WO2022091465A1 - 積層型半導体装置 - Google Patents

積層型半導体装置 Download PDF

Info

Publication number
WO2022091465A1
WO2022091465A1 PCT/JP2021/018303 JP2021018303W WO2022091465A1 WO 2022091465 A1 WO2022091465 A1 WO 2022091465A1 JP 2021018303 W JP2021018303 W JP 2021018303W WO 2022091465 A1 WO2022091465 A1 WO 2022091465A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
chip
wall
pattern
insulating layer
Prior art date
Application number
PCT/JP2021/018303
Other languages
English (en)
French (fr)
Inventor
真 元吉
Original Assignee
東北マイクロテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東北マイクロテック株式会社 filed Critical 東北マイクロテック株式会社
Priority to EP21885589.8A priority Critical patent/EP4060722A4/en
Priority to US17/789,119 priority patent/US20230343750A1/en
Priority to CN202180007791.9A priority patent/CN114930526A/zh
Publication of WO2022091465A1 publication Critical patent/WO2022091465A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/585Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries comprising conductive layers or plates or strips or rods or rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/111Manufacture and pre-treatment of the bump connector preform
    • H01L2224/1111Shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13005Structure
    • H01L2224/13007Bump connector smaller than the underlying bonding area, e.g. than the under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • H01L2224/13018Shape in side view comprising protrusions or indentations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13021Disposition the bump connector being disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/1601Structure
    • H01L2224/16012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/16014Structure relative to the bonding area, e.g. bond pad the bump connector being smaller than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/1605Shape
    • H01L2224/16057Shape in side view
    • H01L2224/16059Shape in side view comprising protrusions or indentations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06524Electrical connections formed on device or on substrate, e.g. a deposited or grown layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06565Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking the devices having the same size and there being no auxiliary carrier between the devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • the present invention relates to a laminated semiconductor device in which a plurality of semiconductor chips are laminated, and particularly relates to an airtight sealing technique applicable to a laminated semiconductor device in which a flat pattern is miniaturized and operates at high speed.
  • LSI Large Scale Integrated Circuit design rules are becoming more and more miniaturized, and there is a tendency for stacking such as three dimensions.
  • the design rules of integrated circuits become finer, the pitch of input / output electrodes connected to external circuits also becomes finer.
  • the design rule of the plane pattern of the active element becomes 10 nm or less due to the demand for high-speed operation, and the pitch interval of the input / output electrodes becomes 10 ⁇ m or less as the plane pattern of the active element becomes finer.
  • the pitch interval between the input / output electrodes becomes narrow, it becomes difficult to use the solder bump electrodes that have been conventionally used.
  • solder bump electrode In the solder bump electrode, tin-silver (SnAg) plating is generally used to apply the solder, but the height of the SnAg plating varies. Further, the protrusion when the solder melts becomes a problem, and in the structure using the solder bump electrode, it is difficult to make the pitch interval of the input / output electrodes 15 ⁇ m or less.
  • SnAg tin-silver
  • Patent Document 1 In the generation of solder bump electrodes that can adopt a rough design rule with a pitch of 15 ⁇ m or more, packaging that airtightly seals between the base substrate and the sealing cap by a bellows structure using an anisotropic bellows ring. A technique has been proposed (see Patent Document 1).
  • the invention described in Patent Document 1 takes into consideration the imbalance of mechanical thermal stress due to the difference between the elongation of the solder bump electrode in the semiconductor chip due to the temperature change and the elongation of the metal in the sealing portion. That is, the invention described in Patent Document 1 is a technique of preventing the occurrence of cracks in the solder bump electrode due to the temperature cycle due to the circumstances peculiar to the packaging technique used in the old generation semiconductor device using the solder bump electrode. It is an issue.
  • Patent Document 1 is a generation of miniaturization and high speed in which the pitch interval of the input / output electrodes is 10 ⁇ m or less, and the unique circumstances of the laminated semiconductor device in which the use of the solder bump electrode is restricted. It does not take into account the technical issues that accompany it.
  • the present invention has been made to solve the above problems, and even when a miniaturized structure having an input / output electrode pitch interval of 10 ⁇ m or less is adopted, it is inexpensive and inexpensive without increasing the number of process steps. It is an object of the present invention to provide a laminated semiconductor device capable of easily and highly reliable airtight sealing.
  • the embodiments of the present invention include (a) an upper semiconductor substrate in which an upper integrated circuit is integrated, (b) an upper insulating layer provided on the main surface of the upper semiconductor substrate, and (c).
  • the upper sealing pattern portion that circulates along the periphery of the upper insulating layer to form a closed planar pattern and (d) the upper insulating layer face each other with a chip mounting area having a small main surface and a small co-part.
  • the lower chip is arranged so as to (e), and (e) a pattern is formed corresponding to the arrangement of the upper sealing pattern portion, which is arranged on the main surface of this lower chip, and orbits around the chip mounting area.
  • the gist is that it is a laminated semiconductor device provided with a lower sealing pattern portion that constitutes a metallic connection by solid-phase diffusion bonding with the upper sealing pattern portion.
  • an airtight space is formed inside the chip mounting region of the lower chip, the upper insulating layer, and the metallurgical connector.
  • FIG. 3 is a plan view of an upper chip used in the laminated semiconductor device shown in FIG. 1. It is a top view of the lower chip used in the laminated semiconductor device shown in FIG. 1.
  • FIG. 3 is a cross-sectional view seen from the VV direction of FIG. 3, and is a structural diagram illustrating a state before airtight sealing.
  • FIG. 5 is a cross-sectional view corresponding to FIG. 5, which is a structural diagram illustrating a state after the airtight sealing step.
  • FIG. 9 is a cross-sectional view corresponding to FIG. 9, and is a structural diagram illustrating a state after the airtight sealing step.
  • 11 (a) is a plan view showing the topology of the sawtooth meander line provided on the upper chip of the laminated semiconductor device according to the second embodiment, and FIG.
  • FIG. 11 (b) is a plan view showing the upper chip of FIG. 11 (a).
  • FIG. 11 (c) is a plan view showing the topology of the serrated meander line provided on the lower tip on which the upper tip is mounted, and FIG. It is a top view explaining that a plurality of joints occur periodically.
  • 12 (a) is a plan view showing the topology of the waveform meander line provided on the upper chip of the laminated semiconductor device according to the first modification of the second embodiment
  • FIG. 12 (b) is a plan view showing FIG. 12 (a).
  • FIG. 12 (c) shows the metallurgy by the intersection of the waveform meander line of the upper chip and the waveform meander line of the lower chip. It is a top view explaining that a plurality of target joints occur periodically.
  • 13 (a) is a plan view showing the topology of the semicircular meander line provided on the upper chip of the laminated semiconductor device according to the second modification of the second embodiment
  • FIG. 13 (b) is a plan view showing the topology of the semicircular meander line
  • FIG. 13 (c) is a plan view showing the topology of the semi-arc-shaped meander line provided on the lower chip on which the upper chip of (a) is mounted.
  • FIG. 13 (c) shows the semi-arc-shaped meander line of the upper chip and the semicircle of the lower chip. It is a top view explaining that a plurality of metallic junctions due to the intersection of arc-shaped meander lines occur periodically. It is a figure explaining a part of the structure of the laminated semiconductor device which concerns on 3rd Embodiment of this invention, and is a bird's-eye view which shows the case where the lower chip is an interposer. It is sectional drawing explaining the lower chip as an interposer shown in FIG. It is a figure explaining the state before the airtight sealing of the laminated semiconductor device which concerns on 4th Embodiment of this invention, and is the figure corresponding to the cross-sectional view seen from the VV direction of FIG. be.
  • the first to fourth embodiments of the present invention will be described with reference to the drawings.
  • the same or similar parts are designated by the same or similar reference numerals, and duplicate description will be omitted.
  • the drawings are schematic, and the relationship between the thickness and the plane dimensions, the ratio of the thickness of each layer, etc. may differ from the actual ones.
  • parts having different dimensional relationships and ratios may be included between the drawings.
  • the first to fourth embodiments shown below exemplify the apparatus and method for embodying the technical idea of the present invention, and the technical idea of the present invention is based on the material of the constituent parts.
  • the shape, structure, arrangement, etc. are not specified as follows.
  • the definition of the direction such as up and down in the following description of the first to fourth embodiments is merely a definition for convenience of description, and does not limit the technical idea of the present invention.
  • the top and bottom are converted to left and right and read, and if the object is rotated by 180 ° and observed, the top and bottom are reversed and read. Therefore, in the case of 180 ° rotation, it is of course possible to read "lower chip” as “upper chip” and "upper chip” as “lower chip” in the following description.
  • the laminated semiconductor device according to the first embodiment of the present invention has a laminated structure of a lower chip 10A and an upper chip 10B mounted on the lower chip 10A.
  • the lower chip 10A includes a lower semiconductor substrate 11A, a lower integrated circuit arranged in a surface region of a main surface (upper surface) of the lower semiconductor substrate 11A, and a lower integrated circuit.
  • the lower insulating layer 13A provided on the main surface (on the upper surface) of the lower semiconductor substrate 11A so as to cover the lower integrated circuit, and the edge of the main surface of the lower semiconductor substrate 11A on the lower insulating layer 13A.
  • a band-shaped lower sealing pattern portion 14A that circulates along the line is provided.
  • the lower integrated circuit enables high-speed operation with a fine pattern designed according to a design rule of, for example, 3 nm to 7 nm.
  • FIG. 3 illustrates the case where the lower chip 10A is rectangular, and the strip-shaped lower sealing pattern portion 14A also has a rectangular frame shape along the periphery of the lower chip 10A.
  • a pattern (perforated rectangular pattern) constitutes a closed pattern.
  • the lower sealing pattern portion 14A also has a flat pattern that matches the shape of the lower chip 10A. ..
  • the upper chip 10B of the laminated semiconductor device according to the first embodiment is arranged on the surface region of the upper semiconductor substrate 11B and the main surface of the upper semiconductor substrate 11B.
  • the sealing outer wall 15 o and the sealing outer wall 15 o extending in parallel with each other at a distance from each other along the edge of the upper semiconductor substrate 11B on the second sealing portion land 14B and the second sealing portion land 14B. It is provided with an inner wall for sealing 15 i .
  • the upper integrated circuit has a fine and high-speed operational planar pattern designed by a design rule of 3 nm to 7 nm, similar to the lower integrated circuit of the lower chip 10A.
  • the second sealing portion land 14B, the sealing outer wall 15 o , and the sealing inner wall 15 i constitute the "upper sealing pattern portion (14B, 15 o , 15 i )" of the upper chip 10B.
  • the lower sealing pattern portion 14A and the upper sealing pattern portion (14B, 15 o , 15 i ) are solid-phase diffusion-bonded to form a metallurgical connector (14A, 15 o , 15 i) . ) Is configured.
  • An airtight space is formed inside the lower insulating layer 13A, the upper insulating layer 13B, and the metallurgical connecting body (14A, 15 o , 15 i ).
  • a hollow cylindrical lower bump B p1 , B p2 , B p3 , ..., B pm is formed inside the circumferential pattern of the lower sealing pattern portion 14A of the lower tip 10A.
  • the side of the rectangular frame-shaped pattern formed by the lower sealing pattern portion 14A, which is defined in the direction of the arrangement of the lower bumps B p1 , B p2 , B p3 , ..., B pm is defined as the "first side".
  • a hollow cylindrical lower bump B q1 , B q2 , B is formed around the center of the lower chip 10A.
  • q3 , ......, B qn are arranged at a pitch of 10 ⁇ m or less.
  • Hollow cylindrical lower bumps B r1 , B r2 , B r3 , around the center of the lower chip 10A along the third side of the rectangular frame pattern that is continuous with the second side and orthogonal to the second side. ..., B rm are arranged at a pitch of 10 ⁇ m or less.
  • Hollow cylindrical lower bumps B s1 , B s2 , B s3 around the center of the lower chip 10A along the fourth side of a rectangular frame pattern that is continuous with the third side and orthogonal to the third side. ..., B sns are arranged at a pitch of 10 ⁇ m or less.
  • the arrangement of the lower bumps B p1 , B p2 , B p3 , ..., B pm the arrangement of the lower bumps B q1 , B q2 , B q3 , ..., B qn , the arrangement of the lower bumps B r1 , B.
  • another rectangular frame pattern is constructed inside.
  • the illustrated lower bump B ij is not limited to the hollow cylindrical shape, and the arrangement of the lower bump B ij is also arranged circumferentially in a single rectangle as shown in FIGS. 2 and 4. It is not limited to the case.
  • the arrangement of the lower bumps B ij is a rectangular or concentric planar pattern that circulates around the lower chip 10A in multiples of double or triple or more, and a planar pattern that is arranged in an array on the lower chip 10A. But it doesn't matter.
  • the lower semiconductor substrate 11A for example, a silicon substrate can be adopted, but this is merely an example for convenience of explanation.
  • the lower semiconductor substrate 11A may be a compound semiconductor such as silicon carbide (SiC) or gallium arsenide (GAAs).
  • a memory such as DRAM or SRAM
  • a pixel array of a solid-state image pickup device for example, a circuit block such as an arithmetic circuit, a control circuit, an input / output circuit, a sense circuit, an amplifier circuit, or a pixel array is provided.
  • a structure provided with a lower integrated circuit can be adopted, but these are also merely examples.
  • the lower insulating layer 13A is, for example, a silicon oxide film (SiO 2 film), a silicon nitride film (Si 3N 4 film ), a phosphoric acid glass film (BSG film), a fluorine-containing oxide film (SiOF film), and carbon-containing oxidation.
  • SiO 2 film silicon oxide film
  • Si 3N 4 film silicon nitride film
  • BSG film phosphoric acid glass film
  • SiOF film fluorine-containing oxide film
  • carbon-containing oxidation carbon-containing oxidation.
  • inorganic insulating layers such as membranes (SiOC membranes)
  • organic insulating layers such as methyl-containing polysiloxane (SiCOH), hydrogen-containing polysiloxane (HSQ), porous methylsilsesquioxane membranes and polyallylene membranes can be used.
  • the lower insulating layer 13A may have a single-layer structure consisting of only a field insulating film, or may have a multi-layer structure in which the above-mentioned various insulating materials are combined.
  • the uppermost layer is a passivation film. Can function as.
  • the lower sealing pattern portion 14A shall have sufficient strength and a required size so as not to cause damage such as cracks in the lower insulating layer 13A.
  • a soft metal having a Vickers hardness of about 20 Hv to 30 Hv, such as gold (Au) can be used.
  • Au-silicon (Si), Au-germanium (Ge), Au-antimony (Sb), Au-tin (Sn), Au-lead (Pb), Au-zinc (Zn), which contain 80% or more of Au, Au alloys such as Au-copper (Cu) having a Vickers hardness of about 15 Hv to 120 Hv can also be used.
  • the Vickers hardness of the Au-90Sn alloy containing 90% of Sn is about 16 Hv due to the remarkable low hardness of Sn.
  • the lower sealing pattern portion 14A may be formed by a multilayer structure in which a layer containing a metal material is formed.
  • the lower bump land portion which is the lower layer of the hollow cylindrical lower bump B ij , is impregnated with a refractory metal material such as Ni, Cr, Ti, etc. for the lower bump.
  • the land portion may be brought into contact with the bottom portion of the lower bump B ij .
  • the lower bump land portion may be embedded inside the lower insulating layer 13A constituting the multilayer wiring insulating layer, and the lower bump land portion and the lower bump B ij may be connected to each other by vias. can.
  • the land portion for the lower bump is electrically connected to a bonding pad which is an input / output electrode of the lower integrated circuit via a via or the like.
  • the upper sealing pattern portion ( The cross section perpendicular to the longitudinal direction of 14B, 15 o , 15 i ) is U-shaped.
  • the lower sealing pattern portion 14A formed on the lower chip 10A is a rectangular frame-shaped pattern. be. Therefore, as shown in FIG. 3, the second sealing portion land 14B provided on the upper chip 10B also corresponds to the pattern of the lower sealing pattern portion 14A and has a substantially mirror image relationship with the lower sealing pattern portion 14A.
  • a close rectangular frame pattern constitutes a closed pattern.
  • the second sealing portion land 14B also constitutes a closed pattern with a flat pattern that projects the shape of the lower sealing pattern portion 14A. be.
  • the lower bumps B p1 , B p2 , B p3 , ..., B pm are hollow according to the arrangement.
  • Square tubular upper bumps B up1 , B up2, B up3 , ..., B upm are arranged at a pitch of 10 ⁇ m or less. If the side of the rectangular frame pattern of the second sealing portion land 14B along the direction of the arrangement of the upper bumps B up1 , B up2, B up3 , ..., B upm is defined as the "upper rectangular first side", the upper side is defined.
  • Hollow square tubular upper bumps B uq1 , B uq2 , B uq3 , ... ..., B uqn are arranged at a pitch of 10 ⁇ m or less according to the arrangement of the lower bumps B q1 , B q2 , B q3 , ..., B qn .
  • B urm are arranged at a pitch of 10 ⁇ m or less according to the arrangement of the lower bumps B r1 , B r2 , B r3 , ..., B rm .
  • Hollow square cylindrical upper bumps Bus1 , Bus2 , Bus3 around the center of the upper chip 10B along the fourth side of the upper rectangle that is continuous with the third side of the upper rectangle and orthogonal to the third side of the upper rectangle.
  • Busn are arranged at a pitch of 10 ⁇ m or less according to the arrangement of the lower bumps B s1 , B s2 , B s3 , ..., B sn .
  • the upper bump Buij illustrated is not limited to the shape of a hollow square cylinder.
  • the arrangement of the upper bumps B ij is not limited to the case where the upper bumps B uij are arranged around the rectangle as shown in FIG. 3, for example, if the arrangement of the lower bumps B i j is in the form of an array such as a matrix.
  • the upper bump B uij is also arranged in an array on the upper chip 10B in accordance with the arrangement of the lower bump B ij .
  • a silicon substrate can be adopted as in the lower semiconductor substrate 11A, but it is an example and is not limited to the silicon substrate.
  • an upper integrated circuit including a circuit block such as a memory, an arithmetic circuit, a control circuit, an input / output circuit, a sense circuit, and an amplifier circuit may be provided.
  • the upper insulating layer 13B includes, for example, an inorganic insulating layer such as a SiO 2 film, a Si 3N 4 film , a BSG film, a SiOF film, and a SiOC film, as well as a SiCOH, HSQ, porous methylsilsesquioxane film, a polyallylene film, and the like.
  • an inorganic insulating layer such as a SiO 2 film, a Si 3N 4 film , a BSG film, a SiOF film, and a SiOC film, as well as a SiCOH, HSQ, porous methylsilsesquioxane film, a polyallylene film, and the like.
  • the organic insulating layer of the above can be used, and it is possible to combine and laminate these various insulating film layers to form a multilayer wiring insulating layer having various multilayer structures.
  • the upper insulating layer 13B may have a single-layer structure having only a field insulating film, or may have a multilayer structure in which the above-mentioned various insulating materials are combined. In the case of a multilayer structure, the uppermost layer can function as a passivation film. It is desirable that the upper surface of the upper insulating layer 13B is flattened with high accuracy by a polishing method such as CMP.
  • the sealing outer wall 15 o and the sealing inner wall 15 i form a closed rectangle with a circular pattern consisting of two lines as a plane pattern, and the edge portion of the upper semiconductor substrate 11B. It goes around along.
  • the planar patterns of the sealing outer wall 15 o and the sealing inner wall 15 i are preferably closed in a rectangular ring shape, but the case where a part thereof is interrupted to the extent that the airtight sealing is not affected is excluded. It's not a thing.
  • the sealing parallel vertical wall structure (15 o, 15 i ) that circulates in a rectangular ring shape around the upper chip 10B of the laminated semiconductor device according to the first embodiment while maintaining the parallel wall topology is For example, it can be manufactured by the same method as the method for manufacturing a rectangular cylinder of a cylindrical bump disclosed by the present inventor in Japanese Patent Application Laid-Open No. 2019-190775.
  • the cylindrical lower bump Bij used for the lower tip 10A can also be manufactured by the method disclosed in Japanese Patent Application Laid-Open No. 2019-190775 . That is, the sealing parallel vertical wall structure (15 o, 15 i ) provided around the upper chip 10B can be manufactured by the method disclosed in JP-A-2019-190775 at the same time as the upper bump Buij provided near the central portion. Is.
  • the sealing parallel vertical wall structure (15 o, 15 i ) provided around the upper chip 10B can be easily formed by various sidewall techniques adopted as a method for manufacturing a semiconductor integrated circuit.
  • a photoresist film pattern having a rectangular cross section orbiting around the upper chip 10B is formed as a base, and a metal film such as Au or Au alloy is formed by vacuum vapor deposition or sputtering so as to include the vertical side wall of the photoresist film pattern. It is also possible to use the method of depositing on the entire surface.
  • a parallel vertical wall structure for sealing (15 o, 15 i ) can be formed.
  • a parallel vertical wall that can be formed by such a well-known sidewall process is referred to as a "sidewall pattern" in the laminated semiconductor device according to the first embodiment.
  • the material of the hollow square cylindrical upper bump B ij can be easily solid-phase diffusion-bonded to the hollow cylindrical lower bump B ij by pressure such as heat crimping under normal pressure or reduced pressure or ultrasonic heat crimping. Metal is preferable.
  • the sealing outer wall 15 o and the sealing inner wall 15 i are preferably metals that can be easily solid-phase diffusion bonded to the lower sealing pattern portion 14A by heat crimping, ultrasonic heat crimping, or the like.
  • the sealing outer wall 15 o and the sealing inner wall 15 i may be made of the same material as the upper bump B uij .
  • the lower bump B ij and the lower sealing pattern portion 14A are made of Au or Au alloy
  • the upper bump B ij , the U-shaped sealing outer wall 15 o , and the sealing inner wall are formed.
  • Au alloys such as Au, Au-Si, Au-Ge, Au-Sb, Au-Sn, Au-Pb, Au-Zn, and Au-Cu can be used for 15 i .
  • the sealing outer wall 15 o and the sealing inner wall 15 i are deformed by themselves and are solid-phase diffusion bonded to the lower sealing pattern portion 14A.
  • the airtight seal is realized by forming a metallurgical connecting body (14A, 15 o , 15 i ) by metallurgically joining them.
  • the sealing outer wall 15 o and the sealing inner wall 15 i are crimped.
  • sealing outer wall 15 o and the sealing inner wall 15 i can be formed by the same process using the same material as the upper bump B uij , extra encapsulation outer wall 15 o and sealing inner wall 15 i are formed. It can be manufactured at low cost without increasing the number of processes. Since the outer wall 15 o for sealing and the inner wall 15 i for sealing can be easily deformed, highly reliable airtight sealing with high manufacturing yield can be realized inexpensively and easily without increasing the number of process steps.
  • the sealing outer wall 15 o and the sealing inner wall 15 i are formed into a straight side wall having a thickness of about 100 to 300 nm, so that the sealing outer wall 15 o and the sealing inner wall 15 i are pressed against each other. The feature that it is easily deformed becomes more remarkable. After the airtight sealing, the sealing outer wall 15 o and the sealing inner wall 15 i are deformed, so that the aspect of the vertical side wall as shown in FIG. 5 is lost, and the metallurgical connecting body (14A, 15) is lost. o and 15 i ) have an irregular shape including irregular curved surfaces that are folded together as shown in FIG.
  • the second sealing portion land 14B is a member that serves as a base for the sealing outer wall 15 o and the sealing inner wall 15 i that form a U-shape.
  • the second sealing portion land 14B absorbs / disperses the pressure applied to the sealing outer wall 15 o and the sealing inner wall 15 i when the lower chip 10A and the upper chip 10B are hermetically sealed, and the upper insulating portion 14B absorbs / disperses the pressure.
  • the layer 13B has sufficient strength and a required size so as not to cause damage such as cracks.
  • the second sealing portion land 14B can be configured with a multilayer structure with Au or an Au alloy including a lower layer of a refractory metal material such as Ti, Ni, Cr, Ta, Mn, Ru, W, and the like.
  • the upper bump land portion which is the lower layer of the upper bump Buij (the upper layer in the direction shown in FIG. 5), contains a refractory metal material such as Ni, Cr, Ti, etc.
  • the land portion for the upper bump may be brought into contact with the bottom portion of the upper bump Buij .
  • the upper bump land portion may be embedded inside the upper insulating layer 13B constituting the multilayer wiring insulating layer, and the upper bump land portion and the upper bump Buij can be connected to each other by vias.
  • the land portion for the upper bump is electrically connected to a bonding pad which is an input / output electrode of the upper integrated circuit via a via or the like.
  • the upper sealing pattern portion (14B, 15 o , 15i ) has a size and shape corresponding to the lower sealing pattern portion 14A, and is configured so that at least a part thereof has a mirror image relationship. Therefore, according to the laminated semiconductor device according to the first embodiment, even when a semiconductor integrated circuit having a miniaturized planar pattern with a pitch interval of input / output electrodes of 10 ⁇ m or less is mounted, the lower side is sealed.
  • the pattern portion 14A and the upper sealing pattern portion (14B, 15 o , 15 i ) are crimped and metallurgically joined to form a metallurgical connector (14A, 15 o , 15 i ) as shown in FIG. ), It becomes possible to inexpensively and easily perform airtight sealing between the lower chip 10A and the upper chip 10B without increasing the number of process steps.
  • the laminated semiconductor device according to the second embodiment of the present invention is first in that it has a laminated structure of a lower chip 20A and an upper chip 20B mounted on the lower chip 20A. It is the same as the laminated semiconductor device which concerns on embodiment.
  • the lower chip 20A includes a lower semiconductor substrate 11A, a lower integrated circuit arranged on the surface region of the main surface of the lower semiconductor substrate 11A, and a lower semiconductor substrate.
  • the lower insulating layer 23A provided on the main surface (above the upper surface) of 11A so as to cover the lower integrated circuit, and the lower insulating layer 23A orbit around the edge of the main surface of the lower semiconductor substrate 11A.
  • the lower integrated circuit is similar to the laminated semiconductor device according to the first embodiment in that it is a fine pattern designed by, for example, a design rule of 3 nm to 7 nm.
  • FIG. 8 illustrates the case where the lower chip 20A is rectangular, and the strip-shaped first sealing portion land 14A also has a rectangular frame shape along the periphery of the lower chip 20A.
  • a pattern (perforated rectangular pattern) constitutes a closed pattern.
  • the first sealing portion land 14A also has a plane pattern that matches the shape of the lower tip 20A. ..
  • the upper chip 20B of the laminated semiconductor device according to the second embodiment is arranged on the surface region of the main surface of the upper semiconductor substrate 11B and the upper semiconductor substrate 11B.
  • the sealing outer wall 16 o that meanders in parallel while being spaced apart from each other and adjacent to each other along the edge of the upper semiconductor substrate 11B on the second sealing portion land 14B and the second sealing portion land 14B.
  • an inner wall 16 i for sealing is provided.
  • the upper integrated circuit has a fine and high-speed operational planar pattern designed by a design rule of 3 nm to 7 nm, similar to the lower integrated circuit of the lower chip 20A.
  • the second sealing portion land 14B, the sealing outer wall 16 o , and the sealing inner wall 16 i constitute the "upper sealing pattern portion (14B, 16 o , 16 i )" of the upper chip 20B.
  • the lower sealing pattern portion (14A, 17 o , 17 i ) and the upper sealing pattern portion (14B, 16 o , 16 i ) are solid-phase diffusion-bonded to form a metallurgical connection. (14A, 14B, 18) are configured.
  • An airtight space is formed inside the lower insulating layer 23A, the upper insulating layer 23B, and the metallurgical connecting body (14A, 14B, 18).
  • the lower semiconductor substrate 11A and the upper semiconductor substrate 11B are, for example, silicon substrates, and on the surfaces of the lower semiconductor substrate 11A and the upper semiconductor substrate 11B, for example, a memory, an arithmetic circuit, a control circuit, an input / output circuit, and a sense circuit are used. , A lower integrated circuit having a circuit block such as an amplification circuit is provided.
  • the lower insulating layer 23A and the upper insulating layer 23B include, for example, an inorganic insulating layer such as a SiO 2 film, a Si 3N 4 film , a BSG film, a SiOF film, and a SiOC film, as well as SiCOH, HSQ, and porous methylsilsesquioki.
  • An organic insulating layer such as a sun film or a polyarylene film can be used, and it is possible to combine and laminate these various insulating film layers to form a multilayer wiring insulating layer having a variety of multilayer structures.
  • the lower insulating layer 23A and the upper insulating layer 23B may have a single-layer structure having only a field insulating film, or may have a multilayer structure in which the above-mentioned various insulating materials are combined.
  • the uppermost layer can function as a passivation film. It is desirable that the upper surfaces of the lower insulating layer 23A and the upper insulating layer 23B are flattened with high accuracy by a polishing method such as CMP.
  • the sealing outer wall 16 o and the sealing inner wall 16 i of the upper chip 20B form a meander line shape in which two lines meander and circulate in a planar pattern. , Circulates along the edge of the upper chip 20B.
  • the details of the structure in which the outer wall 16 o for sealing and the inner wall 16 i for sealing meander as two serrated meander lines as a plane pattern are shown in FIG. 11 (a).
  • the sealing outer wall 17 o and the sealing inner wall 17 i of the lower chip 20A form a meander line shape in which two lines meander and circulate in a planar pattern. However, it orbits along the edge of the lower chip 20A.
  • FIG. 11 (b) The details of the structure in which the outer wall 17 o for sealing and the inner wall 17 i for sealing meander as two serrated meander lines as a plane pattern are shown in FIG. 11 (b). Since the two serrated meander lines shown in FIG. 11 (a) and the two serrated meander lines shown in FIG. 11 (b) have different phases, the upper tip is shown in FIG. 11 (c).
  • the sealing outer wall 16 o and the sealing inner wall 16 i of 20B intersect the sealing outer wall 17 o and the sealing inner wall 17 i of the lower chip 20A at a plurality of points.
  • FIG. 11 (c) the second intersection from the top is surrounded by a circle, and the reference numeral Z is labeled.
  • both the sealing outer wall 16 o and the sealing inner wall 16 i of the upper chip 20B and the sealing outer wall 17 o and the sealing inner wall 17 i of the lower chip 20A are two straight parallel lines, respectively.
  • the sealing outer wall 16 o and the sealing outer wall 17 o overlap on the same line, and the sealing inner wall 17 i and the sealing inner wall 16 i overlap on the same line . Requires great power.
  • the sealing outer wall 16 due to the misalignment of the sealing outer wall 16 o and the sealing outer wall 17 o when laminating, and the misalignment of the sealing inner wall 17 i and the sealing inner wall 16 i when laminating, the sealing outer wall 16 The required force for crushing o etc. changes.
  • FIGS. 11 (a) and 11 (b) if the upper and lower sealing walls are meandered in a sawtooth shape, the lower tip 20A and the upper tip 20B are formed as shown in FIG. 11 (c).
  • the crossing points Z can be temporarily joined at points, so that there is an advantage that the pressure applied at the time of thermocompression bonding can be set uniformly. Furthermore, since the intersections can be made into point contact, the pressure applied during thermocompression bonding can be weakened, which has the advantage of being easy to repair.
  • FIGS. 11A and 11B illustrate the case where the upper and lower sealing walls are meandered, only one of the lower chip 20A and the upper chip 20B is meandered. Even if misalignment occurs, the advantage of point bonding makes it possible to equalize the pressure applied during thermocompression bonding and to achieve the advantageous effect of being easy to repair.
  • the planar pattern of the sealing outer wall 16 o , the sealing inner wall 16 i , the sealing outer wall 17 o , and the sealing inner wall 17 i of the laminated semiconductor device according to the second embodiment is a meander line-shaped circular pattern. It is preferably closed, but it does not exclude the case where a part of the meander line is interrupted to the extent that the airtight seal is not affected.
  • a parallel vertical wall structure for sealing (16 o, 16 i ) and a parallel vertical wall structure for sealing (17 o, ) which have a meander line-shaped horizontal pattern and circulate around in the laminated semiconductor device according to the second embodiment. 17 i ) can be easily formed by the sidewall technique as in the laminated semiconductor device according to the first embodiment.
  • the sealing parallel vertical wall structure (16 o, 16 i ) is formed in the same process as the upper bump Buij manufacturing process, applying a well-known sidewall process with meanderline grooves or base patterns. Therefore, when forming the parallel vertical wall structure for sealing (16 o, 16 i ), it can be manufactured at low cost without increasing the number of extra steps.
  • the parallel vertical wall structure for encapsulation (17 o, 17 i ) is the same as the manufacturing process of the lower bump B ij , applying a well-known sidewall process using a meander line groove or base pattern. Since it can be formed by a process, it can be manufactured at low cost without increasing the number of extra steps when forming the parallel vertical wall structure for sealing (17 o, 17 i ).
  • the material of the hollow square cylindrical upper bump B ij can be easily solid-phase diffusion-bonded to the hollow cylindrical lower bump B ij by pressure such as heat crimping under normal pressure or reduced pressure or ultrasonic heat crimping. Metal is preferable.
  • the sealing outer wall 16 o and the sealing inner wall 16 i of the upper chip 20B are formed by heat crimping or ultrasonic heat crimping, respectively, to form the sealing outer wall 17 o and the sealing inner wall 17 of the lower chip 20A, respectively.
  • a metal that facilitates solid-phase diffusion bonding with i is preferable.
  • the sealing outer wall 16 o and the sealing inner wall 16 i may be made of the same material as the upper bump B uij , and the sealing outer wall 17 o and the sealing inner wall 17 i are the lower bump B ij . It may be composed of the same material as.
  • the lower bump B ij and the first sealing portion land 14A are made of Au or Au alloy
  • the inner wall 16 i , the outer wall 17 o for sealing, and the inner wall 17 i for sealing include Au, Au-Si, Au-Ge, Au-Sb, Au-Sn, Au-Pb, Au-Zn, Au-Cu, etc.
  • Au alloy can be adopted.
  • the sealing outer wall 16 o and the sealing inner wall 16 i of the upper chip 20B are deformed to each other when they are thermocompression bonded to the sealing outer wall 17 o and the sealing inner wall 17 i of the lower chip 20A. Airtight sealing is realized by solid-phase diffusion bonding and metallurgically bonding with each other.
  • the sealing outer wall 16 o , the sealing inner wall 16 i , the sealing outer wall 17 o , and the sealing inner wall 17 i have a sidewall pattern having a thickness of about 70 to 700 nm, preferably about 100 to 300 nm.
  • each of the sealing outer wall 16 o , the sealing inner wall 16 i , the sealing outer wall 17 o , and the sealing inner wall 17 i is easily deformed by the force at the time of crimping. ..
  • the sealing outer wall 16 o and the sealing inner wall 16 i can be easily solid-phase diffusion-bonded to the sealing outer wall 17 o and the sealing inner wall 17 i by being easily deformed by the force at the time of crimping. It is possible to realize airtight sealing without increasing the number of additional steps.
  • the lower sealing is performed when the parallel meandering direction is the longitudinal direction.
  • the cross section of the pattern portion (14A, 17 o , 17 i ) perpendicular to the longitudinal direction is U-shaped.
  • the upper sealing pattern portion (14B, 16) is defined as the direction in which the meandering in parallel is the longitudinal direction.
  • the cross section perpendicular to the longitudinal direction of o , 16 i ) is U-shaped.
  • the first sealing portion land 14A formed on the lower chip 20A has a rectangular frame-like pattern. Therefore, as shown in FIG. 8, the second sealing portion land 14B provided on the upper chip 20B also corresponds to the pattern of the first sealing portion land 14A and has a substantially mirror image relationship with the first sealing portion land 14A.
  • a close rectangular frame pattern constitutes a closed pattern.
  • the second sealing portion land 14B also constitutes a closed pattern with a plane pattern that projects the shape of the first sealing portion land 14A. be.
  • the first sealing portion land 14A is a member that serves as a base for the sealing outer wall 17 o and the sealing inner wall 17 i constituting the U-shape.
  • the first sealing portion land 14A absorbs / disperses the pressure applied to the sealing outer wall 17 o and the sealing inner wall 17 i when the lower tip 20A and the upper tip 20B are hermetically sealed, and the lower side.
  • the insulating layer 23A has sufficient strength and a required size so as not to cause damage such as cracks.
  • the second sealing portion land 14B is a member that serves as a base for the sealing outer wall 16 o and the sealing inner wall 16 i that form a U-shape.
  • the second sealing portion land 14B absorbs / disperses the pressure applied to the sealing outer wall 16 o and the sealing inner wall 16 i when the lower chip 20A and the upper chip 20B are hermetically sealed, and the upper insulating portion 16B absorbs / disperses the pressure. It is preferable that the layer 23B has sufficient strength and a required size so as not to cause damage such as cracks. Therefore, the first sealing portion land 14A and the second sealing portion land 14B are made of an Au or Au alloy containing a lower layer of a refractory metal material such as Ti, Ni, Cr, Ta, Mn, Ru, W, etc. It can be configured with a multi-layer structure.
  • the lower bump land portion which is the lower layer of the hollow cylindrical lower bump B ij , is impregnated with a refractory metal material such as Ni, Cr, Ti, etc. for the lower bump.
  • the land portion may be brought into contact with the bottom portion of the lower bump B ij .
  • the lower bump land portion may be embedded inside the lower insulating layer 23A constituting the multilayer wiring insulating layer, and the lower bump land portion and the lower bump B ij are connected to each other by vias. Can be done.
  • the land portion for the lower bump is electrically connected to a bonding pad which is an input / output electrode of the lower integrated circuit via a via or the like.
  • a refractory metal material such as Ni, Cr, Ti, etc.
  • the land portion for the upper bump is impregnated in the land portion for the upper bump, which is the lower layer of the upper bump Buij in the shape of a hollow square cylinder (the upper layer in the direction shown in FIG. 9).
  • the land portion for the upper bump may be brought into contact with the bottom portion of the upper bump B uij .
  • the upper bump land portion may be embedded inside the upper insulating layer 23B constituting the multilayer wiring insulating layer, and the upper bump land portion and the upper bump Buij can be connected to each other by vias.
  • the land portion for the upper bump is electrically connected to a bonding pad which is an input / output electrode of the upper integrated circuit via a via or the like.
  • a pattern closed by the lower sealing pattern portion (14A, 17 o , 17 i ) is formed along the edge portion of the lower chip 20A, and along the edge portion of the upper chip 20B.
  • the upper sealing pattern portion (14B, 16 o , 16 i ) is configured to correspond to the lower sealing pattern portion (14A, 17 o , 17 i ) as a closed pattern that circulates, and there are multiple meander lines. It intersects periodically at. Since the intersections occur periodically at many points, the airtight seal can be made more complete.
  • the laminated semiconductor device even when a semiconductor integrated circuit having a miniaturized planar pattern with a pitch interval of input / output electrodes of 10 ⁇ m or less is mounted, the lower side is sealed.
  • the pattern portion (14A, 17 o , 17 i ) and the upper sealing pattern portion (14B, 16 o , 16 i ) are crimped and metallurgically joined to form a metallurgical connection as shown in FIG.
  • By configuring (14A, 14B, 18) it becomes possible to inexpensively and easily perform airtight sealing between the lower chip 20A and the upper chip 20B without inviting an increase in the number of process steps.
  • FIG. 11 shows the topology of the serrated meander line that bends in a straight line
  • the topology of the parallel waveform meander line shown in FIG. 12 may be used.
  • FIG. 12A a part of the planar pattern of the sealing outer wall 31 o and the sealing inner wall 31 i of the upper chip 20B of the laminated semiconductor device according to the first modification of the second embodiment is shown in the second. It is shown in comparison with the pattern of the sealing portion land 14B.
  • FIG. 12 (a) discloses only a part of the fragmentary pattern
  • the sealing outer wall 31 o and the sealing inner wall 31 i also have two parallel corrugated meander lines, as in FIG. 7. They are arranged around an array of multiple upper bumps Buij , meandering at intervals.
  • a closed planar pattern is formed as a macro as a whole, and it orbits along the edge of the upper chip 20B.
  • the sealing outer wall 32 o and the sealing inner wall 32 i of the lower chip 20A form two parallel corrugated meander lines as a planar pattern, and one of the patterns meandering and orbiting. The section is shown in contrast to the pattern of the lower chip 20A.
  • FIG. 12 (b) a plurality of parallel waveform meander lines shown in FIG. 12 (b) meandering at equal intervals, similar to the planar layout configuration shown in FIG.
  • the lower bumps are arranged around an array of B ij .
  • a closed planar pattern is formed as a macro as a whole, and it orbits along the edge of the lower chip 20A.
  • the two parallel waveforms formed by the outer wall 31 o for sealing and the inner wall 31 i for sealing are parallel.
  • the corrugated meander line and the two parallel corrugated meander lines formed by the sealing outer wall 32 o and the sealing inner wall 32 i periodically intersect at a plurality of points.
  • the metallurgically bonded portions are periodically continuous by the solid phase diffusion bonding, and the reliability of the airtight sealing is improved.
  • the lower tip 20A and the upper tip 20B are formed as shown in FIG. 12 (c).
  • the intersection can be temporarily joined at the point, so there is an advantage that the pressure applied during thermocompression bonding can be set uniformly. Furthermore, since the intersections can be made into point contact, the pressure applied during thermocompression bonding can be weakened, which has the advantage of being easy to repair.
  • the case where the upper and lower sealing walls meander is illustrated in FIGS.
  • FIG. 13 a part of the plane pattern of the sealing outer wall 33 o and the sealing inner wall 33 i of the upper chip 20B of the laminated semiconductor device according to the second modification of the second embodiment is shown in the second. It is shown in comparison with the pattern of the sealing portion land 14B.
  • FIG. 13 (a) discloses only a part of the fragmentary pattern, the sealing outer wall 33 o and the sealing inner wall 33 i also have two parallel semicircular meander lines as in FIG. 7.
  • the sealing outer wall 34 o and the sealing inner wall 34 i of the lower chip 20A form two parallel semicircular arcuate meander lines as a planar pattern, and the pattern circulates while meandering. Is shown in comparison with the pattern of the lower chip 20A.
  • FIG. 13 (b) a plurality of parallel semicircular arcuate meander lines shown in FIG. 13 (b) meandering at equal intervals, similar to the configuration shown in FIG. It is located around an array of lower bumps B ij .
  • a closed planar pattern is formed as a macro as a whole, and it orbits along the edge of the lower chip 20A.
  • Two parallel semicircular meander lines formed by the sealing outer wall 33 o and the sealing inner wall 33 i shown in FIG. 13 (a), and the sealing outer wall 34 o and the sealing outer wall 34 o shown in FIG. 13 (b).
  • the sealing outer wall 33 o and the sealing inner wall 33 i are formed as shown in FIG. 13 (c).
  • the two parallel semicircular meander lines and the two parallel semicircular meander lines formed by the sealing outer wall 34 o and the sealing inner wall 34 i periodically intersect at a plurality of points.
  • the metallurgically bonded portions are periodically continuous by the solid phase diffusion bonding, and the reliability of the airtight sealing is improved.
  • the lower tip 20A is shown in FIG. 13 (c).
  • the intersection can be temporarily joined at a point, so that there is an advantage that the pressure applied at the time of thermocompression bonding can be set uniformly. Furthermore, since the intersections can be made into point contact, the pressure applied during thermocompression bonding can be weakened, which has the advantage of being easy to repair.
  • the upper and lower sealing walls are meandered in FIGS.
  • the laminated semiconductor device according to the third embodiment of the present invention a case where a lower chip 21A as an interposer and an upper chip mounted on the lower chip 21A form a laminated structure will be exemplified.
  • the lower chip 21A has a silicon substrate having a high resistivity or semi-insulating property and a strip-shaped lower sealing pattern portion 14A that circulates along the edge of the main surface of the silicon substrate.
  • the lower chip 21A is an interposer, so that the semiconductor integrated circuit is not integrated in the lower chip 21A. That is, in the lower chip 21A shown in FIGS. 14 and 15, it is planned that another chip in which the semiconductor integrated circuit is integrated exists on the lower layer side of the lower chip 21A.
  • the lower chip 21A of the laminated semiconductor device according to the third embodiment includes a plurality of silicon penetrating vias TSV p5 , TSV i3 , TSV i8 , and TSV r3 that penetrate the silicon substrate. Since FIG. 15 is a cross-sectional view seen from the XV-XV direction of FIG. 14, a part of the silicon penetrating vias provided on the lower chip 21A is shown. The rightmost silicon penetrating via TSV p5 is connected to the outer peripheral surface land L p5 provided on the surface of the lower chip 21A.
  • the second silicon penetrating via TSV i3 from the right is connected to the inner peripheral surface land L i3 provided on the surface of the lower chip 21A, and the third silicon penetrating via TSV i8 from the right is provided on the surface of the lower chip 21A.
  • the inner peripheral surface land L i8 is connected to the inner peripheral surface land L i8, and the inner peripheral surface land L i8 is connected to the lower bump B r3 via the surface wiring provided on the surface of the lower chip 21A.
  • the silicon penetrating via TSV r3 at the left end is connected to the outer peripheral surface land L r3 provided on the surface of the lower chip 21A.
  • an interposer insulating layer (lower insulating layer) is provided on the main surface of the silicon substrate, and the silicon substrate is placed on the interposer insulating layer.
  • a band-shaped lower sealing pattern portion 14A that circulates along the edge portion of the main surface may be provided.
  • the lower chip 21A is electrically connected as an interposer to the input / output electrodes of the integrated circuit arranged in the lower layer of the lower chip 21A, and constitutes a laminated semiconductor device having a three-dimensional structure.
  • the integrated circuit arranged in the lower layer of the lower chip 21A may be a fine pattern integrated circuit designed according to the design rule of 3 nm to 7 nm as in the first to fourth embodiments.
  • the interposer since the interposer has the function of the pitch changing element of the input / output electrodes, the integrated circuit arranged in the lower layer of the lower chip 21A is relatively coarse designed by the design rule of 10 nm or more. Even a plane pattern topology can be supported.
  • FIG. 14 illustrates a case where the lower chip 21A is rectangular, and the strip-shaped lower sealing pattern portion 14A also has a rectangular frame-like pattern (perforated rectangular pattern) along the periphery of the lower chip 21A. ) Consists of a closed pattern.
  • the lower sealing pattern portion 14A also has a flat pattern that matches the shape of the lower chip 21A.
  • lower bumps B ij are arranged at a pitch of 10 ⁇ m or less inside the circumferential pattern of the lower sealing pattern portion 14A of the lower chip 21A of the laminated semiconductor device according to the third embodiment. ing. Circular outer peripheral surface lands L p1 , L p2 , L p3 , ..., L pm are arranged along the right side of the lower chip 21A. Silicon penetrating vias are arranged directly under the outer peripheral surface lands L p1 , L p2 , L p3 , ..., L pm , including other silicon penetrating vias (not shown in FIG. 15). Are connected to the corresponding outer peripheral surface lands, respectively.
  • the outer peripheral surface land L pj is electrically connected to one of the input / output electrodes of the semiconductor integrated circuit on the lower layer side of the lower chip 21A by being independently connected to the corresponding silicon penetrating via TSV pj . It is part of the three-dimensional structure.
  • the outer peripheral surface lands L p1 , L p2 , and L p3 are connected to the lower bumps B p1 , B p2 , and B p3 in order by surface wiring, respectively, and the outer peripheral surface lands L pm are connected to the lower bump B pm .
  • each is connected to the corresponding outer peripheral surface land. That is, the outer peripheral surface land L qj is electrically connected to any of the input / output electrodes of the semiconductor integrated circuit on the lower layer side of the lower chip 21A by being independently connected to the corresponding silicon penetrating via TSV qj . It is part of the three-dimensional structure. There is an outer peripheral surface land L qj connected to the lower bump B qj and an outer peripheral surface land L qj not connected to the lower bump B qj .
  • Silicon penetrating vias are arranged directly under the outer peripheral surface lands L r1 , L r2 , L r3 , ..., L rm , including other silicon penetrating vias (not shown in FIG. 15). Each is connected to the corresponding outer peripheral surface land. That is, the outer peripheral surface land L rj is electrically connected to one of the input / output electrodes of the semiconductor integrated circuit on the lower layer side of the lower chip 21A by being connected to the corresponding through silicon via TSV rj , and has a three-dimensional structure. Is part of. There is an outer peripheral surface land L rj connected to the lower bump B rj and an outer peripheral surface land L rj not connected to the lower bump B rj .
  • a circular outer peripheral surface land L s1 , L s2 , L s3 , ..., L around the center of the lower chip 21A. sn is arranged.
  • Silicon penetrating vias are arranged directly under the outer peripheral surface lands L s1 , L s2 , L s3 , ..., L sn , including other silicon penetrating vias (not shown in FIG. 15). Each is connected to the corresponding outer peripheral surface land.
  • the outer peripheral surface land L sj is electrically connected to one of the input / output electrodes of the semiconductor integrated circuit on the lower layer side by being connected to the corresponding through silicon via TSV sj , forming a part of the three-dimensional structure. ing. There is an outer peripheral surface land L sj connected to the lower bump B sj and an outer peripheral surface land L sj not connected to the lower bump B sj . As shown in FIG. 14, circular inner peripheral surface lands L i1 , L i2 , L i3 , ... Are arranged inside the rectangular arrangement of the lower bump B ij .
  • Silicon penetrating vias are arranged directly under the inner peripheral surface lands L i1 , L i2 , L i3 , ..., Including other silicon penetrating vias (not shown in FIG. 15), and the silicon penetrating vias directly below correspond to them. It is connected to each of the inner peripheral surface lands. That is, the inner peripheral surface land Lik is electrically connected to one of the input / output electrodes of the semiconductor integrated circuit on the lower layer side by being connected to the corresponding through silicon via TSV ik , and a part of the three-dimensional structure is formed. None. There is an inner peripheral surface land Lik connected to the lower bump B ij and an inner peripheral surface land Lik not connected to the lower bump B ij .
  • the lower chip 21A as an interposer corresponds to the lower sealing pattern portion 14A.
  • the upper sealing pattern portion (14B, 15 o , 15 i ) is configured as a closed pattern that circulates along the edge portion of the upper chip (not shown).
  • the upper sealing pattern portions (14B, 15 o , 15 i ) (14B, 15 o, 15 i), which are not shown, are formed by the same process as the formation of the upper bump Buij .
  • the formation of the upper sealing pattern portion (14B, 15 o , 15 i ) does not lead to an increase in the number of process steps. Therefore, even in the laminated semiconductor device according to the third embodiment, when a semiconductor integrated circuit having a miniaturized planar pattern in which the pitch interval of the input / output electrodes of the integrated circuit integrated on the upper chip is 10 ⁇ m or less is mounted. Even if there is, the same metal as the example shown in FIG. 6 is obtained by crimping the lower sealing pattern portion 14A and the upper sealing pattern portion (14B, 15 o , 15 i ) and metallically joining them. A scientific connection (14A, 15 o , 15 i ) is constructed.
  • the lower chip 21A is an interposer, it is inexpensive and easy to airtightly seal between the lower chip 21A and the upper chip without increasing the number of process steps, and is a laminated semiconductor having a three-dimensional structure. It becomes possible to configure the device.
  • the upper bump B uij made of Au or Au alloy arranged on the upper chip and the lower chip according to the arrangement of the upper bump B uij are used.
  • An example is shown in which the lower bump Bij made of an arrayed Au or Au alloy is solid-phase diffusion-bonded inside an airtight space composed of a metallurgical connector provided at the periphery, but this is only an example. not.
  • Either the upper bump B uij or the lower bump B i j may form a flat surface as a parallel plate-shaped bonding pad. As shown in FIG.
  • the structure of the laminated semiconductor device according to the fourth embodiment of the present invention at the stage before airtight sealing is such that the lower chip 40A and the upper chip 10B mounted on the lower chip 40A are laminated. It is similar to the laminated semiconductor device according to the first embodiment in that it has a structure. Further, as shown in FIG. 16, the lower chip 40A includes a lower semiconductor substrate 11A, a lower integrated circuit arranged in a surface region of the main surface of the lower semiconductor substrate 11A, and a main of the lower semiconductor substrate 11A. A strip-shaped lower sealing pattern that circulates along the edge of the main surface of the lower semiconductor substrate 11A on the lower insulating layer 13A and the lower insulating layer 13A provided on the surface so as to cover the lower integrated circuit. It is the same as the laminated semiconductor device according to the first embodiment in that the portion 14A is provided.
  • the bonding pad P pi and the bonding pad Pri located on the cross-sectional view are parallel flat plates inside the pattern of the lower sealing pattern portions 14A arranged on both sides. It is different from the configuration of the laminated semiconductor device according to the first embodiment in that it is shown as a pattern of.
  • the upper chip 10B of the laminated semiconductor device according to the fourth embodiment includes an upper semiconductor substrate 11B, an upper integrated circuit arranged on a surface region of a main surface of the upper semiconductor substrate 11B, and an upper integrated circuit.
  • An upper insulating layer 13B provided on the main surface of the upper semiconductor substrate 11B so as to cover the upper integrated circuit, and a strip-shaped second circuit circulating along the edge of the main surface of the upper semiconductor substrate 11B on the upper insulating layer 13B.
  • the sealing outer wall 15 o and the sealing outer wall 15 o running in parallel with the sealing portion land 14B and the second sealing portion land 14B along the edge of the upper semiconductor substrate 11B at intervals and adjacent to each other.
  • the upper chip 10B is the same as the laminated semiconductor device according to the first embodiment in that the inner wall 15 i is provided. On the cross-sectional view of FIG.
  • the inside of the pattern of the second sealing portion land 14B of the upper chip 10B arranged on both sides is aligned with the arrangement position of the bonding pad P pi and the bonding pad Pri of the lower chip 40A.
  • the structure in which the upper bump B upi and the upper bump Buri are arranged is illustrated.
  • the second sealing portion land 14B, the sealing outer wall 15 o , and the sealing inner wall 15 i , the "upper sealing pattern portion (14B, 15 o ,) of the upper chip 10B of the laminated semiconductor device according to the fourth embodiment. 15 i ) ” is composed.
  • the surface of the lower sealing pattern portion 14A and the upper sealing pattern portion (14B, 15 o , 15 i ) are solid-phase, as in the configuration shown in FIG.
  • the metallurgical connection is formed by diffusion bonding, and an airtight space is formed inside the lower insulating layer 13A, the upper insulating layer 13B, and the metallurgical connection.
  • a plurality of bonding pads P ij are formed along the rectangle inside the rectangular frame-shaped pattern formed by the lower sealing pattern portion 14A, as in the plane layout shown in FIG.
  • a plurality of hollow square cylindrical upper bumps Buij are formed as a rectangular frame pattern inside the circumferential pattern of the second sealing portion land 14B of the upper chip 10B.
  • the cross-sectional view of FIG. 16 is shown on the assumption that they are arranged.
  • the material of the hollow square cylindrical upper bump B uij can be easily solid-phase diffusion bonded to the hollow cylindrical bonding pad P i j by pressure such as heat crimping under normal pressure or reduced pressure or ultrasonic heat crimping. Metal is preferred.
  • the sealing outer wall 15 o and the sealing inner wall 15 i of the upper chip 10B are solidified with the surface of the lower sealing pattern portion 14A of the lower chip 40A by heat crimping or ultrasonic heat crimping, respectively.
  • a metal that facilitates phase diffusion bonding is preferable.
  • the sealing outer wall 15 o and the sealing inner wall 15 i may be made of the same material as the upper bump B uij and the same procedure.
  • the lower sealing pattern portion 14A may be made of the same material as the bonding pad P ij and the same procedure.
  • the bonding pad P ij and the lower sealing pattern portion 14A are formed of an Al alloy such as aluminum (Al) or Al—Si
  • the bonding pad P ij and the lower sealing pattern portion 14A can be subjected to the same procedure.
  • the bonding pad P ij and the lower sealing pattern portion 14A are formed of the same Au or an Au alloy such as Au-Si, Au-Ge, Au-Sb, the bonding pad P ij and the lower sealing pattern portion are formed. 14A can be processed in the same way.
  • the upper bump B uij by using the same Au or Au alloy for the upper bump B uij , the sealing outer wall 15 o , and the sealing inner wall 15 i , the upper bump B uij , the sealing outer wall 15 o , and the sealing inner wall 15 i are used.
  • the inner wall 15 i can also be formed by the same process and does not increase the number of steps.
  • the lower bump B ij of the laminated semiconductor device according to the first embodiment is flat as a parallel flat plate-shaped bonding pad P ij . Even when the surface is formed, the lower sealing pattern portion 14A and the upper sealing pattern portion (14B, 15 o , 15 i ) are crimped and metallurgically joined to be shown in FIG. By constructing such a metallurgical connector, it becomes possible to inexpensively and easily perform airtight sealing between the lower chip 40A and the upper chip 10B without increasing the number of steps.
  • FIG. 17 shows the structure of the laminated semiconductor device according to the first modification of the fourth embodiment of the present invention before airtight sealing, and shows the lower chip 41A and the upper side mounted on the lower chip 41A. It is the same as the configuration of the laminated semiconductor device according to the fourth embodiment shown in FIG. 16 in that it has a laminated structure with the chip 10B. However, the parallel flat plate-shaped bonding pad G pi and the bonding pad G ri are provided at the level of the surface (upper surface) of the lower semiconductor substrate 11A, respectively, and the lower insulating layer provided on the main surface of the lower semiconductor substrate 11A. It differs from the structure shown in FIG. 16 in that it is lower than the level of the surface (upper surface) of 13A.
  • the lower chip 41A shown in FIG. 17 is arranged on the lower semiconductor substrate 11A, the lower integrated circuit arranged in the surface region of the main surface of the lower semiconductor substrate 11A, and the lower integrated circuit on the main surface of the lower semiconductor substrate 11A.
  • the configuration including the lower insulating layer 13A provided so as to cover the circuit and the strip-shaped lower sealing pattern portion 14A that circulates along the edge of the main surface of the lower semiconductor substrate 11A on the lower insulating layer 13A is provided.
  • the structure is the same as that shown in FIG.
  • the bonding pad P pi and the bonding pad Pri are provided at the level of the upper surface of the lower insulating layer 13A, the surface of the lower semiconductor substrate 11A is provided.
  • Contact vias are present between the intermediate electrode (surface electrode) of the above and the bonding pad P pi and the bonding pad Pri .
  • the laminated semiconductor device according to the first modification of the fourth embodiment shown in FIG. 17 since the contact via is unnecessary, the structure is more concise than the structure shown in FIG. ..
  • the upper chip 10B of the laminated semiconductor device according to the first modification of the fourth embodiment is arranged on the surface region of the upper semiconductor substrate 11B and the main surface of the upper semiconductor substrate 11B.
  • the circuit and the upper insulating layer 13B provided on the main surface of the upper semiconductor substrate 11B so as to cover the upper integrated circuit are provided.
  • the upper chip 10B similarly to the structure shown in FIG. 16, has a strip-shaped second sealing portion land 14B that circulates along the edge of the main surface of the upper semiconductor substrate 11B on the upper insulating layer 13B, and a second.
  • a sealing outer wall 15 o and a sealing inner wall 15 i that run in parallel along the edge of the upper semiconductor substrate 11B on the sealing land 14B are provided.
  • the upper bump B upi is arranged according to the arrangement position of the bonding pad G pi of the lower chip 41A, the upper bump B upi is provided through the opening (contact hole) provided in the lower insulating layer 13A.
  • the tip of the bond is solid-phase diffusion bonded to the surface of the bonding pad GP i.
  • the tip of the upper bump Buri is passed through the opening provided in the lower insulating layer 13A. The portion is solid-phase diffusion bonded to the surface of the bonding pad Gri .
  • a pattern closed by the lower sealing pattern portion 14A is formed along the edge portion of the lower chip 41A, and the upper sealing pattern portion (14B, 15) is formed as a closed pattern that circulates along the edge portion of the upper chip 10B.
  • o , 15 i ) is the same as in FIG. 16 in that it is configured corresponding to the lower sealing pattern portion 14A.
  • the bonding pad G pi and the bonding pad G ri are provided at the surface level of the lower semiconductor substrate 11A as in the laminated semiconductor device according to the first modification of the fourth embodiment shown in FIG. Even so, it is provided on the lower chip 41A when airtightly sealing the lower sealing pattern portion 14A and the upper sealing pattern portion (14B, 15 o , 15 i ) with a metallic connector. It is possible to achieve an electrical connection between the lower integrated circuit and the upper integrated circuit provided on the upper chip 10B.
  • FIG. 18 shows the structure of the laminated semiconductor device according to the second modification of the fourth embodiment of the present invention before airtight sealing.
  • the laminated semiconductor device according to the first modification of the fourth embodiment shown in FIG. 17 at a point lower than the level of the surface (upper surface) of the lower insulating layer 13A provided on the main surface of the lower semiconductor substrate 11A, respectively. It is similar to the structure of.
  • the p - type lower semiconductor substrate 11A constituting the lower chip 41A includes a lower integrated circuit including an n + region schematically arranged on the surface region of the main surface of the lower semiconductor substrate 11A.
  • An element-separating insulating film 19A having a shallow trench isolation (STI) structure is provided on the main surface of the lower semiconductor substrate 11A so as to surround the exemplified n + region, and the element-separating insulating film 19A is placed on the element-separating insulating film 19A. It differs from the structure of the laminated semiconductor device according to the first modification of the fourth embodiment shown in FIG. 17 in that the lower insulating layer 13A is deposited.
  • STI shallow trench isolation
  • an element separation insulating film 19A having an STI structure may be provided so as to surround the p-well.
  • the structure including the strip-shaped lower sealing pattern portion 14A that circulates along the edge portion of the main surface of the lower semiconductor substrate 11A on the lower insulating layer 13A is the same as the structure shown in FIG.
  • the laminated semiconductor device according to the second modification of the fourth embodiment shown in FIG. 18 does not require the contact via of FIG. 16 as in the structure shown in FIG. 17, and is more concise than the structure shown in FIG. Structure.
  • the bonding pad G pi and the bonding pad G ri are selectively located in the n + region on the surface of the lower semiconductor substrate 11A inside the pattern of the lower sealing pattern portion 14A arranged on both sides. It is different from the structure shown in FIG. 17 in that it is arranged as a parallel flat plate-like pattern in contact with each other, and the element separation insulating film 19A is embedded in the surface of the lower semiconductor substrate 11A as well.
  • the bonding pad G pi and the bonding pad G ri are arranged so as to individually contact the plurality of local semiconductor regions. .. Therefore, in a specific layout configuration of an integrated circuit, another insulating film such as a field insulating film is formed on the p-well or the like, and the bonding pad G is formed through a contact hole provided in the field insulating film or the like.
  • the pi and the bonding pad G ri are selectively connected to the n + region and the like, but in any case, the contact via as shown in FIG. 16 becomes unnecessary.
  • the upper chip 10B has a band-shaped second sealing portion land 14B that circulates along the edge of the main surface of the upper semiconductor substrate 11B on the upper insulating layer 13B, and a second sealing.
  • a sealing outer wall 15 o and a sealing inner wall 15 i that run in parallel while being spaced from each other and adjacent to each other are provided along the edge of the upper semiconductor substrate 11B on the stop land 14B. Since the upper bump B upi is arranged according to the arrangement position of the bonding pad G pi of the lower chip 41A, the upper bump B upi is provided through the opening (contact hole) provided in the lower insulating layer 13A. The tip of the bond is solid-phase diffusion bonded to the surface of the bonding pad GP i.
  • the tip of the upper bump Buri is passed through the opening provided in the lower insulating layer 13A.
  • the portion is solid-phase diffusion bonded to the surface of the bonding pad Gri .
  • the bonding pad G pi and the bonding pad G ri are semiconductors in the n + region embedded in the surface of the lower semiconductor substrate 11A.
  • the element separation insulating film 19A is selectively provided in contact with the region, and even when the lower semiconductor substrate 11A is also embedded in the surface and the surface of the lower semiconductor substrate 11A has an uneven shape, the lower sealing is performed.
  • the third embodiment also illustrates the case where a miniaturized semiconductor integrated circuit is integrated on the upper chip, but similarly, the present invention is not limited to the example in the third embodiment.
  • the technical idea of the present invention in which a metallurgical junction is formed by solid-phase diffusion bonding and airtightly sealed, is a feature of an old-generation laminated semiconductor device having a loose design rule in which the pitch spacing of input / output electrodes exceeds 10 ⁇ m. However, it is of course applicable.
  • the size of the lower chip may be larger than that of the upper chip, and a plurality of upper chips may be mounted on one lower chip.
  • the lower chip is used as a parent substrate having a large diameter, and a plurality of upper chips are arranged in each of the unit element regions divided along the grid defined on the main surface of the parent substrate, and each of the unit element regions is arranged.
  • a lower sealing pattern portion may be arranged in each chip mounting area.
  • each lower sealing pattern portion is arranged in a "less co-partial region" of the lower chips corresponding to the arrangement of the plurality of upper chips. Therefore, the plurality of lower sealing pattern portions arranged on the main surface of the lower chip become a plurality of patterns arranged in an array corresponding to the arrangement of the plurality of upper sealing pattern portions. That is, the lower sealing pattern portion does not circulate along the periphery of the lower chip, but rather covers the periphery of a plurality of chip mounting regions each of which is composed of at least a part of the region. Each part goes around individually.
  • the upper sealing pattern portions of the plurality of upper chips are solid-phase diffusion-bonded to the lower sealing pattern portions arranged in an array in the plurality of chip mounting regions, and a plurality of chips are mounted.
  • Independent metallurgical connections may be formed in each of the regions, and an airtight space may be individually formed in each of the plurality of chip mounting regions to be airtightly sealed.
  • first and second embodiments a configuration including two wall-shaped patterns running in parallel to each other as an upper sealing pattern portion on the upper chip has been described, but this is merely an example. Further, in the second embodiment, a configuration including two wall-shaped patterns running in parallel with each other as a lower sealing pattern portion on the lower chip has been described, but this is merely an example.
  • the wall-shaped pattern may be one sheet, or may include three or more wall-shaped patterns running in parallel with each other in order to improve reliability.
  • a U-groove with a vertical side wall is formed with a photoresist film pattern, and diagonal vapor deposition or diagonal sputtering is performed so that the metal film is deposited only on one of the vertical side walls of the U-groove. Then, the pattern of the photoresist film may be removed.
  • the sealing outer wall 15 o and the sealing inner wall 15 i are oriented in the X-direction so as to surround the periphery. Since it extends in the Y-direction to form a rectangle, specifically, diagonal vapor deposition or the like is performed in each of the direction orthogonal to the X-direction and the direction orthogonal to the Y-direction.
  • a U-groove having a vertical side wall on the photoresist film and a pedestal pattern having a protrusion having the same width as the U-groove along one wall of the U-groove are formed.
  • One vertical side wall may be prepared, and diagonal vapor deposition or diagonal sputtering may be performed from both directions so that a metal film is deposited on each of the three vertical side walls, and then the pattern of the photoresist film may be removed. Since the outer wall for sealing and the inner wall for sealing extend in the X-direction and the Y- direction so as to surround the periphery, diagonal vapor deposition etc. is actually performed along the two directions, so a total of 4 times diagonal vapor deposition etc. are performed.
  • two U-grooves having vertical side walls are patterned in parallel on the photoresist film, and diagonal vapor deposition or diagonal deposition from both directions is performed so that the metal film is deposited on the vertical side walls of each U-groove. Diagonal sputtering may be performed and then the pattern of the photoresist film may be removed.
  • a flat strip-shaped lower sealing pattern portion that circulates along the periphery of the lower insulating layer at the surface level of the lower insulating layer on the lower insulating layer of the lower chip.
  • a flat strip-shaped lower sealing pattern portion that circulates along the periphery of the lower chip at the surface level of the lower chip has been described on the lower chip, but this is merely an example.
  • the horizontal level of the lower sealing pattern portion may be provided in a recess that is lower than the surface level of the lower insulating layer or the surface level of the lower chip.
  • a U-groove or V-groove is carved on the surface of the lower insulating layer, and the bottom of the U-groove or the inclined side wall of the V-groove is lowered.
  • a side sealing pattern portion is provided. Not only the bottom of the U-groove may be provided in a band shape, but also the vertical side wall of the U-groove may be provided with the lower sealing pattern portion, and the lower sealing pattern portion may be provided on the side wall of the U-groove or the V-groove to rotate. In the configuration, the lower sealing pattern portion is not flat and is composed of two or more surfaces.
  • the U-grooves and V-grooves may be deepened and carved to the lower semiconductor substrate.
  • a modification in which a U groove or a V groove is carved on the surface of the lower insulating layer so that the first sealing portion land is provided at a level lower than the surface level of the lower insulating layer. are also available.
  • the first sealing portion land is provided on the bottom of the U groove or the inclined side wall of the V groove, and the first sealing portion land is used as a base to run in parallel on the one sealing portion land.
  • a lower sealing pattern portion is provided by arranging two wall-shaped patterns.
  • a U groove or a V groove is carved on the surface of the lower chip, and the bottom of the U groove or the bottom thereof. It is also possible to provide a lower sealing pattern portion on the side wall of the V-groove. In the configuration which is a modification of the third embodiment, when the lower sealing pattern portion is provided on the side wall of the U groove or the V groove, the lower sealing pattern portion is not flat.
  • the present invention includes various embodiments not described here, such as a configuration in which each configuration described in the above first to fourth embodiments is arbitrarily applied. Therefore, the technical scope of the present invention is defined only by the matters specifying the invention according to the reasonable claims from the above description.

Abstract

【課題】入出力電極のピッチ間隔が微細化された半導体チップが用いられる場合であっても、気密封止が可能な積層型半導体装置を提供する。 【解決手段】上側半導体基板11Bと、上側半導体基板11Bの主面上の上側絶縁層13Bと、上側絶縁層13Bの周辺に沿って周回する上側封止パターン部と、上側絶縁層13Bに、主面の少なく共一部で構成されるチップ搭載領域が対向するように配置された下側チップ10Aと、下側チップ10Aの主面上に配置され、上側封止パターン部の配置に対応したパターンを構成し、チップ搭載領域の周辺を周回し、上側封止パターン部との固相拡散接合により金属学的接続体(14A,15o,15i)を構成する上側封止パターン部(14B,15o,15i)を備える。チップ搭載領域、上側絶縁層13B及び金属学的接続体の内部に気密空間を形成している。

Description

積層型半導体装置
 本発明は、複数の半導体チップを積層した積層型半導体装置に係り、特に平面パタ-ンが微細化され高速動作する積層型半導体装置にも適用可能な気密封止技術に関する。
 LSI(大規模集積回路)のデザインルールはますます微細化され、三次元等の積層化の傾向にある。集積回路のデザインルールの微細化が進むと、外部回路と接続する入出力電極のピッチも微細化される。5G以降の世代では、高速動作の要請も加わり、能動素子の平面パターンのデザインルールが10nm以下となり、能動素子の平面パターンの微細化に伴い入出力電極のピッチ間隔は10μm以下になる。入出力電極のピッチ間隔が狭くなると、従来から用いられてきた半田バンプ電極の採用が困難になる。半田バンプ電極では半田を塗布するために錫―銀(SnAg)メッキをするのが一般的であるが、SnAgメッキの高さがばらつく。又半田が溶融する際のはみ出しが問題になり、半田バンプ電極を用いた構造では、入出力電極のピッチ間隔を15μm以下にすることは困難となる。
 半田バンプ電極が採用可能な世代の半導体のパッケージングにおいては、樹脂封止や、エポキシ樹脂等の液状硬化性樹脂、又は異方性導電膜(ACF)若しくは非導電性膜(NCF)等のアンダーフィルを用いた気密封止構造が採用されていた。しかし、5G以降の世代で要請される高速動作の環境では、入出力電極のピッチ間隔を10μm以下の微細化が必要となり、本発明の明細書で説明するような金(Au)バンプの採用が必要になる。入出力電極のピッチ間隔が10μm以下に微細化が進むと、従来用いられていた樹脂封止やアンダーフィルを用いた気密封止構造が採用できなくなる。従来の半田バンプの場合は、対向電極と接触した場合、「ぬれ」により電極表面に半田が広がり、NCFのようなポリマーを接合界面から押し出す性質がある。一方、次世代の微細化された半導体集積回路の構造に好適なAuバンプは固相拡散で接合するため、接合界面にNCFのようなポリマーが僅かでも残っていると、固相拡散が阻害され、金属学的な接合ができなくなる。なお、入出力電極のピッチ間隔が10μm以下の積層型半導体装置であっても、下側チップと上側チップの接合の前に、樹脂でアンダーフィルパタンを作ることは、可能ではある。しかし、微細化されたAuバンプとの合わせ余裕を取る必要がある問題に加え、接合後にチップ間に間隙や気泡が入るという重大な問題が発生する恐れがある。間隙や気泡が入ると、温度サイクル試験において間隙や気泡の圧力が変わるので、バンプ接合部分に繰り返しストレスが入る。更には、間隙や気泡に湿気が入ると気化してチップの破壊の恐れも発生する。このため、5G以降の世代で要請される高速動作の環境では、アンダーフィルを用いない気密封止構造が待望される。
 なお、ピッチが15μm以上の粗いデザインルールが採用可能な半田バンプ電極の世代において、ベース基板と封止用キャップとの間に異方性べローズリングを用いた蛇腹構造によって気密封止するパッケージング技術が提案されている(特許文献1参照。)。特許文献1に記載された発明は、半導体チップ内の半田バンプ電極の温度変化に伴う延びと封止部の金属の延びとの差による力学的な熱応力のアンバランスを考慮したものである。即ち、特許文献1に記載された発明は、半田バンプ電極を用いた旧世代の半導体装置に用いるパッケージング技術に固有の事情から、温度サイクルによる半田バンプ電極のクラックの発生を防止することを技術的課題としている。つまり、特許文献1に記載された発明は、入出力電極のピッチ間隔が10μm以下の微細化と高速化の世代になり、半田バンプ電極の使用が制限された積層型半導体装置の固有の事情やそれに伴う技術的課題を考慮したものではない。
特開平5-299525号公報
 本発明は、上記問題を解決すべくなされたものであり、入出力電極のピッチ間隔が10μm以下の微細化構造が採用される場合であっても、プロセス工程数の増大を招くことなく安価且つ簡単に、信頼性の高い気密封止が可能な積層型半導体装置を提供することを目的とする。
 上記目的を達成するために、本発明の態様は、(a)上側集積回路を集積した上側半導体基板と、(b)この上側半導体基板の主面に設けられた上側絶縁層と、(c)この上側絶縁層の周辺に沿って周回して閉じた平面パターンを構成する上側封止パターン部と、(d)上側絶縁層に、主面の少なく共一部で構成されるチップ搭載領域が対向するように配置された下側チップと、(e)この下側チップの主面上に配置され、上側封止パターン部の配置に対応したパターンを構成し、チップ搭載領域の周辺を周回し、上側封止パターン部との固相拡散接合により金属学的接続体を構成する下側封止パターン部を備える積層型半導体装置であることを要旨とする。本発明の態様に係る積層型半導体装置において、下側チップのチップ搭載領域、上側絶縁層及び金属学的接続体の内部に気密空間を形成している。
 本発明によれば、入出力電極のピッチ間隔が10μm以下の微細化構造が採用される場合であっても、プロセス工程数の増大を招くことなく安価且つ簡単に、信頼性の高い気密封止が可能な積層型半導体装置を提供することができる。
本発明の第1実施形態に係る積層型半導体装置を示す斜視図(鳥瞰図)である。 第1実施形態に係る積層型半導体装置に用いる下側チップの概略を説明する鳥瞰図である。 図1に示した積層型半導体装置に用いる上側チップの平面図である。 図1に示した積層型半導体装置に用いる下側チップの平面図である。 図3のV-V方向から見た断面図であって、気密封止前の状態を説明する構造図である。 図5に対応する断面図であって、気密封止工程後の状態を説明する構造図である。 本発明の第2実施形態に係る積層型半導体装置に用いる上側チップの平面図である。 第2実施形態に係る積層型半導体装置に用いる下側チップの平面図である。 第2実施形態に係る積層型半導体装置の断面図であって、気密封止前の状態を説明する構造図である。 図9に対応する断面図であって、気密封止工程後の状態を説明する構造図である。 図11(a)は、第2実施形態に係る積層型半導体装置の上側チップに設けられる鋸波状メアンダラインのトポロジを示す平面図で、図11(b)は、図11(a)の上側チップを搭載する下側チップに設けられる鋸波状メアンダラインのトポロジを示す平面図で、図11(c)は、上側チップの鋸波状メアンダラインと下側チップの鋸波状メアンダラインの交差による金属学的接合の箇所が、周期的に複数発生することを説明する平面図である。 図12(a)は、第2実施形態の第1変形例に係る積層型半導体装置の上側チップに設けられる波形メアンダラインのトポロジを示す平面図で、図12(b)は、図12(a)の上側チップを搭載する下側チップに設けられる波形メアンダラインのトポロジを示す平面図で、図12(c)は、上側チップの波形メアンダラインと下側チップの波形メアンダラインの交差による金属学的接合の箇所が、周期的に複数発生することを説明する平面図である。 図13(a)は、第2実施形態の第2変形例に係る積層型半導体装置の上側チップに設けられる半円弧状メアンダラインのトポロジを示す平面図で、図13(b)は、図13(a)の上側チップを搭載する下側チップに設けられる半円弧状メアンダラインのトポロジを示す平面図で、図13(c)は、上側チップの半円弧状メアンダラインと下側チップの半円弧状メアンダラインの交差による金属学的接合の箇所が、周期的に複数発生することを説明する平面図である。 本発明の第3実施形態に係る積層型半導体装置の構成の一部を説明する図で、下側チップがインターポーザの場合を示す鳥瞰図である。 図14に示したインターポーザとしての下側チップを説明する断面図である。 本発明の第4実施形態に係る積層型半導体装置の気密封止前の状態を説明する図で、第1実施形態で説明した図3のV-V方向から見た断面図に対応する図である。 本発明の第4実施形態の第1変形例に係る積層型半導体装置の気密封止前の状態を説明する図である。 本発明の第4実施形態の第2変形例に係る積層型半導体装置の気密封止前の状態を説明する図である。
 以下、図面を参照ながら本発明の第1~第4実施形態を説明する。図面の記載においては、同一又は類似の部分には同一又は類似の符号を付し、重複する説明を省略する。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は実際のものとは異なる場合がある。また、図面相互間においても寸法の関係や比率が異なる部分が含まれ得る。また、以下に示す第1~第4実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。
 また、以下の第1~第4実施形態の説明における上下等の方向の定義は、単に説明の便宜上の定義であって、本発明の技術的思想を限定するものではない。例えば、対象を90°回転して観察すれば上下は左右に変換して読まれ、180°回転して観察すれば上下は反転して読まれることは勿論である。したがって、180°回転の場合は、以下の説明における「下側チップ」を「上側チップ」と読み替え、「上側チップ」を「下側チップ」と読み替えても良いことは勿論である。
(第1実施形態)
 図1及び図6に示すように、本発明の第1実施形態に係る積層型半導体装置は、下側チップ10Aと、下側チップ10Aに搭載された上側チップ10Bの積層構造をなしている。図2、図3及び図5に示すように、下側チップ10Aは、下側半導体基板11Aと、下側半導体基板11Aの主面(上面)の表面領域に配置される下側集積回路と、下側半導体基板11Aの主面上(上面上)に下側集積回路を覆うように設けられる下側絶縁層13Aと、下側絶縁層13A上において下側半導体基板11Aの主面の縁部に沿って周回する帯状の下側封止パターン部14Aを備える。下側集積回路は、例えば3nm~7nmのデザインルールで設計された微細パタ-ンで高速動作を可能にしている。多くの半導体チップと同様に、図3では下側チップ10Aが矩形である場合を例示しており、帯状の下側封止パターン部14Aも、下側チップ10Aの周辺に沿った矩形の額縁状パターン(穴あき矩形パターン)で、閉じたパターンを構成している。しかしながら、下側チップ10Aが矩形である必然性はなく、下側チップ10Aが矩形でない場合は、下側封止パターン部14Aも下側チップ10Aの形状に適合した平面パターンとなるのは勿論である。
 一方、図3及び図5に示すように、第1実施形態に係る積層型半導体装置の上側チップ10Bは、上側半導体基板11Bと、上側半導体基板11Bの主面の表面領域に配置される上側集積回路と、上側集積回路を覆うように上側半導体基板11Bの主面上に設けられた上側絶縁層13Bと、上側絶縁層13B上において上側半導体基板11Bの主面の縁部に沿って周回する帯状の第2封止部ランド14Bと、第2封止部ランド14B上において上側半導体基板11Bの縁部に沿って、互いに間隔を空けて、かつ隣接しながら平行に延びる封止用外壁15o及び封止用内壁15iを備える。上側集積回路は、下側チップ10Aの下側集積回路と同様に、3nm~7nmのデザインルールで設計された微細で高速動作可能な平面パターンを有している。第2封止部ランド14B、封止用外壁15o及び封止用内壁15iで、上側チップ10Bの「上側封止パターン部(14B,15o,15i)」を構成している。図6から分かるように、下側封止パターン部14Aと上側封止パターン部(14B,15o,15i)が固相拡散接合することにより金属学的接続体(14A,15o,15i)が構成されている。下側絶縁層13A、上側絶縁層13B及び金属学的接続体(14A,15o,15i)の内部に気密空間が形成されている。
 図2及び図4に示すように、下側チップ10Aの下側封止パターン部14Aの周回パターンの内側には中空円筒状の下側バンプBp1,Bp2,Bp3,……,Bpmが10μm以下のピッチで配列されている。下側バンプBp1,Bp2,Bp3,……,Bpmの配列の方向に定義される、下側封止パターン部14Aが構成する矩形額縁状パターンの辺を「第1辺」と定義すると、第1辺に連続し第1辺に直交する矩形額縁状パターンの第2辺に沿って、下側チップ10Aの中央部周辺には中空円筒状の下側バンプBq1,Bq2,Bq3,……,Bqnが10μm以下のピッチで配列されている。第2辺に連続し第2辺に直交する矩形額縁状パターンの第3辺に沿って、下側チップ10Aの中央部周辺には中空円筒状の下側バンプBr1,Br2,Br3,……,Brmが10μm以下のピッチで配列されている。第3辺に連続し第3辺に直交する矩形額縁状パターンの第4辺に沿って、下側チップ10Aの中央部周辺には中空円筒状の下側バンプBs1,Bs2,Bs3,……,Bsnが10μm以下のピッチで配列されている。
 このため、下側バンプBp1,Bp2,Bp3,……,Bpmの配列、下側バンプBq1,Bq2,Bq3,……,Bqnの配列、下側バンプBr1,Br2,Br3,……,Brmの配列、及び下側バンプBs1,Bs2,Bs3,……,Bsnの配列によって、下側封止パターン部14Aが構成する矩形額縁状パターンの内側に、別の矩形額縁状パターンが構成されている。下側バンプBp1,Bp2,Bp3,……,Bpm;Bq1,Bq2,Bq3,……,Bqn;Br1,Br2,Br3,……,Brm;Bs1,Bs2,Bs3,……,Bsnの配列は、下側集積回路の入出力電極となるボンディングパッドのパターンの配列に対応させることができる。なお、以下の説明では下側バンプBp1,Bp2,Bp3,……,Bpm;Bq1,Bq2,Bq3,……,Bqn;Br1,Br2,Br3,……,Brm;Bs1,Bs2,Bs3,……,Bsnを、「下側バンプBij」と包括的表現で略記する場合がある(i=p,q,r,s:j=1~n、又は1~mの正の整数)。なお、例示した下側バンプBijは、中空円筒状の形状に限定されるものではなく、下側バンプBijの配列も図2及び図4に示すような一重の矩形に周回的に配置される場合に限定されるものではない。下側バンプBijの配列は、下側チップ10Aの周辺を二重若しくは三重以上の多重に周回する矩形や同心円状に周回する平面パターンや、下側チップ10Aにアレイ状に配列される平面パターンでも構わない。
 下側半導体基板11Aは、例えば、シリコン基板が採用可能であるが、説明の便宜上の例示に過ぎない。下側半導体基板11Aは、炭化ケイ素(SiC)やガリウムヒ素(GAAs)等の化合物半導体でもよい。下側半導体基板11Aの表面には、例えば、DRAMやSRAM等のメモリ、固体撮像装置の画素アレイ、演算回路、制御回路、入出力回路、センス回路、増幅回路等の回路ブロックや画素アレイを有する下側集積回路が設けられた構造が採用可能であるが、これらも例示に過ぎない。下側絶縁層13Aは、例えば、シリコン酸化膜(SiO膜)、シリコン窒化膜(Si膜)、燐珪酸ガラス膜(BSG膜)、フッ素含有酸化膜(SiOF膜)、炭素含有酸化膜(SiOC膜)等の無機系絶縁層の他、メチル含有ポリシロキサン(SiCOH)、水素含有ポリシロキサン(HSQ)、ポーラスメチルシルセスキオキサン膜やポリアリレン膜等の有機系絶縁層が使用可能で、これらの種々の絶縁膜層を組み合わせて積層して、多様な多層構造の多層配線絶縁層を構成することが可能である。下側絶縁層13Aは、フィールド絶縁膜のみの単層構造であってもよく、又は上述の種々の絶縁材料を組み合わせた多層構造であってもよく、多層構造の場合は、最上層がパッシベーション膜として機能できる。
 下側絶縁層13Aの上面は、化学的機械研磨(CMP)などの研磨方法により高精度に平坦化されていることが望ましい。下側封止パターン部14Aは、下側絶縁層13Aに亀裂などの破損を生じさせないように、十分な強度を有し、必要なサイズを有するものとする。中空円筒状の下側バンプBij及び下側封止パターン部14Aには、例えば金(Au)等のビッカース硬さが20Hv~30Hv程度の軟らかい金属が使用可能である。更に、Auを80%以上含むAu-シリコン(Si),Au-ゲルマニウム(Ge),Au-アンチモン(Sb),Au-錫(Sn),Au-鉛(Pb),Au-亜鉛(Zn),Au-銅(Cu)等のビッカース硬さが15Hv~120Hv程度のAu合金も使用可能である。Snを90%含むAu-90Sn合金のビッカース硬さは、Snの低硬度性が顕著になり16Hv程度となる。ビッカース硬さが比較的小さなAu合金の下層にニッケル(Ni)、クロム(Cr)、チタン(Ti),タンタル(Ta)、マンガン(Mn)、ルテニウム(Ru)、タングステン(W)等の高融点金属材料を含む層を構成した多層構造で下側封止パターン部14Aを構成しても構わない。
 図示を省略しているが、中空円筒状の下側バンプBijの下層となる下側バンプ用ランド部にNi、Cr、Ti等の等の高融点金属材料を含ませて、下側バンプ用ランド部を下側バンプBijの底部に接触させてもよい。下側バンプ用ランド部は多層配線絶縁層を構成する下側絶縁層13Aの内部に埋め込まれていてもよく、下側バンプ用ランド部と下側バンプBijはビアで互いに接続されることができる。下側バンプ用ランド部は、下側集積回路の入出力電極となるボンディングパッドにビア等を介して電気的に接続されている。
 図5に示すように、平行に延びる封止用外壁15oと封止用内壁15iの底部は互いに接続されているので、平行に延びる方向を長手方向としたとき、上側封止パターン部(14B,15o,15i)の長手方向に垂直な断面はU字型をなしている。既に述べたとおり、第1実施形態に係る積層型半導体装置では、下側チップ10Aに形成される下側封止パターン部14Aが、矩形額縁状パターンであると仮定した場合の例示的な説明である。このため、図3に示すように、上側チップ10Bに設けられる第2封止部ランド14Bも、下側封止パターン部14Aのパターンに対応し、下側封止パターン部14Aとほぼ鏡像関係に近い矩形額縁状パターンで、閉じたパターンを構成している。しかしながら、下側封止パターン部14Aが矩形額縁状でない場合は、第2封止部ランド14Bも下側封止パターン部14Aの形状を投影した平面パターンで閉じたパターンを構成することは勿論である。
 図3に示すように、上側チップ10Bの第2封止部ランド14Bの周回パターンの内側には、下側バンプBp1,Bp2,Bp3,……,Bpmの配列に合わせて、中空四角筒状の上側バンプBup1,Bup2,Bup3,……,Bupmが10μm以下のピッチで配列されている。上側バンプBup1,Bup2,Bup3,……,Bupmの配列の方向に沿った第2封止部ランド14Bの矩形額縁状パターンの辺を「上側矩形第1辺」と定義すると、上側矩形第1辺に連続し上側矩形第1辺に直交する上側矩形第2辺に沿って、上側チップ10Bの中央部周辺には中空四角筒状の上側バンプBuq1,Buq2,Buq3,……,Buqnが、下側バンプBq1,Bq2,Bq3,……,Bqnの配列に合わせて10μm以下のピッチで配列されている。上側矩形第2辺に連続し上側矩形第2辺に直交する上側矩形第3辺に沿って、上側チップ10Bの中央部周辺には中空四角筒状の上側バンプBur1,Bur2,Bur3,……,Burmが、下側バンプBr1,Br2,Br3,……,Brmの配列に合わせて10μm以下のピッチで配列されている。
 上側矩形第3辺に連続し上側矩形第3辺に直交する上側矩形第4辺に沿って、上側チップ10Bの中央部周辺には中空四角筒状の上側バンプBus1,Bus2,Bus3,……,Busnが、下側バンプBs1,Bs2,Bs3,……,Bsnの配列に合わせて10μm以下のピッチで配列されている。上側バンプBup1,Bup2,Bup3,……,Bupm;Buq1,Buq2,Buq3,……,Buqn;Bur1,Bur2,Bur3,……,Burm;Bus1,Bus2,Bus3,……,Busnの配列は、上側集積回路の入出力電極となるボンディングパッドのパターンの配列に対応している。なお、以下の説明では上側バンプBup1,Bup2,Bup3,……,Bupm;Buq1,Buq2,Buq3,……,Buqn;Bur1,Bur2,Bur3,……,Burm;Bus1,Bus2,Bus3,……,Busnを、「上側バンプBuij」と包括的表現で略記する場合がある(i=p,q,r,s:j=1~n、又は1~mの正の整数)。なお、例示した上側バンプBuijも、中空四角筒状の形状に限定されるものではない。又、上側バンプBuijの配列も図3に示すような矩形に周回的に配置される場合に限定されるものではなく、例えば下側バンプBijの配列がマトリクス等のアレイ状であれば、下側バンプBijの配列に合わせて」、上側バンプBuijも上側チップ10Bにアレイ状に配列される。
 上側半導体基板11Bは、下側半導体基板11Aと同様に、シリコン基板が採用可能であるが、例示でありシリコン基板に限定されるものではない。上側半導体基板11Bの表面には、例えば、メモリ、演算回路、制御回路、入出力回路、センス回路、増幅回路等の回路ブロックを含む上側集積回路が設けられていてよい。上側絶縁層13Bは、例えば、SiO膜、Si膜、BSG膜、SiOF膜、SiOC膜等の無機系絶縁層の他、SiCOH、HSQ、ポーラスメチルシルセスキオキサン膜やポリアリレン膜等の有機系絶縁層が使用可能で、これらの種々の絶縁膜層を組み合わせて積層して、多様な多層構造の多層配線絶縁層を構成することが可能である。上側絶縁層13Bは、フィールド絶縁膜のみの単層構造であってもよく、又は、上述の種々の絶縁材料を組み合わせた多層構造であってもよい。多層構造の場合は、最上層がパッシベーション膜として機能できる。上側絶縁層13Bの上面は、CMPなどの研磨方法により高精度に平坦化されていることが望ましい。
 図3に示すように封止用外壁15o及び封止用内壁15iは、平面パターンとしては2本のラインからなる周回するパターンでそれぞれ閉じた矩形を構成し、上側半導体基板11Bの縁部に沿って周回している。封止用外壁15o及び封止用内壁15iの平面パターンは、矩形リング状に閉じていることが好ましいが、その一部が気密封止に影響がない程度に途切れている場合を排除するものではない。第1実施形態に係る積層型半導体装置の上側チップ10Bプの周辺を、平行壁のトポロジを維持して、矩形リング状に周回する封止用平行垂直壁構造(15o,15i)は、例えば特開2019-190775号で本発明者が開示した筒状のバンプの四角筒状の製造方法と同様な方法でも製造できる。下側チップ10Aに用いる円筒状の下側バンプBijも特開2019-190775号に開示した手法によって製造可能である。即ち、上側チップ10Bの周辺に設ける封止用平行垂直壁構造(15o,15i)は、中央部付近に設ける上側バンプBuijと同時に、特開2019-190775号に開示した手法によって製造可能である。
 その他、上側チップ10Bの周辺に設ける封止用平行垂直壁構造(15o,15i)は、半導体集積回路の製造方法として採用されている種々のサイドウォール技術によって容易に形成することができる。例えば上側チップ10Bの周辺を周回する断面矩形のフォトレジスト膜のパターンを土台として形成し、このフォトレジスト膜のパターンの垂直側壁を含むように真空蒸着やスパッタリングでAuやAu合金等の金属膜を全面に堆積する手法でも可能である。その後、土台としてのフォトレジスト膜のパターンの上面に堆積された金属膜をエッチバック等により選択的に除去し、更に土台としてのフォトレジスト膜を除去すれば、2枚の垂直側壁が平行に対向する封止用平行垂直壁構造(15o,15i)が形成できる。このような周知のサイドウォール・プロセスにより形成可能な平行垂直壁のことを第1実施形態に係る積層型半導体装置では「サイドウォール・パターン」と称することとする。
 中空四角筒状の上側バンプBuijの材料には、常圧ないし減圧下での加熱圧着若しくは超音波加熱圧着等の圧力により中空円筒状の下側バンプBijと固相拡散接合することが容易な金属が好ましい。同様に、封止用外壁15o及び封止用内壁15iは、加熱圧着若しくは超音波加熱圧着等によりそれぞれ下側封止パターン部14Aとの固相拡散接合が容易な金属が好ましい。封止用外壁15o及び封止用内壁15iは、上側バンプBuijと同一材料から構成されていてもよい。例えば、下側バンプBijと下側封止パターン部14AがAu又はAu合金で構成されている場合には、上側バンプBuij並びにU字型をなす封止用外壁15o及び封止用内壁15iには、AuやAu-Si,Au-Ge,Au-Sb,Au-Sn,Au-Pb,Au-Zn,Au-Cu等のAu合金が採用可能である。
 封止用外壁15o及び封止用内壁15iは、下側封止パターン部14Aに対して熱圧着されたときに、それ自身が変形し、下側封止パターン部14Aと固相拡散接合して金属学的に接合して金属学的接続体(14A,15o,15i)を構成することにより気密封止を実現するものである。封止用外壁15o及び封止用内壁15iを、厚さ70~700nm程度の垂直側壁からなるサイドウォール・パターンとすることで、封止用外壁15o及び封止用内壁15iが圧着時の力によって容易に変形し易いという特徴を生かすことができる。封止用外壁15o及び封止用内壁15iは、上側バンプBuijと同一材料を用いて同一プロセスで形成できるので、封止用外壁15o及び封止用内壁15iの形成に際し、余分な工程数の増大は伴わず、安価に製造できる。封止用外壁15o及び封止用内壁15iが容易に変形できるので、製造歩留まりの高い、信頼性の高い気密封止を、プロセス工程数の増大を招くことなく安価且つ簡単に実現できる。好ましくは、封止用外壁15o及び封止用内壁15iを、厚さ100~300nm程度の直側壁にすることで、封止用外壁15o及び封止用内壁15iが圧着時の力によって容易に変形し易いという特徴がより顕著になる。気密封止後は、封止用外壁15o及び封止用内壁15iは変形しているので、図5に示すような垂直側壁の態様を失っており、金属学的接続体(14A,15o,15i)は図6に示すような互いに畳み込まれた非規則な曲面を含む不定形な形状となる。
 図5に示すように、第2封止部ランド14Bは、U字型を構成する封止用外壁15o及び封止用内壁15iの下地となる部材である。第2封止部ランド14Bは、下側チップ10Aと上側チップ10Bとの気密封止時において、封止用外壁15o及び封止用内壁15iにかかる圧力を吸収/分散し、かつ上側絶縁層13Bに亀裂などの破損を生じさせないように、十分な強度を有し、必要なサイズを有することが好ましい。このため第2封止部ランド14Bは、例えば、Ti、Ni、Cr、Ta、Mn、Ru、W、等の高融点金属材料の下層を含むAu又はAu合金との多層構造で構成できる。図示を省略しているが、上側バンプBuijの下層(図5の表示の方向では上側の層)となる上側バンプ用ランド部にNi、Cr、Ti等の等の高融点金属材料を含ませて、上側バンプ用ランド部を上側バンプBuijの底部に接触させてもよい。上側バンプ用ランド部は多層配線絶縁層を構成する上側絶縁層13Bの内部に埋め込まれていてもよく、上側バンプ用ランド部と上側バンプBuijは、ビアで互いに接続されることができる。上側バンプ用ランド部は、上側集積回路の入出力電極となるボンディングパッドにビア等を介して電気的に接続されている。
 以上、説明したように、下側チップ10Aの縁部に沿って、帯状の下側封止パターン部14Aで閉じたパターンを構成し、上側チップ10Bの縁部に沿って周回する閉じたパターンとして上側封止パターン部(14B,15o,15i)が、下側封止パターン部14Aに対応する大きさと形状で、少なく共一部が鏡像関係をなすように構成されている。したがって、第1実施形態に係る積層型半導体装置によれば、入出力電極のピッチ間隔が10μm以下の微細化された平面パターンを有する半導体集積回路を搭載した場合であっても、下側封止パターン部14Aと上側封止パターン部(14B,15o,15i)とを圧着して金属学的に接合して図6に示したような金属学的接続体(14A,15o,15i)を構成することにより、プロセス工程数の増大を招くことなく安価且つ簡単に、下側チップ10Aと上側チップ10Bの間の気密封止をすることが可能になる。
(第2実施形態)
 図10に示すように、本発明の第2実施形態に係る積層型半導体装置は、下側チップ20Aと、下側チップ20Aに搭載された上側チップ20Bの積層構造をなしている点では第1実施形態に係る積層型半導体装置と同様である。しかし、図9及び図10に示すように、下側チップ20Aは、下側半導体基板11Aと、下側半導体基板11Aの主面の表面領域に配置される下側集積回路と、下側半導体基板11Aの主面上(上面上)に下側集積回路を覆うように設けられる下側絶縁層23Aと、下側絶縁層23A上において下側半導体基板11Aの主面の縁部に沿って周回する帯状の第1封止部ランド14Aと、第1封止部ランド14A上において下側半導体基板11Aの縁部に沿って、互いに間隔を空けて、かつ隣接しながら平行に蛇行する封止用外壁17o及び封止用内壁17iを備える。即ち、第1封止部ランド14A、封止用外壁17o及び封止用内壁17iで、下側チップ20Aの「下側封止パターン部(14A,17o,17i)」を構成している点で、第1実施形態に係る積層型半導体装置の構成とは異なる。下側集積回路は例えば3nm~7nmのデザインルールで設計された微細パタ-ンである点でも、第1実施形態に係る積層型半導体装置と同様である。多くの半導体チップと同様に、図8では下側チップ20Aが矩形である場合を例示しており、帯状の第1封止部ランド14Aも、下側チップ20Aの周辺に沿った矩形の額縁状パターン(穴あき矩形パターン)で、閉じたパターンを構成している。しかしながら、下側チップ20Aが矩形である必然性はなく、下側チップ20Aが矩形でない場合は、第1封止部ランド14Aも下側チップ20Aの形状に適合した平面パターンとなるのは勿論である。
 一方、図7及び図9に示すように、第2実施形態に係る積層型半導体装置の上側チップ20Bは、上側半導体基板11Bと、上側半導体基板11Bの主面の表面領域に配置される上側集積回路と、上側集積回路を覆うように上側半導体基板11Bの主面上に設けられた上側絶縁層23Bと、上側絶縁層23B上において上側半導体基板11Bの主面の縁部に沿って周回する帯状の第2封止部ランド14Bと、第2封止部ランド14B上において上側半導体基板11Bの縁部に沿って、互いに間隔を空けて、かつ隣接しながら平行に蛇行する封止用外壁16o及び封止用内壁16iを備える。上側集積回路は、下側チップ20Aの下側集積回路と同様に、3nm~7nmのデザインルールで設計された微細で高速動作可能な平面パターンを有している。第2封止部ランド14B、封止用外壁16o及び封止用内壁16iで、上側チップ20Bの「上側封止パターン部(14B,16o,16i)」を構成している。図10から分かるように、下側封止パターン部(14A,17o,17i)と上側封止パターン部(14B,16o,16i)が固相拡散接合することにより金属学的接続体(14A,14B,18)が構成されている。下側絶縁層23A、上側絶縁層23B及び金属学的接続体(14A,14B,18)の内部に気密空間が形成されている。
 図2に示した平面パターンと同様であるが、図8に示すように、第1封止部ランド14Aが構成する矩形額縁状パターンの内側に、複数の下側バンプBijが矩形額縁状パターンとして10μm以下のピッチで配列された場合を例示している(i=p,q,r,s:j=1~n、又は1~mの正の整数)。又、図3に示したのと同様であるが、図7に示すように、上側チップ20Bの第2封止部ランド14Bの周回パターンの内側には、複数の中空四角筒状の上側バンプBuijが矩形額縁状パターンとして10μm以下のピッチで配列されている場合を例示している。
 下側半導体基板11A及び上側半導体基板11Bは、例えば、シリコン基板であり、下側半導体基板11A及び上側半導体基板11Bの表面には、例えば、メモリ、演算回路、制御回路、入出力回路、センス回路、増幅回路等の回路ブロックを有する下側集積回路が設けられている。下側絶縁層23A及び上側絶縁層23Bは、例えば、SiO膜、Si膜、BSG膜、SiOF膜、SiOC膜等の無機系絶縁層の他、SiCOH、HSQ、ポーラスメチルシルセスキオキサン膜やポリアリレン膜等の有機系絶縁層が使用可能で、これらの種々の絶縁膜層を組み合わせて積層して、多様な多層構造の多層配線絶縁層を構成することが可能である。下側絶縁層23A及び上側絶縁層23Bは、フィールド絶縁膜のみの単層構造であってもよく、又は、上述の種々の絶縁材料を組み合わせた多層構造であってもよい。多層構造の場合は、最上層がパッシベーション膜として機能できる。下側絶縁層23A及び上側絶縁層23Bの上面は、CMPなどの研磨方法により高精度に平坦化されていることが望ましい。
 図7に示すように上側チップ20Bの封止用外壁16o及び封止用内壁16iは、平面パターンとしては2本のラインが蛇行しながら周回するパターンでそれぞれ閉じたメアンダライン形状を構成し、上側チップ20Bの縁部に沿って周回している。封止用外壁16o及び封止用内壁16iが平面パターンとして、2本の鋸波状メアンダラインとして蛇行している構造の詳細は図11(a)に示している。図8に示すように下側チップ20Aの封止用外壁17o及び封止用内壁17iは、平面パターンとしては2本のラインが蛇行しながら周回するパターンでそれぞれ閉じたメアンダライン形状を構成し、下側チップ20Aの縁部に沿って周回している。封止用外壁17o及び封止用内壁17iが平面パターンとして、2本の鋸波状メアンダラインとして蛇行している構造の詳細は図11(b)に示している。図11(a)に示した2本の鋸波状メアンダラインと、図11(b)に示した2本の鋸波状メアンダラインは位相が異なるので、図11(c)に示すように、上側チップ20Bの封止用外壁16o及び封止用内壁16iは、複数箇所で下側チップ20Aの封止用外壁17o及び封止用内壁17iと交差している。図11(c)では上から2番目の交差箇所を丸印で囲み、符号Zをラベリングしている。
 上側チップ20Bの封止用外壁16o及び封止用内壁16iと、下側チップ20Aの封止用外壁17o及び封止用内壁17iの両方が、それぞれ直線状の平行2線の場合、封止用外壁16oと封止用外壁17oが同一線上で重なり、封止用内壁17iと封止用内壁16iが同一線上で重なるので、封止用外壁16o等を潰す際に大きな力が必要になる。又、封止用外壁16oと封止用外壁17oの積層の際の位置ずれ、封止用内壁17iと封止用内壁16iの積層の際の位置ずれにより、封止用外壁16o等を潰す際の必要力が変わる。また、下側チップ20Aと上側チップ20Bの仮接続による電気的特性の評価をして下側チップ20A又は上側チップ20Bに不良が発見された場合、チップリペアをすることが必要になる。チップリペアのプロセスを考慮すると、弱い力で下側チップ20Aと上側チップ20Bとを仮接続をして、弱い力で不良が発見されたチップを弱い力で取り除きたいという要望もある。
 図11(a)及び図11(b)に示すように、上下の封止壁を鋸波状に蛇行させておけば、図11(c)に示すように、下側チップ20Aと上側チップ20Bを接合させる場合に、交差箇所Zに合わせずれが起きても、交差箇所Zを点における仮接合にすることできるので、熱圧着の際に加える圧力を均一に設定できるメリットが出る。更に、交差箇所を点接触にすることできるので、熱圧着の際に加える圧力を弱くすることができるので、リペアしやすいというメリットも出る。なお、図11(a)及び図11(b)では、上下の封止壁を蛇行させた場合を例示しているが、下側チップ20Aと上側チップ20Bのいずれか一方の側だけ蛇行させるようにしても、合わせずれが起きても、点接合の利点により、熱圧着の際に加える圧力を均一にし、リペアしやすいという有利な効果を奏することができる。
 第2実施形態に係る積層型半導体装置の封止用外壁16o、封止用内壁16i、封止用外壁17o及び封止用内壁17iの平面パターンは、メアンダライン状の周回パターンで閉じていることが好ましいが、メアンダラインの一部が気密封止に影響がない程度に途切れている場合を排除するものではない。第2実施形態に係る積層型半導体装置に用いるメアンダライン状の水平パターンを有して周回する封止用平行垂直壁構造(16o,16i)及び封止用平行垂直壁構造(17o,17i)は、第1実施形態に係る積層型半導体装置と同様に、サイドウォール技術によって容易に形成することができる。封止用平行垂直壁構造(16o,16i)は、メアンダライン状の溝部又は土台パターンを用いた周知のサイドウォール・プロセスを適用して、上側バンプBuijの製造工程と同一プロセスで形成できるので、封止用平行垂直壁構造(16o,16i)の形成に際し、余分な工程数の増大は伴わず、安価に製造できる。又、封止用平行垂直壁構造(17o,17i)は、メアンダライン状の溝部又は土台パターンを用いた周知のサイドウォール・プロセスを適用して、下側バンプBijの製造工程と同一プロセスで形成できるので、封止用平行垂直壁構造(17o,17i)の形成に際し、余分な工程数の増大は伴わず、安価に製造できる。
 中空四角筒状の上側バンプBuijの材料には、常圧ないし減圧下での加熱圧着若しくは超音波加熱圧着等の圧力により中空円筒状の下側バンプBijと固相拡散接合することが容易な金属が好ましい。同様に、上側チップ20Bの封止用外壁16o及び封止用内壁16iは、加熱圧着若しくは超音波加熱圧着等によりそれぞれ、下側チップ20Aの封止用外壁17o及び封止用内壁17iとの固相拡散接合が容易な金属が好ましい。封止用外壁16o及び封止用内壁16iは、上側バンプBuijと同一材料から構成されていてもよく、封止用外壁17o及び封止用内壁17iは、下側バンプBijと同一材料から構成されていてもよい。例えば、下側バンプBijと第1封止部ランド14AがAu又はAu合金で構成されている場合には、下側バンプBij、上側バンプBuij、封止用外壁16o、封止用内壁16i、封止用外壁17o及び封止用内壁17iには、AuやAu-Si,Au-Ge,Au-Sb,Au-Sn,Au-Pb,Au-Zn,Au-Cu等のAu合金が採用可能である。
 上側チップ20Bの封止用外壁16o及び封止用内壁16iは、下側チップ20Aの封止用外壁17o及び封止用内壁17iに対して熱圧着されたときに、互いに変形し、互いに固相拡散接合して金属学的に接合することにより気密封止を実現するものである。封止用外壁16o、封止用内壁16i、封止用外壁17o及び封止用内壁17iを、厚さ70~700nm程度、好ましくは100~300nm程度のサイドウォール・パターンとすることで、封止用外壁16o、封止用内壁16i、封止用外壁17o及び封止用内壁17iのそれぞれが、圧着時の力によって容易に変形し易いという特徴を生かすことができる。圧着時の力によって容易に変形することで、封止用外壁16o及び封止用内壁16iを、封止用外壁17o及び封止用内壁17iと容易に固相拡散接合することができ、追加の工程数の増大を伴うことなく気密封止を実現することが可能となる。
 図9に示すように、平行に蛇行する封止用外壁17oと封止用内壁17iの底部は互いに接続されているので、平行に蛇行する方向を長手方向としたとき、下側封止パターン部(14A,17o,17i)の長手方向に垂直な断面はU字型をなしている。又、平行に蛇行する封止用外壁16oと封止用内壁16iの底部は互いに接続されているので、平行に蛇行する方向を長手方向としたとき、上側封止パターン部(14B,16o,16i)の長手方向に垂直な断面はU字型をなしている。第2実施形態に係る積層型半導体装置では、下側チップ20Aに形成される第1封止部ランド14Aが、矩形額縁状パターンであると仮定した場合の例示的な説明である。このため、図8に示すように、上側チップ20Bに設けられる第2封止部ランド14Bも、第1封止部ランド14Aのパターンに対応し、第1封止部ランド14Aとほぼ鏡像関係に近い矩形額縁状パターンで、閉じたパターンを構成している。しかしながら、第1封止部ランド14Aが矩形額縁状でない場合は、第2封止部ランド14Bも第1封止部ランド14Aの形状を投影した平面パターンで閉じたパターンを構成することは勿論である。
 図9に示すように、第1封止部ランド14Aは、U字型を構成する封止用外壁17o及び封止用内壁17iの下地となる部材である。第1封止部ランド14Aは、下側チップ20Aと上側チップ20Bとの気密封止時において、封止用外壁17o及び封止用内壁17iにかかる圧力を吸収/分散し、かつ下側絶縁層23Aに亀裂などの破損を生じさせないように、十分な強度を有し、必要なサイズを有することが好ましい。同様に、第2封止部ランド14Bは、U字型を構成する封止用外壁16o及び封止用内壁16iの下地となる部材である。第2封止部ランド14Bは、下側チップ20Aと上側チップ20Bとの気密封止時において、封止用外壁16o及び封止用内壁16iにかかる圧力を吸収/分散し、かつ上側絶縁層23Bに亀裂などの破損を生じさせないように、十分な強度を有し、必要なサイズを有することが好ましい。このため第1封止部ランド14A及び第2封止部ランド14Bは、例えば、Ti、Ni、Cr、Ta、Mn、Ru、W、等の高融点金属材料の下層を含むAu又はAu合金との多層構造で構成できる。
 図示を省略しているが、中空円筒状の下側バンプBijの下層となる下側バンプ用ランド部にNi、Cr、Ti等の等の高融点金属材料を含ませて、下側バンプ用ランド部を下側バンプBijの底部に接触させてもよい。下側バンプ用ランド部は多層配線絶縁層を構成する下側絶縁層23Aの内部に埋め込まれていてもよく、下側バンプ用ランド部と下側バンプBijは、ビアで互いに接続されることができる。下側バンプ用ランド部は、下側集積回路の入出力電極となるボンディングパッドにビア等を介して電気的に接続されている。同様に、中空四角筒状の上側バンプBuijの下層(図9の表示の方向では上側の層)となる上側バンプ用ランド部にNi、Cr、Ti等の等の高融点金属材料を含ませて、上側バンプ用ランド部を上側バンプBuijの底部に接触させてもよい。上側バンプ用ランド部は多層配線絶縁層を構成する上側絶縁層23Bの内部に埋め込まれていてもよく、上側バンプ用ランド部と上側バンプBuijは、ビアで互いに接続されることができる。上側バンプ用ランド部は、上側集積回路の入出力電極となるボンディングパッドにビア等を介して電気的に接続されている。
 以上、説明したように、下側チップ20Aの縁部に沿って、下側封止パターン部(14A,17o,17i)で閉じたパターンを構成し、上側チップ20Bの縁部に沿って周回する閉じたパターンとして上側封止パターン部(14B,16o,16i)が、下側封止パターン部(14A,17o,17i)に対応して構成され、メアンダラインが複数の箇所で周期的に交差している。交差部が多くの箇所で周期的に発生するため、気密封止をより完全なものとすることができる。したがって、第2実施形態に係る積層型半導体装置によれば、入出力電極のピッチ間隔が10μm以下の微細化された平面パターンを有する半導体集積回路を搭載した場合であっても、下側封止パターン部(14A,17o,17i)と上側封止パターン部(14B,16o,16i)とを圧着して金属学的に接合して図10に示したような金属学的接続体(14A,14B,18)を構成することにより、プロセス工程数の増大を招くことなく安価且つ簡単に、下側チップ20Aと上側チップ20Bの間の気密封止をすることが可能になる。
 なお、図11では直線状に折れ曲がる鋸波状メアンダラインのトポロジを示したが、図12に示す平行波形メアンダラインのトポロジでも構わない。図12(a)には、第2実施形態の第1変形例に係る積層型半導体装置の上側チップ20Bの封止用外壁31o及び封止用内壁31iの平面パターンの一部を第2封止部ランド14Bのパターンと対比して示している。図12(a)は一部の断片的なパターンの開示でしかないが、封止用外壁31o及び封止用内壁31iも、図7と同様に、2本の平行波形メアンダラインが等間隔で蛇行しながら、複数の上側バンプBuijの配列の周りに配置されている。この結果、マクロな全体としては閉じた平面パターンを構成し、上側チップ20Bの縁部に沿って周回している。図12(b)には、下側チップ20Aの封止用外壁32o及び封止用内壁32iが、平面パターンとして2本の平行波形メアンダラインを構成し、蛇行しながら周回するパターンの一部を、下側チップ20Aのパターンと対比して示されている。
 一部の断片的なパターンしか開示していないが、図8に示した平面レイアウト構成と同様に、図12(b)に示す2本の平行波形メアンダラインが、等間隔で蛇行しながら、複数の下側バンプBijの配列の周りに配置されている。この結果、マクロな全体としては閉じた平面パターンを構成し、下側チップ20Aの縁部に沿って周回している。図12(a)に示した封止用外壁31o及び封止用内壁31iが構成する2本の平行波形メアンダラインと、図12(b)に示した封止用外壁32o及び封止用内壁32iが構成する2本の平行波形メアンダラインの位相が異なるので、図12(c)に示すように、封止用外壁31o及び封止用内壁31iが構成する2本の平行波形メアンダラインと、封止用外壁32o及び封止用内壁32iが構成する2本の平行波形メアンダラインは複数箇所で周期的に交差する。この結果、固相拡散接合により金属学的に接合する箇所が周期的に連続し、気密封止の信頼性が向上する。
 図12(a)及び図12(b)に示すように、上下の封止壁を波型に蛇行させておけば、図12(c)に示すように、下側チップ20Aと上側チップ20Bを接合させる場合に、交差箇所に合わせずれが起きても、交差箇所を点における仮接合にすることできるので、熱圧着の際に加える圧力を均一に設定できるメリットが出る。更に、交差箇所を点接触にすることできるので、熱圧着の際に加える圧力を弱くすることができるので、リペアしやすいというメリットも出る。なお、図12(a)及び図12(b)では、上下の封止壁を蛇行させた場合を例示しているが、下側チップ20Aと上側チップ20Bのいずれか一方の側だけ蛇行させるようにしても、合わせずれが起きても、点接合の利点により、熱圧着の際に加える圧力を均一にし、リペアしやすいという有利な効果を奏することができる。
 なお、図11では平行鋸波状メアンダライン、図12では平行波形メアンダラインのトポロジを示したが、図13に示す平行半円弧状メアンダラインのトポロジでも構わない。図13(a)には、第2実施形態の第2変形例に係る積層型半導体装置の上側チップ20Bの封止用外壁33o及び封止用内壁33iの平面パターンの一部を第2封止部ランド14Bのパターンと対比して示している。図13(a)は一部の断片的なパターンの開示でしかないが、封止用外壁33o及び封止用内壁33iも、図7と同様に2本の平行半円弧状メアンダラインが等間隔で蛇行しながら、複数の上側バンプBuijの配列の周りに配置されている。この結果、マクロな全体としては閉じた平面パターンを構成し、上側チップ20Bの縁部に沿って周回している。図13(b)には、下側チップ20Aの封止用外壁34o及び封止用内壁34iが、平面パターンとして2本の平行半円弧状メアンダラインを構成し、蛇行しながら周回するパターンの一部を、下側チップ20Aのパターンと対比して示されている。
 一部の断片的なパターンの開示に過ぎないが、図8に示した構成と同様に、図13(b)に示す2本の平行半円弧状メアンダラインが、等間隔で蛇行しながら、複数の下側バンプBijの配列の周りに配置されている。この結果、マクロな全体としては閉じた平面パターンを構成し、下側チップ20Aの縁部に沿って周回している。図13(a)に示した封止用外壁33o及び封止用内壁33iが構成する2本の平行半円弧状メアンダラインと、図13(b)に示した封止用外壁34o及び封止用内壁34iが構成する2本の平行半円弧状メアンダラインの位相が異なるので、図13(c)に示すように、封止用外壁33o及び封止用内壁33iが構成する2本の平行半円弧状メアンダラインと、封止用外壁34o及び封止用内壁34iが構成する2本の平行半円弧状メアンダラインは複数箇所で周期的に交差する。この結果、固相拡散接合により金属学的に接合する箇所が周期的に連続し、気密封止の信頼性が向上する。
 図13(a)及び図13(b)に示すように、上下の封止壁を周期的な半円弧のように蛇行させておけば、図13(c)に示すように、下側チップ20Aと上側チップ20Bを接合させる場合に、交差箇所に合わせずれが起きても、交差箇所を点における仮接合にすることできるので、熱圧着の際に加える圧力を均一に設定できるメリットが出る。更に、交差箇所を点接触にすることできるので、熱圧着の際に加える圧力を弱くすることができるので、リペアしやすいというメリットも出る。なお、図13(a)及び図13(b)では、上下の封止壁を蛇行させた場合を例示しているが、下側チップ20Aと上側チップ20Bのいずれか一方の側だけ蛇行させるようにしても、合わせずれが起きても、点接合の利点により、熱圧着の際に加える圧力を均一にし、リペアしやすいという有利な効果を奏することができる。
(第3実施形態)
 本発明の第3実施形態に係る積層型半導体装置では、インターポーザとしての下側チップ21Aと、下側チップ21Aに搭載された上側チップの積層構造をなす場合を例示的に説明する。図14及び図15に示すように、下側チップ21Aは、高比抵抗又は半絶縁性のシリコン基板と、シリコン基板の主面の縁部に沿って周回する帯状の下側封止パターン部14Aを備える。第1及び第2実施形態に係る積層型半導体装置とは異なり、下側チップ21Aはインターポーザであるので、下側チップ21Aには半導体集積回路が集積化されてはいない。つまり、図14及び図15に示した下側チップ21Aは、下側チップ21Aの更に下層側に、半導体集積回路が集積化された他のチップが存在することを予定している。
 図15に示すように、第3実施形態に係る積層型半導体装置の下側チップ21Aはシリコン基板を貫通する複数のシリコン貫通ビアTSVp5,TSVi3,TSVi8,TSVr3を備えている。図15は図14のXV-XV方向から見た断面図であるので、下側チップ21Aに設けられるシリコン貫通ビアのうちの一部が示されている。一番右側のシリコン貫通ビアTSVp5は、下側チップ21Aの表面に設けられた外周表面ランドLp5に接続されている。右から2番目のシリコン貫通ビアTSVi3は下側チップ21Aの表面に設けられた内周表面ランドLi3に接続され、右から3番目のシリコン貫通ビアTSVi8は下側チップ21Aの表面に設けられた内周表面ランドLi8に接続され、内周表面ランドLi8は下側チップ21Aの表面に設けられた表面配線を介して下側バンプBr3に接続されている。左端のシリコン貫通ビアTSVr3は下側チップ21Aの表面に設けられた外周表面ランドLr3に接続されている。
 なお、第3実施形態に係る積層型半導体装置の下側チップ21Aの構造において、シリコン基板の主面上にインターポーザ絶縁層(下側絶縁層)が設けられ、このインターポーザ絶縁層上においてシリコン基板の主面の縁部に沿って周回する帯状の下側封止パターン部14Aを備えるようにしてもよい。下側チップ21Aはインターポーザとして、下側チップ21Aの下層に配置される集積回路の入出力電極に電気的に接続され、三次元構造の積層型半導体装置を構成する。下側チップ21Aの下層に配置される集積回路は、第1~第4実施形態と同様な、3nm~7nmのデザインルールで設計された微細パタ-ン集積回路で構わない。しかし、図14から分かるように、インターポーザは入出力電極のピッチ変更素子の機能を有するので、下側チップ21Aの下層に配置される集積回路は、10nm以上のデザインルールで設計された比較的粗い平面パターンのトポロジであっても対応可能である。なお、図14では下側チップ21Aが矩形である場合を例示しており、帯状の下側封止パターン部14Aも、下側チップ21Aの周辺に沿った矩形の額縁状パターン(穴あき矩形パターン)で、閉じたパターンを構成している。しかしながら、下側チップ21Aが矩形でない場合は、下側封止パターン部14Aも下側チップ21Aの形状に適合した平面パターンとなるのは勿論である。
 図14に示すように、第3実施形態に係る積層型半導体装置の下側チップ21Aの下側封止パターン部14Aの周回パターンの内側には下側バンプBijが10μm以下のピッチで配列されている。下側チップ21Aの右側の辺に沿って円形の外周表面ランドLp1,Lp2,Lp3,……,Lpmが配列されている。外周表面ランドLp1,Lp2,Lp3,……,Lpmの直下には、図15において図示が省略された他のシリコン貫通ビアを含めて、シリコン貫通ビア配置され、直下のシリコン貫通ビアが対応する外周表面ランドにそれぞれ接続されている。即ち、外周表面ランドLpjは、対応するシリコン貫通ビアTSVpjに、独立して接続されることにより、下側チップ21Aの更に下層側の半導体集積回路の入出力電極のいずれかと電気的に接続され三次元構造の一部をなしている。外周表面ランドLp1,Lp2,Lp3はそれぞれ表面配線により下側バンプBp1,Bp2,Bp3に順に接続され、外周表面ランドLpmは下側バンプBpmに接続されているが、図14に示すように下側バンプBpjに接続されていない外周表面ランドLpjも存在する。
 第3実施形態に係る積層型半導体装置の下側チップ21Aにおいて、外周表面ランドLp1,Lp2,Lp3,……,Lpmの配列の方向の辺を「第1辺」と定義すると、第1辺に連続し第1辺に直交する第2辺に沿って、下側チップ21Aの中央部周辺には円形の外周表面ランドLq1,Lq2,Lq3,……,Lqnが配列されている。外周表面ランドLp1,Lp2,Lp3,……,Lpmの直下には図15において図示が省略された他のシリコン貫通ビアを含めて、シリコン貫通ビア配置され、直下のシリコン貫通ビアが対応する外周表面ランドにそれぞれ接続されている。即ち、外周表面ランドLqjは、対応するシリコン貫通ビアTSVqjに独立して接続されることにより、下側チップ21Aの更に下層側の半導体集積回路の入出力電極のいずれかと電気的に接続され三次元構造の一部をなしている。下側バンプBqjに接続されている外周表面ランドLqjと、下側バンプBqjに接続されていない外周表面ランドLqjが存在する。第2辺に連続し第2辺に直交する矩形パターンの第3辺に沿って、下側チップ21Aの中央部周辺には円形の外周表面ランドLr1,Lr2,Lr3,……,Lrmが配列されている。
 外周表面ランドLr1,Lr2,Lr3,……,Lrmの直下には図15において図示が省略された他のシリコン貫通ビアを含めて、シリコン貫通ビア配置され、直下のシリコン貫通ビアが対応する外周表面ランドにそれぞれ接続されている。即ち、外周表面ランドLrjは、対応するシリコン貫通ビアTSVrjに接続されることにより、下側チップ21Aの更に下層側の半導体集積回路の入出力電極のいずれかと電気的に接続され三次元構造の一部をなしている。下側バンプBrjに接続されている外周表面ランドLrjと、下側バンプBrjに接続されていない外周表面ランドLrjが存在する。
 第3辺に連続し第3辺に直交する矩形パターンの第4辺に沿って、下側チップ21Aの中央部周辺には円形の外周表面ランドLs1,Ls2,Ls3,……,Lsnが配列されている。外周表面ランドLs1,Ls2,Ls3,……,Lsnの直下には図15において図示が省略された他のシリコン貫通ビアを含めて、シリコン貫通ビア配置され、直下のシリコン貫通ビアが対応する外周表面ランドにそれぞれ接続されている。即ち、外周表面ランドLsjは、対応するシリコン貫通ビアTSVsjに接続されることにより、更に下層側の半導体集積回路の入出力電極のいずれかと電気的に接続され三次元構造の一部をなしている。下側バンプBsjに接続されている外周表面ランドLsjと、下側バンプBsjに接続されていない外周表面ランドLsjが存在する。図14に示すように、下側バンプBijの矩形の配列の内側には円形の内周表面ランドLi1,Li2,Li3,……が配列されている。内周表面ランドLi1,Li2,Li3,……の直下には図15において図示が省略された他のシリコン貫通ビアを含めて、シリコン貫通ビア配置され、直下のシリコン貫通ビアが対応する内周表面ランドにそれぞれ接続されている。即ち、内周表面ランドLikは、対応するシリコン貫通ビアTSVikに接続されることにより、更に下層側の半導体集積回路の入出力電極のいずれかと電気的に接続され三次元構造の一部をなしている。下側バンプBijに接続された内周表面ランドLikと、下側バンプBijに接続されていない内周表面ランドLikが存在する。
 第1実施形態に係る積層型半導体装置で説明したのと同様に、第3実施形態に係る積層型半導体装置においても、インターポーザとしての下側チップ21Aの下側封止パターン部14Aに対応して、図示を省略した上側チップの縁部に沿って周回する閉じたパターンとして上側封止パターン部(14B,15o,15i)が構成されている。第1及び第2実施形態に係る積層型半導体装置で説明したとおり、図示を省略した上側封止パターン部(14B,15o,15i)は、上側バンプBuijの形成と同一のプロセスで形成できるので、上側封止パターン部(14B,15o,15i)の形成には、プロセス工程数の増大を招くことがない。よって、第3実施形態に係る積層型半導体装置においても、上側チップに集積される集積回路の入出力電極のピッチ間隔が10μm以下の微細化された平面パターンを有する半導体集積回路を搭載した場合であっても、下側封止パターン部14Aと上側封止パターン部(14B,15o,15i)とを圧着して金属学的に接合することにより、図6に示した例と同様な金属学的接続体(14A,15o,15i)を構成される。したがって、下側チップ21Aがインターポーザであっても、プロセス工程数の増大を招くことなく安価且つ簡単に、下側チップ21Aと上側チップの間の気密封止をして三次元構造の積層型半導体装置を構成することが可能になる。
(第4実施形態)
 本発明の第1~第3実施形態に係る積層型半導体装置においては、上側チップに配列されたAu又はAu合金からなる上側バンプBuijと、上側バンプBuijの配列に合わせて下側チップに配列されたAu又はAu合金からなる下側バンプBijが、周辺部に設けられた金属学的接続体によって構成される気密空間の内部で固相拡散接合する例を示したが、例示に過ぎない。上側バンプBuij及び下側バンプBijのいずれかが、平行平板状のボンディングパッドとして平坦な表面を構成していても構わない。図16に示すように、本発明の第4実施形態に係る積層型半導体装置の気密封止前の段階における構造は、下側チップ40Aと、下側チップ40Aに搭載された上側チップ10Bの積層構造をなしている点では第1実施形態に係る積層型半導体装置と同様である。更に、図16に示すように、下側チップ40Aは、下側半導体基板11Aと、下側半導体基板11Aの主面の表面領域に配置される下側集積回路と、下側半導体基板11Aの主面上に下側集積回路を覆うように設けられる下側絶縁層13Aと、下側絶縁層13A上において下側半導体基板11Aの主面の縁部に沿って周回する帯状の下側封止パターン部14Aを備える点でも第1実施形態に係る積層型半導体装置と同様である。
 しかし、図16の断面図上には、両側に配置された下側封止パターン部14Aのパターンの内側に、断面図上に位置するボンディングパッドPpi及びボンディングパッドPriが、それぞれ平行平板状のパターンとして示されている点で、第1実施形態に係る積層型半導体装置の構成とは異なる。一方、図16に示すように、第4実施形態に係る積層型半導体装置の上側チップ10Bは、上側半導体基板11Bと、上側半導体基板11Bの主面の表面領域に配置される上側集積回路と、上側集積回路を覆うように上側半導体基板11Bの主面上に設けられた上側絶縁層13Bと、上側絶縁層13B上において上側半導体基板11Bの主面の縁部に沿って周回する帯状の第2封止部ランド14Bと、第2封止部ランド14B上において上側半導体基板11Bの縁部に沿って、互いに間隔を空けて、かつ隣接しながら平行に走行する封止用外壁15o及び封止用内壁15iを備える点で、上側チップ10Bに関しては、第1実施形態に係る積層型半導体装置と同様である。図16の断面図上では、両側に配置された上側チップ10Bの第2封止部ランド14Bのパターンの内側には、下側チップ40AのボンディングパッドPpi及びボンディングパッドPriの配列位置に合わせて、上側バンプBupi及び上側バンプBuriが配列されている構造が図示されている。
 第2封止部ランド14B、封止用外壁15o及び封止用内壁15iで、第4実施形態に係る積層型半導体装置の上側チップ10Bの「上側封止パターン部(14B,15o,15i)」を構成している。接合後の状態の図示を省略しているが、図6に示した構成と同様に、下側封止パターン部14Aの表面と上側封止パターン部(14B,15o,15i)が固相拡散接合することにより金属学的接続体が構成され、下側絶縁層13A、上側絶縁層13B及び金属学的接続体の内部に気密空間が形成される。平面パターンの図示を省略しているが、図4に示した平面レイアウトと同様に、下側封止パターン部14Aが構成する矩形額縁状パターンの内側に、複数のボンディングパッドPijが矩形に沿ったパターンとして配列された場合(i=p,q,r,s:j=1~n、又は1~mの正の整数)を前提として、図16の断面図を図示している。同様に、図3に示した平面レイアウトと同様に、上側チップ10Bの第2封止部ランド14Bの周回パターンの内側には、複数の中空四角筒状の上側バンプBuijが矩形額縁状パターンとして配列されている場合を前提として、図16の断面図を図示している。
 中空四角筒状の上側バンプBuijの材料には、常圧ないし減圧下での加熱圧着若しくは超音波加熱圧着等の圧力により中空円筒状のボンディングパッドPijと固相拡散接合することが容易な金属が好ましい。同様に、上側チップ10Bの封止用外壁15o及び封止用内壁15iは、加熱圧着若しくは超音波加熱圧着等によりそれぞれ、下側チップ40Aの下側封止パターン部14Aの表面との固相拡散接合が容易な金属が好ましい。封止用外壁15o及び封止用内壁15iは、上側バンプBuijと同一材料、且つ同一プロイセスで構成されていてもよい。下側封止パターン部14Aは、ボンディングパッドPijと同一材料、且つ同一プロイセスで構成されていてもよい。例えば、ボンディングパッドPijと下側封止パターン部14Aを、アルミニウム(Al)やAl-Si等のAl合金で形成すれば、ボンディングパッドPijと下側封止パターン部14Aを同一プロイセスできる。ボンディングパッドPijと下側封止パターン部14Aを、同一のAu又はAu-Si,Au-Ge,Au-Sb等のAu合金で形成しても、ボンディングパッドPijと下側封止パターン部14Aを同一プロイセスできる。同様に、上側バンプBuij、封止用外壁15o、封止用内壁15iも、同一のAuやAu合金を採用することにより、上側バンプBuij、封止用外壁15o、封止用内壁15iも、同一プロセスで形成でき、工程数の増大を招くことがない。
 以上、説明したように、第4実施形態に係る積層型半導体装置によれば、第1実施形態に係る積層型半導体装置の下側バンプBijが、平行平板状のボンディングパッドPijとして平坦な表面を構成している場合であっても、下側封止パターン部14Aと上側封止パターン部(14B,15o,15i)とを圧着して金属学的に接合して図16に示したような金属学的接続体を構成することにより、工程数の増大を招くことなく安価且つ簡単に、下側チップ40Aと上側チップ10Bの間の気密封止をすることが可能になる。
(第4実施形態の第1変形例)
 図17は、本発明の第4実施形態の第1変形例に係る積層型半導体装置の気密封止前の段階の構造を示すが、下側チップ41Aと、下側チップ41Aに搭載された上側チップ10Bとの積層構造である点で図16に示した第4実施形態に係る積層型半導体装置の構成と同様である。しかし、平行平板状のボンディングパッドGpi及びボンディングパッドGriが、それぞれ下側半導体基板11Aの表面(上面)のレベルに設けられ、下側半導体基板11Aの主面上に設けられる下側絶縁層13Aの表面(上面)のレベルより低い点で、図16に示した構造とは異なる。図17に示す下側チップ41Aが下側半導体基板11Aと、下側半導体基板11Aの主面の表面領域に配置される下側集積回路と、下側半導体基板11Aの主面上に下側集積回路を覆うように設けられる下側絶縁層13Aと、下側絶縁層13A上において下側半導体基板11Aの主面の縁部に沿って周回する帯状の下側封止パターン部14Aを備える構成は、図16に示した構造と同様である。
 図16に示した第4実施形態に係る積層型半導体装置では、ボンディングパッドPpi及びボンディングパッドPriが下側絶縁層13Aの上面のレベルに設けられていたので、下側半導体基板11Aの表面の中間電極(表面電極)とボンディングパッドPpi及びボンディングパッドPriの間にはコンタクトビアがそれぞれ存在している。これに対して、図17に示す第4実施形態の第1変形例に係る積層型半導体装置では、コンタクトビアは不要になるので、図16に示した構造よりも更に簡潔な構造になっている。図17の断面図では、両側に配置された下側封止パターン部14Aのパターンの内側に、ボンディングパッドGpi及びボンディングパッドGriが下側半導体基板11Aの表面に接した平行平板状のパターンとして配置されていている。
 図17に示すように、第4実施形態の第1変形例に係る積層型半導体装置の上側チップ10Bは、上側半導体基板11Bと、上側半導体基板11Bの主面の表面領域に配置される上側集積回路と、上側集積回路を覆うように上側半導体基板11Bの主面上に設けられた上側絶縁層13Bを備える。更に図16に示した構造と同様に、上側チップ10Bは、上側絶縁層13B上において上側半導体基板11Bの主面の縁部に沿って周回する帯状の第2封止部ランド14Bと、第2封止部ランド14B上において上側半導体基板11Bの縁部に沿って、平行に走行する封止用外壁15o及び封止用内壁15iを備える。下側チップ41AのボンディングパッドGpiの配列位置に合わせて、上側バンプBupiが配置されているので、下側絶縁層13Aに設けられた開口部(コンタクトホール)を介して、上側バンプBupiの先端部がボンディングパッドGpiの表面と固相拡散接合する。同様に、下側チップ41AのボンディングパッドGriの配列位置に合わせて上側バンプBuriが配置されているので、下側絶縁層13Aに設けられた開口部を介して、上側バンプBuriの先端部がボンディングパッドGriの表面と固相拡散接合する。
 下側チップ41Aの縁部に沿って、下側封止パターン部14Aで閉じたパターンを構成し、上側チップ10Bの縁部に沿って周回する閉じたパターンとして上側封止パターン部(14B,15o,15i)が、下側封止パターン部14Aに対応して構成されているでは図16と同様である。しかし、図17に示す第4実施形態の第1変形例に係る積層型半導体装置のように、ボンディングパッドGpi及びボンディングパッドGriが、下側半導体基板11Aの表面レベルに設けられている場合であっても、下側封止パターン部14Aと上側封止パターン部(14B,15o,15i)との金属学的接続体による気密封止をする際に、下側チップ41Aに設けられた下側集積回路と上側チップ10Bに設けられた上側集積回路との電気的接続を達成することが可能になる。
(第4実施形態の第2変形例)
 図18は、本発明の第4実施形態の第2変形例に係る積層型半導体装置の気密封止前の段階の構造を示すが、平行平板状のボンディングパッドGpi及びボンディングパッドGriが、それぞれ下側半導体基板11Aの主面上に設けられる下側絶縁層13Aの表面(上面)のレベルより低い点で、図17に示した第4実施形態の第1変形例に係る積層型半導体装置の構造と同様である。図18では、下側チップ41Aを構成するp型の下側半導体基板11Aには、下側半導体基板11Aの主面の表面領域に模式的に配置されたn領域を含む下側集積回路が示されているが、単なる例示に過ぎず下側集積回路の構成等に関しては種々の態様があることは勿論である。下側半導体基板11Aの主面上には例示したn領域を囲むようにシャロウ・トレンチ・アイソレーション(STI)構造をなす素子分離絶縁膜19Aが設けられ、この素子分離絶縁膜19Aの上に下側絶縁層13Aが堆積されている点で、図17に示した第4実施形態の第1変形例に係る積層型半導体装置の構造とは異なる。n領域がpウェルに選択的に設定された複数の局所的半導体領域等であれば、pウェルを囲むようにSTI構造をなす素子分離絶縁膜19Aが設けられてもよい。そして、下側絶縁層13A上において下側半導体基板11Aの主面の縁部に沿って周回する帯状の下側封止パターン部14Aを備える構成は、図17に示した構造と同様である。
 図18に示す第4実施形態の第2変形例に係る積層型半導体装置でも、図17に示した構造と同様に図16のコンタクトビアは不要になり、図16に示した構造よりも更に簡潔な構造になっている。図18の断面図では、両側に配置された下側封止パターン部14Aのパターンの内側に、ボンディングパッドGpi及びボンディングパッドGriが下側半導体基板11Aの表面に選択的にn領域に接した平行平板状のパターンとして配置されており、素子分離絶縁膜19Aが下側半導体基板11Aも表面に埋め込まれている点が、図17に示した構造と異なる。n領域がpウェルに選択的に設定された複数の局所的半導体領域であれば、複数の局所的半導体領域にそれぞれ個別に接するように、ボンディングパッドGpi及びボンディングパッドGriが配置される。よって、具体的な集積回路のレイアウト構成においては、pウェル等の上にフィールド絶縁膜等の更に他の絶縁膜が形成され、フィールド絶縁膜等に設けられたコンタクトホールを介して、ボンディングパッドGpi及びボンディングパッドGriがn領域等と選択的に接続されるが、いずれにせよ、図16に示したようなコンタクトビアは不要になる。
 図17に示した構造と同様に、上側チップ10Bは、上側絶縁層13B上において上側半導体基板11Bの主面の縁部に沿って周回する帯状の第2封止部ランド14Bと、第2封止部ランド14B上において上側半導体基板11Bの縁部に沿って、互いに間隔を空けて、かつ隣接しながら平行に走行する封止用外壁15o及び封止用内壁15iを備える。下側チップ41AのボンディングパッドGpiの配列位置に合わせて、上側バンプBupiが配置されているので、下側絶縁層13Aに設けられた開口部(コンタクトホール)を介して、上側バンプBupiの先端部がボンディングパッドGpiの表面と固相拡散接合する。同様に、下側チップ41AのボンディングパッドGriの配列位置に合わせて上側バンプBuriが配置されているので、下側絶縁層13Aに設けられた開口部を介して、上側バンプBuriの先端部がボンディングパッドGriの表面と固相拡散接合する。
 図18に示す第4実施形態の第2変形例に係る積層型半導体装置のように、ボンディングパッドGpi及びボンディングパッドGriが、下側半導体基板11Aの表面に埋め込まれたn領域の半導体領域に選択的に接して設けられ、素子分離絶縁膜19Aが下側半導体基板11Aも表面に埋め込まれて、下側半導体基板11Aの表面に凹凸形状がある場合であっても、下側封止パターン部14Aと上側封止パターン部(14B,15o,15i)との金属学的接続体による気密封止をする際に、下側チップ41Aに設けられた下側集積回路と上側チップ10Bに設けられた上側集積回路との電気的接続を達成することが可能になる。
(その他の実施形態)
 上記のように、第1~第4実施形態を用いて例示的に本発明の技術思想を説明したが、この開示の一部をなす論述及び図面は本発明の技術的範囲を限定するものであると理解すべきではない。第1~第4実施形態で開示した技術思想の内容から当業者には様々な代替的な実施形態、実施例、及び運用技術が明らかとなろう。特に第1及び第2実施形態では、5G以降の世代を鑑み、下側チップと上側チップの双方に、デザインルールが微細化された半導体集積回路が集積化され、入出力電極のピッチ間隔を10μm以下にすることが要請される事情を考慮した場合を例示したが、本発明は第1及び第2実施形態で例示した状況に限定されるものではない。第3実施形態でも、上側チップに微細化された半導体集積回路が集積化される場合を例示したが、同様に、本発明は第3実施形態での例示に限定されるものではない。固相拡散接合により金属学的接続体を構成して気密封止する本発明の技術思想の特徴は、入出力電極のピッチ間隔が10μmを超える緩いデザインルールの古い世代の積層型半導体装置であっても、適用可能であることは勿論である。
 更に、第1~第4実施形態では1枚の下側チップの上に1枚の上側チップが1:1に搭載される例を示したが例示に過ぎない。下側チップのサイズを上側チップより大きくして、1枚の下側チップの上に複数枚の上側チップが搭載される構造でもよい。例えば、下側チップを口径の大きな親基板とし、この親基板の主面に定義される格子に沿って分割された単位素子領域のそれぞれに複数の上側チップを配列し、単位素子領域のそれぞれをチップ搭載領域として、それぞれのチップ搭載領域に、下側封止パターン部を配置してもよい。この場合、それぞれの下側封止パターン部は、複数の上側チップの配置に対応した下側チップの「少なく共一部の領域」にそれぞれ配置される。よって、下側チップの主面上に配置される複数の下側封止パターン部は、複数の上側封止パターン部の配置に対応したアレイ状に配置された複数のパターンになる。即ち、下側封止パターン部は下側チップの周辺に沿って周回するのではなく、少なく共一部の領域でそれぞれ構成される複数のチップ搭載領域の周辺を、対応する下側封止パターン部が、それぞれ個別に周回する。このようにして、複数のチップ搭載領域にアレイ状に配置された下側封止パターン部に対して、複数の上側チップの上側封止パターン部をそれぞれ固相拡散接合させて、複数のチップ搭載領域のそれぞれに独立した金属学的接続体を構成し、複数のチップ搭載領域のそれぞれに気密空間を個別に形成して気密封止しても良い。
 又、第1及び第2実施形態では上側チップに上側封止パターン部として互いに平行に走行する2枚の壁状のパターンを含む構成を説明したが、例示に過ぎない。更に第2実施形態では下側チップに下側封止パターン部として互いに平行に走行する2枚の壁状のパターンを含む構成を説明したが例示に過ぎない。壁状のパターンは1枚でもよく、信頼性を高めるために、3枚以上の互いに平行に走行する壁状のパターンを含む構成としてもよい。壁状のパターンを1枚にするには、垂直側壁を有するU溝をフォトレジスト膜のパターンで形成し、U溝の一方の垂直側壁にのみ金属膜が堆積するように斜め蒸着若しくは斜めスパッタリングをして、その後フォトレジスト膜のパターンを除去すれば良い。図3等に示す封止用外壁15o及び封止用内壁15iの平面パターンを例に説明すると、封止用外壁15o及び封止用内壁15iは周辺を囲むようにX-方向とY―方向にそれぞれ伸びて矩形を形成するので、具体的には、X-方向に直交する方向と、Y―方向に直交する方向のそれぞれにおいて斜め蒸着等をすることになる。
 壁状のパターンを3枚にするには、フォトレジスト膜に垂直側壁を有するU溝と、U溝の一方の壁にそってU溝と同じ幅の突部を有する台座パターンを形成して3つの垂直側壁を用意し、3つの垂直側壁のそれぞれに金属膜が堆積するように、両方向から斜め蒸着若しくは斜めスパッタリングをして、その後フォトレジスト膜のパターンを除去すれば良い。封止用外と封止用内壁は周辺を囲むようにX-方向とY―方向に伸びるので、実際には2方向にそって、それぞれ斜め蒸着等をするので計4回の斜め蒸着等をすることになる。壁状のパターンを4枚にするには、フォトレジスト膜に垂直側壁を有するU溝を平行に2本パターニングし、それぞれのU溝の垂直側壁に金属膜が堆積するように両方向から斜め蒸着若しくは斜めスパッタリングをして、その後フォトレジスト膜のパターンを除去すれば良い。
 更に第1及び第4実施形態では下側チップの下側絶縁層の上に、下側絶縁層の表面レベルにおいて下側絶縁層の周辺に沿って周回する平坦な帯状の下側封止パターン部を説明したが例示に過ぎない。更に第3実施形態では下側チップの上に、下側チップの表面レベルにおいて下側チップの周辺に沿って周回する平坦な帯状の下側封止パターン部を説明したが例示に過ぎない。下側封止パターン部の水平レベルは、下側絶縁層の表面レベルや下側チップの表面レベルより低いレベルとなる凹部に設けられていても構わない。下側絶縁層の表面レベルより低いレベルに下側封止パターン部を設ける場合は下側絶縁層の表面にU溝やV溝を彫り、このU溝の底部やV溝の傾斜した側壁に下側封止パターン部が設けられる。U溝の底部に帯状に設けるだけでなく、U溝の垂直側壁にも下側封止パターン部を設けても良く、U溝やV溝の側壁に下側封止パターン部を設けて周回する構成にすると、下側封止パターン部は平坦ではなくなり、2つ以上の面から構成される。第1及び第4実施形態の構成において下側絶縁層の表面にU溝やV溝を彫る場合は、U溝やV溝を深くして下側半導体基板まで彫り込んでもよい。
 更に、第1及び第4実施形態の構成において、下側絶縁層の表面レベルより低いレベルに第1封止部ランドを設けるように下側絶縁層の表面にU溝やV溝を彫る変形例(その他の実施形態)もある。このその他の実施形態では、U溝の底部やV溝の傾斜した側壁に第1封止部ランドを設け、この第1封止部ランドを基礎として、1封止部ランドの上に平行に走行する2枚の壁状のパターンを配置して、下側封止パターン部が設けられる。同様に、第3実施形態の構成において下側チップの表面レベルより低い凹部に下側封止パターン部を設ける場合は下側チップの表面にU溝やV溝を彫り、このU溝の底部やV溝の側壁に下側封止パターン部が設けることも可能である。第3実施形態の変形例となる構成において、U溝やV溝の側壁に下側封止パターン部を設けられる場合は、下側封止パターン部は平坦ではなくなる。
 その他、上記の第1~第4実施形態において説明される各構成を任意に応用した構成等、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。従って、本発明の技術的範囲は上記の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められるものである。
10A,20A,21A,40A,41A,42A…下側チップ、10B,20B…上側チップ、11A…下側半導体基板、11B…上側半導体基板、13A,23A…下側絶縁層、13B,23B…上側絶縁層、14A…下側封止パターン部(第1封止部ランド)、14B…第2封止部ランド、15i,16i,17i,32i,33i,34i…封止用内壁、15o,16o,17o,32o,33o,34o…封止用外壁、19A…素子分離絶縁膜

 

Claims (5)

  1.  上側集積回路を集積した上側半導体基板と、
     該上側半導体基板の主面に設けられた上側絶縁層と、
     該上側絶縁層の周辺に沿って周回して閉じた平面パターンを構成する上側封止パターン部と、
     前記上側絶縁層に、主面の少なく共一部で構成されるチップ搭載領域が対向するように配置された下側チップと、
     該下側チップの前記主面上に配置され、前記上側封止パターン部の配置に対応したパターンを構成し、前記チップ搭載領域の周辺を周回し、前記上側封止パターン部との固相拡散接合により金属学的接続体を構成する下側封止パターン部と、
     を備え、前記チップ搭載領域、前記上側絶縁層及び前記金属学的接続体の内部に気密空間を形成することを特徴とする積層型半導体装置。
  2.  前記上側封止パターン部は、互いに平行に走行する壁状のパターンを含むことを特徴とする請求項1に記載の積層型半導体装置。
  3.  前記下側封止パターン部は、互いに平行に走行する壁状のパターンを含むことを特徴とする請求項2に記載の積層型半導体装置。
  4.  前記下側封止パターン部と前記上側封止パターン部の平面パターンは、互いに複数箇所で交わる、互いに位相の異なるメアンダラインのパターンを構成していることを特徴とする請求項3に記載の積層型半導体装置。
  5.  前記下側封止パターン部又は前記上側封止パターン部は、金又は金を含む合金のいずれかであることを特徴とする請求項1に記載の積層型半導体装置。

     
PCT/JP2021/018303 2020-10-29 2021-05-14 積層型半導体装置 WO2022091465A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21885589.8A EP4060722A4 (en) 2020-10-29 2021-05-14 MULTILAYER SEMICONDUCTOR DEVICE
US17/789,119 US20230343750A1 (en) 2020-10-29 2021-05-14 Stacked semiconductor device
CN202180007791.9A CN114930526A (zh) 2020-10-29 2021-05-14 层叠型半导体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-181091 2020-10-29
JP2020181091A JP2022071946A (ja) 2020-10-29 2020-10-29 積層型半導体装置

Publications (1)

Publication Number Publication Date
WO2022091465A1 true WO2022091465A1 (ja) 2022-05-05

Family

ID=81383873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018303 WO2022091465A1 (ja) 2020-10-29 2021-05-14 積層型半導体装置

Country Status (6)

Country Link
US (1) US20230343750A1 (ja)
EP (1) EP4060722A4 (ja)
JP (1) JP2022071946A (ja)
CN (1) CN114930526A (ja)
TW (1) TWI769948B (ja)
WO (1) WO2022091465A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533743A (ja) * 2005-03-16 2008-08-21 インテル コーポレイション 自己不動態化相互接続の形成方法及び該方法を用いた装置
US20100308455A1 (en) * 2008-12-09 2010-12-09 Young Hae KIM Method for Manufacturing Hetero-Bonded Wafer
WO2013141091A1 (ja) * 2012-03-23 2013-09-26 オリンパス株式会社 積層型半導体装置およびその製造方法
JP2019190775A (ja) 2018-04-27 2019-10-31 株式会社神鋼環境ソリューション 廃棄物処理設備

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW546794B (en) * 2002-05-17 2003-08-11 Advanced Semiconductor Eng Multichip wafer-level package and method for manufacturing the same
JP2010186956A (ja) * 2009-02-13 2010-08-26 Seiko Instruments Inc ガラス封止型パッケージの製造方法、ガラス封止型パッケージの製造装置および発振器
JP6100489B2 (ja) * 2012-08-31 2017-03-22 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
KR102321555B1 (ko) * 2016-08-10 2021-11-03 파나소닉 아이피 매니지먼트 가부시키가이샤 봉지용 아크릴 조성물, 시트재, 적층 시트, 경화물, 반도체 장치 및 반도체 장치의 제조 방법
US10522499B2 (en) * 2017-02-09 2019-12-31 Invensas Bonding Technologies, Inc. Bonded structures
US11177234B2 (en) * 2018-06-25 2021-11-16 Intel Corporation Package architecture with improved via drill process and method for forming such package

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533743A (ja) * 2005-03-16 2008-08-21 インテル コーポレイション 自己不動態化相互接続の形成方法及び該方法を用いた装置
US20100308455A1 (en) * 2008-12-09 2010-12-09 Young Hae KIM Method for Manufacturing Hetero-Bonded Wafer
WO2013141091A1 (ja) * 2012-03-23 2013-09-26 オリンパス株式会社 積層型半導体装置およびその製造方法
JP2019190775A (ja) 2018-04-27 2019-10-31 株式会社神鋼環境ソリューション 廃棄物処理設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4060722A4

Also Published As

Publication number Publication date
TW202224134A (zh) 2022-06-16
EP4060722A4 (en) 2024-01-03
EP4060722A1 (en) 2022-09-21
US20230343750A1 (en) 2023-10-26
TWI769948B (zh) 2022-07-01
JP2022071946A (ja) 2022-05-17
CN114930526A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
JP6013336B2 (ja) 冗長シリコン貫通ビアを伴う半導体チップ
JP4441328B2 (ja) 半導体装置及びその製造方法
JP4271435B2 (ja) 半導体装置
KR20190087897A (ko) 반도체 패키지 및 그 패키지를 포함한 반도체 장치
CN108695264B (zh) 半导体器件
JP2013538460A5 (ja)
US7994627B2 (en) Pad redistribution chip for compactness, method of manufacturing the same, and stacked package using the same
TWI574365B (zh) 積體電路結構及其製造方法
JP2014072487A (ja) 半導体装置およびその製造方法
JP2014082281A (ja) 基板、半導体装置、基板の製造方法
US10403510B2 (en) Method of fabricating a carrier-less silicon interposer using photo patterned polymer as substrate
WO2022091465A1 (ja) 積層型半導体装置
JP2008135486A (ja) 半導体装置及び半導体パッケージ
TWI778858B (zh) 線路基板結構及其製造方法
JP2006229186A (ja) 半導体集積回路およびその製造方法
JP2011249564A (ja) 半導体装置の製造方法及び実装構造
TW200841429A (en) IC chip package
JP2007207906A (ja) 半導体集積回路および半導体集積回路の製造方法
US10224312B1 (en) Via configuration for wafer-to-wafer interconnection
US20220130781A1 (en) Circuit substrate structure and manufacturing method thereof
KR102520106B1 (ko) 반도체 소자용 범프 구조물
JP4439339B2 (ja) 半導体装置およびその製造方法
TWI399839B (zh) 內置於半導體封裝構造之中介連接器
JP2016048709A (ja) 半導体装置およびその製造方法
TWI458063B (zh) 半導體封裝

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021885589

Country of ref document: EP

Effective date: 20220613

NENP Non-entry into the national phase

Ref country code: DE