charging power;
  • the electric vehicle When the first operating temperature is reduced to less than or equal to the first temperature threshold, the electric vehicle is charged with a charging power lower than or equal to the first charging power.
  • This paper also provides an electric vehicle charging control device, including,
  • the power connector temperature detection unit located inside the power connector, is used to obtain the first working temperature inside the power connector and the second working temperature inside the charging control box during the process of charging the electric vehicle with the first charging power ;
  • the charging control unit is configured to, when the first working temperature is greater than or equal to the first temperature threshold and less than the second temperature threshold, and the second working temperature is greater than or equal to the fourth temperature threshold and less than the fifth temperature threshold, then the electric the first charging power output by the vehicle is reduced to the second charging power;
  • the electric vehicle When the first operating temperature is reduced to less than or equal to the first temperature threshold, the electric vehicle is charged with a charging power lower than or equal to the first charging power.
  • the embodiments herein also provide a computer device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, where the processor implements the above method when executing the computer program.
  • the embodiments herein also provide a computer non-volatile readable storage medium on which computer instructions are stored, and when the computer instructions are executed by a processor, implement the above method.
  • the charging efficiency can be improved and the charging time can be shortened under the premise of ensuring the charging safety of the electric vehicle; the temperature detection unit of the power connector is placed at the power connector to improve the response speed of temperature detection and reduce the cost of cables; Adjusting the charging power in combination with the working temperature of the printed circuit board in the charging control box and the working temperature of the power connector can further improve the charging safety of the electric vehicle.
  • implementation of any of the products and/or methods herein does not necessarily require all of the advantages described above to be achieved simultaneously.
  • 1a-1c are schematic diagrams showing the structure of the charging control system of the electric vehicle according to the embodiment of this paper;
  • FIG. 2 is a schematic structural diagram of an electric vehicle charging control device according to an embodiment of this paper
  • FIG. 3 is a schematic diagram of a specific structure of a charging control device for a charging vehicle according to an embodiment of this paper;
  • FIG. 4 is a flowchart of an electric vehicle charging control method according to an embodiment of this document.
  • FIG. 5 is a schematic diagram of a specific circuit of the charging control device according to the embodiment of this paper.
  • FIG. 6a is a schematic diagram of the charging control device and the charging structure of the electric vehicle according to the embodiment of the present invention.
  • FIG. 6b is another schematic diagram of the charging control device and the electric vehicle charging structure according to the embodiment of the present invention.
  • FIG. 7a is a schematic structural diagram of the temperature detection unit inside the power connector according to the embodiment of the present invention.
  • FIG. 7b is a schematic circuit diagram of the temperature detection unit of the embodiment of this paper.
  • FIG. 7c is a schematic structural diagram of the power adjustment unit according to the embodiment of the present disclosure.
  • FIGS. 1a to 1c are schematic diagrams of the structure of the charging control system of the electric vehicle according to the embodiment of this paper.
  • the electric vehicle 100 is connected through the vehicle connector 101, the charging control box 102, the charging control unit 103, the power connector temperature detection unit 104 and the power supply
  • the device 105 is connected to the charging power source 106 .
  • the charging power source 106 outputs the charging current required for charging the electric vehicle 100 to the electric vehicle 100 through the power connector 105 , wherein the charging current is transmitted to the electric vehicle through the power connector 105 , the charging control box 102 , and the vehicle connector 101 .
  • the power connector temperature detection unit 104 is located at the power connector 105 .
  • the charging control unit 103 controls the output power of the charging current according to the operating temperature collected by the power connector temperature detection unit 104, so that the electric vehicle 100 can maintain high-speed charging even when the operating temperature increases, thereby shortening the charging time , improve the charging efficiency.
  • the power connector temperature detection unit 104 can be integrated into the power connector 105, so as to obtain the working temperature change during the charging process of the electric vehicle more quickly, wherein the working temperature refers to the charging element other than the battery in the electric vehicle.
  • the temperature of the device such as the temperature on the terminal of the power connector 105, the temperature on the cable, the temperature of the components in the charging control box 102, etc., the power connector temperature detection unit 104 is located inside the power connector, so the detected operating temperature is The temperature inside the power connector 105 .
  • the charging control unit 103 can be arranged in the charging control box 102 as shown in FIG. 1a, wherein the charging control box 102 between the vehicle connector 101 and the power connector 105 includes, for example, a transformer, a charging protection Units and other components, in some embodiments, can be a charging pile, or a portable on-cable charging controller; or the charging control unit 103 is located in the power connector 105 as shown in FIG. 1b; The charging control unit 103 shown in FIG. 1c is located in the vehicle connector 101 .
  • the power connector temperature detection unit 104 is built in the power connector 105 , and the power connector temperature detection unit 104 can be a thermistor or the like, and is used to collect the temperature of the electrodes in the power connector 105 .
  • the charging control unit 103 is used to control the power of the charging current output to the electric vehicle 100 (including adjusting the charging current or voltage), thereby reducing the temperature inside the power connector 105 by reducing the output charging power.
  • Figure 2 is a schematic diagram of the structure of an electric vehicle charging control device according to the embodiment of this paper. This figure describes the structure of the device that can change the charging power more quickly according to the temperature change generated by charging during the charging process of the electric vehicle.
  • the device can reduce the temperature rise caused by charging electric vehicles with high power.
  • the device can be implemented by a special chip or a general-purpose chip, or run on a single-chip computer or an industrial computer, and the functional modules can be implemented by software or logic circuits. implementation, including:
  • the power connector temperature detection unit 201 located inside the power connector, is used to acquire the first working temperature inside the power connector and the second working temperature inside the charging control box during the process of charging the electric vehicle with the first charging power temperature;
  • the charging control unit 202 is connected to the power connector temperature detection unit,
  • a charging power is reduced to a second charging power
  • the electric vehicle When the first operating temperature is reduced to less than or equal to the first temperature threshold, the electric vehicle is charged with a charging power lower than or equal to the first charging power.
  • the charging of the electric vehicle is stopped.
  • the electric vehicle when the first operating temperature is reduced to less than or equal to the first temperature threshold, the electric vehicle is charged with a charging power lower than or equal to the first charging power, and the charging power lower than or equal to the first charging power is used to charge the electric vehicle.
  • the charging power of a charging power may be the second charging power, or a power smaller than the first charging power, for example, may be smaller than the second charging power, or may be between the first charging power and the second charging power.
  • FIG. 3 is a schematic diagram of a specific structure of a charging control device for a charging vehicle according to the embodiment of this document. In this figure, the internal logical structure of each functional unit is refined.
  • the charging control device Also includes:
  • the memory 203 is used to store the time specified by the user
  • the power connector temperature detection unit 201 acquires the working temperature inside the power connector according to the specified time.
  • the memory 203 may be a non-volatile memory, such as a programmable read-only memory (Programmable read-only memory), which has a determinant filament inside, which can be customized according to the needs of the user (manufacturer). , use the current to burn it to write the required data and programs.
  • a programmable read-only memory Programmable read-only memory
  • determinant filament inside which can be customized according to the needs of the user (manufacturer).
  • Flash memory is an electronically erasable programmable only A form of read memory that allows memory to be erased or written multiple times during operation, the flash memory is mainly used for general data storage, and for exchanging and transferring data between computers and other digital products, such as memory cards and USB flash drives.
  • a prompting unit 204 is further included, used for prompting the user of the current working temperature state by means of sound and light.
  • the prompting of the user by means of sound and light includes the use of a buzzer, a speaker and other devices to realize the prompt of sound or voice, and the prompt can also be displayed by means of multi-color LED lights or multiple single-color LED lights, etc.
  • the status of the current operating temperature includes the user's smart terminal (such as a mobile phone and other smart devices) through the APP (application software), which can prompt the user to pay attention to the electric vehicle.
  • the charging element is present near the heat source, or if the user can manually deactivate the heat source.
  • the state of the working temperature refers to the temperature range in which the current working temperature is located, for example, the current working temperature is between the first temperature threshold and the second temperature threshold, which is a normal charging state; the current working temperature is in the first temperature threshold When the second temperature threshold and above the second temperature threshold, it is a dangerous charging state with high temperature; the current operating temperature is lower than the first temperature threshold, it is a normal charging state; when the current operating temperature reaches the second temperature threshold, it is a temperature greater than or equal to State of charge at safe temperature.
  • a communication unit 205 is further included, configured to send a notification to the user of the current working temperature state to the user's smart terminal.
  • the communication unit 205 is connected to the charging control unit 202, and the charging control unit 202 converts the working temperature inside the power connector obtained by the power connector temperature detection unit 201 into digital data, and then The current working temperature state is determined according to the working temperature, and the current working temperature state is transmitted to the communication unit 205 , and the current working temperature state is wirelessly sent to the user's smart terminal through the communication unit 205 .
  • the power connector temperature detection unit 201 is located on the live wire terminal and/or the neutral wire terminal inside the power connector, and the power connector temperature detection unit 201 is connected to the power connector through insulating thermal conductive silica gel. The live terminal and/or the neutral terminal are fixed.
  • the temperature of the live wire terminal or the neutral wire terminal in the power connector can be quickly transmitted to the power connector temperature detection unit, and the high voltage caused by the thermistor used in the power connector temperature detection unit can be avoided. An accident in which the charging current burns out the charging control unit.
  • a plurality of the power connector temperature detection units 201 may be provided on the live wire terminal and/or the neutral wire terminal inside the power connector, and the power connector temperature detection units 201 are connected in series Or collect the working temperature on the live wire terminal and/or the neutral wire terminal inside the power connector in a parallel manner, and transmit the working temperature to the charging control unit 202 through a signal transmission line and a ground wire .
  • the charging control unit 202 may be located on the side of the power connector, or in the charging control box on the cable that transmits the charging current, or on the side of the vehicle connector, both of them have a certain relationship with the power connector temperature detection unit 201.
  • Distance the working temperature collected by the multiple power connector temperature detection units 201 is transmitted to the charging control unit 202 in the form of weak voltage signals (for example, between 0.3V-5V).
  • weak voltage signals for example, between 0.3V-5V.
  • the signal transmission line and the ground wire are built into the charging cable between the power connector and the vehicle connector, and the charging cable transmits the strong current (for example, 220V-380V) used for charging electric vehicles.
  • the diameter of the charging cable And the weight is already very large, so in order to save the cost of transmitting the working temperature line and reduce the impact on the charging cable, when multiple power connector temperature detection units 201 are used to detect the temperature inside the power connector, all the power connectors are connected.
  • the temperature detection units 201 are connected in series or in parallel. When any one of the power connector temperature detection units 201 detects a high temperature signal, it outputs the highest detected operating temperature, and only one signal transmission line and one ground wire are used to transmit the internal live wire of the power connector. Operating temperature of the terminal and/or neutral terminal.
  • a filter 206 is further included, which is connected to the power connector temperature detection unit 201 and used to remove interference signals in the working temperature collected by the power connector temperature detection unit 201 .
  • the power connector temperature detection unit 201 uses components such as thermistors to collect the temperature inside the power connector, the output of the weak current signal representing the working temperature may be interfered by the power frequency of the charging current of the power connector, Therefore, before the power connector temperature detection unit 201 transmits the working temperature to the charging control unit 202 through the above-mentioned working temperature signal transmission line connection, the power frequency interference signal is filtered out by the filter 206 in this embodiment.
  • the working temperature signal transmission line and the ground line connecting the power connector temperature detection unit 201 and the charging control unit 202 are shielded wires.
  • the use of shielded wires to realize the working temperature signal transmission line and the corresponding wires can further reduce the interference of the charging current on the weak current signal of the working temperature, so that the detected working temperature is more accurate, and the charging power control can be more accurate. precise.
  • a PCB temperature detection unit 207 is further included, for detecting the working temperature inside the charging control box;
  • the charging control unit 202 is connected to the PCB temperature detection unit and the power connector temperature detection unit, and is used to obtain the working temperature inside the charging control box and the power connector according to the PCB temperature detection unit 207
  • the operating temperature of the power connector acquired by the temperature detection unit 201 controls the charging power output to the electric vehicle.
  • the structure of the PCB temperature detection unit 207 is the same as that of the power connector temperature detection unit 201 in the previous embodiment, except that the PCB temperature detection unit 207 is located on the PCB (printed circuit) inside the charging control box. board), collect the temperature of the components located on the PCB board inside the charging control box to form the working temperature, and the above-mentioned insulating thermal conductive silica gel can be used to fix the PCB temperature detection unit 207 on the printed circuit board in the charging control box, and pass The other working temperature signal transmission line and the corresponding ground wire transmit the working temperature inside the charging control box to the charging control unit 202, wherein the working temperature signal transmission line and the corresponding ground wire can be formed of shielded wires.
  • the PCB temperature detection unit may be installed on a relay and/or a connecting terminal of a connector inside the charging control box.
  • the relay is a switch inside the charging control box
  • the connector refers to the plug-in at the connection between the cable or the cable and the PCB board
  • the connection terminal refers to the terminal on the connector that is connected to the cable or the cable.
  • the charging efficiency can be improved and the charging time can be shortened under the premise of ensuring the charging safety of the electric vehicle; the temperature detection unit of the power connector is placed at the power connector to improve the response speed of temperature detection and reduce the number of cables. Cost; by adjusting the charging power in combination with the operating temperature of the printed circuit board in the charging control box and the operating temperature of the power connector, the charging safety of the electric vehicle can be further improved.
  • FIG. 4 is a flow chart of an electric vehicle charging control method according to the embodiment of this paper. In this figure, it describes the factors of the working temperature of the power connector and the working temperature of the charging control box to control the charging power of the electric vehicle.
  • the specific method avoids the inaccuracy of controlling the charging power of electric vehicles according to individual factors, and improves the safety of electric vehicle charging, including:
  • Step 401 in the process of using the first charging power to charge the electric vehicle, obtain the first working temperature inside the power connector and the second working temperature inside the charging control box;
  • Step 402 when the first operating temperature is greater than or equal to the first temperature threshold and less than the second temperature threshold, and the second operating temperature is greater than or equal to the fourth temperature threshold and less than the fifth temperature threshold, then the output signal to the electric vehicle will be the first charging power is reduced to the second charging power;
  • Step 403 when the first operating temperature is reduced to less than or equal to the first temperature threshold, use a charging power lower than or equal to the first charging power to charge the electric vehicle.
  • the charging power lower than or equal to the first charging power may be any power value greater than 0, and for example, the second charging power may continue to be maintained to charge the electric vehicle.
  • the charging of the electric vehicle is stopped.
  • the first temperature threshold may be, for example, 75 degrees Celsius
  • the second temperature threshold may be 78 degrees Celsius
  • the fourth temperature threshold may be 110 degrees Celsius
  • the fifth temperature threshold may be 113 degrees Celsius
  • all the above temperature thresholds are It is based on the empirical data in actual use, and can also be set to other specific values.
  • the charging safety protection mechanism will be triggered to stop charging the electric vehicle. Fire or damage to the electrical components inside the charging device due to increased charging temperature.
  • the charging of the electric vehicle is stopped.
  • the charging safety protection mechanism will be triggered to stop the charging of the electric vehicle. Charge, so as to avoid possible fire or damage to the internal electrical components of the charging device due to the increase in charging temperature.
  • using a charging power lower than or equal to the first charging power to charge the electric vehicle further includes,
  • the reason for stopping the electric vehicle charging this time will be recorded. is because the first operating temperature is continuously greater than or equal to the first temperature threshold;
  • the charging of the electric vehicle is stopped, and the reason for stopping the charging of the electric vehicle this time is recorded as because the first working temperature is greater than or equal to the second temperature threshold;
  • the reason for stopping the electric vehicle charging this time is recorded as the second working temperature being greater than or equal to the fifth temperature threshold
  • the reason for stopping the charging of the electric vehicle this time is recorded as Because the first operating temperature is greater than or equal to the second temperature threshold, and the second operating temperature is greater than or equal to the fifth temperature threshold;
  • the reason for the current stopping of charging the electric vehicle is recorded as due to the second operating temperature Continuously greater than or equal to the fourth temperature threshold.
  • the reasons recorded in this embodiment that cause the charging of the electric vehicle to be stopped this time are stored in the memory, so that the charging control unit can inquire.
  • the charging of the electric vehicle is controlled according to the reason for stopping the charging of the electric vehicle this time.
  • controlling the charging of the electric vehicle further comprises,
  • the reason for stopping the charging of the electric vehicle this time is that the first operating temperature is greater than or equal to the second temperature threshold and the second operating temperature is greater than or equal to the fifth temperature threshold; then the charging of the electric vehicle is not resumed.
  • controlling the charging of the electric vehicle further comprises,
  • acquiring the first working temperature inside the power connector and the second working temperature inside the charging control box further includes,
  • the printed circuit board and/or the second working temperature on the printed circuit board inside the charging control box is acquired by arranging at least one temperature detection unit.
  • a plurality of temperature detection units are arranged on the live wire terminal and/or the neutral wire terminal inside the power connector, so that the working temperature of the electrical components in the charging device can be obtained more directly and quickly, thereby facilitating rapid corresponding charging
  • the working temperature of the electrical components in the charging control box can be obtained on the printed circuit board in the charging control box, so that the working temperature of the charging device can be obtained directly and more quickly, so as to facilitate the rapid response to the corresponding charging strategy .
  • the reliability of temperature detection is changed from the single-channel control in the prior art (controlled by the comparator or the control unit alone) to the dual-channel control in this article (the comparator and the control unit jointly judge and control), and this article also provides
  • the compensation mechanism that is, adjusting the reference voltage of the comparator through the control of the control unit, compensates for the drift of the reference voltage in the prior art.
  • acquiring the first working temperature on the live wire terminal and/or the neutral wire terminal inside the power connector by using a plurality of temperature detection units further includes,
  • the plurality of temperature detection units collect the first working temperature on the live wire terminal and/or the neutral wire terminal inside the power connector in a series or parallel manner, and obtain the first working temperature through a signal transmission line and a ground wire temperature;
  • Obtaining the second working temperature of the printed circuit board inside the charging control box by using a plurality of temperature detection units further includes,
  • the plurality of temperature detection units collect the second working temperature of the printed circuit board inside the charging control box in a series or parallel manner, and obtain the second working temperature through another signal transmission line and a ground wire.
  • the outputs of multiple temperature detection units are combined, and the first working temperature is transmitted through a signal transmission line and a corresponding ground wire.
  • a working temperature, the second working temperature is transmitted through another signal transmission line and the corresponding ground wire, the signal transmission line transmitting the first working temperature and the signal transmission line transmitting the second working temperature only transmit the highest working temperature obtained by multiple temperature detection units,
  • the weight of the charging cable can be reduced, and the reliability of the entire charging device can be increased.
  • acquiring the first working temperature inside the power connector and the second working temperature inside the charging control box further includes:
  • Shielding protection is performed on the obtained first working temperature and second working temperature.
  • the shielded wire is used to realize the transmission line of the first working temperature signal and the corresponding ground wire, and the transmission line of the second working temperature signal and the corresponding ground wire, which can further reduce the interference of the charging current on the weak current signal of the working temperature,
  • the detected working temperature is more accurate, and the charging power control can be more accurate.
  • the output to the electric vehicle is higher than the first temperature threshold.
  • the charging power of the second charging power may be between the first charging power and the second charging power, or may be the first charging power.
  • the output to the electric vehicle is higher than or equal to The charging power of the second charging power, wherein the charging power may be the second charging power, or may also output a charging power lower than or equal to the first charging power to charge the electric vehicle.
  • a charging power higher than a second charging power is output to the electric vehicle , wherein the charging power may be any value between the first charging power and the second charging power, and may also be, for example, the first charging power.
  • the electric vehicle is charged with a charging power lower than or equal to the first charging power and greater than 0 .
  • the charging power may be between the first charging power and the second charging power, or smaller than the second charging power, or may also be the second charging power.
  • the first temperature threshold and the fourth temperature threshold are not equal.
  • the fourth temperature threshold is greater than the first temperature threshold.
  • the second temperature threshold is not equal to the fifth temperature threshold.
  • the fifth temperature threshold is greater than the second temperature threshold.
  • the upper and lower thresholds of each device are set according to the characteristics of different devices, which can more accurately determine the cause of charging heat.
  • the charging efficiency can be improved and the charging time can be shortened on the premise of ensuring the charging safety of the electric vehicle; the first working temperature at the power connector and the second working temperature in the charging control box can be used to adjust the charging efficiency.
  • the charging power can further improve the charging safety of electric vehicles.
  • FIG. 5 is a schematic diagram of a specific circuit of the charging control device according to the embodiment of this paper, and the circuit structure of the charging control device is described in this figure.
  • the temperature detection unit 501 may be a thermistor, a thermocouple, a resistance temperature detector, Digital sensors, etc., among the thermistors, a positive temperature coefficient thermistor (PTC) or a negative temperature coefficient thermistor (NTC) can be selected, such as the NTC thermistor RT1 in Figure 5, each
  • the operating temperature for example, the temperature of electrical components
  • reflected by different temperature detection units can be expressed as different temperature voltages.
  • the temperature detection unit 501 is further connected with a voltage divider resistor R3 for setting the temperature voltage output by the temperature detection unit to meet the requirements of the back-end comparison unit 502 .
  • FIG. 7a is a schematic diagram of the structure of the temperature detection unit inside the power connector according to the embodiment of this paper.
  • the temperature detection unit 702, the signal transmission line 703 and the corresponding ground wire 704 for transmitting the working temperature acquired by the temperature detection unit 702, and the charging cable 705, the temperature detection unit 702 is fixed on the live wire terminal of the power connector through insulating and thermally conductive silica gel.
  • the signal transmission line 703 and the corresponding ground wire 704 of the temperature detection unit 702 are arranged along the charging cable 705 and are wrapped in the insulating outer layer of the charging cable 705.
  • the voltage signal is sent to the charging control unit to control the charging strategy.
  • a plurality of temperature detection units 501 can be placed on the live wire terminal and/or the neutral wire terminal inside the power connector, and insulating and thermally conductive silica gel is used to connect the temperature detection units 501 and the live wire inside the power connector.
  • the temperature voltage Vi [RT1/(R3+RT1)]*VCC obtained by the temperature detection unit 501 representing the working temperature, wherein the value of RT1 (taking NTC as an example) decreases with the increase of temperature, when the temperature increases When the value of RT1 decreases, the value of Vi decreases.
  • FIG. 7b is a schematic circuit diagram of the temperature detection unit of the embodiment of this paper
  • the temperature detection unit can prevent the temperature detection unit from passing the temperature voltage of the working temperature along the signal transmission line.
  • the electrical signal in the high-voltage charging cable will affect the temperature and voltage of the weak current signal. Therefore, in this embodiment, the thermistor RT1 is disturbed by the power frequency signal, and the thermistor RT1 passes through the capacitor C1, resistor FB1, Capacitor C2 constitutes a ⁇ -type filter, which is used to attenuate the interference of power frequency signals.
  • the number of comparison units 502 may correspond to the above-mentioned number of temperature detection units 501, that is, each temperature detection unit 501 corresponds to one comparison unit 502. Also for the sake of clarity, the number of the temperature detection units 501 in FIG. Only one comparison unit 502 is shown in the embodiment, and in other embodiments, a plurality of comparison units may be included for judging the comparison relationship between the first operating temperature and the corresponding temperature threshold, and the second operating temperature and the corresponding temperature threshold. .
  • the comparison unit 502 can be a hysteresis comparator.
  • the first input end of the hysteresis comparator is connected to the temperature voltage output by the temperature detection unit 501 , the second input end is connected to a resistor R7 before the reference voltage is connected, and the output end is connected to the driving unit 504
  • the input terminal of outputs the voltage of the first comparison result to the driving unit 504, and the output terminal is connected to the second input terminal in series with a resistor R6.
  • the above-mentioned hysteresis-type comparator means that when the comparison unit has only one reference voltage, when the amplitude of the temperature voltage input at the first input terminal is close to the reference voltage, if the amplitude of the temperature voltage input at the first input terminal is close to the reference voltage.
  • the noise interference is large, and the comparison response speed is fast enough, which may cause the wrong transition of the output voltage.
  • the reference voltage is changed to two.
  • the output of the comparison unit 502 changes only when the temperature voltage reaches the first reference voltage; and when the input temperature voltage changes from a high level to a high level
  • the output of the comparison unit changes only when the input temperature voltage drops to the second reference voltage. Therefore, the structure of the comparison unit in the above embodiment has hysteresis, that is, inertia, so a small change in the input temperature and voltage will not cause a jump in the output voltage of the comparison unit, and the comparison unit at this time has anti-interference ability.
  • the voltage of the first comparison result output by the comparison unit 502 may be a high level or a low level, depending on the structure of the driving unit 504 , and is related to the charging control unit 503 described later according to the temperature voltage and the preset voltage. It is assumed that the high and low levels of the second comparison result voltage output by the threshold comparison have the same meaning, that is, for example, when the first comparison result voltage output by the comparison unit 502 indicates that the operating temperature (temperature voltage) is higher than the preset temperature (reference voltage) , outputs a high-level first comparison result voltage.
  • comparison unit 502 can be used to compare the first operating temperature with the second temperature threshold , and may also have other comparison units for comparing the second operating temperature and the fifth temperature threshold; at this time, the charging control unit 503 determines that the operating temperature (temperature voltage) is higher than the preset temperature (for example, the second temperature threshold or the fifth temperature threshold). temperature threshold), the second comparison result voltage of high level should also be output, and vice versa. In this way, the high and low voltage levels of the output comparison result have the same meaning, so that multiple temperature control protections can be realized.
  • the charging control unit 503 is connected to the temperature detection unit 501 to acquire the temperature voltage of the first working temperature and the temperature voltage of the second working temperature; the charging control unit 503 is connected to the temperature and voltage of the second working temperature.
  • the input terminal of the driving unit 504 is connected to output the voltage of the second comparison result to the driving unit 504 .
  • the charging control unit 503 may be connected to a plurality of temperature detection units 501, and adjust the charging power according to the aforementioned charging strategy, or stop charging the electric vehicle.
  • the charging control unit 503 can be a microprocessor (MCU), receives signals through IN pins (IN1-IN3), outputs signals through OUT pins (OUT1-OUT3), and converts the temperature and voltage into digital form Then, it is compared with a preset threshold.
  • MCU microprocessor
  • the second comparison result voltage representing the disconnection of the switch unit 505 is output, or , when the value represented by the temperature voltage of the second working temperature is greater than or equal to the fifth temperature threshold, the output voltage representing the second comparison result of the switch unit 505 is turned off; If the value represented is smaller than the second temperature threshold, the second comparison result voltage representing the turn-on switch unit 505 is output (or controlled according to the aforementioned charging strategy), and the second comparison result voltage may be a high voltage
  • the level may also be a low level, which is determined according to the structure of the driving unit 504 .
  • the second transistor Q2 can also be omitted
  • the driving unit 504 includes a first transistor Q1, and the collector of the first transistor Q1 is connected to the power supply VCC , the base is connected to the comparison unit 502 and the charging control unit 503, and simultaneously receives the first comparison result voltage output by the comparison unit 502 and the second comparison result voltage output by the charging control unit 503, and the emitter is grounded, wherein all the The collector is also connected to the switch unit 505.
  • the switch unit 505 When the first transistor Q1 is turned on, the switch unit 505 is turned off, and when the first transistor Q1 is turned off, the switch unit 505 is turned on. Pass.
  • the base when the base is connected to the comparison unit 502 and the charging control unit 103 and simultaneously receives the first comparison result voltage output by the comparison unit 502 and the second comparison result voltage output by the charging control unit 503 , when either the first comparison result voltage or the second comparison result voltage is at a high level, the first transistor Q1 will be turned on, that is, when the comparison unit 502 determines that the current operating temperature exceeds the third The second temperature threshold outputs a high-level first comparison result voltage, or the charging control unit 503 determines that the current operating temperature exceeds the second temperature threshold and outputs a high-level second comparison result voltage, which will make the first three
  • the base of the transistor Q1 receives a high level, so that the first transistor Q1 is turned on, thereby turning off the switch unit 505 .
  • the driving unit 504 includes a first transistor Q1 and a second transistor Q2, the collector of the first transistor Q1 is connected to the power supply VCC, and the first transistor Q1
  • the base of Q1 is connected to the comparison unit 502 and the charging control unit 503, and at the same time receives the first comparison result voltage output by the comparison unit 502 and the second comparison result voltage output by the charging control unit 503, the first transistor Q1
  • the emitter is grounded; the collector of the second transistor Q2 is connected to the switch unit 505, the base of the second transistor Q2 is connected to the collector of the first transistor Q1, and the second transistor Q2 is connected to the collector of the first transistor Q1.
  • the emitter of the transistor Q2 is grounded; when the first transistor Q1 is turned on, the second transistor Q2 is turned off, and the switch unit 505 is turned off, and when the first transistor Q1 is turned off, The second transistor Q2 is turned on, and the switch unit 505 is turned on.
  • the switching unit 505 can also be driven by a PNP transistor or a MOS transistor, wherein the switching unit is, for example, a relay.
  • the first comparison result voltage output by the unit 502 is converted into a digital form, and an “OR” operation is performed with the second comparison result voltage in digital form output by the charging control unit 503.
  • the switch unit 505 is turned off, and the above judgment and operation can be realized through the gate circuit in the digital circuit, and other forms of judgment and operation circuits can also be used, which will not be repeated here.
  • the charging control device further includes a compensation unit 506, which is connected between the comparing unit 502 and the charging control unit 503, when the charging control unit 503 detects that the reference voltage is deviated , and output the adjustment voltage to the compensation unit 506 for adjusting the reference voltage.
  • the charging control unit 503 can control the reference voltage.
  • the voltage is adjusted to make the reference voltage more accurate and improve the accuracy of the temperature judgment of the comparison unit 502 .
  • the charging control unit 503 acquires the reference voltage, compares the temperature voltage with the preset threshold, generates an adjustment voltage for the reference voltage, and applies it to the reference voltage.
  • the compensation unit 506 further includes a third transistor Q3, the collector of the third transistor Q3 is connected to the power supply VCC and the reference voltage of the comparison unit 502, the The base of the third transistor Q3 is connected to the charging control unit 503, and the emitter of the third transistor Q3 is grounded; when the charging control unit 503 determines that the received reference voltage is the same as the preset voltage When the thresholds are not equal, the charging control unit 503 outputs a regulated voltage to the base of the third transistor Q3 to control the reference voltage on the collector of the third transistor Q3.
  • the input pin of the charging control unit 503 is connected to the reference voltage of the second input terminal of the comparison unit 502, and the reference voltage of the second input terminal of the comparison unit 502 is obtained.
  • the reference voltage obtained by the charging control unit 503 is not equal to the preset threshold, for example, the set reference voltage is 0.5V, and the set preset threshold is also 0.5V, but the drifted reference voltage is 0.48V.
  • charging When the reference voltage collected by the control unit 503 is different from the preset threshold, it will control the output pin to output the regulated voltage, and turn on the third transistor Q3 so as to adjust the reference voltage input to the second input end of the comparison unit 502. It is regulated from 0.48V back to the set 0.5V.
  • the charging control unit 503 further includes a first output pin for outputting a pulse modulation signal (PWM) according to the temperature and voltage to adjust the power of the output charging current.
  • PWM pulse modulation signal
  • An interface outputs the pulse modulated signal to the electric vehicle.
  • the charging control unit 503 can adjust the temperature according to the degree of temperature increase or decrease (the temperature does not reach the preset threshold when the temperature increases, that is, the temperature does not exceed the safe charging temperature ), reduce or increase the power of the output charging current, for example, for AC charging, due to the temperature increase by adjusting the charging current from 8A to 6A PWM signal, the PWM signal regulating the output charging power is sent to the battery management of the electric vehicle System (BMS), the BMS system uses the corresponding charging current to charge the battery through the power conditioning unit of the electric vehicle.
  • BMS electric vehicle System
  • the control of reducing the intensity of the charging current can be realized, and the charging of the electric vehicle can be maintained after the temperature of the components of the charging control device rises, instead of directly stopping the charging of the electric vehicle as in the prior art, so that the charging can be improved. efficiency, and improve the user experience of electric vehicle charging.
  • the charging control unit 503 further includes a second output pin for outputting a charging power adjustment signal (CAN/Ethernet) according to the temperature and voltage, and the charging control unit 503 transmits the charging power adjustment signal (CAN/Ethernet) through the interface connected with the electric vehicle. outputting a charging power adjustment signal to the electric vehicle;
  • a charging power adjustment signal CAN/Ethernet
  • the charging control device further includes a power adjusting unit, which is connected between the charging control unit 503 and the switching unit 505 and is used for adjusting the power of the output charging current according to the charging power adjusting signal.
  • the charging control unit 503 since the temperature of the components of the charging control device, such as the power connector, increases or decreases, the charging control unit 503 does not exceed the safe charging temperature), reduce or increase the power of the output charging current, for example, for DC charging, the charging control unit 503 reduces or increases the charging output by the power adjustment unit by outputting a charging power adjustment signal to the power adjustment unit.
  • the power of the current when the operating temperature in the power connector exceeds the temperature threshold (for example, the first operating temperature is greater than or equal to the second temperature threshold, or the second operating temperature of the printed circuit board inside the charging control box is greater than or equal to the fifth temperature threshold etc.), that is, exceeding the safe charging temperature, the charging control unit 503 or the comparison unit 502 will output a drive signal that drives the switch unit 505 to be disconnected.
  • the power adjustment unit stops charging the electric vehicle. By outputting the charging current, the temperature inside the charging control device and the battery of the electric vehicle can be lowered to ensure the safety of the charging process.
  • the charging power adjustment signal output by the charging control unit 503 can also be sent to the BMS system of the electric vehicle through the CAN bus or Ethernet bus of the charging gun on the charging control device, and the BMS system adopts the charging power adjustment signal from the BMS system according to the charging power adjustment signal.
  • the charging current output by the switching unit 505 of the charging control device charges the battery with corresponding power. Therefore, the control of reducing the intensity of the charging current can be realized, and the charging of the electric vehicle can be maintained after the temperature of the components of the charging control device increases, instead of directly stopping the charging of the electric vehicle as in the prior art, so that the charging efficiency can be improved. , to improve the user experience of electric vehicle charging.
  • VCC is the positive terminal of the power supply voltage source (hereinafter referred to as the power supply)
  • GND is the negative terminal of the power supply voltage source
  • V REF is the reference voltage, that is, the set temperature threshold, which is connected to the resistor R7.
  • the other side of the resistor R7 One end is connected to the forward input pin (the second input end) of the operational amplifier;
  • the reference voltage V REF can be a fixed value or a preset threshold value inside the charging control unit 503, in this case, the charging control device can be Automatically adjust the temperature threshold.
  • the thermistor RT1 is a thermal element.
  • the temperature detection unit 501 is connected to the input end of the comparison unit 502, that is, the resistor R3 and the thermistor RT1.
  • connection point is connected to the reverse input pin (first input) of the operational amplifier U1; the thermistor RT1 and the resistor R3 form a voltage divider circuit, the thermistor RT1 can be an NTC thermistor, when the power connector When the internal working temperature increases, the resistance value of the thermistor RT1 decreases, and the voltage value of the temperature voltage V i of the divided voltage value decreases, and vice versa, when the temperature decreases, the value of V i increases.
  • Resistor R6 is a feedback resistor connecting the output pin (output terminal) of the operational amplifier U1 to the forward pin (second input terminal).
  • V out is connected to one end of the diode D1
  • V i is the output end of the operational amplifier U1
  • V i >V REF U1 outputs a low level
  • V out is connected to one end of the diode D1
  • the other end of the resistor R4 is connected to the resistor R4, the other end of the resistor R4 is connected to the base of the first transistor Q1 of the driving unit 504, one end of the resistor R5 is connected to the power supply VCC, and the other end is connected to the collector of the first transistor Q1,
  • the base of the second transistor Q2 is connected to the collector of the first transistor Q1 and the connection point of the resistor R5, the emitter of the second transistor Q2 is connected to GND, and the collector of the second transistor Q2 is connected to the switch
  • the control terminal of unit 505 is connected.
  • the thermistor RT1 can be integrated with other electrical components such as operational amplifier U1, or can be placed separately.
  • the number of thermistor RT1 can be one or more, and can be located in different parts of the charging control device. To collect the working temperature of different parts of the charging control device or the temperature of electrical components, such as installing the thermistor RT1 on the power connector, on the printed circuit board of the charging control box, etc.
  • the operational amplifier U1 may be a hysteresis comparator to prevent the switch unit 505 from switching the frequency between two states of on and off when the operating temperature of the switch K1 is near the temperature threshold.
  • the switch unit 505 When the first operating temperature of the power connector ⁇ T2 (the second temperature threshold), the switch unit 505 is turned off, and when the first operating temperature ⁇ T1 (the first temperature threshold), the switch unit 505 is turned on (in other embodiments)
  • the switch unit 505 is turned off, specifically referring to the foregoing embodiment), where T2>T1, and adjusting the resistance values of the resistor R6 and the resistor R7 can change the T2- Difference of T3.
  • the charging control unit 503 collects the temperature voltage V i and the reference voltage V REF , when it is detected that the reference voltage V REF deviates from the preset threshold, that is, the reference voltage V REF changes, by compensating
  • the unit 506 adjusts the value of the reference voltage V REF , corrects the value of the reference voltage V REF , and improves the accuracy of temperature judgment.
  • One output end of the charging control unit 503 is connected to the resistor R1, the other end of the resistor R1 is connected to the base of the third transistor Q3, the emitter of the third transistor Q3 is connected to GND, and the collector of the third transistor Q3 One end of the resistor R2 is connected to the reference voltage V REF , and the other end of the resistor R2 is connected to the power supply VCC.
  • the charging control unit 503 controls the duty cycle of the third transistor Q3 to be turned on by outputting the regulated voltage to achieve the reference voltage. regulation of V REF .
  • the charging control unit 503 also realizes the detection of the state of the switch K1 through the feedback of the resistor R8 connected to it. equal to the fifth temperature threshold), and the switch K1 is still in an on state, it means that the comparison unit 502 loses control of the switch K1, and the charging control unit 503 compares the preset threshold with V i , and when it reaches or exceeds the preset threshold, A high level is output, and the first transistor Q1 is turned on through the diode D2, and the second transistor Q2 is turned off, thereby disconnecting the power supply network.
  • the dual detection of the temperature detection unit 501 and the dual control of the driving unit 504 are realized, so as to improve the safety of electric vehicle charging.
  • FIG. 6a is a schematic diagram of the charging control device and the charging structure of the electric vehicle according to the embodiment of this document.
  • it is an AC charging system.
  • the charging control unit 603 of the charging control device 600 outputs the adjusted PWM signal, for example, when the charging current is 8A
  • the corresponding duty cycle value (PWM signal) is 13.3%
  • the corresponding duty cycle value (PWM signal) is 10% to adjust the power of the charging current
  • the charging control unit 603 adjusts the duty cycle of the modified charging power
  • the signal is output to the power adjustment unit 607 of the electric vehicle, and the power adjustment unit 607 reduces the charging current intensity under the control of the BMS system of the electric vehicle.
  • the charging control unit 603 may also output a control signal for adjusting the voltage of the charging current.
  • a feedback unit 608 is also included to obtain the driving signal of the driving unit 604 , and the charging control unit 603 can thus determine whether the driving unit 604 drives the switch unit 605 correctly.
  • the power adjustment unit 607 can be a schematic structural diagram of the power adjustment unit in this embodiment as shown in FIG. 7c, which is composed of a push-pull circuit, the charging control unit 603 outputs the modified PWM signal, and the output of the CP terminal takes VCC as a high level, VEE is a low-level PWM signal, and the duty cycle represents the maximum allowable charging current.
  • the charging power is reduced by reducing the duty cycle.
  • the transistor Y1 is turned on in the positive half cycle, and the transistor Y2 is turned on in the negative half cycle.
  • 6b is another schematic diagram of the charging control device and the charging structure of the electric vehicle according to the embodiment of the present invention.
  • it is a DC charging system.
  • the charging control unit 603 of the charging control device 600 adjusts the charging power, generates a charging power adjustment signal, and passes
  • the CAN bus interface in the charging gun connected to the electric vehicle sends the charging power adjustment signal to the electric vehicle in the form of a CAN message, thereby reducing the power of the charging current; and also outputs the charging power adjustment signal to the charging control device
  • the power adjustment unit 607 in the power adjustment unit 607 adjusts the power of the output charging current according to the charging power adjustment signal (adjusts the current or voltage, or adjusts the current and voltage at the same time) to charge the battery of the electric vehicle.
  • the power adjustment unit 607 receives the charging current, adjusts the power of the charging current, and outputs it to the electric vehicle through the switch unit 605 .
  • the structure of the power adjustment unit 607 can be referred to as shown in FIG. 7c.
  • reducing the power of the charging current to charge the battery of the electric vehicle can reduce the temperature of the electrical components of the charging equipment.
  • the temperature threshold for example, the first temperature threshold
  • the charging control unit 603 outputs a control command to the power adjusting unit 607 according to the working temperature to restore the power of the charging current and increase the charging speed.
  • the charging efficiency can be improved and the charging time can be shortened on the premise of ensuring the charging safety of the electric vehicle; the charging power is adjusted in combination with the first working temperature at the power connector and the second working temperature in the charging control box, The charging safety of the electric vehicle can be further improved.
  • the embodiments herein also provide a computer device, including a memory, a processor, and a computer program stored in the memory and running on the processor, where the processor implements the following steps when executing the computer program:
  • the first operating temperature is greater than or equal to the first temperature threshold and less than the second temperature threshold, and the second operating temperature is greater than or equal to the fourth temperature threshold and less than the fifth temperature threshold, the first charge output to the electric vehicle will be the power is reduced to the second charging power;
  • the electric vehicle When the first operating temperature is reduced to less than or equal to the first temperature threshold, the electric vehicle is charged with a charging power lower than or equal to the first charging power.
  • the computer device provided in the embodiments herein can also implement the method described in FIG. 4 .
  • the embodiments herein further provide a computer non-volatile readable storage medium, where a computer program is stored on the computer non-volatile readable storage medium, and the computer program is run by the processor. Perform the steps of the above method.
  • Embodiments herein also provide computer-readable instructions that, when executed by a processor, are programmed to cause the processor to perform the method as described in FIG. 4 .
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solutions in the embodiments herein.
  • each functional unit in each of the embodiments herein may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions in this article are essentially or make contributions to the prior art, or all or part of the technical solutions can be embodied in the form of software products, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments herein.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Protection Of Static Devices (AREA)

Abstract

一种电动车辆充电控制装置及方法,涉及电动车辆充电技术领域,其中方法包括在采用第一充电功率向电动车辆进行充电的过程中,获取电源连接器内部的第一工作温度以及充电控制盒内部的第二工作温度;根据电源连接器温度检测单元获取的电源连接器内部的第一工作温度以及充电控制盒内部的第二工作温度控制向电动车辆输出的充电功率,由此可以在保障电动车辆充电安全的前提下,提高充电效率,缩短充电时间。

Description

一种电动车辆充电控制装置及方法
本申请要求享有2020年11月6日递交、申请号为202011233775.5、发明名称为“一种电动车辆充电控制装置及方法”的中国专利的优先权,该专利的所有内容在此全部引入。
技术领域
本文涉及电动车辆充电技术领域,尤其涉及一种电动车辆充电控制装置及方法。
背景技术
近些年,全球电动汽车发展迅速,电动汽车和充电桩的数量持续上升。用户希望对车辆电池充电的时间越短越好,现有技术中,通常采用大电流和高电压等高功率方式满足用户对于车辆电池充电的需要,而车辆电池的温度会在充电时随之升高,继续维持高功率的方式对车辆电池进行充电可能会导致各种充电安全事故,充电安全和可靠性已经成为一个非常重要且急需解决的问题。
现有技术中大部分的充电桩在工作温度升高后,会采用降低充电功率的方式继续对车辆电池进行充电,但是这种方式只是单纯的降低输出的充电功率,这就导致充电桩的实际输出功率和车辆的需求功率相差很大。在这种情景下,无疑增加了车辆电池充电时间的延长,并且也增加了车辆电池充电过程中的不可控性和充电风险。
如何结合车辆电池充电过程中温度上升带来的充电时间延长以及安全问题是现有技术亟需解决的问题。
发明内容
为解决现有技术中的问题,本文实施例提供了一种电动车辆充电控制装置及方法,用于解决现有技术中电动车辆充电由于温度变化造成充电速度慢,充电效率低的问题。
本文提供了一种电动车辆充电控制方法,包括,
在采用第一充电功率向电动车辆进行充电的过程中,获取电源连接器内部的第一工作温度以及充电控制盒内部的第二工作温度;
当所述第一工作温度大于等于第一温度门限小于第二温度门限,且所述第二工作温度大于等于第四温度门限小于第五温度门限,则将向所述电动车辆输出的第一充电功率降低至第二充电功率;
当所述第一工作温度降低到小于等于所述第一温度门限,使用低于或等于所述第一充电功率的充电功率向所述电动车辆进行充电。
本文还提供了一种电动车辆充电控制装置,包括,
电源连接器温度检测单元,位于电源连接器内部,用于在采用第一充电功率向电动车辆进行充电的过程中,获取电源连接器内部的第一工作温度以及充电控制盒内部的第二工作温度;
充电控制单元,用于当所述第一工作温度大于等于第一温度门限小于第二温度门限,且所述第二工作温度大于等于第四温度门限小于第五温度门限,则将向所述电动车辆输出的第一充电功率降低至第二充电功率;
当所述第一工作温度降低到小于等于所述第一温度门限,使用低于或等于所述第一充电功率的充电功率向所述电动车辆进行充电。
本文实施例还提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的方法。
本文实施例还提供了一种计算机非易失性可读存储介质,其上存储有计算机指令,该计算机指令被处理器执行时实现上述的方法。
利用本文实施例,可以在保障电动车辆充电安全的前提下,提高充电效率,缩短充电时间;在电源连接器处放置电源连接器温度检测单元提高了温度检测的反应速度,减少线缆成本;通过结合充电控制盒内印制电路板的工作温度以及电源连接器的工作温度来调节充电功率,可以进一步提高电动车辆的充电安全性。当然,实施本文的任一产品和/或方法并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本文实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本文的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a-图1c所示为本文实施例电动车辆的充电控制系统结构示意图;
图2所示为本文实施例一种电动车辆充电控制装置的结构示意图;
图3所示为本文实施例一种充电车辆的充电控制装置的具体结构示意图;
图4所示为本文实施例一种电动车辆充电控制方法的流程图;
图5所示为本文实施例充电控制装置的具体电路示意图;
图6a所示为本文实施例充电控制装置与电动车辆充电结构的示意图;
图6b所示为本文实施例充电控制装置与电动车辆充电结构的另一示意图;
图7a所示为本文实施例温度检测单元在电源连接器内部的结构示意图;
图7b所示为本文实施例温度检测单元的电路示意图;
图7c所示为本文实施例功率调节单元的结构示意图。
【附图标记说明】
100、电动车辆;101、车辆连接器;102、充电控制盒;103、充电控制单元;104、电源连接器温度检测单元;105、电源连接器;106、充电电源;201、电源连接器温度检测单元;202、充电控制单元;203、存储器;204、提示单元;205、通信单元;206、滤波器;207、PCB温度检测单元;501、温度检测单元;502、比较单元;503、充电控制单元;504、驱动单元;505、开关单元;506、补偿单元;600、充电控制装置;601、温度检测单元;602、比较单元;603、充电控制单元;604、驱动单元;605、开关单元;606、补偿单元;607、功率调节单元;608、反馈单元;701、火线端子;702、温度检测单元;703、信号传输线;704、地线;705、充电电缆;R1、R2、R3、R4、R5、R6、R7、R8、电阻;RT1、热敏电阻;U1、运算放大器;D1、D2、二极管;Q1、Q2、Q3、三极管;K1、开关;VCC、电源;V REF、基准电压;V i、温度电压;V out、输出端;Y1、Y2、三极管;C1、C2、电容;FB1、电阻。
具体实施方式
下面将结合本文实施例中的附图,对本文实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本文一部分实施例,而不是全部的实施例。基于本文中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本文保护的范围。
如图1a-图1c所示为本文实施例电动车辆的充电控制系统结构示意图,电动车辆100通过车辆连接器101、充电控制盒102、充电控制单元103、电源连接器温度检测单元104以及电源连接器105与充电电源106连接。充电电源106通过电源连接器105将电动车辆100充电所需的充电电流输出给所述电动车辆100,其中充电电流经过电源连接器105、充电控制盒102、车辆连接器101传递给所述电动车辆100,所述电源连接器温度检测单元104位于所述电源连接器105。充电控制单元103根据所述电源连接器温 度检测单元104采集的工作温度对充电电流的输出功率进行控制,使得电动车辆100在工作温度升高的情况下还能够保持高速的充电,从而缩短充电时间,提高充电效率。所述电源连接器温度检测单元104可以集成于电源连接器105之中,可以更加快速的获得电动车辆充电过程中的工作温度变化,其中,所述工作温度是指除电动车辆中电池以外充电元器件的温度,例如电源连接器105端子上的温度、电缆上的温度、充电控制盒102中元器件的温度等,电源连接器温度检测单元104位于电源连接器内部,因此检测得到的工作温度是电源连接器105内部的温度。
其中,所述充电控制单元103可以如图1a中所示,设置于充电控制盒102之内,其中,车辆连接器101与电源连接器105之间的充电控制盒102内包括例如变压器、充电保护单元等元器件,在某些实施例中可以为充电桩,或者为便携式的缆上充电控制器;或者如图1b所示所述充电控制单元103位于电源连接器105之中;或者还可以如图1c所示所述充电控制单元103位于车辆连接器101之中。所述电源连接器温度检测单元104内置于电源连接器105内部,该电源连接器温度检测单元104可以为热敏电阻等,用于采集电源连接器105中电极的温度。所述充电控制单元103用于控制向所述电动车辆100输出的充电电流的功率(包括调节充电电流或者电压),从而通过输出充电功率的降低而降低电源连接器105内部的温度。
如图2所示为本文实施例一种电动车辆充电控制装置的结构示意图,在本图中描述了在电动车辆充电过程中,能够更加快速的根据充电产生的温度变化改变充电功率的装置结构,通过该装置可以降低高功率对电动车辆进行充电产生的温度升高情况,该装置可以通过专用芯片或者通用芯片实现,或者运行于单片机或者工业计算机之上,其中的功能模块可以通过软件或者逻辑电路实现,具体包括:
电源连接器温度检测单元201,位于电源连接器内部,用于在采用第一充电功率向电动车辆进行充电的过程中,获取电源连接器内部的第一工作温度以及充电控制盒内部的第二工作温度;
充电控制单元202,与所述电源连接器温度检测单元连接,
用于当所述第一工作温度大于等于第一温度门限小于第二温度门限,且所述第二工作温度大于等于第四温度门限小于第五温度门限,则将向所述电动车辆输出的第一充电功率降低至第二充电功率;
当所述第一工作温度降低到小于等于所述第一温度门限,使用低于或等于所述第一充电功率的充电功率向所述电动车辆进行充电。
当所述第一工作温度在一预定的时间区间内持续大于等于所述第一温度门限,则停止向电动车辆充电。
其中,当所述第一工作温度降低到小于等于所述第一温度门限,使用低于或等于所述第一充电功率的充电功率向所述电动车辆进行充电中,低于或等于所述第一充电功率的充电功率可以为第二充电功率,或者为比第一充电功率小的功率,例如可以小于第二充电功率,也可以在第一充电功率与第二充电功率之间。
在本文的一个实施例中,如图3所示为本文实施例一种充电车辆的充电控制装置的具体结构示意图,在该图中细化了各个功能单元的内部逻辑结构,所述充电控制装置还包括:
存储器203,用于存储用户指定的时间;
所述电源连接器温度检测单元201根据所述指定的时间获取所述电源连接器内部的工作温度。
在本实施例中,所述存储器203可以为非易失性存储器,例如包括可编程只读内存(Programmable read-only memory),其内部有行列式的镕丝,可依用户(厂商)的需要,利用电流将其烧断,以写入所需的数据及程序,镕丝一经烧断便无法再恢复,亦即数据无法再更改;电可擦可编程只读内存(Electrically erasable programmable read only memory),电子抹除式可复写只读存储器运作原理类似EPROM,但是抹除的方式是使用高电场来完成,因此不需要透明窗;闪存(Flash memory),是一种电子式可清除程序化只读存储器的形式,允许在操作中被多次擦或写的存储器,所述闪存主要用于一般性数据存储,以及在电脑与其他数字产品间交换传输数据,如储存卡与U盘。
在本文的一个实施例中,还包括提示单元204,用于通过声、光方式提示用户当前工作温度状态。
在本步骤中,所述通过声、光方式提示用户包括,通过蜂鸣器、扬声器等设备实现声音或者语音的提示,还可以通过多色LED灯、或者多个单色LED灯等方式显示提示当前工作温度的状态。还可以采用振动或者显示屏显示的方式向用户进行提示,或者还可以通过APP(应用软件)的方式将提示信息发送到用户的智能终端(例如手机等智能设备上),可以提示用户注意电动车辆充电元件是否存在于热源附近,或者用户可以通过手动解除热源的情况。其中,所述工作温度的状态是指,当前的工作温度所处的温度区间,例如当前的工作温度处于第一温度门限与第二温度门限之间,为正常充电状态;当前的工作温度处于第二温度门限以及第二温度门限以上时,为温度较高的危险充电状 态;当前的工作温度低于第一温度门限,为正常充电状态;当前的工作温度达到第二温度门限,为温度大于等于安全温度的充电状态。
在本文的一个实施例中,还包括通信单元205,用于将提示用户当前工作温度状态发送给用户的智能终端。
在本实施例中,所述通信单元205与所述充电控制单元202相连接,所述充电控制单元202将电源连接器温度检测单元201获得的电源连接器内部的工作温度转换为数字数据,然后根据工作温度确定当前工作温度状态,并将当前工作温度状态传送给所述通信单元205,通过通信单元205将当前工作温度状态通过无线方式发送给用户的智能终端。
在本文的一个实施例中,所述电源连接器温度检测单元201位于电源连接器内部的火线端子和/或零线端子上,并通过绝缘导热硅胶将所述电源连接器温度检测单元201与所述火线端子和/或零线端子进行固定。
在本实施例中,电源连接器中火线端子或者零线端子的温度可以很快的传递给所述电源连接器温度检测单元,并且可以避免由于电源连接器温度检测单元采用热敏电阻而造成高压充电电流烧毁充电控制单元的事故。
在本文的一个实施例中,可以在所述电源连接器内部的火线端子和/或零线端子上设置多个所述电源连接器温度检测单元201,所述电源连接器温度检测单元201以串联或者并联的方式将采集到的所述电源连接器内部的火线端子和/或零线端子上的工作温度,并通过一条信号传输线以及一条地线将所述工作温度传送给所述充电控制单元202。
在本实施例中,由于充电控制单元202可能位于电源连接器侧、或者位于传输充电电流的电缆上的充电控制盒中,或者位于车辆连接器侧,均与电源连接器温度检测单元201具有一定距离,多个电源连接器温度检测单元201采集的工作温度为弱电压信号(例如为0.3V-5V之间)形式传递给充电控制单元202,为了使得整个产品一体化,需要将传送工作温度的信号传输线以及地线内置于电源连接器至车辆连接器之间的充电电缆之内,而充电电缆中传递的是电动车辆充电所用的强电电流(例如为220V-380V),其充电电缆的直径以及重量已经很大,因此为了节省传送工作温度线路的成本以及减小对充电电缆的影响,当采用多个电源连接器温度检测单元201检测电源连接器内部的温度时,将所有的电源连接器温度检测单元201串联或者并联,当任意一个电源连接器温度检测单元201检测到高温信号,则输出检测到的最高工作温度,并且只通过一条信号传输线以及一条地线用于传输电源连接器内部火线端子和/或零线端子的工作温度。
在本文的一个实施例中,还包括滤波器206,连接于所述电源连接器温度检测单元201,用于去除所述电源连接器温度检测单元201采集到的工作温度中的干扰信号。
在本实施例中,当电源连接器温度检测单元201采用热敏电阻等元件采集电源连接器内部的温度时,输出代表工作温度的弱电信号可能会受到电源连接器的充电电流的工频干扰,因此在所述电源连接器温度检测单元201通过上述工作温度信号传输线连接将工作温度传送给充电控制单元202之前,通过本实施例中的滤波器206将工频干扰信号滤除。
在本文的一个实施例中,连接所述电源连接器温度检测单元201与充电控制单元202之间的工作温度信号传输线以及地线采用屏蔽线。
在本实施例中,采用屏蔽线实现所述工作温度信号传输线以及相应地线可以进一步降低充电电流对工作温度的弱电信号的干扰,使得检测得到的工作温度更加准确,进行充电功率控制时可以更加准确。
在本文的一个实施例中,还包括PCB温度检测单元207,用于检测充电控制盒内部的工作温度;
所述充电控制单元202,与所述PCB温度检测单元以及所述电源连接器温度检测单元连接,用于根据所述PCB温度检测单元207获取的充电控制盒内部的工作温度以及所述电源连接器温度检测单元201获取的电源连接器的工作温度控制向电动车辆输出的充电功率。
在本实施例中,所述PCB温度检测单元207的结构与前述实施例中的电源连接器温度检测单元201结构相同,只是该PCB温度检测单元207位于充电控制盒内部的PCB板(印制电路板),采集该充电控制盒内部位于PCB板上的元件温度形成工作温度,可以采用如前述的绝缘导热硅胶固定所述PCB温度检测单元207于充电控制盒内的印制电路板上,并通过另一条工作温度信号传输线以及相应地线将充电控制盒内部的工作温度传送给充电控制单元202,其中所述工作温度信号传输线以及相应地线可以采用屏蔽线构成。
在进一步的实施例中,所述PCB温度检测单元可以安装于所述充电控制盒内部的继电器和/或连接器的连接端子上。其中,继电器为充电控制盒内部的开关,所述连接器是指电缆或者线缆与PCB板连接处的插件,连接端子是指连接器上与电缆或者线缆连接的端子。
通过上述本文实施例的装置,可以在保障电动车辆充电安全的前提下,提高充电效率,缩短充电时间;在电源连接器处放置电源连接器温度检测单元提高了温度检测的反应速度,减少线缆成本;通过结合充电控制盒内印制电路板的工作温度以及电源连接器的工作温度来调节充电功率,可以进一步提高电动车辆的充电安全性。
如图4所示为本文实施例一种电动车辆充电控制方法的流程图,在本图中描述了结合电源连接器的工作温度以及充电控制盒的工作温度的因素,对电动车辆充电功率控制的具体方法,避免了根据单独因素控制电动车辆充电功率的不准确性,提升了电动车辆充电的安全性,具体包括:
步骤401,在采用第一充电功率向电动车辆进行充电的过程中,获取电源连接器内部的第一工作温度以及充电控制盒内部的第二工作温度;
步骤402,当所述第一工作温度大于等于第一温度门限小于第二温度门限,且所述第二工作温度大于等于第四温度门限小于第五温度门限,则将向所述电动车辆输出的第一充电功率降低至第二充电功率;
步骤403,当所述第一工作温度降低到小于等于所述第一温度门限,使用低于或等于所述第一充电功率的充电功率向所述电动车辆进行充电。
其中,低于或等于所述第一充电功率的充电功率可以为大于0的任意功率值,还可以例如继续保持所述第二充电功率向所述电动车辆进行充电。
在本文的一个实施例中,当所述第一工作温度在一预定的时间区间内持续大于等于所述第一温度门限,则停止向电动车辆充电。
在本文的一个实施例中,当第一工作温度大于等于第二温度门限时,则停止向电动车辆充电;或者,
当所述第二工作温度大于等于所述第五温度门限,则停止向电动车辆充电。
在本步骤中,第一温度门限例如可以为75摄氏度,第二温度门限可以为78摄氏度,第四温度门限可以为110摄氏度,第五温度门限可以为113摄氏度,上述的所有温度门限值都是根据实际使用中的经验数据,还可以设置为其他的具体数值。当电源连接器内部的工作温度大于等于第二温度门限的78摄氏度时,或者,充电控制盒内部的工作温度大于等于113摄氏度时,都会触发充电安全保护机制,停止向电动车辆充电,从而可以避免由于充电温度升高可能带来的火灾或者对于充电设备内部电气元件的损害。
在本文的一个实施例中,当第一工作温度大于等于第二温度门限,且所述第二工作温度大于等于所述第五温度门限,则停止向电动车辆充电。
在本步骤中,当电源连接器内部的工作温度大于等于第二温度门限的78摄氏度时,并且充电控制盒内部的工作温度大于等于113摄氏度时,则会触发充电安全保护机制,停止向电动车辆充电,从而可以避免由于充电温度升高可能带来的火灾或者对于充电设备内部电气元件的损害。
在本文的一个实施例中,在当所述第一工作温度小于等于所述第一温度门限,使用低于或等于所述第一充电功率的充电功率向所述电动车辆进行充电还包括,
当所述第二工作温度在另一预定的时间区间内持续大于等于所述第四温度门限,则停止向电动车辆充电。
在本步骤中,当第二工作温度持续大于等于第四温度门限,则无论第一工作温度的情况,即,当第一工作温度是否小于第一温度门限,将会停止向电动车辆进行充电,从而可以保护充电控制盒中的电气元件。
在本文的一个实施例中,当停止向电动车辆充电之后还包括,
记录致使本次停止向电动车辆充电的原因。
在本步骤中,如果是所述第一工作温度在一预定的时间区间内持续大于等于所述第一温度门限,致使停止向电动车辆充电,则将致使本次停止向电动车辆充电的原因记录为由于第一工作温度持续大于等于第一温度门限;
如果是第一工作温度大于等于第二温度门限时,致使停止向电动车辆充电,则将致使本次停止向电动车辆充电的原因记录为由于第一工作温度大于等于第二温度门限;
如果是第二工作温度大于等于所述第五温度门限,致使停止向电动车辆充电,则将致使本次停止向电动车辆充电的原因记录为由于第二工作温度大于等于第五温度门限;
如果是第一工作温度大于等于第二温度门限,且所述第二工作温度大于等于所述第五温度门限,致使停止向电动车辆充电,则将致使本次停止向电动车辆充电的原因记录为由于第一工作温度大于等于第二温度门限、且第二工作温度大于等于第五温度门限;
如果是第二工作温度在另一预定的时间区间内持续大于等于所述第四温度门限,致使停止向电动车辆充电,则将致使本次停止向电动车辆充电的原因记录为由于第二工作温度持续大于等于第四温度门限。
本实施例中记录的致使本次停止向电动车辆充电的原因存储于存储器中,以便于充电控制单元查询。
在本文的一个实施例中,当停止向电动车辆充电之后还包括,
当所述第一工作温度降低到所述第一温度门限以下,并且所述第二工作温度降低到第四温度门限以下时,判断致使本次停止向电动车辆充电的原因;
根据所述致使本次停止向电动车辆充电的原因,控制向所述电动车辆充电。
在本步骤中,当电源连接器内部的第一工作温度低于第一温度门限,并且充电控制盒内的工作温度低于第四温度门限时,表明向电动车辆充电过程中电气元件温度大于等于安全门限值的情况已经由于采用停止充电的方式得到抑制,并且充电设备中电气元件的温度已经下降到安全温度区间,可以恢复向电动车辆进行充电,但是不同充电设备的工作温度可能代表了不同的含义,可能代表了充电设备的损坏、故障或者异常,需要根据造成本次停止充电的原因来分析是否可以恢复充电。
在本文的一个实施例中,根据所述致使本次停止向电动车辆充电的原因,控制向所述电动车辆充电进一步包括,
当所述致使本次停止向电动车辆充电的原因为由于第二工作温度大于等于第五温度门限;
或者,当所述致使本次停止向电动车辆充电的原因为由于第一工作温度大于等于第二温度门限;
或者,当所述致使本次停止向电动车辆充电的原因为由于第一工作温度大于等于第二温度门限、且第二工作温度大于等于第五温度门限;则不恢复向电动车辆充电。
在本文的一个实施例中,根据所述致使本次停止向电动车辆充电的原因,控制向所述电动车辆充电进一步包括,
当所述致使本次停止向电动车辆充电的原因为由于第二工作温度大于等于第四温度门限;
或者,当所述致使本次停止向电动车辆充电的原因为由于第一工作温度大于等于第一温度门限;
或者,当所述致使本次停止向电动车辆充电的原因为由于第一工作温度大于等于第一温度门限、且第二工作温度大于等于第四温度门限;
恢复向所述电动车辆充电。
在本步骤中,当电源连接器内部的第一工作温度低于第一温度门限,且充电控制盒内的第二工作温度低于第四温度门限后,说明充电设备的电气元件的温度已经下降到安全充电区间,并且本次停止向电动车辆充电的原因也都是临时出现的温度升高导致的停 止充电,可以排除电气元件损坏或者控制失败等原因可能导致充电安全性问题的情况下,则可以恢复向电动车辆的充电。
在本文的一个实施例中,在获取电源连接器内部的第一工作温度以及充电控制盒内部的第二工作温度中进一步包括,
通过设置至少一个温度检测单元获取所述电源连接器内部的火线端子和/或零线端子上的第一工作温度;
通过设置至少一个温度检测单元获取所述充电控制盒内部的印制电路板和/或印刷电路板上的第二工作温度。
在本步骤中,将多个温度检测单元设置于电源连接器内部火线端子和/或零线端子上,可以更加直接和快速的获得充电设备中电气元件的工作温度,从而利于快速的进行相应充电策略的响应;并且在充电控制盒内的印制电路板上获取充电控制盒内电气元件的工作温度,可以直接和更加快速的获得充电设备的工作温度,从而利于快速的进行相应充电策略的响应。
将温度检测单元安装于火线端子和/或零线端子上,或将温度检测单元安装于充电控制盒内部的印制电路板的继电器或者连接器的连接端子上,可以使得温度检测单元的采样精度由现有技术的1℃提升到本文的0.5℃,实际温度值偏差由现有技术的±3℃降低至本文的±0.5℃,温度采样时间由现有技术的10毫秒(ms)降低为本文的1ms,温度检测的可靠性由现有技术的单路控制(通过比较器或者控制单元单独控制)变为本文的双路控制(比较器和控制单元共同判断进行控制),并且本文还提供了补偿机制,即通过控制单元的控制调节比较器的基准电压,弥补了现有技术中基准电压的漂移。
在本文的一个实施例中,在通过多个温度检测单元获取所述电源连接器内部的火线端子和/或零线端子上的第一工作温度中进一步包括,
所述多个温度检测单元以串联或者并联的方式采集所述电源连接器内部的火线端子和/或零线端子上的第一工作温度,通过一条信号传输线以及一条地线获取所述第一工作温度;
在通过多个温度检测单元获取所述充电控制盒内部的印制电路板的第二工作温度中进一步包括,
所述多个温度检测单元以串联或者并联的方式采集所述充电控制盒内部的印制电路板的第二工作温度,通过另一条信号传输线以及一条地线获取所述第二工作温度。
在本步骤中,为了减轻沿着充电电缆传递所述第一工作温度以及第二工作温度线缆的重量,将多个温度检测单元的输出进行合并,通过一条信号传输线和相应的地线传输第一工作温度,通过另一条信号传输线和相应的地线传输第二工作温度,传输第一工作温度的信号传输线以及传输第二工作温度的信号传输线只传输多个温度检测单元获取的最高工作温度,从而可以减轻对充电电缆的重量,增加整个充电设备的可靠性。
在本文的一个实施例中,在获取电源连接器内部的第一工作温度以及充电控制盒内部的第二工作温度中还包括,
对获取到的所述第一工作温度和第二工作温度进行屏蔽保护。
在本步骤中,采用屏蔽线实现所述第一工作温度信号的传输线以及相应地线,以及第二工作温度信号的传输线以及相应地线,可以进一步降低充电电流对工作温度的弱电信号的干扰,使得检测得到的工作温度更加准确,进行充电功率控制时可以更加准确。
在本文的一个实施例中,当所述第一工作温度大于等于第一温度门限小于第二温度门限,且所述第二工作温度小于第四温度门限,则向所述电动车辆输出高于第二充电功率的充电功率,例如可以在第一充电功率与第二充电功率之间,也可以为第一充电功率。
在本文的一个实施例中,当所述第一工作温度小于等于第一温度门限,且所述第二工作温度大于等于第四温度门限小于第五温度门限,则向所述电动车辆输出高于第二充电功率的充电功率,其中所述充电功率可以为第二充电功率,或者也可以输出低于或等于第一充电功率的充电功率对电动车辆进行充电。
在本文的一个实施例中,当所述第一工作温度小于第一温度门限,且所述第二工作温度小于第四温度门限,则向所述电动车辆输出高于第二充电功率的充电功率,其中,充电功率可以为在第一充电功率与第二充电功率之间的任意值,还可以例如为第一充电功率。在本文的一个实施例中,当所述第二工作温度降低到小于等于所述第四温度门限,使用低于或等于所述第一充电功率且大于0的充电功率向所述电动车辆进行充电。其中,充电功率可以在第一充电功率与第二充电功率之间,或者小于第二充电功率,或者还可以为第二充电功率。
在本文的一个实施例中,所述第一温度门限与第四温度门限不等。其中,所述第四温度门限大于所述第一温度门限。
所述第二温度门限与第五温度门限不等。其中,所述第五温度门限大于所述第二温度门限。
其中,由于电源连接器与充电控制盒的散热结构不同,散热系数也不相同,根据不同设备的特点设置了各个设备的上下限门限值,可以更加准确判定充电发热的原因。
通过上述本文实施例的方法,可以在保障电动车辆充电安全的前提下,提高充电效率,缩短充电时间;在结合电源连接器处的第一工作温度以及充电控制盒内的第二工作温度来调节充电功率,可以进一步提高电动车辆的充电安全性。
如图5所示为本文实施例充电控制装置的具体电路示意图,在本图中描述了充电控制装置的电路结构,所述温度检测单元501可以为热敏电阻、热电偶、电阻温度检测器、数字传感器等,其中,热敏电阻中又可以选用正温度系数的热敏电阻(PTC)或者负温度系数的热敏电阻(NTC),例如附图5中的NTC型热敏电阻RT1,每种不同的温度检测单元其体现出来的工作温度(例如电气元件的温度)信息可以表达为不同的温度电压。在本实施例中,温度检测单元501还连接有分压电阻R3,用于设置该温度检测单元输出的温度电压符合后端比较单元502的要求。
为了清楚的目的,本实施例的附图中仅示出了一个温度检测单元501,但是根据前述的实施例可知,该温度检测单元501可以为多个,分别布置于电源连接器内部以及充电控制盒的印制电路板之上,如图7a所示为本文实施例温度检测单元在电源连接器内部的结构示意图,图中包括电源连接器内部的火线端子701,安装在所述火线端子上的温度检测单元702,传递温度检测单元702获取的工作温度的信号传输线703以及相应的地线704,充电电缆705,所述温度检测单元702通过绝缘导热硅胶固定于电源连接器火线端子上,所述温度检测单元702的信号传输线703和相应的地线704沿着充电电缆705设置,被包裹在充电电缆705的绝缘外层之内,所述信号传输线703和相应的地线704将工作温度的温度电压信号传送给充电控制单元以进行充电策略的控制。根据前述的实施例可知,可以将多个温度检测单元501置于电源连接器内部的火线端子和/或零线端子上,并使用绝缘导热的硅胶将温度检测单元501和电源连接器内部的火线端子和/或零线端子进行固定;还可以将多个温度检测单元501置于充电电缆中的充电控制盒内的印制电路板上,并使用绝缘导热的硅胶将温度检测单元501和充电控制盒内的印制电路板进行固定。其中,温度检测单元501获得的代表工作温度的温度电压V i=[RT1/(R3+RT1)]*VCC,其中RT1(以NTC为例)值随温度升高而减小,当温度升高时,RT1值减小,V i值减小。
并且,还可以参考附图7b所示为本文实施例温度检测单元的电路示意图,在该图中通过对温度检测单元进行滤波处理,可以避免温度检测单元将工作温度的温度电压通过 信号传输线沿着充电电缆传递给充电控制单元时,高压充电电缆内的电信号对弱电信号的温度电压造成影响,因此,在本实施例中热敏电阻RT1受到工频信号的干扰,通过电容C1、电阻FB1、电容C2构成了π型滤波器,用于衰减工频信号的干扰。
作为本文实施例的一个方面,比较单元502可以与上述的温度检测单元501数量相对应为多个,即每个温度检测单元501对应于一个比较单元502,同样为了清楚的原因,本文图5的实施例中仅示出了一个比较单元502,在其他的实施例中还可以包括多个比较单元用于判断第一工作温度与对应的温度门限、第二工作温度与对应的温度门限的比较关系。该比较单元502可以为迟滞型比较器,该迟滞比较器第一输入端连接所述温度检测单元501输出的温度电压,第二输入端连接基准电压之前连接有一电阻R7,输出端连接驱动单元504的输入端,将所述第一比较结果电压输出到所述驱动单元504,并且所述输出端串联一电阻R6后连接至所述第二输入端。
在本实施例中,上述的迟滞型的比较器是指,所述比较单元在只有一个基准电压的情况下,当第一输入端输入的温度电压的幅度接近基准电压时,如果第一输入端的噪声干扰较大,且比较响应速度足够快,有可能引起输出电压错误的跃变。为了增大比较单元的抗干扰能力,将基准电压改为两个。当输入的代表工作温度的温度电压由低电平向高电平转变时,只有温度电压达到第一基准电压时,比较单元502的输出才发生改变;而当输入的温度电压由高电平向低电平转变时,输入的温度电压降低到第二基准电压时,比较单元输出才会发生改变。因此,上述实施例中比较单元的结构具有迟滞性,即具有惯性,因此输入温度电压的微小变化不会引起比较单元输出电压的跃变,此时的比较单元具有抗干扰能力。
其中,比较单元502输出的第一比较结果电压可以是高电平或者也可以是低电平,视所述驱动单元504的结构而定,并且与后述的充电控制单元503根据温度电压与预设阈值比较输出的第二比较结果电压的高低电平含义相同,即,例如,当比较单元502输出的第一比较结果电压表示了工作温度(温度电压)高于预设温度(基准电压)时,输出高电平的第一比较结果电压,为了简明的目的,本实施例的附图中仅示出了一个比较单元502,该比较单元502可以用于比较第一工作温度与第二温度门限,还可以具有其他的比较单元用于比较第二工作温度与第五温度门限;此时,充电控制单元503当判断工作温度(温度电压)高于预设温度(例如第二温度门限或第五温度门限)时,也应当输出高电平的第二比较结果电压,反之亦然。如此使得输出的比较结果电压高、低电平含义相同,从而可以实现多重温控保护。
作为本文实施例的一个方面,所述充电控制单元503与所述温度检测单元501连接,获取所述第一工作温度的温度电压以及第二工作温度的温度电压;所述充电控制单元503与所述驱动单元504的输入端连接,将所述第二比较结果电压输出到所述驱动单元504。在其他实施例中充电控制单元503可以连接多个温度检测单元501,并根据前述的充电策略进行充电功率的调节,或者停止向电动车辆充电。
在本实施例中,充电控制单元503可以为微处理器(MCU),通过IN管脚(IN1-IN3)接收信号,通过OUT管脚(OUT1-OUT3)输出信号,将温度电压转换为数字形式后,与预设阈值进行比较,例如,当所述第一工作温度的温度电压所代表的数值大于等于所述第二温度门限,则输出代表断开开关单元505的第二比较结果电压,或者,当所述第二工作温度的温度电压所代表的数值大于等于所述第五温度门限,则输出代表断开开关单元505的第二比较结果电压;当所述第一工作温度的温度电压所代表的数值小于所述第二温度门限,则输出代表导通开关单元505的第二比较结果电压(或者根据如前所述的充电策略进行控制),所述第二比较结果电压可能是高电平也可能是低电平,根据驱动单元504的结构来决定。
作为本文实施例的一个方面,相比较图5还可以省略第二三极管Q2,所述驱动单元504包括第一三极管Q1,所述第一三极管Q1的集电极与电源VCC连接,基极与所述比较单元502以及充电控制单元503连接,同时接收所述比较单元502输出的第一比较结果电压以及充电控制单元503输出的第二比较结果电压,发射极接地,其中,所述集电极还连接所述开关单元505,当所述第一三极管Q1导通时,所述开关单元505断开,当所述第一三极管Q1截止时,所述开关单元505导通。
在本实施例中,所述基极与所述比较单元502以及充电控制单元103连接,同时接收所述比较单元502输出的第一比较结果电压以及充电控制单元503输出的第二比较结果电压时,当所述第一比较结果电压和第二比较结果电压任意一个为高电平时,所述第一三极管Q1都会导通,也就是说,当比较单元502判断出当前的工作温度超过第二温度门限输出高电平的第一比较结果电压,或者充电控制单元503判断出当前的工作温度超过所述第二温度门限输出高电平的第二比较结果电压,都将会使得第一三极管Q1的基极接收到高电平,从而第一三极管Q1导通,从而断开开关单元505。
作为本文实施例的一个方面,所述驱动单元504包括第一三极管Q1以及第二三极管Q2,所述第一三极管Q1的集电极与电源VCC连接,第一三极管Q1的基极与所述比较单元502以及充电控制单元503连接,同时接收所述比较单元502输出的第一比较结果电 压以及充电控制单元503输出的第二比较结果电压,第一三极管Q1的发射极接地;所述第二三极管Q2的集电极与所述开关单元505连接,第二三极管Q2的基极与所述第一三极管Q1的集电极连接,第二三极管Q2的发射极接地;当所述第一三极管Q1导通时,所述第二三极管Q2截止,所述开关单元505断开,当所述第一三极管Q1截止时,所述第二三极管Q2导通,所述开关单元505导通。
在上述实施例中,还可以采用其他形式来实现驱动单元504的功能,还可以采用PNP型三极管或是mos管等驱动所述开关单元505,其中所述开关单元例如为继电器,例如可以将比较单元502输出的第一比较结果电压转换为数字形式,与所述充电控制单元503输出的数字形式的第二比较结果电压进行“或”操作,当两者其中有一个为高电平,则代表工作温度超过第二温度门限,断开开关单元505,可以通过数字电路中的门电路来实现上述判断和操作,还可以采用其他形式的判断和操作电路,在此不再赘述。
作为本文实施例的一个方面,所述充电控制装置还包括补偿单元506,连接于所述比较单元502与充电控制单元503之间,当所述充电控制单元503检测到所述基准电压有偏差时,向所述补偿单元506输出调节电压,用以调节所述基准电压。
在本实施例中,当向所述比较单元502输出基准电压的电气元件出现老化或者工作温度发生变化后引起这部分电气元件发生变化,导致基准电压发生漂移,则可以通过充电控制单元503对基准电压进行调节,以使得基准电压更准确,提高比较单元502温度判断的精度。充电控制单元503获取所述基准电压,根据所述温度电压与所述预设阈值比较,生成针对所述基准电压的调节电压,施加到所述基准电压上。
作为本文实施例的一个方面,所述补偿单元506进一步包括,第三三极管Q3,所述第三三极管Q3的集电极与电源VCC以及所述比较单元502的基准电压连接,所述第三三极管Q3的基极与所述充电控制单元503相连接,所述第三三极管Q3的发射极接地;当所述充电控制单元503判断所述接收到的基准电压与预设阈值不相等时,所述充电控制单元503向所述第三三极管Q3的基极输出调节电压,用以控制所述第三三极管Q3的集电极上的基准电压。
在本实施例中,充电控制单元503的输入管脚与比较单元502的第二输入端的基准电压相连接,获取比较单元502的第二输入端的基准电压,当基准电压由于电气元件的变化导致漂移时,充电控制单元503获得的基准电压与预设阈值不相等,例如设置的基准电压为0.5V,设置的预设阈值同样为0.5V,但是漂移后的基准电压为0.48V,此时,充电控制单元503比较采集到的基准电压与预设阈值不同时,则会控制输出管脚输出调 节电压,导通第三三极管Q3从而可以调节输入到比较单元502第二输入端的基准电压,将其由0.48V调节回到设置的0.5V。
作为本文实施例的一个方面,所述充电控制单元503还包括第一输出管脚,用于根据所述温度电压输出脉冲调制信号(PWM)以调节输出充电电流的功率,通过与电动车辆连接的接口将所述脉冲调制信号输出给所述电动车辆。
在本实施例中,由于充电控制装置的元器件温度升高或者降低,充电控制单元503可以根据温度升高或者降低的程度(温度升高时未到达预设阈值,即温度未超过安全充电温度),降低或者升高输出的充电电流的功率,例如对于交流充电,由于温度升高通过将充电电流由8A调节到6A的PWM信号,该调节输出充电功率的PWM信号发送给电动车辆的电池管理系统(BMS),BMS系统通过电动车辆的功率调节单元采用相应充电电流对电池进行充电。从而可以实现降低充电电流强度的控制,在充电控制装置的元器件温度升高后还可以保持向电动车辆的充电,而不会如同现有技术一般直接停止对电动车辆的充电,从而可以提高充电效率,提高用户对于电动车辆充电的使用体验。
作为本文实施例的一个方面,所述充电控制单元503还包括第二输出管脚,用于根据所述温度电压输出充电功率调节信号(CAN/Ethernet),通过与电动车辆连接的接口将所述充电功率调节信号输出给所述电动车辆;
所述充电控制装置还包括功率调节单元,连接于充电控制单元503与开关单元505之间,用于根据所述充电功率调节信号调节输出的充电电流的功率。
在本实施例中,由于充电控制装置元器件,例如电源连接器的温度升高或者降低,充电控制单元503可以根据温度升高或者降低的程度(温度升高时未到达预设阈值,即温度未超过安全充电温度),降低或者升高输出的充电电流的功率,例如对于直流充电,充电控制单元503通过向功率调节单元输出充电功率调节信号,降低或者升高所述功率调节单元输出的充电电流的功率,当电源连接器内的工作温度超过温度门限(例如,第一工作温度大于等于第二温度门限,或者充电控制盒内部的印制电路板的第二工作温度大于等于第五温度门限等情况),即超过安全充电温度,则充电控制单元503或者比较单元502会输出驱动开关单元505断开的驱动信号,当所述开关单元505断开后,所述功率调节单元停止向电动车辆输出充电电流,从而也就能够降低充电控制装置内部以及电动车辆电池的温度,确保充电过程的安全。其中,所述充电控制单元503输出的充电功率调节信号还可以通过充电控制装置上的充电枪的CAN总线或者以太网总线发送给电动车辆的BMS系统,由BMS系统根据充电功率调节信号采用从所述充电控制装 置开关单元505输出的充电电流对电池进行相应功率的充电。从而可以实现降低充电电流强度的控制,在充电控制装置元器件温度升高后还可以保持向电动车辆的充电,而不会如同现有技术一般直接停止对电动车辆的充电,从而可以提高充电效率,提高用户对于电动车辆充电的使用体验。
继续参考图5,图中VCC为供电电压源正端(后简称为电源),GND为供电电压源负端,V REF为基准电压即设定的温度门限,与电阻R7连接,电阻R7的另一端与运算放大器的正向输入引脚(第二输入端)相连接;基准电压V REF可以是固定值,也可以是充电控制单元503内部的预设阈值,此情况下可以实现充电控制装置可自动调节温度门限。热敏电阻RT1是热敏元件,热敏电阻RT1一端与地连接,另一端与电阻R3连接组成温度检测单元501,温度检测单元501连接比较单元502的输入端,即电阻R3与热敏电阻RT1的连接点与运算放大器U1的反向输入端引脚(第一输入端)连接;热敏电阻RT1与电阻R3组成分压电路,热敏电阻RT1可以为NTC型热敏电阻,当电源连接器内的工作温度升高时,热敏电阻RT1电阻值减小,其分压值的温度电压V i的电压值减小,反之温度降低时,V i值升高。电阻R6是运算放大器U1的输出引脚(输出端)与正向引脚(第二输入端)连接的反馈电阻。
当V i<V REF时,其中V out为运算放大器U1的输出端,运算放大器U1输出高电平;V i>V REF,U1输出低电平;V out与二极管D1的一端连接,D1的另一端与电阻R4连接,电阻R4的另一端与驱动单元504的第一三极管Q1基极相连接,电阻R5一端与电源VCC连接,另一端与第一三极管Q1的集电极连接,第二三极管Q2的基极与第一三极管Q1的集电极和电阻R5的连接点相连,第二三极管Q2的发射极连接GND,第二三极管Q2的集电极与开关单元505的控制端连接。当V out为高电平,第一三极管Q1导通,第二三极管Q2截止,供电网络的开关K1(开关K1的作用是控制进入电动车辆的充电电流通路,当开关K1断开时,直接切断向电动车辆的充电电流,终止充电过程)断开,断开向电动车辆输出的充电电流;当V out输出低电平,第一三极管Q1截止,第二三极管Q2导通,所述供电网络开关K1闭合,保持向电动车辆输出充电电流,L_IN、K1与L_OUT是主供电网络中的一通路,当工作温度超过温度门限时,V out输出高电平,断开供电网络,L_OUT输出的充电电流为0。
其中,热敏电阻RT1可以与运算放大器U1等其他电气元件集成到一起,也可以分开放置,热敏电阻RT1的数量可以是一个,也可以是多个,可以位于充电控制装置的不同 部位,用来采集充电控制装置中不同部位的工作温度或者电气元件的温度,例如将热敏电阻RT1安装于电源连接器、安装于充电控制盒的印制电路板中等。
所述运算放大器U1可以为迟滞比较器,避免开关K1在工作温度处于温度门限附近时开关单元505在闭合、断开两种状态频率切换。当电源连接器的第一工作温度≥T2(第二温度门限)时,开关单元505断开,当第一工作温度≤T1(第一温度门限)时,开关单元505闭合(在其他实施例中当充电控制盒的第二工作温度≥T5(第五温度门限)时,开关单元505断开,具体参考前述实施例),其中T2>T1,调整电阻R6和电阻R7的阻值可以更改T2-T3的差值。迟滞电压宽度△V=(R7/R6)×(VH-VL),其中VH为VCC,VL为0V,迟滞比较器的两个门限电压u+=(VH-V REF)×R7/(R7+R6),u-=(VL-V REF)×R7/(R7+R6);当迟滞比较器的输出电压V out=VH时,此时V REF=u+;当温度电压V i大于等于V REF时,迟滞比较器输出电压V out改为VL,而V REF点电压也变成了u-,此条件下当V i的电压小于V REF时,输出电压V out改为VH,因为u+-u-=△V,所以与普通比较器相比迟滞比较器的灵敏度低一些,但抗干扰能力却大大提高。
为了提高电动车辆充电的安全性,充电控制单元503采集温度电压V i和基准电压V REF,当检测到基准电压V REF与预设阈值有偏差时,即,基准电压V REF发生变化,通过补偿单元506调节基准电压V REF的值,修正基准电压V REF的值,提高温度判断的精度。其中充电控制单元503的一个输出端连接电阻R1,电阻R1的另一端连接第三三极管Q3的基极,第三三极管Q3的发射极连接GND,第三三极管Q3的集电极连接电阻R2的一端,并与基准电压V REF相连,电阻R2的另一端连接电源VCC,充电控制单元503通过输出调节电压来控制第三三极管Q3导通的占空比来实现对基准电压V REF的调节。
充电控制单元503还通过与之相连的电阻R8的反馈来实现对开关K1状态的检测,当检测到工作温度超过温度门限时(例如第一工作温度大于等于第二温度门限,第二工作温度大于等于第五温度门限),开关K1还保持导通状态,则说明比较单元502失去对开关K1的控制,充电控制单元503通过V i与预设阈值进行比较,当达到或者超过预设阈值时,输出高电平,通过二极管D2,使第一三极管Q1导通,第二三极管Q2截止,从而断开供电网络。通过比较单元502和充电控制单元503实现对温度检测单元501的双重检测,和对驱动单元504的双重控制,提高电动车辆充电的安全性。
如图6a所示为本文实施例充电控制装置与电动车辆充电结构的示意图,在本实施例为交流充电系统,当工作温度升高但是未超过设置的温度门限(例如,第一工作温度升高但是未超过设置的第二温度门限,第二工作温度升高但是未超过设置的第五温度门 限)时,充电控制装置600的充电控制单元603输出调节后的PWM信号,例如充电电流为8A时对应的占空比值(PWM信号)是13.3%,充电电流为6A时对应的占空比值(PWM信号)10%进行调整充电电流的功率,充电控制单元603将修改后的充电功率调节占空比信号输出给电动车辆的功率调节单元607,功率调节单元607在电动车辆的BMS系统的控制下降低充电电流强度,当温度检测单元601检测到电源连接器内的工作温度超过第二温度门限时,所述开关单元605断开,则停止向电动车辆充电。在其他的实施例中,充电控制单元603还可以输出调节充电电流的电压的控制信号。
在该图6a中,还包括了反馈单元608,获取驱动单元604的驱动信号,充电控制单元603从而可以判断驱动单元604是否正确驱动开关单元605。
其中,功率调节单元607可以如图7c所示为本文实施例功率调节单元的结构示意图,由推挽电路构成,充电控制单元603输出修改后的PWM信号,CP端输出以VCC为高电平,VEE为低电平的PWM信号,占空比表示最大允许充电电流,通过降低占空比来降低充电功率。在本实施例的电路中三极管Y1在正半周导通,三极管Y2在负半周导通。
如图6b所示为本文实施例充电控制装置与电动车辆充电结构的另一示意图,在本实施例为直流充电系统,当工作温度升高但是未超过设置的温度门限(例如,第一工作温度升高但是未超过设置的第二温度门限,第二工作温度升高但是未超过设置的第五温度门限)时,充电控制装置600的充电控制单元603调节充电功率,产生充电功率调节信号,通过与电动车辆连接的充电枪中的CAN总线接口将该充电功率调节信号以CAN报文的方式发送给电动车辆,从而降低充电电流的功率;并且,还将该充电功率调节信号输出给充电控制装置中的功率调节单元607,该功率调节单元607根据充电功率调节信号调节输出的充电电流的功率(调节电流或者电压,或者同时调节电流和电压)向电动车辆的电池进行充电。
其中,功率调节单元607接收充电电流,将该充电电流的功率进行调节后通过开关单元605输出到电动车辆。该功率调节单元607的结构可以参考附图7c所示。
以上的实施例中,降低充电电流的功率对电动车辆电池进行充电,可以降低充电设备电气元件的温度,当充电控制装置检测到的工作温度低于温度门限(例如第一温度门限)时,则充电控制单元603根据工作温度向功率调节单元607输出控制指令恢复充电电流的功率,提高充电速度。
通过上述实施例,可以在保障电动车辆充电安全的前提下,提高充电效率,缩短充电时间;在结合电源连接器处的第一工作温度以及充电控制盒内的第二工作温度来调节充电功率,可以进一步提高电动车辆的充电安全性。
本文实施例还提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如下步骤:
在采用第一充电功率向电动车辆进行充电的过程中,获取电源连接器内部的第一工作温度以及充电控制盒内部的第二工作温度;
当所述第一工作温度大于等于第一温度门限小于第二温度门限,且所述第二工作温度大于等于第四温度门限小于第五温度门限,则将向所述电动车辆输出的第一充电功率降低至第二充电功率;
当所述第一工作温度降低到小于等于所述第一温度门限,使用低于或等于所述第一充电功率的充电功率向所述电动车辆进行充电。
本文实施例提供的计算机设备还可以实现如图4中所描述的方法。
对应于图4中的方法,本文实施例还提供了一种计算机非易失性可读存储介质,该计算机非易失性可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述方法的步骤。
本文实施例还提供一种计算机可读指令,其中当处理器执行所述指令时,其中的程序使得处理器执行如图4中所描述的方法。
应理解,在本文的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本文实施例的实施过程构成任何限定。
还应理解,在本文实施例中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束 条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本文的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本文所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本文实施例方案的目的。
另外,在本文各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本文的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本文各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本文中应用了具体实施例对本文的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本文的方法及其核心思想;同时,对于本领域的一般技术人员,依据本文的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本文的限制。

Claims (21)

  1. 一种电动车辆充电控制方法,其特征在于包括,
    在采用第一充电功率向电动车辆进行充电的过程中,获取电源连接器内部的第一工作温度以及充电控制盒内部的第二工作温度;
    当所述第一工作温度大于等于第一温度门限小于第二温度门限,且所述第二工作温度大于等于第四温度门限小于第五温度门限,则将向所述电动车辆输出的第一充电功率降低至第二充电功率;
    当所述第一工作温度降低到小于等于所述第一温度门限,使用低于或等于所述第一充电功率的充电功率向所述电动车辆进行充电。
  2. 根据权利要求1所述的方法,其特征在于,当所述第一工作温度在一预定的时间区间内持续大于等于所述第一温度门限,则停止向电动车辆充电。
  3. 根据权利要求1所述的方法,其特征在于,当第一工作温度大于等于第二温度门限时,则停止向电动车辆充电;或者,
    当所述第二工作温度大于等于所述第五温度门限,则停止向电动车辆充电。
  4. 根据权利要求1所述的方法,其特征在于,当第一工作温度大于等于第二温度门限,且所述第二工作温度大于等于所述第五温度门限,则停止向电动车辆充电。
  5. 根据权利要求1所述的方法,其特征在于,在当所述第一工作温度小于等于所述第一温度门限,使用低于或等于所述第一充电功率的充电功率向所述电动车辆进行充电还包括,
    当所述第二工作温度在另一预定的时间区间内持续大于等于所述第四温度门限,则停止向电动车辆充电。
  6. 根据权利要求2-5任意一项所述的方法,其特征在于,当停止向电动车辆充电之后还包括,
    记录致使本次停止向电动车辆充电的原因。
  7. 根据权利要求6所述的方法,其特征在于,当停止向电动车辆充电之后还包括,
    当所述第一工作温度降低到所述第一温度门限以下,并且所述第二工作温度降低到第四温度门限以下时,判断致使本次停止向电动车辆充电的原因;
    根据所述致使本次停止向电动车辆充电的原因,控制向所述电动车辆充电。
  8. 根据权利要求7所述的方法,其特征在于,根据所述致使本次停止向电动车辆充电的原因,控制向所述电动车辆充电进一步包括,
    当所述致使本次停止向电动车辆充电的原因为由于第二工作温度大于等于第五温度门限;
    或者,当所述致使本次停止向电动车辆充电的原因为由于第一工作温度大于等于第二温度门限;
    或者,当所述致使本次停止向电动车辆充电的原因为由于第一工作温度大于等于第二温度门限、且第二工作温度大于等于第五温度门限;
    则不恢复向电动车辆充电。
  9. 根据权利要求7所述的方法,其特征在于,根据所述致使本次停止向电动车辆充电的原因,控制向所述电动车辆充电进一步包括,
    当所述致使本次停止向电动车辆充电的原因为由于第二工作温度大于等于第四温度门限;
    或者,当所述致使本次停止向电动车辆充电的原因为由于第一工作温度大于等于第一温度门限;
    或者,当所述致使本次停止向电动车辆充电的原因为由于第一工作温度大于等于第一温度门限、且第二工作温度大于等于第四温度门限;
    恢复向所述电动车辆充电。
  10. 根据权利要求1所述的方法,其特征在于,在获取电源连接器内部的第一工作温度以及充电控制盒内部的第二工作温度中进一步包括,
    通过设置至少一个温度检测单元获取所述电源连接器内部的火线端子和/或零线端子上的第一工作温度;
    通过设置至少一个温度检测单元获取所述充电控制盒内部的印制电路板和/或印刷电路板上的第二工作温度。
  11. 根据权利要求1所述的方法,其特征在于,当所述第一工作温度大于等于第一温度门限小于第二温度门限,且所述第二工作温度小于第四温度门限,则向所述电动车辆输出高于第二充电功率的充电功率。
  12. 根据权利要求1所述的方法,其特征在于,当所述第一工作温度小于等于第一温度门限,且所述第二工作温度大于等于第四温度门限小于第五温度门限,则向所述电动车辆输出高于第二充电功率的充电功率。
  13. 根据权利要求1所述的方法,其特征在于,当所述第一工作温度小于第一温度门限,且所述第二工作温度小于第四温度门限,则向所述电动车辆输出高于第二充电功率的充电功率。
  14. 根据权利要求1-5任意一项所述的方法,其特征在于,当所述第二工作温度降低到小于等于所述第四温度门限,使用低于或等于所述第一充电功率且大于0的充电功率向所述电动车辆进行充电。
  15. 根据权利要求1-5任意一项所述的方法,其特征在于,所述第一温度门限与第四温度门限不等。
  16. 根据权利要求15所述的方法,其特征在于,所述第四温度门限大于所述第一温度门限。
  17. 根据权利要求1-5任意一项所述的方法,其特征在于,所述第二温度门限与第五温度门限不等。
  18. 根据权利要求17所述的方法,其特征在于,所述第五温度门限大于所述第二温度门限。
  19. 一种电动车辆充电控制装置,其特征在于包括,
    电源连接器温度检测单元,位于电源连接器内部,用于在采用第一充电功率向电动车辆进行充电的过程中,获取电源连接器内部的第一工作温度以及充电控制盒内部的第二工作温度;
    充电控制单元,用于当所述第一工作温度大于等于第一温度门限小于第二温度门限,且所述第二工作温度大于等于第四温度门限小于第五温度门限,则将向所述电动车辆输出的第一充电功率降低至第二充电功率;
    当所述第一工作温度降低到小于等于所述第一温度门限,使用低于或等于所述第一充电功率的充电功率向所述电动车辆进行充电。
  20. 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现上述权利要求1-18任意一项所述的方法。
  21. 一种计算机非易失性可读存储介质,其上存储有计算机指令,其特征在于,该计算机指令被处理器执行时实现上述权利要求1-18任意一项所述的方法。
PCT/CN2021/102340 2020-11-06 2021-06-25 一种电动车辆充电控制装置及方法 WO2022095472A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237012674A KR20230076134A (ko) 2020-11-06 2021-06-25 전기차량의 충전제어장치 및 방법
EP21888175.3A EP4242051A4 (en) 2020-11-06 2021-06-25 DEVICE AND METHOD FOR CONTROLLING THE CHARGING PROCESS OF AN ELECTRIC VEHICLE
CA3196680A CA3196680A1 (en) 2020-11-06 2021-06-25 Electric vehicle charging control apparatus and method
MX2023005158A MX2023005158A (es) 2020-11-06 2021-06-25 Metodo y aparato de control de la carga de vehiculos electricos.
JP2023527085A JP2023548701A (ja) 2020-11-06 2021-06-25 電気車両の充電制御装置及び方法
ZA2023/04809A ZA202304809B (en) 2020-11-06 2023-04-26 Electric vehicle charging control apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011233775.5 2020-11-06
CN202011233775.5A CN112248866B (zh) 2020-11-06 2020-11-06 一种电动车辆充电控制装置及方法

Publications (1)

Publication Number Publication Date
WO2022095472A1 true WO2022095472A1 (zh) 2022-05-12

Family

ID=74266405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102340 WO2022095472A1 (zh) 2020-11-06 2021-06-25 一种电动车辆充电控制装置及方法

Country Status (8)

Country Link
EP (1) EP4242051A4 (zh)
JP (1) JP2023548701A (zh)
KR (1) KR20230076134A (zh)
CN (1) CN112248866B (zh)
CA (1) CA3196680A1 (zh)
MX (1) MX2023005158A (zh)
WO (1) WO2022095472A1 (zh)
ZA (1) ZA202304809B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115206741A (zh) * 2022-08-26 2022-10-18 天津加美特电气股份有限公司 一种集群式电动汽车充电装置控制箱

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213705226U (zh) * 2020-11-06 2021-07-16 长春捷翼汽车零部件有限公司 一种电动车辆充电控制装置
CN112248866B (zh) * 2020-11-06 2022-04-29 长春捷翼汽车零部件有限公司 一种电动车辆充电控制装置及方法
CN113750402A (zh) * 2021-08-17 2021-12-07 广州玖晔网络科技有限公司 一种用于充电站的消防方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110481358A (zh) * 2019-09-16 2019-11-22 浙江致威电子科技有限公司 一种充电枪总成及充电方法
CN209880993U (zh) * 2019-05-17 2019-12-31 汉宇集团股份有限公司 一种电连接装置
CN110673667A (zh) * 2018-07-03 2020-01-10 郑州宇通客车股份有限公司 一种车用充电连接装置的智能温控方法及装置
CN210191184U (zh) * 2019-04-26 2020-03-27 长春捷翼汽车零部件有限公司 一种电动汽车传导充电系统
US20200282851A1 (en) * 2019-03-06 2020-09-10 Tesla, Inc. Liquid cooled charging cable and connector
CN112248866A (zh) * 2020-11-06 2021-01-22 长春捷翼汽车零部件有限公司 一种电动车辆充电控制装置及方法
CN213705226U (zh) * 2020-11-06 2021-07-16 长春捷翼汽车零部件有限公司 一种电动车辆充电控制装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8729856B2 (en) * 2011-02-23 2014-05-20 Lear Corporation Thermal wall plug sensing and control
DE102011006146A1 (de) * 2011-03-25 2012-09-27 Heinrich Kopp Gmbh Kommunikationsmodul für Ladegeräte von Elektrofahrzeugen
CN104205554B (zh) * 2012-03-08 2017-09-01 松下知识产权经营株式会社 充电线缆
CN105471034A (zh) * 2015-12-23 2016-04-06 无锡蕴能科技有限公司 一种电动车充电器的环境自适应控制方法
CN107015049B (zh) * 2017-05-03 2018-07-27 长春捷翼汽车零部件有限公司 智能型高可靠性电动汽车缆上控制与保护装置
CN211000963U (zh) * 2019-10-17 2020-07-14 安波福中央电气(上海)有限公司 一种具有故障检测作用的多功能充电控制盒
CN110949156A (zh) * 2019-12-31 2020-04-03 深圳市高斯宝电气技术有限公司 一种电动汽车的小功率直流充电器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110673667A (zh) * 2018-07-03 2020-01-10 郑州宇通客车股份有限公司 一种车用充电连接装置的智能温控方法及装置
US20200282851A1 (en) * 2019-03-06 2020-09-10 Tesla, Inc. Liquid cooled charging cable and connector
CN210191184U (zh) * 2019-04-26 2020-03-27 长春捷翼汽车零部件有限公司 一种电动汽车传导充电系统
CN209880993U (zh) * 2019-05-17 2019-12-31 汉宇集团股份有限公司 一种电连接装置
CN110481358A (zh) * 2019-09-16 2019-11-22 浙江致威电子科技有限公司 一种充电枪总成及充电方法
CN112248866A (zh) * 2020-11-06 2021-01-22 长春捷翼汽车零部件有限公司 一种电动车辆充电控制装置及方法
CN213705226U (zh) * 2020-11-06 2021-07-16 长春捷翼汽车零部件有限公司 一种电动车辆充电控制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4242051A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115206741A (zh) * 2022-08-26 2022-10-18 天津加美特电气股份有限公司 一种集群式电动汽车充电装置控制箱
CN115206741B (zh) * 2022-08-26 2024-03-26 天津加美特电气股份有限公司 一种集群式电动汽车充电装置控制箱

Also Published As

Publication number Publication date
KR20230076134A (ko) 2023-05-31
CN112248866B (zh) 2022-04-29
CN112248866A (zh) 2021-01-22
EP4242051A4 (en) 2024-05-01
EP4242051A1 (en) 2023-09-13
ZA202304809B (en) 2024-01-31
MX2023005158A (es) 2023-07-14
CA3196680A1 (en) 2022-05-12
JP2023548701A (ja) 2023-11-20

Similar Documents

Publication Publication Date Title
WO2022095877A1 (zh) 一种电动车辆充电控制装置
WO2022095472A1 (zh) 一种电动车辆充电控制装置及方法
WO2022095469A1 (zh) 一种电动车辆充电控制方法及装置
US10601242B2 (en) Micro short protection for charger, terminal device, and charging system
KR101445785B1 (ko) 전자 변환기의 동작을 제어하기 위한 방법, 및 대응하는 전자 변환기, 조명 시스템 및 소프트웨어 물건
US10541542B2 (en) System and method for charging a battery pack
EP3522332B1 (en) Charger
US20130042130A1 (en) Circuits and methods for controlling battery management systems
CN109802527B (zh) 一种过温保护电路及电机控制器
CN112204661B (zh) 机械硬盘加热电路、机械硬盘加热装置和车辆
JP3244024U (ja) 温度制御保護装置及び対応する充電装置
WO2014094320A1 (zh) 一种背光驱动电路的保护电路、背光模组和液晶显示装置
KR20190117906A (ko) 차량용 제어기 및 그 제어방법
CN111641741B (zh) 充电设备
CN215682111U (zh) 一种电源输出总线电路
CN213459053U (zh) 机械硬盘加热电路、机械硬盘加热装置和车辆
CN215933886U (zh) 一种霍尔开关usb接口
CN104160602A (zh) 用于电力转换器模块的远程控制的方法和设备
CN109799896A (zh) 一种防止风扇转速信号电流倒灌的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237012674

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3196680

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2023527085

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023008007

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023008007

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230427

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021888175

Country of ref document: EP

Effective date: 20230606