WO2022181580A1 - 熱伝導率調整剤及び成形体 - Google Patents

熱伝導率調整剤及び成形体 Download PDF

Info

Publication number
WO2022181580A1
WO2022181580A1 PCT/JP2022/007122 JP2022007122W WO2022181580A1 WO 2022181580 A1 WO2022181580 A1 WO 2022181580A1 JP 2022007122 W JP2022007122 W JP 2022007122W WO 2022181580 A1 WO2022181580 A1 WO 2022181580A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
thermal conductivity
hollow particles
parts
particles
Prior art date
Application number
PCT/JP2022/007122
Other languages
English (en)
French (fr)
Inventor
尚 黒川
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2023502419A priority Critical patent/JPWO2022181580A1/ja
Priority to US18/276,764 priority patent/US20240124631A1/en
Priority to KR1020237027451A priority patent/KR20230150270A/ko
Priority to EP22759616.0A priority patent/EP4299640A1/en
Priority to CN202280013587.2A priority patent/CN116829255A/zh
Publication of WO2022181580A1 publication Critical patent/WO2022181580A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • B01J13/185In situ polymerisation with all reactants being present in the same phase in an organic phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/20After-treatment of capsule walls, e.g. hardening
    • B01J13/203Exchange of core-forming material by diffusion through the capsule wall
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/18Suspension polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof

Definitions

  • the present disclosure relates to a thermal conductivity modifier in the form of hollow particles and a molded body containing the thermal conductivity modifier.
  • Hollow particles are particles that have cavities inside the particles, and can scatter light well and have low light transmittance compared to solid particles whose insides are substantially filled with resin. Therefore, it is widely used as an organic pigment with excellent optical properties such as opacity and whiteness, and as a masking agent in water-based paints and paper coating compositions. In recent years, it has been used not only for water-based paints and paper coating compositions, but also as a lightening agent and heat insulating agent for resins and paints used in various fields such as automobiles, aviation, electricity, electronics, and construction. hollow particles are also used.
  • Patent Document 1 discloses a thermal conductivity modifier in the form of hollow particles having an average particle diameter of 10 to 150 nm, a gel fraction of 95% or more, and a shell containing a vinyl resin. Patent Literature 1 describes that a film with low reflectance can be produced by adding the thermal conductivity modifier.
  • Patent Document 2 hollow resin particles having excellent heat insulating properties have a number average particle diameter of 0.1 to 9.0 ⁇ m, a porosity of 70 to 99%, and a volatile It discloses hollow resin particles having an organic compound content of 5% by mass or less.
  • An object of the present disclosure is to provide a thermal conductivity modifier in the form of hollow particles capable of reducing the thermal conductivity of a molded article made from varnish, and the thermal conductivity modifier containing the thermal conductivity modifier,
  • An object of the present invention is to provide a molded article with reduced energy consumption.
  • the present inventor focused on the permeability of the shell of the hollow particles to the polar solvent, and adjusted the composition and formation method of the shell to make the shell difficult for acetone to penetrate.
  • the present inventors have found that even when a varnish containing the hollow particles is hardly crushed and a molded body is produced using the varnish, the particle shape is maintained, so that the thermal conductivity of the molded body made from the varnish can be reduced.
  • the present disclosure provides a thermal conductivity modifier in the form of hollow particles comprising a shell containing a resin and a hollow portion surrounded by the shell,
  • the shell contains, as the resin, a polymer containing 80 parts by mass or more of crosslinkable monomer units in 100 parts by mass of all monomer units,
  • 0.1 mg of a thermal conductivity modifier is added to 4 mL of acetone, shaken for 10 minutes at a shaking speed of 100 rpm, and then left to stand for 48 hours.
  • a thermal conductivity modifier is provided in which less than 5% by weight of the thermal conductivity modifier precipitates in acetone.
  • the polymer contained in the shell is hydrophilic derived from a hydrophilic non-crosslinkable monomer having a solubility in distilled water at 20° C. of 0.3 g/L or more. Further comprising a non-crosslinkable monomer unit, the content of the hydrophilic non-crosslinkable monomer unit is 2 to 20 parts by mass in 100 parts by mass of the total monomer units of the polymer, and the crosslinkability The content of monomer units is preferably 80 to 98 parts by mass.
  • the polymer contained in the shell is, as the crosslinkable monomer unit, a trifunctional or higher crosslinkable monomer derived from a trifunctional or higher crosslinkable monomer. It is preferable that the content of the tri- or higher functional crosslinkable monomer units is 5 to 50 parts by mass based on 100 parts by mass of the total monomer units of the polymer.
  • the porosity of the thermal conductivity modifier of the present disclosure is preferably 50% or more.
  • the volume average particle size is preferably 1.0 to 30.0 ⁇ m.
  • the present disclosure provides a molded article containing the thermal conductivity modifier of the present disclosure.
  • thermal conductivity modifier of the present disclosure as described above, it is possible to reduce the thermal conductivity of molded articles and the like formed using varnish.
  • FIG. 4 is a schematic diagram showing one embodiment of the suspension in the suspension step
  • a polymerizable monomer is a compound having a functional group capable of addition polymerization (in the present disclosure, sometimes simply referred to as a polymerizable functional group).
  • a compound having an ethylenically unsaturated bond as a functional group capable of addition polymerization is generally used as the polymerizable monomer.
  • Polymerizable monomers include non-crosslinkable monomers and crosslinkable monomers.
  • a non-crosslinkable monomer is a polymerizable monomer having only one polymerizable functional group, and a crosslinkable monomer has two or more polymerizable functional groups, and crosslinks are formed in the resin by a polymerization reaction. It is a polymerizable monomer to form.
  • a polymerizable monomer having a solubility in distilled water at 20°C of 0.3 g/L or more is referred to as a hydrophilic monomer, and a solubility in distilled water at 20°C is less than 0.3 g/L. is called a non-hydrophilic monomer.
  • Thermal conductivity modifier of the present disclosure is a thermal conductivity modifier in the form of hollow particles comprising a shell containing a resin and a hollow portion surrounded by the shell,
  • the shell contains, as the resin, a polymer containing 80 parts by mass or more of crosslinkable monomer units in 100 parts by mass of all monomer units,
  • 0.1 mg of a thermal conductivity modifier is added to 4 mL of acetone, shaken for 10 minutes at a shaking speed of 100 rpm, and then left to stand for 48 hours. It is characterized in that less than 5% by mass of the thermal conductivity modifier precipitates in acetone.
  • the thermal conductivity modifier of the present disclosure has the form of hollow particles comprising a resin-containing shell (outer shell) and a hollow portion surrounded by the shell.
  • the hollow portion is a hollow space clearly distinguished from the shell of the hollow particles formed by resin material.
  • the shell of the hollow particle may have a porous structure, in which case the hollow portion has a size that can be clearly distinguished from a large number of minute spaces uniformly distributed within the porous structure. have.
  • the hollow portion of the hollow particles can be confirmed, for example, by SEM observation of the cross section of the particles or by TEM observation of the particles as they are.
  • the hollow portion is preferably filled with air or a gas such as nitrogen, or is in a reduced pressure state close to vacuum.
  • the hollow particles have a hollow portion inside the particles, it is possible to impart properties such as weight reduction and heat insulation to various compositions, molded articles, and the like to which the hollow particles are added.
  • a conventional thermal conductivity modifier in the form of hollow particles is added to a varnish that is a raw material for a molded body, the solvent or resin in the varnish penetrates into the particles, causing the varnish to collapse easily.
  • voids inside the particles cannot be maintained in the molded article formed using
  • the thermal conductivity modifier of the present disclosure has the form of hollow particles, it is difficult to crush in the varnish and during molding of the varnish, and the voids inside the particles are maintained even in a molded product made from the varnish. Therefore, the thermal conductivity of the molding can be reduced.
  • the polymer contained in the shell contains 80 parts by mass or more of the crosslinkable monomer unit in 100 parts by mass of the total monomer units. It is presumed that the content ratio of the crosslinkable monomer units in the shell is large, and the covalent bond network is densely spread in the shell. In addition, in the thermal conductivity modifier in the form of hollow particles of the present disclosure, less than 5% by mass of the thermal conductivity modifier precipitates in acetone in the immersion test, so the shell has a dense structure that makes it difficult for acetone to permeate. It is presumed that the crosslinked structure in the shell is much denser.
  • the thermal conductivity modifier in the form of hollow particles of the present disclosure thus has a more dense structure than conventional hollow particles having a shell containing a large amount of crosslinkable monomer units, thereby improving solvent resistance. Since the properties and strength are improved, it is difficult for the solvent to penetrate into the inside of the particles, and because it is also excellent in strength, it is added to the varnish, and even if the varnish is molded, it is difficult to crush, and the molded body , the voids inside the particles are maintained. Therefore, the thermal conductivity modifier in the form of hollow particles according to the present disclosure can be suitably used as a thermal conductivity modifier for molded articles made from varnish. Since the thermal conductivity modifier of the present disclosure has the form of hollow particles, the thermal conductivity modifier of the present disclosure may hereinafter be referred to as the hollow particles of the present disclosure or simply hollow particles.
  • the hollow particles of the present disclosure preferably have a porosity of 50% or more, more preferably 60% or more, and even more preferably 70% or more.
  • the porosity is equal to or higher than the above lower limit, the effects of heat insulation and weight reduction by the hollow particles are excellent.
  • the upper limit of the porosity of the hollow particles of the present disclosure is not particularly limited, it is preferably 90% or less, more preferably 85% or less, from the viewpoint of suppressing a decrease in the strength of the hollow particles and making them difficult to crush. , more preferably 80% or less.
  • the porosity of the hollow particles of the present disclosure is calculated from the apparent density D1 and the true density D0 of the hollow particles.
  • the method for measuring the apparent density D1 of hollow particles is as follows. First, a measuring flask with a volume of 100 cm 3 is filled with about 30 cm 3 of hollow particles, and the mass of the filled hollow particles is accurately weighed. The volumetric flask filled with hollow particles is then filled precisely to the marked line with isopropanol, taking care not to introduce air bubbles. Accurately weigh the mass of isopropanol added to the volumetric flask, and calculate the apparent density D 1 (g/cm 3 ) of the hollow particles based on the following formula (I).
  • Apparent density D 1 [mass of hollow particles]/(100-[mass of isopropanol]/[specific gravity of isopropanol at measurement temperature])
  • the apparent density D1 corresponds to the specific gravity of the entire hollow particle when the hollow portion is regarded as part of the hollow particle.
  • the method for measuring the true density D0 of the hollow particles is as follows. After pre-pulverizing the hollow particles, about 10 g of pulverized pieces of the hollow particles are filled into a volumetric flask having a capacity of 100 cm 3 , and the mass of the filled pulverized pieces is accurately weighed. After that, isopropanol is added to the volumetric flask in the same manner as the above apparent density measurement, the mass of isopropanol is accurately weighed, and the true density D 0 (g/cm 3 ) of the hollow particles is calculated based on the following formula (II). do.
  • True density D 0 [mass of pulverized pieces of hollow particles]/(100-[mass of isopropanol]/[specific gravity of isopropanol at measurement temperature])
  • the true density D0 corresponds to the specific gravity of only the shell portion of the hollow particles. As is clear from the above measurement method, the hollow portion is not considered part of the hollow particle when calculating the true density D0 .
  • the porosity (%) of the hollow particles is calculated by the following formula (III) from the apparent density D1 and the true density D0 of the hollow particles.
  • Formula (III) Porosity (%) 100 - (apparent density D 1 / true density D 0 ) x 100
  • the hollow particles of the present disclosure preferably have a volume average particle size of 1.0 to 30.0 ⁇ m.
  • the volume average particle diameter of the hollow particles is at least the above lower limit, the aggregation of the hollow particles becomes small, and excellent dispersibility can be exhibited.
  • the volume average particle diameter of the hollow particles is at least the above lower limit, the hollow particles have a hollow diameter corresponding to half the wavelength of visible light and promote reflection and refraction of visible light, so that they function as a white pigment. Therefore, a resin composition and a molded article containing hollow particles having a volume average particle diameter equal to or greater than the above lower limit have an increased reflectance.
  • the volume average particle diameter of the hollow particles is equal to or less than the above upper limit, a decrease in the strength of the hollow particles is suppressed, and the thickness of the shell tends to be uniform.
  • the lower limit of the volume average particle diameter of the hollow particles of the present disclosure is more preferably 3.0 ⁇ m or more, still more preferably 5.0 ⁇ m or more, and even more preferably 7.0 ⁇ m or more.
  • the upper limit of the volume average particle diameter of the hollow particles of the present disclosure is more preferably 20.0 ⁇ m or less, still more preferably 15.0 ⁇ m or less, and even more preferably 10.0 ⁇ m or less.
  • the particle size distribution (volume average particle size (Dv)/number average particle size (Dn)) of the hollow particles may be, for example, 1.05 or more and 2.5 or less. When the particle size distribution is 2.5 or less, particles having little variation in properties such as pressure resistance and heat resistance among particles can be obtained. Moreover, when the particle size distribution is 2.5 or less, for example, when manufacturing a sheet-like compact, a product having a uniform thickness can be manufactured.
  • the volume average particle diameter (Dv) and number average particle diameter (Dn) of the hollow particles are obtained, for example, by measuring the particle diameter of the hollow particles with a laser diffraction particle size distribution analyzer, and calculating the number average and volume average, respectively. The values obtained can be taken as the number average particle size (Dn) and volume average particle size (Dv) of the particles.
  • the particle size distribution is obtained by dividing the volume average particle size by the number average particle size.
  • the shape of the hollow particles of the present disclosure is not particularly limited as long as a hollow portion is formed inside, and examples thereof include spherical, ellipsoidal, irregular shapes, and the like. Among these, a spherical shape is preferable from the viewpoint of ease of production and excellent strength and pressure resistance of the hollow particles.
  • Hollow particles may have one or more hollows.
  • the shell of the hollow particle and, in the case of having two or more hollow portions, partition walls separating adjacent hollow portions may be porous.
  • the inside of the particles preferably has only one hollow portion.
  • the hollow particles may have an average circularity of 0.950 to 0.995.
  • An example of the image of the shape of the hollow particles is a bag made of a thin film and inflated with gas, the cross-sectional view of which is the same as the hollow particles 100 in (5) of FIG.
  • a thin film is provided on the outside and the inside is filled with gas.
  • the particle shape can be confirmed by, for example, SEM or TEM. Further, the shape of the inside of the particle can be confirmed by SEM or TEM after slicing the particle by a known method.
  • the hollow particles of the present disclosure contain, as the resin in the shell, a polymer containing 80 parts by mass or more of crosslinkable monomer units in 100 parts by mass of all monomer units.
  • the polymer forms the skeleton of the shell of the hollow particle, and by including the crosslinkable monomer units in the above ratio, the shell of the hollow particle of the present disclosure has a dense covalent bond network. It becomes what was done.
  • the content of the crosslinkable monomer unit in 100 parts by mass of the total monomer units improves the strength and solvent resistance of the hollow particles, and the effects of heat insulation and weight reduction by the hollow particles. From the viewpoint of improvement, it is preferably 85 parts by mass or more, more preferably 90 parts by mass or more.
  • the upper limit of the content of the crosslinkable monomer units is not particularly limited, and may be 100 parts by mass or less. 98 parts by mass or less, more preferably 97 parts by mass or less.
  • the crosslinkable monomer unit is a monomer unit derived from a crosslinkable monomer, and the content of the crosslinkable monomer unit in the polymer is less than 100 parts by mass.
  • the monomer units other than the crosslinkable monomer units are non-crosslinkable monomer units derived from non-crosslinkable monomers.
  • the polymer is typically a first polymerizable monomer and a second polymerizable monomer obtained by a first polymerization reaction and a second polymerization reaction in the method for producing hollow particles of the present disclosure, which will be described later. It is a polymer of organic monomers. That is, in the hollow particles of the present disclosure, the crosslinkable monomer unit and the non-crosslinkable monomer unit contained in the polymer are usually the first polymerizable monomer and the second polymerizable monomer described later. It is derived from the polymer. The specific contents of the crosslinkable monomer and the non-crosslinkable monomer used for synthesizing the polymer are as described later in the method for producing hollow particles of the present disclosure.
  • the polymer includes, as crosslinkable monomer units, bifunctional crosslinkable monomer units derived from a bifunctional crosslinkable monomer, and trifunctional or higher functional units derived from a trifunctional or higher crosslinkable monomer.
  • a crosslinkable monomer unit derived from a bifunctional crosslinkable monomer may be referred to as a "bifunctional crosslinkable monomer unit", and a trifunctional or higher crosslinkable monomer
  • a crosslinkable monomeric unit derived from a polymer may be referred to as a "trifunctional or higher crosslinkable monomeric unit”.
  • the content of the bifunctional crosslinkable monomer unit in 100 parts by mass of the total monomer units of the polymer is not particularly limited.
  • the lower limit is preferably 65 parts by mass or more, more preferably 70 parts by mass or more, from the viewpoint of improving the strength and solvent resistance of the hollow particles and improving the effects such as heat insulation and weight reduction by the hollow particles. Preferably, it is 75 parts by mass or more.
  • the upper limit may be 100 parts by mass or less, but from the viewpoint of sufficiently containing a trifunctional or higher crosslinkable monomer unit or a hydrophilic non-crosslinkable monomer unit described later, it is preferably 98 parts by mass. It is not more than 95 parts by mass, more preferably not more than 90 parts by mass.
  • the content of the trifunctional or higher crosslinkable monomer unit in 100 parts by mass of the total monomer units of the polymer is not particularly limited.
  • the lower limit is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, from the viewpoint of improving the strength and solvent resistance of the hollow particles and improving the effects such as heat insulation and weight reduction by the hollow particles. , more preferably 15 parts by mass or more.
  • the upper limit is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and sufficiently contains bifunctional or higher crosslinkable monomer units or hydrophilic non-crosslinkable monomer units described later. From the point of view of increasing
  • the crosslinkable monomer unit contained in the polymer contains a crosslinkable monomer unit derived from a (meth)acrylic crosslinkable monomer having a (meth)acryloyl group as a polymerizable functional group. good too. Thereby, hollow particles having excellent strength and heat resistance can be obtained.
  • the content of the crosslinkable monomer unit derived from the (meth)acrylic crosslinkable monomer is preferably 50 parts by mass or more, more preferably 70 parts by mass or more, and still more preferably 90 parts by mass or more in 100 parts by mass of the crosslinkable monomer unit, and the crosslinkable monomer unit is (meth)acrylic crosslinked may be composed of a single monomeric unit.
  • the specific content of the (meth)acrylic crosslinkable monomer is as described later in the method for producing the thermal conductivity modifier of the present disclosure.
  • the polymer preferably further contains a non-crosslinking monomer unit, and may contain a hydrophilic non-crosslinking monomer unit having a solubility of 0.3 g/L or more in distilled water at 20°C. More preferably, it preferably contains a hydrophilic non-crosslinkable monomer unit derived from the second polymerizable monomer described later.
  • the polymer contains a combination of crosslinkable monomer units and non-crosslinkable monomer units, the mechanical properties of the shell of the hollow particles are improved. By including non-crosslinkable monomer units, the shell tends to have a dense structure, so the strength and solvent resistance of the hollow particles are likely to be improved. Easy to improve.
  • the content of the non-crosslinkable monomer units in 100 parts by mass of the total monomer units is 0 to 20 parts by mass, and from the viewpoint of improving the strength of the hollow particles, the lower limit is preferably is 2 parts by mass or more, more preferably 3 parts by mass or more, more preferably 4 parts by mass or more, and the upper limit is preferably 15 parts by mass or less, more preferably 12 parts by mass or less, and still more preferably 10 parts by mass or less is.
  • the content of the hydrophilic non-crosslinking monomer units in 100 parts by mass of the total monomer units improves the strength and solvent resistance of the hollow particles, heat insulation and weight reduction by the hollow particles, etc.
  • the lower limit is preferably 2 parts by mass or more, more preferably 3 parts by mass or more, and still more preferably 4 parts by mass or more
  • the upper limit is preferably 20 parts by mass or less, more preferably is 15 parts by mass or less, more preferably 12 parts by mass or less, and even more preferably 10 parts by mass or less.
  • the content of the polymer is preferably 90% by mass or more, more preferably 95% by mass or more, based on 100% by mass of the total solid content of the shell.
  • the hollow particles of the present disclosure are obtained by adding 0.1 mg of the hollow particles to 4 mL of acetone in an environment of 25 ° C., shaking for 10 minutes at a shaking speed of 100 rpm, and then standing still for 48 hours. , less than 5% by weight of hollow particles precipitated in acetone.
  • the percentage of hollow particles that precipitate in acetone in the immersion test is an index of the denseness of the shell of the hollow particles.
  • Hollow particles may be produced by a method of further subjecting them to a polymerization reaction and such that the content of the crosslinkable monomer units in the polymer forming the shell is 80% by mass or more.
  • the hollow particles of the present disclosure preferably have 5 or less hollow particles out of 100 hollow particles having continuous pores or shell defects.
  • hollow particles include those in which the shell does not have a communicating hole through which the hollow portion and the outer space of the particle are communicated, and those in which the shell has one or more communicating holes and the hollow portion communicates with the outside of the particle through the communicating hole.
  • the diameter of the communicating pores is usually about 10 to 500 nm.
  • the communicating pores may impart beneficial functions to the hollow particles, they also cause the hollow particles to be easily crushed by lowering the strength of the hollow particles because they are portions where the shell is missing.
  • Hollow particles may also have crack-like shell defects that are extremely large relative to the size of the particles. Although it depends on the size of the hollow particle, a crack having a length of 1 ⁇ m or more generally significantly deteriorates the strength of the hollow particle and is recognized as a shell defect.
  • the number of hollow particles having continuous pores or shell defects out of 100 hollow particles is considered to be 5 or less. be able to. Even if the shell does not have communicating pores and shell defects, the amount of precipitated hollow particles may be 5% by mass or more in the hollow particle immersion test described above. Therefore, in the hollow particle immersion test described above, when the amount of precipitated hollow particles is less than 5% by mass, it means that the shell has extremely few communicating pores and shell defects, and the shell has a dense crosslinked structure. Conceivable.
  • thermal conductivity modifier in the form of hollow particles of the present disclosure can be produced by, for example, A step of preparing a mixture containing a first polymerizable monomer containing a crosslinkable monomer, a hydrocarbon solvent, a dispersion stabilizer, and an aqueous medium; A step of preparing a suspension in which droplets of a monomer composition containing the first polymerizable monomer and the hydrocarbon solvent are dispersed in the aqueous medium by suspending the mixed liquid.
  • the solubility in distilled water at 20°C is 0.3 g/L or more. It can be obtained by a method for producing hollow particles in which a second polymerizable monomer is added and further subjected to a polymerization reaction.
  • a mixed liquid containing the first polymerizable monomer, a hydrocarbon solvent, a dispersion stabilizer, and an aqueous medium is suspended to obtain the first polymerizable monomer and carbonization.
  • Suspension in which droplets having a distribution structure in which the hydrogen-based solvent undergoes phase separation, the first polymerizable monomer is unevenly distributed on the surface side, and the hydrocarbon-based solvent is unevenly distributed in the center are dispersed in the aqueous medium. It follows the basic technique of preparing a liquid and subjecting this suspension to a polymerization reaction to harden the surface of the droplets to form hollow particles having a hollow portion filled with a hydrocarbon solvent.
  • the more polymerizable functional groups that remain unreacted the coarser the crosslinked structure of the shell.
  • the hollow particle immersion test it is believed that 5% by mass or more of the hollow particles are precipitated in acetone.
  • a suspension in which droplets of a monomer composition containing a first polymerizable monomer rich in a crosslinkable monomer are dispersed in an aqueous medium is subjected to a polymerization reaction.
  • the second polymerizable monomer that is a hydrophilic monomer is added.
  • the reaction rate of the entire polymerizable monomers including the first polymerizable monomer and the second polymerizable monomer can be improved.
  • particles having a shell containing a polymer of the first polymerizable monomer and a hollow portion filled with a hydrocarbon-based solvent obtained by the first polymerization reaction are referred to as the first and the composition containing the first precursor particles is sometimes referred to as the first precursor composition.
  • Particles having a shell containing a polymer of the first polymerizable monomer and the second polymerizable monomer obtained by the second polymerization reaction and a hollow portion filled with a hydrocarbon-based solvent is sometimes referred to as a second precursor particle, considering it as an intermediate of hollow particles in which the hollow portion is filled with gas, and the composition containing the second precursor particles is referred to as the second precursor composition It is sometimes called a thing.
  • the solubility of the second polymerizable monomer in distilled water at 20° C. is equal to or higher than the specific value, so that when added to the first precursor composition, the second It tends to be entrapped within the shell of one precursor particle.
  • the second polymerizable monomer which is a hydrophilic monomer, has affinity with both the first polymerizable monomer and the aqueous medium, so when added to the first precursor composition, , is incorporated into the shell formed by the first polymerizable monomer and is believed to promote thermal motion of the shell.
  • the second polymerizable monomer is incorporated in the shell formed by the first polymerizable monomer, and the polymerization reaction proceeds while the thermal movement of the shell is promoted. progresses, the reaction rate is high, and the polymerization reaction of the second polymerizable monomer incorporated in the shell and the polymerizable functional groups of the first polymerizable monomer remaining unreacted is sufficient.
  • the crosslinked structure becomes denser, which is presumed to form a shell that makes it difficult for acetone to permeate.
  • the method for producing hollow particles includes a step of preparing a mixed solution, a step of preparing a suspension, and a step of subjecting the suspension to a polymerization reaction, and may further include steps other than these. Moreover, as long as it is technically possible, two or more of the above steps and other additional steps may be performed simultaneously as one step, or their order may be changed. For example, the preparation and suspension of the mixed solution may be performed simultaneously in one step, such as adding the materials for preparing the mixed solution while simultaneously suspending the mixture.
  • a preferable example of the method for producing the hollow particles is a production method including the following steps.
  • Polymerization step (3-1) Second One polymerization step By performing a first polymerization reaction of subjecting the suspension to a polymerization reaction until the polymerization conversion rate of the first polymerizable monomer reaches 93% by mass or more, the first polymerizable monomer Step of preparing a first precursor composition containing first precursor particles having a shell containing a monomeric polymer and a hollow portion filled with a hydrocarbon solvent
  • Second Polymerization step By adding a second polymerizable monomer having a solubility of 0.3 g/L or more in distilled water at 20°C to the first precursor composition and performing a second polymerization reaction, A second precursor comprising second precursor particles
  • Step of preparing a composition (4) Solid-liquid separation step A step of solid-liquid separation of the second precursor composition to obtain second precursor particles containing a hydrocarbon-based solvent in their hollow portions, and (5) Solvent Removal Step A step of removing the hydrocarbon-based solvent contained in the second precursor particles obtained in the solid-liquid separation step to obtain hollow particles.
  • FIG. 1 is a schematic diagram showing an example of the above manufacturing method.
  • (1) to (5) in FIG. 1 correspond to the above steps (1) to (5).
  • White arrows between each figure indicate the order of each step.
  • FIG. 1 is only a schematic diagram for explanation, and the manufacturing method is not limited to the one shown in the diagram.
  • the structures, dimensions and shapes of the materials used in the manufacturing methods of the present disclosure are not limited to the structures, dimensions and shapes of the various materials in these figures.
  • (1) of FIG. 1 is a cross-sectional schematic diagram showing one embodiment of the liquid mixture in the liquid mixture preparation step. As shown in this figure, the mixture contains an aqueous medium 1 and a low-polarity material 2 dispersed in the aqueous medium 1 .
  • the low-polarity material 2 means a material that has low polarity and is difficult to mix with the aqueous medium 1 .
  • the low polar material 2 contains a first polymerizable monomer and a hydrocarbon solvent.
  • (2) of FIG. 1 is a cross-sectional schematic diagram showing one embodiment of the suspension in the suspension step.
  • the suspension comprises an aqueous medium 1 and droplets 10 of a monomer composition dispersed in the aqueous medium 1 .
  • the droplets 10 of the monomer composition contain the first polymerizable monomer and the hydrocarbon-based solvent, but the distribution within the droplets is not uniform.
  • the hydrocarbon-based solvent 4a and the material 4b other than the hydrocarbon-based solvent containing the first polymerizable monomer are phase-separated, and the hydrocarbon-based solvent 4a is in the center. It has a structure in which it is unevenly distributed, the material 4b other than the hydrocarbon solvent is unevenly distributed on the surface side, and a dispersion stabilizer (not shown) adheres to the surface.
  • (3) of FIG. 1 shows one implementation of a composition (second precursor composition) containing hollow particles (second precursor particles) containing a hydrocarbon-based solvent in the hollow portion obtained by the polymerization step. It is a cross-sectional schematic diagram which shows a form.
  • the composition includes an aqueous medium 1 and hollow particles (second precursor particles) 20 dispersed in the aqueous medium 1 and containing a hydrocarbon solvent 4a in their hollow portions.
  • the shell 6 forming the outer surface of the second precursor particle 20 is formed by the polymerization of the first polymerizable monomer in the droplet 10 of the monomer composition and the second polymer that is added later. It is formed by polymerization of polymerizable monomers.
  • FIG. 1(4) is a schematic cross-sectional view showing an embodiment of hollow particles (second precursor particles) containing a hydrocarbon-based solvent in the hollow portion after the solid-liquid separation step. (4) of FIG. 1 shows a state where the aqueous medium 1 is removed from the state of (3) of FIG. (5) of FIG.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the hollow particles after the solvent removal step.
  • (5) of FIG. 1 shows a state in which the hydrocarbon-based solvent 4a is removed from the state of (4) of FIG.
  • the hydrocarbon-based solvent 4a is removed from the state of (4) of FIG.
  • Liquid mixture preparation step This step is a step of preparing a liquid mixture containing a first polymerizable monomer, a hydrocarbon solvent, a dispersion stabilizer, and an aqueous medium.
  • the mixed liquid preferably contains an oil-soluble polymerization initiator as a polymerization initiator.
  • the mixed solution may further contain other materials such as a suspension stabilizer as long as the effects of the present disclosure are not impaired.
  • the materials of the mixed liquid are explained in order of (A) the first polymerizable monomer, (B) the oil-soluble polymerization initiator, (C) the hydrocarbon solvent, (D) the dispersion stabilizer, and (E) the aqueous medium. do.
  • the first polymerizable monomer contains at least a crosslinkable monomer, and further contains a non-crosslinkable monomer within a range that does not impair the effects of the present disclosure. good too.
  • a (meth)acrylic monomer having a (meth)acryloyl group as a polymerizable functional group is used because the polymerization reaction is easy to stabilize and hollow particles having high heat resistance can be obtained.
  • a polymerizable monomer can be preferably used.
  • Crosslinkable monomer Since the crosslinkable monomer has a plurality of polymerizable functional groups, the monomers can be linked together and the crosslink density of the shell can be increased.
  • crosslinkable monomers include divinylbenzene, divinyldiphenyl, divinylnaphthalene, diallyl phthalate, diallylamine, allyl (meth) acrylate, vinyl (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate.
  • pentaerythritol di(meth)acrylate tricyclodecanedimethanol di(meth)acrylate, 2-hydroxy-3-(meth)acrylpropyl(meth)acrylate and other bifunctional crosslinkable functional groups having two polymerizable functional groups Monomer; trimethylolpropane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, dipentaerythritol Trifunctional or higher crosslinkable monomers having three or more polymerizable functional groups such as poly(meth)acrylates and ethoxylated products thereof.
  • crosslinkable monomers may be used alone or in combination of two or more.
  • examples of hydrophilic crosslinkable monomers having a solubility in distilled water at 20° C. of 0.3 g/L or more include ethylene glycol dimethacrylate, diethylene glycol diacrylate, and allyl methacrylate. , vinyl methacrylate, 2-hydroxy-3-methacrylpropyl acrylate, diallylamine, and the like.
  • the crosslinkable monomer contained in the first polymerizable monomer may be a hydrophilic crosslinkable monomer having a solubility of 0.3 g/L or more in distilled water at 20° C., or 0.3 g/L or more. It may be less than 3 g/L of non-hydrophilic crosslinkable monomer, and is not particularly limited.
  • the first polymerizable monomer contains, as a crosslinkable monomer, at least one selected from bifunctional crosslinkable monomers and trifunctional or higher crosslinkable monomers.
  • a bifunctional crosslinkable monomer and a trifunctional or higher crosslinkable monomer are used from the viewpoint of improving the strength and solvent resistance of the hollow particles and improving the effects of the hollow particles such as heat insulation and weight reduction. More preferably, they are included in combination.
  • the first polymerizable monomer contains a trifunctional or higher crosslinkable monomer, it is excellent in that the covalent bond network can be more densely spread in the shell, but the first polymerization There is a tendency that unreacted polymerizable functional groups tend to remain after the reaction.
  • the polymerizable functional group (meta ) A (meth)acrylic crosslinkable monomer having an acryloyl group is preferred. That is, the bifunctional crosslinkable monomer used for the first polymerizable monomer includes allyl (meth) acrylate, ethylene glycol di(meth) acrylate, diethylene glycol di(meth) acrylate, pentaerythritol di(meth) ) Bifunctional (meth)acrylic crosslinkable monomers such as acrylates are preferable, and among them, ethylene glycol di(meth)acrylate and pentaerythritol di(meth)acrylate are more preferable.
  • the (meth)acrylic crosslinkable monomer may be a crosslinkable monomer having at least one (meth)acryloyl group as a polymerizable functional group, but all polymerizable functional groups is preferably a (meth)acryloyl group.
  • the content of the (meth)acrylic crosslinkable monomer is the crosslinkability contained in the first polymerizable monomer.
  • the crosslinkable monomer contained in the first polymerizable monomer is , (meth)acrylic crosslinkable monomers.
  • the content of the crosslinkable monomer in 100 parts by mass of the first polymerizable monomer is preferably 85 to 100 parts by mass, more preferably 90 to 100 parts by mass, and still more preferably 95 to 100 parts by mass.
  • the polymer contained in the formed shell contains 80 to 100 mass parts of the crosslinkable monomer unit in 100 mass parts of the total monomer units. It tends to be a polymer containing moieties.
  • the content of the crosslinkable monomer units in the shell of the hollow particles is sufficiently high, the covalent bond network is densely spread in the shell, resulting in improved strength and solvent resistance of the hollow particles, As a result, effects such as heat insulation and weight reduction by the hollow particles are also improved.
  • the content of the bifunctional crosslinkable monomer in 100 parts by mass of the first polymerizable monomer is not particularly limited, but the lower limit is 70 parts by mass or more, more preferably 70 parts by mass or more, from the viewpoint of improving the strength and solvent resistance of the hollow particles and improving the effects of the hollow particles such as heat insulation and weight reduction. 80 parts by mass or more, on the other hand, the upper limit may be 100 parts by mass or less, but from the viewpoint of sufficiently containing trifunctional or higher crosslinkable monomer units, it is preferably 95 parts by mass or less, More preferably, it is 90 parts by mass or less.
  • the trifunctional or higher crosslinkable monomer in 100 parts by mass of the first polymerizable monomer
  • the content of is not particularly limited, the lower limit is preferably 5 parts by mass or more from the viewpoint of improving the strength and solvent resistance of the hollow particles and improving the effects such as heat insulation and weight reduction by the hollow particles.
  • the upper limit is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and a bifunctional or higher crosslinkable monomer From the viewpoint of sufficient content, it is more preferably 30 parts by mass or less, and even more preferably 25 parts by mass or less.
  • the first polymerizable monomer may further contain a non-crosslinkable monomer.
  • a monovinyl monomer is preferably used as the non-crosslinkable monomer.
  • a monovinyl monomer is a compound having one polymerizable vinyl functional group.
  • Monovinyl monomers include, for example, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, and (meth)acrylic acid alkyl esters having an alkyl group of 6 or more carbon atoms; styrene, vinyltoluene, ⁇ -methyl Aromatic vinyl monomers such as styrene, p-methylstyrene and halogenated styrene; Monoolefin monomers such as ethylene, propylene and butylene; Diene monomers such as butadiene and isoprene; Vinyl carboxylates such as vinyl acetate ester monomers; vinyl halide monomers such as vinyl chloride; vinylidene halide monomers such as vinylidene chloride; vinylpyridine monomers; ) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate and the like (meth) acrylic acid alkyl esters having an al
  • polar group-containing non-crosslinkable monomer for example, a non-crosslinkable monomer containing a polar group selected from a carboxyl group, a hydroxyl group, a sulfonic acid group, an amino group, a polyoxyethylene group and an epoxy group is preferably mentioned. be able to.
  • carboxyl group-containing monomers such as ethylenically unsaturated carboxylic acid monomers such as (meth)acrylic acid, crotonic acid, cinnamic acid, itaconic acid, fumaric acid, maleic acid and butentricarboxylic acid ; hydroxyl group-containing monomers such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate; sulfonic acid group-containing monomers such as styrenesulfonic acid; dimethyl amino group-containing monomers such as aminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate; polyoxyethylene group-containing monomers such as methoxypolyethylene glycol (meth) acrylate; glycidyl (meth) acrylate, allyl glycidyl ether,
  • Examples include epoxy group-containing monomers such as
  • non-crosslinking monomers can be used alone or in combination of two or more.
  • a hydrophilic non-crosslinkable monomer is preferable, and an alkyl group having 1 to 5 carbon atoms (Meth)acrylic acid alkyl esters having is more preferable, and (meth)acrylic acid alkyl esters having an alkyl group having 1 to 4 carbon atoms are more preferable.
  • polymerizable monomers other than crosslinkable monomers are non-crosslinkable monomers.
  • the content of the non-crosslinkable monomer in the first polymerizable monomer is preferably 0 to 15 parts by mass in 100 parts by mass of the first polymerizable monomer, and the first polymerizable monomer 100 mass of the first polymerizable monomer from the viewpoint of suppressing the decrease in the reactivity of the monomer, improving the strength and solvent resistance of the hollow particles, and improving the effects of the hollow particles such as heat insulation and weight reduction.
  • the content of the non-crosslinkable monomer in the part is more preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and the first polymerizable monomer does not contain a non-crosslinkable monomer is particularly preferred.
  • the content of the first polymerizable monomer in the mixed liquid is not particularly limited, but from the viewpoint of the balance between the porosity of the hollow particles, the particle diameter and the mechanical strength, the amount of the components in the mixed liquid excluding the aqueous medium It is usually 15 to 55% by mass, more preferably 25 to 40% by mass, based on 100% by mass of the total mass.
  • the amount of the first polymerizable monomer relative to the total mass of 100 mass% of the solid content excluding the hydrocarbon solvent among the materials that become the oil phase in the mixed liquid is preferably 90% by mass or more, more preferably 95% by mass or more.
  • the mixture preferably contains an oil-soluble polymerization initiator as the polymerization initiator.
  • an emulsion polymerization method using a water-soluble polymerization initiator and a suspension polymerization method using an oil-soluble polymerization initiator.
  • Suspension polymerization can be carried out by using an agent.
  • the oil-soluble polymerization initiator is not particularly limited as long as it is lipophilic and has a solubility in water of 0.2% by mass or less.
  • oil-soluble polymerization initiators examples include benzoyl peroxide, lauroyl peroxide, t-butyl peroxide-2-ethylhexanoate, 2,2'-azobis(2,4-dimethylvaleronitrile), azobisisobutyronitrile. etc.
  • the content of the oil-soluble polymerization initiator is preferably 0.1 to 10 parts by mass, more preferably It is 0.5 to 7 parts by mass, more preferably 1 to 5 parts by mass.
  • the content of the oil-soluble polymerization initiator is 0.1 to 10 parts by mass, the polymerization reaction is sufficiently advanced, and the possibility that the oil-soluble polymerization initiator remains after the polymerization reaction is completed is small, and an unexpected side reaction is prevented. is likely to progress.
  • a hydrocarbon solvent is used as a non-polymerizable and sparingly water-soluble organic solvent.
  • the hydrocarbon-based solvent functions as a spacer material that forms a hollow inside the particles.
  • a suspension is obtained in which droplets of the monomer composition containing the hydrocarbon solvent are dispersed in the aqueous medium.
  • the hydrocarbon-based solvent with low polarity tends to gather inside the droplets of the monomer composition.
  • the hydrocarbon-based solvent is distributed in the droplets, and the materials other than the hydrocarbon-based solvent are distributed around the periphery according to their respective polarities. Then, in the polymerization step to be described later, an aqueous dispersion containing hollow particles encapsulating the hydrocarbon-based solvent is obtained. That is, the hydrocarbon-based solvent gathers inside the particles, so that a hollow portion filled with the hydrocarbon-based solvent is formed inside the obtained precursor particles.
  • hydrocarbon solvent is not particularly limited.
  • hydrocarbon solvents include saturated hydrocarbon solvents such as butane, pentane, n-hexane, cyclohexane, heptane and octane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; carbon disulfide and carbon tetrachloride; and solvents having relatively high volatility.
  • the porosity of the hollow particles can be adjusted by changing the amount of the hydrocarbon-based solvent in the mixed liquid. In the suspension step described later, the polymerization reaction proceeds in a state in which the oil droplets containing the crosslinkable monomer and the like enclose the hydrocarbon solvent. Porosity tends to be high.
  • the hydrocarbon solvent preferably contains 50% by mass or more of the saturated hydrocarbon solvent in 100% by mass of the total amount of the hydrocarbon solvent. As a result, sufficient phase separation occurs within the droplets of the polymerizable monomer liquid, whereby hollow particles having only one hollow portion can be easily obtained, and the formation of porous particles can be suppressed.
  • the ratio of the saturated hydrocarbon-based solvent is preferably 60% by mass or more, more preferably 80% by mass, in order to further suppress the generation of porous particles and to make the hollow part of each hollow particle uniform. It is mass % or more.
  • the hydrocarbon-based solvent a hydrocarbon-based solvent having 4 to 7 carbon atoms is preferable.
  • a hydrocarbon compound having 4 to 7 carbon atoms is easily included in the first precursor particles during the polymerization step, and can be easily removed from the second precursor particles during the solvent removal step.
  • hydrocarbon solvents having 5 or 6 carbon atoms are particularly preferred.
  • the hydrocarbon-based solvent preferably has a boiling point of 130° C. or lower, more preferably 100° C. or lower, because it is easily removed in the solvent removal step described below.
  • the hydrocarbon-based solvent preferably has a boiling point of 50° C. or higher, more preferably 60° C. or higher, because it is easily included in the first precursor particles.
  • the hydrocarbon-based solvent preferably has a dielectric constant of 3 or less at 20°C.
  • the relative dielectric constant is one of the indices that indicate the degree of polarity of a compound.
  • the dielectric constant of the hydrocarbon-based solvent is sufficiently low as 3 or less, it is considered that phase separation proceeds rapidly in droplets of the monomer composition, and hollow portions are likely to be formed.
  • solvents having a dielectric constant of 3 or less at 20° C. are as follows. The value in parenthesis is the relative permittivity value. Heptane (1.9), n-hexane (1.9), cyclohexane (2.0), benzene (2.3), toluene (2.4).
  • dielectric constant at 20 ° C. known literature (for example, "Kagaku Binran Basic Edition” edited by the Chemical Society of Japan, Revised 4th Edition, Maruzen Co., Ltd., September 30, 1993, II-498 to II-503 page) and other technical information.
  • Examples of the method for measuring the relative permittivity at 20°C include a relative permittivity test that is carried out at a measurement temperature of 20°C in accordance with 23 of JISC 2101:1999.
  • the content of the hydrocarbon-based solvent in the mixed liquid is 50 parts by mass or more and 500 parts by mass or less with respect to the total mass of 100 parts by mass of the first polymerizable monomer. It is preferable because the particle diameter can be easily controlled, the porosity can be easily increased while maintaining the strength of the hollow particles, and the amount of residual hydrocarbon solvent in the particles can be easily reduced.
  • the content of the hydrocarbon-based solvent in the mixed liquid is more preferably 60 parts by mass or more and 400 parts by mass or less, more preferably 70 parts by mass with respect to 100 parts by mass of the total mass of the first polymerizable monomer. It is from 80 parts by mass to 300 parts by mass, more preferably from 80 parts by mass to 200 parts by mass.
  • the dispersion stabilizer is an agent that disperses droplets of the monomer composition in the aqueous medium in the suspension step.
  • it is easy to control the particle size of the droplets in the suspension, the particle size distribution of the obtained hollow particles can be narrowed, and the shell is suppressed from becoming too thin, and the strength of the hollow particles is improved. From the viewpoint of suppressing the decrease, it is preferable to use an inorganic dispersion stabilizer as the dispersion stabilizer.
  • inorganic dispersion stabilizers examples include sulfates such as barium sulfate and calcium sulfate; carbonates such as barium carbonate, calcium carbonate and magnesium carbonate; phosphates such as calcium phosphate; metals such as aluminum oxide and titanium oxide.
  • inorganic compounds such as oxides; metal hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide and ferric hydroxide; These inorganic dispersion stabilizers can be used singly or in combination of two or more.
  • poorly water-soluble inorganic metal salts such as sulfates, carbonates, phosphates, and metal hydroxides are preferred, metal hydroxides are more preferred, and magnesium hydroxide is particularly preferred.
  • the poorly water-soluble inorganic metal salt is preferably an inorganic metal salt having a solubility of 0.5 g or less in 100 g of water.
  • the poorly water-soluble inorganic dispersion stabilizer is dispersed in an aqueous medium in the form of colloidal particles, that is, the colloidal dispersion containing the poorly water-soluble inorganic dispersion stabilizer colloidal particles.
  • the colloidal dispersion containing the sparingly water-soluble inorganic dispersion stabilizer colloidal particles includes, for example, at least one selected from alkali metal hydroxides and alkaline earth metal hydroxides, and a water-soluble polyvalent metal salt (hydroxide excluding alkaline earth metal salts) in an aqueous medium.
  • Alkali metal hydroxides include lithium hydroxide, sodium hydroxide, potassium hydroxide and the like.
  • Alkaline earth metal hydroxides include barium hydroxide and calcium hydroxide.
  • the water-soluble polyvalent metal salt may be any water-soluble polyvalent metal salt other than the compounds corresponding to the alkaline earth metal hydroxides.
  • examples include magnesium chloride, magnesium phosphate, magnesium sulfate, and the like.
  • magnesium metal salts such as calcium chloride, calcium nitrate, calcium acetate and calcium sulfate; aluminum metal salts such as aluminum chloride and aluminum sulfate; barium salts such as barium chloride, barium nitrate and barium acetate; zinc chloride and zinc nitrate , zinc salts such as zinc acetate;
  • magnesium metal salt, calcium metal salt, and aluminum metal salt are preferred, magnesium metal salt is more preferred, and magnesium chloride is particularly preferred.
  • the method of reacting at least one selected from the alkali metal hydroxides and alkaline earth metal hydroxides described above with the water-soluble polyvalent metal salt described above in an aqueous medium is not particularly limited.
  • a method of mixing at least one aqueous solution selected from alkali metal salts and alkaline earth metal hydroxides with an aqueous solution of a water-soluble polyvalent metal salt can be used.
  • the content of the dispersion stabilizer is not particularly limited, but is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the total mass of the first polymerizable monomer and the hydrocarbon solvent. It is preferably 1.0 to 8.0 parts by mass.
  • the content of the dispersion stabilizer is equal to or higher than the above lower limit, the droplets of the monomer composition can be sufficiently dispersed so as not to coalesce in the suspension.
  • the content of the dispersion stabilizer is equal to or less than the above upper limit, it is possible to prevent the viscosity of the suspension from increasing during granulation, and to avoid the problem of the suspension clogging the granulator. can.
  • the content of the dispersion stabilizer is usually 2 parts by mass or more and 15 parts by mass or less, preferably 3 parts by mass or more and 8 parts by mass or less, relative to 100 parts by mass of the aqueous medium.
  • the aqueous medium means a medium selected from the group consisting of water, hydrophilic solvents, and mixtures of water and hydrophilic solvents.
  • the hydrophilic solvent in the present disclosure is not particularly limited as long as it mixes well with water and does not cause phase separation.
  • hydrophilic solvents include alcohols such as methanol and ethanol; tetrahydrofuran (THF); dimethylsulfoxide (DMSO) and the like.
  • aqueous media it is preferable to use water because of its high polarity.
  • a mixed solution can be obtained by mixing each of the above materials and, if necessary, other materials, and appropriately stirring the mixture.
  • the oil phase containing (A) the first polymerizable monomer, (B) the oil-soluble polymerization initiator, and (C) a lipophilic material such as a hydrocarbon solvent is (D)
  • an aqueous phase containing a dispersion stabilizer and (E) an aqueous medium the particles are dispersed with a particle size of about several millimeters. Depending on the type of material, the state of dispersion of these materials in the mixed liquid can be observed with the naked eye.
  • the mixed solution may be obtained by simply mixing each of the above-mentioned materials and other materials as necessary and stirring them as appropriate. It is preferable to separately prepare an oil phase containing the organic monomer and the hydrocarbon solvent and an aqueous phase containing the dispersion stabilizer and the aqueous medium in advance and mix them to prepare a mixed solution.
  • a colloidal dispersion obtained by dispersing a sparingly water-soluble inorganic dispersion stabilizer in the form of colloidal particles in an aqueous medium can be preferably used as the aqueous phase.
  • Suspension step is a step of preparing a suspension in which droplets of a monomer composition containing a hydrocarbon solvent are dispersed in an aqueous medium by suspending the mixed solution described above. is.
  • the suspension method for forming droplets of the monomer composition is not particularly limited.
  • Product name horizontal in-line disperser such as Cavitron; manufactured by IKA; product name: vertical in-line disperser such as DRS 2000/5; K. Homomixer MARK II type, etc.
  • droplets of the monomer composition containing the lipophilic material and having a particle size of about 1 to 30 ⁇ m are uniformly dispersed in the aqueous medium.
  • Such droplets of the monomer composition are difficult to observe with the naked eye, and can be observed with a known observation instrument such as an optical microscope.
  • a known observation instrument such as an optical microscope.
  • the hydrocarbon-based solvent with low polarity tends to collect inside the droplets.
  • the obtained droplets have the hydrocarbon solvent distributed inside and the material other than the hydrocarbon solvent distributed around the periphery.
  • FIG. 2 is a schematic diagram showing one embodiment of the suspension in the suspension process.
  • a droplet 10 of the monomer composition in FIG. 2 is schematically shown in cross section. Note that FIG. 2 is only a schematic diagram, and the suspension in the present disclosure is not necessarily limited to that shown in FIG. Part of FIG. 2 corresponds to (2) of FIG. 1 described above.
  • FIG. 2 shows how droplets 10 of the monomer composition and the first polymerizable monomer 4 c dispersed in the aqueous medium 1 are dispersed in the aqueous medium 1 . Droplet 10 is formed by surrounding oil-soluble monomer composition 4 with dispersion stabilizer 3 .
  • the monomer composition contains an oil-soluble polymerization initiator 5, as well as a first polymerizable monomer and a hydrocarbon solvent (neither is shown).
  • the droplets 10 are fine oil droplets containing the monomer composition 4, and the oil-soluble polymerization initiator 5 generates polymerization initiation radicals inside the fine oil droplets. Therefore, precursor particles having a desired particle size can be produced without excessively growing fine oil droplets.
  • an oil-soluble polymerization initiator there is no opportunity for the polymerization initiator to come into contact with the polymerizable monomer 4c dispersed in the aqueous medium 1. Therefore, by using an oil-soluble polymerization initiator, it is possible to suppress the by-production of excessive resin particles such as solid particles having a relatively small particle size in addition to the target resin particles having hollow portions.
  • the polymerization step is carried out in two stages.
  • the first polymerization reaction is performed by subjecting the suspension to a polymerization reaction until the polymerization conversion rate of the first polymerizable monomer reaches 93% by mass or more.
  • a first precursor composition is prepared comprising first precursor particles having a shell comprising a polymer of polymerizable monomers and a hollow space filled with a hydrocarbon solvent.
  • the droplets of the monomer composition containing the hydrocarbon-based solvent are subjected to the polymerization reaction, so that the polymerization reaction easily progresses while maintaining the shape.
  • the size and porosity of the obtained hollow particles can be easily adjusted by adjusting the amount of the hydrocarbon-based solvent, the type of the dispersion stabilizer, etc. during the first polymerization reaction.
  • the polarity of the hydrocarbon-based solvent is low with respect to the shell of the first precursor particles, and the hydrocarbon-based solvent serves as the shell. Since it is difficult to blend in with , the phase separation tends to occur sufficiently so that there is only one hollow portion.
  • the polymerization system is not particularly limited, and for example, a batch system (batch system), a semi-continuous system, a continuous system, or the like can be employed.
  • the polymerization temperature is preferably 40-80°C, more preferably 50-70°C.
  • the rate of temperature rise when raising the temperature to the polymerization temperature is preferably 10° C./h to 60° C./h, more preferably 15° C./h to 55° C./h.
  • the reaction time of the first polymerization reaction is preferably 0.5 to 5 hours, more preferably 1 to 3 hours.
  • the first polymerization reaction is carried out until the polymerization conversion rate of the first polymerizable monomer reaches 93% by mass or more, preferably 95% by mass or more, more preferably 97% by mass or more, More preferably, it is carried out until it becomes 99% by mass or more.
  • the polymerization conversion rate is defined as the mass of the solid content of the first precursor particles obtained by the first polymerization reaction, and the amount of the first polymerizable monomer remaining unreacted after the first polymerization reaction. It is obtained from the following formula (A) from the mass of the body.
  • the solid content is all components except the solvent, and the liquid polymerizable monomer and the like are included in the solid content.
  • the mass of the unreacted first polymerizable monomer can be measured using gas chromatography (GC).
  • Polymerization conversion rate (mass%) 100 - (mass of unreacted first polymerizable monomer/mass of solid content of first precursor particles) x 100 Formula (A)
  • the first precursor composition obtained in the first polymerization step has a solubility of 0.3 g/L or more in distilled water at 20°C.
  • a shell containing a polymer of the first polymerizable monomer and the second polymerizable monomer, and carbonization A second precursor composition is prepared that includes second precursor particles having a hollow space filled with a hydrogen-based solvent.
  • the polymerization reaction proceeds with the second polymerizable monomer incorporated into the shell of the first precursor particles.
  • the shell of the first precursor particles remained unreacted in the shell because the incorporation of the second polymerizable monomer promotes thermal movement. It is presumed that the polymerizable functional group of the first polymerizable monomer and the polymerization reaction of the second polymerizable monomer proceed to form a dense crosslinked structure.
  • the second polymerizable monomer is not particularly limited as long as it is a polymerizable monomer having a solubility of 0.3 g/L or more in distilled water at 20°C. From the viewpoint of improving the properties and improving the effects of hollow particles such as heat insulation and weight reduction, a non-crosslinking monomer having a solubility of 0.3 g / L or more in distilled water at 20 ° C., that is, a hydrophilic non-crosslinking are preferred.
  • the hydrophilic non-crosslinking monomer used as the second polymerizable monomer include the same hydrophilic non-crosslinking monomers that can be used as the first polymerizable monomer. be able to.
  • (meth)acrylic acid alkyl esters having an alkyl group having 1 to 5 carbon atoms from the viewpoint of improving the strength and solvent resistance of the hollow particles and improving the effects such as heat insulation and weight reduction by the hollow particles, At least one selected from the group consisting of (meth)acrylic acid nitrile and derivatives thereof, and polar group-containing non-crosslinkable monomers is preferable, and (meth)acrylic acid alkyl esters having an alkyl group having 1 to 5 carbon atoms is more preferred, and (meth)acrylic acid alkyl esters having an alkyl group of 1 to 4 carbon atoms are even more preferred.
  • the acrylic acid alkyl esters and (meth)acrylic acid nitrile acrylic acid alkyl esters and acrylic acid nitrile are preferable, respectively.
  • the polymerizable functional group is an acryloyl group instead of a methacryloyl group, the reactivity is excellent, so that the effects of heat insulation and weight reduction by the hollow particles are likely to be improved, and the unreacted second polymerizable unit It is difficult for the polymer to remain.
  • the acrylic crosslinkable monomer has at least one acryloyl group as a polymerizable functional group and may be a crosslinkable monomer that does not have a methacryloyl group.
  • the group is an acryloyl group.
  • the number of carbon atoms in the alkyl group of the (meth)acrylic acid alkyl esters is preferably 1 to 4 from the viewpoint of improving the effects of heat insulation and weight reduction by hollow particles, and furthermore, From the viewpoint that the second polymerizable monomer in the reaction is unlikely to remain, it is more preferably 1 to 3, and it is even more preferable that the alkyl group is a methyl group.
  • the polar group-containing non-crosslinkable monomers epoxy group-containing monomers, hydroxyl group-containing monomers, and amino group-containing monomers are preferred.
  • Glycidyl (meth)acrylate is preferred as the epoxy group-containing monomer as the polar group-containing non-crosslinkable monomer
  • 2-hydroxyethyl methacrylate is preferred as the hydroxyl group-containing monomer.
  • a hydrophilic crosslinkable monomer having a solubility of 0.3 g/L or more in distilled water at 20° C. can also be used.
  • the hydrophilic crosslinkable monomer used as the second polymerizable monomer include the same hydrophilic crosslinkable monomers that can be used as the first polymerizable monomer. .
  • a hydrophilic crosslinkable monomer containing a hydroxyl group or an amino group is preferable.
  • hydrophilic crosslinkable monomer containing a hydroxyl group for example, 2-hydroxy-3-methacrylpropyl acrylate can be preferably used, and as the hydrophilic crosslinkable monomer containing an amino group, diallylamine is preferably used. can be used.
  • the second polymerizable monomer the second polymerizable monomer is easily incorporated into the shell of the first precursor particles to promote thermal motion, and the strength of the hollow particles is improved. , preferably 2 g/L or more, more preferably 10 g/L or more, still more preferably 15 g/L or more, in distilled water at 20°C.
  • the upper limit of the solubility of the second polymerizable monomer in distilled water at 20° C. is not particularly limited, it is usually 80 g/L or less.
  • the second polymerizable monomer is incorporated into the shell of the first precursor particles to facilitate thermal motion, improve the strength and solvent resistance of the hollow particles, and provide heat insulation and weight reduction by the hollow particles.
  • the molecular weight of the second polymerizable monomer is preferably 200 or less, more preferably 100 or less, in order to improve effects such as the above.
  • the lower limit of the molecular weight of the second polymerizable monomer is not particularly limited, and is usually 50 or more.
  • the amount of the second polymerizable monomer to be added is preferably 3 to 15 parts by mass, more preferably 4 to 10 parts by mass, per 100 parts by mass of the first polymerizable monomer.
  • the amount of the second polymerizable monomer added is at least the above lower limit, the effect of promoting the polymerization reaction by the addition of the second polymerizable monomer is improved, and the crosslinked structure of the shell of the hollow particles is formed.
  • the strength and solvent resistance of the hollow particles are improved, thereby improving the effects of the hollow particles such as heat insulation and weight reduction.
  • the amount of the second polymerizable monomer to be added is equal to or less than the above upper limit, the decrease in the content ratio of the first polymerizable monomer to the total polymerizable monomers used for forming the shell is suppressed. be able to. Since the first polymerizable monomer contains a large amount of the crosslinkable monomer, a crosslinked structure formed by the crosslinkable monomer can be formed by suppressing a decrease in the content of the first polymerizable monomer. It is possible to obtain hollow particles containing a large amount and having excellent strength.
  • the polymerization system is not particularly limited, and for example, the same polymerization system as used in the first polymerization reaction can be employed.
  • the polymerization temperature is preferably 40-80°C, more preferably 50-70°C.
  • the reaction time of the second polymerization reaction is preferably 1 to 6 hours, more preferably 2 to 4 hours.
  • the residual amount of unreacted polymerizable monomer after the second polymerization reaction can be preferably 750 ppm or less, more preferably 500 ppm or less, and still more preferably 300 ppm or less. If the residual amount of the unreacted polymerizable monomer after the second polymerization reaction is equal to or less than the above upper limit, it is suggested that the reaction rate of the polymerizable monomer is high. When the reaction rate of the polymerizable monomer is high, the crosslinked structure in the shell tends to be dense, which tends to improve the solvent resistance and strength of the hollow particles.
  • the residual amount of unreacted polymerizable monomers after the second polymerization reaction refers to the solid content mass of the hollow particles obtained by the second polymerization reaction. is the mass ratio of the monomer.
  • the mass of the unreacted polymerizable monomer can be measured using gas chromatography (GC).
  • Solid-liquid separation step In this step, solid-liquid separation is performed on the second precursor composition containing hollow particles (second precursor particles) containing a hydrocarbon solvent obtained by the polymerization step described above. This is a step of obtaining a solid content containing the second precursor particles.
  • a method for solid-liquid separation of the second precursor composition is not particularly limited, and a known method can be used.
  • the solid-liquid separation method include centrifugation, filtration, static separation, etc. Among them, centrifugation or filtration can be employed. may be adopted.
  • an optional step such as a pre-drying step may be carried out before carrying out the below-described solvent removal step.
  • the pre-drying step include a step of pre-drying the solid content obtained after the solid-liquid separation step using a drying device such as a dryer or a drying device such as a hand dryer.
  • This step is a step of removing the hydrocarbon-based solvent included in the hollow particles (second precursor particles) obtained in the solid-liquid separation step. By removing the hydrocarbon-based solvent contained in the second precursor particles in air, the hydrocarbon-based solvent inside the second precursor particles is replaced with air, and hollow particles filled with gas are obtained. be done.
  • the term “in air” in this step means an environment in which no liquid exists outside the second precursor particles, and a hydrocarbon-based solvent is removed from the outside of the second precursor particles. It means an environment where there is only a very small amount of liquid that does not affect the "In air” can be rephrased as a state in which the second precursor particles are not present in the slurry, or can be rephrased as a state in which the second precursor particles are present in the dry powder. That is, in this step, it is important to remove the hydrocarbon-based solvent in an environment where the second precursor particles are in direct contact with the external gas.
  • a method for removing the hydrocarbon-based solvent in the second precursor particles in the air is not particularly limited, and a known method can be employed. Examples of the method include a vacuum drying method, a heat drying method, a flash drying method, or a combination of these methods.
  • the heating temperature must be higher than the boiling point of the hydrocarbon-based solvent and lower than the highest temperature at which the shell structure of the second precursor particles does not collapse. Therefore, depending on the composition of the shell in the second precursor particles and the type of hydrocarbon solvent, for example, the heating temperature may be 50 to 200°C, 70 to 200°C, or 100 to 200°C. good. Due to the drying operation in air, the hydrocarbon-based solvent inside the second precursor particles is replaced by the external gas, resulting in hollow particles in which the hollow portion is filled with gas.
  • the drying atmosphere is not particularly limited, and can be appropriately selected depending on the use of the hollow particles. Air, oxygen, nitrogen, argon, etc. can be considered as the dry atmosphere, for example. Further, hollow particles whose insides are temporarily vacuumed can also be obtained by once filling the insides of the hollow particles with gas and then drying them under reduced pressure.
  • the second precursor may be removed by replacing the hydrocarbon solvent contained in the particles with the aqueous medium of the slurry.
  • an inert gas through the second precursor composition at a temperature equal to or higher than the boiling point of the hydrocarbon-based solvent minus 35°C, carbonization included in the second precursor particles is performed.
  • a hydrogen-based solvent can be removed.
  • the boiling point of the hydrocarbon-based solvent in the solvent removal step is It is the boiling point of the solvent with the highest boiling point among the solvents used, that is, the highest boiling point among a plurality of boiling points.
  • the temperature at which the inert gas is bubbled through the second precursor composition is higher than the temperature obtained by subtracting 30°C from the boiling point of the hydrocarbon solvent in order to reduce the residual amount of the hydrocarbon solvent in the hollow particles. It is preferably the temperature, and more preferably the temperature is equal to or higher than the temperature minus 20°C.
  • the temperature during bubbling is usually a temperature equal to or higher than the polymerization temperature in the polymerization step.
  • the temperature during bubbling may be 50° C. or higher and 100° C. or lower.
  • the bubbling inert gas is not particularly limited, but examples thereof include nitrogen and argon.
  • the bubbling conditions are appropriately adjusted according to the type and amount of the hydrocarbon solvent so that the hydrocarbon solvent contained in the second precursor particles can be removed.
  • the gas may be bubbled in an amount of 1-3 L/min for 1-10 hours.
  • an aqueous slurry in which the aqueous medium is included in the second precursor particles is obtained.
  • the hollow particles obtained by solid-liquid separation of this slurry are dried to remove the aqueous medium in the hollow particles, thereby obtaining hollow particles in which the hollow portion is filled with gas.
  • the hydrocarbon-based solvent in the second precursor particles is removed in air to obtain hollow particles whose hollow portions are filled with gas.
  • a method in a slurry containing second precursor particles and an aqueous medium, after replacing the hydrocarbon-based solvent contained in the second precursor particles with the aqueous medium of the slurry, solid-liquid separation; Comparing the method of obtaining hollow particles in which the hollow portion is filled with gas by removing the aqueous medium in the precursor particles in the air, the former method removes the hollow particles in the step of removing the hydrocarbon solvent.
  • the latter method has the advantage that the residual hydrocarbon solvent can be reduced by bubbling with an inert gas.
  • the hydrocarbon-based solvent contained in the second precursor particles is replaced with water, if the same volume of water as the hydrocarbon-based solvent that escapes from the particles does not enter the particles, the obtained hollow resin particles There is a problem of collapsing. As means for preventing this, it is conceivable, for example, to adjust the pH of the slurry to 7 or higher, and then remove the hydrocarbon-based solvent after the shells of the particles are swollen with an alkali. In this case, since the shell of the particle acquires flexibility, the replacement of the hydrocarbon-based solvent and water inside the particle progresses rapidly.
  • (6-a) Washing step The washing step is to remove the dispersion stabilizer remaining in the second precursor composition containing the second precursor particles before the solid-liquid separation step. This is a step of washing by adding an alkali.
  • the dispersion stabilizer used is an acid-soluble inorganic dispersion stabilizer, it is preferable to wash by adding an acid to the second precursor composition containing the second precursor particles.
  • the dispersion stabilizer used is an alkali-soluble inorganic compound, it is preferable to add an alkali to the second precursor composition containing the second precursor particles for washing.
  • the acid is added to the second precursor composition containing the second precursor particles, and the pH is adjusted to preferably 6.5. Below, it is preferable to adjust to 6 or less, more preferably.
  • inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid, and organic acids such as formic acid and acetic acid can be used. , particularly sulfuric acid, are preferred.
  • the hollow portion re-replacement step is a step of replacing the gas or liquid inside the hollow particles with another gas or liquid.
  • the environment inside the hollow particles can be changed, molecules can be selectively confined inside the hollow particles, and the chemical structure inside the hollow particles can be modified according to the application.
  • thermal conductivity modifier of the present disclosure include all applications that require adjustment of thermal conductivity, and are not particularly limited.
  • additives for paints, paper, information recording paper, various containers, filaments for 3D printers, automobiles, bicycles, aviation, ships, railroad vehicles, space, construction, electricity, electronics, sporting goods, footwear, home appliances The thermal conductivity modifier of the present disclosure can be suitably used as an additive for heat-insulating films used in various fields such as parts, stationery, and tools, or thermoelectric conversion materials.
  • thermal conductivity modifier of the present disclosure can be used as an additive for semiconductor materials such as fills, die bond pastes, buffer coating materials, copper-clad laminates, flexible substrates, high-frequency device modules, antenna modules, and in-vehicle radars.
  • the member to which the thermal conductivity adjusting agent of the present disclosure is added not only has a reduced thermal conductivity, but also has an increased reflectance. do.
  • the thermal conductivity modifier of the present disclosure is used as an additive for reducing the thermal conductivity and improving the heat resistance.
  • additives such as titanium oxide have been used to increase the reflectance, but by using the thermal conductivity modifier of the present disclosure, heat insulation and weight reduction can be achieved while increasing the reflectance. You can also plan.
  • Applications that do not require low reflectance or require an increase in reflectance and require adjustment of thermal conductivity include, for example, paints, automobiles, aviation, ships, railroad vehicles, space, construction, electricity, Various fields such as electronics can be mentioned.
  • the thermal conductivity modifier of the present disclosure has excellent strength and is less likely to be crushed during kneading with other materials and during molding after kneading, so it is suitable as an additive for molded articles, and is an additive for resin molded articles. It is particularly preferably used as.
  • the resin composition of the present disclosure is characterized by containing the thermal conductivity modifier of the present disclosure and a matrix resin. Using the resin composition of the present disclosure, the molded article of the present disclosure having reduced thermal conductivity can be produced.
  • the thermal conductivity modifier of the present disclosure has the form of hollow particles, it is difficult for the solvent to permeate the inside of the particles, and furthermore, it is excellent in strength, so when the resin composition of the present disclosure contains a solvent, (Varnish), the thermal conductivity modifier of the present disclosure is less likely to be deformed or crushed in the resin composition, during molding of the resin composition, and in the molded body after molding. , the voids inside the particles are maintained. Therefore, the resin composition of the present disclosure and the molded article formed using the resin composition of the present disclosure have reduced thermal conductivity.
  • the matrix resin used in the resin composition of the present disclosure is not particularly limited, but may include thermoplastic resins, thermosetting resins, or cold-setting resins.
  • thermoplastic resin a known one can be used, and is not particularly limited, but examples include polyolefins such as polypropylene and polyethylene; polyamides such as PA6, PA66, and PA12; Ether ketone ketone, polyvinyl chloride, polystyrene, poly(meth)acrylate, polycarbonate, polyvinylidene fluoride, acrylonitrile-butadiene-styrene copolymer (ABS), acrylonitrile-styrene copolymer (AS), polyphenylene ether, polyphenylene sulfide, polyester, polytetra Examples include fluoroethylene, thermoplastic elastomers, and the like.
  • thermoplastic resins can be used alone or in combination of two or more.
  • thermosetting resin a known one can be used, and there is no particular limitation, but for example, phenolic resin, melamine resin, urea resin, unsaturated polyester resin, epoxy resin, polyurethane resin , silicon-based resin, alkyd-based resin, thermosetting polyphenylene ether-based resin, thermosetting polyimide-based resin, benzoxazine-based resin, urea-based resin, allyl-based resin, aniline-based resin, maleimide-based resin, bismaleimide triazine-based resin , liquid crystalline polyester resins, vinyl ester resins, unsaturated polyester resins, cyanate ester resins, polyetherimide resins, and the like.
  • thermosetting resins can be used alone or in combination of two or more.
  • the room-temperature-curable resin a known one can be used, and although there is no particular limitation, examples thereof include epoxy-based resins and urethane-based resins. These room temperature curable resins may be used alone or in combination of two or more.
  • Preferred matrix resins used in the resin composition of the present disclosure include, for example, those containing epoxy resins. Examples of epoxy resins include bixylenol type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, dicyclopentadiene type epoxy resin, and trisphenol type epoxy resin.
  • the matrix resin may contain additives for curing the resin, such as curing agents, curing catalysts, or curing accelerators, if necessary.
  • additives for curing these resins can be selected and used according to the type of resin, and are not particularly limited. Examples include amines, acid anhydrides, imidazoles, and thiols. phenols, naphthols, benzoxazines, cyanate esters, carbodiimides, and the like.
  • curing agents used in combination with epoxy resins include amine-based curing agents, amide-based curing agents, acid anhydride-based curing agents, phenol-based curing agents, active ester-based curing agents, carboxyl group-containing curing agents, and thiol-based curing agents.
  • a hardening agent etc. can be mentioned.
  • Curing catalysts used in combination with epoxy resins include, for example, phosphorus compounds, tertiary amine compounds, imidazole compounds, organic metal salts, and the like. Additives for curing these resins can be used alone or in combination of two or more.
  • the content of the matrix resin is not particularly limited, but is preferably 50 to 95% by mass based on 100% by mass of the total solid content of the resin composition of the present disclosure.
  • the content of the matrix resin is at least the above lower limit, the moldability of the resin composition when formed into a molded article is excellent, and the mechanical strength of the obtained molded article is excellent.
  • the content of the matrix resin is equal to or less than the upper limit value, the thermal conductivity modifier of the present disclosure can be sufficiently contained, so that the thermal conductivity of the resin composition can be sufficiently reduced.
  • the content of the matrix resin also includes the content of additives for curing the resin, such as curing agents, curing catalysts, or curing accelerators.
  • the content of the thermal conductivity modifier of the present disclosure is not particularly limited, but is preferably 5 to 50% by mass based on 100% by mass of the total solid content of the resin composition of the present disclosure.
  • the thermal conductivity of the resin composition can be sufficiently reduced.
  • the content of the thermal conductivity modifier is equal to or less than the above upper limit, the matrix resin can be sufficiently contained, so that moldability and mechanical strength can be improved.
  • the resin composition of the present disclosure may further contain a solvent for dissolving or dispersing each component, if necessary.
  • a solvent for dissolving or dispersing each component, if necessary.
  • the solvent used in the resin composition of the present disclosure a known solvent that can be used in the resin composition can be used, and is not particularly limited.
  • aromatic hydrocarbons such as benzene, toluene, and xylene
  • Ketones such as dioxane, acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • ethers such as ethylene glycol monomethyl ether and propylene glycol monomethyl ether
  • the solvent preferably contains at least one selected from ketones and ethers, since the thermal conductivity modifier of the present disclosure is likely to exhibit effects such as heat insulation and weight reduction, and contains ketones. is more preferred.
  • the content of the solvent is appropriately adjusted according to the application, etc., and is not particularly limited. From the viewpoint that the effects such as heat insulation and weight reduction by the heat conduction modifier of the present disclosure are easily exhibited, the content of the solvent is preferably 10 to 50% by mass in 100% by mass of the total mass of the resin composition, and more It is preferably 20 to 40% by mass.
  • the resin composition of the present disclosure may optionally include an ultraviolet absorber, a colorant, an antifoaming agent, a thickener, a heat stabilizer, a leveling agent, a lubricant, an antistatic agent, and a Additives such as fillers may be further contained.
  • the resin composition of the present disclosure is obtained, for example, by mixing the thermal conductivity modifier of the present disclosure, a matrix resin, and a solvent and additives added as necessary.
  • the mixture may be mixed within a temperature range at which the solvent does not volatilize, for example, from room temperature to the boiling point of the solvent.
  • the mixing may be performed in a temperature environment below the curing temperature of the thermosetting resin, and is not particularly limited. Perform in a temperature environment.
  • the mixing may be melt-kneading by heating the resin composition to melt the thermoplastic resin. The temperature during the melt-kneading is not particularly limited as long as it is a temperature at which the thermoplastic resin to be used can be melted.
  • the molded article of the present disclosure is characterized by containing the thermal conductivity modifier of the present disclosure. Since the molded article of the present disclosure contains the thermal conductivity modifier of the present disclosure, the thermal conductivity is reduced.
  • the molded article of the present disclosure preferably has a thermal conductivity of 0.175 W/m ⁇ K or less, more preferably 0.150 W/m ⁇ K or less.
  • the molded article of the present disclosure may have an increased reflectance compared to the case where the thermal conductivity modifier is not contained.
  • the molded article of the present disclosure preferably has a reflectance at 420 nm of 50% or more, more preferably 60% or more.
  • the molded article of the present disclosure preferably has a reflectance at 580 nm of 60% or more, more preferably 80% or more.
  • the reflectance in the wavelength region from 320 nm to 820 nm of the molded article of the present disclosure is 100% or less, and the upper limit is not particularly limited.
  • the molded article of the present disclosure is typically a molded article of the resin composition of the present disclosure described above.
  • the resin composition of the present disclosure is a liquid resin composition in which hollow particles or the like are contained in a liquid matrix resin before the curing reaction, or a liquid resin composition in which each component is dissolved or dispersed in a solvent
  • a molding can be obtained by coating the liquid resin composition on a support, and drying and curing as necessary.
  • the material of the support include resins such as polyethylene terephthalate and polyethylene naphthalate; and metals such as copper, aluminum, nickel, chromium, gold and silver.
  • the liquid resin composition As a method for applying the liquid resin composition, a known method can be used, and examples thereof include dip coating, roll coating, curtain coating, die coating, slit coating, gravure coating and the like.
  • the liquid resin composition contains a solvent, it is preferable to dry the resin composition after the application.
  • the drying temperature is preferably a temperature at which the matrix resin is not cured, and is usually 20°C or higher and 200°C or lower, preferably 30°C or higher and 150°C or lower.
  • the drying time is usually 30 seconds or more and 1 hour or less, preferably 1 minute or more and 30 minutes or less.
  • the curing reaction of the resin composition is carried out according to the type of matrix resin, and is not particularly limited.
  • the heating temperature for the curing reaction is appropriately adjusted according to the type of resin, and is not particularly limited, but is usually 30° C. or higher and 400° C. or lower, preferably 70° C. or higher. 300° C. or lower, more preferably 100° C. or higher and 200° C. or lower.
  • the curing time is 5 minutes or more and 5 hours or less, preferably 30 minutes or more and 3 hours or less.
  • the heating method is not particularly limited, and may be performed using, for example, an electric oven.
  • the matrix resin contained in the liquid resin composition obtained by dissolving or dispersing each component in a solvent may be a thermosetting resin, a room temperature setting resin, or a thermoplastic resin.
  • the resin composition of the present disclosure contains the thermoplastic resin
  • a known molding method such as extrusion molding, injection molding, press molding, compression molding, etc.
  • a molded body of the resin composition of the present disclosure can also be obtained by molding into a desired shape. Since the thermal conductivity modifier in the form of hollow particles in the resin composition of the present disclosure is difficult to crush, even if a molding method such as injection molding or compression molding performed under heat and pressure conditions is used, the thermal conductivity modifier It is possible to obtain a molded article with suppressed crushing and reduced thermal conductivity.
  • the shape of the molded body is not particularly limited, and may be any shape such as sheet, film, plate, tube, and various other three-dimensional shapes.
  • molded article of the present disclosure are not particularly limited, but for example, automobiles, bicycles, aviation, ships, railroad vehicles, space, construction, electricity, electronics, various containers, sporting goods, footwear, home appliance parts, stationery, It can be used in various fields such as tools. Since the molded article of the present disclosure has reduced thermal conductivity, it can be used as, for example, a heat insulating film or a thermoelectric conversion material in the above various fields.
  • Example 1 (1) Mixed Solution Preparation Step First, the following materials were mixed to form an oil phase.
  • First polymerizable monomer 80 parts of ethylene glycol dimethacrylate and 20 parts of pentaerythritol tetraacrylate 2,2'-azobis (2,4-dimethylvaleronitrile) (oil-soluble polymerization initiator, manufactured by Wako Pure Chemical Industries, Ltd., Product name: V-65) 3 parts Cyclohexane 125 parts
  • a stirring tank under room temperature (25 ° C.) conditions, dissolve 17.1 parts of magnesium chloride (water-soluble polyvalent metal salt) in 494 parts of ion-exchanged water.
  • An aqueous solution prepared by dissolving 12.1 parts of sodium hydroxide (alkali metal hydroxide) in 121 parts of ion-exchanged water was gradually added to the aqueous solution obtained by dissolving 12.1 parts of sodium hydroxide (alkali metal hydroxide) under stirring to obtain colloidal magnesium hydroxide (sparingly water-soluble metal hydroxide
  • colloidal magnesium hydroxide 4 parts magnesium hydroxide
  • a mixture was prepared by mixing the obtained aqueous phase and oil phase.
  • Example 2 In Example 1, except that the amount of cyclohexane added in the above "(1) Mixed solution preparation step" was changed to 160 parts, the same procedure as in Example 1 was performed to produce a thermal conductivity modifier of Example 2. did.
  • Example 1 In Example 1, the same procedure as in Example 1 was performed except that the type or amount of the second polymerizable monomer added in the above "(3) polymerization step” was as shown in Table 1. 3-8 thermal conductivity modifiers were prepared.
  • Example 1 In Example 1, in the above “(3) polymerization step", except that the second polymerizable monomer was not added and the second polymerization reaction was not performed, the procedure was the same as in Example 1. Comparative A thermal conductivity modifier of Example 1 was prepared.
  • Example 2 In Example 1, in the above "(3) Polymerization step", the reaction time of the first polymerization reaction was changed from 1 hour and 30 minutes to 30 minutes, and the first polymerizable monomers ethylene glycol dimethacrylate and penta The same procedure as in Example 1 was performed except that the second polymerizable monomer was added and the second polymerization reaction was performed when the total polymerization conversion of erythritol tetraacrylate reached 91.0% by mass. A thermal conductivity modifier of Comparative Example 2 was produced according to the procedure.
  • Example 3 In Example 1, the same procedure as in Example 1 was performed except that the material and amount of the first polymerizable monomer were as shown in Table 1 in the above "(1) mixed liquid preparation step". A thermal conductivity modifier of Example 3 was prepared.
  • Example 4 In Example 1, in the above "(3) Polymerization step", 5 parts of styrene (solubility in distilled water at 20°C: 0.2 g/L) was used instead of 5 parts of methyl acrylate as the second polymerizable monomer. A thermal conductivity modifier of Comparative Example 4 was produced in the same procedure as in Example 1, except that parts were added.
  • the measurement sample 2 ⁇ L of the measurement sample is injected into the gas chromatograph, and the amount of polymerizable monomer in the measurement sample is quantified by gas chromatography (GC) under the following conditions, and this is the unreacted first polymerizable monomer. body mass. Further, the first precursor particles obtained by pressure filtration are dried at 200° C. for 2 hours to remove moisture and hydrocarbon solvents, and the mass of the solid content of the first precursor particles is determined. rice field. Then, the polymerization conversion rate was calculated by the following formula (A).
  • Polymerization conversion rate (mass%) 100 - (mass of unreacted first polymerizable monomer/mass of solid content of first precursor particles) x 100 Formula (A) ⁇ GC conditions>
  • Table 2 shows the content ratio (% by mass) of each monomer unit in the polymer contained in the shell for the thermal conductivity modifiers in the form of hollow particles obtained in each example and each comparative example. In addition, the following measurements and evaluations were performed on the thermal conductivity modifiers obtained in each example and each comparative example. Table 2 shows the results.
  • volume average particle size A laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation, trade name: SALD-2000) is used to measure the particle size of the hollow particles that are thermal conductivity modifiers, and the volume average is calculated. was taken as the volume average particle size.
  • Density and Porosity 4-1 Measurement of Apparent Density
  • a volumetric flask with a capacity of 100 cm 3 was filled with about 30 cm 3 of hollow particles as a thermal conductivity modifier, and the mass of the filled hollow particles was accurately weighed.
  • the volumetric flask filled with hollow particles was then filled accurately to the marked line with isopropanol, taking care not to introduce air bubbles.
  • the mass of isopropanol added to the volumetric flask was accurately weighed, and the apparent density D 1 (g/cm 3 ) of the hollow particles was calculated based on the following formula (I).
  • Apparent density D 1 [mass of hollow particles]/(100-[mass of isopropanol]/[specific gravity of isopropanol at measurement temperature])
  • Comparative Example 3 the content of the crosslinkable monomer in the first polymerizable monomer was small, and the amount of the non-crosslinkable monomer remaining unreacted was large, so that the crosslinked structure of the shell It is presumed that acetone easily permeated the obtained hollow particles because the particles were rough.
  • Comparative Example 4 instead of a hydrophilic monomer having a solubility of 0.3 g/L or more in distilled water at 20°C as the second polymerizable monomer, a solubility in distilled water at 20°C was 0.2 g.
  • the thermal conductivity modifiers in the form of hollow particles obtained in Examples 1 to 8 are polymers containing 80 parts by mass or more of crosslinkable monomer units in 100 parts by mass of all monomer units. Hollow particles contained in the shell and precipitated in acetone in the above immersion test were less than 5% by mass.
  • the first polymerizable monomer contained in the mixed liquid sufficiently contains a crosslinkable monomer in 100 parts by mass of the first polymerizable monomer, and in the polymerization step, the When the polymerization conversion rate of the first polymerizable monomer reaches 93% by mass or more, the second polymerizable monomer having a solubility of 0.3 g/L or more in distilled water at 20°C is added.
  • Epoxy resin manufactured by Daicel, product number: EHPE3150CE
  • curing agent manufactured by DIC, product number: LF6161, solid content 65% MEK solution
  • 2-ethyl-4-methylimidazole Nacalai 0.1 part of Tesque 2E4MZ
  • 20 parts of methyl ethyl ketone MEK
  • a molded body was produced in the same procedure as in Examples 9 to 17 and Comparative Examples 5 to 8, and the molded body was cut into a shape of 20 mm ⁇ 40 mm ⁇ 0.5 mm to obtain a molded plate for measurement.
  • the molded article of Example 9 obtained using the resin composition containing 10% by mass (24.1% by volume on a volume basis) of the thermal conductivity modifier of Example 1 was obtained from Comparative Examples 1 to Although the content of the thermal conductivity modifier is smaller than that of Comparative Example 4, the thermal conductivity is 0.175 W / m K, and the thermal conductivity is higher than that of the molded body of Comparative Example 9 that does not contain the thermal conductivity modifier. The rate was also reduced by 0.027 W/m ⁇ K.
  • the thermal conductivity modifiers of Comparative Examples 1 to 4 contained 5% by mass or more of the hollow particles that precipitated in acetone in the immersion test, and the crosslinked structure of the shell was rough, resulting in crushing. presumed to be easy.
  • the thermal conductivity modifiers of Comparative Examples 1 to 4 contained many crosslinkable monomer units in the shell, and the hollow particles precipitated in acetone in the above immersion test. is less than 5% by mass, and the crosslinked structure of the shell is dense, so it is presumed that it is difficult to collapse.
  • the thermal conductivity modifiers in the form of hollow particles are less likely to be crushed during the manufacturing process of the molded bodies, and the voids are maintained. Therefore, it is presumed that the thermal conductivity was sufficiently reduced.
  • the greater the content of the thermal conductivity modifier the lower the thermal conductivity of the molded body. Comparing Examples 10 and 11, the higher the porosity of the thermal conductivity modifier, the lower the thermal conductivity of the molded body. Comparing Examples 10, 12, and 13, the higher the content of the crosslinkable monomer unit in the shell of the thermal conductivity modifier, the lower the thermal conductivity of the molded article.
  • the thermal conductivity of the molded body varied depending on the type of the second polymerizable monomer used to prepare the thermal conductivity modifier.
  • alkyl acrylates having an alkyl group of 1 to 4 carbon atoms were used as the second polymerizable monomer, the thermal conductivity tended to decrease.
  • the molded bodies obtained in Examples 9 and 10 have higher reflectance in a wide range of wavelengths than the molded body of Comparative Example 9, which does not contain a thermal conductivity modifier. The reflectance increased in the wavelength region of 500 to 780 nm.
  • the reflectance tended to increase as the content of the thermal conductivity modifier increased.
  • the reflectances of the molded bodies of Examples 9 and 10 increased because the thermal conductivity modifier had voids, and the refractive index of the polymer shell (generally about 1.3 to 1.5) and the inside of the voids This is probably because visible light was efficiently reflected due to the difference in refractive index (1.0) from air, nitrogen, or vacuum.
  • the molded bodies of Examples 11 to 17, which contain the thermal conductivity modifier having the same volume average particle diameter and porosity as in Example 10 in the same amount as in Example 10, are about the same as in Example 10. is estimated to have a reflectance of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

ワニスを原料とする成形体等の熱伝導率を低減することができる中空粒子の形態の熱伝導率調整剤、及び当該熱伝導率調整剤を含有し、熱伝導率が低減された成形体を提供する。樹脂を含むシェル及び当該シェルに取り囲まれた中空部を備える中空粒子の形態の熱伝導率調整剤であって、前記シェルが前記樹脂として、全単量体単位100質量部中に架橋性単量体単位を80質量部以上含む重合体を含有し、25℃の環境下、熱伝導率調整剤0.1mgをアセトン4mLに添加し、振とう速度100rpmの条件で10分間振とうした後、48時間静置する熱伝導率調整剤の浸漬試験において、アセトン中に沈殿する熱伝導率調整剤が5質量%未満である、熱伝導率調整剤。

Description

熱伝導率調整剤及び成形体
 本開示は、中空粒子の形態の熱伝導率調整剤、及び当該熱伝導率調整剤を含有する成形体に関する。
 中空粒子(中空樹脂粒子)は、粒子の内部に空洞がある粒子であり、内部が実質的に樹脂で満たされた中実粒子と比べて、光を良く散乱させ、光の透過性を低くできるため、不透明度、白色度などの光学的性質に優れた有機顔料や隠蔽剤として水系塗料、紙塗被組成物などの用途で汎用されている。近年では、水系塗料、紙塗被組成物などの用途だけでなく、更に、自動車、航空、電気、電子、建築等の各種分野で用いられる樹脂や塗料等の軽量化剤、断熱化剤等としても中空粒子が利用されている。
 特許文献1には、10~150nmの平均粒子径及び95%以上のゲル分率を有し、シェルがビニル系樹脂を含有する中空粒子の形態の熱伝導率調整剤が開示されている。特許文献1には、当該熱伝導率調整剤を添加することにより、反射率が低いフィルムを作製することができると記載されている。
 一方で、本出願人は、特許文献2に、断熱性に優れた中空樹脂粒子として、個数平均粒径が0.1~9.0μmであり、空隙率が70~99%であり、揮発性有機化合物量が5質量%以下である中空樹脂粒子を開示している。
特開2017-66351号公報 国際公開第2019/188996号
 しかしながら、従来の中空粒子の形態の熱伝導率調整剤は、溶剤を含有する樹脂組成物(ワニス)を原料とした成形体に添加した場合に、粒子内部の空隙が維持されず、成形体の熱伝導率を十分に低減できない場合があった。
 本開示の課題は、ワニスを原料とする成形体等の熱伝導率を低減することができる中空粒子の形態の熱伝導率調整剤、及び当該熱伝導率調整剤を含有し、熱伝導率が低減された成形体を提供することである。
 本発明者は、中空粒子が備えるシェルの極性溶剤に対する浸透性に着目し、シェルの組成及び形成方法等を調整することでアセトンが浸透しにくいシェルとした中空粒子は、耐溶剤性に優れ、潰れにくく、当該中空粒子を含有するワニスを用いて成形体を作製した場合にも粒子形状が維持されるため、ワニスを原料とする成形体の熱伝導率を低減できることを見出した。
 本開示は、樹脂を含むシェル及び当該シェルに取り囲まれた中空部を備える中空粒子の形態の熱伝導率調整剤であって、
 前記シェルが前記樹脂として、全単量体単位100質量部中に架橋性単量体単位を80質量部以上含む重合体を含有し、
 25℃の環境下、熱伝導率調整剤0.1mgをアセトン4mLに添加し、振とう速度100rpmの条件で10分間振とうした後、48時間静置する熱伝導率調整剤の浸漬試験において、アセトン中に沈殿する熱伝導率調整剤が5質量%未満である、熱伝導率調整剤を提供する。
 本開示の熱伝導率調整剤においては、前記シェルに含まれる前記重合体が、20℃の蒸留水に対する溶解度が0.3g/L以上である親水性非架橋性単量体に由来する親水性非架橋性単量体単位を更に含み、前記重合体の全単量体単位100質量部中、前記親水性非架橋性単量体単位の含有量が2~20質量部であり、前記架橋性単量体単位の含有量が80~98質量部であることが好ましい。
 本開示の熱伝導率調整剤においては、前記シェルに含まれる前記重合体が、前記架橋性単量体単位として、3官能以上の架橋性単量体に由来する3官能以上の架橋性単量体単位を含み、前記重合体の全単量体単位100質量部中、前記3官能以上の架橋性単量体単位の含有量が5~50質量部であることが好ましい。
 本開示の熱伝導率調整剤においては、空隙率が50%以上であることが好ましい。
 本開示の熱伝導率調整剤においては、体積平均粒径が1.0~30.0μmであることが好ましい。
 本開示は、上記本開示の熱伝導率調整剤を含有する成形体を提供する。
 上記の如き本開示の熱伝導率調整剤によれば、ワニスを用いて形成される成形体等の熱伝導率を低減することができる。
本開示の熱伝導率調整剤の製造方法の一例を説明する図である。 懸濁工程における懸濁液の一実施形態を示す模式図である。
 なお、本開示において、数値範囲における「~」とは、その前後に記載される数値を下限値及び上限値として含むことを意味する。
 また、本開示において、(メタ)アクリレートとは、アクリレート及びメタクリレートの各々を表し、(メタ)アクリルとは、アクリル及びメタクリルの各々を表し、(メタ)アクリロイルとは、アクリロイル及びメタクリロイルの各々を表す。
 また、本開示において、重合性単量体とは、付加重合が可能な官能基(本開示において、単に重合性官能基と称する場合がある)を有する化合物である。本開示において、重合性単量体としては、付加重合が可能な官能基としてエチレン性不飽和結合を有する化合物が一般に用いられる。
 重合性単量体としては、非架橋性単量体と、架橋性単量体がある。非架橋性単量体は重合性官能基を1つだけ有する重合性単量体であり、架橋性単量体は重合性官能基を2つ以上有し、重合反応により樹脂中に架橋結合を形成する重合性単量体である。
 また、本開示においては、20℃の蒸留水に対する溶解度が0.3g/L以上の重合性単量体を親水性単量体と称し、20℃の蒸留水に対する溶解度が0.3g/L未満の重合性単量体を非親水性単量体と称する。
1.熱伝導率調整剤
 本開示の熱伝導率調整剤は、樹脂を含むシェル及び当該シェルに取り囲まれた中空部を備える中空粒子の形態の熱伝導率調整剤であって、
 前記シェルが前記樹脂として、全単量体単位100質量部中に架橋性単量体単位を80質量部以上含む重合体を含有し、
 25℃の環境下、熱伝導率調整剤0.1mgをアセトン4mLに添加し、振とう速度100rpmの条件で10分間振とうした後、48時間静置する熱伝導率調整剤の浸漬試験において、アセトン中に沈殿する熱伝導率調整剤が5質量%未満であることを特徴とする。
 本開示の熱伝導率調整剤は、樹脂を含有するシェル(外殻)と、当該シェルに取り囲まれた中空部とを備える中空粒子の形態を有する。
 本開示において、中空部は、樹脂材料により形成される中空粒子のシェルから明確に区別される空洞状の空間である。中空粒子のシェルは多孔質構造を有していても良いが、その場合には、中空部は、多孔質構造内に均一に分散された多数の微小な空間とは明確に区別できる大きさを有している。
 中空粒子が有する中空部は、例えば、粒子断面のSEM観察等により、又は粒子をそのままTEM観察等することにより確認することができる。
 本開示の中空粒子の形態の熱伝導率調整剤は、中空部が空気又は窒素等の気体で満たされている又は真空に近い減圧状態であることが好ましい。
 中空粒子は、粒子内部に中空部を有することから、中空粒子を添加した各種組成物及び成形体等に軽量化、断熱化等の性能を付与することができる。
 しかしながら、従来の中空粒子の形態の熱伝導率調整剤は、成形体の原料となるワニスに添加した際に、ワニス中の溶剤や樹脂が粒子の内部に浸透することで潰れやすくなり、当該ワニスを用いて形成された成形体中では、粒子内部の空隙を維持できず、成形体の熱伝導率を十分に低減できない場合があった。
 これに対し、本開示の熱伝導率調整剤は、中空粒子の形態を有するものの、ワニス中、及びワニスを成形加工する際に潰れにくく、ワニスを原料とした成形体中でも粒子内部の空隙を維持できるため、当該成形体の熱伝導率を低減することができる。
 本開示の中空粒子の形態の熱伝導率調整剤は、シェル中に含有される重合体が、全単量体単位100質量部中に架橋性単量体単位を80質量部以上含むため、シェル中に占める架橋性単量体単位の含有割合が多く、シェル中に共有結合ネットワークが密に張り巡らされていると推定される。また、本開示の中空粒子の形態の熱伝導率調整剤は、上記浸漬試験においてアセトン中に沈殿する熱伝導率調整剤が5質量%未満であるため、シェルがアセトンを浸透しにくい緻密な構造を有し、シェル中の架橋構造がより一層緻密になっていると推定される。本開示の中空粒子の形態の熱伝導率調整剤は、このように、架橋性単量体単位を多く含むシェルを備える従来の中空粒子よりも、より一層緻密な構造を有することにより、耐溶剤性及び強度が向上しているため、粒子の内部に溶剤が浸透しにくく、更に、強度にも優れることにより、ワニス中に添加され、更に当該ワニスが成形加工されても潰れにくく、成形体中において粒子内部の空隙が維持される。そのため、本開示の中空粒子の形態の熱伝導率調整剤は、ワニスを原料とする成形体の熱伝導率調整剤として好適に用いることができる。
 本開示の熱伝導率調整剤は、中空粒子の形態を有することから、以下において、本開示の熱伝導率調整剤を、本開示の中空粒子又は単に中空粒子と称する場合がある。
 本開示の中空粒子は、空隙率が50%以上であることが好ましく、より好ましくは60%以上であり、更に好ましくは70%以上である。空隙率が上記下限値以上であることにより、中空粒子による断熱化及び軽量化等の効果が優れる。本開示の中空粒子の空隙率の上限は、特に限定はされないが、中空粒子の強度の低下を抑制し、潰れにくくする点から、好ましくは90%以下であり、より好ましくは85%以下であり、更に好ましくは80%以下である。
 本開示の中空粒子の空隙率は、中空粒子の見かけ密度D及び真密度Dから算出される。
 中空粒子の見かけ密度Dの測定法は以下の通りである。まず、容量100cmのメスフラスコに約30cmの中空粒子を充填し、充填した中空粒子の質量を精確に秤量する。次に、中空粒子が充填されたメスフラスコに、気泡が入らないように注意しながら、イソプロパノールを標線まで精確に満たす。メスフラスコに加えたイソプロパノールの質量を精確に秤量し、下記式(I)に基づき、中空粒子の見かけ密度D(g/cm)を計算する。
 式(I)
 見かけ密度D=[中空粒子の質量]/(100-[イソプロパノールの質量]÷[測定温度におけるイソプロパノールの比重])
 見かけ密度Dは、中空部が中空粒子の一部であるとみなした場合の、中空粒子全体の比重に相当する。
 中空粒子の真密度Dの測定法は以下の通りである。中空粒子を予め粉砕した後、容量100cmのメスフラスコに中空粒子の粉砕片を約10g充填し、充填した粉砕片の質量を精確に秤量する。あとは、上記見かけ密度の測定と同様にイソプロパノールをメスフラスコに加え、イソプロパノールの質量を精確に秤量し、下記式(II)に基づき、中空粒子の真密度D(g/cm)を計算する。
 式(II)
 真密度D=[中空粒子の粉砕片の質量]/(100-[イソプロパノールの質量]÷[測定温度におけるイソプロパノールの比重])
 真密度Dは、中空粒子のうちシェル部分のみの比重に相当する。上記測定方法から明らかなように、真密度Dの算出に当たっては、中空部は中空粒子の一部とはみなされない。
 中空粒子の空隙率(%)は、中空粒子の見かけ密度Dと真密度Dにより、下記式(III)により算出される。
 式(III)
 空隙率(%)=100-(見かけ密度D/真密度D)×100
 本開示の中空粒子は、体積平均粒径が1.0~30.0μmであることが好ましい。中空粒子の体積平均粒径が上記下限値以上であることにより、中空粒子同士の凝集性が小さくなるため、優れた分散性を発揮することができる。また、中空粒子の体積平均粒径が上記下限値以上であれば、可視光線の波長の半波長分の中空径を有し、可視光線の反射及び屈折を助長するため、白色顔料として機能する。そのため、体積平均粒径が上記下限値以上の中空粒子を含有する樹脂組成物及び成形体は、反射率が上昇する。樹脂組成物又は成形体は、反射率が高いほど、外部からの熱が吸収されにくくなり、耐熱性が向上するため、反射率を上昇させることで、耐熱性を向上させることができる。
 一方、中空粒子の体積平均粒径が上記上限値以下であることにより、中空粒子の強度の低下が抑制され、シェルの厚みが均一になりやすい。
 本開示の中空粒子の体積平均粒径の下限は、より好ましくは3.0μm以上、更に好ましくは5.0μm以上、より更に好ましくは7.0μm以上である。本開示の中空粒子の体積平均粒径の上限は、より好ましくは20.0μm以下、更に好ましくは15.0μm以下、より更に好ましくは10.0μm以下である。
 中空粒子の粒度分布(体積平均粒径(Dv)/個数平均粒径(Dn))は、例えば、1.05以上2.5以下であってもよい。当該粒度分布が2.5以下であることにより、粒子間における耐圧性及び耐熱性等の特性のバラつきが少ない粒子が得られる。また、当該粒度分布が2.5以下であることにより、例えば、シート状の成形体を製造する際に、厚さが均一な製品を製造することができる。
 中空粒子の体積平均粒径(Dv)及び個数平均粒径(Dn)は、例えば、レーザー回折式粒度分布測定装置により中空粒子の粒径を測定し、その個数平均及び体積平均をそれぞれ算出し、得られた値をその粒子の個数平均粒径(Dn)及び体積平均粒径(Dv)とすることができる。粒度分布は、体積平均粒径を個数平均粒径で除した値とする。
 本開示の中空粒子の形状は、内部に中空部が形成されていれば特に限定されず、例えば、球形、楕円球形、不定形等が挙げられる。これらの中でも、製造が容易である点、及び中空粒子の強度及び耐圧性に優れる点から球形が好ましい。
 中空粒子は、1又は2以上の中空部を有していてもよい。また、中空粒子のシェル、及び、中空部を2つ以上有する場合には隣接し合う中空部を仕切る隔壁は、多孔質状となっていてもよい。粒子内部は、中空粒子の高い空隙率と、中空粒子の機械強度との良好なバランスを維持するために、中空部を1つのみ有するものが好ましい。
 中空粒子は、平均円形度が、0.950~0.995であってもよい。
 中空粒子の形状のイメージの一例は、薄い皮膜からなりかつ気体で膨らんだ袋であり、その断面図は後述する図1の(5)中の中空粒子100の通りである。この例においては、外側に薄い1枚の皮膜が設けられ、その内部が気体で満たされる。
 粒子形状は、例えば、SEMやTEMにより確認することができる。また、粒子内部の形状は、粒子を公知の方法で輪切りにした後、SEMやTEMにより確認することができる。
 本開示の中空粒子は、シェル中の樹脂として、全単量体単位100質量部中に架橋性単量体単位を80質量部以上含む重合体を含有する。上記重合体は、中空粒子のシェルの骨格を形成するものであり、架橋性単量体単位を上記割合で含むことにより、本開示の中空粒子が有するシェルは、共有結合ネットワークが密に張り巡らされたものとなる。
 上記重合体において、全単量体単位100質量部中の架橋性単量体単位の含有量は、中空粒子の強度及び耐溶剤性を向上させ、中空粒子による断熱化及び軽量化等の効果を向上させる点から、好ましくは85質量部以上、より好ましくは90質量部以上である。上記架橋性単量体単位の含有の上限は、特に限定はされず、100質量部以下であってよいが、後述する親水性非架橋性単量体単位を十分に含有させる点から、好ましくは98質量部以下、より好ましくは97質量部以下である。
 なお、本開示において、架橋性単量体単位は、架橋性単量体に由来する単量体単位であり、上記重合体において、架橋性単量体単位の含有量が100質量部未満の場合、架橋性単量体単位以外の単量体単位は、非架橋性単量体に由来する非架橋性単量体単位である。
 上記重合体は、典型的には、後述する本開示の中空粒子の製造方法において、第一の重合反応及び第二の重合反応によって得られる、第一の重合性単量体及び第二の重合性単量体の重合体である。すなわち、本開示の中空粒子において、上記重合体に含まれる架橋性単量体単位及び非架橋性単量体単位は、通常、後述する第一の重合性単量体及び第二の重合性単量体に由来するものである。
 なお、上記重合体の合成に用いられる架橋性単量体及び非架橋性単量体の具体的な内容は、後述する本開示の中空粒子の製造方法に記載する通りである。
 上記重合体は、架橋性単量体単位として、2官能の架橋性単量体に由来する2官能の架橋性単量体単位、及び3官能以上の架橋性単量体に由来する3官能以上の架橋性単量体単位から選ばれる少なくとも1種を含む。中でも、中空粒子の強度及び耐溶剤性を向上させ、中空粒子による断熱化及び軽量化等の効果を向上させる点から、少なくとも2官能の架橋性単量体単位を含むことが好ましく、中空粒子の強度をより向上させる点から、2官能の架橋性単量体単位及び3官能以上の架橋性単量体単位を組み合わせて含むことがより好ましい。
 なお、本開示においては、2官能の架橋性単量体に由来する架橋性単量体単位を「2官能の架橋性単量体単位」と称する場合があり、3官能以上の架橋性単量体に由来する架橋性単量体単位を「3官能以上の架橋性単量体単位」と称する場合がある。
 上記重合体が2官能の架橋性単量体単位を含む場合、上記重合体の全単量体単位100質量部中、2官能の架橋性単量体単位の含有量は、特に限定はされないが、下限としては、中空粒子の強度及び耐溶剤性を向上させ、中空粒子による断熱化及び軽量化等の効果を向上させる点から、好ましくは65質量部以上、より好ましくは70質量部以上、更に好ましくは75質量部以上である。一方で、上限としては、100質量部以下であってよいが、3官能以上の架橋性単量体単位又は後述する親水性非架橋性単量体単位を十分に含有させる点から、好ましくは98質量部以下、より好ましくは95質量部以下、更に好ましくは90質量部以下である。
 上記重合体が3官能以上の架橋性単量体単位を含む場合、上記重合体の全単量体単位100質量部中、3官能以上の架橋性単量体単位の含有量は、特に限定はされないが、下限としては、中空粒子の強度及び耐溶剤性を向上させ、中空粒子による断熱化及び軽量化等の効果を向上させる点から、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは15質量部以上である。一方で、上限としては、好ましくは50質量部以下、より好ましくは40質量部以下であり、2官能以上の架橋性単量体単位又は後述する親水性非架橋性単量体単位を十分に含有させる点から、更に好ましくは30質量部以下であり、より更に好ましくは25質量部以下である。
 また、上記重合体が含む架橋性単量体単位は、重合性官能基として(メタ)アクリロイル基を有する(メタ)アクリル系架橋性単量体に由来する架橋性単量体単位を含んでいてもよい。これにより、強度及び耐熱性に優れる中空粒子とすることができる。
 上記重合体が(メタ)アクリル系架橋性単量体に由来する架橋性単量体単位を含む場合、当該(メタ)アクリル系架橋性単量体に由来する架橋性単量体単位の含有量は、架橋性単量体単位100質量部中、好ましくは50質量部以上、より好ましくは70質量部以上、更に好ましく90質量部以上であり、架橋性単量体単位が(メタ)アクリル系架橋性単量体単位からなるものであってもよい。
 なお、(メタ)アクリル系架橋性単量体の具体的な内容については、後述する本開示の熱伝導率調整剤の製造方法で述べる通りである。
 また、上記重合体は、非架橋性単量体単位を更に含むことが好ましく、20℃の蒸留水に対する溶解度が0.3g/L以上である親水性非架橋性単量体単位を含むことがより好ましく、特に、後述する第二の重合性単量体に由来する親水性非架橋性単量体単位を含むことが好ましい。上記重合体が、架橋性単量体単位と非架橋性単量体単位を組み合わせて含むことにより、中空粒子のシェルの機械的特性が向上し、特に、非架橋性単量体単位として親水性非架橋性単量体単位を含むことにより、シェルが緻密な構造になりやすいため、中空粒子の強度及び耐溶剤性が向上しやすく、それにより、中空粒子による断熱化及び軽量化等の効果が向上しやすい。
 上記重合体において、全単量体単位100質量部中の非架橋性単量体単位の含有量は、0~20質量部であり、中空粒子の強度を向上する点から、下限としては、好ましくは2質量部以上、より好ましくは3質量部以上、更に好ましくは4質量部以上であり、上限としては、好ましくは15質量部以下、より好ましくは12質量部以下、更に好ましくは10質量部以下である。
 上記重合体において、全単量体単位100質量部中の親水性非架橋性単量体単位の含有量は、中空粒子の強度及び耐溶剤性を向上させ、中空粒子による断熱化及び軽量化等の効果を向上させる点から、下限としては、好ましくは2質量部以上、より好ましくは3質量部以上、更に好ましくは4質量部以上であり、上限としては、好ましくは20質量部以下、より好ましくは15質量部以下、更に好ましくは12質量部以下、より更に好ましくは10質量部以下である。
 本開示の中空粒子において、上記重合体の含有量は、シェルの全固形分100質量%中、好ましくは90質量%以上、より好ましくは95質量%以上である。上記重合体の含有量を上記下限値以上とすることにより、中空粒子の強度を向上することができる。
 本開示の中空粒子は、25℃の環境下、中空粒子0.1mgをアセトン4mLに添加し、振とう速度100rpmの条件で10分間振とうした後、48時間静置する中空粒子の浸漬試験において、アセトン中に沈殿する中空粒子が5質量%未満である。上記浸漬試験でアセトン中に沈殿する中空粒子の割合は、中空粒子のシェルの緻密さの指標になり、上記浸漬試験でアセトン中に沈殿する中空粒子の割合が少ないほど、中空粒子のシェルが緻密であると推定される。
 上記浸漬試験でアセトン中に沈殿する中空粒子を5質量%未満とするためには、例えば、後述する本開示の中空粒子の製造方法のように、懸濁液を重合反応に供する工程で、架橋性単量体を特定量以上含む第一の重合性単量体の重合転化率が93質量%以上になったときに、親水性単量体である第二の重合性単量体を添加して更に重合反応に供する方法で、且つシェルを形成する上記重合体中の架橋性単量体単位の含有割合が80質量%以上となるように、中空粒子を製造すればよい。
 また、本開示の中空粒子は、SEM観察において、100個の中空粒子のうち、連通孔又はシェル欠陥を有する中空粒子が5個以下であることが好ましい。
 一般に中空粒子には、シェルが中空部と粒子の外部空間を通じる連通孔を有さないものと、シェルが1又は2以上の連通孔を有し、中空部が当該連通孔を介して粒子外部と通じているものとがある。中空粒子の大きさにもよるが、連通孔の径は、通常10~500nm程度である。連通孔は、中空粒子に有益な機能を付与する場合がある反面、シェルが欠損した部分であるため中空粒子の強度を下げて潰れを生じやすくする原因にもなる。
 また、中空粒子は、粒子の大きさの割には極めて大きいヒビ状のシェル欠陥を有している場合がある。中空粒子の大きさにもよるが、1μm以上の長さを有するヒビは一般に中空粒子の強度を著しく悪くするため、シェル欠陥と認識される。
 上述した中空粒子の浸漬試験において、アセトン中に沈殿する中空粒子が5質量%未満である場合は、当該中空粒子100個中、連通孔又はシェル欠陥を有する中空粒子は5個以下であるとみなすことができる。なお、シェルが連通孔及びシェル欠陥を有しない場合であっても、上述した中空粒子の浸漬試験において沈殿する中空粒子が5質量%以上となる場合がある。そのため、上述した中空粒子の浸漬試験において、沈殿する中空粒子が5質量%未満である場合とは、シェルが連通孔及びシェル欠陥が極めて少なく、且つシェルが緻密な架橋構造を有することを示すと考えられる。
2.熱伝導率調整剤の製造方法
 本開示の中空粒子の形態の熱伝導率調整剤は、例えば、
 架橋性単量体を含む第一の重合性単量体、炭化水素系溶剤、分散安定剤、及び水系媒体を含む混合液を調製する工程と、
 前記混合液を懸濁させることにより、前記第一の重合性単量体及び前記炭化水素系溶剤を含む単量体組成物の液滴が前記水系媒体中に分散した懸濁液を調製する工程と、
 前記懸濁液を重合反応に供する工程とを含み、
 前記懸濁液を重合反応に供する工程において、前記第一の重合性単量体の重合転化率が93質量%以上になったときに、20℃の蒸留水に対する溶解度が0.3g/L以上である第二の重合性単量体を添加して更に重合反応に供する、中空粒子の製造方法により得ることができる。
 上記中空粒子の製造方法は、第一の重合性単量体、炭化水素系溶剤、分散安定剤、及び水系媒体を含む混合液を懸濁させることにより、第一の重合性単量体と炭化水素系溶剤が相分離し、第一の重合性単量体が表面側に偏在し、炭化水素系溶剤が中心部に偏在した分布構造を有する液滴が水系媒体中に分散してなる懸濁液を調製し、この懸濁液を重合反応に供することによって液滴の表面を硬化させて炭化水素系溶剤で満たされた中空部を有する中空粒子を形成するという基本技術に従うものである。
 このような基本技術において、懸濁液を重合反応に供する工程で、架橋性単量体を含む第一の重合性単量体の重合転化率が93質量%以上になったときに、20℃の蒸留水に対する溶解度が上記特定値以上の親水性単量体である第二の重合性単量体を添加して更に重合反応に供することによって、上記中空粒子の浸漬試験において、アセトン中に沈殿する中空粒子が5質量%未満となる中空粒子を製造することができる。中空粒子のシェルの形成に用いる重合性単量体として架橋性単量体を用いると、シェル中に未反応の重合性官能基が残りやすい。未反応のまま残った重合性官能基が多いほど、シェルの架橋構造が粗くなるため、従来の製造方法により得られる中空粒子においては、未反応の重合性官能基が残存していることにより、上記中空粒子の浸漬試験において、アセトン中に沈殿する中空粒子が5質量%以上になると考えられる。
 上記中空粒子の製造方法では、架橋性単量体を多く含む第一の重合性単量体を含有する単量体組成物の液滴が水系媒体中に分散した懸濁液を重合反応に供し、第一の重合性単量体の重合転化率が93質量%以上になるまで第一の重合反応を行った後、親水性単量体である第二の重合性単量体を添加して更に第二の重合反応を行うことで、第一の重合性単量体及び第二の重合性単量体を含む重合性単量体全体の反応率を向上することができると考えられる。
 なお、本開示においては、上記第一の重合反応により得られる、第一の重合性単量体の重合体を含むシェルと、炭化水素系溶剤で満たされた中空部を有する粒子を、第一の前駆体粒子と称する場合があり、当該第一の前駆体粒子を含有する組成物を、第一の前駆体組成物と称する場合がある。また、上記第二の重合反応により得られる、第一の重合性単量体及び第二の重合性単量体の重合体を含むシェルと、炭化水素系溶剤で満たされた中空部を有する粒子は、中空部が気体で満たされた中空粒子の中間体と考えて、第二の前駆体粒子と称する場合があり、当該第二の前駆体粒子を含む組成物を、第二の前駆体組成物と称する場合がある。
 上記中空粒子の製造方法において、第二の重合性単量体は、20℃の蒸留水に対する溶解度が上記特定値以上であることにより、第一の前駆体組成物中に添加されると、第一の前駆体粒子のシェル内に取り込まれやすい。親水性単量体である第二の重合性単量体は、第一の重合性単量体及び水系媒体の双方と親和性を有するため、第一の前駆体組成物中に添加されると、第一の重合性単量体により形成されたシェル内に取り込まれ、シェルの熱運動を促進すると考えられる。第二の重合反応の際には、第一の重合性単量体により形成されたシェル内に第二の重合性単量体が取り込まれた状態で、シェルの熱運動が促進されながら重合反応が進行するため、反応率が高く、シェルに取り込まれた第二の重合性単量体、及び未反応のまま残っていた第一の重合性単量体の重合性官能基の重合反応が十分に進行し、架橋構造が緻密になるため、アセトンが浸透しにくいシェルが形成されると推定される。
 上記中空粒子の製造方法は、混合液を調製する工程と、懸濁液を調製する工程と、懸濁液を重合反応に供する工程とを含み、更にこれら以外の工程を含んでもよい。また、技術的に可能である限り、上記各工程、及び、その他の付加的な工程の2つまたはそれ以上を、一つの工程として同時に行っても良いし、順序を入れ替えて行っても良い。例えば、混合液を調製する材料を投入しながら同時に懸濁を行うというように、混合液の調製と懸濁を一つの行程中で同時に行ってもよい。
 上記中空粒子の製造方法の好ましい一例として、以下の工程を含む製造方法を挙げることができる。
 (1)混合液調製工程
 第一の重合性単量体、炭化水素系溶剤、分散安定剤、及び水系媒体を含む混合液を調製する工程
 (2)懸濁工程
 前記混合液を懸濁させることにより、第一の重合性単量体及び炭化水素系溶剤を含む単量体組成物の液滴が水系媒体中に分散した懸濁液を調製する工程
 (3)重合工程
 (3-1)第一の重合工程
 前記第一の重合性単量体の重合転化率が93質量%以上になるまで、前記懸濁液を重合反応に供する第一の重合反応を行うことにより、第一の重合性単量体の重合体を含むシェルと、炭化水素系溶剤で満たされた中空部を有する第一の前駆体粒子を含む第一の前駆体組成物を調製する工程
 (3-2)第二の重合工程
 前記第一の前駆体組成物に、20℃の蒸留水に対する溶解度が0.3g/L以上である第二の重合性単量体を添加して第二の重合反応を行うことにより、第一の重合性単量体及び第二の重合性単量体の重合体を含むシェルと、炭化水素系溶剤で満たされた中空部を有する第二の前駆体粒子を含む第二の前駆体組成物を調製する工程
 (4)固液分離工程
 前記第二の前駆体組成物を固液分離することにより、中空部に炭化水素系溶剤を内包する第二の前駆体粒子を得る工程、及び
 (5)溶剤除去工程
 前記固液分離工程により得られた第二の前駆体粒子に内包される炭化水素系溶剤を除去し、中空粒子を得る工程。
 図1は、上記製造方法の一例を示す模式図である。図1中の(1)~(5)は、上記各工程(1)~(5)に対応する。各図の間の白矢印は、各工程の順序を指示するものである。なお、図1は説明のための模式図に過ぎず、上記製造方法は図に示すものに限定されない。また、本開示の製造方法に使用される材料の構造、寸法及び形状は、これらの図における各種材料の構造、寸法及び形状に限定されない。
 図1の(1)は、混合液調製工程における混合液の一実施形態を示す断面模式図である。この図に示すように、混合液は、水系媒体1、及び当該水系媒体1中に分散する低極性材料2を含む。ここで、低極性材料2とは、極性が低く水系媒体1と混ざり合いにくい材料を意味する。本開示において低極性材料2は、第一の重合性単量体、及び炭化水素系溶剤を含む。
 図1の(2)は、懸濁工程における懸濁液の一実施形態を示す断面模式図である。懸濁液は、水系媒体1、及び当該水系媒体1中に分散する単量体組成物の液滴10を含む。単量体組成物の液滴10は、第一の重合性単量体及び炭化水素系溶剤を含んでいるが、液滴内の分布は均一ではない。単量体組成物の液滴10は、炭化水素系溶剤4aと、第一の重合性単量体を含む炭化水素系溶剤以外の材料4bが相分離し、炭化水素系溶剤4aが中心部に偏在し、炭化水素系溶剤以外の材料4bが表面側に偏在し、分散安定剤(図示せず)が表面に付着した構造を有している。
 図1の(3)は、重合工程により得られる、中空部に炭化水素系溶剤を内包する中空粒子(第二の前駆体粒子)を含む組成物(第二の前駆体組成物)の一実施形態を示す断面模式図である。当該組成物は、水系媒体1、及び当該水系媒体1中に分散する、中空部に炭化水素系溶剤4aを内包する中空粒子(第二の前駆体粒子)20を含む。当該第二の前駆体粒子20の外表面を形成するシェル6は、上記単量体組成物の液滴10中の第一の重合性単量体の重合、及び後から添加される第二の重合性単量体の重合により形成されたものである。
 図1の(4)は、固液分離工程後の中空部に炭化水素系溶剤を内包する中空粒子(第二の前駆体粒子)の一実施形態を示す断面模式図である。この図1の(4)は、上記図1の(3)の状態から水系媒体1を除去した状態を示す。
 図1の(5)は、溶剤除去工程後の中空粒子の一実施形態を示す断面模式図である。この図1の(5)は、上記図1の(4)の状態から炭化水素系溶剤4aを除去した状態を示す。中空部に炭化水素系溶剤を内包する中空粒子(第二の前駆体粒子)から炭化水素系溶剤を除去することにより、気体で満たされた中空部8をシェル6の内部に有する中空粒子100が得られる。
 以下、上記5つの工程及びその他の工程について、順に説明する。
 (1)混合液調製工程
 本工程は、第一の重合性単量体、炭化水素系溶剤、分散安定剤、及び水系媒体を含む混合液を調製する工程である。
 混合液は、重合開始剤として油溶性重合開始剤を含有することが好ましい。また、混合液は、本開示の効果を損なわない範囲において、懸濁安定剤等の他の材料を更に含有していてもよい。
 混合液の材料について、(A)第一の重合性単量体、(B)油溶性重合開始剤、(C)炭化水素系溶剤、(D)分散安定剤、(E)水系媒体の順に説明する。
 (A)第一の重合性単量体
 第一の重合性単量体は、少なくとも架橋性単量体を含み、本開示の効果を損なわない範囲において非架橋性単量体を更に含んでいてもよい。
 第一の重合性単量体としては、重合反応が安定し易く、かつ、耐熱性が高い中空粒子が得られる点、から、重合性官能基として(メタ)アクリロイル基を有する(メタ)アクリル系重合性単量体を好ましく用いることができる。
 [架橋性単量体]
 架橋性単量体は重合性官能基を複数有するため、単量体同士を連結することができ、シェルの架橋密度を高めることができる。
 架橋性単量体としては、例えば、ジビニルベンゼン、ジビニルジフェニル、ジビニルナフタレン、ジアリルフタレート、ジアリルアミン、アリル(メタ)アクリレート、ビニル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリルプロピル(メタ)アクリレート等の重合性官能基を2つ有する2官能の架橋性単量体;トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート及びこれらのエトキシ化体等の重合性官能基を3つ以上有する3官能以上の架橋性単量体等が挙げられる。これらの架橋性単量体は、それぞれ単独で、又は2種以上を組み合わせて使用することができる。
 なお、これらの架橋性単量体のうち、20℃の蒸留水に対する溶解度が0.3g/L以上の親水性架橋性単量体としては、例えば、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、アリルメタクリレート、ビニルメタクリレート、2-ヒドロキシ-3-メタクリルプロピルアクリレート、ジアリルアミン等を挙げることができる。
 第一の重合性単量体が含む架橋性単量体としては、20℃の蒸留水に対する溶解度が、0.3g/L以上の親水性架橋性単量体であってもよいし、0.3g/L未満の非親水性架橋性単量体であってもよく、特に限定はされない。
 第一の重合性単量体は、架橋性単量体として、2官能の架橋性単量体、及び3官能以上の架橋性単量体から選ばれる少なくとも1種を含む。中でも、中空粒子の強度及び耐溶剤性を向上させ、中空粒子による断熱化及び軽量化等の効果を向上させる点から、2官能の架橋性単量体及び3官能以上の架橋性単量体を組み合わせて含むことがより好ましい。第一の重合性単量体が3官能以上の架橋性単量体を含む場合は、シェル中に共有結合ネットワークをより密に張り巡らせることができるという点では優れているが、第一の重合反応後に未反応の重合性官能基が残り易い傾向がある。上記製造方法では、第一の重合性単量体が3官能以上の架橋性単量体を含む場合であっても、第二の重合性単量体として親水性単量体を添加して第二の重合反応を行うことにより、第一の重合反応後に残った未反応の重合性官能基の重合反応が進行しやすい。そのため、第一の重合性単量体が3官能以上の架橋性単量体を含むことにより、シェルの架橋構造をより緻密にして、中空粒子の強度及び耐溶剤性を向上させ、それにより、中空粒子による断熱化及び軽量化等の効果を向上させることができる。
 また、第一の重合性単量体が含む架橋性単量体としては、重合反応が安定し易く、かつ、強度及び耐熱性に優れる中空粒子が得られる点から、重合性官能基として(メタ)アクリロイル基を有する(メタ)アクリル系架橋性単量体が好ましい。
 すなわち、第一の重合性単量体に用いられる2官能の架橋性単量体としては、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート等の2官能の(メタ)アクリル系架橋性単量体が好ましく、中でも、エチレングリコールジ(メタ)アクリレート及びペンタエリスリトールジ(メタ)アクリレートがより好ましい。
 第一の重合性単量体に用いられる3官能以上の架橋性単量体としては、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート及びこれらのエトキシ化体等の3官能以上の(メタ)アクリル系架橋性単量体が好ましく、中でも、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレートがより好ましく、トリメチロールプロパントリ(メタ)アクリレート及びペンタエリスリトールテトラ(メタ)アクリレートが更に好ましい。
 なお、本開示において、(メタ)アクリル系架橋性単量体は、重合性官能基として(メタ)アクリロイル基を少なくとも1つ有する架橋性単量体であればよいが、全ての重合性官能基が(メタ)アクリロイル基であることが好ましい。
 第一の重合性単量体が(メタ)アクリル系架橋性単量体含む場合、(メタ)アクリル系架橋性単量体の含有量は、第一の重合性単量体が含有する架橋性単量体100質量部中、好ましくは50質量部以上、より好ましくは70質量部以上、更に好ましくは90質量部以上であり、第一の重合性単量体が含有する架橋性単量体は、(メタ)アクリル系架橋性単量体からなるものであってもよい。
 第一の重合性単量体100質量部中、架橋性単量体の含有量は、好ましくは85~100質量部、より好ましくは90~100質量部、更に好ましくは95~100質量部である。架橋性単量体の含有量が上記下限値以上であることにより、形成されるシェルに含まれる重合体が、全単量体単位100質量部中に架橋性単量体単位を80~100質量部含む重合体になりやすい。また、中空粒子のシェル中に占める架橋性単量体単位の含有割合が十分に多いため、シェル中に共有結合ネットワークが密に張り巡らされる結果、中空粒子の強度及び耐溶剤性が向上し、それにより、中空粒子による断熱化及び軽量化等の効果も向上する。
 第一の重合性単量体が架橋性単量体として2官能の架橋性単量体を含む場合、第一の重合性単量体100質量部中の2官能の架橋性単量体の含有量は、特に限定はされないが、下限としては、中空粒子の強度及び耐溶剤性を向上させ、中空粒子による断熱化及び軽量化等の効果を向上させる点から、70質量部以上、より好ましくは80質量部以上であり、一方で、上限としては、100質量部以下であってよいが、3官能以上の架橋性単量体単位を十分に含有させる点からは、好ましくは95質量部以下、より好ましくは90質量部以下である。
 第一の重合性単量体が架橋性単量体として3官能以上の架橋性単量体を含む場合、第一の重合性単量体100質量部中の3官能以上の架橋性単量体の含有量は、特に限定はされないが、下限としては、中空粒子の強度及び耐溶剤性を向上させ、中空粒子による断熱化及び軽量化等の効果を向上させる点から、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは15質量部以上であり、上限としては、好ましくは50質量部以下、より好ましくは40質量部以下であり、2官能以上の架橋性単量体を十分に含有させる点からは、更に好ましくは30質量部以下、より更に好ましくは25質量部以下である。
 [非架橋性単量体]
 第一の重合性単量体は、更に非架橋性単量体を含んでいてもよい。
 非架橋性単量体としては、モノビニル単量体が好ましく用いられる。モノビニル単量体とは、重合可能なビニル官能基を1つ有する化合物である。モノビニル単量体としては、例えば、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等の炭素数6以上のアルキル基を有する(メタ)アクリル酸アルキルエステル類;スチレン、ビニルトルエン、α-メチルスチレン、p-メチルスチレン、ハロゲン化スチレン等の芳香族ビニル単量体;エチレン、プロピレン、ブチレン等のモノオレフィン単量体;ブタジエン、イソプレン等のジエン系単量体;酢酸ビニル等のカルボン酸ビニルエステル単量体;塩化ビニル等のハロゲン化ビニル単量体;塩化ビニリデン等のハロゲン化ビニリデン単量体;ビニルピリジン単量体;等の非親水性非架橋性単量体、及び、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート等の炭素数1~5のアルキル基を有する(メタ)アクリル酸アルキルエステル類;(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド等の(メタ)アクリルアミド類及びその誘導体;(メタ)アクリル酸ニトリル及びその誘導体;極性基含有非架橋性単量体;等の親水性非架橋性単量体が挙げられる。
 極性基含有非架橋性単量体としては、例えば、カルボキシル基、ヒドロキシル基、スルホン酸基、アミノ基、ポリオキシエチレン基及びエポキシ基から選ばれる極性基を含む非架橋性単量体を好ましく挙げることができる。より具体的には、(メタ)アクリル酸、クロトン酸、ケイ皮酸、イタコン酸、フマル酸、マレイン酸、ブテントリカルボン酸等のエチレン性不飽和カルボン酸単量体等のカルボキシル基含有単量体;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシル基含有単量体;スチレンスルホン酸等のスルホン酸基含有単量体;ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等のアミノ基含有単量体;メトキシポリエチレングリコール(メタ)アクリレート等のポリオキシエチレン基含有単量体;グリシジル(メタ)アクリレート、アリルグリシジルエーテル、4-ヒドロキシブチルアクリレートグリシジルエーテル等のエポキシ基含有単量体等を挙げることができる。
 これらの非架橋性単量体は、それぞれ単独で、又は2種以上を組み合わせて使用することができる。
 第一の重合性単量体として用いる非架橋性単量体としては、中でも、中空粒子の強度を向上させる点から、親水性非架橋性単量体が好ましく、炭素数1~5のアルキル基を有する(メタ)アクリル酸アルキルエステル類がより好ましく、炭素数1~4のアルキル基を有する(メタ)アクリル酸アルキルエステル類がより好ましい。
 第一の重合性単量体中、架橋性単量体以外の重合性単量体は非架橋性単量体である。第一の重合性単量体中の非架橋性単量体の含有量は、第一の重合性単量体100質量部中、好ましくは0~15質量部であり、第一の重合性単量体の反応性の低下を抑制し、中空粒子の強度及び耐溶剤性を向上させ、中空粒子による断熱化及び軽量化等の効果を向上させる点から、第一の重合性単量体100質量部中の非架橋性単量体の含有量は、より好ましくは10質量部以下、更に好ましくは5質量部以下であり、第一の重合性単量体は非架橋性単量体を含有しないことが特に好ましい。
 混合液中の第一の重合性単量体の含有量は、特に限定はされないが、中空粒子の空隙率、粒径及び機械的強度のバランスの観点から、水系媒体を除く混合液中成分の総質量100質量%に対し、通常15~55質量%、より好ましくは25~40質量%である。
 また、中空粒子の機械的強度を向上する観点から、混合液中で油相となる材料のうち炭化水素系溶剤を除いた固形分の総質量100質量%に対する第一の重合性単量体の含有量は、好ましくは90質量%以上、より好ましくは95質量%以上である。
 (B)油溶性重合開始剤
 本開示においては、混合液が、重合開始剤として油溶性重合開始剤を含有することが好ましい。混合液を懸濁後に単量体組成物の液滴を重合する方法として、水溶性重合開始剤を用いる乳化重合法と、油溶性重合開始剤を用いる懸濁重合法があり、油溶性重合開始剤を用いることにより懸濁重合を行うことができる。
 油溶性重合開始剤は、水に対する溶解度が0.2質量%以下の親油性のものであれば特に制限されない。油溶性重合開始剤としては、例えば、ベンゾイルペルオキシド、ラウロイルペルオキシド、t一ブチルペルオキシド一2-エチルヘキサノエート、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、アゾビスイソブチロニトリル等が挙げられる。
 混合液中の第一の重合性単量体の総質量を100質量部としたとき、油溶性重合開始剤の含有量は、好適には0.1~10質量部であり、より好適には0.5~7質量部であり、さらに好適には1~5質量部である。油溶性重合開始剤の含有量が0.1~10質量部であることにより、重合反応を十分進行させ、かつ重合反応終了後に油溶性重合開始剤が残存するおそれが小さく、予期せぬ副反応が進行するおそれも小さい。
 (C)炭化水素系溶剤
 本開示においては、非重合性で且つ難水溶性の有機溶剤として炭化水素系溶剤を用いる。炭化水素系溶剤は、粒子内部に中空部を形成するスペーサー材料として働く。後述する懸濁工程において、炭化水素系溶剤を含む単量体組成物の液滴が水系媒体中に分散した懸濁液が得られる。懸濁工程においては、単量体組成物の液滴内で相分離が発生する結果、極性の低い炭化水素系溶剤が単量体組成物の液滴の内部に集まりやすくなる。最終的に、単量体組成物の液滴においては、その内部に炭化水素系溶剤が、その周縁に炭化水素系溶剤以外の他の材料が各自の極性に従って分布する。
 そして、後述する重合工程において、炭化水素系溶剤を内包した中空粒子を含む水分散液が得られる。すなわち、炭化水素系溶剤が粒子内部に集まることにより、得られる前駆体粒子の内部には、炭化水素系溶剤で満たされた中空部が形成されることとなる。
 炭化水素系溶剤の種類は、特に限定されない。炭化水素系溶剤としては、例えば、ブタン、ペンタン、ノルマルヘキサン、シクロヘキサン、ヘプタン、オクタン等の飽和炭化水素系溶剤、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶剤、二硫化炭素、四塩化炭素等の比較的揮発性が高い溶剤が挙げられる。
 混合液中の炭化水素系溶剤の量を変えることにより、中空粒子の空隙率を調節することができる。後述する懸濁工程において、架橋性単量体等を含む油滴が炭化水素系溶剤を内包した状態で重合反応が進行するため、炭化水素系溶剤の含有量が多いほど、得られる中空粒子の空隙率が高くなる傾向がある。
 炭化水素溶剤は、炭化水素系溶剤の総量100質量%中、飽和炭化水素系溶剤の割合が50質量%以上であることが好ましい。これにより、重合性単量体液の滴内で相分離が十分に発生することにより、中空部を1つのみ有する中空粒子が得られやすく、多孔質粒子の生成を抑制することができる。飽和炭化水素系溶剤の割合は、多孔質粒子の生成を更に抑制する点、及び各中空粒子の中空部が均一になりやすい点から、好適には60質量%以上であり、より好適には80質量%以上である。
 また、炭化水素系溶剤としては、炭素数4~7の炭化水素系溶剤が好ましい。炭素数4~7の炭化水素化合物は、重合工程時に第一の前駆体粒子中に容易に内包され易く、かつ溶剤除去工程時に第二の前駆体粒子中から容易に除去することができる。中でも、炭素数5又は6の炭化水素系溶剤が特に好ましい。
 また、特に限定されないが、炭化水素系溶剤としては、後述する溶剤除去工程で除去されやすい点から、沸点が130℃以下のものが好ましく、100℃以下のものがより好ましい。また、第一の前駆体粒子に内包されやすい点から、炭化水素系溶剤としては、沸点が50℃以上のものが好ましく、60℃以上のものがより好ましい。
 また、炭化水素系溶剤は、20℃における比誘電率が3以下であることが好ましい。比誘電率は、化合物の極性の高さを示す指標の1つである。炭化水素系溶剤の比誘電率が3以下と十分に小さい場合には、単量体組成物の液滴中で相分離が速やかに進行し、中空部が形成されやすいと考えられる。
 20℃における比誘電率が3以下の溶剤の例は、以下の通りである。カッコ内は比誘電率の値である。
 ヘプタン(1.9)、ノルマルヘキサン(1.9)、シクロヘキサン(2.0)、ベンゼン(2.3)、トルエン(2.4)。
 20℃における比誘電率に関しては、公知の文献(例えば、日本化学会編「化学便覧基礎編」、改訂4版、丸善株式会社、平成5年9月30日発行、II-498~II-503ページ)に記載の値、及びその他の技術情報を参照できる。20℃における比誘電率の測定方法としては、例えば、JISC 2101:1999の23に準拠し、かつ測定温度を20℃として実施される比誘電率試験等が挙げられる。
 本開示において、混合液中の炭化水素系溶剤の含有量は、第一の重合性単量体の総質量100質量部に対し、50質量部以上500質量部以下であることが、中空粒子の粒子径を制御しやすく、中空粒子の強度を維持しながら空隙率を高めやすく、粒子内の残留炭化水素系溶剤量を低減しやすい点から好ましい。混合液中の炭化水素系溶剤の含有量は、第一の重合性単量体の総質量100質量部に対し、より好適には60質量部以上400質量部以下であり、更に好適には70質量部以上300質量部以下であり、より更に好適には80質量部以上200質量部以下である。
 (D)分散安定剤
 分散安定剤は、懸濁工程において、単量体組成物の液滴を水系媒体中に分散させる剤である。本開示においては、懸濁液中で液滴の粒子径をコントロールし易く、得られる中空粒子の粒径分布を狭くできる点、及びシェルが薄くなりすぎることを抑制して、中空粒子の強度の低下を抑制する点から、分散安定剤として、無機分散安定剤を用いることが好ましい。
 無機分散安定剤としては、例えば、硫酸バリウム、及び硫酸カルシウム等の硫酸塩;炭酸バリウム、炭酸カルシウム、及び炭酸マグネシウム等の炭酸塩;リン酸カルシウム等のリン酸塩;酸化アルミニウム、及び酸化チタン等の金属酸化物;水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム及び水酸化第二鉄等の金属水酸化物;等の無機化合物が挙げられる。これらの無機分散安定剤は1種又は2種以上を組み合わせて用いることができる。
 上記無機分散安定剤の中でも、上述した硫酸塩、炭酸塩、リン酸塩、金属水酸化物等の難水溶性無機金属塩が好ましく、金属水酸化物がより好ましく、水酸化マグネシウムが特に好ましい。
 なお、本開示において難水溶性無機金属塩は、100gの水に対する溶解度が0.5g以下である無機金属塩であることが好ましい。
 本開示においては、特に、難水溶性の無機分散安定剤を、コロイド粒子の形態にて水系媒体に分散させた状態、すなわち、難水溶性の無機分散安定剤コロイド粒子を含有するコロイド分散液の状態で用いることが好ましい。これにより、単量体組成物の液滴の粒径分布を狭くすることができることに加え、洗浄により、得られる中空粒子中における無機分散安定剤の残留量を容易に低く抑えることができる。
 難水溶性の無機分散安定剤コロイド粒子を含有するコロイド分散液は、たとえば、水酸化アルカリ金属塩及び水酸化アルカリ土類金属塩から選ばれる少なくとも1種と、水溶性多価金属塩(水酸化アルカリ土類金属塩を除く。)とを水系媒体中で反応させることで調製することができる。
 水酸化アルカリ金属塩としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどが挙げられる。水酸化アルカリ土類金属塩としては、水酸化バリウム、水酸化カルシウムなどが挙げられる。
 水溶性多価金属塩としては、上記水酸化アルカリ土類金属塩に該当する化合物以外の水溶性を示す多価金属塩であればよいが、例えば、塩化マグネシウム、リン酸マグネシウム、硫酸マグネシウムなどのマグネシウム金属塩;塩化カルシウム、硝酸カルシウム、酢酸カルシウム、硫酸カルシウムなどのカルシウム金属塩;塩化アルミニウム、硫酸アルミニウムなどのアルミニウム金属塩;塩化バリウム、硝酸バリウム、酢酸バリウムなどのバリウム塩;塩化亜鉛、硝酸亜鉛、酢酸亜鉛などの亜鉛塩;などが挙げられる。これらの中でも、マグネシウム金属塩、カルシウム金属塩、およびアルミニウム金属塩が好ましく、マグネシウム金属塩がより好ましく、塩化マグネシウムが特に好ましい。
 上記した水酸化アルカリ金属塩及び水酸化アルカリ土類金属塩から選ばれる少なくとも1種と、上記した水溶性多価金属塩とを水系媒体中で反応させる方法としては、特に限定されないが、水酸化アルカリ金属塩及び水酸化アルカリ土類金属塩から選ばれる少なくとも1種の水溶液と、水溶性多価金属塩の水溶液とを混合する方法が挙げられる。
 分散安定剤の含有量は、特に限定はされないが、第一の重合性単量体と炭化水素系溶剤の合計質量100質量部に対し、好適には0.5~10質量部であり、より好適には1.0~8.0質量部である。分散安定剤の含有量が上記下限値以上であることにより、単量体組成物の液滴が懸濁液中で合一しないように十分に分散させることができる。一方、分散安定剤の含有量が上記上限値以下であることにより、造粒時に懸濁液の粘度が上昇するのを防止し、懸濁液が造粒機で閉塞する不具合を回避することができる。
 また、分散安定剤の含有量は、水系媒体100質量部に対し、通常2質量部以上15質量部以下であり、3質量部以上8質量部以下であることが好ましい。
 (E)水系媒体
 本開示において水系媒体とは、水、親水性溶媒、及び、水と親水性溶媒との混合物からなる群より選ばれる媒体を意味する。
 本開示における親水性溶媒は、水と十分に混ざり合い相分離を起こさないものであれば特に制限されない。親水性溶媒としては、例えば、メタノール、エタノール等のアルコール類;テトラヒドロフラン(THF);ジメチルスルフォキシド(DMSO)等が挙げられる。
 水系媒体の中でも、その極性の高さから、水を用いることが好ましい。水と親水性溶媒の混合物を用いる場合には、単量体組成物の液滴を形成する観点から、当該混合物全体の極性が低くなりすぎないことが重要である。この場合、例えば、水と親水性溶媒との混合比(質量比)を、水:親水性溶媒=99:1~50:50等としてもよい。
 前記の各材料及び必要に応じ他の材料を混合し、適宜攪拌等することによって混合液が得られる。当該混合液においては、上記(A)第一の重合性単量体、(B)油溶性重合開始剤、及び(C)炭化水素系溶剤などの親油性材料を含む油相が、(D)分散安定剤及び(E)水系媒体などを含む水相中において、粒径数mm程度の大きさで分散している。混合液におけるこれら材料の分散状態は、材料の種類によっては肉眼でも観察することが可能である。
 混合液調製工程では、前記の各材料及び必要に応じ他の材料を単に混合し、適宜攪拌等することによって混合液を得てもよいが、シェルが均一になりやすい点から、第一の重合性単量体及び炭化水素系溶剤を含む油相と、分散安定剤及び水系媒体を含む水相とを予め別に調製し、これらを混合することにより、混合液を調製することが好ましい。本開示においては、難水溶性の無機分散安定剤をコロイド粒子の形態にて水系媒体に分散させたコロイド分散液を、水相として好ましく用いることができる。
 このように油相と水相を予め別に調製した上で、これらを混合することにより、シェル部分の組成が均一な中空粒子を製造することができる。
 (2)懸濁工程
 懸濁工程は、上述した混合液を懸濁させることにより、炭化水素系溶剤を含む単量体組成物の液滴が水系媒体中に分散した懸濁液を調製する工程である。
 単量体組成物の液滴を形成するための懸濁方法は特に限定されないが、例えば、(インライン型)乳化分散機(大平洋機工社製、商品名:マイルダー、及び株式会社ユーロテック製、商品名:キャビトロン等の横型のインライン型分散機;IKA製、商品名:DRS 2000/5等の縦型のインライン型分散機等)、高速乳化分散機(プライミクス株式会社製、商品名:T.K.ホモミクサー MARK II型等)等の強攪拌が可能な装置を用いて行う。
 懸濁工程で調製される懸濁液においては、上記親油性材料を含みかつ1~30μm程度の粒径を持つ単量体組成物の液滴が、水系媒体中に均一に分散している。このような単量体組成物の液滴は肉眼では観察が難しく、例えば光学顕微鏡等の公知の観察機器により観察できる。
 懸濁工程においては、単量体組成物の液滴中に相分離が生じるため、極性の低い炭化水素系溶剤が液滴の内部に集まりやすくなる。その結果、得られる液滴は、その内部に炭化水素系溶剤が、その周縁に炭化水素系溶剤以外の材料が分布することとなる。
 図2は、懸濁工程における懸濁液の一実施形態を示す模式図である。図2中の単量体組成物の液滴10は、その断面を模式的に示すものとする。なお、図2はあくまで模式図であり、本開示における懸濁液は、必ずしも図2に示すものに限定されない。図2の一部は、上述した図1の(2)に対応する。
 図2には、水系媒体1中に、単量体組成物の液滴10及び水系媒体1中に分散した第一の重合性単量体4cが分散している様子が示されている。液滴10は、油溶性の単量体組成物4の周囲を、分散安定剤3が取り囲むことにより構成される。
 単量体組成物中には油溶性重合開始剤5、並びに、第一の重合性単量体及び炭化水素系溶剤(いずれも図示せず)が含まれる。
 液滴10は、単量体組成物4を含む微小油滴であり、油溶性重合開始剤5は当該微小油滴の内部で重合開始ラジカルを発生させる。したがって、微小油滴を成長させ過ぎることなく、目的とする粒径の前駆体粒子を製造することができる。
 このような油溶性重合開始剤を用いた懸濁重合法においては、重合開始剤が、水系媒体1中に分散した重合性単量体4cと接触する機会は存在しない。したがって、油溶性重合開始剤を使用することにより、目的とする中空部を有する樹脂粒子の他に、比較的粒径の小さい密実粒子等の余分な樹脂粒子が副成することを抑制できる。
 (3)重合工程
 (3-1)第一の重合工程
 上記製造方法においては、重合工程を二段階で行う。
 第一の重合工程では、前記第一の重合性単量体の重合転化率が93質量%以上になるまで、前記懸濁液を重合反応に供する第一の重合反応を行うことにより、第一の重合性単量体の重合体を含むシェルと、炭化水素系溶剤で満たされた中空部を有する第一の前駆体粒子を含む第一の前駆体組成物を調製する。
 第一の重合反応の際は、単量体組成物の液滴が炭化水素系溶剤を内包した状態で重合反応に供されることにより、形状を維持したまま重合反応が進行しやすい。そのため、第一の重合反応の際に、炭化水素系溶剤の量及び分散安定剤の種類等を調整することで、得られる中空粒子の大きさ及び空隙率を容易に調整することができる。また、上述した第一の重合性単量体と炭化水素系溶剤とを組み合わせて用いるため、第一の前駆体粒子のシェルに対して炭化水素系溶剤の極性が低く、炭化水素系溶剤がシェルと馴染みにくいため、相分離が十分に発生して中空部が1つのみとなりやすい。
 第一の重合反応において、重合方式に特に限定はなく、例えば、回分式(バッチ式)、半連続式、連続式等が採用できる。
 第一の重合反応において、重合温度は、好ましくは40~80℃であり、更に好ましくは50~70℃である。
 また、第一の重合反応において、重合温度に昇温する際の昇温速度は、10℃/h~60℃/hが好ましく、さらに好ましくは15℃/h~55℃/hである。
 また、第一の重合反応の反応時間は、好ましくは0.5~5時間であり、更に好ましくは1~3時間である。
 上記製造方法において、第一の重合反応は、第一の重合性単量体の重合転化率が93質量%以上になるまで行われ、好ましくは95質量%以上、より好ましくは97質量%以上、更に好ましくは99質量%以上になるまで行われる。
 なお、本開示において重合転化率は、第一の重合反応により得られる第一の前駆体粒子の固形分の質量と、第一の重合反応後に未反応のまま残留した第一の重合性単量体の質量から、下記式(A)により求められる。なお、本開示において固形分とは、溶剤を除く全ての成分であり、液状の重合性単量体等は固形分に含まれるものとする。また、未反応の第一の重合性単量体の質量は、ガスクロマトグラフィー(GC)を用いて測定することができる。
 重合転化率(質量%)=100-(未反応の第一の重合性単量体の質量/第一の前駆体粒子の固形分の質量)×100   式(A)
 (3-2)第二の重合工程
 第二の重合工程では、前記第一の重合工程で得られた第一の前駆体組成物に、20℃の蒸留水に対する溶解度が0.3g/L以上である第二の重合性単量体を添加して第二の重合反応を行うことにより、第一の重合性単量体及び第二の重合性単量体の重合体を含むシェルと、炭化水素系溶剤で満たされた中空部を有する第二の前駆体粒子を含む第二の前駆体組成物を調製する。
 第二の重合反応では、第一の前駆体粒子のシェルに第二の重合性単量体が取り込まれた状態で重合反応が進行する。第一の前駆体粒子のシェルは、第二の重合性単量体が取り込まれることにより、熱運動が促進されるため、第二の重合反応では、シェル内に未反応のまま残存していた第一の重合性単量体の重合性官能基、及び第二の重合性単量体の重合反応が進行して、緻密な架橋構造が形成されると推定される。
 第二の重合性単量体としては、20℃の蒸留水に対する溶解度が0.3g/L以上である重合性単量体であれば特に限定はされないが、中でも、中空粒子の強度及び耐溶剤性を向上させ、中空粒子による断熱化及び軽量化等の効果を向上させる点から、20℃の蒸留水に対する溶解度が0.3g/L以上である非架橋性単量体、すなわち親水性非架橋性単量体が好ましい。第二の重合性単量体として用いられる親水性非架橋性単量体としては、例えば、第一の重合性単量体として使用可能な親水性非架橋性単量体と同様のものを挙げることができる。中でも、中空粒子の強度及び耐溶剤性を向上させ、中空粒子による断熱化及び軽量化等の効果を向上させる点から、炭素数1~5のアルキル基を有する(メタ)アクリル酸アルキルエステル類、(メタ)アクリル酸ニトリル及びその誘導体、及び極性基含有非架橋性単量体よりなる群から選ばれる少なくとも1種が好ましく、炭素数1~5のアルキル基を有する(メタ)アクリル酸アルキルエステル類がより好ましく、炭素数1~4のアルキル基を有する(メタ)アクリル酸アルキルエステル類が更に好ましい。
 上記(メタ)アクリル酸アルキルエステル類、及び(メタ)アクリル酸ニトリルとしては、それぞれ、アクリル酸アルキルエステル類及びアクリル酸ニトリルが好ましい。重合性官能基がメタクリロイル基ではなく、アクリロイル基であると、反応性に優れることにより、中空粒子による断熱化及び軽量化等の効果が向上しやすく、また、未反応の第二の重合性単量体が残留しにくい。なお、本開示において、アクリル系架橋性単量体は、重合性官能基としてアクリロイル基を少なくとも1つ有し、メタクリロイル基を有しない架橋性単量体であればよいが、全ての重合性官能基がアクリロイル基であることが好ましい。
 また、上記(メタ)アクリル酸アルキルエステル類が有するアルキル基の炭素数は、中空粒子による断熱化及び軽量化等の効果を向上させる点からは、1~4であることが好ましく、更に、未反応の第二の重合性単量体が残留しにくい点からは、1~3であることがより好ましく、上記アルキル基がメチル基であることが更に好ましい。
 上記極性基含有非架橋性単量体としては、中でも、エポキシ基含有単量体、水酸基含有単量体、及びアミノ基含有単量体が好ましい。上記極性基含有非架橋性単量体としてのエポキシ基含有単量体としては、中でも、グリシジル(メタ)アクリレートが好ましく、水酸基含有単量体としては、中でも、2-ヒドロキシエチルメタクリレートが好ましい。
 また、第二の重合性単量体としては、20℃の蒸留水に対する溶解度が0.3g/L以上である親水性架橋性単量体を用いることもできる。第二の重合性単量体として用いる親水性架橋性単量体としては、例えば、第一の重合性単量体として使用可能な親水性架橋性単量体と同様のものを挙げることができる。第二の重合性単量体として用いる親水性架橋性単量体としては、中でも、水酸基又はアミノ基を含む親水性架橋性単量体が好ましい。水酸基を含む親水性架橋性単量体としては、例えば2-ヒドロキシ-3-メタクリルプロピルアクリレート等を好ましく用いることができ、アミノ基を含む親水性架橋性単量体としては、例えばジアリルアミン等を好ましく用いることができる。
 また、第二の重合性単量体としては、第二の重合性単量体が第一の前駆体粒子のシェルに取り込まれて熱運動を促進しやすく、中空粒子の強度が向上する点から、20℃の蒸留水に対する溶解度が好ましくは2g/L以上、より好ましくは10g/L以上、更に好ましくは15g/L以上である。なお、第二の重合性単量体の20℃の蒸留水に対する溶解度の上限は、特に限定はされないが、通常、80g/L以下である。
 また、第二の重合性単量体が第一の前駆体粒子のシェルに取り込まれて熱運動を促進しやすく、中空粒子の強度及び耐溶剤性を向上させ、中空粒子による断熱化及び軽量化等の効果を向上させる点から、第二の重合性単量体の分子量は、好ましくは200以下、より好ましくは100以下である。第二の重合性単量体の分子量の下限は、特に限定はされず、通常50以上である。
 第二の重合性単量体の添加量は、第一の重合性単量体100質量部に対して3~15質量部であることが好ましく、4~10質量部であることがより好ましい。第二の重合性単量体の添加量が上記下限値以上であると、第二の重合性単量体の添加による重合反応を促進する効果が向上して、中空粒子のシェルの架橋構造がより緻密になることにより、中空粒子の強度及び耐溶剤性が向上し、それにより、中空粒子による断熱化及び軽量化等の効果が向上する。一方、第二の重合性単量体の添加量が上記上限値以下であると、シェルの形成に用いる重合性単量体全体に対する第一の重合性単量体の含有割合の低下を抑制することができる。第一の重合性単量体は架橋性単量体を多く含むため、第一の重合性単量体の含有割合の低下を抑制することにより、架橋性単量体により形成される架橋構造を多く含む、強度に優れた中空粒子を得ることができる。
 第二の重合性単量体を添加した後に行う第二の重合反応において、重合方式に特に限定はなく、例えば、第一の重合反応に用いられる重合方式と同様のものを採用できる。
 第二の重合反応において、重合温度は、好ましくは40~80℃であり、更に好ましくは50~70℃である。
 第二の重合反応の反応時間は、好ましくは1~6時間であり、更に好ましくは2~4時間である。
 上記製造方法によれば、第二の重合反応後の未反応の重合性単量体の残留量を、好ましくは750ppm以下、より好ましくは500ppm以下、更に好ましくは300ppm以下とすることができる。第二の重合反応後の未反応の重合性単量体の残留量が上記上限値以下であれば、重合性単量体の反応率が高いことが示唆される。重合性単量体の反応率が高いと、シェル中の架橋構造が緻密になりやすく、それにより中空粒子の耐溶剤性及び強度が向上しやすい。
 なお、本開示において、第二の重合反応後の未反応の重合性単量体の残留量とは、第二の重合反応により得られる中空粒子の固形分質量に対する、未反応のまま残留した重合性単量体の質量の割合である。なお、未反応の重合性単量体の質量は、ガスクロマトグラフィー(GC)を用いて測定することができる。
 (4)固液分離工程
 本工程は、上述した重合工程により得られる、炭化水素系溶剤を内包する中空粒子(第二の前駆体粒子)を含む第二の前駆体組成物を固液分離することにより、第二の前駆体粒子を含む固体分を得る工程である。
 第二の前駆体組成物を固液分離する方法は特に限定されず、公知の方法を用いることができる。固液分離の方法としては、例えば、遠心分離法、ろ過法、静置分離等が挙げられ、この中でも遠心分離法又はろ過法を採用することができ、操作の簡便性の観点から遠心分離法を採用してもよい。
 固液分離工程後、後述する溶剤除去工程を実施する前に、予備乾燥工程等の任意の工程を実施してもよい。予備乾燥工程としては、例えば、固液分離工程後に得られた固体分を、乾燥機等の乾燥装置や、ハンドドライヤー等の乾燥器具により予備乾燥する工程が挙げられる。
 (5)溶剤除去工程
 本工程は、前記固液分離工程により得られた中空粒子(第二の前駆体粒子)に内包される炭化水素系溶剤を除去する工程である。
 第二の前駆体粒子に内包される炭化水素系溶剤を気中にて除去することにより、第二の前駆体粒子内部の炭化水素系溶剤が空気と入れ替わり、気体で満たされた中空粒子が得られる。
 本工程における「気中」とは、厳密には、第二の前駆体粒子の外部に液体分が全く存在しない環境下、及び、第二の前駆体粒子の外部に、炭化水素系溶剤の除去に影響しない程度のごく微量の液体分しか存在しない環境下を意味する。「気中」とは、第二の前駆体粒子がスラリー中に存在しない状態と言い替えることもできるし、第二の前駆体粒子が乾燥粉末中に存在する状態と言い替えることもできる。すなわち、本工程においては、第二の前駆体粒子が外部の気体と直に接する環境下で炭化水素系溶剤を除去することが重要である。
 第二の前駆体粒子中の炭化水素系溶剤を気中にて除去する方法は、特に限定されず、公知の方法が採用できる。当該方法としては、例えば、減圧乾燥法、加熱乾燥法、気流乾燥法又はこれらの方法の併用が挙げられる。
 特に、加熱乾燥法を用いる場合には、加熱温度は炭化水素系溶剤の沸点以上、かつ第二の前駆体粒子のシェル構造が崩れない最高温度以下とする必要がある。したがって、第二の前駆体粒子中のシェルの組成と炭化水素系溶剤の種類によるが、例えば、加熱温度を50~200℃としてもよく、70~200℃としてもよく、100~200℃としてもよい。
 気中における乾燥操作によって、第二の前駆体粒子内部の炭化水素系溶剤が、外部の気体により置換される結果、中空部を気体が占める中空粒子が得られる。
 乾燥雰囲気は特に限定されず、中空粒子の用途によって適宜選択することができる。乾燥雰囲気としては、例えば、空気、酸素、窒素、アルゴン等が考えられる。また、いったん気体により中空粒子内部を満たした後、減圧乾燥することにより、一時的に内部が真空である中空粒子も得られる。
 別の方法として、重合工程で得られたスラリー状の第二の前駆体組成物を固液分離せずに、第二の前駆体粒子及び水系媒体を含むスラリー中で、当該第二の前駆体粒子に内包される炭化水素系溶剤をスラリーの水系媒体に置換することにより、炭化水素系溶剤を除去してもよい。
 この方法においては、炭化水素系溶剤の沸点から35℃差し引いた温度以上の温度で、第二の前駆体組成物に不活性ガスをバブリングすることにより、第二の前駆体粒子に内包される炭化水素系溶剤を除去することができる。
 ここで、前記炭化水素系溶剤が、複数種類の炭化水素系溶剤を含有する混合溶剤であり、沸点を複数有する場合、溶剤除去工程での炭化水素系溶剤の沸点とは、当該混合溶剤に含まれる溶剤のうち最も沸点が高い溶剤の沸点、すなわち複数の沸点のうち最も高い沸点とする。
 第二の前駆体組成物に不活性ガスをバブリングする際の温度は、中空粒子中の炭化水素系溶剤の残留量を低減する点から、炭化水素系溶剤の沸点から30℃差し引いた温度以上の温度であることが好ましく、20℃差し引いた温度以上の温度であることがより好ましい。なお、バブリングの際の温度は、通常、前記重合工程での重合温度以上の温度とする。特に限定はされないが、バブリングの際の温度を、50℃以上100℃以下としてもよい。
 バブリングする不活性ガスとしては、特に限定はされないが、例えば、窒素、アルゴン等を挙げることができる。
 バブリングの条件は、炭化水素系溶剤の種類及び量に応じて、第二の前駆体粒子に内包される炭化水素系溶剤を除去できるように適宜調整され、特に限定はされないが、例えば、不活性ガスを1~3L/minの量で、1~10時間バブリングしてもよい。
 この方法においては、第二の前駆体粒子に水系媒体が内包された水系スラリーが得られる。このスラリーを固液分離して得られた中空粒子を乾燥し、中空粒子内の水系媒体を除去することにより、中空部を気体が占める中空粒子が得られる。
 スラリー状の第二の前駆体組成物を固液分離した後、第二の前駆体粒子中の炭化水素系溶剤を気中にて除去することにより中空部が気体で満たされた中空粒子を得る方法と、第二の前駆体粒子及び水系媒体を含むスラリー中で、当該第二の前駆体粒子に内包される炭化水素系溶剤をスラリーの水系媒体に置換した後、固液分離し、第二の前駆体粒子中の水系媒体を気中にて除去することにより中空部が気体で満たされた中空粒子を得る方法を比べると、前者の方法は、炭化水素系溶剤を除去する工程で中空粒子が潰れにくいという利点があり、後者の方法は、不活性ガスを用いたバブリングを行うことにより炭化水素系溶剤の残留が少なくなるという利点がある。
 なお、第二の前駆体粒子に内包される炭化水素系溶剤を水に置換する場合、粒子中から抜けた炭化水素系溶剤と同体積の水が粒子内に入らなければ、得られる中空樹脂粒子が潰れるという問題がある。それを防ぐ手段としては、例えば、スラリーのpHを7以上とした上で、粒子のシェルをアルカリ膨潤させた後に炭化水素系溶剤を除去することが考えられる。この場合、粒子のシェルが柔軟性を獲得するため、粒子内部の炭化水素系溶剤と水との置換が速やかに進行する。
 その他、重合工程の後、固液分離工程の前に、重合工程で得られたスラリー状の第二の前駆体組成物を固液分離せずに、第二の前駆体粒子に内包される炭化水素系溶剤を除去する方法として、例えば、所定の圧力下(高圧下、常圧下又は減圧下)で、第二の前駆体組成物から第二の前駆体粒子に内包される炭化水素系溶剤を蒸発留去させる方法;所定の圧力下(高圧下、常圧下又は減圧下)で、第二の前駆体組成物に窒素、アルゴン、ヘリウム等の不活性ガスあるいは水蒸気を導入して蒸発留去させる方法;を用いてもよい。
 (6)その他
 上記(1)~(5)以外の工程としては、例えば、下記(6-a)洗浄工程や下記(6-b)中空部の再置換工程を付加しても良い。
 (6-a)洗浄工程
 洗浄工程とは、前記固液分離工程前に、第二の前駆体粒子を含む第二の前駆体組成物中に残存する分散安定剤を除去するために、酸またはアルカリを添加して洗浄を行う工程である。使用した分散安定剤が、酸に可溶な無機分散安定剤である場合、第二の前駆体粒子を含む第二の前駆体組成物へ酸を添加して、洗浄を行うことが好ましく、一方、使用した分散安定剤が、アルカリに可溶な無機化合物である場合、第二の前駆体粒子を含む第二の前駆体組成物へアルカリを添加して、洗浄を行うことが好ましい。
 また、分散安定剤として、酸に可溶な無機分散安定剤を使用した場合、第二の前駆体粒子を含む第二の前駆体組成物へ酸を添加し、pHを、好ましくは6.5以下、より好ましくは6以下に調整することが好ましい。添加する酸としては、硫酸、塩酸、硝酸等の無機酸、および蟻酸、酢酸等の有機酸を用いることができるが、分散安定剤の除去効率が大きいことや製造設備への負担が小さいことから、特に硫酸が好適である。
 (6-b)中空部の再置換工程
 中空部の再置換工程とは、中空粒子内部の気体や液体を、他の気体や液体に置換する工程である。このような置換により、中空粒子内部の環境を変えたり、中空粒子内部に選択的に分子を閉じ込めたり、用途に合わせて中空粒子内部の化学構造を修飾したりすることができる。
3.熱伝導率調整剤の用途
 本開示の熱伝導率調整剤の用途としては、熱伝導率の調整が必要なあらゆる用途を挙げることができ、特に限定はされない。例えば、塗料、紙、情報記録紙、各種容器、3Dプリンターのフィラメント等の添加剤として、或いは、自動車、自転車、航空、船舶、鉄道車両、宇宙、建築、電気、電子、スポーツ用品、履物、家電部品、文具、工具等の各種分野に用いられる断熱フィルム、又は熱電変換材料等の添加剤として、本開示の熱伝導率調整剤を好適に用いることができる。電気又は電子の分野においては、具体的には例えば、電子回路基板、層間絶縁材料、ドライフィルムレジスト、ソルダーレジスト、ボンディングワイヤ、マグネットワイヤ、半導体封止材、エポキシ封止材、モールドアンダーフィル、アンダーフィル、ダイボンドペースト、バッファーコート材、銅張積層板、フレキシブル基板、高周波デバイスモジュール、アンテナモジュール、車載レーダー等の半導体材料の添加剤として本開示の熱伝導率調整剤を用いることができる。
 また、本開示の熱伝導率調整剤が添加された部材は、熱伝導率が低減するだけでなく、反射率が上昇し、その結果、外部からの熱が吸収されにくくなり、耐熱性が向上する。そのため、低反射率を必要としない部材、又は反射率の上昇が求められる部材においては、熱伝導率を低減し、且つ耐熱性を向上させるための添加剤として、本開示の熱伝導率調整剤を好適に用いることができる。従来、反射率を上昇させるためには、酸化チタン等の添加剤が用いられていたが、本開示の熱伝導率調整剤を用いることにより、反射率を上昇させつつ、断熱化及び軽量化を図ることもできる。低反射率を必要としない又は反射率の上昇が求められ、且つ熱伝導率の調整が必要な用途としては、例えば、塗料、並びに、自動車、航空、船舶、鉄道車両、宇宙、建築、電気、電子等の各種分野等を挙げることができる。
 また、本開示の熱伝導率調整剤は、強度に優れ、他の材料との混練時及び混練後の成形時に潰れ難くいため、成形体用添加剤として好適であり、樹脂製成形体用添加剤として特に好適に用いられる。
4.樹脂組成物
 本開示の樹脂組成物は、前記本開示の熱伝導率調整剤と、マトリックス樹脂とを含有することを特徴とする。
 本開示の樹脂組成物を用いて、熱伝導率が低減された本開示の成形体を作製することができる。
 本開示の熱伝導率調整剤は、中空粒子の形態を有しながら、粒子の内部に溶剤が浸透しにくく、更に、強度にも優れるため、本開示の樹脂組成物が、溶剤を含有する場合(ワニス)であっても、当該樹脂組成物中、及び当該樹脂組成物を成形加工する際及び成形加工後の成形体中で、本開示の熱伝導率調整剤は、変形又は潰れが生じにくく、粒子内部の空隙が維持される。そのため、本開示の樹脂組成物及び本開示の樹脂組成物を用いて形成される成形体は、熱伝導率が低減されたものとなる。
 本開示の樹脂組成物に用いられるマトリックス樹脂は、特に限定はされないが、熱可塑性樹脂、熱硬化性樹脂又は常温硬化性樹脂を含むものであってよい。
 前記熱可塑性樹脂としては、公知のものを用いることができ、特に限定はされないが、例えば、ポリプロピレン、ポリエチレン等のポリオレフィン;PA6、PA66、PA12等のポリアミド;ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルケトンケトン、ポリ塩化ビニル、ポリスチレン、ポリ(メタ)アクリレート、ポリカーボネート、ポリフッ化ビニリデン、アクリロニトリル-ブタジエン-スチレンコポリマー(ABS)、アクリロニトリル-スチレンコポリマー(AS)、ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリエステル、ポリテトラフルオロエチレン、熱可塑性エラストマー等を挙げることができる。これらの熱可塑性樹脂は、それぞれ単独で、又は2種以上を組み合わせて使用することができる。
 前記熱硬化性樹脂としては、公知のものを用いることができ、特に限定はされないが、例えば、フェノール系樹脂、メラミン系樹脂、尿素系樹脂、不飽和ポリエステル系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、ケイ素系樹脂、アルキド系樹脂、熱硬化型ポリフェニレンエーテル系樹脂、熱硬化型ポリイミド系樹脂、ベンゾオキサジン系樹脂、ユリア系樹脂、アリル系樹脂、アニリン系樹脂、マレイミド系樹脂、ビスマレイミドトリアジン系樹脂、液晶性ポリエステル系樹脂、ビニルエステル系樹脂、不飽和ポリエステル系樹脂、シアネートエステル系樹脂、ポリエーテルイミド樹脂等が挙げられる。これらの熱硬化性樹脂は、それぞれ単独で、又は2種以上を組み合わせて使用することができる。
 前記常温硬化性樹脂としては、公知のものを用いることができ、特に限定はされないが、例えば、エポキシ系樹脂、ウレタン系樹脂等が挙げられる。これらの常温硬化性樹脂は、それぞれ単独で、又は2種以上を組み合わせて使用することができる。
 本開示の樹脂組成物に用いられる好ましいマトリックス樹脂としては、例えば、エポキシ系樹脂を含むものを挙げることができる。エポキシ系樹脂としては、例えば、ビキシレノール型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、線状脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、トリメチロール型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、イソシアヌラート型エポキシ樹脂、フェノールフタルイミジン型エポキシ樹脂、フェノールフタレイン型エポキシ樹脂等が挙げられる。これらのエポキシ系樹脂は、それぞれ単独で、又は2種以上を組み合わせて使用することができる。
 マトリックス樹脂は、必要に応じて、硬化剤、硬化触媒又は硬化促進剤等の樹脂を硬化させるための添加剤を含んでいてもよい。これらの樹脂を硬化させるための添加剤は、樹脂の種類に応じて公知のものを選択して用いることができ、特に限定はされず、例えば、アミン類、酸無水物類、イミダゾール類、チオール類、フェノール類、ナフトール類、ベンゾオキサジン類、シアネートエステル類、及びカルボジイミド類等を挙げることができる。
 エポキシ系樹脂と組み合わせて用いる硬化剤としては、例えば、アミン系硬化剤、アミド系硬化剤、酸無水物系硬化剤、フェノール系硬化剤、活性エステル系硬化剤、カルボキシル基含有硬化剤、チオール系硬化剤等を挙げることができる。
 また、エポキシ系樹脂と組み合わせて用いる硬化触媒としては、例えば、リン系化合物、第3級アミン系化合物、イミダゾール系化合物、有機金属塩等が挙げられる。
 これらの樹脂を硬化させるための添加剤は、それぞれ単独で、又は2種以上を組み合わせて使用することができる。
 マトリックス樹脂の含有量は、特に限定はされないが、本開示の樹脂組成物の全固形分100質量%中、50~95質量%であることが好ましい。マトリックス樹脂の含有量が前記下限値以上であることにより、樹脂組成物を成形体とするときの成形性に優れ、また、得られる成形体の機械的強度に優れる。一方、マトリックス樹脂の含有量が前記上限値以下であることにより、本開示の熱伝導率調整剤を十分に含有させることができるため、樹脂組成物の熱伝導率を十分に低減させることができる。
 なお、本開示において、マトリックス樹脂の含有量には、硬化剤、硬化触媒又は硬化促進剤等の樹脂を硬化させるための添加剤の含有量も含まれるものとする。
 本開示の熱伝導率調整剤の含有量は、特に限定はされないが、本開示の樹脂組成物の全固形分100質量%中、5~50質量%であることが好ましい。熱伝導率調整剤の含有量が前記下限値以上であることにより、樹脂組成物の熱伝導率を十分に低減させることができる。一方、熱伝導率調整剤の含有量が前記上限値以下であることにより、マトリックス樹脂を十分に含有させることができるため、成形性及び機械的強度を向上させることができる。
 また、本開示の樹脂組成物は、必要に応じて、各成分を溶解若しくは分散させるための溶剤を更に含有していてもよい。本開示の樹脂組成物が溶剤を含有する場合は、本開示の熱伝導率調整剤による断熱化の効果が得られやすい点から好ましい。
 本開示の樹脂組成物に用いられる溶剤としては、樹脂組成物に使用可能な公知の溶剤を用いることができ、特に限定はされないが、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジオキサン、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のエーテル類を好ましく用いることができる。これらの溶剤は、それぞれ単独で、又は2種以上を組み合わせて使用することができる。
 中でも、本開示の熱伝導調整剤による断熱化及び軽量化等の効果が発揮されやすい点から、溶剤が、ケトン類及びエーテル類から選ばれる少なくとも1種を含むことが好ましく、ケトン類を含むことがより好ましい。
 本開示の樹脂組成物が溶剤を含有する場合、溶剤の含有量は、用途等に応じて適宜調整され、特に限定はされない。本開示の熱伝導調整剤による断熱化及び軽量化等の効果が発揮されやすい点からは、溶剤の含有量は、樹脂組成物の総質量100質量%中、好ましくは10~50質量%、より好ましくは20~40質量%である。
 本開示の樹脂組成物は、本開示の効果を損なわない範囲で、必要に応じ、紫外線吸収剤、着色剤、消泡剤、増粘剤、熱安定剤、レベリング剤、滑剤、帯電防止剤、フィラー等の添加剤を更に含有していてもよい。
 本開示の樹脂組成物は、例えば、前記本開示の熱伝導率調整剤と、マトリックス樹脂と、更に必要に応じて添加される溶剤及び添加剤とを混合することにより得られる。
 樹脂組成物が溶剤を含有する場合は、当該溶剤が揮発しない温度範囲、例えば、室温以上溶剤の沸点以下で混合すればよい。また、樹脂組成物がマトリックス樹脂として熱硬化性樹脂を含む場合、前記混合は、前記熱硬化性樹脂の硬化温度未満の温度環境下で行えばよく、特に限定はされないが、通常240℃以下の温度環境下で行う。
 樹脂組成物がマトリックス樹脂として熱可塑性樹脂を含む場合、前記混合としては、樹脂組成物を加熱し、熱可塑性樹脂を溶融させて行う溶融混練であってもよい。当該溶融混練時の温度は、使用する熱可塑性樹脂を溶融できる温度であればよく、特に限定はされないが、熱伝導率調整剤の潰れを抑制する点から、250℃以下であることが好ましい。
5.成形体
 本開示の成形体は、前記本開示の熱伝導率調整剤を含有することを特徴とする。
 本開示の成形体は、前記本開示の熱伝導率調整剤を含有するため、熱伝導率が低減されている。
 本開示の成形体は、熱伝導率が、0.175W/m・K以下であることが好ましく、0.150W/m・K以下であることがより好ましい。
 本開示の成形体は、上記本開示の熱伝導率調整剤を含有することにより、熱伝導率調整剤を含有しない場合に比べて、反射率が上昇していてもよい。本開示の成形体は、420nmでの反射率が、50%以上であることが好ましく、60%以上であることがより好ましい。また、本開示の成形体は、580nmでの反射率が、60%以上であることが好ましく、80%以上であることがより好ましい。なお、本開示の成形体の320nmから820nmまでの波長領域での反射率は100%以下であり、上限は特に限定されない。
 本開示の成形体は、典型的には、上述した本開示の樹脂組成物の成形体である。
 本開示の樹脂組成物が、硬化反応前の液状のマトリックス樹脂に中空粒子等を含有させた液状樹脂組成物、又は、溶剤に各成分を溶解又は分散させてなる液状樹脂組成物である場合は、当該液状樹脂組成物を支持体に塗布し、必要に応じて乾燥、硬化させることより成形体を得ることができる。
 前記支持体の材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等の樹脂;銅、アルミ、ニッケル、クロム、金、銀等の金属等を挙げることができる。
 液状樹脂組成物を塗布する方法としては、公知の方法を用いることができ、例えば、ディップコート、ロールコート、カーテンコート、ダイコート、スリットコート、グラビアコート等が挙げられる。
 液状樹脂組成物が溶剤を含有する場合は、前記塗布の後、上記樹脂組成物を乾燥させることが好ましい。乾燥温度は、マトリックス樹脂が硬化しない程度の温度とすることが好ましく、通常、20℃以上200℃以下、好ましくは30℃以上150℃以下である。また、乾燥時間は、通常、30秒間以上1時間以下、好ましくは1分間以上30分間以下である。
 樹脂組成物の硬化反応は、マトリックス樹脂の種類に応じた方法により行われ、特に制限はされない。加熱により硬化するマトリックス樹脂を含む場合、硬化反応のための加熱の温度は、樹脂の種類に応じて適宜調整され、特に限定はされないが、通常、30℃以上400℃以下、好ましくは70℃以上300℃以下、より好ましくは100℃以上200℃以下である。また、硬化時間は、5分間以上5時間以下、好ましくは30分間以上3時間以下である。加熱の方法は特に制限されず、例えば電気オーブンなどを用いて行えばよい。
 なお、溶剤に各成分を溶解又は分散させてなる液状樹脂組成物が含有するマトリックス樹脂は、熱硬化性樹脂、常温硬化性樹脂、又は熱可塑性樹脂のいずれであってもよい。
 一方、本開示の樹脂組成物が前記熱可塑性樹脂を含有する場合においては、例えば、上記樹脂組成物を溶融混練した後、押出成形、射出成形、プレス成形、圧縮成形等の公知の成形方法で所望の形状に成形することにより、本開示の樹脂組成物の成形体を得ることもできる。本開示の樹脂組成物中の中空粒子の形態の熱伝導率調整剤は潰れにくいため、射出成形、圧縮成形等の加熱加圧条件下で行われる成形方法を用いても、熱伝導率調整剤の潰れが抑制され、熱伝導率が低減された成形体を得ることができる。
 成形体の形状は、特に限定はされず、例えば、シート状、フィルム状、板状、チューブ状、及びその他の各種立体的形状等の任意の形状とすることができる。
 本開示の成形体の用途としては、特に限定はされないが、例えば、自動車、自転車、航空、船舶、鉄道車両、宇宙、建築、電気、電子、各種容器、スポーツ用品、履物、家電部品、文具、工具等の各種分野に用いることができる。本開示の成形体は熱伝導率が低減されたものであるため、上記各種分野において、例えば、断熱フィルム、又は熱電変換材料等として用いることができる。
 以下に、実施例及び比較例を挙げて本開示を更に具体的に説明するが、本開示は、これらの実施例のみに限定されるものではない。なお、部及び%は、特に断りのない限り質量基準である。
[実施例1]
(1)混合液調製工程
 まず、下記材料を混合し油相とした。
  第一の重合性単量体:エチレングリコールジメタクリレート80部及びペンタエリスリトールテトラアクリレート20部
  2,2’-アゾビス(2,4-ジメチルバレロニトリル)(油溶性重合開始剤、和光純薬社製、商品名:V-65) 3部
  シクロヘキサン 125部
 次に、攪拌槽において、室温(25℃)条件下で、イオン交換水494部に塩化マグネシウム(水溶性多価金属塩)17.1部を溶解した水溶液に、イオン交換水121部に水酸化ナトリウム(水酸化アルカリ金属)12.1部を溶解した水溶液を攪拌下で徐々に添加して、水酸化マグネシウムコロイド(難水溶性の金属水酸化物コロイド)分散液(水酸化マグネシウム4部)を調製し、水相とした。
 得られた水相と油相を混合することにより、混合液を調製した。
(2)懸濁工程
 上記混合液調製工程で得た混合液を、分散機(プライミクス社製、商品名:ホモミクサー)により、回転数4,000rpmの条件下で1分間攪拌して懸濁させ、シクロヘキサンを内包した単量体組成物の液滴が水中に分散した懸濁液を調製した。
(3)重合工程
 上記懸濁工程で得た懸濁液を、窒素雰囲気で、40℃から30分かけて65℃まで昇温し(昇温速度:50℃/時間)、65℃の温度条件下で1時間30分攪拌して第一の重合反応を行い、第一の前駆体粒子を含む第一の前駆体組成物を得た。第一の重合反応終了時点の重合転化率は99.2質量%であった。引き続き、第二の重合性単量体としてメチルアクリレート5部を攪拌槽に添加し、窒素雰囲気下、65℃の温度条件下で2時間30分攪拌することで第二の重合反応を行った。この第二の重合反応により、シクロヘキサンを内包した第二の前駆体粒子を含む第二の前駆体組成物を得た。
(4)洗浄工程及び固液分離工程
 上記第二の前駆体組成物を希硫酸により洗浄(25℃、10分間)して、pHを5.5以下にした。次いで、濾過により水を分離した後、新たにイオン交換水200部を加えて再スラリー化し、水洗浄処理(洗浄、濾過、脱水)を室温で数回繰り返し行って、濾過分離して固体分を得た。得られた固体分を乾燥機にて40℃の温度で乾燥させ、シクロヘキサンを内包した第二の前駆体粒子を得た。
(5)溶剤除去工程
 上記固液分離工程で得られた第二の前駆体粒子を、真空乾燥機にて、200℃の真空条件下で6時間加熱処理することで、粒子に内包されていた炭化水素系溶剤を除去し、実施例1の熱伝導率調整剤を得た。得られた熱伝導率調整剤は、走査型電子顕微鏡の観察結果及び空隙率の値から、球状であり、かつ中空部を有する中空粒子の形態を有することを確認した。
[実施例2]
 実施例1において、上記「(1)混合液調製工程」で添加するシクロヘキサンの量を160部に変更した以外は、実施例1と同様の手順で、実施例2の熱伝導率調整剤を製造した。
[実施例3~8]
 実施例1において、上記「(3)重合工程」で添加する第二の重合性単量体の種類又は量を表1に示す通りとした以外は、実施例1と同様の手順で、実施例3~8の熱伝導率調整剤を製造した。
[比較例1]
 実施例1において、上記「(3)重合工程」で、第二の重合性単量体を添加せず、第二の重合反応を行わなかった以外は、実施例1と同様の手順で、比較例1の熱伝導率調整剤を製造した。
[比較例2]
 実施例1において、上記「(3)重合工程」で、第一の重合反応の反応時間を1時間30分から30分に変更し、第一の重合性単量体であるエチレングリコールジメタクリレート及びペンタエリスリトールテトラアクリレートの重合転化率の合計が91.0質量%となったときに、第二の重合性単量体を添加して第二の重合反応を行った以外は、実施例1と同様の手順で、比較例2の熱伝導率調整剤を製造した。
[比較例3]
 実施例1において、上記「(1)混合液調製工程」で、第一の重合性単量体の材料及び量を表1に示す通りとした以外は、実施例1と同様の手順で、比較例3の熱伝導率調整剤を製造した。
[比較例4]
 実施例1において、上記「(3)重合工程」で、第二の重合性単量体として、メチルアクリレート5部に代えて、スチレン(20℃の蒸留水に対する溶解度が0.2g/L)5部を添加した以外は、実施例1と同様の手順で、比較例4の熱伝導率調整剤を製造した。
Figure JPOXMLDOC01-appb-T000001
[評価]
1.重合転化率
 各実施例及び各比較例の重合工程において、第一の重合反応で生成した第一の前駆体組成物50gを採取し、加圧ろ過することにより、当該第一の前駆体組成物に含まれる第一の前駆体粒子(水分と炭化水素系溶剤を含む)を得て、1mg単位まで精秤した。精秤した第一の前駆体粒子約3gに、酢酸エチル27gを加えて15分間撹拌した後、メタノール13gを加えて更に10分間撹拌した。得られた溶液を静置して、不溶分を沈殿させ、この溶液の上澄み液を測定用試料とし採取した。測定用試料2μLをガスクロマトグラフに注入して、以下の条件でガスクロマトグラフィー(GC)により測定試料中の重合性単量体量を定量して、これを未反応の第一の重合性単量体の質量とした。また、加圧ろ過して得られた第一の前駆体粒子は200℃で2時間乾燥させることで、水分と炭化水素系溶剤を除去し、第一の前駆体粒子の固形分の質量を求めた。そして、下記式(A)により重合転化率を算出した。
 重合転化率(質量%)=100-(未反応の第一の重合性単量体の質量/第一の前駆体粒子の固形分の質量)×100   式(A)
<GCの条件>
  カラム:TC-WAX(0.25mm×30m)
  カラム温度:80℃
  インジェクション温度:200℃
  FID検出側温度:200℃
2.残留モノマー量
 中空粒子3gを1mg単位まで精秤し、酢酸エチル27gを加えて15分間撹拌した後、メタノール13gを加えて更に10分間撹拌した。得られた溶液を静置して、不溶分を沈殿させ、この溶液の上澄み液を測定用試料とし採取した。測定用試料2μlをガスクロマトグラフに注入して、以下の条件でガスクロマトグラフィー(GC)により測定試料中の未反応の重合性単量体量を定量した。中空粒子に含まれる未反応の重合性単量体の含有割合を算出して、残留モノマー量とした。
<GCの条件>
  カラム:TC-WAX(0.25mm×30m)
  カラム温度:80℃
  インジェクション温度:200℃
  FID検出側温度:200℃
 各実施例及び各比較例で得た中空粒子の形態の熱伝導率調整剤について、シェルが含有する重合体における各単量体単位の含有割合(質量%)を表2に示す。
 また、各実施例及び各比較例で得た熱伝導率調整剤について、以下の測定及び評価を行った。結果を表2に示す。
3.体積平均粒径
 レーザー回析式粒度分布測定器(島津製作所社製、商品名:SALD-2000)を用いて熱伝導率調整剤である中空粒子の粒径を測定し、その体積平均を算出して、体積平均粒径とした。
4.密度及び空隙率
 4-1.見かけ密度の測定
 まず、容量100cmのメスフラスコに約30cmの熱伝導率調整剤である中空粒子を充填し、充填した中空粒子の質量を精確に秤量した。次に、中空粒子の充填されたメスフラスコに、気泡が入らないように注意しながら、イソプロパノールを標線まで精確に満たした。メスフラスコに加えたイソプロパノールの質量を精確に秤量し、下記式(I)に基づき、中空粒子の見かけ密度D(g/cm)を計算した。
 式(I)
 見かけ密度D=[中空粒子の質量]/(100-[イソプロパノールの質量]÷[測定温度におけるイソプロパノールの比重])
 4-2.真密度の測定
 予め中空粒子を粉砕した後、容量100cmのメスフラスコに中空粒子の粉砕片を約10g充填し、充填した粉砕片の質量を精確に秤量した。
 あとは、上記見かけ密度の測定と同様にイソプロパノールをメスフラスコに加え、イソプロパノールの質量を精確に秤量し、下記式(II)に基づき、中空粒子の真密度D(g/cm)を計算した。
 式(II)
 真密度D=[中空粒子の粉砕片の質量]/(100-[イソプロパノールの質量]÷[測定温度におけるイソプロパノールの比重])
 4-3.空隙率の算出
 中空粒子の見かけ密度Dと真密度Dから、下記式(III)に基づき、中空粒子の空隙率を計算した。
 式(III)
 空隙率(%)=100-(見かけ密度D/真密度D)×100
5.浸漬試験
 25℃の環境下、熱伝導率調整剤である中空粒子0.1mgをアセトン4mLに添加し、振とう機を用いて振とう速度100rpmの条件で10分間振とう後、48時間静置し、沈殿した中空粒子の割合を求め、下記評価基準で評価した。なお、アセトン中に沈殿した中空粒子を遠心分離機で分離し、乾燥して、アセトン中に沈殿した中空粒子の質量を測定した。アセトンに浸漬させた中空粒子全体の質量に対する、アセトン中に沈殿した中空粒子の質量の割合を算出することで、沈殿した中空粒子の割合を求めた。
(浸漬試験の評価基準)
 〇:沈殿した中空粒子が5質量%未満
 ×:沈殿した中空粒子が5質量%以上
Figure JPOXMLDOC01-appb-T000002
 [考察]
 上記表2に示される通り、比較例1~4で得られた中空粒子の形態の熱伝導率調整剤は、上記浸漬試験においてアセトン中に沈殿した中空粒子が5質量%以上であった。
 比較例1では、重合反応を一段階で行ったことにより、シェル中に未反応の重合性官能基が残留し、シェルの架橋構造が粗かったため、得られた中空粒子はアセトンが浸透しやすかったと推定される。
 比較例2では、第二の重合性単量体を添加したタイミングが、第一の重合性単量体の重合転化率が93質量%に達する前であったため、第二の重合性単量体を添加するタイミングが早すぎたことにより、シェル中に未反応の重合性官能基が残留し、シェルの架橋構造が粗かったため、得られた中空粒子はアセトンが浸透しやすかったと推定される。
 比較例3では、第一の重合性単量体中の架橋性単量体の含有量が少なく、更に、未反応のまま残留した非架橋性単量体が多かったことにより、シェルの架橋構造が粗かったため、得られた中空粒子はアセトンが浸透しやすかったと推定される。
 比較例4では、第二の重合性単量体として、20℃の蒸留水に対する溶解度が0.3g/L以上の親水性単量体に代えて、20℃の蒸留水に対する溶解度が0.2g/Lのスチレンを用いたため、第二の重合性単量体が、シェル内に取り込まれにくかったことにより、シェルに未反応の重合性官能基が残留し、シェルの架橋構造が粗かったため、得られた中空粒子はアセトンが浸透しやすかったと推定される。
 これに対し、実施例1~8で得られた中空粒子の形態の熱伝導率調整剤は、全単量体単位100質量部中に架橋性単量体単位を80質量部以上含む重合体をシェル中に含有し、上記浸漬試験においてアセトン中に沈殿した中空粒子が5質量%未満であった。実施例1~8では、混合液が含有する第一の重合性単量体が、第一の重合性単量体100質量部中に架橋性単量体を十分に含み、重合工程において、当該第一の重合性単量体の重合転化率が93質量%以上になったときに、20℃の蒸留水に対する溶解度が0.3g/L以上である第二の重合性単量体を添加して更に重合反応に供したため、架橋性単量体を多く用いたものの、シェル中に未反応の重合性官能基がほとんど残留せず、シェルの架橋構造が緻密になったため、アセトンが浸透しにくい中空粒子が得られたと推定される。
[実施例9~17、比較例5~8]
(1)樹脂組成物(ワニス)の調製
 エポキシ樹脂(ダイセル社製、品番:EHPE3150CE)50部、硬化剤(DIC社製、品番:LF6161、固形分65%MEK溶液)24.9部、硬化触媒として2-エチル-4-メチルイミダゾール(ナカライテスク社製、2E4MZ)0.1部、表3に示す量のメチルエチルケトン(MEK)を入れ、室温で30分攪拌した。攪拌後に、上記実施例1~8又は比較例1~4で得られた熱伝導率調整剤である中空粒子を、表3に示す量で添加して、さらに1時間攪拌して、固形分約70%の樹脂組成物(ワニス)を作製した。
(2)成形体の作製
 上記で得られたワニス15gを銅箔上に載せ、130℃の真空乾燥機で泡ができなくなるまで脱泡し、110℃の熱風循環型オーブンで2時間硬化させた。その後、110℃のプレス機にて0.5MPaで加熱加圧開始後205℃まで昇温(4℃/min)して1時間保持後、プレス機から取り出して板状の成形体を作製した。成形体を20mm×40mm×0.5mmの形状にカットして測定用成形板とした。
[比較例9]
 エポキシ樹脂(ダイセル社製、品番:EHPE3150CE)50部、硬化剤(DIC社製、品番:LF6161、固形分65%MEK溶液)24.9部、硬化触媒として2-エチル-4-メチルイミダゾール(ナカライテスク社製、2E4MZ)0.1部、メチルエチルケトン(MEK)20部を入れ、室温で30分攪拌し、樹脂組成物(ワニス)を作製した。
 得られたワニスを用い、実施例9~17及び比較例5~8と同様の手順で、成形体を作製し、成形体を20mm×40mm×0.5mmの形状にカットして測定用成形板とした。
[評価]
6.熱伝導率
 迅速熱伝導率計(QTM-500、京都電子工業社製)及びうす膜測定用ソフト(SOFT-QTM5W、京都電子工業社製)を用いて、下記試験条件の下、非定常法細線加熱法にて、測定用成形板の熱伝導率を測定した。同じ手順で作製した2つの測定用成形板の熱伝導率の平均を表3に示す。
(試験条件)
 ・プローブ:PD-11
 ・リファレンスプレート:発泡ポリエチレン
7.反射率
 上記熱伝導率の測定に用いた測定用成形板について、UV分光光度計(島津製作所製、UV-VIS-NIR Spectrophotometer、UV-3600)を用い、320nmから820nmまでの領域で反射率を測定した。420nm、580nm及び700nmの反射率について、同じ手順で作製した2つの測定用成形板の反射率の平均を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 [考察]
 上記表3に示される通り、比較例1~4の熱伝導率調整剤を20質量%(体積基準では41.7体積%)含有する樹脂組成物を用いて得られた比較例5~8の成形体は、熱伝導率が0.189~0.199W/m・Kであり、熱伝導率調整剤を含有しない比較例9の成形体(熱伝導率:0.202W/m・K)に比べて、熱伝導率が0.003~0.013W/m・Kしか低減していなかった。
 これに対し、実施例1の熱伝導率調整剤を10質量%(体積基準では24.1体積%)含有する樹脂組成物を用いて得られた実施例9の成形体は、比較例1~4に比べて熱伝導率調整剤の含有量が少ないものの、熱伝導率が0.175W/m・Kであり、熱伝導率調整剤を含有しない比較例9の成形体に比べて、熱伝導率が0.027W/m・Kも低減していた。実施例1~8の熱伝導率調整剤を20質量%(体積基準では41.7体積%)で含有する樹脂組成物を用いて得られた実施例10~17の成形体は、熱伝導率が0.142~0.150W/m・Kであり、熱伝導率調整剤を含有しない比較例9の成形体に比べて、熱伝導率が0.052~0.060W/m・Kも低減していた。
 比較例1~4の熱伝導率調整剤は、上記表2に示されるように、上記浸漬試験においてアセトン中に沈殿した中空粒子が5質量%以上であり、シェルの架橋構造が粗かったため潰れやすいと推定される。そのため、比較例1~4の熱伝導率調整剤を含有する比較例5~8の成形体では、成形体の作製過程において、中空粒子の形態の熱伝導率調整剤が潰れ、空隙が維持されなかったため、熱伝導率が十分に低減されなかったと推定される。
 これに対し、実施例1~8の熱伝導率調整剤は、上記表2に示されるように、シェル中に架橋性単量体単位を多く含み、上記浸漬試験においてアセトン中に沈殿した中空粒子が5質量%未満であり、シェルの架橋構造が緻密であったため、潰れにくいと推定される。そのため、実施例1~8の熱伝導率調整剤を含有する実施例9~17の成形体では、成形体の作製過程において、中空粒子の形態の熱伝導率調整剤が潰れにくく、空隙が維持されたため、熱伝導率が十分に低減されたと推定される。
 また、実施例9、10を比較すると、熱伝導率調整剤の含有量が多いほど、成形体は熱伝導率が低減されていた。
 実施例10、11を比較すると、熱伝導率調整剤の空隙率が高いほど、成形体は熱伝導率が低減されていた。
 実施例10、12、13を比較すると、熱伝導率調整剤のシェル中の架橋性単量体単位の含有量が多いほど、成形体は熱伝導率が低減されていた。シェル中の架橋性単量体単位の含有量が多いことにより、シェルの架橋構造が緻密となり、熱伝導率調整剤の耐溶剤性及び強度が向上したためと推定される。
 実施例10、14~17を比較すると、熱伝導率調整剤の作製に用いた第二の重合性単量体の種類によって成形体の熱伝導率が異なっていた。第二の重合性単量体として、炭素数1~4のアルキル基を有するアクリル酸アルキルエステル類を用いた場合に、熱伝導率が低減しやすい傾向があった。
 また、実施例9、10で得られた成形体は、熱伝導率調整剤を含有しない比較例9の成形体に比べて、幅広い波長で反射率が高く、中でも420~780nmの波長領域、特に500~780nmの波長領域で、反射率が上昇していた。実施例9、10の反射率の結果によると、熱伝導率調整剤の含有量が多いほど、反射率は上昇する傾向があった。実施例9、10の成形体の反射率が上昇したのは、熱伝導率調整剤が空隙を有し、ポリマーシェルの屈折率(一般的には1.3~1.5程度)と空隙内部の空気、もしくは窒素、真空との屈折率(1.0)との差により効率よく可視光を反射したためと考えられる。また、実施例10と同程度の体積平均粒径及び空隙率を有する熱伝導率調整剤を、実施例10と同じ量で含有する実施例11~17の成形体は、実施例10と同程度の反射率を有すると推定される。
1 水系媒体
2 低極性材料
3 分散安定剤
4 単量体組成物
4a 炭化水素系溶剤
4b 炭化水素系溶剤以外の材料
4c 水系媒体中に分散した重合性単量体
5 油溶性重合開始剤
6 シェル
8 中空部
10 液滴
20 中空部に炭化水素系溶剤を内包する中空粒子(第二の前駆体粒子)
100 中空部が気体で満たされた中空粒子

Claims (6)

  1.  樹脂を含むシェル及び当該シェルに取り囲まれた中空部を備える中空粒子の形態の熱伝導率調整剤であって、
     前記シェルが前記樹脂として、全単量体単位100質量部中に架橋性単量体単位を80質量部以上含む重合体を含有し、
     25℃の環境下、熱伝導率調整剤0.1mgをアセトン4mLに添加し、振とう速度100rpmの条件で10分間振とうした後、48時間静置する熱伝導率調整剤の浸漬試験において、アセトン中に沈殿する熱伝導率調整剤が5質量%未満である、熱伝導率調整剤。
  2.  前記シェルに含まれる前記重合体が、20℃の蒸留水に対する溶解度が0.3g/L以上である親水性非架橋性単量体に由来する親水性非架橋性単量体単位を更に含み、前記重合体の全単量体単位100質量部中、前記親水性非架橋性単量体単位の含有量が2~20質量部であり、前記架橋性単量体単位の含有量が80~98質量部である、請求項1に記載の熱伝導率調整剤。
  3.  前記シェルに含まれる前記重合体が、前記架橋性単量体単位として、3官能以上の架橋性単量体に由来する3官能以上の架橋性単量体単位を含み、前記重合体の全単量体単位100質量部中、前記3官能以上の架橋性単量体単位の含有量が5~50質量部である、請求項1又は2に記載の熱伝導率調整剤。
  4.  空隙率が50%以上である、請求項1~3のいずれか一項に記載の熱伝導率調整剤。
  5.  体積平均粒径が1.0~30.0μmである、請求項1~4のいずれか一項に記載の熱伝導率調整剤。
  6.  請求項1~5のいずれか一項に記載の熱伝導率調整剤を含有する成形体。
PCT/JP2022/007122 2021-02-26 2022-02-22 熱伝導率調整剤及び成形体 WO2022181580A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023502419A JPWO2022181580A1 (ja) 2021-02-26 2022-02-22
US18/276,764 US20240124631A1 (en) 2021-02-26 2022-02-22 Thermal conductivity modifier and molded body
KR1020237027451A KR20230150270A (ko) 2021-02-26 2022-02-22 열전도율 조정제 및 성형체
EP22759616.0A EP4299640A1 (en) 2021-02-26 2022-02-22 Thermal conductivity regulating agent and molded body
CN202280013587.2A CN116829255A (zh) 2021-02-26 2022-02-22 导热率调节剂和成型体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-030282 2021-02-26
JP2021030282 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181580A1 true WO2022181580A1 (ja) 2022-09-01

Family

ID=83048116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007122 WO2022181580A1 (ja) 2021-02-26 2022-02-22 熱伝導率調整剤及び成形体

Country Status (6)

Country Link
US (1) US20240124631A1 (ja)
EP (1) EP4299640A1 (ja)
JP (1) JPWO2022181580A1 (ja)
KR (1) KR20230150270A (ja)
CN (1) CN116829255A (ja)
WO (1) WO2022181580A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222492A (ja) * 2009-03-24 2010-10-07 Sekisui Chem Co Ltd インク組成物
JP2017066351A (ja) 2015-09-29 2017-04-06 積水化成品工業株式会社 中空粒子及びその用途
WO2017163439A1 (ja) * 2016-03-22 2017-09-28 積水化成品工業株式会社 中空粒子及びその用途
WO2019177013A1 (ja) * 2018-03-14 2019-09-19 積水化成品工業株式会社 中空粒子分散体
WO2019177006A1 (ja) * 2018-03-14 2019-09-19 積水化成品工業株式会社 中空粒子、その製造方法及びその用途
WO2019188996A1 (ja) 2018-03-30 2019-10-03 日本ゼオン株式会社 中空樹脂粒子及びシート
JP2021054941A (ja) * 2019-09-30 2021-04-08 積水化成品工業株式会社 中空粒子及びその用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222492A (ja) * 2009-03-24 2010-10-07 Sekisui Chem Co Ltd インク組成物
JP2017066351A (ja) 2015-09-29 2017-04-06 積水化成品工業株式会社 中空粒子及びその用途
WO2017163439A1 (ja) * 2016-03-22 2017-09-28 積水化成品工業株式会社 中空粒子及びその用途
WO2019177013A1 (ja) * 2018-03-14 2019-09-19 積水化成品工業株式会社 中空粒子分散体
WO2019177006A1 (ja) * 2018-03-14 2019-09-19 積水化成品工業株式会社 中空粒子、その製造方法及びその用途
WO2019188996A1 (ja) 2018-03-30 2019-10-03 日本ゼオン株式会社 中空樹脂粒子及びシート
JP2021054941A (ja) * 2019-09-30 2021-04-08 積水化成品工業株式会社 中空粒子及びその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAGAKU BINRANKISO HEN: "Kaitei 4 Ban", 30 September 1993, MARUZEN PUBLISHING CO., LTD., pages: II-498,II-503

Also Published As

Publication number Publication date
KR20230150270A (ko) 2023-10-30
CN116829255A (zh) 2023-09-29
JPWO2022181580A1 (ja) 2022-09-01
US20240124631A1 (en) 2024-04-18
EP4299640A1 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
CN114729088B (zh) 中空颗粒、树脂组合物及成型体
CN111868119B (zh) 中空树脂颗粒和片材
WO2022092076A1 (ja) 中空粒子の製造方法及び中空粒子
WO2023106307A1 (ja) 中空粒子、樹脂組成物、及び樹脂成形体
WO2023074651A1 (ja) 中空粒子、中空粒子の製造方法、樹脂組成物、及び成形体
WO2023106326A1 (ja) 中空粒子、中空粒子の製造方法、及び樹脂組成物
WO2022107674A1 (ja) 中空粒子
WO2022181580A1 (ja) 熱伝導率調整剤及び成形体
WO2023106322A1 (ja) 中空粒子、中空粒子の製造方法、及び樹脂組成物
WO2022163600A1 (ja) 中空粒子
WO2022181579A1 (ja) 繊維強化成形体及び繊維強化成形体の製造方法
WO2024095851A1 (ja) 中空粒子、中空粒子の製造方法、樹脂組成物及び樹脂構造体
WO2024048093A1 (ja) 中空粒子、樹脂組成物、及び成形体
WO2023163084A1 (ja) 中空粒子、樹脂組成物、及び樹脂成形体
CN116194495B (zh) 中空颗粒
WO2024122426A1 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、及びプリント基板
WO2023228964A1 (ja) 中空粒子、樹脂組成物、樹脂成形体、封止用樹脂組成物、硬化物、及び半導体装置
WO2023127624A1 (ja) 中空粒子
WO2022181484A1 (ja) 中空粒子
WO2023189820A1 (ja) 中空粒子
WO2023189800A1 (ja) 中空粒子及びその製造方法
JP2023086486A (ja) 中空粒子の製造方法、及び樹脂組成物の製造方法
CN118119445A (zh) 中空颗粒、中空颗粒的制造方法、树脂组合物以及成型体
WO2023127812A1 (ja) 中空粒子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759616

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023502419

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280013587.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18276764

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022759616

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022759616

Country of ref document: EP

Effective date: 20230926