WO2022095469A1 - 一种电动车辆充电控制方法及装置 - Google Patents

一种电动车辆充电控制方法及装置 Download PDF

Info

Publication number
WO2022095469A1
WO2022095469A1 PCT/CN2021/102280 CN2021102280W WO2022095469A1 WO 2022095469 A1 WO2022095469 A1 WO 2022095469A1 CN 2021102280 W CN2021102280 W CN 2021102280W WO 2022095469 A1 WO2022095469 A1 WO 2022095469A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
charging
electric vehicle
charging power
temperature threshold
Prior art date
Application number
PCT/CN2021/102280
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
长春捷翼汽车零部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春捷翼汽车零部件有限公司 filed Critical 长春捷翼汽车零部件有限公司
Priority to CA3196659A priority Critical patent/CA3196659A1/en
Priority to US18/034,332 priority patent/US20230382254A1/en
Priority to MX2023005159A priority patent/MX2023005159A/es
Priority to KR1020237012673A priority patent/KR20230076133A/ko
Priority to EP21888172.0A priority patent/EP4242042A4/en
Priority to JP2023524941A priority patent/JP7549144B2/ja
Publication of WO2022095469A1 publication Critical patent/WO2022095469A1/zh
Priority to ZA2023/04806A priority patent/ZA202304806B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/68Off-site monitoring or control, e.g. remote control
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • This article relates to the technical field of electric vehicle charging, and in particular, to a method and device for controlling electric vehicle charging.
  • the embodiments herein provide an electric vehicle charging control method and device, which are used to solve the problems of slow charging speed and low charging efficiency caused by temperature changes in electric vehicle charging in the prior art.
  • This paper provides a charging control method for charging a vehicle, including,
  • This paper also provides a charging control device for charging a vehicle, including:
  • the temperature detection unit is used to obtain the working temperature regularly
  • a charging control unit configured to maintain the first charging power output to the electric vehicle and trigger a first prompt signal when the operating temperature is greater than or equal to a first temperature threshold and less than a second temperature threshold;
  • the embodiments herein also provide a computer device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, where the processor implements the above method when executing the computer program.
  • the embodiments herein also provide a computer non-volatile readable storage medium on which computer instructions are stored, and when the computer instructions are executed by a processor, implement the above method.
  • the charging efficiency can be improved and the charging time can be shortened on the premise of ensuring the charging safety of the electric vehicle.
  • implementation of any of the products and/or methods herein does not necessarily require all of the advantages described above to be achieved simultaneously.
  • 1a-1c are schematic diagrams showing the structure of the charging control system of the electric vehicle according to the embodiment of this paper;
  • FIG. 2 is a flowchart of a charging control method for a charging vehicle according to an embodiment of this paper
  • FIG. 3 is a schematic structural diagram of a charging control device for a charging vehicle according to an embodiment of this document;
  • FIG. 4 is a schematic diagram of a specific structure of a charging control device for a charging vehicle according to an embodiment of this paper;
  • FIG. 5 is a schematic diagram of a specific circuit of the charging control device according to the embodiment of this paper.
  • FIG. 6a is a schematic diagram of the charging control device and the charging structure of the electric vehicle according to the embodiment of the present invention.
  • FIG. 6b is another schematic diagram of the charging control device and the electric vehicle charging structure according to the embodiment of the present invention.
  • Figures 7a-7i are schematic diagrams of controlling the charging power according to the working temperature during the charging process of the electric vehicle according to the embodiment of the present invention.
  • FIGS. 1a to 1c are schematic diagrams showing the structure of the charging control system of the electric vehicle according to the embodiment of this paper.
  • the electric vehicle 100 is connected to the electric vehicle 100 through the vehicle connector 101 , the charging control box 102 , the charging control unit 103 , the temperature detection unit 104 and the power connector 105 .
  • the charging power source 106 is connected.
  • the charging power source 106 outputs the charging current required for charging the electric vehicle 100 to the electric vehicle 100, and controls the output power of the charging current through the charging control unit 103 according to the working temperature collected by the temperature detection unit 104, so that the electric vehicle
  • the 100 can also maintain high-speed charging when the operating temperature increases, thereby shortening the charging time and improving the charging efficiency.
  • the temperature detection unit 104 can be integrated into the power connector 105, so as to obtain the working temperature change during the charging process of the electric vehicle more quickly, wherein the working temperature refers to the temperature of the charging components other than the battery in the electric vehicle.
  • the working temperature refers to the temperature of the charging components other than the battery in the electric vehicle.
  • the charging control box includes the charging pile and the controller on the cable.
  • the charging control unit 103 can be arranged in the charging control box 102 as shown in FIG. 1a, or arranged in the power connector 105 as shown in FIG. 1b, or can also be arranged in the power connector 105 as shown in FIG. 1c. in the vehicle connector 101 .
  • the temperature detection unit 104 is built in the power connector 105 , and the temperature detection unit 104 can be a temperature sensitive resistor or the like, and is used to collect the temperature of the electrodes in the power connector 105 .
  • the charging control unit 103 is used to control the power of the charging current output to the electric vehicle 100 (including adjusting the charging current or voltage), thereby reducing the temperature inside the power connector 105 by reducing the output charging power.
  • FIG. 2 is a flowchart of a charging control method for a charging vehicle according to an embodiment of this document.
  • a method for adjusting the output charging current and power according to the working temperature is described, for example, according to the collected temperature inside the power connector 105
  • the temperature inside the power connector 105 can be lowered, and the electric vehicle can be charged with high efficiency under the premise of charging safety.
  • the charging control method is executed by the charging control unit 103, and according to the operating temperature obtained by the temperature detection unit 104, the output charging current duty cycle can be adjusted specifically by means of pulse width modulation (PWM), so as to adjust the charging current.
  • PWM pulse width modulation
  • Step 201 obtaining the working temperature regularly
  • Step 202 when the operating temperature is greater than or equal to a first temperature threshold and less than a second temperature threshold, maintain the first charging power output to the electric vehicle, and trigger a first prompt signal;
  • Step 203 when the operating temperature is greater than or equal to the second temperature threshold and less than a third temperature threshold, reduce the first charging power to the second charging power output to the electric vehicle.
  • charging of the electric vehicle is stopped when the operating temperature is greater than or equal to the third temperature threshold.
  • acquiring the working temperature at regular intervals further includes acquiring the working temperature of the power connector according to a specified time.
  • the temperature detection unit is built into the power connector, and the temperature detection unit and the live wire terminal and/or the neutral wire terminal in the power connector are arranged at intervals, and the two are connected in an insulating and thermally conductive manner,
  • insulating heat-conducting glue can be used to fix it, so that the temperature of the live wire terminal in the power connector can be transmitted to the temperature detection unit, and the accident of high-voltage charging current burning the charging control unit can be avoided because the temperature detection unit adopts a temperature sensitive resistor.
  • the specified time refers to the time set by the user, for example, the working temperature of the power connector starts to be collected 2 minutes after the charging of the electric vehicle starts, and it can be collected every two minutes or 30 seconds (or other time intervals) thereafter.
  • the working temperature of the power connector or you can set the time interval to collect the working temperature of the power connector. For example, when the working temperature exceeds the second temperature threshold, the collection time interval is shortened. When the working temperature exceeds the second temperature threshold When it starts to decrease, the time interval of acquisition increases, etc.
  • the timing of acquiring the working temperature further includes: setting the time interval for acquiring the working temperature according to a change trend of the working temperature.
  • the time interval for obtaining the working temperature is shortened; when the working temperature is on a downward trend, the time interval for obtaining the working temperature is increased.
  • the time interval for obtaining the working temperature is shortened to 1/2 of the previous time interval, and when the working temperature exceeds the second temperature threshold, the time interval for obtaining the working temperature is further shortened, for example It is shortened to 1/2 of the previous time interval again; when the working temperature is in a downward trend, increase the time interval for obtaining the working temperature to twice the previous time interval, especially when the working temperature exceeds the second temperature threshold and enter the In the interval between the second temperature threshold and the first temperature threshold, the time interval for obtaining the working temperature may be further increased, for example, again increased to twice the previous time interval; when the working temperature is in a downward trend, the When the working temperature is close to the first temperature threshold or lower than the first temperature threshold, the time interval for obtaining the working temperature is increased.
  • the timed acquisition of the operating temperature further includes setting a time interval for acquiring the operating temperature according to climatic conditions.
  • the time interval for obtaining the working temperature is shortened, especially when the working temperature is higher than the second temperature threshold, the time interval for obtaining the working temperature can be further shortened.
  • the time interval for example, is shortened to 1/2 of the previous time interval again; when the climate is winter, the outdoor temperature is lower, so the time interval for obtaining the working temperature is increased, especially when the working temperature is lower than the second temperature threshold , the time interval for obtaining the working temperature can be further increased, for example, it is increased by twice the previous time interval again.
  • maintaining the first charging power output to the electric vehicle, and triggering the first prompt signal further includes:
  • the first prompt signal includes prompting the user of the current working temperature state by means of sound, light and/or vibration.
  • the user can also be reminded by means of vibration or display screen display, or the prompt information can also be sent to the user's smart terminal (for example, a smart device such as a mobile phone) by means of an APP (application software).
  • APP application software
  • the user is prompted to pay attention to whether the charging element of the electric vehicle exists near the heat source, or in other situations, the heat source can be manually removed by the user.
  • the state of the working temperature refers to the temperature range in which the current working temperature is located, for example, the current working temperature is between the first temperature threshold and the second temperature threshold, which is a normal charging state; the current working temperature is in the first temperature threshold Between the second temperature threshold and the third temperature threshold, it is a charging state with a higher dangerous temperature; the current operating temperature is lower than the first temperature threshold, which is a normal charging state; the current operating temperature reaches the third temperature threshold, which means that the temperature exceeds the safety threshold The required state of charge.
  • the step of reducing the output of the first charging power to the electric vehicle to the second charging power further includes,
  • the second charging power output to the electric vehicle is further reduced to a third charging power.
  • the charging power is further reduced if the operating temperature cannot be reduced by reducing the charging power from the first charging power to the second charging power power to the third charging power, for example, reducing the output charging power to 1/2 or 2/3 of the second charging power, so that the phenomenon of temperature increase caused by higher charging power can be further reduced.
  • the third charging power after reducing to the third charging power, according to the collected working temperature, it is judged whether the working temperature is in a decreasing trend, if the working temperature is in a decreasing trend, the third charging power is maintained, and if the working temperature is still in an increasing trend , the third charging power can be further reduced to the fourth charging power.
  • the time interval for collecting the working temperature can be obtained according to the aforementioned method, especially when the working temperature is in a downward trend between the second temperature threshold and the first temperature threshold, the time interval for collecting the working temperature can be further increased.
  • the step of reducing the output of the first charging power to the electric vehicle to the second charging power further includes,
  • further reducing the second charging power output to the electric vehicle to the third charging power further includes:
  • the third charging power When the third charging power is output to the electric vehicle, after the working temperature drops to between the first temperature threshold and the second temperature threshold, the working temperature shows an upward trend again, and is greater than or equal to the second temperature again.
  • the threshold is lower than the third temperature threshold, the third charging power output to the electric vehicle is further reduced to a power lower than the third charging power.
  • the operating temperature tends to decrease due to the decrease in the charging power, and decreases from the region greater than or equal to the second temperature threshold and less than the third temperature threshold to Between the first temperature threshold and the second temperature threshold, during the continuous charging process of the third charging power, the operating temperature rises again.
  • the second temperature threshold is exceeded, it can be determined that the control box or the battery of the electric vehicle may be charged.
  • the management system BMS
  • the third charging power currently in use can be reduced to the fourth charging power again, for example, it can be reduced to 1/2 of the third charging power or other less than the third charging power.
  • the charging power of the charging power shorten the collection time interval, wait for the next temperature detection unit to collect the working temperature, judge whether the working temperature continues to rise, and judge whether the third temperature threshold is reached.
  • further reducing the second charging power output to the electric vehicle to the third charging power further includes:
  • further reducing the second charging power output to the electric vehicle to the third charging power further includes:
  • the third charging power output to the electric vehicle is increased to a power greater than or equal to the third power.
  • the operating temperature tends to decrease due to the decrease in the charging power, and decreases from the region greater than or equal to the second temperature threshold and less than the third temperature threshold to Between the first temperature threshold and the second temperature threshold, during the continuous charging process of the third charging power, the operating temperature continues to drop until the operating temperature is lower than the first temperature threshold, at this time, a value greater than or equal to the third charging power can be used.
  • the charging power is used for charging, for example, the electric vehicle is charged with the initial first charging power, so as to improve the charging efficiency.
  • the working temperature shows an upward trend again, and after exceeding the first temperature threshold, it enters again between the first temperature threshold and the second temperature threshold, and between the second temperature threshold and the third temperature threshold At this time, repeat the above steps again to reduce the charging power output to the electric vehicle from the first charging power to the second charging power.
  • the operating temperature still shows an upward trend, it is necessary to further reduce the second charging power to the third charging power.
  • power when the operating temperature is greater than or equal to the third temperature threshold, stop charging the electric vehicle, that is, the output charging power is 0.
  • Such repeated cyclic processing can maintain high-speed charging to the electric vehicle at a high speed on the premise of ensuring charging safety, shorten the charging time, and improve the charging efficiency.
  • the third charging power output to the electric vehicle is increased to be greater than or equal to the first temperature threshold.
  • the charging power is reduced from the first charging power to the second charging power, and then reduced from the second charging power to the third charging power, and the working temperature is reduced to
  • the temperature is below the first temperature threshold
  • the third charging power output to the electric vehicle is restored to the first charging power (or the output power may be increased to any value between the third charging power and the first charging power, or is equal to the first charging power), speed up the charging speed and improve the charging efficiency; after that, the operating temperature rises again and exceeds the second temperature threshold, if the first temperature output to the electric vehicle is still the same as the previous steps
  • the charging power is reduced to the second charging power, and then the second charging power is reduced to the third charging power according to whether the operating temperature is still above the second temperature threshold and is on an upward trend.
  • the temperature rises above the second temperature threshold. Therefore, in this step, the first charging power can be directly lowered to the third charging power, so that the working temperature can be lowered as soon as possible and frequent actions of the charging power can be avoided.
  • the step of reducing the output of the first charging power to the electric vehicle to the second charging power further includes,
  • the output power to the electric vehicle is further increased to a power greater than or equal to the second charging power.
  • the power greater than or equal to the second charging power is less than or equal to the first charging power.
  • the method when the operating temperature is greater than or equal to the third temperature threshold, after stopping the charging of the electric vehicle, the method further includes,
  • the charging power to the electric vehicle is resumed, and the power is greater than 0.
  • the charging of the electric vehicle will be stopped.
  • the current output can ensure the safety of charging.
  • the working temperature will decrease with time.
  • the temperature detection unit can increase the time interval for collecting the temperature to obtain the working temperature in the power connector.
  • the working temperature is judged by the charging control unit.
  • the charging current to the electric vehicle is restored, for example, the initial rated power (greater than 0), that is, the first charging power, can be used to charge the electric vehicle.
  • the method when the operating temperature is greater than or equal to the third temperature threshold, after stopping the charging of the electric vehicle, the method further includes,
  • the charging power output to the electric vehicle is restored to be greater than zero.
  • the working temperature when the working temperature exceeds the third temperature threshold, after stopping the charging of the electric vehicle, the working temperature decreases slowly and falls back below the third temperature threshold, and the charging control unit will resume charging the electric vehicle with low power
  • the aforementioned lower charging power can be used for charging, for example, the third charging power, or the fourth charging power can be used.
  • the method when the operating temperature is greater than or equal to the third temperature threshold, after stopping the charging of the electric vehicle, the method further includes,
  • the electric vehicle After the working temperature is lowered to the first temperature threshold, the electric vehicle is recharged, and the charging power is determined according to the weather conditions.
  • the working temperature in the power connector gradually decreases as the charging current is stopped, and when the working temperature is lower than the third temperature threshold After a temperature threshold, the charging of the electric vehicle can be resumed.
  • the charging power after recovery can be determined according to the current climate conditions. For example, in the southern region, the temperature in summer is high, although the working temperature of the power connector decreases.
  • the temperature in summer is low, and the charging power can be restored to the first charging power to charge the electric vehicle.
  • the obtained working temperature it is determined whether the temperature detection unit is in a normal working state, and the working state of the temperature detection unit is recorded;
  • stopping charging the electric vehicle further includes,
  • the charging of the electric vehicle is kept and stopped.
  • the working temperature acquired by the temperature detection unit exceeds the preset range
  • the voltage of the thermistor collected by the temperature detection unit is used as the working temperature as an illustration, and when the voltage value exceeds the voltage value representing the working temperature of 200°C, Or when the voltage value is lower than the voltage value representing the working temperature of -60°C, it is considered that the temperature detection unit is damaged and cannot work normally, and the working state at this time is abnormal working state.
  • the voltage value is high. For example, when the thermistor voltage value is set to 5.5V, it means that the operating temperature reaches 200 °C. When the thermistor is disconnected, there may be 0 voltage.
  • the thermistor voltage value when the thermistor voltage value is set to 0V means that the operating temperature reaches -60°C.
  • the current working state of the temperature detection unit is recorded in the memory.
  • the charging control unit is powered off, when the power connector is reconnected to the charging power supply, the charging control unit is powered on again, the system performs self-checking, and the charging control unit queries the working status of the temperature detection unit before the power off in the memory, if it is normal If it is in an abnormal working state, it means that the charging control device in this article has been damaged and cannot work normally. If it continues to charge, it will lose its over-temperature protection function, resulting in a potential safety hazard for charging. Therefore, the stop of charging the electric vehicle is continued.
  • maintaining the first charging power output to the electric vehicle and triggering the first prompt signal may be replaced by
  • the operating temperature is greater than or equal to a first temperature threshold and less than a second temperature threshold, reducing the first charging power output to the electric vehicle. For example, it can be reduced to between the first charging power and the second charging power, or to the second charging power, and at the same time, the first prompt signal can also be triggered.
  • reducing the first charging power output to the electric vehicle further includes,
  • the first charging power output to the electric vehicle is boosted when the operating temperature falls below a first temperature threshold.
  • the boosted output power is greater than or equal to the first charging power.
  • the charging efficiency can be improved and the charging time can be shortened on the premise of ensuring the safety of electric vehicle charging; placing a temperature detection unit at the power connector improves the response speed of temperature detection and reduces cable costs.
  • FIG. 3 is a schematic structural diagram of a charging control device for a charging vehicle according to an embodiment of this paper.
  • a device for controlling the charging of an electric vehicle according to the operating temperature is described.
  • the device can be implemented by a dedicated chip or a general-purpose chip. Or run on a single-chip computer or an industrial computer, and the functional modules therein can be implemented by software or logic circuits, so as to execute the method shown in FIG. 2 above, including:
  • the temperature detection unit 301 is used to obtain the working temperature regularly;
  • a charging control unit 302 configured to maintain the first charging power output to the electric vehicle and trigger a first prompt signal when the operating temperature is greater than or equal to a first temperature threshold and less than a second temperature threshold;
  • the charging control unit 302 is further configured to stop charging the electric vehicle when the operating temperature is greater than or equal to the third temperature threshold.
  • FIG. 4 is a schematic diagram of a specific structure of a charging control device for a charging vehicle according to the embodiment of this document, in which the internal logical structure of each functional unit is refined, and further includes:
  • the memory 303 is used to store the time specified by the user
  • the temperature detection unit 301 acquires the working temperature of the power connector according to the specified time.
  • the memory 303 may be a non-volatile memory, such as a programmable read-only memory (Programmable read-only memory), which has a determinant filament inside, which can be customized according to the needs of the user (manufacturer). , use the current to burn it to write the required data and programs.
  • a programmable read-only memory Programmable read-only memory
  • determinant filament inside which can be customized according to the needs of the user (manufacturer).
  • Flash memory is an electronically erasable programmable only A form of read memory that allows memory to be erased or written multiple times during operation, the flash memory is intended for general data storage, as well as for exchanging and transferring data between computers and other digital products, such as memory cards and USB flash drives.
  • the charging control unit 302 sets the time interval for acquiring the working temperature according to the changing trend of the working temperature
  • the temperature detection unit 301 collects the working temperature according to the time interval for obtaining the working temperature set by the charging control unit 302 .
  • the charging control unit 302 sets the time interval for obtaining the working temperature according to climate conditions
  • the temperature detection unit 301 collects the working temperature according to the time interval for obtaining the working temperature set by the charging control unit 302 .
  • a prompting unit 304 is further included, configured to prompt the user the current working temperature state by means of sound and light.
  • a communication unit 305 is further included, configured to send the first prompt information to the user's smart terminal that prompts the user that the current temperature of the charging element is high.
  • the charging control unit 302 is further configured to further reduce the second charging power to the third charging power output to the electric vehicle when the operating temperature is still on an upward trend.
  • the charging control unit 302 is further configured to, when the third charging power is output to the electric vehicle, after the operating temperature drops between the second temperature threshold and the first temperature threshold, then When the operating temperature shows an upward trend again, and is greater than or equal to the second temperature threshold and less than the third temperature threshold again, the third charging power to the fourth charging power output to the electric vehicle is further reduced.
  • the charging control unit 302 is further configured to, when the third charging power is output to the electric vehicle and the operating temperature drops below the first temperature threshold, increase the output power to the electric vehicle.
  • the third charging power is to the first charging power.
  • the charging control unit 302 is further configured to restore the first charging power output to the electric vehicle after the operating temperature drops to the first temperature threshold.
  • the charging control unit 302 is further configured to reduce the first charging power to the third charging power output to the electric vehicle when the operating temperature exceeds the second temperature threshold again.
  • the charging control unit 302 is further configured to, when the operating temperature is greater than or equal to the third temperature threshold, after stopping charging the electric vehicle, when the operating temperature drops to the first temperature After the threshold, the first charging power output to the electric vehicle is restored.
  • the charging control unit 302 is further configured to, when the operating temperature is greater than or equal to the third temperature threshold, after stopping the charging of the electric vehicle, when the operating temperature drops to the third temperature After being below the threshold, the third charging power output to the electric vehicle is resumed.
  • the charging control unit 302 is further configured to determine whether the temperature detection unit is in a normal working state according to the acquired operating temperature, and the memory 303 is further configured to record the operation of the temperature detection unit state;
  • the charging control unit 302 is further configured to, when the operating temperature is greater than or equal to the third temperature threshold, after stopping the charging of the electric vehicle, keep stopping the charging of the electric vehicle until the power is turned on again, and query the temperature.
  • the working state of the detection unit when the working state of the temperature detection unit is a normal working state, the first charging power output to the electric vehicle is restored; when the working state of the temperature detection unit is an abnormal working state, then Continue to keep off charging the electric vehicle.
  • the charging control unit 302 is further configured to resume charging the electric vehicle after the operating temperature drops to the first temperature threshold, and determine the charging power according to weather conditions.
  • the charging efficiency can be improved and the charging time can be shortened under the premise of ensuring the charging safety of the electric vehicle; the temperature detection unit is placed at the power connector to improve the response speed of temperature detection and reduce the cost of cables.
  • FIG. 5 is a schematic diagram of a specific circuit of the charging control device according to the embodiment of this paper, and the circuit structure of the charging control device is described in this figure.
  • the temperature detection unit 501 may be a thermistor, a thermocouple, a resistance temperature detector, Digital sensors, etc., among the thermistors, a positive temperature coefficient thermistor (PTC) or a negative temperature coefficient thermistor (NTC) can be selected, such as the NTC thermistor RT1 in Figure 5, each
  • PTC positive temperature coefficient thermistor
  • NTC negative temperature coefficient thermistor
  • the temperature detection unit 501 is further connected with a voltage divider resistor R3 for setting the temperature voltage output by the temperature detection unit to meet the requirements of the back-end comparison unit 502 .
  • the temperature detection unit 501 can be placed on the live wire terminal and/or the neutral wire terminal inside the power connector, and the temperature detection unit 501 and the live wire terminal and/or the neutral wire terminal inside the power connector are connected by insulating and thermally conductive silica gel. fixed.
  • the comparison unit 502 is a hysteresis comparator, the first input end of the hysteresis comparator is connected to the temperature voltage output by the temperature detection unit 501, and a resistor is connected to the second input end before the reference voltage is connected R7, the output terminal is connected to the input terminal of the driving unit 504, the first comparison result voltage is output to the driving unit 504, and the output terminal is connected to the second input terminal in series with a resistor R6.
  • the above-mentioned hysteresis-type comparator means that when the comparison unit has only one reference voltage, when the amplitude of the temperature voltage input at the first input terminal is close to the reference voltage, if the amplitude of the temperature voltage input at the first input terminal is close to the reference voltage.
  • the noise interference is large, and the comparison response speed is fast enough, which may cause the wrong transition of the output voltage.
  • the reference voltage is changed to two.
  • the output of the comparison unit 502 changes only when the temperature voltage reaches the first reference voltage; and when the input temperature voltage changes from a high level to a low level When the input temperature voltage drops to the second reference voltage, the output of the comparison unit will change. Therefore, the structure of the comparison unit in the above embodiment has hysteresis, that is, has inertia, so the small change of the input temperature and voltage will not cause a jump in the output voltage of the comparison unit, and the comparison unit at this time has anti-interference ability.
  • the voltage of the first comparison result output by the comparison unit 502 may be a high level or a low level, depending on the structure of the driving unit 504 , and is related to the charging control unit 503 described later according to the temperature voltage and the preset voltage. It is assumed that the high and low levels of the second comparison result voltage output by the threshold comparison have the same meaning, that is, for example, when the first comparison result voltage output by the comparison unit 502 indicates that the operating temperature (temperature voltage) is higher than the preset temperature (reference voltage) , and outputs a high-level first comparison result voltage. For the sake of simplicity, only one comparison unit 502 is shown in the accompanying drawings of this embodiment.
  • the comparison unit 502 can be used to compare the operating temperature with the third temperature threshold, and also There may be other comparison units for comparing the working temperature with the first temperature threshold, the working temperature with the second temperature threshold; at this time, the charging control unit 503 determines that the working temperature (temperature voltage) is higher than the preset temperature (the first temperature threshold). , the second temperature threshold or the third temperature threshold), a high-level second comparison result voltage should also be output, and vice versa. In this way, the high and low voltage levels of the output comparison result have the same meaning, so that multiple temperature control protections can be realized.
  • the charging control unit 503 is connected to the temperature detection unit 501 to obtain the temperature and voltage; the charging control unit 503 is connected to the input end of the driving unit 504 to connect the first Two comparison result voltages are output to the driving unit 504 .
  • the charging control unit 503 can be a microprocessor (MCU), receives signals through IN pins (IN1-IN3), outputs signals through OUT pins (OUT1-OUT3), and converts the temperature and voltage into digital form Then, it is compared with a preset threshold. For example, when the value represented by the temperature voltage is greater than or equal to the third temperature threshold, the second comparison result voltage representing the disconnection of the switch unit 505 is output. The represented value is smaller than the first temperature threshold, then output the second comparison result voltage representing the turn-on switch unit 505, the second comparison result voltage may be a high level or a low level, according to the driving unit 504 structure to decide.
  • MCU microprocessor
  • the second transistor Q2 can also be omitted
  • the driving unit 504 includes a first transistor Q1, and the collector of the first transistor Q1 is connected to the power supply VCC , the base is connected to the comparison unit 502 and the charging control unit 503, and simultaneously receives the first comparison result voltage output by the comparison unit 502 and the second comparison result voltage output by the charging control unit 503, and the emitter is grounded, wherein all the The collector is also connected to the switch unit 505.
  • the switch unit 505 When the first transistor Q1 is turned on, the switch unit 505 is turned off, and when the first transistor Q1 is turned off, the switch unit 505 is turned on. Pass.
  • the base when the base is connected to the comparison unit 502 and the charging control unit 103 and simultaneously receives the first comparison result voltage output by the comparison unit 502 and the second comparison result voltage output by the charging control unit 503 , when either the first comparison result voltage or the second comparison result voltage is at a high level, the first transistor Q1 will be turned on, that is, when the comparison unit 502 determines that the current operating temperature exceeds the third The three temperature thresholds output a high-level first comparison result voltage, or the charging control unit 503 determines that the current operating temperature exceeds the third temperature threshold and outputs a high-level second comparison result voltage, which will make the first three The base of the transistor Q1 receives a high level, so that the first transistor Q1 is turned on, thereby turning off the switch unit 505 .
  • the driving unit 504 includes a first transistor Q1 and a second transistor Q2, the collector of the first transistor Q1 is connected to the power supply VCC, and the first transistor Q1
  • the base of Q1 is connected to the comparison unit 502 and the charging control unit 503, and at the same time receives the first comparison result voltage output by the comparison unit 502 and the second comparison result voltage output by the charging control unit 503, the first transistor Q1
  • the emitter is grounded; the collector of the second transistor Q2 is connected to the switch unit 505, the base of the second transistor Q2 is connected to the collector of the first transistor Q1, and the second transistor Q2 is connected to the collector of the first transistor Q1.
  • the emitter of the transistor Q2 is grounded; when the first transistor Q1 is turned on, the second transistor Q2 is turned off, and the switch unit 505 is turned off, and when the first transistor Q1 is turned off, The second transistor Q2 is turned on, and the switch unit 505 is turned on.
  • the switching unit 505 can also be driven by a PNP transistor or a MOS transistor, wherein the switching unit is, for example, a relay.
  • the first comparison result voltage output by the unit 502 is converted into a digital form, and an “OR” operation is performed with the second comparison result voltage in digital form output by the charging control unit 503.
  • the switch unit 505 is turned off, and the above judgment and operation can be realized through the gate circuit in the digital circuit, and other forms of judgment and operation circuits can also be used, which will not be repeated here.
  • the charging control device further includes a compensation unit 506, which is connected between the comparing unit 502 and the charging control unit 503, when the charging control unit 503 detects that the reference voltage is deviated , and output the adjustment voltage to the compensation unit 506 for adjusting the reference voltage.
  • the charging control unit 503 can pass the charging control unit 503 to the reference voltage.
  • the voltage is adjusted to make the reference voltage more accurate and improve the accuracy of the temperature judgment of the comparison unit 502 .
  • the charging control unit 503 acquires the reference voltage, compares the temperature voltage with the preset threshold, generates an adjustment voltage for the reference voltage, and applies it to the reference voltage.
  • the compensation unit 506 further includes a third transistor Q3, the collector of the third transistor Q3 is connected to the power supply VCC and the reference voltage of the comparison unit 502, the The base of the third transistor Q3 is connected to the charging control unit 503, and the emitter of the third transistor Q3 is grounded; when the charging control unit 503 determines that the received reference voltage is the same as the preset voltage When the thresholds are not equal, the charging control unit 503 outputs a regulated voltage to the base of the third transistor Q3 to control the reference voltage on the collector of the third transistor Q3.
  • the input pin of the charging control unit 503 is connected to the reference voltage of the second input terminal of the comparison unit 502, and the reference voltage of the second input terminal of the comparison unit 502 is obtained.
  • the reference voltage obtained by the charging control unit 503 is not equal to the preset threshold, for example, the set reference voltage is 0.5V, and the set preset threshold is also 0.5V, but the drifted reference voltage is 0.48V.
  • charging When the reference voltage collected by the control unit 503 is different from the preset threshold, it will control the output pin to output the regulated voltage, and turn on the third transistor Q3 so as to adjust the reference voltage input to the second input end of the comparison unit 502. It is regulated from 0.48V back to the set 0.5V.
  • the charging control unit 503 further includes a first output pin for outputting a pulse modulation signal (PWM) according to the temperature and voltage to adjust the power of the output charging current.
  • PWM pulse modulation signal
  • An interface outputs the pulse modulated signal to the electric vehicle.
  • the charging control unit 503 can adjust the temperature according to the degree of temperature increase or decrease (the temperature does not reach the preset threshold when the temperature increases, that is, the temperature does not exceed the safe charging temperature ), reduce or increase the power of the output charging current, for example, for AC charging, due to the temperature rise, the PWM signal that adjusts the charging current from 8A to 6A is sent to the electric vehicle's PWM signal.
  • the battery management system (BMS) uses the corresponding charging current to charge the battery through the power conditioning unit of the electric vehicle.
  • the control of reducing the intensity of the charging current can be realized, and the charging of the electric vehicle can be maintained after the temperature of the components of the charging control device rises, instead of directly stopping the charging of the electric vehicle as in the prior art, so that the charging can be improved. efficiency, and improve the user experience of electric vehicle charging.
  • the charging control unit 503 further includes a second output pin for outputting a charging power adjustment signal (CAN/Ethernet) according to the temperature and voltage, and the charging control unit 503 transmits the charging power adjustment signal (CAN/Ethernet) through the interface connected with the electric vehicle. outputting a charging power adjustment signal to the electric vehicle;
  • a charging power adjustment signal CAN/Ethernet
  • the charging control device further includes a power adjusting unit, which is connected between the charging control unit 503 and the switching unit 505 and is used for adjusting the power of the output charging current according to the charging power adjusting signal.
  • the charging control unit 503 since the temperature of the components of the charging control device, such as the power connector, increases or decreases, the charging control unit 503 does not exceed the safe charging temperature), reduce or increase the power of the output charging current, for example, for DC charging, the charging control unit 503 reduces or increases the output of the power adjustment unit by outputting a charging power adjustment signal to the power adjustment unit.
  • the charging control unit 503 or the comparison unit 502 When the working temperature in the power connector exceeds the third temperature threshold, that is, exceeds the safe charging temperature, the charging control unit 503 or the comparison unit 502 will output a drive signal that drives the switch unit 505 to disconnect.
  • the power adjustment unit 505 After the switch unit 505 is turned off, the power adjustment unit stops outputting the charging current to the electric vehicle, so that the temperature inside the charging control device and the battery of the electric vehicle can be lowered to ensure the safety of the charging process.
  • the charging power adjustment signal output by the charging control unit 503 can also be sent to the BMS system of the electric vehicle through the CAN bus or the Ethernet bus of the charging gun on the charging control device, and the BMS system adopts the charging power adjustment signal from the BMS system according to the charging power adjustment signal.
  • the charging current output from the switching unit 505 of the charging control device charges the battery with corresponding power.
  • the control of reducing the intensity of the charging current can be realized, and the charging of the electric vehicle can be maintained after the temperature of the components of the charging control device increases, instead of directly stopping the charging of the electric vehicle as in the prior art, so that the charging efficiency can be improved. , to improve the user experience of electric vehicle charging.
  • VCC is the positive terminal of the power supply voltage source (hereinafter referred to as the power supply)
  • GND is the negative terminal of the power supply voltage source
  • V REF is the reference voltage, that is, the set temperature threshold, which is connected to the resistor R7.
  • the other side of the resistor R7 One end is connected to the forward input pin (the second input end) of the operational amplifier;
  • the reference voltage V REF can be a fixed value or a preset threshold value inside the charging control unit 503, in this case, the charging control device can be Automatically adjust the temperature threshold.
  • the thermistor RT1 is a thermal element.
  • the temperature detection unit 501 is connected to the input end of the comparison unit 502, that is, the resistor R3 and the thermistor RT1.
  • connection point is connected with the reverse input pin (first input) of the operational amplifier U1; the thermistor RT1 and the resistor R3 form a voltage divider circuit, the thermistor RT1 can be an NTC thermistor, when the power connector When the internal working temperature increases, the resistance value of the thermistor RT1 decreases, and the voltage value of the temperature voltage V i of the divided voltage value decreases, and vice versa, when the temperature decreases, the value of V i increases.
  • Resistor R6 is a feedback resistor connecting the output pin (output terminal) of the operational amplifier U1 to the forward pin (second input terminal).
  • V out is the output end of the operational amplifier U1, and the operational amplifier U1 outputs a high level; V i >V REF , U1 outputs a low level; V out is connected to one end of the diode D1, and the The other end of the resistor R4 is connected to the resistor R4, the other end of the resistor R4 is connected to the base of the first transistor Q1 of the driving unit 504, one end of the resistor R5 is connected to the power supply VCC, and the other end is connected to the collector of the first transistor Q1,
  • the base of the second transistor Q2 is connected to the collector of the first transistor Q1 and the connection point of the resistor R5, the emitter of the second transistor Q2 is connected to GND, and the collector of the second transistor Q2 is connected to the switch
  • the control terminal of unit 505 is connected.
  • the thermistor RT1 can be integrated with other electrical components such as operational amplifier U1, or can be placed separately.
  • the number of thermistor RT1 can be one or more, and can be located in different parts of the charging control device. To collect the working temperature of different parts of the charging control device or the temperature of electrical components, for example, install the thermistor RT1 on the power connector.
  • the operational amplifier U1 may be a hysteresis comparator to prevent the switch unit 505 from switching the frequency between two states of on and off when the operating temperature of the switch K1 is near the temperature threshold.
  • T3 third temperature threshold
  • the switch unit 505 is turned off, and when the working temperature ⁇ T1 (the first temperature threshold), the switch unit 505 is turned on, where T3>T1.
  • the charging control unit 503 collects the temperature voltage V i and the reference voltage V REF , when it is detected that the reference voltage V REF deviates from the preset threshold, that is, the reference voltage V REF changes, by compensating
  • the unit 506 adjusts the value of the reference voltage V REF , corrects the value of the reference voltage V REF , and improves the accuracy of temperature judgment.
  • One output end of the charging control unit 503 is connected to the resistor R1, the other end of the resistor R1 is connected to the base of the third transistor Q3, the emitter of the third transistor Q3 is connected to GND, and the collector of the third transistor Q3 One end of the resistor R2 is connected to the reference voltage V REF , and the other end of the resistor R2 is connected to the power supply VCC.
  • the charging control unit 503 controls the duty cycle of the third transistor Q3 to be turned on by outputting the regulated voltage to achieve the reference voltage. regulation of V REF .
  • the charging control unit 503 also realizes the detection of the state of the switch K1 through the feedback of the resistor R8 connected to it. When it is detected that the operating temperature exceeds the third temperature threshold, the switch K1 is still in the conducting state, which means that the comparison unit 502 has lost control. In the control of the switch K1, the charging control unit 503 compares with the preset threshold through V i , and when it reaches or exceeds the preset threshold, it outputs a high level, and through the diode D2, the first transistor Q1 is turned on, and the second and third transistors are turned on. The pole tube Q2 is turned off, thereby disconnecting the power supply network. Through the comparison unit 502 and the charging control unit 503, the dual detection of the temperature detection unit 501 and the dual control of the driving unit 504 are realized, so as to improve the safety of electric vehicle charging.
  • FIG 6a is a schematic diagram of the charging control device and the charging structure of the electric vehicle according to the embodiment of this paper.
  • the charging control box is an AC charging system.
  • the charging The charging control unit 603 of the control device 600 modifies the duty cycle value of the communication signal.
  • the charging control unit 603 when the charging current is 8A, the corresponding duty cycle value (PWM signal) is 13.3%, and when the charging current is 6A, the corresponding duty cycle value (PWM signal) is 10 % to adjust the power of the charging current, the charging control unit 603 outputs the modified communication signal to the power regulating unit 607 of the electric vehicle, and the power regulating unit 607 reduces the strength of the charging current under the control of the BMS system of the electric vehicle, when the temperature detection unit When 601 detects that the working temperature in the power connector exceeds the third temperature threshold, the switch unit 605 is turned off, and then the charging of the electric vehicle is stopped. In other embodiments, the charging control unit 603 may also output a control signal for adjusting the voltage of the charging current.
  • a feedback unit 608 is also included to obtain the driving signal of the driving unit 604 , and the charging control unit 603 can thus determine whether the driving unit 604 drives the switch unit 605 correctly.
  • Fig. 6b is another schematic diagram of the charging control device and the electric vehicle charging structure according to the embodiment of this paper.
  • the charging control box is a DC charging system.
  • the charging control unit 603 of the charging control device 600 adjusts the charging power, generates a charging power adjustment signal, and sends the charging power adjustment signal to the electric vehicle in the form of a CAN message through the CAN bus interface in the charging gun connected to the electric vehicle, Thereby, the power of the charging current is reduced; and the charging power adjustment signal is also output to the power adjustment unit 607 in the charging control device, and the power adjustment unit 607 adjusts the power of the output charging current (adjusted current or voltage according to the charging power adjustment signal) , or regulate both current and voltage) to charge the battery of an electric vehicle.
  • the power adjustment unit 607 receives the charging current, adjusts the power of the charging current, and outputs it to the electric vehicle through the switch unit 605 .
  • reducing the power of the charging current to charge the battery of the electric vehicle can reduce the temperature of the charging component.
  • the temperature of the charging control device is lower than another temperature threshold (for example, the first temperature threshold)
  • the temperature The detection unit 601 acquires the working temperature inside the power connector, and then the charging control unit 603 outputs a control command to the power adjustment unit 607 according to the working temperature to restore the power of the charging current and increase the charging speed.
  • FIG. 7a is a schematic diagram of controlling the charging power according to the working temperature during the charging process of the electric vehicle according to the embodiment of this paper.
  • the electric vehicle is charged from time t0, the interior of the power connector obtained through the temperature detection unit is described.
  • the working temperature of the battery starts to rise with time, and the working temperature never exceeds the first temperature threshold T1 at time t1.
  • the charging control unit controls to always use the first charging power P1 to charge the charging vehicle.
  • the temperature detection unit continuously shortens the time interval for collecting the working temperature in the power connector according to the rising trend of the working temperature, and collects the working temperature several times.
  • Figure 7b is a schematic diagram of controlling the charging power according to the working temperature during the charging process of the electric vehicle according to the embodiment of this paper.
  • the inside of the power connector obtained through the temperature detection unit is described.
  • the working temperature starts to rise with time, and at time t1 the working temperature exceeds the first temperature threshold T1, but does not exceed the second temperature threshold T2; as time goes by, the temperature detection unit collects the power connection according to the rising trend of the working temperature.
  • the time interval of the working temperature in the power connector keeps shortening.
  • the charging control unit controls to always use the first charging power P1 to charge the charging vehicle; the working temperature begins to show a downward trend, and the time interval for collecting the working temperature in the power connector keeps increasing.
  • the working temperature drops to the first temperature threshold T1
  • the charging control unit controls to always use the first charging power P1 to charge the charging vehicle; when the working temperature is on the rise, the time interval for collecting the working temperature in the power connector Continuously shortening, when reaching t3, the working temperature rises to the first temperature threshold, at this time the charging control unit controls to always use the first charging power P1 to charge the charging vehicle; the working temperature begins to show a downward trend, and the collecting power connector works The time interval of the temperature keeps increasing. When reaching time t4, the working temperature drops to the first temperature threshold. At this time, the charging control unit controls to always use the first charging power P1 to charge the charging vehicle.
  • Figure 7c is a schematic diagram of controlling the charging power according to the working temperature during the charging process of the electric vehicle according to the embodiment of this paper.
  • the inside of the power connector obtained through the temperature detection unit is described.
  • the working temperature starts to rise with time, and at time t1 the working temperature exceeds the first temperature threshold T1, but does not exceed the second temperature threshold T2; as time goes by, the temperature detection unit collects the power connection according to the rising trend of the working temperature.
  • the time interval of the working temperature in the power connector keeps shortening.
  • the charging control unit controls to always use the first charging power P1 to charge the charging vehicle; the working temperature keeps rising slowly, and the time interval for collecting the working temperature in the power connector keeps shortening.
  • the charging control unit controls to always use the first charging power P1 to charge the charging vehicle; the working temperature shows a continuous and slow upward trend.
  • the time interval for collecting the working temperature in the power connector is constantly shortened.
  • the charging control unit controls the use of the first charging power P1 pair. Charge the vehicle to charge.
  • Figure 7d is a schematic diagram of controlling the charging power according to the working temperature during the charging process of the electric vehicle according to the embodiment of this paper.
  • the inside of the power connector obtained through the temperature detection unit is described.
  • the working temperature of the electric vehicle begins to rise with time, and at time t1, the working temperature exceeds the first temperature threshold T1 and reaches the second temperature threshold T2.
  • the charging control unit controls to reduce the first charging power P1 to the second charging power output to the electric vehicle. P2; with the passage of time, the temperature detection unit continuously shortens the time interval for collecting the working temperature in the power connector according to the rising trend of the working temperature.
  • the charging control unit controls to further reduce the second charging power P2 to the third charging power P3 output to the electric vehicle; the working temperature begins to show a downward trend, and the time interval for collecting the working temperature in the power connector keeps increasing, and when it reaches time t3 , the working temperature is still higher than the second temperature threshold T2, at this time, the charging control unit controls to always use the third charging power P3 to charge the charging vehicle; when the working temperature continues to show a downward trend, the time interval for collecting the working temperature in the power connector is constantly Increase, when reaching time t4, the operating temperature drops below the first temperature threshold, and the charging control unit controls to increase the charging power, and increases the charging power from the third charging power to the first charging power to charge the charging vehicle.
  • Figure 7e is a schematic diagram of controlling the charging power according to the working temperature during the charging process of the electric vehicle according to the embodiment of this paper.
  • the inside of the power connector obtained through the temperature detection unit is described.
  • the working temperature of the electric vehicle begins to rise with time, and at time t1, the working temperature exceeds the first temperature threshold T1 and reaches the second temperature threshold T2.
  • the charging control unit controls to reduce the first charging power P1 to the second charging power output to the electric vehicle. P2; with the passage of time, the temperature detection unit continuously shortens the time interval for collecting the working temperature in the power connector according to the rising trend of the working temperature.
  • the charging control unit controls to further reduce the second charging power P2 to the third charging power P3 output to the electric vehicle; the working temperature begins to show a downward trend, and the time interval for collecting the working temperature in the power connector keeps increasing, and when it reaches time t3 , the working temperature is still higher than the second temperature threshold T2, at this time, the charging control unit controls to always use the third charging power P3 to charge the charging vehicle; when the working temperature continues to show a downward trend, the time interval for collecting the working temperature in the power connector is constantly increase, when the operating temperature is still between the first temperature threshold and the second temperature threshold at time t4, the charging control unit controls to maintain the third charging power P3 to charge the charging vehicle.
  • Figure 7f is a schematic diagram of controlling the charging power according to the working temperature during the charging process of the electric vehicle according to the embodiment of this paper.
  • the inside of the power connector obtained through the temperature detection unit is described.
  • the working temperature of the electric vehicle begins to rise with time, and at time t1, the working temperature exceeds the first temperature threshold T1 and reaches the second temperature threshold T2.
  • the charging control unit controls to reduce the first charging power P1 to the second charging power output to the electric vehicle. P2; with the passage of time, the temperature detection unit continuously shortens the time interval for collecting the working temperature in the power connector according to the rising trend of the working temperature.
  • the charging control unit controls to further reduce the second charging power P2 to the third charging power P3 output to the electric vehicle; the working temperature continues to show an upward trend, and the time interval for collecting the working temperature in the power connector is continuously shortened.
  • the working temperature is still higher than the second temperature threshold T2, but does not reach the third temperature threshold T3.
  • the charging control unit controls to always use the third charging power P3 to charge the charging vehicle; when the working temperature continues to show an upward trend, the collection power The time interval of the working temperature in the connector is continuously shortened.
  • the charging control unit controls to disconnect the charging of the charging vehicle.
  • Figure 7g is a schematic diagram of controlling the charging power according to the working temperature during the charging process of the electric vehicle according to the embodiment of this paper.
  • the inside of the power connector obtained through the temperature detection unit is described.
  • the working temperature of the electric vehicle begins to rise with time, and at time t1, the working temperature exceeds the first temperature threshold T1 and reaches the second temperature threshold T2.
  • the charging control unit controls to reduce the first charging power P1 to the second charging power output to the electric vehicle. P2; with the passage of time, the temperature detection unit continuously shortens the time interval for collecting the working temperature in the power connector according to the rising trend of the working temperature.
  • the charging control unit controls to further reduce the second charging power P2 to the third charging power P3 output to the electric vehicle; the working temperature begins to show a downward trend, and the time interval for collecting the working temperature in the power connector keeps increasing, and when it reaches time t3 , the working temperature is still higher than the second temperature threshold T2, at this time, the charging control unit controls to always use the third charging power P3 to charge the charging vehicle; when the working temperature continues to show a downward trend, the time interval for collecting the working temperature in the power connector is constantly increase, when reaching time t4, when the working temperature is still between the first temperature threshold and the second temperature threshold, the charging control unit controls to maintain the third charging power P3 to charge the charging vehicle; as time goes by, the temperature detection According to the rising trend of the working temperature, the time interval for collecting the working temperature in the power supply connector is shortened continuously.
  • the charging control unit controls to further reduce the The third charging power P3 to the fourth charging power P4 output by the electric vehicle; the working temperature keeps rising, and the temperature detection unit continuously shortens the time interval for collecting the working temperature in the power connector according to the rising trend of the working temperature.
  • the charging control unit controls to disconnect the charging of the electric vehicle at this time.
  • FIG. 7h it is a schematic diagram of controlling the charging power according to the working temperature during the charging process of the electric vehicle according to the embodiment of this paper.
  • the inside of the power connector obtained through the temperature detection unit is described.
  • the working temperature of the electric vehicle begins to rise with time, and at time t1, the working temperature exceeds the first temperature threshold T1 and reaches the second temperature threshold T2.
  • the charging control unit controls to reduce the first charging power P1 to the second charging power output to the electric vehicle. P2; with the passage of time, the temperature detection unit continuously shortens the time interval for collecting the working temperature in the power connector according to the rising trend of the working temperature.
  • the charging control unit controls to further reduce the second charging power P2 to the third charging power P3 output to the electric vehicle; the working temperature begins to show a downward trend, and the time interval for collecting the working temperature in the power connector keeps increasing, and when it reaches time t3 , the working temperature is still higher than the second temperature threshold T2, at this time, the charging control unit controls to always use the third charging power P3 to charge the charging vehicle; when the working temperature continues to show a downward trend, the time interval for collecting the working temperature in the power connector is constantly increase, when reaching time t4, the working temperature drops below the first temperature threshold, and the charging control unit controls to increase the charging power, and increases the charging power from the third charging power to the first charging power to charge the charging vehicle; with the charging As the power increases, the working temperature inside the power connector continues to rise, and the time interval for collecting the working temperature in the power connector continues to shorten.
  • the charging control unit controls the disconnection to charge the electric vehicle; as the charging current to the electric vehicle is disconnected, the operating temperature inside the power connector continues to decrease, and the collection The time interval of the working temperature in the power connector keeps increasing.
  • the charging control unit controls to resume the charging of the electric vehicle, and uses the first charging power P1 to charge the electric vehicle. Charge.
  • Figure 7i is a schematic diagram of controlling the charging power according to the working temperature during the charging process of the electric vehicle according to the embodiment of this paper.
  • the inside of the power connector obtained through the temperature detection unit is described.
  • the working temperature of the electric vehicle begins to rise with time, and at time t1, the working temperature exceeds the first temperature threshold T1 and reaches the second temperature threshold T2.
  • the charging control unit controls to reduce the first charging power P1 to the second charging power output to the electric vehicle. P2; with the passage of time, the temperature detection unit continuously shortens the time interval for collecting the working temperature in the power connector according to the rising trend of the working temperature.
  • the charging control unit controls to further reduce the second charging power P2 to the third charging power P3 output to the electric vehicle; the working temperature begins to show a downward trend, and the time interval for collecting the working temperature in the power connector keeps increasing, and when it reaches time t3 , the working temperature is still higher than the second temperature threshold T2, at this time, the charging control unit controls to always use the third charging power P3 to charge the charging vehicle; when the working temperature continues to show a downward trend, the time interval for collecting the working temperature in the power connector is constantly increase, when the working temperature drops to the first temperature threshold at time t4, the charging control unit controls to increase the charging power to the electric vehicle, and increases the charging power from the third charging power P3 to the first charging power P1; With the passage of time, the temperature detection unit continuously shortens the time interval for collecting the working temperature in the power connector according to the rising trend of the working temperature, and the charging control unit always maintains the first
  • the charging control unit controls to reduce the first charging power P1 to the third charging power P3 output to the electric vehicle;
  • the working temperature continues to rise, and the temperature detection unit continuously shortens the time interval for collecting the working temperature in the power connector according to the rising trend of the working temperature.
  • the charging control unit controls the Disconnect charging the electric vehicle.
  • the embodiments herein also provide a computer device, including a memory, a processor, and a computer program stored in the memory and running on the processor, where the processor implements the following steps when executing the computer program:
  • the computer device provided in the embodiments of this document may also implement the methods as shown in FIG. 2 and FIG. 7a to FIG. 7i.
  • FIG. 7a-FIG. 7i the embodiments herein also provide a computer non-volatile readable storage medium, and a computer program is stored on the computer non-volatile readable storage medium, and the computer The steps of the above-described methods are performed when the program is executed by the processor.
  • the embodiments herein also provide computer-readable instructions, wherein when the processor executes the instructions, the program therein causes the processor to perform the method shown in FIG. 2 and FIGS. 7a-7i.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solutions in the embodiments herein.
  • each functional unit in each of the embodiments herein may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions in this article are essentially or make contributions to the prior art, or all or part of the technical solutions can be embodied in the form of software products, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments herein.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

一种电动车辆充电控制方法及装置,涉及电动车辆充电技术领域,其中方法包括:定时获取工作温度;当工作温度大于或等于第一温度门限并小于第二温度门限时,保持向电动车辆输出的第一充电功率,并触发第一提示信号;当工作温度大于或等于第二温度门限并小于第三温度门限时,降低向电动车辆输出的第一充电功率至第二充电功率;当工作温度大于或等于第三温度门限时,停止向电动车辆充电,由此可以在保障电动车辆充电安全的前提下,提高充电效率,缩短充电时间。

Description

一种电动车辆充电控制方法及装置
本申请要求享有2020年11月6日递交、申请号为202011232789.5、发明名称为“一种电动车辆充电控制方法及装置”的中国专利的优先权,该专利的所有内容在此全部引入。
技术领域
本文涉及电动车辆充电技术领域,尤其涉及一种电动车辆充电控制方法及装置。
背景技术
近些年,全球电动汽车发展迅速,电动汽车和充电桩的数量持续上升。用户希望对车辆电池充电的时间越短越好,现有技术中,通常采用大电流和高电压等高功率方式满足用户对于车辆电池充电的需要,而车辆电池的温度会在充电时随之升高,继续维持高功率的方式对车辆电池进行充电可能会导致各种充电安全事故,充电安全和可靠性已经成为一个非常重要且急需解决的问题。
现有技术中大部分的充电桩在工作温度升高后,会采用降低充电功率的方式继续对车辆电池进行充电,但是这种方式只是单纯的降低输出的充电功率,这就导致充电桩的实际输出功率和车辆的需求功率相差很大。在这种情景下,无疑增加了车辆电池充电时间的延长,并且也增加了车辆电池充电过程中的不可控性和充电风险。
如何结合车辆电池充电过程中温度上升带来的充电时间延长以及安全问题是现有技术亟需解决的问题。
发明内容
为解决现有技术中的问题,本文实施例提供了一种电动车辆充电控制方法及装置,用于解决现有技术中电动车辆充电由于温度变化造成充电速度慢,充电效率低的问题。
本文提供了一种充电车辆的充电控制方法,包括,
定时获取工作温度;
当所述工作温度大于等于第一温度门限并小于第二温度门限时,保持向电动车辆输出的第一充电功率,并触发第一提示信号;
当所述工作温度大于等于所述第二温度门限并小于第三温度门限时,降低向电动车辆输出的所述第一充电功率至第二充电功率。
本文还提供了一种充电车辆的充电控制装置,包括:
温度检测单元,用于定时获取工作温度;
充电控制单元,用于当所述工作温度大于等于第一温度门限并小于第二温度门限时,保持向电动车辆输出的第一充电功率,并触发第一提示信号;
当所述工作温度大于等于所述第二温度门限并小于第三温度门限时,降低向电动车辆输出的所述第一充电功率至第二充电功率。
本文实施例还提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的方法。
本文实施例还提供了一种计算机非易失性可读存储介质,其上存储有计算机指令,该计算机指令被处理器执行时实现上述的方法。
利用本文实施例,可以在保障电动车辆充电安全的前提下,提高充电效率,缩短充电时间。当然,实施本文的任一产品和/或方法并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本文实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本文的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a-图1c所示为本文实施例电动车辆的充电控制系统结构示意图;
图2所示为本文实施例一种充电车辆的充电控制方法流程图;
图3所示为本文实施例一种充电车辆的充电控制装置的结构示意图;
图4所示为本文实施例一种充电车辆的充电控制装置的具体结构示意图;
图5所示为本文实施例充电控制装置的具体电路示意图;
图6a所示为本文实施例充电控制装置与电动车辆充电结构的示意图;
图6b所示为本文实施例充电控制装置与电动车辆充电结构的另一示意图;
图7a-图7i所示为本文实施例电动车辆充电过程中根据工作温度控制充电功率的示意图。
【附图标记说明】
100、电动车辆;101、车辆连接器;102、充电控制盒;103、充电控制单元;104、温度检测单元;105、电源连接器;106、充电电源;301、温度检测单元;302、充电控 制单元;303、存储器;304、提示单元;305、通信单元;501、温度检测单元;502、比较单元;503、充电控制单元;504、驱动单元;505、开关单元;506、补偿单元;600、充电控制装置;601、温度检测单元;602、比较单元;603、充电控制单元;604、驱动单元;605、开关单元;606、补偿单元;607、功率调节单元;608、反馈单元;R1、R2、R3、R4、R5、R6、R7、R8、电阻;RT1、热敏电阻;U1、运算放大器;D1、D2、二极管;Q1、Q2、Q3、三极管;K1、开关;VCC、电源;V REF、基准电压;V i、温度电压;V out、输出端。
具体实施方式
下面将结合本文实施例中的附图,对本文实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本文一部分实施例,而不是全部的实施例。基于本文中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本文保护的范围。
如图1a-图1c所示为本文实施例电动车辆的充电控制系统结构示意图,电动车辆100通过车辆连接器101、充电控制盒102、充电控制单元103、温度检测单元104以及电源连接器105与充电电源106连接。充电电源106将电动车辆100充电所需的充电电流输出给所述电动车辆100,并根据所述温度检测单元104采集的工作温度通过充电控制单元103对充电电流的输出功率进行控制,使得电动车辆100在工作温度升高的情况下还能够保持高速的充电,从而缩短充电时间,提高充电效率。所述温度检测单元104可以集成于电源连接器105之中,可以更加快速的获得电动车辆充电过程中的工作温度变化,其中,所述工作温度是指除电动车辆中电池以外充电元器件的温度,例如电源连接器105电极上的温度、电缆上的温度、充电控制盒102中元器件的温度等。其中,充电控制盒包括充电桩和缆上控制器等。
其中,所述充电控制单元103可以如图1a中所示,设置于充电控制盒102之内,或者如图1b所示设置于电源连接器105之中,或者还可以如图1c所示设置于车辆连接器101之中。所述温度检测单元104内置于电源连接器105内部,该温度检测单元104可以为温敏电阻等,用于采集电源连接器105中电极的温度。所述充电控制单元103用于控制向所述电动车辆100输出的充电电流的功率(包括调节充电电流或者电压),从而通过输出充电功率的降低而降低电源连接器105内部的温度。
如图2所示为本文实施例一种充电车辆的充电控制方法流程图,在本图中描述了根据工作温度调节输出充电电流功率的方法,例如,根据采集到的电源连接器105内部的温度来控制向电动车辆输出的充电电流的功率,从而降低电源连接器105内部的温度又能够在充电安全的前提下,保持向电动车辆高效率的充电。所述的充电控制方法由所述充电控制单元103执行,根据温度检测单元104获取的工作温度,具体可以通过脉宽调制(PWM)等方式来调节输出的充电电流占空比,从而调节充电的电流和电压,具体包括:
步骤201,定时获取工作温度;
步骤202,当所述工作温度大于等于第一温度门限并小于第二温度门限时,保持向电动车辆输出的第一充电功率,并触发第一提示信号;
步骤203,当所述工作温度大于等于所述第二温度门限并小于第三温度门限时,降低向电动车辆输出的所述第一充电功率至第二充电功率。
在本文的一个实施例中,当所述工作温度大于等于所述第三温度门限时,停止向电动车辆充电。
在本文的一个实施例中,所述定时获取工作温度中进一步包括,根据指定的时间获取电源连接器的工作温度。
在本步骤中,将温度检测单元内置于电源连接器中,并且所述温度检测单元与所述电源连接器中火线端子和/或零线端子间隔设置,两者采用绝缘并且导热的方式连接,例如可以采用绝缘导热胶固定,这样电源连接器中火线端子的温度可以传递给所述温度检测单元,并且可以避免由于温度检测单元采用温敏电阻而造成高压充电电流烧毁充电控制单元的事故。所述指定的时间是指,根据用户设定的时间,例如电动车辆充电开始后2分钟时开始采集电源连接器的工作温度,以后可以每隔两分钟或者30秒(或者其他时间间隔)采集一次电源连接器的工作温度,或者还可以设定变化的时间间隔采集电源连接器的工作温度,例如,当工作温度超过第二温度门限后采集的时间间隔缩短,当工作温度超过第二温度门限后开始降低时,采集的时间间隔增长等。
在本文的一个实施例中,所述定时获取工作温度中进一步包括,根据所述工作温度的变化趋势来设定所述获取工作温度的时间间隔。
在本步骤中,当工作温度处于上升趋势时,缩短所述获取工作温度的时间间隔;当工作温度处于下降趋势时,增长所述获取工作温度的时间间隔。
例如,当工作温度处于上升趋势时,缩短所述获取工作温度的时间间隔至以前时间间隔的1/2,当工作温度超过第二温度门限后,进一步缩短所述获取工作温度的时间间隔,例如再次缩短为以前时间间隔的1/2;当工作温度处于下降趋势时,增长所述获取工作温度的时间间隔至以前时间间隔的2倍,特别是当工作温度超过第二温度门限后进入所述第二温度门限与第一温度门限之间的区间时,可以进一步增长所述获取工作温度的时间间隔,例如再次增长为以前时间间隔的2倍;当所述工作温度处于下降趋势时,所述工作温度接近第一温度门限或者低于第一温度门限时,增长所述获取工作温度的时间间隔。
在本文的一个实施例中,所述定时获取工作温度中进一步包括,根据气候情况来设定所述获取工作温度的时间间隔。
在本步骤中,当气候情况为夏季时,室外温度较高,因此缩短所述获取工作温度的时间间隔,特别是当工作温度高于第二温度门限时,可以进一步缩短所述获取工作温度的时间间隔,例如再次缩短为以前时间间隔的1/2;当气候情况为冬季时,室外温度较低,因此增长所述获取工作温度的时间间隔,特别是当工作温度低于第二温度门限时,可以进一步增长所述获取工作温度的时间间隔,例如再次增长为以前时间间隔的2倍。
在本文的一个实施例中,当所述工作温度大于等于第一温度门限并小于第二温度门限时,保持向电动车辆输出的第一充电功率,并触发第一提示信号中进一步包括,
所述第一提示信号包括以声、光和/或振动的方式提示用户当前工作温度状态。
在本步骤中,还可以采用振动或者显示屏显示的方式向用户进行提示,或者还可以通过APP(应用软件)的方式将提示信息发送到用户的智能终端(例如手机等智能设备上),可以提示用户注意电动车辆充电元件是否存在于热源附近,或者其他情况,可以通过用户手动解除热源的情况。其中,所述工作温度的状态是指,当前的工作温度所处的温度区间,例如当前的工作温度处于第一温度门限与第二温度门限之间,为正常充电状态;当前的工作温度处于第二温度门限与第三温度门限之间,为危险温度较高的充电状态;当前的工作温度低于第一温度门限,为正常充电状态;当前的工作温度达到第三温度门限,为温度超过安全要求的充电状态。
在本文的一个实施例中,当所述工作温度大于等于所述第二温度门限并小于第三温度门限时,降低向电动车辆输出的所述第一充电功率至第二充电功率之后还包括,
当所述工作温度还处于上升趋势,则进一步降低向电动车辆输出的所述第二充电功率至第三充电功率。
在本步骤中,当工作温度超过第二温度门限后未达到第三温度门限时,通过将充电功率从第一充电功率降低到第二充电功率之后还不能降低工作温度的情况下,进一步降低充电功率至第三充电功率,例如将输出充电功率降低到第二充电功率的1/2或2/3,从而可以进一步降低由于充电功率较高引起的温度升高现象。并且,在降低到第三充电功率之后,根据采集到的工作温度判断工作温度是否处于下降趋势,如果所述工作温度处于下降趋势则保持该第三充电功率,如果所述工作温度还处于上升趋势,则可以进一步降低第三充电功率至第四充电功率。其中,所述采集工作温度的时间间隔可以根据前述方法获得,特别是当工作温度处于下降趋势时的第二温度门限与第一温度门限之间,可以进一步增长采集工作温度的时间间隔。
在本文的一个实施例中,当所述工作温度大于等于所述第二温度门限并小于第三温度门限时,降低向电动车辆输出的所述第一充电功率至第二充电功率之后还包括,
当所述工作温度还处于上升趋势,停止向电动车辆充电。
在本文的一个实施例中,当所述工作温度还处于上升趋势,则进一步降低向电动车辆输出的所述第二充电功率至第三充电功率之后还包括,
当向电动车辆输出第三充电功率,所述工作温度下降到所述第一温度门限与第二温度门限之间后,然后所述工作温度又呈上升趋势,并再次大于等于所述第二温度门限且小于第三温度门限时,则进一步降低向电动车辆输出的所述第三充电功率至低于第三充电功率的功率。
在本步骤中,当采用所述第三充电功率对电动车辆进行充电后,工作温度由于充电功率降低而呈下降趋势,并从大于等于第二温度门限小于第三温度门限之间的区域下降到第一温度门限与第二温度门限之间,在持续的第三充电功率的充电过程中,工作温度又再次上升,当超过第二温度门限后,可以判断出可能充电控制盒或者电动车辆的电池管理系统(BMS)可能出现故障,需要再次降低充电功率,可以将当前正在使用的第三充电功率再次降低至第四充电功率,例如可以降低到第三充电功率的1/2或者其他小于第三充电功率的充电功率,缩短采集时间间隔,等待下次温度检测单元采集工作温度,判断工作温度是否还在持续上升趋势,并且判断是否达到第三温度门限。
在本文的一个实施例中,当所述工作温度还处于上升趋势,则进一步降低向电动车辆输出的所述第二充电功率至第三充电功率之后还包括,
当向电动车辆输出第三充电功率,所述工作温度下降到所述第一温度门限与第二温度门限之间后,然后所述工作温度又呈上升趋势,停止向电动车辆充电。
在本文的一个实施例中,当所述工作温度还处于上升趋势,则进一步降低向电动车辆输出的所述第二充电功率至第三充电功率之后还包括,
当向电动车辆输出第三充电功率,所述工作温度下降到小于所述第一温度门限后,增大向电动车辆输出的所述第三充电功率至大于等于第三功率的功率。
在本步骤中,当采用所述第三充电功率对电动车辆进行充电后,工作温度由于充电功率降低而呈下降趋势,并从大于等于第二温度门限小于第三温度门限之间的区域下降到第一温度门限与第二温度门限之间,在持续的第三充电功率的充电过程中,工作温度持续下降,直到工作温度低于第一温度门限,此时可以采用大于等于第三充电功率的充电功率进行充电,例如采用初始的第一充电功率对电动车辆进行充电,以提高充电效率。然后,随着充电功率的提高,工作温度又再次呈上升趋势,并且超过第一温度门限后再次进入到第一温度门限与第二温度门限之间,以及第二温度门限与第三温度门限之间,此时再次重复前述的步骤,将向电动车辆输出的充电功率从第一充电功率下降到第二充电功率,当工作温度还呈现上升趋势,则需要进一步降低第二充电功率至第三充电功率,当工作温度大于等于第三温度门限后,停止向电动车辆充电,即输出充电功率为0。如此反复循环处理,可以在保证充电安全的前提下,维持向电动车辆高速的高速充电,缩短充电时间,提高充电效率。
在本文的一个实施例中,当向电动车辆输出第三充电功率,所述工作温度下降到小于所述第一温度门限后,增大向电动车辆输出的所述第三充电功率至大于等于第三充电功率的功率后还包括,
当所述工作温度再次超过第二温度门限后,降低向电动车辆输出的所述功率。
在本步骤中,当经过第两次降低输出充电功率的调节后,充电功率由第一充电功率降低到第二充电功率,又从第二充电功率降低到第三充电功率后,工作温度降低至第一温度门限以下时,将向电动车辆输出的第三充电功率恢复为第一充电功率(也可能是将输出的功率提升至第三充电功率与第一充电功率之间的任意值,也可能是等于所述第一充电功率),加快充电速度,提高充电效率;在此之后,工作温度再次上升并超过了第二温度门限,如果此时还是如同前述步骤那样将向电动车辆输出的第一充电功率下调至第二充电功率,然后再根据工作温度是否还在第二温度门限以上呈上升趋势才将第二充电功率降低到第三充电功率,可能还会重复前述反复功率调整使得工作温度再次上升到第二温度门限以上,因此,在本步骤中,可以将第一充电功率直接下调到第三充电功率,从而可以尽快的降低工作温度,避免充电功率的频繁动作。
在本文的一个实施例中,当所述工作温度大于等于所述第二温度门限并小于第三温度门限时,降低向电动车辆输出的所述第一充电功率至第二充电功率之后还包括,
当所述工作温度处于下降趋势,则进一步升高向电动车辆输出功率至大于或等于所述第二充电功率的功率。该大于或等于所述第二充电功率的功率小于或等于第一充电功率。
在本文的一个实施例中,当所述工作温度大于等于所述第三温度门限时,停止向电动车辆充电之后还包括,
当工作温度降低到所述第二温度门限后,恢复向电动车辆充电功率,其功率大于0。
在本步骤中,无论采用第一充电功率、第二充电功率或者第三充电功率向电动车辆输出充电电流,造成电源连接器中的工作温度超过第三温度门限时,都将停止向电动车辆充电的电流输出,从而可以保障充电的安全性。当停止输出充电电流后,工作温度会随时间降低,此时温度检测单元可以增长采集温度的时间间隔,获取电源连接器中的工作温度,通过充电控制单元对工作温度的判断,当工作温度小于第二温度门限时,则恢复向电动车辆的充电电流,例如可以采用初始的额定功率(大于0),即,第一充电功率对电动车辆进行充电。
在本文的一个实施例中,当所述工作温度大于等于所述第三温度门限时,停止向电动车辆充电之后还包括,
当工作温度降低到所述第三温度门限以下后,恢复向电动车辆输出的所述充电功率至大于0。
在本步骤中,当工作温度超过第三温度门限时,停止向电动车辆充电之后,工作温度缓慢降低,又回落到第三温度门限之下,充电控制单元将恢复小功率的向电动车辆充电,可以采用前述较低的充电功率进行充电,例如采用第三充电功率,或者第四充电功率。
在本文的一个实施例中,当所述工作温度大于等于所述第三温度门限时,停止向电动车辆充电之后还包括,
当工作温度降低到所述第一温度门限后,恢复向电动车辆充电,并根据气候情况决定充电功率。
在本步骤中,当由于工作温度超过第三温度门限时而造成停止向电动车辆进行充电的故障时,随着停止了充电电流,电源连接器中的工作温度逐步降低,当工作温度低于 第一温度门限后,可以恢复向电动车辆的充电,此时,可以根据当前的气候情况决定恢复后的充电功率,例如,当地为南方地区,夏季的温度较高,虽然电源连接器的工作温度降低到第一温度门限,但是如果恢复到第一充电功率可能导致电源连接器的温度快速升高至第三温度门限,因此,将充电功率降低为第二充电功率,恢复向电动车辆的充电电流;当地为北方地区时,夏季的温度较低,可以将充电功率恢复为第一充电功率,向电动车辆进行充电。
在本文的一个实施例中,根据获取的所述工作温度,判断温度检测单元是否为正常工作状态,记录所述温度检测单元的工作状态;
当所述工作温度大于等于所述第三温度门限时,停止向电动车辆充电后还包括,
始终保持停止向电动车辆充电,直至重新上电后,查询所述温度检测单元的工作状态;
当所述温度检测单元的工作状态为正常工作状态,则恢复向电动车辆输出的所述第一充电功率;
当所述温度检测单元的工作状态为非正常工作状态,则继续保持停止向电动车辆充电。
在本步骤中,当温度检测单元获取的工作温度超出预设的范围,例如以温度检测单元采集热敏电阻的电压作为工作温度作为说明,当电压值超过代表工作温度200℃的电压值时,或者当电压值低于代表工作温度-60℃的电压值时,都被认为是温度检测单元损坏,无法正常工作,此时的工作状态为非正常工作状态,其中,当热敏电阻断路时可能会出现电压值较高的情况,例如设置当热敏电阻电压值为5.5V时代表工作温度达到200℃,当热敏电阻断路时可能出现0电压的情况,例如设置当热敏电阻电压值为0V时代表工作温度达到-60℃。当出现前述的情况后,在存储器中记录温度检测单元的当前工作状态,当工作温度出现大于第三温度门限时,停止向电动车辆充电后,将电源连接器与充电电源解除连接关系,此时充电控制单元断电,当将电源连接器与充电电源重新连接,此时充电控制单元重新上电,系统进行自检,充电控制单元查询存储器中断电之前温度检测单元的工作状态,如果为正常工作状态,则回到步骤201重新开始执行;如果为非正常工作状态,则说明本文的充电控制装置已经损坏,不能正常工作,如果继续充电将失去过温保护的功能,造成充电的安全隐患,因此,继续保持停止向电动车辆充电。
在本文的一个实施例中,当所述工作温度大于或等于第一温度门限并小于第二温度门限时,保持向电动车辆输出的第一充电功率,并触发第一提示信号可以被替换为,
当所述工作温度大于或等于第一温度门限并小于第二温度门限时,降低所述向电动车辆输出的第一充电功率。例如可以降低到第一充电功率与第二充电功率之间,或者降低到第二充电功率,于此同时,还可以触发第一提示信号。
在本文的一个实施例中,当所述工作温度大于或等于第一温度门限并小于第二温度门限时,降低所述向电动车辆输出的第一充电功率之后还包括,
当所述工作温度降低到第一温度门限以下时,提升所述向电动车辆输出的第一充电功率。该提升后的输出功率大于等于所述第一充电功率。
通过上述本文实施例的方法,可以在保障电动车辆充电安全的前提下,提高充电效率,缩短充电时间;在电源连接器处放置温度检测单元提高了温度检测的反应速度,减少线缆成本。
如图3所示为本文实施例一种充电车辆的充电控制装置的结构示意图,在本图中描述了根据工作温度对电动车辆充电进行控制的装置,该装置可以通过专用芯片或者通用芯片实现,或者运行于单片机或者工业计算机之上,其中的功能模块可以通过软件或者逻辑电路实现,从而执行上述图2所示的方法,具体包括:
温度检测单元301,用于定时获取工作温度;
充电控制单元302,用于当所述工作温度大于等于第一温度门限并小于第二温度门限时,保持向电动车辆输出的第一充电功率,并触发第一提示信号;
当所述工作温度大于等于所述第二温度门限并小于第三温度门限时,降低向电动车辆输出的所述第一充电功率至第二充电功率。
所述充电控制单元302还用于,当所述工作温度大于等于所述第三温度门限时,停止向电动车辆充电。
在本文的一个实施例中,如图4所示为本文实施例一种充电车辆的充电控制装置的具体结构示意图,在该图中细化了各个功能单元的内部逻辑结构,还包括:
存储器303,用于存储用户指定的时间;
所述温度检测单元301根据所述指定的时间获取电源连接器的工作温度。
在本实施例中,所述存储器303可以为非易失性存储器,例如包括可编程只读内存(Programmable read-only memory),其内部有行列式的镕丝,可依用户(厂商)的需要,利用电流将其烧断,以写入所需的数据及程序,镕丝一经烧断便无法再恢复,亦即 数据无法再更改;电可擦可编程只读内存(Electrically erasable programmable read only memory),电子抹除式可复写只读存储器运作原理类似EPROM,但是抹除的方式是使用高电场来完成,因此不需要透明窗;闪存(Flash memory),是一种电子式可清除程序化只读存储器的形式,允许在操作中被多次擦或写的存储器,所述闪存要用于一般性数据存储,以及在电脑与其他数字产品间交换传输数据,如储存卡与U盘。
在本文的一个实施例中,所述充电控制单元302根据所述工作温度的变化趋势来设定所述获取工作温度的时间间隔;
所述温度检测单元301根据所述充电控制单元302设定的获取工作温度的时间间隔采集工作温度。
在本文的一个实施例中,所述充电控制单元302根据气候情况来设定所述获取工作温度的时间间隔;
所述温度检测单元301根据所述充电控制单元302设定的获取工作温度的时间间隔采集工作温度。
在本文的一个实施例中,还包括提示单元304,用于通过声、光方式提示用户当前工作温度状态。
在本文的一个实施例中,还包括通信单元305,用于将提示用户当前充电元件温度较高的第一提示信息发送给用户的智能终端。
在本文的一个实施例中,所述充电控制单元302还用于,当所述工作温度还处于上升趋势,则进一步降低向电动车辆输出的所述第二充电功率至第三充电功率。
在本文的一个实施例中,所述充电控制单元302还用于,当向电动车辆输出第三充电功率,所述工作温度下降到所述第二温度门限与第一温度门限之间后,然后所述工作温度又呈上升趋势,并再次大于等于所述第二温度门限并小于第三温度门限时,则进一步降低向电动车辆输出的所述第三充电功率至第四充电功率。
在本文的一个实施例中,所述充电控制单元302还用于,当向电动车辆输出第三充电功率,所述工作温度下降到小于所述第一温度门限后,增大向电动车辆输出的所述第三充电功率至第一充电功率。
在本文的一个实施例中,所述充电控制单元302还用于,当工作温度降低到所述第一温度门限后,恢复向电动车辆输出的所述第一充电功率。
在本文的一个实施例中,所述充电控制单元302还用于,当所述工作温度再次超过第二温度门限后,降低向电动车辆输出的所述第一充电功率至第三充电功率。
在本文的一个实施例中,所述充电控制单元302还用于,当所述工作温度大于等于所述第三温度门限时,停止向电动车辆充电之后,当工作温度降低到所述第一温度门限后,恢复向电动车辆输出的所述第一充电功率。
在本文的一个实施例中,所述充电控制单元302还用于,当所述工作温度大于等于所述第三温度门限时,停止向电动车辆充电之后,当工作温度降低到所述第三温度门限以下后,恢复向电动车辆输出的所述第三充电功率。
在本文的一个实施例中,所述充电控制单元302还用于根据获取的所述工作温度,判断温度检测单元是否为正常工作状态,所述存储器303还用于记录所述温度检测单元的工作状态;
所述充电控制单元302还用于,当所述工作温度大于等于所述第三温度门限时,停止向电动车辆充电后,始终保持停止向电动车辆充电,直至重新上电后,查询所述温度检测单元的工作状态;当所述温度检测单元的工作状态为正常工作状态,则恢复向电动车辆输出的所述第一充电功率;当所述温度检测单元的工作状态为非正常工作状态,则继续保持停止向电动车辆充电。
在本文的一个实施例中,所述充电控制单元302还用于,当工作温度降低到所述第一温度门限后,恢复向电动车辆充电,并根据气候情况决定充电功率。
通过上述本文实施例的装置,可以在保障电动车辆充电安全的前提下,提高充电效率,缩短充电时间;在电源连接器处放置温度检测单元提高了温度检测的反应速度,减少线缆成本。
如图5所示为本文实施例充电控制装置的具体电路示意图,在本图中描述了充电控制装置的电路结构,所述温度检测单元501可以为热敏电阻、热电偶、电阻温度检测器、数字传感器等,其中,热敏电阻中又可以选用正温度系数的热敏电阻(PTC)或者负温度系数的热敏电阻(NTC),例如附图5中的NTC型热敏电阻RT1,每种不同的温度检测单元其体现出来的工作温度(例如电气元件的温度)信息可以表达为不同的温度电压。在本实施例中,温度检测单元501还连接有分压电阻R3,用于设置该温度检测单元输出的温度电压符合后端比较单元502的要求。该温度检测单元501可以被置于电源连接器内部的火线端子和/或零线端子上,并使用绝缘导热的硅胶将温度检测单元501和电源连接器内部的火线端子和/或零线端子进行固定。
作为本文实施例的一个方面,所述比较单元502为迟滞型比较器,该迟滞比较器第一输入端连接所述温度检测单元501输出的温度电压,第二输入端连接基准电压之前连 接有一电阻R7,输出端连接驱动单元504的输入端,将所述第一比较结果电压输出到所述驱动单元504,并且所述输出端串联一电阻R6后连接至所述第二输入端。
在本实施例中,上述的迟滞型的比较器是指,所述比较单元在只有一个基准电压的情况下,当第一输入端输入的温度电压的幅度接近基准电压时,如果第一输入端的噪声干扰较大,且比较响应速度足够快,有可能引起输出电压错误的跃变。为了增大比较单元的抗干扰能力,将基准电压改为两个。当输入的温度电压由低电平向高电平转变时,只有温度电压达到第一基准电压时,比较单元502的输出才发生改变;而当输入的温度电压由高电平向低电平转变时,输入的温度电压降低到第二基准电压时,比较单元输出才会发生改变。因此,上述实施例中比较单元的结构具有迟滞性,即具有惯性,因此输入温度电压的微小变化不会引起比较单元输出电压的跃变,此时的比较单元具有抗干扰能力。
其中,比较单元502输出的第一比较结果电压可以是高电平或者也可以是低电平,视所述驱动单元504的结构而定,并且与后述的充电控制单元503根据温度电压与预设阈值比较输出的第二比较结果电压的高低电平含义相同,即,例如,当比较单元502输出的第一比较结果电压表示了工作温度(温度电压)高于预设温度(基准电压)时,输出高电平的第一比较结果电压,为了简明的目的,本实施例的附图中仅示出了一个比较单元502,该比较单元502可以用于比较工作温度与第三温度门限,还可以具有其他的比较单元用于比较工作温度与第一温度门限、工作温度与第二温度门限;此时,充电控制单元503当判断工作温度(温度电压)高于预设温度(第一温度门限、第二温度门限或者第三温度门限)时,也应当输出高电平的第二比较结果电压,反之亦然。如此使得输出的比较结果电压高、低电平含义相同,从而可以实现多重温控保护。
作为本文实施例的一个方面,所述充电控制单元503与所述温度检测单元501连接,获取所述温度电压;所述充电控制单元503与所述驱动单元504的输入端连接,将所述第二比较结果电压输出到所述驱动单元504。
在本实施例中,充电控制单元503可以为微处理器(MCU),通过IN管脚(IN1-IN3)接收信号,通过OUT管脚(OUT1-OUT3)输出信号,将温度电压转换为数字形式后,与预设阈值进行比较,例如,当所述温度电压所代表的数值大于等于所述第三温度门限,则输出代表断开开关单元505的第二比较结果电压,当所述温度电压所代表的数值小于所述第一温度门限,则输出代表导通开关单元505的第二比较结果电压,所述第二比较结果电压可能是高电平也可能是低电平,根据驱动单元504的结构来决定。
作为本文实施例的一个方面,相比较图5还可以省略第二三极管Q2,所述驱动单元504包括第一三极管Q1,所述第一三极管Q1的集电极与电源VCC连接,基极与所述比较单元502以及充电控制单元503连接,同时接收所述比较单元502输出的第一比较结果电压以及充电控制单元503输出的第二比较结果电压,发射极接地,其中,所述集电极还连接所述开关单元505,当所述第一三极管Q1导通时,所述开关单元505断开,当所述第一三极管Q1截止时,所述开关单元505导通。
在本实施例中,所述基极与所述比较单元502以及充电控制单元103连接,同时接收所述比较单元502输出的第一比较结果电压以及充电控制单元503输出的第二比较结果电压时,当所述第一比较结果电压和第二比较结果电压任意一个为高电平时,所述第一三极管Q1都会导通,也就是说,当比较单元502判断出当前的工作温度超过第三温度门限输出高电平的第一比较结果电压,或者充电控制单元503判断出当前的工作温度超过所述第三温度门限输出高电平的第二比较结果电压,都将会使得第一三极管Q1的基极接收到高电平,从而第一三极管Q1导通,从而断开开关单元505。
作为本文实施例的一个方面,所述驱动单元504包括第一三极管Q1以及第二三极管Q2,所述第一三极管Q1的集电极与电源VCC连接,第一三极管Q1的基极与所述比较单元502以及充电控制单元503连接,同时接收所述比较单元502输出的第一比较结果电压以及充电控制单元503输出的第二比较结果电压,第一三极管Q1的发射极接地;所述第二三极管Q2的集电极与所述开关单元505连接,第二三极管Q2的基极与所述第一三极管Q1的集电极连接,第二三极管Q2的发射极接地;当所述第一三极管Q1导通时,所述第二三极管Q2截止,所述开关单元505断开,当所述第一三极管Q1截止时,所述第二三极管Q2导通,所述开关单元505导通。
在上述实施例中,还可以采用其他形式来实现驱动单元504的功能,还可以采用PNP型三极管或是mos管等驱动所述开关单元505,其中所述开关单元例如为继电器,例如可以将比较单元502输出的第一比较结果电压转换为数字形式,与所述充电控制单元503输出的数字形式的第二比较结果电压进行“或”操作,当两者其中有一个为高电平,则代表工作温度超过第三温度门限,断开开关单元505,可以通过数字电路中的门电路来实现上述判断和操作,还可以采用其他形式的判断和操作电路,在此不再赘述。
作为本文实施例的一个方面,所述充电控制装置还包括补偿单元506,连接于所述比较单元502与充电控制单元503之间,当所述充电控制单元503检测到所述基准电压有偏差时,向所述补偿单元506输出调节电压,用以调节所述基准电压。
在本实施例中,当向所述比较单元502输出基准电压的电气元件出现老化或者工作温度发生变化后引起这部分电气元件发生变化,导致基准电压发生漂移,则可以通过充电控制单元503对基准电压进行调节,以使得基准电压更准确,提高比较单元502温度判断的精度。充电控制单元503获取所述基准电压,根据所述温度电压与所述预设阈值比较,生成针对所述基准电压的调节电压,施加到所述基准电压上。
作为本文实施例的一个方面,所述补偿单元506进一步包括,第三三极管Q3,所述第三三极管Q3的集电极与电源VCC以及所述比较单元502的基准电压连接,所述第三三极管Q3的基极与所述充电控制单元503相连接,所述第三三极管Q3的发射极接地;当所述充电控制单元503判断所述接收到的基准电压与预设阈值不相等时,所述充电控制单元503向所述第三三极管Q3的基极输出调节电压,用以控制所述第三三极管Q3的集电极上的基准电压。
在本实施例中,充电控制单元503的输入管脚与比较单元502的第二输入端的基准电压相连接,获取比较单元502的第二输入端的基准电压,当基准电压由于电气元件的变化导致漂移时,充电控制单元503获得的基准电压与预设阈值不相等,例如设置的基准电压为0.5V,设置的预设阈值同样为0.5V,但是漂移后的基准电压为0.48V,此时,充电控制单元503比较采集到的基准电压与预设阈值不同时,则会控制输出管脚输出调节电压,导通第三三极管Q3从而可以调节输入到比较单元502第二输入端的基准电压,将其由0.48V调节回到设置的0.5V。
作为本文实施例的一个方面,所述充电控制单元503还包括第一输出管脚,用于根据所述温度电压输出脉冲调制信号(PWM)以调节输出充电电流的功率,通过与电动车辆连接的接口将所述脉冲调制信号输出给所述电动车辆。
在本实施例中,由于充电控制装置的元器件温度升高或者降低,充电控制单元503可以根据温度升高或者降低的程度(温度升高时未到达预设阈值,即温度未超过安全充电温度),降低或者升高输出的充电电流的功率,例如对于交流充电来说,由于温度升高通过将充电电流由8A调节到6A的PWM信号,该调节输出充电功率的PWM信号发送给电动车辆的电池管理系统(BMS),BMS系统通过电动车辆的功率调节单元采用相应充电电流对电池进行充电。从而可以实现降低充电电流强度的控制,在充电控制装置的元器件温度升高后还可以保持向电动车辆的充电,而不会如同现有技术一般直接停止对电动车辆的充电,从而可以提高充电效率,提高用户对于电动车辆充电的使用体验。
作为本文实施例的一个方面,所述充电控制单元503还包括第二输出管脚,用于根据所述温度电压输出充电功率调节信号(CAN/Ethernet),通过与电动车辆连接的接口将所述充电功率调节信号输出给所述电动车辆;
所述充电控制装置还包括功率调节单元,连接于充电控制单元503与开关单元505之间,用于根据所述充电功率调节信号调节输出的充电电流的功率。
在本实施例中,由于充电控制装置元器件,例如电源连接器的温度升高或者降低,充电控制单元503可以根据温度升高或者降低的程度(温度升高时未到达预设阈值,即温度未超过安全充电温度),降低或者升高输出的充电电流的功率,例如对于直流充电来说,充电控制单元503通过向功率调节单元输出充电功率调节信号,降低或者升高所述功率调节单元输出的充电电流的功率,当电源连接器内的工作温度超过第三温度门限,即超过安全充电温度,则充电控制单元503或者比较单元502会输出驱动开关单元505断开的驱动信号,当所述开关单元505断开后,所述功率调节单元停止向电动车辆输出充电电流,从而也就能够降低充电控制装置内部以及电动车辆电池的温度,确保充电过程的安全。其中,所述充电控制单元503输出的充电功率调节信号还可以通过充电控制装置上的充电枪的CAN总线或者以太网总线发送给电动车辆的BMS系统,由BMS系统根据充电功率调节信号采用从所述充电控制装置开关单元505输出的充电电流对电池进行相应功率的充电。从而可以实现降低充电电流强度的控制,在充电控制装置元器件温度升高后还可以保持向电动车辆的充电,而不会如同现有技术一般直接停止对电动车辆的充电,从而可以提高充电效率,提高用户对于电动车辆充电的使用体验。
继续参考图5,图中VCC为供电电压源正端(后简称为电源),GND为供电电压源负端,V REF为基准电压即设定的温度门限,与电阻R7连接,电阻R7的另一端与运算放大器的正向输入引脚(第二输入端)相连接;基准电压V REF可以是固定值,也可以是充电控制单元503内部的预设阈值,此情况下可以实现充电控制装置可自动调节温度门限。热敏电阻RT1是热敏元件,热敏电阻RT1一端与地连接,另一端与电阻R3连接组成温度检测单元501,温度检测单元501连接比较单元502的输入端,即电阻R3与热敏电阻RT1的连接点与运算放大器U1的反向输入端引脚(第一输入端)连接;热敏电阻RT1与电阻R3组成分压电路,热敏电阻RT1可以为NTC型热敏电阻,当电源连接器内的工作温度升高时,热敏电阻RT1电阻值减小,其分压值的温度电压V i的电压值减小,反之温度降低时,V i值升高。电阻R6是运算放大器U1的输出引脚(输出端)与正向引脚(第二输入端)连接的反馈电阻。
当V i<V REF时,其中V out为运算放大器U1的输出端,运算放大器U1输出高电平;V i>V REF,U1输出低电平;V out与二极管D1的一端连接,D1的另一端与电阻R4连接,电阻R4的另一端与驱动单元504的第一三极管Q1基极相连接,电阻R5一端与电源VCC连接,另一端与第一三极管Q1的集电极连接,第二三极管Q2的基极与第一三极管Q1的集电极和电阻R5的连接点相连,第二三极管Q2的发射极连接GND,第二三极管Q2的集电极与开关单元505的控制端连接。当V out为高电平,第一三极管Q1导通,第二三极管Q2截止,供电网络的开关K1(开关K1的作用是控制进入电动车辆的充电电流通路,当开关K1断开时,直接切断向电动车辆的充电电流,终止充电过程)断开,断开向电动车辆输出的充电电流;当V out输出低电平,第一三极管Q1截止,第二三极管Q2导通,所述供电网络开关K1闭合,保持向电动车辆输出充电电流,L_IN、K1与L_OUT是主供电网络中的一通路,当工作温度超过第三温度门限时,V out输出高电平,断开供电网络,L_OUT输出的充电电流为0。
其中,热敏电阻RT1可以与运算放大器U1等其他电气元件集成到一起,也可以分开放置,热敏电阻RT1的数量可以是一个,也可以是多个,可以位于充电控制装置的不同部位,用来采集充电控制装置中不同部位的工作温度或者电气元件的温度,例如将热敏电阻RT1安装于电源连接器。
所述运算放大器U1可以为迟滞比较器,避免开关K1在工作温度处于温度门限附近时开关单元505在闭合、断开两种状态频率切换。当工作温度≥T3(第三温度门限)时,开关单元505断开,当工作温度≤T1(第一温度门限)时,开关单元505闭合,其中T3>T1。迟滞电压宽度△V=(R7/R6)×(VH-VL),其中VH为VCC,VL为0V,迟滞比较器的两个门限电压u+=(VH-V REF)×R7/(R7+R6),u-=(VL-V REF)×R7/(R7+R6);当迟滞比较器的输出电压V out=VH时,此时V REF=u+;当温度电压V i大于等于V REF时,迟滞比较器输出电压V out改为VL,而V REF点电压也变成了u-,此条件下当V i的电压小于V REF时,输出电压V out改为VH,因为u+-u-=△V,所以与普通比较器相比迟滞比较器的灵敏度低一些,但抗干扰能力却大大提高。
为了提高电动车辆充电的安全性,充电控制单元503采集温度电压V i和基准电压V REF,当检测到基准电压V REF与预设阈值有偏差时,即,基准电压V REF发生变化,通过补偿单元506调节基准电压V REF的值,修正基准电压V REF的值,提高温度判断的精度。其中充电控制单元503的一个输出端连接电阻R1,电阻R1的另一端连接第三三极管Q3的基极,第三三极管Q3的发射极连接GND,第三三极管Q3的集电极连接电阻R2的一端,并 与基准电压V REF相连,电阻R2的另一端连接电源VCC,充电控制单元503通过输出调节电压来控制第三三极管Q3导通的占空比来实现对基准电压V REF的调节。
充电控制单元503还通过与之相连的电阻R8的反馈来实现对开关K1状态的检测,当检测到工作温度超过第三温度门限时,开关K1还保持导通状态,则说明比较单元502失去对开关K1的控制,充电控制单元503通过V i与预设阈值进行比较,当达到或者超过预设阈值时,输出高电平,通过二极管D2,使第一三极管Q1导通,第二三极管Q2截止,从而断开供电网络。通过比较单元502和充电控制单元503实现对温度检测单元501的双重检测,和对驱动单元504的双重控制,提高电动车辆充电的安全性。
如图6a所示为本文实施例充电控制装置与电动车辆充电结构的示意图,在本实施例中充电控制盒为交流充电系统,当工作温度升高但是未超过设置的第三温度门限时,充电控制装置600的充电控制单元603修改通信信号的占空比值,例如充电电流为8A时对应的占空比值(PWM信号)是13.3%,充电电流为6A时对应的占空比值(PWM信号)10%进行调整充电电流的功率,充电控制单元603将修改后的通信信号输出给电动车辆的功率调节单元607,功率调节单元607在电动车辆的BMS系统的控制下降低充电电流强度,当温度检测单元601检测到电源连接器内的工作温度超过第三温度门限时,所述开关单元605断开,则停止向电动车辆充电。在其他的实施例中,充电控制单元603还可以输出调节充电电流的电压的控制信号。
在该图6a中,还包括了反馈单元608,获取驱动单元604的驱动信号,充电控制单元603从而可以判断驱动单元604是否正确驱动开关单元605。
如图6b所示为本文实施例充电控制装置与电动车辆充电结构的另一示意图,在本实施例中充电控制盒为直流充电系统,当工作温度升高但是未超过设置的第三温度门限时,充电控制装置600的充电控制单元603调节充电功率,产生充电功率调节信号,通过与电动车辆连接的充电枪中的CAN总线接口将该充电功率调节信号以CAN报文的方式发送给电动车辆,从而降低充电电流的功率;并且,还将该充电功率调节信号输出给充电控制装置中的功率调节单元607,该功率调节单元607根据充电功率调节信号调节输出的充电电流的功率(调节电流或者电压,或者同时调节电流和电压)向电动车辆的电池进行充电。
其中,功率调节单元607接收充电电流,将该充电电流的功率进行调节后通过开关单元605输出到电动车辆。
以上的实施例中,降低充电电流的功率对电动车辆电池进行充电,可以降低充电部件的温度,当充电控制装置的温度低于另一温度门限(例如第一温度门限)时,则可以根据温度检测单元601获取电源连接器内部的工作温度,然后充电控制单元603根据工作温度向功率调节单元607输出控制指令恢复充电电流的功率,提高充电速度。
如图7a所示为本文实施例电动车辆充电过程中根据工作温度控制充电功率的示意图,在本图中描述了当从t0时刻开始对电动车辆充电,通过温度检测单元获取到的电源连接器内部的工作温度随着时间开始上升,到t1时刻工作温度始终没有超过第一温度门限T1,此时充电控制单元控制始终采用第一充电功率P1对充电车辆进行充电。其中,在t0时刻到t1时刻之间温度检测单元根据工作温度上升的趋势,采集电源连接器中工作温度的时间间隔不断缩短,采集了多次工作温度。
如图7b所示为本文实施例电动车辆充电过程中根据工作温度控制充电功率的示意图,在本图中描述了当从t0时刻开始对电动车辆充电,通过温度检测单元获取到的电源连接器内部的工作温度随着时间开始上升,到t1时刻工作温度超过第一温度门限T1,但是并未超过第二温度门限T2;随着时间的推移,温度检测单元根据工作温度上升的趋势,采集电源连接器中工作温度的时间间隔不断缩短,此时充电控制单元控制始终采用第一充电功率P1对充电车辆进行充电;工作温度开始呈下降趋势,采集电源连接器中工作温度的时间间隔不断增长,当到达t2时刻,工作温度降低到第一温度门限T1,此时充电控制单元控制始终采用第一充电功率P1对充电车辆进行充电;当工作温度呈上升趋势,采集电源连接器中工作温度的时间间隔不断缩短,当到达t3时刻,工作温度升高到第一温度门限,此时充电控制单元控制始终采用第一充电功率P1对充电车辆进行充电;工作温度开始呈下降趋势,采集电源连接器中工作温度的时间间隔不断增长,当到达t4时刻,工作温度降低到第一温度门限,此时充电控制单元控制始终采用第一充电功率P1对充电车辆进行充电。
如图7c所示为本文实施例电动车辆充电过程中根据工作温度控制充电功率的示意图,在本图中描述了当从t0时刻开始对电动车辆充电,通过温度检测单元获取到的电源连接器内部的工作温度随着时间开始上升,到t1时刻工作温度超过第一温度门限T1,但是并未超过第二温度门限T2;随着时间的推移,温度检测单元根据工作温度上升的趋势,采集电源连接器中工作温度的时间间隔不断缩短,此时充电控制单元控制始终采用第一充电功率P1对充电车辆进行充电;工作温度呈持续缓慢上升趋势,采集电源连接器中工作温度的时间间隔不断缩短,当到达t2时刻,工作温度还是处于第一温度门限T1 与第二温度门限T2之间,此时充电控制单元控制始终采用第一充电功率P1对充电车辆进行充电;工作温度呈持续缓慢上升趋势,采集电源连接器中工作温度的时间间隔不断缩短,当到达t3时刻,工作温度还是处于第一温度门限T1与第二温度门限T2之间,此时充电控制单元控制始终采用第一充电功率P1对充电车辆进行充电。
如图7d所示为本文实施例电动车辆充电过程中根据工作温度控制充电功率的示意图,在本图中描述了当从t0时刻开始对电动车辆充电,通过温度检测单元获取到的电源连接器内部的工作温度随着时间开始上升,到t1时刻工作温度超过第一温度门限T1达到了第二温度门限T2,此时充电控制单元控制降低向电动车辆输出的第一充电功率P1至第二充电功率P2;随着时间的推移,温度检测单元根据工作温度上升的趋势,采集电源连接器中工作温度的时间间隔不断缩短,当t2时刻工作温度超过所述第二温度门限T2后还处于上升趋势,则此时充电控制单元控制进一步降低向电动车辆输出的第二充电功率P2至第三充电功率P3;工作温度开始呈下降趋势,采集电源连接器中工作温度的时间间隔不断增长,当到达t3时刻,工作温度依然高于第二温度门限T2,此时充电控制单元控制始终采用第三充电功率P3对充电车辆进行充电;当工作温度继续呈下降趋势,采集电源连接器中工作温度的时间间隔不断增长,当到达t4时刻,工作温度降低到第一温度门限以下,此时充电控制单元控制提高充电功率,将充电功率从第三充电功率提升至第一充电功率对充电车辆进行充电。
如图7e所示为本文实施例电动车辆充电过程中根据工作温度控制充电功率的示意图,在本图中描述了当从t0时刻开始对电动车辆充电,通过温度检测单元获取到的电源连接器内部的工作温度随着时间开始上升,到t1时刻工作温度超过第一温度门限T1达到了第二温度门限T2,此时充电控制单元控制降低向电动车辆输出的第一充电功率P1至第二充电功率P2;随着时间的推移,温度检测单元根据工作温度上升的趋势,采集电源连接器中工作温度的时间间隔不断缩短,当t2时刻工作温度超过所述第二温度门限T2后还处于上升趋势,则此时充电控制单元控制进一步降低向电动车辆输出的第二充电功率P2至第三充电功率P3;工作温度开始呈下降趋势,采集电源连接器中工作温度的时间间隔不断增长,当到达t3时刻,工作温度依然高于第二温度门限T2,此时充电控制单元控制始终采用第三充电功率P3对充电车辆进行充电;当工作温度继续呈下降趋势,采集电源连接器中工作温度的时间间隔不断增长,当到达t4时刻,工作温度还处于第一温度门限与第二温度门限之间时,此时充电控制单元控制保持第三充电功率P3对充电车辆进行充电。
如图7f所示为本文实施例电动车辆充电过程中根据工作温度控制充电功率的示意图,在本图中描述了当从t0时刻开始对电动车辆充电,通过温度检测单元获取到的电源连接器内部的工作温度随着时间开始上升,到t1时刻工作温度超过第一温度门限T1达到了第二温度门限T2,此时充电控制单元控制降低向电动车辆输出的第一充电功率P1至第二充电功率P2;随着时间的推移,温度检测单元根据工作温度上升的趋势,采集电源连接器中工作温度的时间间隔不断缩短,当t2时刻工作温度超过所述第二温度门限T2后还处于上升趋势,则此时充电控制单元控制进一步降低向电动车辆输出的第二充电功率P2至第三充电功率P3;工作温度继续呈上升趋势,采集电源连接器中工作温度的时间间隔不断缩短,当到达t3时刻,工作温度依然高于第二温度门限T2,但未达到第三温度门限T3,此时充电控制单元控制始终采用第三充电功率P3对充电车辆进行充电;当工作温度继续呈上升趋势,采集电源连接器中工作温度的时间间隔不断缩短,当到达t4时刻,工作温度到达第三温度门限时,此时充电控制单元控制断开对充电车辆进的充电。
如图7g所示为本文实施例电动车辆充电过程中根据工作温度控制充电功率的示意图,在本图中描述了当从t0时刻开始对电动车辆充电,通过温度检测单元获取到的电源连接器内部的工作温度随着时间开始上升,到t1时刻工作温度超过第一温度门限T1达到了第二温度门限T2,此时充电控制单元控制降低向电动车辆输出的第一充电功率P1至第二充电功率P2;随着时间的推移,温度检测单元根据工作温度上升的趋势,采集电源连接器中工作温度的时间间隔不断缩短,当t2时刻工作温度超过所述第二温度门限T2后还处于上升趋势,则此时充电控制单元控制进一步降低向电动车辆输出的第二充电功率P2至第三充电功率P3;工作温度开始呈下降趋势,采集电源连接器中工作温度的时间间隔不断增长,当到达t3时刻,工作温度依然高于第二温度门限T2,此时充电控制单元控制始终采用第三充电功率P3对充电车辆进行充电;当工作温度继续呈下降趋势,采集电源连接器中工作温度的时间间隔不断增长,当到达t4时刻,工作温度还处于第一温度门限与第二温度门限之间时,此时充电控制单元控制保持第三充电功率P3对充电车辆进行充电;随着时间的推移,温度检测单元根据工作温度上升的趋势,采集电源连接器中工作温度的时间间隔不断缩短,当t5时刻工作温度达到所述第二温度门限T2后还处于上升趋势,则此时充电控制单元控制进一步降低向电动车辆输出的第三充电功率P3至第四充电功率P4;工作温度不断上升,温度检测单元根据工作温度上升的趋 势,采集电源连接器中工作温度的时间间隔不断缩短,当t6时刻工作温度达到所述第三温度门限T3后,则此时充电控制单元控制断开向电动车辆充电。
如图7h所示为本文实施例电动车辆充电过程中根据工作温度控制充电功率的示意图,在本图中描述了当从t0时刻开始对电动车辆充电,通过温度检测单元获取到的电源连接器内部的工作温度随着时间开始上升,到t1时刻工作温度超过第一温度门限T1达到了第二温度门限T2,此时充电控制单元控制降低向电动车辆输出的第一充电功率P1至第二充电功率P2;随着时间的推移,温度检测单元根据工作温度上升的趋势,采集电源连接器中工作温度的时间间隔不断缩短,当t2时刻工作温度超过所述第二温度门限T2后还处于上升趋势,则此时充电控制单元控制进一步降低向电动车辆输出的第二充电功率P2至第三充电功率P3;工作温度开始呈下降趋势,采集电源连接器中工作温度的时间间隔不断增长,当到达t3时刻,工作温度依然高于第二温度门限T2,此时充电控制单元控制始终采用第三充电功率P3对充电车辆进行充电;当工作温度继续呈下降趋势,采集电源连接器中工作温度的时间间隔不断增长,当到达t4时刻,工作温度降低到第一温度门限以下,此时充电控制单元控制提高充电功率,将充电功率从第三充电功率提升至第一充电功率对充电车辆进行充电;随着充电功率的提高,电源连接器内部的工作温度不断升高,采集电源连接器中工作温度的时间间隔不断缩短,当工作温度再次超过了第一温度门限T1到达了第二温度门限T2,在t5时刻,将向电动车辆输出的第一充电功率P1降低至第三充电功率P3;即便如此控制之后,电源连接器内部的工作温度依然在持续升高,采集电源连接器中工作温度的时间间隔不断缩短,当在t6时刻,工作温度达到了第三温度门限时,充电控制单元控制断开向电动车辆充电;随着断开对电动车辆的充电电流后,电源连接器内部的工作温度不断降低,采集电源连接器中工作温度的时间间隔不断增长,当在t7时刻,工作温度低于第一温度门限T1时,充电控制单元控制恢复对电动车辆的充电,并采用第一充电功率P1对电动车辆进行充电。
如图7i所示为本文实施例电动车辆充电过程中根据工作温度控制充电功率的示意图,在本图中描述了当从t0时刻开始对电动车辆充电,通过温度检测单元获取到的电源连接器内部的工作温度随着时间开始上升,到t1时刻工作温度超过第一温度门限T1达到了第二温度门限T2,此时充电控制单元控制降低向电动车辆输出的第一充电功率P1至第二充电功率P2;随着时间的推移,温度检测单元根据工作温度上升的趋势,采集电源连接器中工作温度的时间间隔不断缩短,当t2时刻工作温度超过所述第二温度门限T2后还处于上升趋势,则此时充电控制单元控制进一步降低向电动车辆输出的第二充电 功率P2至第三充电功率P3;工作温度开始呈下降趋势,采集电源连接器中工作温度的时间间隔不断增长,当到达t3时刻,工作温度依然高于第二温度门限T2,此时充电控制单元控制始终采用第三充电功率P3对充电车辆进行充电;当工作温度继续呈下降趋势,采集电源连接器中工作温度的时间间隔不断增长,当到达t4时刻,工作温度降低到第一温度门限时,此时充电控制单元控制提高向电动车辆的充电功率,将充电功率由第三充电功率P3提升至第一充电功率P1;随着时间的推移,温度检测单元根据工作温度上升的趋势,采集电源连接器中工作温度的时间间隔不断缩短,充电控制单元始终保持第一充电功率P1向电动车辆进行充电;当t5时刻工作温度达到所述第二温度门限T2后还处于上升趋势,采集电源连接器中工作温度的时间间隔不断缩短,则此时充电控制单元控制降低向电动车辆输出的第一充电功率P1至第三充电功率P3;工作温度不断上升,温度检测单元根据工作温度上升的趋势,采集电源连接器中工作温度的时间间隔不断缩短,当t6时刻工作温度达到所述第三温度门限T3后,则此时充电控制单元控制断开向电动车辆充电。
本文实施例还提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如下步骤:
定时获取工作温度;
当所述工作温度大于等于第一温度门限并小于第二温度门限时,保持向电动车辆输出的第一充电功率,并触发第一提示信号;
当所述工作温度大于等于所述第二温度门限并小于第三温度门限时,降低向电动车辆输出的所述第一充电功率至第二充电功率。
本文实施例提供的计算机设备还可以实现如图2、图7a-图7i中的方法。
对应于图2、图7a-图7i中的方法,本文实施例还提供了一种计算机非易失性可读存储介质,该计算机非易失性可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述方法的步骤。
本文实施例还提供一种计算机可读指令,其中当处理器执行所述指令时,其中的程序使得处理器执行如图2、图7a-图7i所示的方法。
应理解,在本文的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本文实施例的实施过程构成任何限定。
还应理解,在本文实施例中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本文的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本文所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本文实施例方案的目的。
另外,在本文各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本文的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本文各个实施例所述方法 的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本文中应用了具体实施例对本文的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本文的方法及其核心思想;同时,对于本领域的一般技术人员,依据本文的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本文的限制。

Claims (27)

  1. 一种充电车辆的充电控制方法,其特征在于包括,
    定时获取工作温度;
    当所述工作温度大于或等于第一温度门限并小于第二温度门限时,保持向电动车辆输出的第一充电功率,并触发第一提示信号;
    当所述工作温度大于或等于所述第二温度门限并小于第三温度门限时,降低向电动车辆输出的所述第一充电功率至第二充电功率。
  2. 根据权利要求1所述的方法,其特征在于,当所述工作温度大于或等于所述第三温度门限时,停止向电动车辆充电。
  3. 根据权利要求1所述的方法,其特征在于,所述定时获取工作温度中进一步包括,根据指定的时间获取电源连接器的工作温度。
  4. 根据权利要求1所述的方法,其特征在于,所述定时获取工作温度中进一步包括,根据所述工作温度的变化趋势来设定所述获取工作温度的时间间隔。
  5. 根据权利要求1所述的方法,其特征在于,所述定时获取工作温度中进一步包括,根据气候情况来设定所述获取工作温度的时间间隔。
  6. 根据权利要求1所述的方法,其特征在于,当所述工作温度大于或等于第一温度门限并小于第二温度门限时,保持向电动车辆输出的第一充电功率,并触发第一提示信号中进一步包括,
    所述第一提示信号包括以声和/或光和/或振动的方式提示用户当前工作温度状态。
  7. 根据权利要求1所述的方法,其特征在于,当所述工作温度大于或等于所述第二温度门限并小于第三温度门限时,降低向电动车辆输出的所述第一充电功率至第二充电功率之后还包括,
    当所述工作温度还处于上升趋势,则进一步降低向电动车辆输出的所述第二充电功率至第三充电功率。
  8. 根据权利要求1所述的方法,其特征在于,当所述工作温度大于或等于所述第二温度门限并小于第三温度门限时,降低向电动车辆输出的所述第一充电功率至第二充电功率之后还包括,
    当所述工作温度还处于上升趋势,停止向电动车辆充电。
  9. 根据权利要求7所述的方法,其特征在于,当所述工作温度还处于上升趋势,则进一步降低向电动车辆输出的所述第二充电功率至第三充电功率之后还包括,
    当向电动车辆输出第三充电功率,所述工作温度下降到所述第一温度门限与第二温度门限之间后,然后所述工作温度又呈上升趋势,并再次大于或等于所述第二温度门限且小于第三温度门限时,则进一步降低向电动车辆输出的所述第三充电功率至低于第三充电功率的功率。
  10. 根据权利要求7所述的方法,其特征在于,当所述工作温度还处于上升趋势,则进一步降低向电动车辆输出的所述第二充电功率至第三充电功率之后还包括,
    当向电动车辆输出第三充电功率,所述工作温度下降到所述第一温度门限与第二温度门限之间后,然后所述工作温度又呈上升趋势,停止向电动车辆充电。
  11. 根据权利要求7所述的方法,其特征在于,当所述工作温度还处于上升趋势,则进一步降低向电动车辆输出的所述第二充电功率至第三充电功率之后还包括,
    当向电动车辆输出第三充电功率,所述工作温度下降到小于所述第一温度门限后,增大向电动车辆输出的所述第三充电功率至大于或等于第三充电功率的功率。
  12. 根据权利要求11所述的方法,其特征在于,当向电动车辆输出第三充电功率,所述工作温度下降到小于所述第一温度门限后,增大向电动车辆输出的所述第三充电功率至大于或等于第三充电功率的功率后还包括,
    当所述工作温度再次超过第二温度门限后,降低向电动车辆输出的所述功率。
  13. 根据权利要求1所述的方法,其特征在于,当所述工作温度大于或等于所述第二温度门限并小于第三温度门限时,降低向电动车辆输出的所述第一充电功率至第二充电功率之后还包括,
    当所述工作温度处于下降趋势,则进一步升高向电动车辆输出功率至大于或等于所述第二充电功率的功率。
  14. 根据权利要求2所述的方法,其特征在于,当所述工作温度大于或等于所述第三温度门限时,停止向电动车辆充电之后还包括,
    当工作温度降低到所述第二温度门限后,恢复向电动车辆充电功率,其功率大于0。
  15. 根据权利要求2所述的方法,其特征在于,当所述工作温度大于或等于所述第三温度门限时,停止向电动车辆充电之后还包括,
    当工作温度降低到所述第三温度门限以下后,恢复向电动车辆输出的充电功率至大于0。
  16. 根据权利要求2所述的方法,其特征在于还包括,
    根据获取的所述工作温度,判断温度检测单元是否为正常工作状态,记录所述温度检测单元的工作状态;
    当所述工作温度大于或等于所述第三温度门限时,停止向电动车辆充电后还包括,
    始终保持停止向电动车辆充电,直至重新上电后,查询所述温度检测单元的工作状态;
    当所述温度检测单元的工作状态为正常工作状态,则恢复向电动车辆输出的所述第一充电功率;
    当所述温度检测单元的工作状态为非正常工作状态,则继续保持停止向电动车辆充电。
  17. 根据权利要求1所述的方法,其特征在于,当所述工作温度大于或等于第一温度门限并小于第二温度门限时,保持向电动车辆输出的第一充电功率,并触发第一提示信号中为,
    当所述工作温度大于或等于第一温度门限并小于第二温度门限时,降低所述向电动车辆输出的第一充电功率。
  18. 根据权利要求17所述的方法,其特征在于,当所述工作温度大于或等于第一温度门限并小于第二温度门限时,降低所述向电动车辆输出的第一充电功率之后还包括,
    当所述工作温度降低到第一温度门限以下时,提升向电动车辆输出的功率,该输出功率小于等于所述第一充电功率。
  19. 一种充电车辆的充电控制装置,其特征在于执行如权利要求1-18任意一项所述的方法,包括:
    温度检测单元,用于定时获取工作温度;
    充电控制单元,用于当所述工作温度大于或等于第一温度门限并小于第二温度门限时,保持向电动车辆输出的第一充电功率,并触发第一提示信号;
    当所述工作温度大于或等于所述第二温度门限并小于第三温度门限时,降低向电动车辆输出的所述第一充电功率至第二充电功率。
  20. 根据权利要求19所述的装置,其特征在于,所述充电控制单元还用于,
    当所述工作温度大于或等于所述第三温度门限时,停止向电动车辆充电。
  21. 根据权利要求19所述的装置,其特征在于,还包括:
    存储器,用于存储用户指定的时间;
    所述温度检测单元根据指定的时间获取电源连接器的工作温度。
  22. 根据权利要求19所述的装置,其特征在于,
    所述充电控制单元根据所述工作温度的变化趋势来设定所述获取工作温度的时间间隔;
    所述温度检测单元根据所述充电控制单元设定的获取工作温度的时间间隔采集工作温度。
  23. 根据权利要求19所述的装置,其特征在于,
    所述充电控制单元根据气候情况来设定所述获取工作温度的时间间隔;
    所述温度检测单元根据所述充电控制单元设定的获取工作温度的时间间隔采集工作温度。
  24. 根据权利要求19所述的装置,其特征在于,还包括提示单元,用于通过声和/或光和/或振动的方式提示用户当前工作温度状态。
  25. 根据权利要求19所述的装置,其特征在于,还包括通信单元,用于将提示用户当前充电元件温度较高的第一提示信息发送给用户的智能终端。
  26. 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现上述权利要求1-18中任一项的方法。
  27. 一种计算机非易失性可读存储介质,其特征在于,该计算机非易失性可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述权利要求1-18任一项的方法。
PCT/CN2021/102280 2020-11-06 2021-06-25 一种电动车辆充电控制方法及装置 WO2022095469A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3196659A CA3196659A1 (en) 2020-11-06 2021-06-25 Electric vehicle charging control method and apparatus
US18/034,332 US20230382254A1 (en) 2020-11-06 2021-06-25 Electric vehicle charging control method and apparatus
MX2023005159A MX2023005159A (es) 2020-11-06 2021-06-25 Aparato y método de control de la carga de vehículos eléctricos.
KR1020237012673A KR20230076133A (ko) 2020-11-06 2021-06-25 전기차량의 충전 제어방법 및 장치
EP21888172.0A EP4242042A4 (en) 2020-11-06 2021-06-25 METHOD AND APPARATUS FOR CONTROLLING ELECTRIC VEHICLE CHARGING
JP2023524941A JP7549144B2 (ja) 2020-11-06 2021-06-25 電気車両の充電制御方法及び装置
ZA2023/04806A ZA202304806B (en) 2020-11-06 2023-04-26 Electric vehicle charging control method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011232789.5 2020-11-06
CN202011232789.5A CN112389220B (zh) 2020-11-06 2020-11-06 一种电动车辆充电控制方法及装置

Publications (1)

Publication Number Publication Date
WO2022095469A1 true WO2022095469A1 (zh) 2022-05-12

Family

ID=74598894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102280 WO2022095469A1 (zh) 2020-11-06 2021-06-25 一种电动车辆充电控制方法及装置

Country Status (9)

Country Link
US (1) US20230382254A1 (zh)
EP (1) EP4242042A4 (zh)
JP (1) JP7549144B2 (zh)
KR (1) KR20230076133A (zh)
CN (1) CN112389220B (zh)
CA (1) CA3196659A1 (zh)
MX (1) MX2023005159A (zh)
WO (1) WO2022095469A1 (zh)
ZA (1) ZA202304806B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230063212A1 (en) * 2021-08-26 2023-03-02 Abhilash Gudapati Systems and methods for ensuring drivability for battery electric vehicles during extreme cold weather conditions

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112389220B (zh) * 2020-11-06 2022-05-24 长春捷翼汽车零部件有限公司 一种电动车辆充电控制方法及装置
CN113719542A (zh) * 2021-09-16 2021-11-30 中国科学院国家天文台南京天文光学技术研究所 大型地基光学红外望远镜液压阻尼垂直隔震装置
CN113844310A (zh) * 2021-10-09 2021-12-28 华为数字能源技术有限公司 用于控制充电系统的方法以及充电系统
KR102634242B1 (ko) * 2023-06-01 2024-02-06 주식회사 이지트로닉스 고온 끊김 현상 방지 기능을 포함하는 충전 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209880993U (zh) * 2019-05-17 2019-12-31 汉宇集团股份有限公司 一种电连接装置
CN110673667A (zh) * 2018-07-03 2020-01-10 郑州宇通客车股份有限公司 一种车用充电连接装置的智能温控方法及装置
CN210191184U (zh) * 2019-04-26 2020-03-27 长春捷翼汽车零部件有限公司 一种电动汽车传导充电系统
JP2020120560A (ja) * 2019-01-28 2020-08-06 株式会社デンソー 車載電源システムの制御装置
CN212447189U (zh) * 2020-11-06 2021-02-02 长春捷翼汽车零部件有限公司 一种温控保护装置及相应的充电装置
CN112389220A (zh) * 2020-11-06 2021-02-23 长春捷翼汽车零部件有限公司 一种电动车辆充电控制方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101277024A (zh) * 2008-01-31 2008-10-01 田家玉 智能充电器
DE102010003470A1 (de) * 2010-03-30 2011-10-06 Robert Bosch Gmbh Überwachung der Temperaturänderung am Ladekabel
US8729856B2 (en) * 2011-02-23 2014-05-20 Lear Corporation Thermal wall plug sensing and control
US9515498B2 (en) 2012-03-08 2016-12-06 Panasonic Intellectual Property Management Co., Ltd. Charging cable
JP5796717B2 (ja) 2012-03-22 2015-10-21 三菱自動車工業株式会社 電気自動車の充電制御装置
DE102012103213A1 (de) 2012-04-13 2013-10-17 Keba Ag Verfahren zum Betreiben einer Ladeanschlussvorrichtung für Elektrofahrzeuge
DE102013005507A1 (de) * 2013-04-02 2014-10-02 Rwe Ag Verfahren zum Betreiben einer Ladestation
US9056553B2 (en) 2013-10-31 2015-06-16 Honda Motor Co., Ltd. Methods and systems for charging an electric vehicle
CN106299497A (zh) * 2015-06-02 2017-01-04 南京德朔实业有限公司 电动工具与电池包的通讯控制方法
JP2017032311A (ja) 2015-07-29 2017-02-09 住友電気工業株式会社 バッテリ状態検知装置
CN109936185B (zh) * 2017-12-18 2020-11-13 郑州宇通客车股份有限公司 一种车辆充电电流的控制方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110673667A (zh) * 2018-07-03 2020-01-10 郑州宇通客车股份有限公司 一种车用充电连接装置的智能温控方法及装置
JP2020120560A (ja) * 2019-01-28 2020-08-06 株式会社デンソー 車載電源システムの制御装置
CN210191184U (zh) * 2019-04-26 2020-03-27 长春捷翼汽车零部件有限公司 一种电动汽车传导充电系统
CN209880993U (zh) * 2019-05-17 2019-12-31 汉宇集团股份有限公司 一种电连接装置
CN212447189U (zh) * 2020-11-06 2021-02-02 长春捷翼汽车零部件有限公司 一种温控保护装置及相应的充电装置
CN112389220A (zh) * 2020-11-06 2021-02-23 长春捷翼汽车零部件有限公司 一种电动车辆充电控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4242042A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230063212A1 (en) * 2021-08-26 2023-03-02 Abhilash Gudapati Systems and methods for ensuring drivability for battery electric vehicles during extreme cold weather conditions
US11872869B2 (en) * 2021-08-26 2024-01-16 Fca Us Llc Systems and methods for ensuring drivability for battery electric vehicles during extreme cold weather conditions

Also Published As

Publication number Publication date
KR20230076133A (ko) 2023-05-31
CA3196659A1 (en) 2022-05-12
MX2023005159A (es) 2023-07-14
ZA202304806B (en) 2023-11-29
JP7549144B2 (ja) 2024-09-10
CN112389220A (zh) 2021-02-23
CN112389220B (zh) 2022-05-24
JP2023547429A (ja) 2023-11-10
EP4242042A1 (en) 2023-09-13
US20230382254A1 (en) 2023-11-30
EP4242042A4 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
WO2022095469A1 (zh) 一种电动车辆充电控制方法及装置
WO2022095472A1 (zh) 一种电动车辆充电控制装置及方法
WO2022095877A1 (zh) 一种电动车辆充电控制装置
CN212447189U (zh) 一种温控保护装置及相应的充电装置
CN110970688B (zh) 电池加热系统和方法
CN102624044A (zh) 用于低电压能量采集装置的电池充电器
CN104767260A (zh) 充电器、终端设备和充电系统
US20120153747A1 (en) Usb charger, its switch control system and method, and a usb interface charger for a laptop
US20210152007A1 (en) Battery pack charging and discharging protection system
KR102615295B1 (ko) 에너지 하베스터용 부하 연결 장치
WO2022036648A1 (zh) 机械硬盘加热电路、机械硬盘加热装置和车辆
US20120169292A1 (en) Circuit for Protecting a Thin-Layer Battery
TWI443930B (zh) 充電電流控制方法及充電系統
CN102882496B (zh) 具有开关检测和微控制器复位功能的电路
CN103311976A (zh) 电池管理装置、方法及系统
CN116191627A (zh) 一种充电器供电电路
CN204497715U (zh) 一种具有散热功能的微机保护测控装置
CN103279154A (zh) 一种智能温控电路
CN220798246U (zh) 上电复位电路以及上电复位系统
CN105101566A (zh) 一种升压恒流太阳能路灯控制器
CN111509967B (zh) Dc-dc上电自启动控制电路及其控制方法
CN202444417U (zh) 用于远程抄表通信模块的开机自动启动电路
CN115800983A (zh) 一种用于电子设备的上电自动开机电路
CN111358356A (zh) 安全电路、充电管理电路、扫地机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888172

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237012673

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023524941

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 3196659

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18034332

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023008068

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202327038147

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021888172

Country of ref document: EP

Effective date: 20230606

ENP Entry into the national phase

Ref document number: 112023008068

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230427