WO2022092076A1 - 中空粒子の製造方法及び中空粒子 - Google Patents

中空粒子の製造方法及び中空粒子 Download PDF

Info

Publication number
WO2022092076A1
WO2022092076A1 PCT/JP2021/039457 JP2021039457W WO2022092076A1 WO 2022092076 A1 WO2022092076 A1 WO 2022092076A1 JP 2021039457 W JP2021039457 W JP 2021039457W WO 2022092076 A1 WO2022092076 A1 WO 2022092076A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
hollow particles
hollow
solvent
hydrophobic solvent
Prior art date
Application number
PCT/JP2021/039457
Other languages
English (en)
French (fr)
Inventor
左京 柳生
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020237012874A priority Critical patent/KR20230098160A/ko
Priority to CN202180070712.9A priority patent/CN116390958A/zh
Priority to EP21886194.6A priority patent/EP4238998A1/en
Priority to US18/031,815 priority patent/US20230383021A1/en
Priority to JP2022559152A priority patent/JPWO2022092076A1/ja
Publication of WO2022092076A1 publication Critical patent/WO2022092076A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/16Interfacial polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F12/36Divinylbenzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer

Definitions

  • the present disclosure relates to a method for producing hollow particles and hollow particles obtained by the method.
  • Hollow particles are particles that have cavities inside, and can scatter light better and reduce light transmission than solid particles whose inside is substantially filled with resin. Therefore, it is widely used as an organic pigment having excellent optical properties such as opacity and whiteness, and as a concealing agent for water-based paints and paper-coated composition. In recent years, it has also been used as a lightweight agent for resins and paints used in various fields such as automobiles, electricity, electronics, and construction, and as a heat insulating agent.
  • hollow particles may be contained in the insulating resin layer for the purpose of suppressing the occurrence of crosstalk and the increase in transmission loss.
  • Crosstalk and transmission loss in the electronic circuit board can be suppressed by lowering the relative permittivity and the dielectric loss tangent of the insulating resin layer. Since the inside of the hollow particles is hollow, it is attempted to reduce the dielectric constant and the low dielectric loss tangent of the insulating resin layer by adding the hollow particles.
  • Patent Document 1 1 to 100% by weight of a crosslinkable monomer and 0 to 99% by weight of a non-crosslinkable monomer are polymerized as hollow crosslinked resin particles used for an organic insulating material having a low dielectric constant. (Here, the total of the crosslinkable monomer and the non-crosslinkable monomer is 100% by weight), the average particle size is 0.03 to 10 ⁇ m, and the particles are present in the particles. Hollow crosslinked resin particles having an average metal ion concentration of 50 ppm or less are disclosed.
  • Patent Document 1 a crosslinkable monomer, a non-crosslinkable hydrophilic monomer, and a non-crosslinkable copolymerizable other polymerizable monomer can be used as the polymerizable monomer component. It is described as preferable.
  • At least one crosslinkable monomer is used as a polymerizable component in a method for producing hollow polymer fine particles by suspension polymerization, and the at least one crosslinkable monomer is used as a poorly water-soluble solvent.
  • Patent Document 2 describes that divinylbenzene, divinylbiphenyl, etc. are used as the crosslinkable monomer, and saturated hydrocarbons having 12 to 18 carbon atoms are used as the poorly water-soluble solvent satisfying the above conditions. There is.
  • the hollow crosslinked resin particles described in Patent Document 1 are not sufficiently low in relative permittivity and dielectric loss tangent, and cannot be said to be excellent in electrical insulation characteristics. Further, the hollow crosslinked resin particles described in Patent Document 1 have a problem that the polar organic solvent permeates.
  • hollow particles may be contained in an epoxy resin or the like using a polar organic solvent such as methyl ethyl ketone. In that case, if the polar organic solvent permeates the inside of the hollow particles, the effects of the hollow particles on lowering the dielectric constant and reducing the dielectric loss tangent may be reduced.
  • the method described in Patent Document 2 has a problem that the poorly water-soluble solvent contained in the hollow polymer fine particles tends to remain.
  • the amount of the poorly water-soluble solvent remaining in the hollow particles is large, for example, when the hollow particles are mixed with a resin and biaxially kneaded, the residual solvent may cause ignition or smoke. Further, in the combination of the crosslinkable monomer described in Patent Document 2 and the poorly water-soluble solvent, a hollow portion may not be formed inside the particles.
  • An object of the present disclosure is the production of hollow particles capable of reducing the residual amount of the hydrophobic solvent used in the production process, excellent in electrical insulation characteristics, and excellent in solvent resistance to polar organic solvents.
  • the purpose is to provide hollow particles obtained by the method and the production method.
  • the present inventor has excellent electrical insulation characteristics, excellent solvent resistance to polar organic solvents, and a hollow with a reduced residual amount of the hydrophobic solvent used in the production process.
  • hydrocarbons are used as a combination of the polymerizable monomer and the hydrophobic solvent, and the content of the crosslinkable monomer in the polymerizable monomer is set to a specific amount or more. It has been found that it is effective to use a hydrocarbon solvent having the above carbon number.
  • the present disclosure is a method for producing hollow particles having a shell containing a resin and a hollow portion surrounded by the shell, and having a porosity of 50% or more.
  • a precursor composition having a hollow portion surrounded by a shell containing a resin and containing precursor particles containing the hydrophobic solvent in the hollow portion is prepared.
  • the polymerizable monomer is a hydrocarbon monomer, and the content of the crosslinkable monomer containing two or more ethylenically unsaturated double bonds is 70% by mass in 100% by mass of the polymerizable monomer. That's all, Provided is a method for producing hollow particles, wherein the hydrophobic solvent is a hydrocarbon solvent having 5 to 8 carbon atoms.
  • the mixed solution contains at least one selected from the group consisting of rosin acid, higher fatty acids and metal salts thereof.
  • the dispersion stabilizer is preferably an inorganic dispersion stabilizer, and the inorganic dispersion stabilizer is more preferably a poorly water-soluble metal salt.
  • the volume average particle size of the hollow particles is 1 ⁇ m or more and 10 ⁇ m or less.
  • the present disclosure comprises hollow particles comprising a resin-containing shell and a hollow portion surrounded by the shell and having a porosity of 50% or more.
  • the shell contains a hydrocarbon polymer as the resin, Provided are hollow particles having a relative permittivity of 1.5 or less at a frequency of 1 MHz.
  • the dielectric loss tangent at a frequency of 1 MHz is preferably 0.010 or less. Further, in the hollow particles of the present disclosure, the relative permittivity at a frequency of 1 GHz is preferably 1.5 or less, and the dielectric loss tangent at a frequency of 1 GHz is preferably 0.010 or less.
  • the porosity is preferably 60% or more.
  • the volume average particle size is 1 ⁇ m or more and 10 ⁇ m or less.
  • the hollow particles obtained by the production method of the present disclosure are particles including a shell (outer shell) containing a resin and a hollow portion surrounded by the shell.
  • the hollow portion is a hollow space clearly distinguished from the shell of hollow particles formed of a resin material.
  • the shell of the hollow particles may have a porous structure, in which case the hollow portion is sized to be clearly distinguishable from the large number of microscopic spaces uniformly dispersed within the porous structure. Have.
  • the shell of hollow particles can be made dense.
  • the hollow portion of the hollow particles can be confirmed, for example, by SEM observation of the cross section of the particles or by TEM observation of the particles as they are.
  • the hollow portion of the hollow particles is filled with a gas such as air, or is in a reduced pressure state close to vacuum. Is preferable.
  • a gas such as air
  • the method for producing hollow particles of the present disclosure and the hollow particles of the present disclosure obtained by the production method of the present disclosure will be described in detail.
  • the method for producing hollow particles of the present disclosure is a method for producing hollow particles having a shell containing a resin and a hollow portion surrounded by the shell, and having a porosity of 50% or more.
  • a precursor composition having a hollow portion surrounded by a shell containing a resin and containing precursor particles containing the hydrophobic solvent in the hollow portion is prepared.
  • the polymerizable monomer is a hydrocarbon monomer, and the content of the crosslinkable monomer containing two or more ethylenically unsaturated double bonds is 70% by mass in 100% by mass of the polymerizable monomer. That's all,
  • the hydrophobic solvent is characterized by being a hydrocarbon solvent having 5 to 8 carbon atoms.
  • the method for producing hollow particles of the present disclosure is hydrophobic with a polymerizable monomer by suspending a mixed solution containing a polymerizable monomer, a hydrophobic solvent, a polymerization initiator, a dispersion stabilizer, and an aqueous medium.
  • a suspension was prepared in which the solvent was phase-separated, the polymerizable monomer was unevenly distributed on the surface side, and the hydrophobic solvent was unevenly distributed in the central part, and the droplets having a distributed structure were dispersed in the aqueous medium. It follows the basic technique of subjecting a suspension to a polymerization reaction to cure the surface of the droplets to form hollow particles with hollow portions filled with a hydrophobic solvent.
  • a hydrocarbon monomer is used as the polymerizable monomer, and a hydrocarbon solvent having 5 to 8 carbon atoms is used as the hydrophobic solvent to form a hollow portion clearly distinguished from the shell. It can be formed inside the particles, the residual amount of the hydrophobic solvent in the particles can be reduced, the relative permittivity and the dielectric adjunct of the hollow particles are significantly reduced, and the resistance of the hollow particles to the polar organic solvent is achieved.
  • the solvent property can be improved.
  • the solvent resistance to polar organic solvents may be simply referred to as solvent resistance.
  • the hollow crosslinked resin particles described in Patent Document 1 are inferior in electrical insulation characteristics and solvent resistance.
  • the hollow crosslinked resin particles described in Patent Document 1 cannot sufficiently reduce the relative permittivity and the dielectric positive contact by containing a hetero atom derived from methyl methacrylate or the like in the shell, and are polar with the shell. Since the affinity with the organic solvent is good, it is considered that the polar organic solvent easily penetrates the shell.
  • the hollow polymer fine particles obtained by the method described in Patent Document 2 have a large residual amount of a poorly water-soluble solvent used in the production process. In the method described in Patent Document 2, saturated hydrocarbons having 12 to 18 carbon atoms are used as a poorly water-soluble solvent in order to satisfy the above-mentioned condition of Y X ⁇ Y P.
  • Saturated hydrocarbons with 12 to 18 carbon atoms have a high boiling point, so they tend to remain in the particles. Further, in the method described in Patent Document 2, it is difficult to form a hollow portion in the particles. Since the combination of the crosslinkable monomer and the poorly water-soluble solvent described in Patent Document 2 has good compatibility, the crosslinkable monomer and the poorly water-soluble solvent are sufficiently phase-separated in the droplets dispersed in the suspension. It is considered that it is difficult to form a hollow portion inside the particles without separating them.
  • the hydrophobic solvent does not easily volatilize at the polymerization temperature, so that the polymerization reaction can be sufficiently advanced. Moreover, since the hydrophobic solvent contained in the hollow portion is easily removed by the solvent removing step, the residual amount of the hydrophobic solvent can be reduced. Further, in the hollow particles obtained by the production method of the present disclosure, since the polymer constituting the shell is a hydrocarbon polymer and does not contain a heteroatom, the relative permittivity and the dielectric loss tangent are low, and the electrical insulation characteristics are excellent.
  • the particles are contained by containing 70% by mass or more of the crosslinkable hydrocarbon monomer containing two or more ethylenically unsaturated double bonds in 100% by mass of the polymerizable monomer. Hollow portions are likely to be formed inside.
  • a polymerizable monomer containing a crosslinkable hydrocarbon monomer is polymerized at the above ratio, a polymer having a high crosslink density is produced. It is presumed that the polymer having a high crosslink density is more likely to undergo phase separation from the hydrophobic solvent than the polymer having a low crosslink density.
  • the components constituting the shell generated in the droplets and the hydrophobic solvent which is a hydrocarbon solvent having 5 to 8 carbon atoms are appropriate. Since it becomes compatible, it is presumed that the components constituting the shell and the hydrophobic solvent are phase-separated to form a hollow portion in the particles, and a shell clearly distinguished from the hollow portion is formed. If the compatibility between the components constituting the shell and the hydrophobic solvent is too high in the droplets, porous particles will be generated, while if these compatibility is too low, the inside of the hollow particles will be fine. Resin particles are generated.
  • the inside of the particles is porous or if fine resin particles are present inside the particles, the space filled with gas exists in a dispersed state even if it has the same porosity, and is one space. The size of is reduced. Therefore, the relative permittivity and the dielectric loss tangent tend to increase in the porous particles and the hollow particles in which many fine resin particles are present inside the particles.
  • a hollow hollow portion clearly distinguished from the shell is formed in the particles at a rate of void ratio of 50% or more, and fine resin particles are generated inside the particles.
  • hollow particles having further improved electrical insulation characteristics by suppressing an increase in the relative permittivity and the dielectric loss tangent.
  • the inside of the particles is porous, the solvent easily permeates the shell due to the structure, so that the solvent resistance tends to deteriorate.
  • a hollow hollow portion clearly distinguished from the shell is formed, and the shell tends to be solid. If the shell is solid, it is structurally difficult for the solvent to penetrate the shell.
  • the polymerizable monomer contains 70% by mass or more of the crosslinkable monomer, the covalent bond network is densely spread in the shell, and the crosslink density of the shell is high.
  • the hollow particles obtained by the production method of the present disclosure are excellent in solvent resistance to polar organic solvents.
  • the method for producing hollow particles of the present disclosure includes a step of preparing a mixed solution, a step of preparing a suspension, a step of subjecting the suspension to a polymerization reaction, and may further include steps other than these. Further, as long as it is technically possible, two or more of the above steps and other additional steps may be performed simultaneously as one step, or the order may be changed. For example, the preparation and suspension of the mixture may be performed simultaneously in one process, for example, the material for preparing the mixture is charged and suspended at the same time.
  • a production method including the following steps can be mentioned.
  • (3) Polymerization step Polymerization of the suspension is a step of preparing a suspension in which droplets of a monomer composition containing a polymerizable monomer, a hydrophobic solvent and a polymerization initiator are dispersed in an aqueous medium.
  • a step of preparing a precursor composition having a hollow portion surrounded by a shell containing a resin and containing precursor particles containing a hydrophobic solvent in the hollow portion (4) Solid-liquid separation.
  • the hollow particles whose hollow portion is filled with the hydrophobic solvent are referred to as intermediates of the hollow particles whose hollow portion is filled with gas. Considering this, it may be referred to as "precursor particle”.
  • the "precursor composition” means a composition containing precursor particles.
  • FIG. 1 is a schematic diagram showing an example of the manufacturing method of the present disclosure.
  • (1) to (5) in FIG. 1 correspond to the above steps (1) to (5).
  • the white arrows between the figures indicate the order of each step.
  • FIG. 1 is merely a schematic diagram for explanation, and the manufacturing method of the present disclosure is not limited to that shown in the figure. Further, the structure, dimensions and shapes of the materials used in the manufacturing method of the present disclosure are not limited to the structures, dimensions and shapes of various materials in these figures.
  • FIG. 1 (1) is a schematic cross-sectional view showing an embodiment of the mixed liquid in the mixed liquid preparation step. As shown in this figure, the mixed liquid contains an aqueous medium 1 and a low-polarity material 2 dispersed in the aqueous medium 1.
  • the low-polarity material 2 means a material having a low polarity and is difficult to mix with the aqueous medium 1.
  • the low polar material 2 contains a polymerizable monomer, a hydrophobic solvent and a polymerization initiator.
  • FIG. 1 (2) is a schematic cross-sectional view showing an embodiment of the suspension in the suspension step.
  • the suspension contains an aqueous medium 1 and droplets 10 of the monomeric composition dispersed in the aqueous medium 1.
  • the droplet 10 of the monomer composition contains a polymerizable monomer, a hydrophobic solvent and a polymerization initiator, but the distribution in the droplet is non-uniform.
  • FIG. 1 (3) is a schematic cross-sectional view showing an embodiment of a precursor composition obtained by a polymerization step and containing precursor particles containing a hydrophobic solvent in a hollow portion.
  • the precursor composition contains a water-based medium 1 and precursor particles 20 having a hydrophobic solvent 4a contained in a hollow portion dispersed in the water-based medium 1.
  • the shell 6 forming the outer surface of the precursor particles 20 is formed by the polymerization of the polymerizable monomer in the droplet 10 of the monomer composition, and the weight of the polymerizable monomer is heavy.
  • the coalescence is included as a resin.
  • FIG. 1 (4) is a schematic cross-sectional view showing an embodiment of precursor particles after the solid-liquid separation step.
  • FIG. 1 (4) shows a state in which the water-based medium 1 is removed from the state of FIG. 1 (3).
  • FIG. 1 (5) is a schematic cross-sectional view showing an embodiment of hollow particles after the solvent removing step.
  • FIG. 1 (5) shows a state in which the hydrophobic solvent 4a is removed from the state of FIG. 1 (4).
  • the hydrophobic solvent 4a By removing the hydrophobic solvent from the precursor particles, the hollow particles 100 having the hollow portion 8 filled with gas inside the shell 6 can be obtained.
  • the above five steps and other steps will be described in order.
  • Mixing solution preparation step This step is a step of preparing a mixed solution containing a polymerizable monomer, a hydrophobic solvent, a polymerization initiator, a dispersion stabilizer, and an aqueous medium.
  • the mixed solution may further contain other materials as long as the effects of the present disclosure are not impaired.
  • the polymerizable monomer is composed of carbon and hydrogen, and is a single amount of hydrocarbon containing one or more ethylenically unsaturated double bonds capable of addition polymerization.
  • the body is used.
  • the polymerizable monomer include a non-crosslinkable monomer containing only one ethylenically unsaturated double bond and a crosslinkable monomer containing two or more ethylenically unsaturated double bonds.
  • the crosslinkable monomer can form a crosslink bond in the resin by a polymerization reaction.
  • the polymerizable monomer used in the production method of the present disclosure contains at least a crosslinkable monomer, and may further contain a non-crosslinkable monomer as long as the effects of the present disclosure are not impaired.
  • Crosslinkable monomer Since the crosslinkable monomer has a plurality of ethylenically unsaturated double bonds, the monomers can be linked to each other and the crosslink density of the shell can be increased.
  • the crosslinkable monomer used in the production method of the present disclosure is a hydrocarbon monomer having two or more ethylenically unsaturated double bonds, and examples thereof include divinylbenzene, divinylbiphenyl, and divinylnaphthalene. These crosslinkable monomers can be used alone or in combination of two or more.
  • divinylbenzene is preferably used because the polymerization reaction is easy to stabilize and hollow particles having excellent strength and heat resistance can be obtained.
  • the molecular weight of the crosslinkable monomer is preferably 210 or less, more preferably 200 or less, and further preferably 150 or less.
  • the lower limit of the molecular weight of the crosslinkable monomer is not particularly limited, but is preferably 100 or more, and more preferably 120 or more, from the viewpoint of suppressing the volatilization of the crosslinkable monomer during polymerization.
  • the content of the crosslinkable monomer is 70% by mass or more in 100% by mass of the polymerizable monomer.
  • the components constituting the shell and the hydrophobic solvent are sufficiently phase-separated in the droplets of the monomer composition, so that the hollow portion is formed. It is formed.
  • the content of the crosslinkable monomer is 70% by mass or more, the content ratio of the crosslinkable monomer unit in the shell of the hollow particles is sufficiently large, and the covalent bond network is densely formed in the shell.
  • the content of the crosslinkable monomer is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more.
  • the purity of the crosslinkable monomer in the commercially available product is less than 100%, and when a substance other than the crosslinkable monomer is contained as an impurity, it is described above.
  • the content of the crosslinkable monomer is not the content of the commercially available product, but the content of only the crosslinkable monomer excluding impurities.
  • an impurity for example, a part of the ethylenically unsaturated double bond possessed by the crosslinkable monomer becomes a single bond, and one ethylenically unsaturated double bond is provided.
  • Non-crosslinkable monomer that has only one, or a non-crosslinkable monomer used as a raw material for the above-mentioned crosslinkable monomer.
  • the commercially available product of divinylbenzene may contain ethylvinylbenzene, which is a non-crosslinkable monomer, as an impurity.
  • the non-crosslinkable monomer which may contain the polymerizable monomer is a hydrocarbon monomer containing only one ethylenically unsaturated double bond, for example, styrene.
  • Aromatic vinyl monomers such as vinyltoluene, ⁇ -methylstyrene, p-methylstyrene, ethylvinylbenzene, ethylvinylbiphenyl, and ethylvinylnaphthalene; monoolefin monomers such as ethylene, propylene, butylene; butadiene, isoprene, etc. Diene-based monomers; etc.
  • These non-crosslinkable monomers can be used alone or in combination of two or more.
  • the non-crosslinkable monomer contained in the polymerizable monomer may be an impurity contained in a commercially available crosslinkable monomer.
  • the content of the non-crosslinkable monomer in 100% by mass of the polymerizable monomer is 30% by mass or less, preferably 20% by mass or less, and more preferably 10% by mass or less. More preferably, it is 5% by mass or less.
  • the content of the polymerizable monomer in the mixed solution is not particularly limited, but from the viewpoint of the balance between the void ratio, the particle size and the mechanical strength of the hollow particles, the total mass of the components in the mixed solution excluding the aqueous medium is 100. It is preferably 15 to 50% by mass, more preferably 20 to 40% by mass, and further preferably 20 to 30% by mass with respect to the mass%. Further, from the viewpoint of improving the mechanical strength of the hollow particles, the content of the polymerizable monomer with respect to the total mass of 100% by mass of the solid content excluding the hydrophobic solvent in the material which becomes the oil phase in the mixed liquid is set. It is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 99% by mass or more.
  • the solid content is all components except the solvent, and the liquid polymerizable monomer and the like are included in the solid content.
  • the hydrophobic solvent used in the production method of the present disclosure is a non-polymerizable and poorly water-soluble organic solvent.
  • the hydrophobic solvent acts as a spacer material that forms a hollow portion inside the particles.
  • a suspension in which droplets of the monomer composition containing a hydrophobic solvent are dispersed in an aqueous medium is obtained.
  • a hydrophobic solvent having a low polarity tends to collect inside the droplets of the monomer composition.
  • a hydrophobic solvent is distributed inside the droplets, and materials other than the hydrophobic solvent are distributed on the periphery thereof according to their respective polarities. Then, in the polymerization step described later, an aqueous dispersion containing hollow particles containing a hydrophobic solvent can be obtained. That is, when the hydrophobic solvent gathers inside the particles, a hollow portion filled with the hydrophobic solvent is formed inside the obtained precursor particles.
  • a hydrocarbon solvent consisting of carbon and hydrogen and having 5 to 8 carbon atoms is used as the hydrophobic solvent.
  • the hydrocarbon-based solvent having 5 to 8 carbon atoms is at least one selected from the group consisting of a chain aliphatic hydrocarbon-based solvent having 5 to 8 carbon atoms, a cyclic aliphatic hydrocarbon-based solvent, and an aromatic hydrocarbon-based solvent. It is preferable to use seeds.
  • the chain aliphatic hydrocarbon solvent having 5 to 8 carbon atoms include pentane, hexane, heptane, octane, 2-methylbutane and 2-methylpentane.
  • Examples of the cyclic aliphatic hydrocarbon solvent having 5 to 8 carbon atoms include cyclohexane and cycloheptane.
  • Examples of the aromatic hydrocarbon solvent having 5 to 8 carbon atoms include benzene, toluene and xylene. These hydrophobic solvents can be used alone or in combination of two or more.
  • the hydrophobic solvents used in the manufacturing method of the present disclosure hollow portions are easily formed, hollow particles having excellent electrical insulation characteristics and solvent resistance are easily obtained, and the residual amount of the hydrophobic solvent is reduced.
  • a group hydrocarbon solvent is more preferable, and a chain saturated hydrocarbon solvent having 5 to 8 carbon atoms such as pentane, hexane, heptane, and octane is more preferable, and more preferably from pentane, hexane, heptane, and octane.
  • the hydrophobic solvent is a hydrocarbon solvent having 5 to 8 carbon atoms
  • the hydrophobic solvent other than the hydrocarbon solvent having 5 to 8 carbon atoms is determined by gas chromatography analysis (GC). It means that it is not detected.
  • the boiling point of the hydrophobic solvent is preferably 130 ° C. or lower, more preferably 100 ° C. or lower, because it is easily removed in the solvent removing step described later, and on the other hand, it is contained in the precursor particles. From the point of view of ease, the temperature is preferably 50 ° C. or higher, more preferably 60 ° C. or higher.
  • the hydrophobic solvent is a mixed solvent containing a plurality of types of hydrophobic solvents and has a plurality of boiling points
  • the boiling point of the solvent having the highest boiling point among the solvents contained in the mixed solvent is not more than the above upper limit value. It is preferable that the solvent having the lowest boiling point among the solvents contained in the mixed solvent has a boiling point of not less than the above lower limit value.
  • the hydrophobic solvent used in the production method of the present disclosure preferably has a relative permittivity of 2.0 or less at 20 ° C.
  • the relative permittivity is one of the indexes showing the high polarity of the compound.
  • the relative permittivity of the hydrophobic solvent is as small as 2.0 or less, it is considered that phase separation proceeds rapidly in the polymerizable monomer droplets and hollows are likely to be formed.
  • Examples of hydrophobic solvents having a relative permittivity of 2.0 or less at 20 ° C. are as follows. The values in parentheses are the relative permittivity values. Pentane (1.8), hexane (1.9), heptane (1.9), octane (1.9).
  • the porosity of the hollow particles can be adjusted by changing the amount of the hydrophobic solvent in the mixture.
  • the polymerization reaction proceeds in a state where the oil droplets containing the crosslinkable monomer or the like contain the hydrophobic solvent. Therefore, the larger the content of the hydrophobic solvent, the more the void ratio of the obtained hollow particles. Tends to be high.
  • the content of the hydrophobic solvent in the mixture is more preferably 60 parts by mass or more and 400 parts by mass or less, and more preferably 70 parts by mass or more and 300 parts by mass or less with respect to 100 parts by mass of the polymerizable monomer. Is.
  • the mixed solution contains an oil-soluble polymerization initiator as the polymerization initiator.
  • an emulsion polymerization method using a water-soluble polymerization initiator and a suspension polymerization method using an oil-soluble polymerization initiator, and oil-soluble polymerization initiation there are an emulsion polymerization method using a water-soluble polymerization initiator and a suspension polymerization method using an oil-soluble polymerization initiator, and oil-soluble polymerization initiation.
  • Suspension polymerization can be carried out by using an agent.
  • the oil-soluble polymerization initiator is not particularly limited as long as it is lipophilic with a solubility in water of 0.2% by mass or less.
  • oil-soluble polymerization initiator examples include benzoyl peroxide, lauroyl peroxide, t-butyl peroxide 1-2-ethylhexanoate, 2,2'-azobis (2,4-dimethylvaleronitrile), and azobisisobutyronitrile. , 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) and the like.
  • the content of the oil-soluble polymerization initiator is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 7 parts by mass, and more preferably 100 parts by mass with respect to 100 parts by mass of the polymerizable monomer in the mixed solution. Is 1 to 5 parts by mass.
  • the content of the oil-soluble polymerization initiator is within the above range, the polymerization reaction is sufficiently advanced, and the possibility that the oil-soluble polymerization initiator remains after the completion of the polymerization reaction is small, and an unexpected side reaction may proceed. Is also small.
  • the dispersion stabilizer is an agent that disperses droplets of a monomer composition in an aqueous medium in a suspension step.
  • it is easy to control the particle size of the droplets in the suspension, the particle size distribution of the obtained hollow particles can be narrowed, and the shell becomes too thin to suppress the strength of the hollow particles.
  • examples of the inorganic dispersion stabilizer include sulfates such as barium sulfate and calcium sulfate; carbonates such as barium carbonate, calcium carbonate, and magnesium carbonate; phosphates such as calcium phosphate; metals such as aluminum oxide and titanium oxide.
  • Inorganic compounds such as oxides; metal hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide and ferric hydroxide; can be mentioned. These inorganic dispersion stabilizers can be used alone or in combination of two or more.
  • the above-mentioned poorly water-soluble metal salts such as sulfates, carbonates, phosphates and metal hydroxides are preferable, metal hydroxides are more preferable, and magnesium hydroxide is particularly preferable.
  • the poorly water-soluble metal salt is preferably an inorganic metal salt having a solubility in 100 g of water of 0.5 g or less.
  • a colloidal dispersion liquid in which a poorly water-soluble inorganic dispersion stabilizer is dispersed in an aqueous medium in the form of colloidal particles that is, a colloidal dispersion containing the poorly water-soluble inorganic dispersion stabilizer colloidal particles. It is preferable to use it in the state of.
  • the poorly water-soluble inorganic dispersion stabilizer in the state of a colloidal dispersion containing the poorly water-soluble inorganic dispersion stabilizer colloidal particles, the particle size distribution of the droplets of the monomer composition can be narrowed. In addition to being able to do so, cleaning can easily keep the residual amount of the inorganic dispersion stabilizer in the obtained hollow particles low.
  • the colloidal dispersion containing the poorly water-soluble inorganic dispersion stabilizer colloidal particles includes, for example, at least one selected from an alkali hydroxide metal salt and an alkaline earth hydroxide metal salt, and a water-soluble polyvalent metal salt (hydroxylizing). It can be prepared by reacting with an alkaline earth metal salt (excluding alkaline earth metal salts) in an aqueous medium.
  • alkali metal hydroxide salt include lithium hydroxide, sodium hydroxide, potassium hydroxide and the like.
  • Examples of the alkaline earth metal hydroxide salt include barium hydroxide and calcium hydroxide.
  • the water-soluble polyvalent metal salt may be any polyvalent metal salt exhibiting water solubility other than the compound corresponding to the above alkaline earth metal hydroxide salt, and examples thereof include magnesium chloride, magnesium phosphate, magnesium sulfate and the like.
  • magnesium metal salt, calcium metal salt, and aluminum metal salt are preferable, magnesium metal salt is more preferable, and magnesium chloride is particularly preferable.
  • the water-soluble polyvalent metal salt can be used alone or in combination of two or more.
  • the method for reacting at least one selected from the above-mentioned alkali metal hydroxide metal salt and alkali hydroxide earth metal salt with the above-mentioned water-soluble polyvalent metal salt in an aqueous medium is not particularly limited, but is hydroxylated. Examples thereof include a method of mixing at least one aqueous solution selected from an alkali metal salt and an alkaline earth metal hydroxide salt with an aqueous solution of a water-soluble polyvalent metal salt.
  • an aqueous solution of the water-soluble polyvalent metal salt is stirred and hydroxylated in the aqueous solution.
  • a method of mixing by gradually adding at least one aqueous solution selected from an alkali metal salt and an alkaline earth hydroxide metal salt is preferable.
  • at least one selected from an alkali hydroxide metal salt and an alkaline earth hydroxide metal salt and a water-soluble polyvalent metal salt are water-based. It is preferable to use a colloidal dispersion obtained by setting the temperature at the time of reaction in the medium to 20 ° C. or higher and 50 ° C. or lower.
  • the content of the dispersion stabilizer is not particularly limited, but is preferably 0.5 to 10 parts by mass, more preferably 1 part by mass, based on 100 parts by mass of the total mass of the polymerizable monomer and the hydrophobic solvent. It is 9.0 to 8.0 parts by mass.
  • the content of the dispersion stabilizer is at least the above lower limit value, the droplets of the monomer composition can be sufficiently dispersed so as not to coalesce in the suspension.
  • the content of the dispersion stabilizer is not more than the above upper limit value, it is possible to prevent the viscosity of the suspension from increasing during granulation and to avoid the problem that the suspension is clogged by the granulator. can.
  • the content of the dispersion stabilizer is usually 2 parts by mass or more and 15 parts by mass or less, and preferably 3 parts by mass or more and 8 parts by mass or less with respect to 100 parts by mass of the aqueous medium.
  • the water-based medium means a medium selected from the group consisting of water, a hydrophilic solvent, and a mixture of water and a hydrophilic solvent.
  • the hydrophilic solvent in the present disclosure is not particularly limited as long as it is sufficiently mixed with water and does not cause phase separation.
  • the hydrophilic solvent include alcohols such as methanol and ethanol; tetrahydrofuran (THF); dimethyl sulfoxide (DMSO) and the like.
  • THF tetrahydrofuran
  • DMSO dimethyl sulfoxide
  • the mass ratio of water to the hydrophilic solvent may be 99: 1 to 50:50.
  • the mixed solution may further contain other materials different from the above-mentioned materials (A) to (E) as long as the effects of the present disclosure are not impaired.
  • the mixed solution preferably contains a particle size control agent as another material.
  • the particle size control agent By including the particle size control agent in the mixed solution, the particle size of the droplets of the monomer composition and the thickness of the shell of the obtained hollow particles can be appropriately adjusted.
  • the particle size control agent at least one selected from the group consisting of rosin acid, higher fatty acids and metal salts thereof can be preferably used. These particle size control agents can appropriately adjust the particle size of the droplets of the monomer composition containing the polymerizable monomer and the hydrophobic solvent in the suspension step described later.
  • droplets of the monomeric composition are formed in an aqueous medium by the action of the dispersion stabilizer.
  • the material other than the hydrophobic solvent containing the polymerizable monomer and the hydrophobic solvent are phase-separated, and the hydrophobic solvent is unevenly distributed in the center, other than the hydrophobic solvent. Material is unevenly distributed on the surface side.
  • the mixed liquid contains a particle size control agent, it is presumed that the particle size control agent is unevenly distributed near the surface of the droplet of the monomer composition and the dispersion stabilizer has a structure of adhering to the surface of the droplet. Will be done.
  • the distribution structure of such a material is formed according to the difference in the affinity of each material for an aqueous medium.
  • the mixed liquid contains the particle size control agent
  • the droplets of the monomer composition in the suspension have the distribution structure of the material as described above, and the dispersion stabilizer and the particle size control agent are formed on the surface of the droplets. It is considered that the dispersibility of the droplet by the dispersion stabilizer is changed due to the interaction, and the particle size of the droplet of the monomer composition can be appropriately adjusted.
  • the particle size control agent at least one selected from rosin acid and its alkali metal salt is more preferable.
  • Rosinic acid can be obtained from rosins such as gum rosin, tall rosin and wood rosin.
  • examples of the components contained in the loginic acid obtained from these rosins include abietic acid, dehydroabietic acid, palastolic acid, isopimalic acid, and pimaric acid.
  • the component ratio of rosin acid is not constant and varies depending on the type of rosin, the pine species of the raw material, the production area, and the like.
  • loginic acid and its metal salt used in the present disclosure loginic acid containing 50% by mass or more of abietic acids such as abietic acid, dehydroavietic acid, palastolic acid and hydrides thereof and an alkali metal salt thereof are preferable.
  • the higher fatty acid is preferably a higher fatty acid having 10 to 25 carbon atoms and does not contain a carbon atom in the carboxyl group.
  • Preferred higher fatty acids include, for example, lauric acid (CH 3 (CH 2 ) 10 COOH), tridecanoic acid (CH 3 (CH 2 ) 11 COOH), myristic acid (CH 3 (CH 2 ) 12 COOH), pentadecanoic acid (CH 3 (CH 2) 12 COOH).
  • Examples of the metal used for the metal salt of loginic acid or higher fatty acid include alkali metals such as Li, Na and K, and alkaline earth metals such as Mg and Ca. Among them, alkali metals are preferable. At least one selected from Li, Na and K is more preferred.
  • the total content of loginic acid, higher fatty acids and metal salts thereof is a polymerizable monomer.
  • 100 parts by mass of the total of the hydrophobic solvent and the hydrophobic solvent it is preferably 0.0001 part by mass or more and 0.1 part by mass or less, more preferably 0.001 part by mass or more and 0.01 part by mass or less, and further preferably. Is 0.0015 parts by mass or more and 0.006 parts by mass or less.
  • the content is not more than the upper limit, the decrease in the content ratio of the polymerizable monomer can be suppressed, so that the decrease in the strength of the shell can be suppressed and the crushing of the hollow particles can be further suppressed. ..
  • a mixed solution is obtained by mixing each of the above-mentioned materials and, if necessary, other materials, and stirring or the like as appropriate.
  • the oil phase containing the lipophilic material such as ((A) polymerizable monomer, (B) hydrophobic solvent and (C) polymerization initiator is the (D) dispersion stabilizer and (E). ) It is dispersed in an aqueous phase containing an aqueous medium or the like with a particle size of about several mm. The dispersed state of these materials in the mixed solution can be visually observed depending on the type of the material.
  • each of the above-mentioned materials and other materials may be simply mixed and appropriately stirred to obtain a mixed liquid, but the shell tends to be uniform, so that the polymerizable unit amount
  • a colloidal dispersion liquid in which a poorly water-soluble inorganic dispersion stabilizer is dispersed in an aqueous medium in the form of colloidal particles can be preferably used as the aqueous phase.
  • the suspension step is a step of preparing a suspension in which droplets of a monomer composition containing a hydrophobic solvent are dispersed in an aqueous medium by suspending the above-mentioned mixture.
  • the suspension method for forming droplets of the monomer composition is not particularly limited, and for example, a (in-line type) emulsification disperser (manufactured by Pacific Machinery & Engineering Co., Ltd., trade name: Milder, and manufactured by Eurotech Co., Ltd.).
  • Product name Horizontal in-line disperser such as Cavitron;
  • Product name Vertical in-line disperser such as DRS 2000/5), High-speed emulsification disperser (Product name: T.I.
  • a device capable of strong stirring such as K. homomixer MARK II type.
  • the suspension prepared in the suspension step droplets of the monomer composition containing the lipophilic material and having a particle size of about 1 to 10 ⁇ m are uniformly dispersed in the aqueous medium. Droplets of such a monomer composition are difficult to observe with the naked eye, and can be observed with a known observation device such as an optical microscope.
  • phase separation occurs in the droplets of the monomer composition, so that a low-polarity hydrophobic solvent tends to collect inside the droplets.
  • the obtained droplet has a hydrophobic solvent distributed inside the droplet, and a material other than the hydrophobic solvent distributed around the periphery thereof.
  • FIG. 2 is a schematic diagram showing an embodiment of a suspension in a suspension step.
  • the droplet 10 of the monomer composition in FIG. 2 schematically shows the cross section thereof. Note that FIG. 2 is only a schematic diagram, and the suspension in the present disclosure is not necessarily limited to that shown in FIG. A part of FIG. 2 corresponds to (2) of FIG. 1 described above.
  • FIG. 2 shows how the droplet 10 of the monomer composition and the polymerizable monomer 4c dispersed in the aqueous medium 1 are dispersed in the aqueous medium 1.
  • the droplet 10 is formed by surrounding the oil-soluble monomer composition 4 with the dispersion stabilizer 3.
  • the monomer composition contains an oil-soluble polymerization initiator 5, a polymerizable monomer and a hydrophobic solvent (neither of which is shown).
  • the droplet 10 is a fine oil droplet containing the monomer composition 4, and the oil-soluble polymerization initiator 5 generates a polymerization initiation radical inside the fine oil droplet. Therefore, it is possible to produce precursor particles having a desired particle size without overgrowth of fine oil droplets. In such a suspension polymerization method using an oil-soluble polymerization initiator, there is no opportunity for the polymerization initiator to come into contact with the polymerizable monomer 4c dispersed in the aqueous medium 1. Therefore, by using the oil-soluble polymerization initiator, it is possible to suppress the formation of extra resin particles such as dense real particles having a relatively small particle size in addition to the resin particles having the desired hollow portion.
  • This step has a hollow portion surrounded by a shell containing a resin by subjecting the suspension obtained by the above-mentioned suspension step to a polymerization reaction, and the hollow portion has a hydrophobic solvent.
  • This is a step of preparing a precursor composition containing precursor particles containing the above.
  • the precursor particles are formed by polymerizing the polymerizable monomer contained in the droplets of the monomer composition, and the shell included in the precursor particles contains the polymer of the polymerizable monomer as a resin.
  • the polymerization method is not particularly limited, and for example, a batch method, a semi-continuous method, a continuous method, or the like can be adopted.
  • the polymerization temperature is preferably 40 to 80 ° C, more preferably 50 to 70 ° C.
  • the rate of temperature rise when raising the temperature to the polymerization temperature is preferably 10 ° C./h to 60 ° C./h, more preferably 15 ° C./h to 55 ° C./h.
  • the reaction time of the polymerization is preferably 1 to 48 hours, more preferably 4 to 36 hours.
  • This step is a step of obtaining a solid component containing precursor particles by solid-liquid separation of the precursor composition containing precursor particles obtained by the above-mentioned polymerization step.
  • the method for solid-liquid separation of the precursor composition is not particularly limited, and a known method can be used.
  • the solid-liquid separation method include a centrifugal separation method, a filtration method, and a static separation method. Among them, a centrifugal separation method or a filtration method can be adopted, and the centrifugal separation method is used from the viewpoint of ease of operation. May be adopted.
  • an arbitrary step such as a pre-drying step may be carried out.
  • the pre-drying step include a step of pre-drying the solid component obtained after the solid-liquid separation step with a drying device such as a dryer or a drying device such as a hand dryer.
  • Solvent removal step This step is a step of removing the hydrophobic solvent contained in the precursor particles obtained by the solid-liquid separation step. By removing the hydrophobic solvent contained in the precursor particles in the air, the hydrophobic solvent inside the precursor particles is replaced with air, and hollow particles filled with gas can be obtained.
  • in the air means an environment in which no liquid is present outside the precursor particles, and a very small amount outside the precursor particles that does not affect the removal of the hydrophobic solvent. It means an environment where only the liquid content of is present.
  • the term "in the air” can be rephrased as a state in which the precursor particles are not present in the slurry, or can be rephrased as a state in which the precursor particles are present in the dry powder. That is, in this step, it is important to remove the hydrophobic solvent in an environment where the precursor particles are in direct contact with an external gas.
  • the method for removing the hydrophobic solvent in the precursor particles in the air is not particularly limited, and a known method can be adopted.
  • the method include a vacuum drying method, a heat drying method, an air flow drying method, or a combination of these methods.
  • the heating temperature must be equal to or higher than the boiling point of the hydrophobic solvent and lower than the maximum temperature at which the shell structure of the precursor particles does not collapse. Therefore, depending on the composition of the shell in the precursor particles and the type of the hydrophobic solvent, for example, the heating temperature may be 50 to 200 ° C, 70 to 200 ° C, or 100 to 200 ° C.
  • the dry atmosphere is not particularly limited and can be appropriately selected depending on the use of the hollow particles.
  • As the dry atmosphere for example, air, oxygen, nitrogen, argon and the like can be considered. Further, by once filling the inside of the hollow particles with a gas and then drying under reduced pressure, hollow particles having a temporary vacuum inside can also be obtained.
  • the hydrophobic solvent contained in the precursor particles is used in the slurry containing the precursor particles and the aqueous medium without solid-liquid separation of the slurry-like precursor composition obtained in the polymerization step.
  • the hydrophobic solvent may be removed by substituting the slurry with an aqueous medium.
  • the hydrophobic solvent contained in the precursor particles can be removed by bubbling the precursor composition with an inert gas at a temperature equal to or higher than the boiling point of the hydrophobic solvent minus 35 ° C. can.
  • the boiling point of the hydrophobic solvent in the solvent removing step is the boiling point of the solvent contained in the mixed solvent.
  • the boiling point of the solvent having the highest boiling point that is, the highest boiling point among the plurality of boiling points.
  • the temperature at which the inert gas is bubbled into the precursor composition should be a temperature equal to or higher than the boiling point of the hydrophobic solvent minus 30 ° C. from the viewpoint of reducing the residual amount of the hydrophobic solvent in the hollow particles. It is preferable that the temperature is equal to or higher than the temperature obtained by subtracting 20 ° C.
  • the temperature at the time of bubbling is usually set to a temperature equal to or higher than the polymerization temperature in the polymerization step.
  • the temperature at the time of bubbling may be 50 ° C. or higher and 100 ° C. or lower.
  • the inert gas to be bubbled is not particularly limited, and examples thereof include nitrogen and argon.
  • the bubbling conditions are appropriately adjusted so that the hydrophobic solvent contained in the precursor particles can be removed according to the type and amount of the hydrophobic solvent, and the bubbling conditions are not particularly limited, but for example, 1 to 3 L of the inert gas is used.
  • the amount of / min may be bubbling for 1 to 10 hours.
  • an aqueous slurry in which the precursor particles contain an aqueous medium can be obtained.
  • the hollow particles in which the gas occupies the hollow portion can be obtained.
  • the former method has an advantage that the hollow particles are less likely to be crushed in the step of removing the hydrophobic solvent, and the latter method uses an inert gas.
  • the residual hydrophobic solvent is reduced by performing the existing bubbling.
  • the hydrophobic organic solvent contained in the precursor particles is removed without solid-liquid separation of the slurry-like precursor composition obtained in the polymerization step.
  • a method for example, a method of evaporating and distilling off a hydrophobic organic solvent contained in a precursor particle from a precursor composition under a predetermined pressure (high pressure, normal pressure or reduced pressure); under a predetermined pressure (high pressure).
  • a method of introducing an inert gas such as nitrogen, argon or helium or water vapor into the precursor composition under normal pressure or reduced pressure) and evaporating and distilling off may be used.
  • the cleaning step is a cleaning step in which an acid or an alkali is added to remove the dispersion stabilizer remaining in the precursor composition containing the precursor particles before the solvent removal step. This is the process to be performed.
  • the dispersion stabilizer used is an inorganic dispersion stabilizer soluble in acid, it is preferable to add an acid to the precursor composition containing the precursor particles for washing, while the dispersion stabilizer used.
  • an inorganic compound soluble in an alkali it is preferable to add an alkali to the precursor composition containing the precursor particles to perform washing.
  • an inorganic dispersion stabilizer soluble in acid the acid is added to the precursor composition containing the precursor particles, and the pH is preferably 6.5 or less, more preferably 6. It is preferable to adjust as follows.
  • inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid, and organic acids such as formic acid and acetic acid can be used, but the efficiency of removing the dispersion stabilizer is high and the burden on the manufacturing equipment is small. , Sulfuric acid is particularly suitable.
  • the revision step of the hollow portion is a step of replacing the gas or liquid inside the hollow particles with another gas or liquid.
  • substitution the environment inside the hollow particles can be changed, molecules can be selectively confined inside the hollow particles, and the chemical structure inside the hollow particles can be modified according to the application.
  • the hollow particles of the present disclosure are hollow particles having a shell containing a resin and a hollow portion surrounded by the shell, and having a porosity of 50% or more.
  • the shell contains a hydrocarbon polymer as the resin, It is characterized in that the relative permittivity at a frequency of 1 MHz is 1.5 or less.
  • the hollow particles of the present disclosure can be obtained by the above-mentioned production method of the present disclosure.
  • the hollow particles of the present disclosure have a low relative permittivity and dielectric loss tangent, and are excellent in electrical insulation characteristics.
  • the relative permittivity of hollow particles at a frequency of 1 MHz can be set to 1.4 or less in a more preferable embodiment.
  • the lower limit of the relative permittivity of the hollow particles of the present disclosure at a frequency of 1 MHz is not particularly limited, but is usually 1.0 or more.
  • the dielectric loss tangent of the hollow particles at a frequency of 1 MHz can be 0.010 or less, and in a more preferable embodiment, 0.007 or less.
  • the lower limit of the dielectric loss tangent at a frequency of 1 MHz of the hollow particles of the present disclosure is not particularly limited, but is usually 0.0001 or more, and may be 0.001 or more. Further, according to the manufacturing method of the present disclosure, the relative permittivity of the hollow particles at a frequency of 1 GHz can be set to 1.5 or less, and in a more preferable embodiment, it can be set to 1.4 or less. The lower limit of the relative permittivity of the hollow particles of the present disclosure at a frequency of 1 GHz is not particularly limited, but is usually 1.0 or more.
  • the dielectric loss tangent of the hollow particles at a frequency of 1 GHz can be 0.010 or less, and in a more preferable embodiment, 0.005 or less.
  • the lower limit of the dielectric loss tangent of the hollow particles of the present disclosure at a frequency of 1 GHz is not particularly limited, but is usually 0.001 or more.
  • the relative permittivity and the dielectric loss tangent of hollow particles are measured using a perturbation type measuring device under the condition of a measurement frequency of 1 MHz or 1 GHz.
  • the hydrocarbon polymer in which the hollow particles of the present disclosure are contained as a resin in the shell is a polymer of the above-mentioned polymerizable monomer used in the production method of the present disclosure.
  • the content of the hydrocarbon polymer is preferably 99% by mass or more, more preferably 99.5% by mass or more, still more preferably 99.9% by mass or more, based on 100% by mass of the total solid content of the shell.
  • the shell provided in the hollow particles of the present disclosure is preferably free of heteroatoms in order to suppress deterioration of electrical insulation characteristics or solvent resistance, but to the extent that the effects of the present disclosure are not impaired, other than hydrocarbons. It may contain a very small amount of the component of.
  • the components other than the hydrocarbon that may be contained in the shell include the above-mentioned particle size control agent.
  • the content of components other than hydrocarbons contained in the shell is preferably 1% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.1% by mass or less, based on 100% by mass of the total solid content of the shell. Is. By setting the content of components other than hydrocarbons to the above upper limit or less, the electrical insulation characteristics and solvent resistance of the hollow particles can be improved.
  • the hollow particles of the present disclosure have a lower limit of the volume average particle size of preferably 1 ⁇ m or more, more preferably 1.5 ⁇ m or more, still more preferably 2 ⁇ m or more.
  • the upper limit of the volume average particle size of the hollow particles is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, and further preferably 6 ⁇ m or less.
  • the volume average particle size of the hollow particles is not more than the above upper limit value, the variation in shell thickness is suppressed, a uniform shell is easily formed, and the hollow particles are less likely to be crushed, so that the hollow particles have high mechanical strength.
  • hollow particles having a volume average particle diameter within the above range are suitably used as a material for an electronic circuit board because they do not cause wiring problems even if they are contained in the insulating resin layer of the electronic circuit board.
  • a combination of the above-mentioned preferable dispersion stabilizer and particle size control agent is used, and further the above-mentioned preferable hydrophobic solvent is used. It is preferable to use.
  • the shape of the hollow particles of the present disclosure is not particularly limited as long as the hollow portion is formed inside, and examples thereof include a spherical shape, an elliptical spherical shape, and an amorphous shape. Among these, a spherical shape is preferable because of ease of manufacture.
  • the hollow particles of the present disclosure may have one or more hollow portions, but from the viewpoint of maintaining a good balance between high porosity and mechanical strength, and improving electrical insulation characteristics. Those having only one hollow portion are preferable. Further, the shell provided by the hollow particles of the present disclosure and the partition wall partitioning the adjacent hollow portions when having two or more hollow portions may be porous, but the points of improving the electrical insulation characteristics are improved.
  • the hollow particles of the present disclosure may have an average circularity of 0.950 to 0.995.
  • An example of the image of the shape of the hollow particles of the present disclosure is a bag made of a thin film and inflated with gas, and the cross-sectional view thereof is as shown in the hollow particles 100 in FIG. 1 (5).
  • a thin film is provided on the outside, and the inside is filled with gas.
  • the particle shape can be confirmed by, for example, SEM or TEM. Further, the shape inside the particles and the presence of fine resin particles inside the particles can be confirmed by SEM or TEM after the particles are sliced by a known method.
  • the particle size distribution of the hollow particles may be, for example, 1.1 or more and 2.5 or less. When the particle size distribution is 2.5 or less, particles having less variation in compressive strength characteristics and heat resistance among the particles can be obtained. Further, when the particle size distribution is 2.5 or less, for example, when manufacturing a sheet-shaped molded product, it is possible to manufacture a product having a uniform thickness.
  • the volume average particle size (Dv) and the number average particle size (Dn) of the hollow particles were obtained by, for example, measuring the particle size of the hollow particles with a particle size distribution measuring device and calculating the number average and the volume average, respectively.
  • the values can be the number average particle size (Dn) and the volume average particle size (Dv) of the particles.
  • the particle size distribution shall be a value obtained by dividing the volume average particle size by the number average particle size.
  • the hollow particles of the present disclosure have a porosity of 50% or more, preferably 60% or more, more preferably 70% or more, still more preferably 75% or more.
  • the porosity is at least the above lower limit value, the hollow particles are excellent in light weight, heat resistance and heat insulating property, and are excellent in electrical insulating property.
  • the upper limit of the porosity of the hollow particles of the present disclosure is not particularly limited, but is preferably 90% or less, more preferably 85% or less, from the viewpoint of suppressing a decrease in the strength of the hollow particles and making it difficult to be crushed. , More preferably 80% or less.
  • the porosity of the hollow particles of the present disclosure can be calculated from the addition amount and specific gravity of the material forming the shell used for producing the hollow particles, and the addition amount and specific gravity of the hydrophobic solvent.
  • the material forming the shell is a solid content material excluding the hydrophobic solvent from the materials that become the oil phase in the mixed liquid prepared in the above-mentioned mixed liquid preparation step.
  • the hydrophobic solvent is a hydrophobic solvent in the mixed solution.
  • the content of the polymerizable monomer is 99% by mass or more with respect to 100% by mass of the material forming the shell, it can be considered that the shell is composed of a polymer of the polymerizable monomer, so that it is hollow.
  • the void ratio of the particles can be calculated by the following formula (A).
  • the "addition amount of the polymerizable monomer / specific gravity of the polymerizable monomer" in the above formula (A) is set to various polymerizable monomers. It is the sum of the calculated "addition amount of polymerizable monomer / specific gravity of polymerizable monomer".
  • the "addition amount of hydrophobic solvent / specific gravity of hydrophobic solvent" in the above formula (A) is the “addition amount of hydrophobic solvent” calculated by various hydrophobic solvents. / The total of "specific gravity of hydrophobic solvent”.
  • the porosity of the hollow particles of the present disclosure can also be calculated from the apparent density D 1 and the true density D 0 of the hollow particles.
  • the method for measuring the apparent density D1 of the hollow particles is as follows. First, a volumetric flask having a capacity of 100 cm 3 is filled with hollow particles having a capacity of about 30 cm 3 , and the mass of the filled hollow particles is accurately weighed. Next, the volumetric flask filled with the hollow particles is accurately filled with isopropanol up to the marked line, being careful not to allow air bubbles to enter. The mass of isopropanol added to the measuring flask is accurately weighed, and the apparent density D 1 (g / cm 3 ) of the hollow particles is calculated based on the following formula (I).
  • the apparent density D 1 corresponds to the specific gravity of the entire hollow particle when the hollow portion is regarded as a part of the hollow particle.
  • the method for measuring the true density D0 of hollow particles is as follows. After crushing the hollow particles in advance, a measuring flask having a capacity of 100 cm 3 is filled with about 10 g of crushed pieces of hollow particles, and the mass of the filled crushed pieces is accurately weighed. After that, isopropanol is added to the measuring flask in the same manner as in the measurement of the apparent density, the mass of the isopropanol is accurately weighed, and the true density D 0 (g / cm 3 ) of the hollow particles is calculated based on the following formula (II). do.
  • Some conventional hollow particles contain fine resin particles having an extremely smaller particle size than the hollow particles, such as the hollow particles obtained in Comparative Example 1 described later.
  • the hollow particles of the present disclosure preferably have 3 or less fine resin particles present in the hollow portion, and preferably 1 or less particles. Is more preferable, and 0 particles / 1 particle is further preferable.
  • the particle size of the fine resin particles is usually about 0.01 to 0.5 ⁇ m, which is 1/10 or less of the particle size of the hollow particles. According to the manufacturing method of the present disclosure described above, the number of the fine resin particles existing in the hollow portion can be set to be equal to or less than the upper limit value.
  • the hollow particles of the present disclosure are excellent in strength by sufficiently containing a crosslinkable monomer unit in the shell, they are not easily crushed during kneading with other materials and during molding after kneading, and when added to a molded product. In addition, it has excellent effects as a weight-reducing material, a heat insulating material, a soundproofing material, a vibration damping material, and the like. Further, since the hollow particles of the present disclosure have a reduced residual amount of the hydrophobic solvent, there is no risk of causing ignition or smoke when kneaded with other materials such as resin. Therefore, the hollow particles of the present disclosure are particularly suitable as an additive for a molded body, and are particularly preferably used as an additive for a resin molded body.
  • the molded product containing the hollow particles of the present disclosure includes, as a resin, for example, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, epoxy resin, acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-styrene (AS) resin, and the like.
  • a resin for example, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, epoxy resin, acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-styrene (AS) resin, and the like.
  • a curing agent or a catalyst such as amines, acid anhydrides, and imidazoles.
  • the molded body containing the hollow particles of the present disclosure may further contain organic or inorganic fibers such as carbon fiber, glass fiber, aramid fiber and polyethylene fiber.
  • the hollow particles of the present disclosure are also used in a molded product formed by using a thermoplastic or thermosetting resin, and a molded product formed by using a material containing a thermoplastic or thermosetting resin and further fibers. , Can be contained as a filler.
  • Applications of the resin molded body containing the hollow particles of the present disclosure include, for example, light reflectors, heat insulating materials, sound insulating materials and low dielectric materials used in various fields such as automobiles, electricity, electronics, construction, aviation, and space.
  • the hollow particles of the present disclosure are excellent in electrical insulation characteristics and solvent resistance, they are suitably used as a material for realizing low dielectric constant or low transmission loss in the field of electricity or electrons.
  • the hollow particles of the present disclosure are suitably used as an electronic circuit board material, and specifically, by incorporating the hollow particles of the present disclosure into the insulating resin layer of the electronic circuit board, the relative permittivity of the insulating resin layer is obtained. The rate can be reduced and the transmission loss of the electronic circuit board can be reduced.
  • the hollow particles of the present disclosure include interlayer insulating materials, dry film resists, solder resists, bonding wires, magnet wires, semiconductor encapsulants, epoxy encapsulants, mold underfills, underfills, die bond pastes, and the like. It is suitable for semiconductor materials such as buffer coat materials, copper-clad laminates, flexible substrates, high-frequency device modules, antenna modules, and in-vehicle radars. Among these, especially for semiconductor materials such as interlayer insulation materials, solder resists, magnet wires, epoxy encapsulants, underfills, buffer coat materials, copper-clad laminates, flexible substrates, high-frequency device modules, antenna modules, and in-vehicle radars. Suitable.
  • the hollow particles of the present disclosure have a high porosity, are not easily crushed, and have excellent heat resistance, they satisfy the heat insulating property and cushioning property (cushioning property) required for the undercoat material, and are immediately suitable for use in thermal paper. It also meets the heat resistance.
  • the hollow particles of the present disclosure are also useful as plastic pigments having excellent gloss, hiding power and the like.
  • the hollow particles of the present disclosure can contain useful components such as fragrances, chemicals, pesticides, and ink components by means such as immersion treatment, decompression treatment, or pressure immersion treatment, various types can be obtained depending on the components contained inside. It can be used for various purposes.
  • Example 1 (1) Mixture solution preparation step First, the following materials were mixed to prepare an oil phase.
  • DVB960 (trade name, manufactured by Nittetsu Chemical & Materials Co., Ltd., purity of divinylbenzene: 96%, content ratio of ethylvinylbenzene: 4%) 26.2 parts 2,2'-azobis (4-methoxy-2,4) -Dimethylvaleronitrile) (oil-soluble polymerization initiator, manufactured by Fujifilm Wako Junyaku Co., Ltd., trade name: V-70) 0.6 part Logonic acid (manufactured by Arakawa Chemical Co., Ltd., trade name: disproportionated rosin Rondis R-CH) , Softening point 150 ° C or higher, acid value: 150-160 mgKOH / g) 0.002 part Hydrophobic solvent: hexane 73.4 parts Next, in a stirring tank, under the temperature condition of 40 ° C, to 225 parts of ion-exchanged
  • Example 1 Example 1
  • Example 2 to 5 and Comparative Examples follow the same procedure as in Example 1 except that the oil phase material prepared in the above “(1) Mixed liquid preparation step” is as shown in Table 1. 1 to 3 hollow particles were produced.
  • volume average particle size The volume average particle size of the hollow particles was measured using a particle size distribution measuring machine (manufactured by Beckman Coulter, trade name: Multisizer 4e). The measurement conditions were aperture diameter: 50 ⁇ m, dispersion medium: Isoton II (trade name), concentration 10%, and number of measured particles: 100,000. Specifically, 0.2 g of a particle sample was placed in a beaker, and an aqueous surfactant solution (manufactured by Fujifilm, trade name: Drywell) was added thereto as a dispersant.
  • the hollow particles were intentionally broken with a spatula, and the internal state of the particles was observed using a scanning electron microscope (manufactured by JEOL Ltd., trade name: JSM7610F).
  • the hollow particles evaluated as "no internal particles” had a shell of uniform thickness and had a hollow portion that was clearly distinguished from the shell.
  • the number of fine resin particles existing in the hollow portion was 1 piece / 1 particle or more and fine resin particles were observed inside the particles, it was evaluated as "with internal particles”.
  • the hollow portion was not formed inside the particle and the entire inside of the particle was porous, it was evaluated as "porous”.
  • Approximately 100 mg of hollow particles were placed in a glass bottle with a solvent-free 30 mL screw cap and weighed accurately. Subsequently, about 10 g of tetrahydrofuran (THF) was added and weighed accurately. The mixture in the glass bottle was stirred with a stirrer for 1 hour to extract the hydrophobic solvent contained in the hollow particles. After stopping the stirring and precipitating the resin component of the hollow particles insoluble in THF, a filter (manufactured by Advantech Co., Ltd., trade name: Membrane Filter 25JP020AN) was attached to the syringe barrel to obtain a sample solution obtained by filtering the precipitate. rice field. The sample solution was injected into gas chromatography (GC) for analysis.
  • GC gas chromatography
  • the amount (% by mass) of the hydrophobic solvent per unit mass contained in the hollow particles was determined from the peak area of GC and the calibration curve prepared in advance.
  • the detailed analysis conditions are as follows. (Analysis conditions) Equipment: GC-2010 (manufactured by Shimadzu Corporation) Column: DB-5 (manufactured by Agilent Technologies, Inc.) Film thickness 0.25 ⁇ m, inner diameter 0.25 mm, length 30 m Detector: FID Carrier gas: Nitrogen (Linear velocity: 28.8 cm / sec) Injection port temperature: 200 ° C Detector temperature: 250 ° C Oven temperature: Raise from 40 ° C to 230 ° C at a rate of 10 ° C / min and hold at 230 ° C for 2 minutes Sampling amount: 2 ⁇ L Based on the amount of the hydrophobic solvent in the hollow particles obtained above, the solvent removal property was evaluated according to the following evaluation criteria.
  • Comparative Example 3 the commercially available product of divinylbenzene used contained 63% by mass of divinylbenzene and 37% by mass of ethylvinylbenzene as an impurity, and was crosslinkable in 100% by mass of the polymerizable monomer used. The content of the monomer was less than 70% by mass.
  • Comparative Example 3 the entire inside of the obtained particles was porous, and a hollow portion clearly distinguished from the shell was not formed. Further, the particles obtained in Comparative Example 3 were inferior in solvent resistance and had a high relative permittivity and dielectric loss tangent. In Comparative Example 3, it is presumed that porous particles were generated because the components constituting the shell and the hydrophobic solvent were not sufficiently phase-separated in the droplets of the monomer composition. It is considered that the particles obtained in Comparative Example 3 were inferior in solvent resistance and electrical insulation characteristics because the porous particles were structurally easy to permeate the solvent and tended to have a high relative permittivity and dielectric loss tangent.
  • a hydrocarbon monomer is used as the polymerizable monomer, and the content of the crosslinkable monomer in 100% by mass of the polymerizable monomer is 70% by mass or more, which is hydrophobic. Since a hydrocarbon solvent having 5 to 8 carbon atoms was used as the sex solvent, the obtained particles were hollow particles having a hollow portion clearly distinguished from the shell, and were excellent in solvent removal and solvent resistance, and had a specific ratio. It was excellent in electrical insulation characteristics with low dielectric constant and dielectric constant contact.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

疎水性溶剤の残留量を低減することができ、電気絶縁特性及び耐溶剤性に優れる中空粒子を得ることができる中空粒子の製造方法を提供する。樹脂を含むシェル及びシェルに取り囲まれた中空部を備え、空隙率が50%以上である中空粒子の製造方法であって、重合性単量体、疎水性溶剤、重合開始剤、分散安定剤及び水系媒体を含む混合液を調製する工程と、混合液を懸濁させることにより単量体組成物の液滴が水系媒体中に分散した懸濁液を調製する工程と、懸濁液を重合反応に供することにより、シェルに取り囲まれた中空部を有し、かつ中空部に疎水性溶剤を内包する前駆体粒子を含む前駆体組成物を調製する工程とを含み、前記重合性単量体が炭化水素単量体であり、重合性単量体100質量%中、架橋性単量体の含有量が70質量%以上であり、前記疎水性溶剤が炭素数5~8の炭化水素系溶剤である中空粒子の製造方法。

Description

中空粒子の製造方法及び中空粒子
 本開示は、中空粒子の製造方法、及び当該製造方法により得られる中空粒子に関する。
 中空粒子(中空樹脂粒子)は、粒子の内部に空洞がある粒子であり、内部が実質的に樹脂で満たされた中実粒子と比べて、光を良く散乱させ、光の透過性を低くできるため、不透明度、白色度などの光学的性質に優れた有機顔料や隠蔽剤として水系塗料、紙塗被組成物などの用途で汎用されている。近年では更に、自動車、電気、電子、建築等の各種分野で用いられる樹脂や塗料等の軽量化剤、断熱化剤等としても利用されている。
 電子材料用途では、例えば、電子回路基板において、クロストークの発生や伝送損失の増大を抑制する目的で、絶縁樹脂層に中空粒子を含有させる場合がある。電子回路基板におけるクロストーク及び伝送損失は、絶縁樹脂層の比誘電率及び誘電正接を低下させることにより抑制することができる。中空粒子は、粒子内部が空洞であることにより、中空粒子の添加によって、絶縁樹脂層を低誘電率化及び低誘電正接化させることが試みられている。
 例えば、特許文献1には、低誘電率の有機絶縁材に用いられる中空架橋樹脂粒子として、架橋性単量体1~100重量%と非架橋性単量体0~99重量%とを重合して得られる粒子であって(ここで、架橋性単量体と非架橋性単量体の合計は100重量%とする)、平均粒子径が0.03~10μmであり、かつ粒子に存在する平均金属イオン濃度が50ppm以下である、中空架橋樹脂粒子が開示されている。特許文献1には、重合性単量体成分として、架橋性単量体、非架橋性の親水性単量体、及び非架橋性の共重合可能なその他の重合性単量体を用いることが好ましいと記載されている。
 また、特許文献2には、懸濁重合により中空高分子微粒子を製造する方法において、重合性成分として少なくとも1種の架橋性モノマーを用い、水難溶性の溶媒として、当該少なくとも1種の架橋性モノマーから得られる重合体もしくは共重合体に対して相溶性が低い性質を有し、かつ、溶媒と水間の界面張力(Y)と、架橋性モノマーを溶媒に溶解してなる溶液を懸濁重合に供して得られるポリマー吸着表面と水間の界面張力(Y)(mN/m)との関係において、Y≧Yのような条件が成立する溶媒を用いる方法が開示されている。特許文献2には、架橋性モノマーとして、ジビルベンゼン、ジビニルビフェニル等が用いられ、上記条件を満たす水難溶性の溶媒として、炭素数12~18の飽和炭化水素類が用いられる旨が記載されている。
特開2000-313818号公報 特開2004-190038号公報
 しかしながら、特許文献1に記載される中空架橋樹脂粒子は、比誘電率及び誘電正接が十分に低いものではなく、電気絶縁特性に優れているとはいえない。また、特許文献1に記載される中空架橋樹脂粒子は、極性有機溶剤が浸透してしまうという問題もある。電子材料用途の絶縁性材料として、メチルエチルケトン等の極性有機溶剤を用いてエポキシ樹脂等に中空粒子を含有させることがある。その場合において、極性有機溶剤が中空粒子の内部に浸透すると、中空粒子による低誘電率化及び低誘電正接化の効果が低減する場合がある。
 特許文献2に記載される方法では、中空高分子微粒子に内包された水難溶性の溶媒が残留しやすいという問題がある。中空粒子内に残留している水難溶性溶剤の量が多いと、例えば、中空粒子を樹脂と混合して二軸混練する際に、残留溶剤が発火や発煙を引き起こす恐れがある。また、特許文献2に記載される架橋性モノマーと水難溶性溶媒との組み合わせでは、粒子内部に中空部が形成されない場合がある。
 本開示の課題は、製造プロセスで用いた疎水性溶剤の残留量を低減することができ、電気絶縁特性に優れ、極性有機溶剤に対する耐溶剤性に優れる中空粒子を得ることができる中空粒子の製造方法、及び当該製造方法により得られる中空粒子を提供することである。
 本発明者は、懸濁重合法により中空粒子を製造する場合において、電気絶縁特性に優れ、極性有機溶剤に対する耐溶剤性に優れ、製造プロセスで用いた疎水性溶剤の残留量が低減された中空粒子を得るためには、重合性単量体と疎水性溶剤の組み合わせとしていずれも炭化水素を用い、更に、重合性単量体中の架橋性単量体の含有量を特定量以上とし、特定の炭素数を有する炭化水素系溶剤を用いることが有効であることを見出した。
 本開示は、樹脂を含むシェルおよび当該シェルに取り囲まれた中空部を備え、空隙率が50%以上である中空粒子の製造方法であって、
 重合性単量体、疎水性溶剤、重合開始剤、分散安定剤及び水系媒体を含む混合液を調製する工程と、
 前記混合液を懸濁させることにより、前記重合性単量体、前記疎水性溶剤及び前記重合開始剤を含有する単量体組成物の液滴が前記水系媒体中に分散した懸濁液を調製する工程と、
 前記懸濁液を重合反応に供することにより、樹脂を含むシェルに取り囲まれた中空部を有し、かつ前記中空部に前記疎水性溶剤を内包する前駆体粒子を含む前駆体組成物を調製する工程とを含み、
 前記重合性単量体が炭化水素単量体であり、前記重合性単量体100質量%中、エチレン性不飽和二重結合を2つ以上含む架橋性単量体の含有量が70質量%以上であり、
 前記疎水性溶剤が、炭素数5~8の炭化水素系溶剤である、中空粒子の製造方法を提供する。
 本開示の中空粒子の製造方法においては、前記混合液が、ロジン酸、高級脂肪酸及びこれらの金属塩からなる群から選ばれる少なくとも1種を含むことが好ましい。
 本開示の中空粒子の製造方法においては、前記分散安定剤が、無機分散安定剤であることが好ましく、前記無機分散安定剤が、難水溶性金属塩であることがより好ましい。
 本開示の中空粒子の製造方法においては、前記中空粒子の体積平均粒径が、1μm以上10μm以下であることが好ましい。
 本開示は、樹脂を含むシェルおよび当該シェルに取り囲まれた中空部を備え、空隙率が50%以上である中空粒子であって、
 前記シェルが前記樹脂として、炭化水素重合体を含有し、
 周波数1MHzにおける比誘電率が1.5以下である、中空粒子を提供する。
 本開示の中空粒子においては、周波数1MHzにおける誘電正接が0.010以下であることが好ましい。
 また、本開示の中空粒子においては、周波数1GHzにおける比誘電率が1.5以下であることが好ましく、周波数1GHzにおける誘電正接が0.010以下であることが好ましい。
 本開示の中空粒子においては、前記空隙率が60%以上であることが好ましい。
 本開示の中空粒子においては、体積平均粒径が1μm以上10μm以下であることが好ましい。
 上記の如き本開示の製造方法によれば、電気絶縁特性に優れ、極性有機溶剤に対する耐溶剤性に優れ、製造プロセスで用いた疎水性溶剤の残留量が低減された中空粒子を得ることができる。
本開示の製造方法の一例を説明する図である。 懸濁工程における懸濁液の一実施形態を示す模式図である。
 なお、本開示において、数値範囲における「~」とは、その前後に記載される数値を下限値及び上限値として含むことを意味する。
 また、本開示において、(メタ)アクリレートとは、アクリレート及びメタクリレートの各々を表し、(メタ)アクリルとは、アクリル及びメタクリルの各々を表す。
 本開示の製造方法により得られる中空粒子は、樹脂を含有するシェル(外殻)と、当該シェルに取り囲まれた中空部とを備える粒子である。
 本開示において、中空部は、樹脂材料により形成される中空粒子のシェルから明確に区別される空洞状の空間である。中空粒子のシェルは多孔質構造を有していても良いが、その場合には、中空部は、多孔質構造内に均一に分散された多数の微小な空間とは明確に区別できる大きさを有している。本開示の製造方法によれば、中空粒子のシェルを密実なものとすることができる。
 中空粒子が有する中空部は、例えば、粒子断面のSEM観察等により、又は粒子をそのままTEM観察等することにより確認することができる。
 また、本開示の製造方法により得られる中空粒子は、優れた電気絶縁特性を発揮する点から、中空粒子が有する中空部は空気等の気体で満たされている、又は真空に近い減圧状態であることが好ましい。
 以下、本開示の中空粒子の製造方法、及び本開示の製造方法により得られる本開示の中空粒子について詳細に説明する。
1.中空粒子の製造方法
 本開示の中空粒子の製造方法は、樹脂を含むシェルおよび当該シェルに取り囲まれた中空部を備え、空隙率が50%以上である中空粒子の製造方法であって、
 重合性単量体、疎水性溶剤、重合開始剤、分散安定剤及び水系媒体を含む混合液を調製する工程と、
 前記混合液を懸濁させることにより、前記重合性単量体、前記疎水性溶剤及び前記重合開始剤を含有する単量体組成物の液滴が前記水系媒体中に分散した懸濁液を調製する工程と、
 前記懸濁液を重合反応に供することにより、樹脂を含むシェルに取り囲まれた中空部を有し、かつ前記中空部に前記疎水性溶剤を内包する前駆体粒子を含む前駆体組成物を調製する工程とを含み、
 前記重合性単量体が炭化水素単量体であり、前記重合性単量体100質量%中、エチレン性不飽和二重結合を2つ以上含む架橋性単量体の含有量が70質量%以上であり、
 前記疎水性溶剤が、炭素数5~8の炭化水素系溶剤であることを特徴とする。
 本開示の中空粒子の製造方法は、重合性単量体、疎水性溶剤、重合開始剤、分散安定剤、及び水系媒体を含む混合液を懸濁させることにより、重合性単量体と疎水性溶剤が相分離し、重合性単量体が表面側に偏在し、疎水性溶剤が中心部に偏在した分布構造を有する液滴が水系媒体中に分散してなる懸濁液を調製し、この懸濁液を重合反応に供することによって液滴の表面を硬化させて疎水性溶剤で満たされた中空部を有する中空粒子を形成するという基本技術に従うものである。
 本開示の製造方法では、重合性単量体として炭化水素単量体を用い、疎水性溶剤として炭素数5~8の炭化水素系溶剤を用いることにより、シェルから明確に区別される中空部を粒子内部に形成することができ、粒子内における疎水性溶剤の残留量を低減することができ、中空粒子の比誘電率及び誘電正接を格段に低下させ、更に、中空粒子の極性有機溶剤に対する耐溶剤性を向上させることができる。なお、本開示においては、極性有機溶剤に対する耐溶剤性を、単に耐溶剤性と称する場合がある。
 特許文献1に記載される中空架橋樹脂粒子は、電気絶縁特性及び耐溶剤性に劣る。特許文献1に記載される中空架橋樹脂粒子は、メチルメタクリレート等に由来するヘテロ原子をシェル中に含むことにより、比誘電率及び誘電正接を十分に低下させることができず、また、シェルと極性有機溶剤との親和性が良好であるため、極性有機溶剤がシェルを浸透しやすいと考えられる。
 特許文献2に記載される方法で得られる中空高分子微粒子は、製造プロセスで用いる水難溶性溶媒の残留量が多い。特許文献2に記載される方法では、上述したY≧Yの条件を成立させるために、水難溶性の溶剤として炭素数12~18の飽和炭化水素類を用いている。炭素数12~18の飽和炭化水素類は沸点が高いため、粒子内に残留しやすい。また、特許文献2に記載される方法では、粒子内に中空部が形成されにくい。特許文献2に記載される架橋性モノマーと水難溶性溶媒との組み合わせでは、相溶性が良好なため、懸濁液に分散した液滴内で、架橋性モノマーと水難溶性溶媒とが十分に相分離せず、粒子内部に中空部が形成されにくいと考えられる。
 これに対し、本開示の製造方法では、疎水性溶剤として炭素数5~8の炭化水素系溶剤を用いることにより、重合温度で疎水性溶剤が揮発しにくいため重合反応を十分に進行させることができ、且つ、溶剤除去工程により中空部に内包されている疎水性溶剤が除去されやすいため、疎水性溶剤の残留量を低減することができる。
 また、本開示の製造方法により得られる中空粒子は、シェルを構成する重合体が炭化水素重合体であり、ヘテロ原子を含まないため、比誘電率及び誘電正接が低く、電気絶縁特性に優れる。なお、本開示においては、比誘電率及び誘電正接が低いほど、電気絶縁特性に優れるものとする。
 更に、本開示の製造方法では、エチレン性不飽和二重結合を2つ以上含む架橋性の炭化水素単量体を、重合性単量体100質量%中に70質量%以上含むことにより、粒子内に中空部が形成されやすい。上記割合で架橋性の炭化水素単量体を含む重合性単量体を重合すると、架橋密度の高い重合体が生成する。架橋密度の高い重合体は、架橋密度の低い重合体と比べて、疎水性溶剤と相分離しやすいと推定される。本開示の製造方法では、懸濁液を重合反応に供した際、液滴内で生成したシェルを構成する成分と、炭素数5~8の炭化水素系溶剤である疎水性溶剤とが適度な相溶性を有するようになるため、シェルを構成する成分と疎水性溶剤とが相分離して、粒子内に中空部が形成され、中空部と明確に区別されるシェルが形成すると推定される。液滴内において、シェルを構成する成分と疎水性溶剤との相溶性が高すぎると、多孔質粒子が生成してしまい、一方で、これらの相溶性が低すぎると、中空粒子の内部に微細な樹脂粒子が生成してしまう。また、中空粒子においては、粒子内部の気体で満たされた空間が大きいほど、比誘電率及び誘電正接は低下する傾向がある。粒子内部が多孔質であったり、粒子内部に微細な樹脂粒子が存在していると、同じ空隙率を有していても、気体で満たされた空間は分散した状態で存在し、1つの空間の大きさが小さくなる。そのため、多孔質粒子や、粒子内部に微細な樹脂粒子が多く存在する中空粒子は、比誘電率及び誘電正接が増大する傾向がある。これに対し、本開示の製造方法では、空隙率が50%以上の割合で、粒子内にシェルと明確に区別される空洞状の中空部が形成され、粒子内部に微細な樹脂粒子が生成されることも抑制されるため、比誘電率及び誘電正接の増大が抑制され、電気絶縁特性が更に向上した中空粒子を得ることができる。
 また、粒子内部が多孔質であると、構造上、溶剤がシェルを浸透しやすいため、耐溶剤性が悪化する傾向がある。これに対し、本開示の製造方法では、シェルと明確に区別される空洞状の中空部が形成され、シェルは密実になりやすい。シェルが密実であると、構造上、溶剤がシェルを浸透しにくい。更に、本開示の製造方法では、重合性単量体が架橋性単量体を70質量%以上含むため、シェル中に共有結合ネットワークが密に張り巡らされ、シェルの架橋密度が高いことからも、溶剤がシェルを浸透しにくい。更に、本開示の製造方法により得られる中空粒子は、シェルを構成する重合体が炭化水素重合体であることにより、シェルと極性有機溶剤との親和性が低いため、親和性の観点から極性溶剤を浸透しにくい。そのため、本開示の製造方法により得られる中空粒子は、極性有機溶剤に対する耐溶剤性に優れる。
 本開示の中空粒子の製造方法は、混合液を調製する工程と、懸濁液を調製する工程と、懸濁液を重合反応に供する工程とを含み、更にこれら以外の工程を含んでもよい。また、技術的に可能である限り、上記各工程、及び、その他の付加的な工程の2つまたはそれ以上を、一つの工程として同時に行っても良いし、順序を入れ替えて行っても良い。例えば、混合液を調製する材料を投入しながら同時に懸濁を行うというように、混合液の調製と懸濁を一つの行程中で同時に行ってもよい。
 本開示の中空粒子の製造方法の好ましい一例として、以下の工程を含む製造方法を挙げることができる。
 (1)混合液調製工程
 重合性単量体、疎水性溶剤、重合開始剤、分散安定剤及び水系媒体を含む混合液を調製する工程
 (2)懸濁工程
 前記混合液を懸濁させることにより、重合性単量体、疎水性溶剤及び重合開始剤を含有する単量体組成物の液滴が水系媒体中に分散した懸濁液を調製する工程
 (3)重合工程
 前記懸濁液を重合反応に供することにより、樹脂を含むシェルに取り囲まれた中空部を有し、かつ前記中空部に疎水性溶剤を内包する前駆体粒子を含む前駆体組成物を調製する工程
 (4)固液分離工程
 前記前駆体組成物を固液分離することにより、中空部に疎水性溶剤を内包する前駆体粒子を得る工程、及び
 (5)溶剤除去工程
 前記固液分離工程により得られた前駆体粒子に内包される疎水性溶剤を除去し、中空粒子を得る工程
 なお、本開示においては、中空部が疎水性溶剤で満たされた中空粒子を、中空部が気体で満たされた中空粒子の中間体と考えて、「前駆体粒子」と称する場合がある。本開示において「前駆体組成物」とは、前駆体粒子を含む組成物を意味する。
 図1は、本開示の製造方法の一例を示す模式図である。図1中の(1)~(5)は、上記各工程(1)~(5)に対応する。各図の間の白矢印は、各工程の順序を指示するものである。なお、図1は説明のための模式図に過ぎず、本開示の製造方法は図に示すものに限定されない。また、本開示の製造方法に使用される材料の構造、寸法及び形状は、これらの図における各種材料の構造、寸法及び形状に限定されない。
 図1の(1)は、混合液調製工程における混合液の一実施形態を示す断面模式図である。この図に示すように、混合液は、水系媒体1、及び当該水系媒体1中に分散する低極性材料2を含む。ここで、低極性材料2とは、極性が低く水系媒体1と混ざり合いにくい材料を意味する。本開示において低極性材料2は、重合性単量体、疎水性溶剤及び重合開始剤を含む。
 図1の(2)は、懸濁工程における懸濁液の一実施形態を示す断面模式図である。懸濁液は、水系媒体1、及び当該水系媒体1中に分散する単量体組成物の液滴10を含む。単量体組成物の液滴10は、重合性単量体、疎水性溶剤及び重合開始剤を含んでいるが、液滴内の分布は不均一である。単量体組成物の液滴10は、疎水性溶剤4aと、重合性単量体を含む疎水性溶剤以外の材料4bが相分離し、疎水性溶剤4aが中心部に偏在し、疎水性溶剤以外の材料4bが表面側に偏在し、分散安定剤(図示せず)が表面に付着した構造を有している。
 図1の(3)は、重合工程により得られる、中空部に疎水性溶剤を内包する前駆体粒子を含む前駆体組成物の一実施形態を示す断面模式図である。当該前駆体組成物は、水系媒体1、及び当該水系媒体1中に分散する、中空部に疎水性溶剤4aを内包する前駆体粒子20を含む。当該前駆体粒子20の外表面を形成するシェル6は、上記単量体組成物の液滴10中の重合性単量体の重合により形成されたものであり、当該重合性単量体の重合体を樹脂として含む。
 図1の(4)は、固液分離工程後の前駆体粒子の一実施形態を示す断面模式図である。この図1の(4)は、上記図1の(3)の状態から水系媒体1を除去した状態を示す。
 図1の(5)は、溶剤除去工程後の中空粒子の一実施形態を示す断面模式図である。この図1の(5)は、上記図1の(4)の状態から疎水性溶剤4aを除去した状態を示す。前駆体粒子から疎水性溶剤を除去することにより、気体で満たされた中空部8をシェル6の内部に有する中空粒子100が得られる。
 以下、上記5つの工程及びその他の工程について、順に説明する。
 (1)混合液調製工程
 本工程は、重合性単量体、疎水性溶剤、重合開始剤、分散安定剤、及び水系媒体を含む混合液を調製する工程である。混合液は、本開示の効果を損なわない範囲において、その他の材料を更に含有していてもよい。
 混合液の材料について、(A)重合性単量体、(B)疎水性溶剤、(C)重合開始剤、(D)分散安定剤、(E)水系媒体、(F)その他の材料の順に説明する。
 (A)重合性単量体
 本開示の製造方法において、重合性単量体としては、炭素と水素からなり、付加重合が可能なエチレン性不飽和二重結合を1つ以上含む炭化水素単量体が用いられる。
 重合性単量体としては、エチレン性不飽和二重結合を1つのみ含む非架橋性単量体と、エチレン性不飽和二重結合を2つ以上含む架橋性単量体がある。架橋性単量体は、重合反応により樹脂中に架橋結合を形成することができる。
 本開示の製造方法に用いられる重合性単量体は、少なくとも架橋性単量体を含み、本開示の効果を損なわない範囲において、非架橋性単量体を更に含んでいてもよい。
 [架橋性単量体]
 架橋性単量体はエチレン性不飽和二重結合を複数有するため、単量体同士を連結することができ、シェルの架橋密度を高めることができる。
 本開示の製造方法に用いられる架橋性単量体は、エチレン性不飽和二重結合を2つ以上有する炭化水素単量体であり、例えば、ジビニルベンゼン、ジビニルビフェニル、ジビニルナフタレン等が挙げられる。これらの架橋性単量体は、それぞれ単独で、又は2種以上を組み合わせて使用することができる。
 架橋性単量体としては、中でも、重合反応が安定し易く、かつ、強度及び耐熱性に優れる中空粒子が得られる点から、ジビニルベンゼンが好ましく用いられる。
 また、架橋性単量体の分子量は、210以下であることが好ましく、200以下であることがより好ましく、150以下であることが更に好ましい。架橋性単量体の分子量が上記上限値以下であると、架橋密度の高い重合体が生成し、単量体組成物の液滴中で、シェルを構成する成分と疎水性溶剤との相分離が促進されるため、粒子内に中空部が形成されやすい。架橋性単量体の分子量の下限は、特に限定はされないが、重合時の架橋性単量体の揮発を抑制する点から、100以上であることが好ましく、120以上であることがより好ましい。
 本開示の製造方法において、前記重合性単量体100質量%中、架橋性単量体の含有量は70質量%以上である。架橋性単量体の含有量が70質量%以上であることにより、単量体組成物の液滴中で、シェルを構成する成分と疎水性溶剤とが十分に相分離するため、中空部が形成される。また、架橋性単量体の含有量が70質量%以上であると、中空粒子のシェル中に占める架橋性単量体単位の含有割合が十分に多くなり、シェル中に共有結合ネットワークが密に張り巡らされる結果、シェルの架橋密度が高くなるため、耐溶剤性が向上し、更に、強度に優れ、潰れ難く、外部から付与される熱等に対しても変形し難いシェルを形成することができる。架橋性単量体の含有量は、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上である。
 上記架橋性単量体として市販品を用いた場合に、当該市販品における架橋性単量体の純度が100%未満であり、不純物として架橋性単量体以外の物質を含む場合は、上述した架橋性単量体の含有量とは、当該市販品の含有量ではなく、不純物を除いた架橋性単量体のみの含有量とする。
 上記架橋性単量体の市販品には、不純物として、例えば、上記架橋性単量体が有する一部のエチレン性不飽和二重結合が単結合となり、エチレン性不飽和二重結合を1つのみ有するものとなった非架橋性単量体、又は上記架橋性単量体の原料として用いられた非架橋性単量体等が含まれている場合がある。具体的には、ジビニルベンゼンの市販品には、不純物として、非架橋性単量体であるエチルビニルベンゼンが含まれている場合がある。
 [非架橋性単量体]
 本開示の製造方法において、重合性単量体が含んでいてもよい非架橋性単量体は、エチレン性不飽和二重結合を1つのみ含む炭化水素単量体であり、例えば、スチレン、ビニルトルエン、α-メチルスチレン、p-メチルスチレン、エチルビニルベンゼン、エチルビニルビフェニル、エチルビニルナフタレン等の芳香族ビニル単量体;エチレン、プロピレン、ブチレン等のモノオレフィン単量体;ブタジエン、イソプレン等のジエン系単量体;等が挙げられる。これらの非架橋性単量体はそれぞれ単独で、または2種以上を組み合わせて使用することができる。
 重合性単量体に含まれる非架橋性単量体は、架橋性単量体の市販品に含まれている不純物であってもよい。
 本開示の製造方法において、前記重合性単量体100質量%中、非架橋性単量体の含有量は30質量%以下であり、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。
 混合液中の重合性単量体の含有量は、特に限定はされないが、中空粒子の空隙率、粒径及び機械的強度のバランスの観点から、水系媒体を除く混合液中成分の総質量100質量%に対し、好ましくは15~50質量%、より好ましくは20~40質量%、更に好ましくは20~30質量%である。
 また、中空粒子の機械的強度を向上する観点から、混合液中で油相となる材料のうち疎水性溶剤を除いた固形分の総質量100質量%に対する重合性単量体の含有量は、好ましくは90質量%以上、より好ましくは95質量%以上、更に好ましくは99質量%以上である。
 なお、本開示において固形分とは、溶剤を除く全ての成分であり、液状の重合性単量体等は固形分に含まれるものとする。
 (B)疎水性溶剤
 本開示の製造方法で用いられる疎水性溶剤は、非重合性で且つ難水溶性の有機溶剤である。
 疎水性溶剤は、粒子内部に中空部を形成するスペーサー材料として働く。後述する懸濁工程において、疎水性溶剤を含む単量体組成物の液滴が水系媒体中に分散した懸濁液が得られる。懸濁工程においては、単量体組成物の液滴内で相分離が発生する結果、極性の低い疎水性溶剤が単量体組成物の液滴の内部に集まりやすくなる。最終的に、単量体組成物の液滴においては、その内部に疎水性溶剤が、その周縁に疎水性溶剤以外の他の材料が各自の極性に従って分布する。
 そして、後述する重合工程において、疎水性溶剤を内包した中空粒子を含む水分散液が得られる。すなわち、疎水性溶剤が粒子内部に集まることにより、得られる前駆体粒子の内部には、疎水性溶剤で満たされた中空部が形成されることとなる。
 本開示の製造方法では、疎水性溶剤として、炭素と水素からなる炭素数5~8の炭化水素系溶剤を用いる。炭素数5~8の炭化水素系溶剤としては、炭素数5~8の鎖状脂肪族炭化水素系溶剤、環状脂肪族炭化水素系溶剤及び芳香族炭化水素系溶剤からなる群から選ばれる少なくとも1種を用いることが好ましい。
 炭素数5~8の鎖状脂肪族炭化水素系溶剤としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、2-メチルブタン及び2-メチルペンタン等が挙げられる。
 炭素数5~8の環状脂肪族炭化水素系溶剤としては、例えば、シクロヘキサン及びシクロヘプタン等が挙げられる。
 炭素数5~8の芳香族炭化水素系溶剤としては、例えば、ベンゼン、トルエン及びキシレン等が挙げられる。
 これらの疎水性溶剤は、それぞれ単独で、又は2種以上を組み合わせて使用することができる。
 本開示の製造方法に用いる疎水性溶剤としては、中でも、中空部が形成されやすく、電気絶縁特性及び耐溶剤性に優れた中空粒子が得られやすい点、及び疎水性溶剤の残留量が低減されやすい点から、炭素数5~8の鎖状脂肪族炭化水素系溶剤及び環状脂肪族炭化水素系溶剤からなる群から選ばれる少なくとも1種を用いることが好ましく、炭素数5~8の鎖状脂肪族炭化水素系溶剤がより好ましく、更に好ましくは、ペンタン、ヘキサン、ヘプタン、オクタン等の炭素数5~8の鎖状飽和炭化水素系溶剤であり、より更に好ましくはペンタン、ヘキサン、ヘプタン及びオクタンからなる群から選ばれる少なくとも1種である。
 なお、本開示において、疎水性溶剤が炭素数5~8の炭化水素系溶剤であるとは、炭素数5~8の炭化水素系溶剤以外の疎水性溶剤が、ガスクロマトグラフィー分析(GC)によって検出されないことを意味する。
 また、特に限定されないが、疎水性溶剤の沸点は、後述する溶剤除去工程で除去されやすい点から、好ましくは130℃以下、より好ましくは100℃以下であり、一方で、前駆体粒子に内包されやすい点から、好ましくは50℃以上、より好ましくは60℃以上である。
 なお、疎水性溶剤が、複数種類の疎水性溶剤を含有する混合溶剤であり、沸点を複数有する場合は、当該混合溶剤に含まれる溶剤のうち最も沸点が高い溶剤の沸点が上記上限値以下であることが好ましく、当該混合溶剤に含まれる溶剤のうち最も沸点が低い溶剤の沸点が上記下限値以上であることが好ましい。
 また、本開示の製造方法で用いられる疎水性溶剤は、20℃における比誘電率が2.0以下であることが好ましい。比誘電率は、化合物の極性の高さを示す指標の1つである。疎水性溶剤の比誘電率が2.0以下と十分に小さい場合には、重合性単量体液滴中で相分離が速やかに進行し、中空が形成されやすいと考えられる。
 20℃における比誘電率が2.0以下の疎水性溶剤の例は、以下の通りである。カッコ内は比誘電率の値である。
 ペンタン(1.8)、ヘキサン(1.9)、ヘプタン(1.9)、オクタン(1.9)。
 20℃における比誘電率に関しては、公知の文献(例えば、日本化学会編「化学便覧基礎編」、改訂4版、丸善株式会社、平成5年9月30日発行、II-498~II-503ページ)に記載の値、及びその他の技術情報を参照できる。20℃における比誘電率の測定方法としては、例えば、JIS C 2101:1999の23に準拠し、かつ測定温度を20℃として実施される比誘電率試験等が挙げられる。
 混合液中の疎水性溶剤の量を変えることにより、中空粒子の空隙率を調節することができる。後述する懸濁工程において、架橋性単量体等を含む油滴が疎水性溶剤を内包した状態で重合反応が進行するため、疎水性溶剤の含有量が多いほど、得られる中空粒子の空隙率が高くなる傾向がある。
 本開示において、混合液中の疎水性溶剤の含有量は、重合性単量体100質量部に対し、50質量部以上500質量部以下であることが、中空粒子の粒子径を制御しやすく、中空粒子の強度を維持しながら空隙率を高めやすく、粒子内の残留疎水性溶剤量を低減しやすい点から好ましい。混合液中の疎水性溶剤の含有量は、重合性単量体100質量部に対し、より好適には60質量部以上400質量部以下であり、更に好適には70質量部以上300質量部以下である。
 (C)重合開始剤
 本開示の製造方法においては、混合液が、重合開始剤として油溶性重合開始剤を含有することが好ましい。混合液を懸濁後に単量体組成物の液滴を重合する方法として、水溶性重合開始剤を用いる乳化重合法と、油溶性重合開始剤を用いる懸濁重合法があり、油溶性重合開始剤を用いることにより懸濁重合を行うことができる。
 油溶性重合開始剤は、水に対する溶解度が0.2質量%以下の親油性のものであれば特に制限されない。油溶性重合開始剤としては、例えば、ベンゾイルペルオキシド、ラウロイルペルオキシド、t一ブチルペルオキシド一2-エチルヘキサノエート、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、アゾビスイソブチロニトリル、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等が挙げられる。
 混合液中の重合性単量体100質量部に対し、油溶性重合開始剤の含有量は、好適には0.1~10質量部、より好適には0.5~7質量部、さらに好適には1~5質量部である。油溶性重合開始剤の含有量が上記範囲内であることにより、重合反応を十分進行させ、かつ重合反応終了後に油溶性重合開始剤が残存するおそれが小さく、予期せぬ副反応が進行するおそれも小さい。
 (D)分散安定剤
 分散安定剤は、懸濁工程において、単量体組成物の液滴を水系媒体中に分散させる剤である。本開示においては、懸濁液中で液滴の粒子径をコントロールし易く、得られる中空粒子の粒径分布を狭くできる点、及びシェルが薄くなりすぎることを抑制して、中空粒子の強度の低下を抑制する点から、分散安定剤として、無機分散安定剤を用いることが好ましい。無機分散安定剤によるこのような効果は、特に、無機分散安定剤を後述する粒径制御剤と組み合わせて用いる場合に発揮されやすい。
 無機分散安定剤としては、例えば、硫酸バリウム、及び硫酸カルシウム等の硫酸塩;炭酸バリウム、炭酸カルシウム、及び炭酸マグネシウム等の炭酸塩;リン酸カルシウム等のリン酸塩;酸化アルミニウム、及び酸化チタン等の金属酸化物;水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム及び水酸化第二鉄等の金属水酸化物;等の無機化合物が挙げられる。これらの無機分散安定剤は1種又は2種以上を組み合わせて用いることができる。
 上記無機分散安定剤の中でも、上述した硫酸塩、炭酸塩、リン酸塩、金属水酸化物等の難水溶性金属塩が好ましく、金属水酸化物がより好ましく、水酸化マグネシウムが特に好ましい。
 なお、本開示において難水溶性金属塩は、100gの水に対する溶解度が0.5g以下である無機金属塩であることが好ましい。
 本開示においては、特に、難水溶性の無機分散安定剤を、コロイド粒子の形態にて、水系媒体に分散させた状態、すなわち、難水溶性の無機分散安定剤コロイド粒子を含有するコロイド分散液の状態で用いることが好ましい。難水溶性の無機分散安定剤を、難水溶性の無機分散安定剤コロイド粒子を含有するコロイド分散液の状態で用いることにより、単量体組成物の液滴の粒径分布を狭くすることができることに加え、洗浄により、得られる中空粒子中における無機分散安定剤の残留量を容易に低く抑えることができる。
 難水溶性の無機分散安定剤コロイド粒子を含有するコロイド分散液は、たとえば、水酸化アルカリ金属塩及び水酸化アルカリ土類金属塩から選ばれる少なくとも1種と、水溶性多価金属塩(水酸化アルカリ土類金属塩を除く。)とを水系媒体中で反応させることで調製することができる。
 水酸化アルカリ金属塩としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどが挙げられる。水酸化アルカリ土類金属塩としては、水酸化バリウム、水酸化カルシウムなどが挙げられる。
 水溶性多価金属塩としては、上記水酸化アルカリ土類金属塩に該当する化合物以外の水溶性を示す多価金属塩であればよいが、例えば、塩化マグネシウム、リン酸マグネシウム、硫酸マグネシウムなどのマグネシウム金属塩;塩化カルシウム、硝酸カルシウム、酢酸カルシウム、硫酸カルシウムなどのカルシウム金属塩;塩化アルミニウム、硫酸アルミニウムなどのアルミニウム金属塩;塩化バリウム、硝酸バリウム、酢酸バリウムなどのバリウム塩;塩化亜鉛、硝酸亜鉛、酢酸亜鉛などの亜鉛塩;などが挙げられる。これらの中でも、マグネシウム金属塩、カルシウム金属塩、およびアルミニウム金属塩が好ましく、マグネシウム金属塩がより好ましく、塩化マグネシウムが特に好ましい。なお、水溶性多価金属塩は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
 上記した水酸化アルカリ金属塩及び水酸化アルカリ土類金属塩から選ばれる少なくとも1種と、上記した水溶性多価金属塩とを水系媒体中で反応させる方法としては、特に限定されないが、水酸化アルカリ金属塩及び水酸化アルカリ土類金属塩から選ばれる少なくとも1種の水溶液と、水溶性多価金属塩の水溶液とを混合する方法が挙げられる。この際においては、難水溶性の金属水酸化物コロイド粒子の粒子径を好適に制御することができるという観点より、水溶性多価金属塩の水溶液を撹拌しつつ、該水溶液中に、水酸化アルカリ金属塩及び水酸化アルカリ土類金属塩から選ばれる少なくとも1種の水溶液を徐々に添加することで、混合する方法が好ましい。
 また、体積平均粒径が1μm以上10μm以下の中空粒子を得る観点からは、水酸化アルカリ金属塩及び水酸化アルカリ土類金属塩から選ばれる少なくとも1種と、水溶性多価金属塩とを水系媒体中で反応させる際の温度を、20℃以上50℃以下として得たコロイド分散液を用いることが好ましい。
 分散安定剤の含有量は、特に限定はされないが、重合性単量体と疎水性溶剤の合計質量100質量部に対し、好適には0.5~10質量部であり、より好適には1.0~8.0質量部である。分散安定剤の含有量が上記下限値以上であることにより、単量体組成物の液滴が懸濁液中で合一しないように十分に分散させることができる。一方、分散安定剤の含有量が上記上限値以下であることにより、造粒時に懸濁液の粘度が上昇するのを防止し、懸濁液が造粒機で閉塞する不具合を回避することができる。
 また、分散安定剤の含有量は、水系媒体100質量部に対し、通常2質量部以上15質量部以下であり、3質量部以上8質量部以下であることが好ましい。
 (E)水系媒体
 本開示において水系媒体とは、水、親水性溶剤、及び、水と親水性溶剤との混合物からなる群より選ばれる媒体を意味する。
 本開示における親水性溶剤は、水と十分に混ざり合い相分離を起こさないものであれば特に制限されない。親水性溶剤としては、例えば、メタノール、エタノール等のアルコール類;テトラヒドロフラン(THF);ジメチルスルフォキシド(DMSO)等が挙げられる。
 水系媒体の中でも、その極性の高さから、水を用いることが好ましい。水と親水性溶剤の混合物を用いる場合には、単量体組成物の液滴を形成する観点から、当該混合物全体の極性が低くなりすぎないことが重要である。この場合、例えば、水と親水性溶剤との質量比(水:親水性溶剤)を99:1~50:50としてもよい。
 (F)その他の材料
 混合液は、本開示の効果を損なわない範囲において、上述した(A)~(E)の材料とは異なるその他の材料を更に含有していてもよい。
 混合液は、その他の材料として、粒径制御剤を含有することが好ましい。混合液が粒径制御剤を含むことにより、単量体組成物の液滴の粒径、及び得られる中空粒子のシェルの厚さを適切に調節することができる。
 粒径制御剤としては、ロジン酸、高級脂肪酸及びこれらの金属塩からなる群から選ばれる少なくとも1種を好ましく用いることができる。これらの粒径制御剤は、後述する懸濁工程において、重合性単量体及び疎水性溶剤を含む単量体組成物の液滴の粒径を適切に調節することができる。懸濁工程においては、分散安定剤の作用により、単量体組成物の液滴が水系媒体中で形成される。当該単量体組成物の液滴においては、重合性単量体を含む疎水性溶剤以外の材料と、疎水性溶剤とが相分離し、疎水性溶剤が中心部に偏在し、疎水性溶剤以外の材料が表面側に偏在する。混合液が粒径制御剤を含有する場合は、当該単量体組成物の液滴の表面近傍に粒径制御剤が偏在し、分散安定剤が液滴の表面に付着した構造を有すると推定される。このような材料の分布構造は、水系媒体に対する各材料の親和性の相違に従って形成される。混合液が粒径制御剤を含有することにより、懸濁液中の単量体組成物の液滴が上記の如き材料の分布構造をとり、液滴表面で分散安定剤と粒径制御剤の相互作用を生じるため、分散安定剤による液滴の分散性が変化し、単量体組成物の液滴の粒径を適切に調節することができると考えられる。
 粒径制御剤としては、中でも、ロジン酸及びそのアルカリ金属塩から選ばれる少なくとも1種がより好ましい。
 ロジン酸は、ガムロジン、トールロジン及びウッドロジン等のロジンから得ることができる。
 これらのロジンから得られるロジン酸に含有される成分としては、例えば、アビエチン酸、デヒドロアビエチン酸、パラストリン酸、イソピマール酸、ピマール酸等が挙げられる。ロジン酸の成分比は一定ではなく、ロジンの種類及び原料の松種や産地等によって異なる。
 本開示に用いるロジン酸及びその金属塩としては、アビエチン酸、デヒドロアビエチン酸、パラストリン酸及びこれらの水素化物等のアビエチン酸類を50質量%以上含むロジン酸及びそのアルカリ金属塩が好ましい。
 高級脂肪酸としては、カルボキシル基中の炭素原子を含まない炭素数が10~25の高級脂肪酸であることが好ましい。好ましい高級脂肪酸としては、例えば、ラウリン酸(CH(CH10COOH)、トリデカン酸(CH(CH11COOH)、ミリスチン酸(CH(CH12COOH)、ペンタデカン酸(CH(CH13COOH)、パルミチン酸(CH(CH14COOH)、ヘプタデカン酸(CH(CH15COOH)、ステアリン酸(CH(CH16COOH)、アラキジン酸(CH(CH18COOH)、ベヘン酸(CH(CH20COOH)、及びリグノセリン酸(CH(CH22COOH)等が挙げられる。
 ロジン酸又は高級脂肪酸の金属塩に用いられる金属としては、例えば、Li、Na、K等のアルカリ金属、及びMg、Ca等のアルカリ土類金属等を挙げることができ、中でもアルカリ金属が好ましく、Li、Na及びKから選ばれる少なくとも1種がより好ましい。
 粒径制御剤として、ロジン酸、高級脂肪酸及びこれらの金属塩からなる群から選ばれる少なくとも1種を用いる場合、ロジン酸、高級脂肪酸及びこれらの金属塩の合計含有量は、重合性単量体と疎水性溶剤の合計100質量部に対し、好ましくは0.0001質量部以上0.1質量部以下であり、より好ましくは0.001質量部以上0.01質量部以下であり、より更に好ましくは0.0015質量部以上0.006質量部以下である。上記含有量が上記下限値以上であることにより、中空粒子の粒子径及びシェルの厚みを制御しやすく、中空粒子の強度を向上することができる。一方、上記含有量が上記上限値以下であることにより、重合性単量体の含有割合の低下を抑制できることから、シェルの強度の低下を抑制し、中空粒子の潰れを更に抑制することができる。
 前記の各材料及び必要に応じ他の材料を混合し、適宜攪拌等することによって混合液が得られる。当該混合液においては、上記((A)重合性単量体、(B)疎水性溶剤及び(C)重合開始剤などの親油性材料を含む油相が、(D)分散安定剤及び(E)水系媒体などを含む水相中において、粒径数mm程度の大きさで分散している。混合液におけるこれら材料の分散状態は、材料の種類によっては肉眼でも観察することが可能である。
 混合液調製工程では、前記の各材料及び必要に応じ他の材料を単に混合し、適宜攪拌等することによって混合液を得てもよいが、シェルが均一になりやすい点から、重合性単量体、疎水性溶剤及び重合開始剤を含む油相と、分散安定剤及び水系媒体を含む水相とを予め別に調製し、これらを混合することにより、混合液を調製することが好ましい。本開示においては、難水溶性の無機分散安定剤をコロイド粒子の形態にて水系媒体に分散させたコロイド分散液を、水相として好ましく用いることができる。
 このように油相と水相を予め別に調製した上で、これらを混合することにより、シェル部分の組成が均一な中空粒子を製造することができ、中空粒子の粒径の制御も容易となる。
 (2)懸濁工程
 懸濁工程は、上述した混合液を懸濁させることにより、疎水性溶剤を含む単量体組成物の液滴が水系媒体中に分散した懸濁液を調製する工程である。
 単量体組成物の液滴を形成するための懸濁方法は特に限定されないが、例えば、(インライン型)乳化分散機(大平洋機工社製、商品名:マイルダー、及び株式会社ユーロテック製、商品名:キャビトロン等の横型のインライン型分散機;IKA製、商品名:DRS 2000/5等の縦型のインライン型分散機等)、高速乳化分散機(プライミクス株式会社製、商品名:T.K.ホモミクサー MARK II型等)等の強攪拌が可能な装置を用いて行う。
 懸濁工程で調製される懸濁液においては、上記親油性材料を含みかつ1~10μm程度の粒径を持つ単量体組成物の液滴が、水系媒体中に均一に分散している。このような単量体組成物の液滴は肉眼では観察が難しく、例えば光学顕微鏡等の公知の観察機器により観察できる。
 懸濁工程においては、単量体組成物の液滴中に相分離が生じるため、極性の低い疎水性溶剤が液滴の内部に集まりやすくなる。その結果、得られる液滴は、その内部に疎水性溶剤が、その周縁に疎水性溶剤以外の材料が分布することとなる。
 図2は、懸濁工程における懸濁液の一実施形態を示す模式図である。図2中の単量体組成物の液滴10は、その断面を模式的に示すものとする。なお、図2はあくまで模式図であり、本開示における懸濁液は、必ずしも図2に示すものに限定されない。図2の一部は、上述した図1の(2)に対応する。
 図2には、水系媒体1中に、単量体組成物の液滴10及び水系媒体1中に分散した重合性単量体4cが分散している様子が示されている。液滴10は、油溶性の単量体組成物4の周囲を、分散安定剤3が取り囲むことにより構成される。
 単量体組成物中には油溶性重合開始剤5、並びに、重合性単量体及び疎水性溶剤(いずれも図示せず)が含まれる。
 液滴10は、単量体組成物4を含む微小油滴であり、油溶性重合開始剤5は当該微小油滴の内部で重合開始ラジカルを発生させる。したがって、微小油滴を成長させ過ぎることなく、目的とする粒径の前駆体粒子を製造することができる。
 このような油溶性重合開始剤を用いた懸濁重合法においては、重合開始剤が、水系媒体1中に分散した重合性単量体4cと接触する機会は存在しない。したがって、油溶性重合開始剤を使用することにより、目的とする中空部を有する樹脂粒子の他に、比較的粒径の小さい密実粒子等の余分な樹脂粒子が副成することを抑制できる。
 (3)重合工程
 本工程は、上述した懸濁工程により得られた懸濁液を重合反応に供することにより、樹脂を含むシェルに取り囲まれた中空部を有し、かつ中空部に疎水性溶剤を内包する前駆体粒子を含む前駆体組成物を調製する工程である。前駆体粒子は、単量体組成物の液滴に含まれる重合性単量体の重合により形成され、前駆体粒子が備えるシェルは、上記重合性単量体の重合体を樹脂として含む。
 重合方式に特に限定はなく、例えば、回分式(バッチ式)、半連続式、及び連続式等が採用できる。
 重合温度は、好ましくは40~80℃であり、より好ましくは50~70℃である。
 重合温度に昇温する際の昇温速度は、好ましくは10℃/h~60℃/h、より好ましくは15℃/h~55℃/hである。
 重合の反応時間は好ましくは1~48時間であり、より好ましくは4~36時間である。
 重合工程においては、疎水性溶剤を内部に含む単量体組成物の液滴のシェル部分が重合するため、上述したように、得られる前駆体粒子の内部には、疎水性溶剤で満たされた中空部が形成される。
 (4)固液分離工程
 本工程は、上述した重合工程により得られる、前駆体粒子を含む前駆体組成物を固液分離することにより、前駆体粒子を含む固体分を得る工程である。
 前駆体組成物を固液分離する方法は特に限定されず、公知の方法を用いることができる。固液分離の方法としては、例えば、遠心分離法、ろ過法、静置分離等が挙げられ、この中でも遠心分離法又はろ過法を採用することができ、操作の簡便性の観点から遠心分離法を採用してもよい。
 固液分離工程後、後述する溶剤除去工程を実施する前に、予備乾燥工程等の任意の工程を実施してもよい。予備乾燥工程としては、例えば、固液分離工程後に得られた固体分を、乾燥機等の乾燥装置や、ハンドドライヤー等の乾燥器具により予備乾燥する工程が挙げられる。
 (5)溶剤除去工程
 本工程は、前記固液分離工程により得られた前駆体粒子に内包される疎水性溶剤を除去する工程である。
 前駆体粒子に内包される疎水性溶剤を気中にて除去することにより、前駆体粒子内部の疎水性溶剤が空気と入れ替わり、気体で満たされた中空粒子が得られる。
 本工程における「気中」とは、厳密には、前駆体粒子の外部に液体分が全く存在しない環境下、及び、前駆体粒子の外部に、疎水性溶剤の除去に影響しない程度のごく微量の液体分しか存在しない環境下を意味する。「気中」とは、前駆体粒子がスラリー中に存在しない状態と言い替えることもできるし、前駆体粒子が乾燥粉末中に存在する状態と言い替えることもできる。すなわち、本工程においては、前駆体粒子が外部の気体と直に接する環境下で疎水性溶剤を除去することが重要である。
 前駆体粒子中の疎水性溶剤を気中にて除去する方法は、特に限定されず、公知の方法が採用できる。当該方法としては、例えば、減圧乾燥法、加熱乾燥法、気流乾燥法又はこれらの方法の併用が挙げられる。
 特に、加熱乾燥法を用いる場合には、加熱温度は疎水性溶剤の沸点以上、かつ前駆体粒子のシェル構造が崩れない最高温度以下とする必要がある。したがって、前駆体粒子中のシェルの組成と疎水性溶剤の種類によるが、例えば、加熱温度を50~200℃としてもよく、70~200℃としてもよく、100~200℃としてもよい。
 気中における乾燥操作によって、前駆体粒子内部の疎水性溶剤が、外部の気体により置換される結果、中空部を気体が占める中空粒子が得られる。
 乾燥雰囲気は特に限定されず、中空粒子の用途によって適宜選択することができる。乾燥雰囲気としては、例えば、空気、酸素、窒素、アルゴン等が考えられる。また、いったん気体により中空粒子内部を満たした後、減圧乾燥することにより、一時的に内部が真空である中空粒子も得られる。
 別の方法として、重合工程で得られたスラリー状の前駆体組成物を固液分離せずに、前駆体粒子及び水系媒体を含むスラリー中で、当該前駆体粒子に内包される疎水性溶剤をスラリーの水系媒体に置換することにより、疎水性溶剤を除去してもよい。
 この方法においては、疎水性溶剤の沸点から35℃差し引いた温度以上の温度で、前駆体組成物に不活性ガスをバブリングすることにより、前駆体粒子に内包される疎水性溶剤を除去することができる。
 ここで、前記疎水性溶剤が、複数種類の疎水性溶剤を含有する混合溶剤であり、沸点を複数有する場合、溶剤除去工程での疎水性溶剤の沸点とは、当該混合溶剤に含まれる溶剤のうち最も沸点が高い溶剤の沸点、すなわち複数の沸点のうち最も高い沸点とする。
 前駆体組成物に不活性ガスをバブリングする際の温度は、中空粒子中の疎水性溶剤の残留量を低減する点から、疎水性溶剤の沸点から30℃差し引いた温度以上の温度であることが好ましく、20℃差し引いた温度以上の温度であることがより好ましい。なお、バブリングの際の温度は、通常、前記重合工程での重合温度以上の温度とする。特に限定はされないが、バブリングの際の温度を、50℃以上100℃以下としてもよい。
 バブリングする不活性ガスとしては、特に限定はされないが、例えば、窒素、アルゴン等を挙げることができる。
 バブリングの条件は、疎水性溶剤の種類及び量に応じて、前駆体粒子に内包される疎水性溶剤を除去できるように適宜調整され、特に限定はされないが、例えば、不活性ガスを1~3L/minの量で、1~10時間バブリングしてもよい。
 この方法においては、前駆体粒子に水系媒体が内包された水系スラリーが得られる。このスラリーを固液分離して得られた中空粒子を乾燥し、中空粒子内の水系媒体を除去することにより、中空部を気体が占める中空粒子が得られる。
 スラリー状の前駆体組成物を固液分離した後、前駆体粒子中の疎水性溶剤を気中にて除去することにより中空部が気体で満たされた中空粒子を得る方法と、前駆体粒子及び水系媒体を含むスラリー中で、当該前駆体粒子に内包される疎水性溶剤をスラリーの水系媒体に置換した後、固液分離し、前駆体粒子中の水系媒体を気中にて除去することにより中空部が気体で満たされた中空粒子を得る方法を比べると、前者の方法は、疎水性溶剤を除去する工程で中空粒子が潰れにくいという利点があり、後者の方法は、不活性ガスを用いたバブリングを行うことにより疎水性溶剤の残留が少なくなるという利点がある。
 その他、重合工程の後、固液分離工程の前に、重合工程で得られたスラリー状の前駆体組成物を固液分離せずに、前駆体粒子に内包される疎水性有機溶剤を除去する方法として、例えば、所定の圧力下(高圧下、常圧下又は減圧下)で、前駆体組成物から前駆体粒子に内包される疎水性有機溶剤を蒸発留去させる方法;所定の圧力下(高圧下、常圧下又は減圧下)で、前駆体組成物に窒素、アルゴン、ヘリウム等の不活性ガスあるいは水蒸気を導入して蒸発留去させる方法;を用いてもよい。
 (6)その他
 上記(1)~(5)以外の工程としては、例えば、下記(6-a)洗浄工程や下記(6-b)中空部の再置換工程を付加しても良い。
 (6-a)洗浄工程
 洗浄工程とは、前記溶剤除去工程前に、前駆体粒子を含む前駆体組成物中に残存する分散安定剤を除去するために、酸またはアルカリを添加して洗浄を行う工程である。使用した分散安定剤が、酸に可溶な無機分散安定剤である場合、前駆体粒子を含む前駆体組成物へ酸を添加して、洗浄を行うことが好ましく、一方、使用した分散安定剤が、アルカリに可溶な無機化合物である場合、前駆体粒子を含む前駆体組成物へアルカリを添加して、洗浄を行うことが好ましい。
 また、分散安定剤として、酸に可溶な無機分散安定剤を使用した場合、前駆体粒子を含む前駆体組成物へ酸を添加し、pHを、好ましくは6.5以下、より好ましくは6以下に調整することが好ましい。添加する酸としては、硫酸、塩酸、硝酸等の無機酸、および蟻酸、酢酸等の有機酸を用いることができるが、分散安定剤の除去効率が大きいことや製造設備への負担が小さいことから、特に硫酸が好適である。
 (6-b)中空部の再置換工程
 中空部の再置換工程とは、中空粒子内部の気体や液体を、他の気体や液体に置換する工程である。このような置換により、中空粒子内部の環境を変えたり、中空粒子内部に選択的に分子を閉じ込めたり、用途に合わせて中空粒子内部の化学構造を修飾したりすることができる。
2.中空粒子
 本開示の中空粒子は、樹脂を含むシェルおよび当該シェルに取り囲まれた中空部を備え、空隙率が50%以上である中空粒子であって、
 前記シェルが前記樹脂として、炭化水素重合体を含有し、
 周波数1MHzにおける比誘電率が1.5以下であることを特徴とする。
 本開示の中空粒子は、上述した本開示の製造方法により得ることができる。
 本開示の中空粒子は、比誘電率及び誘電正接が低く、電気絶縁特性に優れている。
 本開示の製造方法によれば、周波数1MHzにおける中空粒子の比誘電率を、より好ましい実施形態においては1.4以下とすることができる。本開示の中空粒子の周波数1MHzにおける比誘電率の下限は、特に限定はされないが、通常1.0以上である。
 また、本開示の製造方法によれば、周波数1MHzにおける中空粒子の誘電正接を0.010以下とすることができ、より好ましい実施形態においては0.007以下とすることができる。本開示の中空粒子の周波数1MHzにおける誘電正接の下限は、特に限定はされないが、通常0.0001以上であり、0.001以上であってもよい。
 また、本開示の製造方法によれば、周波数1GHzにおける中空粒子の比誘電率を、1.5以下とすることができ、より好ましい実施形態においては1.4以下とすることができる。本開示の中空粒子の周波数1GHzにおける比誘電率の下限は、特に限定はされないが、通常1.0以上である。
 また、本開示の製造方法によれば、周波数1GHzにおける中空粒子の誘電正接を、0.010以下とすることができ、より好ましい実施形態においては0.005以下とすることができる。本開示の中空粒子の周波数1GHzにおける誘電正接の下限は、特に限定はされないが、通常0.001以上である。
 本開示において、中空粒子の比誘電率及び誘電正接は、測定周波数1MHz又は1GHzの条件で、摂動方式の測定装置を用いて測定される。
 本開示の中空粒子がシェル中に樹脂として含有する炭化水素重合体は、本開示の製造方法に用いられる上記重合性単量体の重合体である。
 当該炭化水素重合体の含有量は、シェルの全固形分100質量%中、好ましくは99質量%以上、より好ましくは99.5質量%以上、更に好ましくは99.9質量%以上である。炭化水素重合体の含有量を上記下限値以上とすることにより、中空粒子の電気絶縁特性及び耐溶剤性を向上させることができる。
 本開示の中空粒子が備えるシェルは、電気絶縁特性の低下又は耐溶剤性の低下を抑制するために、ヘテロ原子を含まないことが好ましいが、本開示の効果を損なわない範囲で、炭化水素以外の成分をごく少量含有していてもよい。シェルが含有していてもよい炭化水素以外の成分としては、例えば、上述した粒径制御剤を挙げることができる。シェルに含まれる炭化水素以外の成分の含有量は、シェルの全固形分100質量%中、好ましくは1質量%以下、より好ましくは0.5質量%以下、更に好ましくは0.1質量%以下である。炭化水素以外の成分の含有量を上記上限値以下とすることにより、中空粒子の電気絶縁特性及び耐溶剤性を向上させることができる。
 本開示の中空粒子は、体積平均粒径の下限が好ましくは1μm以上、より好ましくは1.5μm以上、更に好ましくは2μm以上である。一方、中空粒子の体積平均粒径の上限は、好ましくは10μm以下であり、より好ましくは8μm以下であり、更に好ましくは6μm以下である。中空粒子の体積平均粒径が上記下限値以上であると、中空粒子同士の凝集性が小さくなるため、優れた分散性を発揮することができる。中空粒子の体積平均粒径が上記上限値以下であると、シェル厚のばらつきが抑制され、均一なシェルが形成されやすく、また、中空粒子が潰れにくくなるため、高い機械的強度を有する。また、体積平均粒径が上記範囲内の中空粒子は、電子回路基板の絶縁樹脂層に含有させても配線の不具合を起こさないため、電子回路基板の材料として好適に用いられる。
 中空粒子の体積平均粒径を上述した好ましい範囲内とするためには、例えば、混合液調製工程において、上述した好ましい分散安定剤及び粒径制御剤の組み合わせを用い、更に上述した好ましい疎水性溶剤を用いることが好ましい。
 本開示の中空粒子の形状は、内部に中空部が形成されていれば特に限定されず、例えば、球形、楕円球形、不定形等が挙げられる。これらの中でも、製造の容易さから球形が好ましい。
 本開示の中空粒子は、1又は2以上の中空部を有していてもよいが、高い空隙率と、機械強度との良好なバランスを維持する点、及び電気絶縁特性を向上する点から、中空部を1つのみ有するものが好ましい。また、本開示の中空粒子が備えるシェル、及び、中空部を2つ以上有する場合に隣接し合う中空部を仕切る隔壁は、多孔質状となっていてもよいが、電気絶縁特性を向上する点、及び耐溶剤性を向上する点から、密実であることが好ましい。
 本開示の中空粒子は、平均円形度が、0.950~0.995であってもよい。
 本開示の中空粒子の形状のイメージの一例は、薄い皮膜からなりかつ気体で膨らんだ袋であり、その断面図は図1の(5)中の中空粒子100の通りである。この例においては、外側に薄い1枚の皮膜が設けられ、その内部が気体で満たされる。
 なお、粒子形状は、例えば、SEMやTEMにより確認することができる。また、粒子内部の形状、及び粒子内部における微細な樹脂粒子の存在は、粒子を公知の方法で輪切りにした後、SEMやTEMにより確認することができる。
 中空粒子の粒度分布(体積平均粒径(Dv)/個数平均粒径(Dn))は、例えば、1.1以上2.5以下であってもよい。当該粒度分布が2.5以下であることにより、圧縮強度特性及び耐熱性が粒子間でバラつきの少ない粒子が得られる。また、当該粒度分布が2.5以下であることにより、例えば、シート状の成形体を製造する際に、厚さが均一な製品を製造することができる。
 中空粒子の体積平均粒径(Dv)及び個数平均粒径(Dn)は、例えば、粒度分布測定装置により中空粒子の粒径を測定し、その個数平均及び体積平均をそれぞれ算出し、得られた値をその粒子の個数平均粒径(Dn)及び体積平均粒径(Dv)とすることができる。粒度分布は、体積平均粒径を個数平均粒径で除した値とする。
 本開示の中空粒子は、空隙率が50%以上であり、好ましくは60%以上、より好ましくは70%以上、更に好ましくは75%以上である。空隙率が上記下限値以上であることにより、中空粒子は、軽量性、耐熱性及び断熱性に優れ、電気絶縁特性に優れる。本開示の中空粒子の空隙率の上限は、特に限定はされないが、中空粒子の強度の低下を抑制し、潰れにくくする点から、好ましくは90%以下であり、より好ましくは85%以下であり、更に好ましくは80%以下である。
 本開示の中空粒子の空隙率は、中空粒子の製造に用いたシェルを形成する材料の添加量と比重、及び疎水性溶剤の添加量と比重から算出することができる。ここで、シェルを形成する材料は、上記混合液調製工程で調製される混合液中で油相となる材料のうち疎水性溶剤を除いた固形分材料である。疎水性溶剤は、当該混合液中の疎水性溶剤である。
 シェルを形成する材料100質量%に対し、重合性単量体の含有量が99質量%以上である場合は、シェルが重合性単量体の重合体からなるものとみなすことができるため、中空粒子の空隙率を下記式(A)により算出することができる。
 式(A)
 空隙率(%)=100-[(重合性単量体の添加量/重合性単量体の比重)/{(重合性単量体の添加量/重合性単量体の比重)+(疎水性溶剤の添加量/疎水性溶剤の比重)}]
 なお、混合液が複数種類の重合性単量体を含む場合、上記式(A)における「重合性単量体の添加量/重合性単量体の比重」は、各種重合性単量体で算出される「重合性単量体の添加量/重合性単量体の比重」の総和とする。混合液が複数種類の疎水性溶剤を含む場合、上記式(A)における「疎水性溶剤の添加量/疎水性溶剤の比重」は、各種疎水性溶剤で算出される「疎水性溶剤の添加量/疎水性溶剤の比重」の総和とする。
 また、本開示の中空粒子の空隙率は、中空粒子の見かけ密度D及び真密度Dから算出することもできる。
 中空粒子の見かけ密度Dの測定法は以下の通りである。まず、容量100cmのメスフラスコに約30cmの中空粒子を充填し、充填した中空粒子の質量を精確に秤量する。次に、中空粒子が充填されたメスフラスコに、気泡が入らないように注意しながら、イソプロパノールを標線まで精確に満たす。メスフラスコに加えたイソプロパノールの質量を精確に秤量し、下記式(I)に基づき、中空粒子の見かけ密度D(g/cm)を計算する。
 式(I)
 見かけ密度D=[中空粒子の質量]/(100-[イソプロパノールの質量]÷[測定温度におけるイソプロパノールの比重])
 見かけ密度Dは、中空部が中空粒子の一部であるとみなした場合の、中空粒子全体の比重に相当する。
 中空粒子の真密度Dの測定法は以下の通りである。中空粒子を予め粉砕した後、容量100cmのメスフラスコに中空粒子の粉砕片を約10g充填し、充填した粉砕片の質量を精確に秤量する。あとは、上記見かけ密度の測定と同様にイソプロパノールをメスフラスコに加え、イソプロパノールの質量を精確に秤量し、下記式(II)に基づき、中空粒子の真密度D(g/cm)を計算する。
 式(II)
 真密度D=[中空粒子の粉砕片の質量]/(100-[イソプロパノールの質量]÷[測定温度におけるイソプロパノールの比重])
 真密度Dは、中空粒子のうちシェル部分のみの比重に相当する。上記測定方法から明らかなように、真密度Dの算出に当たっては、中空部は中空粒子の一部とはみなされない。
 中空粒子の空隙率(%)は、中空粒子の見かけ密度Dと真密度Dにより、下記式(III)により算出される。
 式(III)
 空隙率(%)=100-(見かけ密度D/真密度D)×100
 中空粒子の空隙率は、中空粒子の比重において中空部が占める割合であると言い替えることができる。
 従来の中空粒子には、後述する比較例1で得られた中空粒子のように、中空粒子に比べて粒径が極めて小さい微細な樹脂粒子を中空部内に含むものがある。本開示の中空粒子は、電気絶縁特性に優れる点から、中空部に存在する当該微細な樹脂粒子の個数が、3個/1粒子以下であることが好ましく、1個/1粒子以下であることがより好ましく、0個/1粒子であることが更に好ましい。中空部に存在する当該微細な樹脂粒子の個数が上記上限値以下であることにより、中空部を占める気体の割合を多くすることができるため、比誘電率及び誘電正接を低下させることができる。
 なお、上記微細な樹脂粒子の粒径は、通常、0.01~0.5μm程度であり、中空粒子の粒径の1/10以下である。
 上述した本開示の製造方法により、中空部に存在する上記微細な樹脂粒子の個数を上記上限値以下とすることができる。
 本開示の中空粒子は、シェル中に架橋性単量体単位を十分に含むことにより強度に優れるため、他の材料との混練時及び混練後の成形時に潰れ難く、成形体に添加された場合に、軽量化材、断熱材、防音材、制振材等としての効果に優れる。また、本開示の中空粒子は、疎水性溶剤の残留量が低減されたものであるため、樹脂等の他の材料と混練した際に発火や発煙を引き起こす恐れがない。そのため、本開示の中空粒子は成形体用添加剤として特に好適であり、樹脂製成形体用添加剤として特に好適に用いられる。
 本開示の中空粒子を含有する成形体は、樹脂として、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリウレタン、エポキシ樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、アクリロニトリル-スチレン(AS)樹脂、ポリ(メタ)アクリレート、ポリカーボネート、ポリアミド、ポリイミド、ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリエステル、ポリテトラフルオロロエチレン、マレイミド樹脂、ビスマレイミドトリアジン樹脂、 液晶性ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、シアネートエステル樹脂、ポリエーテルケトンケトン樹脂、ポリエーテルイミド樹脂などの熱可塑性樹脂又は熱硬化性樹脂を含有するものであってもよい。なお、樹脂成分としてエポキシ樹脂を用いる場合は、適宜、アミン類、酸無水物類、イミダゾール類等の硬化剤又は触媒を混合することが好ましい。
 また、本開示の中空粒子を含有する成形体は、更に、炭素繊維、ガラス繊維、アラミド繊維、ポリエチレン繊維等の有機又は無機の繊維を含有するものであってもよい。本開示の中空粒子は、熱可塑性又は熱硬化性の樹脂を用いて形成される成形体、及び、熱可塑性又は熱硬化性の樹脂とさらに繊維を含む材料を用いて形成される成形体においても、フィラーとして含有させることができる。
 本開示の中空粒子を含有する樹脂製成形体の用途としては、例えば、自動車、電気、電子、建築、航空、宇宙等の各種分野に用いられる光反射材、断熱材、遮音材及び低誘電体等の部材、食品用容器、スポーツシューズ、サンダル等の履物、家電部品、自転車部品、文具、工具等を挙げることができる。中でも、本開示の中空粒子は、電気絶縁特性及び耐溶剤性に優れることから、電気又は電子の分野において、低誘電率又は低伝送損失を実現するための材料として好適に用いられる。例えば、本開示の中空粒子は、電子回路基板材料として好適に用いられ、具体的には、本開示の中空粒子を、電子回路基板の絶縁樹脂層に含有させることにより、絶縁樹脂層の比誘電率を低下させ、電子回路基板の伝送損失を低減することができる。
 また、本開示の中空粒子は、他にも、層間絶縁材料、ドライフィルムレジスト、ソルダーレジスト、ボンディングワイヤ、マグネットワイヤ、半導体封止材、エポキシ封止材、モールドアンダーフィル、アンダーフィル、ダイボンドペースト、バッファーコート材、銅張積層板、フレキシブル基板、高周波デバイスモジュール、アンテナモジュール、車載レーダーなどの半導体材料に好適である。これらの中でも、層間絶縁材料、ソルダーレジスト、マグネットワイヤ、エポキシ封止材、アンダーフィル、バッファーコート材、銅張積層板、フレキシブル基板、高周波デバイスモジュール、アンテナモジュール、車載レーダーなどの半導体材料に、特に好適である。
 また、本開示の中空粒子は、高空隙率を有し、潰れ難く、耐熱性にも優れるため、アンダーコート材に要求される断熱性、緩衝性(クッション性)を満たし、感熱紙用途に即した耐熱性も満たす。また、本開示の中空粒子は、光沢、隠ぺい力等に優れたプラスチックピグメントとしても有用である。
 更に、本開示の中空粒子は、内部に香料、薬品、農薬、インキ成分等の有用成分を浸漬処理、減圧または加圧浸漬処理等の手段により封入できるため、内部に含まれる成分に応じて各種用途に利用することができる。
 以下に、実施例及び比較例を挙げて本開示を更に具体的に説明するが、本開示は、これらの実施例のみに限定されるものではない。なお、部及び%は、特に断りのない限り質量基準である。
[実施例1]
(1)混合液調製工程
 まず、下記材料を混合し油相とした。
  DVB960(:商品名、日鉄ケミカル&マテリアル社製、ジビニルベンゼンの純度:96%、エチルビニルベンゼンの含有割合:4%) 26.2部
  2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(油溶性重合開始剤、富士フイルム和光純薬社製、商品名:V-70) 0.6部
  ロジン酸(荒川化学社製、商品名:不均化ロジン ロンヂス R-CH、軟化点150℃以上、酸価:150~160mgKOH/g) 0.002部
  疎水性溶剤:ヘキサン 73.4部
 次に、攪拌槽において、40℃の温度条件下で、イオン交換水225部に塩化マグネシウム(水溶性多価金属塩)7.8部を溶解した水溶液に、イオン交換水55部に水酸化ナトリウム(水酸化アルカリ金属)5.5部を溶解した水溶液を攪拌下で徐々に添加して、水酸化マグネシウムコロイド(難水溶性の金属水酸化物コロイド)分散液を調製し、添加後40分後に撹拌をとめ、水相とした。
 得られた水相と油相を混合することにより、混合液を調製した。
(2)懸濁工程
 上記混合液調製工程で得た混合液を、分散機(プライミクス社製、商品名:ホモミクサー)により、回転数4,000rpmの条件下で1分間攪拌して懸濁させ、疎水性溶剤を内包した単量体組成物の液滴が水中に分散した懸濁液を調製した。
(3)重合工程
 上記懸濁工程で得た懸濁液を、窒素雰囲気で、40℃から1時間30分かけて65℃まで昇温し、その後65℃の温度条件下で4時間攪拌して重合反応を行った。この重合反応により、疎水性溶剤を内包した前駆体粒子が水中に分散したスラリー液である前駆体組成物を得た。
(4)洗浄工程及び固液分離工程
 上記重合工程で得た前駆体組成物を希硫酸により洗浄(25℃、10分間)して、pHを5.5以下にした。次いで、濾過により水を分離した後、新たにイオン交換水200部を加えて再スラリー化し、水洗浄処理(洗浄、濾過、脱水)を室温(25℃)で数回繰り返し行って、濾過分離して固体分を得た。得られた固体分を乾燥機にて40℃の温度で乾燥させ、疎水性溶剤を内包した前駆体粒子を得た。
(5)溶剤除去工程
 上記固液分離工程で得られた前駆体粒子を、真空乾燥機にて、200℃の真空条件下で6時間加熱処理することで、粒子に内包されていた疎水性溶剤を除去し、実施例1の中空粒子を得た。得られた中空粒子は、走査型電子顕微鏡の観察結果及び空隙率の値から、これらの粒子が球状であり、かつ中空部を有することを確認した。
[実施例2~5、比較例1~3]
 実施例1において、上記「(1)混合液調製工程」で調製する油相の材料を表1に示す通りとした以外は、実施例1と同様の手順で、実施例2~5及び比較例1~3の中空粒子を製造した。
[評価]
 各実施例及び各比較例で得た中空粒子について、以下の測定及び評価を行った。結果を表1に示す。
1.体積平均粒径
 粒度分布測定機(ベックマン・コールター社製、商品名:マルチサイザー4e)を用いて中空粒子の体積平均粒径を測定した。測定条件は、アパーチャー径:50μm、分散媒体:アイソトンII(:商品名)、濃度10%、測定粒子個数:100,000個とした。
 具体的には、粒子サンプル0.2gをビーカーに取り、その中に分散剤として界面活性剤水溶液(富士フィルム社製、商品名:ドライウェル)を加えた。そこへ、更に分散媒体を2ml加え、粒子を湿潤させた後、分散媒体を10ml加え、超音波分散器で1分間分散させてから上記粒度分布測定機による測定を行った。
2.空隙率
 混合液調製工程で油相に添加した重合性単量体の添加量と比重、及び疎水性溶剤の添加量と比重から、下記式(A)により中空粒子の空隙率を算出した。
 式(A)
 空隙率(%)=100-[(重合性単量体の添加量/重合性単量体の比重)/{(重合性単量体の添加量/重合性単量体の比重)+(疎水性溶剤の添加量/疎水性溶剤の比重)}]
3.中空粒子の内部状態
 中空粒子をスパチュラにて意図的に割り、走査型電子顕微鏡(日本電子(株)製、商品名:JSM7610F)を用いて粒子の内部状態を観察した。中空部に存在する微細な樹脂粒子の個数が0個/1粒子であり、粒子内部に微細な樹脂粒子が観察されなかった場合は「内部粒子無」と評価した。「内部粒子無」と評価された中空粒子は、均一な厚みのシェルを有し、シェルと明確に区別される中空部を有していた。中空部に存在する微細な樹脂粒子の個数が1個/1粒子以上であり、粒子内部に微細な樹脂粒子が観察された場合は「内部粒子有」と評価した。粒子内部に中空部が形成されておらず、粒子内部全体が多孔質であった場合は「多孔質」と評価した。
4.脱溶剤性
 30mLねじ口付きガラス瓶に、中空粒子約100mgを入れ、精確に秤量した。続いてテトラヒドロフラン(THF)を約10g入れ、精確に秤量した。ガラス瓶中の混合物を、スターラーにより1時間攪拌して、中空粒子が含有していた疎水性溶剤を抽出した。攪拌を停止し、THFに不溶な中空粒子の樹脂成分を沈殿させたのち、フィルター(アドバンテック社製、商品名:メンブランフィルター25JP020AN)を注射筒に装着して、沈殿物をろ過したサンプル液を得た。そのサンプル液をガスクロマトグラフィー(GC)に注入して分析した。中空粒子が含有していた単位質量あたりの疎水性溶剤の量(質量%)を、GCのピーク面積と予め作成した検量線から求めた。詳細な分析条件は以下の通りである。
(分析条件)
  装置:GC-2010(株式会社島津製作所製)
  カラム:DB-5(アジレント・テクノロジー株式会社製)
      膜厚0.25μm、内径0.25mm、長さ30m
  検出器:FID
  キャリアガス:窒素(線速度:28.8cm/sec)
  注入口温度:200℃
  検出器温度:250℃
  オーブン温度:40℃から10℃/分の速度で230℃まで上昇させ、230℃で2分保持する
  サンプリング量:2μL
 上記により求めた中空粒子中の疎水性溶剤の量に基づき、下記評価基準により脱溶剤性を評価した。
(脱溶剤性の評価基準)
◎:単位質量あたりの疎水性溶剤の量が0.1質量%未満
〇:単位質量あたりの疎水性溶剤の量が0.1質量%以上1質量%以下
×:単位質量あたりの疎水性溶剤の量が1質量%超過
5.耐溶剤性
 25℃の環境下、中空粒子200mgを5mLのガラス瓶に入れ、その後にメチルエチルケトン(MEK)を4mL加えて蓋をした。そのガラス瓶を手ぶりで10回振った後に25℃で24時間放置し、沈殿した中空粒子の割合を求め、下記評価基準で評価した。なお、MEK中に沈殿した中空粒子を遠心分離機で分離し、乾燥して、MEK中に沈殿した中空粒子の質量を測定した。中空粒子全体の質量に対する、MEK中に沈殿した中空粒子の質量の割合を算出することで、沈殿した中空粒子の割合を求めた。
(耐溶剤性の評価基準)
 〇:沈殿した中空粒子が5質量%未満
 ×:沈殿した中空粒子が5質量%以上
6.比誘電率及び誘電正接の測定
 摂動方式の測定装置(AET社製、型式:ADMS01Nc)を用いて、周波数1MHz又は1GHz、室温(25℃)下における中空粒子の比誘電率及び誘電正接を測定した。
Figure JPOXMLDOC01-appb-T000001
 なお、表1において、略称の意味は次のとおりである。
  DVB960:日鉄ケミカル&マテリアル社製、ジビニルベンゼンの純度:96%、エチルビニルベンゼンの含有割合:4%
  DVB630:日鉄ケミカル&マテリアル社製、ジビニルベンゼンの純度:63%、エチルビニルベンゼンの含有割合:37%
  EGDMA:エチレングリコールジメタクリレート
  V70:2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(油溶性重合開始剤、富士フイルム和光純薬社製、商品名:V-70)
 [考察]
 比較例1、2では、架橋性単量体として、酸素原子を含むエチレングリコールジメタクリレートを用いたため、粒子内部に中空部が形成されたものの、粒子は耐溶剤性に劣り、比誘電率及び誘電正接が高かった。比較例1、2で得られた粒子は、シェル中に酸素原子を含有するものであるため、シェルと極性溶剤との親和性が高いことにより極性溶剤を浸透しやすく、また、酸素原子の存在により比誘電率及び誘電正接が高くなったと考えられる。また、比較例1では、得られた粒子の中空部内に微細な樹脂粒子が多く存在していた。これは、比較例1で使用した架橋性単量体と疎水性溶剤との相溶性が低すぎたためと推定される。比較例1で得られた粒子は、中空部内に微細な樹脂粒子が多く存在していたことにより、比較例2に比べ、更に比誘電率及び誘電正接が高くなったと考えられる。
 比較例3では、使用したジビニルベンゼンの市販品が、ジビニルベンゼンを63質量%含み、不純物としてエチルビニルベンゼンを37質量%含むものであり、使用した重合性単量体100質量%中、架橋性単量体の含有量が70質量%未満であった。そのため、比較例3では、得られた粒子の内部全体が多孔質であり、シェルから明確に区別される中空部が形成されなかった。また、比較例3で得られた粒子は、耐溶剤性に劣り、比誘電率及び誘電正接が高かった。比較例3では、単量体組成物の液滴中でシェルを構成する成分と疎水性溶剤とが十分に相分離しなかったため、多孔質粒子が生成したと推定される。多孔質粒子は、構造上溶剤を浸透しやすく、比誘電率及び誘電正接が高くなりやすいため、比較例3で得られた粒子は、耐溶剤性及び電気絶縁特性に劣っていたと考えられる。
 これに対し、各実施例では、重合性単量体として炭化水素単量体を用い、重合性単量体100質量%中の架橋性単量体の含有量が70質量%以上であり、疎水性溶剤として炭素数5~8の炭化水素系溶剤を用いたため、得られた粒子は、シェルと明確に区別される中空部を有する中空粒子であり、脱溶剤性及び耐溶剤性に優れ、比誘電率及び誘電正接が低い電気絶縁特性に優れるものであった。
1 水系媒体
2 低極性材料
3 分散安定剤
4 単量体組成物
4a 疎水性溶剤
4b 疎水性溶剤以外の材料
4c 水系媒体中に分散した重合性単量体
5 油溶性重合開始剤
6 シェル
8 中空部
10 液滴
20 前駆体粒子
100 中空部が気体で満たされた中空粒子

Claims (11)

  1.  樹脂を含むシェルおよび当該シェルに取り囲まれた中空部を備え、空隙率が50%以上である中空粒子の製造方法であって、
     重合性単量体、疎水性溶剤、重合開始剤、分散安定剤及び水系媒体を含む混合液を調製する工程と、
     前記混合液を懸濁させることにより、前記重合性単量体、前記疎水性溶剤及び前記重合開始剤を含有する単量体組成物の液滴が前記水系媒体中に分散した懸濁液を調製する工程と、
     前記懸濁液を重合反応に供することにより、樹脂を含むシェルに取り囲まれた中空部を有し、かつ前記中空部に前記疎水性溶剤を内包する前駆体粒子を含む前駆体組成物を調製する工程とを含み、
     前記重合性単量体が炭化水素単量体であり、前記重合性単量体100質量%中、エチレン性不飽和二重結合を2つ以上含む架橋性単量体の含有量が70質量%以上であり、
     前記疎水性溶剤が、炭素数5~8の炭化水素系溶剤である、中空粒子の製造方法。
  2.  前記混合液が、ロジン酸、高級脂肪酸及びこれらの金属塩からなる群から選ばれる少なくとも1種を含む、請求項1に記載の中空粒子の製造方法。
  3.  前記分散安定剤が、無機分散安定剤である、請求項1又は2に記載の中空粒子の製造方法。
  4.  前記無機分散安定剤が、難水溶性金属塩である、請求項3に記載の中空粒子の製造方法。
  5.  前記中空粒子の体積平均粒径が1μm以上10μm以下である、請求項1~4のいずれか一項に記載の中空粒子の製造方法。
  6.  樹脂を含むシェルおよび当該シェルに取り囲まれた中空部を備え、空隙率が50%以上である中空粒子であって、
     前記シェルが前記樹脂として、炭化水素重合体を含有し、
     周波数1MHzにおける比誘電率が1.5以下である、中空粒子。
  7.  周波数1MHzにおける誘電正接が0.010以下である、請求項6に記載の中空粒子。
  8.  周波数1GHzにおける比誘電率が1.5以下である、請求項6又は7に記載の中空粒子。
  9.  周波数1GHzにおける誘電正接が0.010以下である、請求項6~8のいずれか一項に記載の中空粒子。
  10.  前記空隙率が60%以上である、請求項6~9のいずれか一項に記載の中空粒子。
  11.  体積平均粒径が1μm以上10μm以下である、請求項6~10のいずれか一項に記載の中空粒子。
PCT/JP2021/039457 2020-10-30 2021-10-26 中空粒子の製造方法及び中空粒子 WO2022092076A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237012874A KR20230098160A (ko) 2020-10-30 2021-10-26 중공 입자의 제조 방법 및 중공 입자
CN202180070712.9A CN116390958A (zh) 2020-10-30 2021-10-26 中空颗粒的制造方法以及中空颗粒
EP21886194.6A EP4238998A1 (en) 2020-10-30 2021-10-26 Method for prducing hollow particles, and hollow particles
US18/031,815 US20230383021A1 (en) 2020-10-30 2021-10-26 Method for producing hollow particles and hollow particles
JP2022559152A JPWO2022092076A1 (ja) 2020-10-30 2021-10-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-182283 2020-10-30
JP2020182283 2020-10-30

Publications (1)

Publication Number Publication Date
WO2022092076A1 true WO2022092076A1 (ja) 2022-05-05

Family

ID=81383939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039457 WO2022092076A1 (ja) 2020-10-30 2021-10-26 中空粒子の製造方法及び中空粒子

Country Status (7)

Country Link
US (1) US20230383021A1 (ja)
EP (1) EP4238998A1 (ja)
JP (1) JPWO2022092076A1 (ja)
KR (1) KR20230098160A (ja)
CN (1) CN116390958A (ja)
TW (1) TW202231349A (ja)
WO (1) WO2022092076A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106307A1 (ja) * 2021-12-10 2023-06-15 日本ゼオン株式会社 中空粒子、樹脂組成物、及び樹脂成形体
WO2023228964A1 (ja) * 2022-05-26 2023-11-30 日本ゼオン株式会社 中空粒子、樹脂組成物、樹脂成形体、封止用樹脂組成物、硬化物、及び半導体装置
WO2024048093A1 (ja) * 2022-08-30 2024-03-07 日本ゼオン株式会社 中空粒子、樹脂組成物、及び成形体
WO2024095851A1 (ja) * 2022-10-31 2024-05-10 日本ゼオン株式会社 中空粒子、中空粒子の製造方法、樹脂組成物及び樹脂構造体

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315845A (ja) * 1999-04-28 2000-11-14 Jsr Corp 回路基板
JP2000313818A (ja) 1999-03-03 2000-11-14 Jsr Corp 架橋樹脂粒子、有機絶縁材用組成物、有機絶縁材、封止材、および回路基板
JP2003181274A (ja) * 2001-12-18 2003-07-02 Sekisui Chem Co Ltd 中空ポリマー粒子の製造方法
JP2004190038A (ja) 2004-03-08 2004-07-08 New Industry Research Organization 中空高分子微粒子及びその製造法
WO2004067638A1 (ja) * 2003-01-28 2004-08-12 Matsushita Electric Works, Ltd. 中空粒子を含有する樹脂組成物、同組成物を含むプリプレグおよび積層板
JP2006008750A (ja) * 2004-06-22 2006-01-12 Matsushita Electric Works Ltd 電気絶縁性樹脂組成物、プリプレグ、積層板及び多層プリント配線板
JP2007270096A (ja) * 2006-03-31 2007-10-18 Kobe Univ 内部に空隙を有する微粒子の製造方法
JP2008115280A (ja) * 2006-11-06 2008-05-22 Hitachi Ltd 低誘電損失樹脂組成物、その硬化物およびそれを用いた電子部品
JP2008231241A (ja) * 2007-03-20 2008-10-02 Sanyo Chem Ind Ltd 中空樹脂粒子
JP2013221070A (ja) * 2012-04-16 2013-10-28 Sanko Kk 中空ポリマー微粒子とその製造方法
KR20150137783A (ko) * 2014-05-30 2015-12-09 (주) 유니플라텍 저비중 도전 입자를 포함하는 코팅제 조성물을 이용한 전자파 차폐 필름
JP2016210902A (ja) * 2015-05-11 2016-12-15 コニカミノルタ株式会社 中空樹脂粒子およびその製造方法
JP2017119843A (ja) * 2015-12-28 2017-07-06 日本合成化学工業株式会社 中空ポリマー粒子、ポリマー粒子懸濁液の製造方法、および中空ポリマー粒子の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313818A (ja) 1999-03-03 2000-11-14 Jsr Corp 架橋樹脂粒子、有機絶縁材用組成物、有機絶縁材、封止材、および回路基板
JP2000315845A (ja) * 1999-04-28 2000-11-14 Jsr Corp 回路基板
JP2003181274A (ja) * 2001-12-18 2003-07-02 Sekisui Chem Co Ltd 中空ポリマー粒子の製造方法
WO2004067638A1 (ja) * 2003-01-28 2004-08-12 Matsushita Electric Works, Ltd. 中空粒子を含有する樹脂組成物、同組成物を含むプリプレグおよび積層板
JP2004190038A (ja) 2004-03-08 2004-07-08 New Industry Research Organization 中空高分子微粒子及びその製造法
JP2006008750A (ja) * 2004-06-22 2006-01-12 Matsushita Electric Works Ltd 電気絶縁性樹脂組成物、プリプレグ、積層板及び多層プリント配線板
JP2007270096A (ja) * 2006-03-31 2007-10-18 Kobe Univ 内部に空隙を有する微粒子の製造方法
JP2008115280A (ja) * 2006-11-06 2008-05-22 Hitachi Ltd 低誘電損失樹脂組成物、その硬化物およびそれを用いた電子部品
JP2008231241A (ja) * 2007-03-20 2008-10-02 Sanyo Chem Ind Ltd 中空樹脂粒子
JP2013221070A (ja) * 2012-04-16 2013-10-28 Sanko Kk 中空ポリマー微粒子とその製造方法
KR20150137783A (ko) * 2014-05-30 2015-12-09 (주) 유니플라텍 저비중 도전 입자를 포함하는 코팅제 조성물을 이용한 전자파 차폐 필름
JP2016210902A (ja) * 2015-05-11 2016-12-15 コニカミノルタ株式会社 中空樹脂粒子およびその製造方法
JP2017119843A (ja) * 2015-12-28 2017-07-06 日本合成化学工業株式会社 中空ポリマー粒子、ポリマー粒子懸濁液の製造方法、および中空ポリマー粒子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Chemical Society of Japan", 30 September 1993, MARUZEN PUBLISHING CO., LTD., pages: 498 - 503

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106307A1 (ja) * 2021-12-10 2023-06-15 日本ゼオン株式会社 中空粒子、樹脂組成物、及び樹脂成形体
WO2023228964A1 (ja) * 2022-05-26 2023-11-30 日本ゼオン株式会社 中空粒子、樹脂組成物、樹脂成形体、封止用樹脂組成物、硬化物、及び半導体装置
WO2024048093A1 (ja) * 2022-08-30 2024-03-07 日本ゼオン株式会社 中空粒子、樹脂組成物、及び成形体
WO2024095851A1 (ja) * 2022-10-31 2024-05-10 日本ゼオン株式会社 中空粒子、中空粒子の製造方法、樹脂組成物及び樹脂構造体

Also Published As

Publication number Publication date
JPWO2022092076A1 (ja) 2022-05-05
EP4238998A1 (en) 2023-09-06
US20230383021A1 (en) 2023-11-30
TW202231349A (zh) 2022-08-16
KR20230098160A (ko) 2023-07-03
CN116390958A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
WO2022092076A1 (ja) 中空粒子の製造方法及び中空粒子
WO2023074651A1 (ja) 中空粒子、中空粒子の製造方法、樹脂組成物、及び成形体
JP7468529B2 (ja) 中空樹脂粒子の製造方法
WO2021112110A1 (ja) 中空粒子、樹脂組成物及び成形体
WO2023106307A1 (ja) 中空粒子、樹脂組成物、及び樹脂成形体
WO2022107674A1 (ja) 中空粒子
WO2022071276A1 (ja) 中空粒子の製造方法
WO2022163600A1 (ja) 中空粒子
WO2022181580A1 (ja) 熱伝導率調整剤及び成形体
WO2022092265A1 (ja) 中空粒子の製造方法及び中空粒子
WO2023163084A1 (ja) 中空粒子、樹脂組成物、及び樹脂成形体
WO2022071275A1 (ja) 中空粒子
WO2024048093A1 (ja) 中空粒子、樹脂組成物、及び成形体
WO2022181484A1 (ja) 中空粒子
WO2024095851A1 (ja) 中空粒子、中空粒子の製造方法、樹脂組成物及び樹脂構造体
WO2023127624A1 (ja) 中空粒子
WO2023189800A1 (ja) 中空粒子及びその製造方法
JP2023086486A (ja) 中空粒子の製造方法、及び樹脂組成物の製造方法
TW202409114A (zh) 空心粒子、樹脂組成物及成形體
JP2023067861A (ja) 中空樹脂粒子の製造方法
CN118119445A (zh) 中空颗粒、中空颗粒的制造方法、树脂组合物以及成型体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559152

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18031815

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021886194

Country of ref document: EP

Effective date: 20230530