WO2022089460A1 - 一种反应型氟硅树脂及其制备方法和应用 - Google Patents

一种反应型氟硅树脂及其制备方法和应用 Download PDF

Info

Publication number
WO2022089460A1
WO2022089460A1 PCT/CN2021/126577 CN2021126577W WO2022089460A1 WO 2022089460 A1 WO2022089460 A1 WO 2022089460A1 CN 2021126577 W CN2021126577 W CN 2021126577W WO 2022089460 A1 WO2022089460 A1 WO 2022089460A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
reactive
compound
fluorosilicone resin
Prior art date
Application number
PCT/CN2021/126577
Other languages
English (en)
French (fr)
Inventor
潘庆崇
Original Assignee
广东广山新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东广山新材料股份有限公司 filed Critical 广东广山新材料股份有限公司
Publication of WO2022089460A1 publication Critical patent/WO2022089460A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/1892Preparation; Treatments not provided for in C07F7/20 by reactions not provided for in C07F7/1876 - C07F7/1888
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1896Compounds having one or more Si-O-acyl linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5475Silicon-containing compounds containing nitrogen containing at least one C≡N bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups

Definitions

  • the present application relates to the field of functional resins, such as a reactive fluorosilicone resin, a polymeric fluorosilicone resin, and a preparation method and application thereof.
  • functional resins such as a reactive fluorosilicone resin, a polymeric fluorosilicone resin, and a preparation method and application thereof.
  • Self-cleaning mainly includes two aspects: one is the superhydrophobic self-cleaning coating in which superhydrophobic materials or superoleophobic materials take away the pollutants on their surface by the scouring action of water or oil; the other is the composite preparation of superhydrophobic materials with photocatalytic activity Hydrophobic or superoleophobic self-cleaning coating.
  • the self-cleaning effect of the former is mainly manifested in the self-cleaning function of dust, soil and other inorganic stains endowed by the special wettability of the superhydrophobic or superoleophobic coating, and its self-cleaning function often needs to be washed by rainwater and a certain amount of water. tilt angle to achieve.
  • Self-cleaning refers to a coating containing photocatalytically active particles that can degrade organic pollutants with the help of light catalysis.
  • the most commonly used are particles with UV photocatalytic activity, such as titanium dioxide, zinc oxide, zinc sulfide, tin oxide, etc., whose photocatalytic activity depends on the transition of the valence band, electron conduction band and the electron-hole pair of semiconductor nanomaterials under illumination conditions. form.
  • the 5G network is the fifth generation of communication network, and its performance is qualitatively superior to the 4G network technology used today.
  • the progress of 5G network technology is obviously reflected in the transmission timeliness, coverage, and communication security of wireless signals.
  • the 5G network communication technology is deeply combined with other wireless mobile technologies to form a new communication network to meet the ever-increasing requirements of the Internet mobile communication network speed.
  • 5G mobile network technology can also realize the mutual adjustment between intelligence and automation, which has a certain degree of flexibility. This is because the communication technology and wireless technology we use today have laid a good foundation for the 5G communication system.
  • 5G communication materials require materials with very low dielectric constant and dielectric loss.
  • the materials used in 4G communication are mostly polytetrafluoroethylene.
  • polytetrafluoroethylene has poor compatibility with materials, and only It is hydrophobic and has almost no self-cleaning performance against organic pollutants such as oil droplets, which hinders its application in 5G communication terminals.
  • the glass transition temperature of polytetrafluoroethylene is low, and the stability of polytetrafluoroethylene is also defective due to the large amount of heat generated by high-power communication transmission.
  • the present application provides a reactive fluorosilicone resin, a polymeric fluorosilicone resin, and a preparation method and application thereof.
  • the reactive fluorosilicone resin has low dielectric constant, self-cleaning properties and excellent adhesion properties.
  • the embodiment of the present application provides a reactive fluorosilicone resin, and the structure of the reactive fluorosilicone resin is shown in formula 1:
  • R 1 to R 6 are any group satisfying its chemical environment, at least one of said R 1 to R 6 is a group containing fluorine element, and said group containing fluorine element is -C a H b F c , at least one of the R 1 to R 6 contains a reactive group, X and Y are any groups that satisfy their chemical environment, n ⁇ 0, a ⁇ 1, b ⁇ 0, c ⁇ 1.
  • n can be 1, 5, 10, 20, 50, 80, 100, 150, 200 or 500, etc.
  • the value of a can be 2, 3, 5, 8, 10, 12, 15, 18, 20, 25 , 30, 40 or 50 etc.
  • b can be 1, 2, 3, 5, 8, 10, 12, 15, 18, 20, 25, 30, 40 or 50 etc.
  • c can be 2, 3, 5, 8 , 10, 12, 15, 18, 20, 25, 30, 40 or 50, etc., but are not limited to the listed values, and other unlisted values within the above numerical ranges are also applicable.
  • the R 1 to R 6 each independently preferably include substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted Any one or at least two of the heteroaryl, substituted or unsubstituted alkoxy, substituted or unsubstituted cycloalkoxy, substituted or unsubstituted aryloxy or substituted or unsubstituted heteroaryloxy combination of species.
  • the R 1 to R 6 independently preferably include C1-C12 substituted or unsubstituted alkyl, C3-C12 substituted or unsubstituted cycloalkyl, C6-C12 substituted or unsubstituted Substituted aryl, C5-C12 substituted or unsubstituted heteroaryl, C1-C12 substituted or unsubstituted alkoxy, C3-C12 substituted or unsubstituted cycloalkoxy, C6-C12 substituted or unsubstituted Any one of aryloxy or C5-C12 substituted or unsubstituted heteroaryloxy groups or a combination of at least two of them.
  • the substituted or unsubstituted alkyl group is preferably a C1-C12 substituted or unsubstituted alkyl group, such as C2, C3, C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted the alkyl group;
  • the substituted or unsubstituted cycloalkyl is preferably a C3-C12 cycloalkyl, such as a C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted cycloalkyl;
  • the substituted or unsubstituted aryl group is preferably a C5-C12 aryl group, such as a substituted or unsubstituted aryl group of C6, C7, C8, C9, C10 or C11;
  • the substituted or unsubstituted heteroaryl is preferably a C5-C12 heteroaryl, such as a substituted or unsubstituted heteroaryl of C6, C7, C8, C9, C10 or C11;
  • the substituted or unsubstituted alkoxy groups are preferably C1-C12 substituted or unsubstituted alkoxy groups, such as C2, C3, C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted alkoxy;
  • the substituted or unsubstituted cycloalkoxy is preferably a C3-C12 cycloalkoxy, such as a C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted cycloalkoxy;
  • the substituted or unsubstituted aryloxy group is preferably a C6-C12 aryloxy group, such as a C7, C8, C9, C10 or C11 substituted or unsubstituted aryloxy group;
  • the substituted or unsubstituted heteroaryloxy group is preferably a C5-C12 heteroaryloxy group, such as a C6, C7, C8, C9, C10 or C11 substituted or unsubstituted heteroaryloxy group.
  • the reactive group preferably includes any one or at least one of hydroxyl, amine, unsaturated group, carboxyl, epoxy, ester, acid anhydride, isocyanate or cyano. combination of the two.
  • the X and Y independently preferably include a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, an imino group, O, S, an amide group or an ester group any of the .
  • the substituted or unsubstituted alkylene is preferably a C1-C12 substituted or unsubstituted alkylene, such as C2, C3, C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted alkylene;
  • the substituted or unsubstituted arylene group is preferably a C6-C12 substituted or unsubstituted arylene group, such as a C7, C8, C9, C10 or C11 substituted or unsubstituted arylene group.
  • An embodiment of the present application provides a method for preparing the above reactive fluorosilicone resin, the method comprising: preparing a compound containing silicon element and a fluorine-containing compound through a substitution reaction.
  • the compound containing silicon element includes any one or a combination of at least two of substituted or unsubstituted silane, substituted or unsubstituted siloxane, polysilane or polysiloxane.
  • the polysilane includes a polymer obtained by self-polymerization of silane or copolymerization of silane and a chain extender.
  • the polysiloxane comprises a polymer obtained by the self-polymerization of siloxane or the copolymerization of siloxane and a chain extender.
  • the silane is preferably C1-C12 substituted or unsubstituted alkylsilane, C3-C12 substituted or unsubstituted cycloalkylsilane, C6-C12 substituted or unsubstituted arylsilane, or C5-C12 substituted or unsubstituted arylsilane Substituted heteroarylsilane, C1-C12 substituted or unsubstituted alkoxy, C3-C12 substituted or unsubstituted cycloalkoxy, C6-C12 substituted or unsubstituted aryloxy or C5-C12 substituted or unsubstituted Substituted heteroaryloxy.
  • C1 ⁇ C12 substituted or unsubstituted alkylsilane can be C2, C3, C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted alkylsilane;
  • C3-C12 substituted or unsubstituted cycloalkylsilane can be C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted cycloalkylsilane;
  • C6-C12 substituted or unsubstituted aryl silane can be C7, C8, C9, C10 or C11 substituted or unsubstituted aryl silane;
  • C5-C12 substituted or unsubstituted heteroaryl silane can be C6, C7, C8, C9, C10 or C11 substituted or unsubstituted heteroaryl silane;
  • C1-C12 substituted or unsubstituted alkoxy such as C2, C3, C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted alkoxysilane;
  • C3-C12 cycloalkoxy such as C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted cycloalkoxysilane;
  • C6-C12 aryloxy such as C7, C8, C9, C10 or C11 substituted or unsubstituted aryloxysilane;
  • C5-C12 heteroaryloxy for example, can be a substituted or unsubstituted heteroaryloxysilane of C6, C7, C8, C9, C10 or C11.
  • the fluorine-containing compound preferably includes an alcohol compound, a carboxylic acid compound, an ester compound, an amine compound, a thiol compound or a halogenated hydrocarbon in which at least one hydrogen atom is substituted by a fluorine atom Any one or a combination of at least two of the compounds.
  • the halogenated hydrocarbon compound preferably includes any one or a combination of at least two of chlorinated hydrocarbons, brominated hydrocarbons or iodohydrocarbons.
  • the fluorine compound includes any one or a combination of at least two of perfluoro-substituted alcohol compounds, carboxylic acid compounds, ester compounds, amine compounds or thiol compounds.
  • the alcohol compounds are preferably C2-C18 alcohol compounds, such as C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16 or C17 alcohols compound;
  • the carboxylic acid compound is preferably a C2-C18 carboxylic acid compound, such as a C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16 or C17 carboxylic acid compound;
  • the ester compound is preferably a C2-C18 ester compound, such as a C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16 or C17 ester compound;
  • the amine compound is preferably a C2-C18 amine compound, such as a C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16 or C17 amine compound;
  • the thiol compound is preferably a C2-C18 thiol compound, such as a C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16 or C17 thiol class compounds.
  • the embodiment of the present application provides a polymeric fluorosilicone resin, which is prepared from any one of the above-mentioned reactive fluorosilicone resins through self-polymerization or copolymerization.
  • the polymeric fluorosilicone resin is prepared by copolymerizing any one of the reactive fluorosilicone resins described above and a compound containing a reactive group.
  • the embodiment of the present application is to provide an application of the above reactive fluorosilicone resin.
  • the application fields of the compound include the field of insulating materials, the field of hydrophobic coatings, the field of thermosetting resins, the field of photosensitive resins, the field of engineering plastics, the field of elastomers field, rubber field and nylon field.
  • the reactive fluorosilicone resin since the reactive fluorosilicone resin has reactive groups, it can react with raw materials such as resin of the added material, so that the reactive fluorosilicone resin has excellent compatibility with resins and coatings. At the same time, since the reactive fluorosilicone resin contains silicon element, the dispersion performance of the reactive fluorosilicone resin in the added resin and coating is increased.
  • the polymeric fluorosilicone resin has good compatibility with polymer materials, such as engineering plastics and coatings, without the participation of reactive groups because of its own polymer structure. Due to the addition of silicon, the adhesion of the added coating to the coated substrate is increased.
  • the reactive fluorosilicone resin and the polymeric fluorosilicone resin contain both silicon and fluorine elements, so that the reactive fluorosilicone resin has certain hydrophobic and oleophobic properties at the same time, so that the formed coating surface has good self-resistance. cleaning performance.
  • the reactive fluorosilicone resin and the polymeric fluorosilicone resin provided in this application have high fluorine content, which can effectively reduce the dielectric constant and node loss of the added resin or coating, so that the added resin or coating can be applied to 5G and other communication fields.
  • the reactive fluorosilicone resin and polymeric fluorosilicone resin provided in this application have better compatibility with the added resin or coating, and can reduce the use of additives such as dispersants and solubilizers , the processing performance is obviously better than that of traditional PTFE materials, and the self-cleaning performance and adhesion performance of the added materials can be improved.
  • the embodiment of the present application discloses a reactive fluorosilicone resin and a preparation method and application thereof.
  • the reactive fluorosilicone resin can be used as an additive to be an added material with low dielectric constant, self-cleaning and adhesion;
  • the examples of the present application disclose a reactive fluorosilicone resin and a preparation method and application thereof.
  • the reactive fluorosilicone resin is added as an additive to an epoxy resin composition or a thermosetting phenolic resin, which can reduce the amount of epoxy resin.
  • the dielectric loss and dielectric constant of the composition or thermosetting phenolic resin, and make the epoxy resin composition or thermosetting phenolic resin surface have excellent self-cleaning performance;
  • the embodiment of the present application discloses a reactive fluorosilicone resin and a polymeric fluorosilicone resin.
  • the reactive fluorosilicone resin and the polymeric fluorosilicone resin are added as additives to coatings, such as silicone resin coatings and acrylic resin coatings.
  • coatings such as silicone resin coatings and acrylic resin coatings.
  • epoxy resin coating or polyester resin coating can reduce the dielectric loss and dielectric constant of the coating, increase the adhesion performance of the coating, and the coating surface formed by the coating has excellent self-cleaning performance.
  • This embodiment provides a reactive fluorosilicone resin whose structure is shown in formula 2:
  • the preparation method of the compound shown in formula 2 is as follows: 1 mol of diphenyldimethoxysilane is dissolved in 100 mL of NMP, 1 mol of perfluorododecanol and 0.01 mol of dibutyltin oxide are added, and the reaction is carried out at 100 ° C for 2.5 h. After the solvent was separated by distillation, 1 mol of epichlorohydrin was added to the obtained product, and the reaction was carried out at 80° C. for 2 h. After the reaction, the product was purified to obtain the compound shown in formula 2.
  • This embodiment provides a reactive fluorosilicone resin whose structure is shown in formula 3:
  • the preparation method of the compound shown in formula 3 is as follows: dissolve 1 mol of dimethylvinylmethoxysilane in 100 mL of NMP, add 1 mol of perfluorobutanol and 0.01 mol of dibutyltin oxide, react at 100 ° C for 2 h, and use distillation After separating the solvent, the product is purified to obtain the compound represented by formula 3.
  • This embodiment provides a reactive fluorosilicone resin whose structure is shown in formula 4:
  • the preparation method of the compound shown in formula 4 is as follows: dissolve 1 mol of chloromethyldimethoxysilane in 100 mL of NMP, add 1 mol of perfluorooctanol and 0.01 mol of dibutyltin oxide, and react at 135 ° C for 4.5 h, using After distilling and separating the solvent, the product was mixed with 1 mol of aminoacetic acid and 0.01 mol of dibutyltin oxide, reacted at 80° C. for 2 h, and the product was purified to obtain the compound shown in formula 4.
  • This embodiment provides a reactive fluorosilicone resin whose structure is shown in formula 5:
  • the preparation method of the compound shown in formula 5 is as follows: dissolve 1 mol of diphenyl and methoxysilane in 100 mL of NMP, add 1 mol of perfluorohexanoic acid and 0.01 mol of dibutyltin oxide, react at 120° C. for 2 h, and separate by distillation. After solvent, the product was mixed with 1 mol of chloroacetonitrile, reacted at 75° C. for 2.5 h, and the product was purified to obtain the compound shown in formula 5.
  • This embodiment provides a reactive fluorosilicone resin whose structure is shown in formula 6:
  • the preparation method of the compound shown in formula 6 is as follows: dissolve 1 mol of vinyltrimethoxysilane in 100 mL of NMP, add 1 mol of perfluorononanoic acid and 0.01 mol of dibutyltin oxide, react at 100 ° C for 3 h, and separate the solvent by distillation. , the product was purified to obtain the compound shown in formula 6.
  • This embodiment provides a reactive fluorosilicone resin whose structure is shown in formula 7:
  • the preparation method of the compound shown in formula 7 is as follows: 1 mol of polymethylphenylsiloxane (polymerization degree of 200) is dissolved in 100 mL of NMP, 1 mol of perfluorooctadecanoic acid and 0.01 mol of dibutyltin oxide are added, and the temperature is 180 ° C. After the reaction was carried out for 12 h, the solvent was separated by distillation, the product was combined with 1 mol of aminoacetic acid, and the reaction was carried out at 60° C. for 3 h, and the product was purified to obtain the compound shown in formula 7.
  • the hydrogen nuclear magnetic resonance spectrum test shows that the compound prepared by the above preparation method has an N-H peak at 1.55-1.47, and a C-H peak of a methoxy group at 4.25-4.18.
  • the dielectric constant (Dk) and dielectric loss (Df) of the epoxy resin cured products a-g provided in Example 7 and Comparative Example 1 were tested, and the test method for dielectric constant and dielectric loss was GB1049-78 (10GHz) ; Test the self-cleaning performance of the surface of the epoxy resin cured product.
  • the test method of the self-cleaning performance is: drop water and vegetable oil on the surface of the epoxy resin cured product, respectively, and measure the contact angle formed by the water droplets and oil droplets. The test results are shown in Table 1.
  • thermosetting phenolic resin
  • thermosetting phenolic resins a to f 260 parts by weight of the reactive fluorosilicone resin prepared in Examples 1-6 was reacted with 500 parts by weight of phenol, 539 parts by weight of formaldehyde, and 10 parts by weight of triethanolamine catalyst at 50° C. for 2 hours, and the reaction ended. Then, the temperature was lowered to 30° C. and 1 part by weight of a silane coupling agent was added to obtain thermosetting phenolic resins a to f.
  • thermosetting phenolic resin g 260 parts by weight of polytetrafluoroethylene, 500 parts by weight of phenol, 539 parts by weight of formaldehyde, and 10 parts by weight of triethanolamine catalyst were reacted at 50 °C for 2 h, and after the reaction was completed, the temperature was lowered to 30 °C and silane was added for coupling. 1 part by weight of the agent was used to obtain a thermosetting phenolic resin g.
  • the dielectric constant (Dk) and dielectric loss (Df) of thermosetting phenolic resins a-g provided in Example 8 and Comparative Example 2 are tested, and the test method for dielectric constant and dielectric loss is GB1049-78 (10GHz) ; Test the self-cleaning performance of the surface of the thermosetting phenolic resin.
  • the test method for the self-cleaning performance is: drop water and vegetable oil on the surface of the thermosetting phenolic resin, respectively, and measure the contact angle formed by the water droplets and oil droplets. The test results are shown in Table 2.
  • thermosetting phenolic resin system After the reactive fluorosilicone resin provided in this application is added to the thermosetting phenolic resin system, the dielectric constant and dielectric loss of the thermosetting phenolic resin system are effectively reduced, and at the same time, the Thermosetting phenolic resins combine excellent self-cleaning properties.
  • This embodiment provides a silicone resin coating.
  • the raw materials of the coating include: 45 parts of methyl silicone resin, 45 parts of urushiol resin, 20 parts of barium phenolate, and 20 parts of methyl silicone oil.
  • Examples 1-6 provide 20 parts of fluorosilicone resin, 10 parts of methacrylic acid, 10 parts of kaolin, 10 parts of soft black, 4 parts of organoboronite, 4 parts of nano silica, 2 parts of polyether defoamer, polyacrylate leveling agent 1 serving.
  • This comparative example provides a silicone resin coating.
  • the raw materials of the coating include: 45 parts of methyl silicone resin, 45 parts of urushiol resin, 20 parts of barium phenolate, 20 parts of methyl silicone oil, and 20 parts of polytetrafluoroethylene. , 10 parts of methacrylic acid, 10 parts of kaolin, 10 parts of soft black, 4 parts of organoboronite, 4 parts of nano-silica, 2 parts of polyether defoamer, and 1 part of polyacrylate leveling agent. After the above-mentioned raw materials are mixed, a silicone resin coating g is obtained.
  • the dielectric constant (Dk) and dielectric loss (Df) of the silicone resin coatings a-g provided in Example 9 and Comparative Example 3 are tested, and the test method for dielectric constant and dielectric loss is GB1049-78 (10GHz);
  • the adhesion of the coating formed by the silicone resin coating on the fiber cement board is tested, and the adhesion test adopts the 100-grid test; the self-cleaning performance of the coating formed by the silicone resin coating is tested, and the self-cleaning performance is tested.
  • the method is as follows: drop water and vegetable oil on the surface of the coating formed by the silicone resin coating respectively, and test the contact angle formed by the water droplet and the oil droplet.
  • the test results are shown in Table 3.
  • This embodiment provides an acrylic resin coating.
  • the raw materials of the acrylic resin coating include: 60 parts of epoxy modified acrylic resin, 20 parts of titanium dioxide, 10 parts of fluorosilicone resin provided in Examples 1-6, 5 parts of xylene, 3 parts of ethyl acetate, 5 parts of ethylene glycol ether acetate, 0.5 part of BYK-190 dispersant, 0.5 part of BYK-022 silicone defoamer, 0.5 part of BYK-333 silicone leveling agent, BYK-420 anti-settling agent dose 0.5 servings.
  • acrylic resin coatings a-f are obtained.
  • the fluorosilicone resin provided in Example 2 was dispersed in NMP, azobisisobutyronitrile was added as an initiator, and the reaction was conducted at 180 °C for 2 h, 190 °C for 2 h and 200 °C for 2 h. After separating the solvent by distillation, The product was purified to obtain polymeric fluorosilicone resin I. Acrylic resin coating g was prepared according to the above ratio.
  • the fluorosilicone resin provided in Example 5 was dispersed in NMP, azobisisobutyronitrile was added as an initiator, and the reaction was carried out at 180 °C for 2 h, 190 °C for 2 h, and 200 °C for 2 h. After separating the solvent by distillation, The product was purified to obtain polymeric fluorosilicone resin II. Acrylic resin coating h was prepared according to the above ratio.
  • This comparative example provides an acrylic resin coating.
  • the raw materials of the acrylic resin coating include: 60 parts of epoxy modified acrylic resin, 20 parts of titanium dioxide, 10 parts of polytetrafluoroethylene, 5 parts of xylene, 3 parts of ethyl acetate, 5 parts of ethylene glycol ether acetate, 0.5 part of BYK-190 dispersant, 0.5 part of BYK-022 silicone defoamer, 0.5 part of BYK-333 silicone leveling agent, and 0.5 part of BYK-420 anti-settling agent.
  • the dielectric constant (Dk) and dielectric loss (Df) of the silicone resin coatings a-g provided in Example 10 and Comparative Example 4 were tested, and the test method for dielectric constant and dielectric loss was GB1049-78 (10GHz);
  • the adhesion of the coating formed by the acrylic resin coating on the fiber cement board is tested, and the test adopts the 100-grid test;
  • the self-cleaning performance of the coating formed by the acrylic resin coating is tested, and the test methods for the self-cleaning performance are: Water and vegetable oil were dropped on the surface of the coating formed by the acrylic resin coating, and the contact angles formed by the water droplets and oil droplets were tested.
  • the test results are shown in Table 4.
  • polyester resin coating This embodiment provides a polyester resin coating.
  • the raw materials of the polyester resin include: 60 parts of 312C saturated polyester resin composition, 15 parts of the fluorosilicone resin provided in Examples 1-6, methyl triethoxy 30 parts of silane, 20 parts of dimethyldichlorosilane, 5 parts of methyl silicone oil, 5 parts of nano barium sulfate, 10 parts of oxidized polyacrylate, 2 parts of dicyandiamide and 3 parts of glycerin. After the above-mentioned raw materials are mixed, polyester resin coatings a-f are obtained.
  • polyester resin coating This embodiment provides a polyester resin coating.
  • the raw materials of the polyester resin include: 60 parts of 312C saturated polyester resin composition, 15 parts of polytetrafluoroethylene, 30 parts of methyltriethoxysilane, dimethyl 20 parts of dichlorosilane, 5 parts of methyl silicone oil, 5 parts of nano barium sulfate, 10 parts of oxidized polyacrylate, 2 parts of dicyandiamide, 3 parts of glycerin. After the above-mentioned raw materials are mixed, polyester resin coating g is obtained.
  • the dielectric constant (Dk) and dielectric loss (Df) of polyester resin coatings a-g provided in Example 11 and Comparative Example 5 were tested, and the test method for dielectric constant and dielectric loss was GB1049-78 (10GHz);
  • the adhesion of the coating formed by the polyester resin coating on the fiber cement board is tested, and the test adopts the 100-grid test;
  • the self-cleaning performance of the coating formed by the polyester resin coating is tested, and the test method for the self-cleaning performance is as follows: : Water and vegetable oil were dropped on the surface of the coating formed by the polyester resin coating, respectively, and the contact angles formed by the water droplets and oil droplets were tested.
  • the test results are shown in Table 5.
  • the raw materials of the epoxy resin coating include: 50 parts of epoxy resin with an epoxy equivalent of 320/eq, 15 parts of the fluorosilicone resin provided in Examples 1-6, and 10 parts of distilled water parts, 10 parts of water-soluble cellulose ether, 10 parts of polyacrylate, 10 parts of titanium dioxide, 2 parts of cetyltrimethyl ammonium bromide, 2 parts of acrylate leveling agent, 2 parts of diethyltriamine, 1 part of polyether defoamer, 1 part of bentonite, and 1 part of glycerin. After the above raw materials are mixed, epoxy resin coatings a-f are obtained.
  • the raw materials of the epoxy resin coating include: 50 parts of epoxy resin with an epoxy equivalent of 320/eq, 15 parts of polytetrafluoroethylene, 10 parts of distilled water, and water-soluble cellulose 10 parts of ether, 10 parts of polyacrylate, 10 parts of titanium dioxide, 2 parts of cetyltrimethyl ammonium bromide, 2 parts of acrylate leveling agent, 2 parts of diethyltriamine, 1 part of polyether defoamer parts, 1 part of bentonite, 1 part of glycerin. After the above-mentioned raw materials are mixed, epoxy resin coating g is obtained.
  • the dielectric constant (Dk) and dielectric loss (Df) of polyester resin coatings a-g provided in Example 12 and Comparative Example 6 were tested, and the test method for dielectric constant and dielectric loss was GB1049-78 (10GHz);
  • the adhesion of the coating formed by the epoxy resin coating on the fiber cement board is tested, and the test adopts the 100-grid test;
  • the self-cleaning performance of the coating formed by the epoxy resin coating is tested, and the test method of the self-cleaning performance is as follows: : Water and vegetable oil were dropped on the surface of the coating formed by the epoxy resin coating, respectively, and the contact angles formed by the water droplets and oil droplets were tested.
  • the test results are shown in Table 6.
  • the adhesion method is as follows: spray the coating on the concrete plate and dry it thoroughly (70-80°C*8H), after cooling, draw 1x1mm on the film surface, and test the coated concrete according to the GB/T1720 method
  • Adhesion between substrates (5B ⁇ the edges of the incisions are smooth, and the edges of the grids do not have any peeling; 4B ⁇ small pieces peel off at the intersections of the incisions, and the actual damage in the cut area does not exceed 5%; 3B ⁇ the edges and/or intersections of the incisions There is peeling at the place, and its area is greater than 5%, but less than 15%; 2B - Partial peeling or whole large peeling off along the edge of the incision, and/or part of the grid is peeled off in whole, and the peeled area exceeds 15%, but less than 35%; 1B - Partial peeling or whole large peeling off along the edge of the incision, and/or part of the lattice is peeled
  • the test method for self-cleaning performance is: drop water or oil droplets on the paint surface, and use a contact angle measuring device to test the contact angle formed by the water droplets or oil droplets on the paint surface.
  • the larger the contact angle the worse the wetting performance of water or oil on the paint surface, and the better the self-cleaning effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)

Abstract

本文公布一种反应型氟硅树脂及其制备方法和应用,所述反应型氟硅树脂作为添加剂可以使被添加材料具有低介电常数,自清洁性能以及优异的附着性能。

Description

一种反应型氟硅树脂及其制备方法和应用 技术领域
本申请涉及功能树脂领域,例如一种反应型氟硅树脂、聚合型氟硅树脂及其制备方法和应用。
背景技术
自清洁主要包含两方面:一是超疏水材料或超疏油材料借助水或油的冲刷作用带走其表面污染物的超疏水自清洁涂层;二是和光催化剂复合制备具有光催化活性的超疏水或超疏油自清洁涂层。前者的自清洁作用主要表现在超疏水或超疏油涂层特殊的润湿性赋予的其对灰尘、泥土等无机污渍的自清洁功能,且其自清洁功能往往需要借助雨水的冲刷及一定的倾斜角来实现。当水滴或油滴落在倾斜的超疏水或超疏油表面时,由于水滴或油滴呈球形而容易滚动,从而粘附在基体表面的灰尘、泥土等亲水性物质,最终实现基体表面的自清洁。而后者是指含有光催化活性粒子的涂层,能借助光的催化作用降解有机污染物。最常用的是具有紫外光催化活性的粒子如二氧化钛、氧化锌、硫化锌、氧化锡等,其光催化活性依赖于光照条件下半导体纳米材料价带电子向导带的跃迁及其电子空穴对的形成。自清洁涂层的应用领域越来越多样化,在很多领域都有着潜在的应用前景,如纺织工业领域的自清洁服装、汽车工业领域的自清洁挡风玻璃、海洋工程的建筑结构抗生物粘附自清洁、屋顶太阳能电池的自清洁涂层以及自清洁油漆涂料等,因此自清洁涂层的研究对工程应用和工业生产兼具深远意义。
5G网络是第五代通信网络,其性能相较于现今使用的4G网络4G网络技术有一个质的超越。5G网络技术进步明显的体现在无线信号的传输时效、覆盖性、通信安全保障等方面。5G网络通信技术深入结合其他无线移动技术,形成了全 新的通信网络,满足互联网移动通信网速不断增长的要求。而且5G移动网络技术还可以实现智能化与自动化之间的相互调整,具有一定的灵活性,这是因为我们现如今使用的通信技术和无线技术为5G通信系统打下了良好的基础。
5G用通信材料要求材料有非常低的介电常数以及介电损耗,现今4G通信领用使用的材料多以聚四氟乙烯为主,然而聚四氟乙烯其与材料的相容性差,且仅具有疏水性,对油滴等有机污染物几乎没有自清洁性能,应用于5G通信终端存在阻碍。且聚四氟乙烯的玻璃化转变温度低,由于大功率的通信传输会产生大量热量,因此聚四氟乙烯的稳定性也存在缺陷。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供一种反应型氟硅树脂、聚合型氟硅树脂及其制备方法和应用。所述反应型氟硅树脂具有低介电常数,自清洁性能以及优异的附着性能。
本申请实施例提供一种反应型氟硅树脂,所述反应型氟硅树脂的结构如式1所示:
Figure PCTCN2021126577-appb-000001
其中,R 1~R 6为满足其化学环境的任意基团,所述R 1~R 6中至少一个为含有氟元素的基团,所述含有氟元素的基团为-C aH bF c,所述R 1~R 6中至少一个含有反应性基团,X和Y为满足其化学环境的任意基团,n≥0,a≥1,b≥0,c≥1。
其中,n可以是1、5、10、20、50、80、100、150、200或500等,a的数值可以是2、3、5、8、10、12、15、18、20、25、30、40或50等,b可以是1、 2、3、5、8、10、12、15、18、20、25、30、40或50等,c可以是2、3、5、8、10、12、15、18、20、25、30、40或50等,但并不仅限于所列举的数值,上述各数值范围内其他未列举的数值同样适用。
作为本申请优选的技术方案,所述R 1~R 6分别独立地优选的包括取代或未取代的烷基、取代或未取代的环烷基、取代或未取代的芳香基、取代或未取代的杂芳基、取代或未取代的烷氧基、取代或未取代的环烷氧基、取代或未取代的芳香氧基或取代或未取代的杂芳氧基中的任意一种或至少两种的组合。
作为本申请优选的技术方案,所述R 1~R 6分别独立地优选的包括C1~C12取代或未取代的烷基、C3~C12取代或未取代的环烷基、C6~C12取代或未取代的芳香基、C5~C12取代或未取代的杂芳基、C1~C12取代或未取代的烷氧基、C3~C12取代或未取代的环烷氧基、C6~C12取代或未取代的芳香氧基或、C5~C12取代或未取代的杂芳氧基中的任意一种或至少两种的组合。
其中,取代或未取代的烷基优选为C1~C12的取代或未取代的烷基,例如可以是C2、C3、C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的烷基;
取代或未取代的环烷基优选为C3~C12的环烷基,例如可以是C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的环烷基;
取代或未取代的芳香基优选为C5~C12芳香基,例如可以是C6、C7、C8、C9、C10或C11的取代或未取代的芳香基;
取代或未取代的杂芳基优选为C5~C12杂芳基,例如可以是C6、C7、C8、C9、C10或C11的取代或未取代的杂芳基;
取代或未取代的烷氧基优选为C1~C12的取代或未取代的烷氧基,例如可以是C2、C3、C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的烷氧基;
取代或未取代的环烷氧基优选为C3~C12的环烷氧基,例如可以是C4、C5、 C6、C7、C8、C9、C10或C11的取代或未取代的环烷氧基;
取代或未取代的芳香氧基优选为C6~C12芳香氧基,例如可以是C7、C8、C9、C10或C11的取代或未取代的芳香氧基;
取代或未取代的杂芳氧基优选为C5~C12杂芳氧基,例如可以是C6、C7、C8、C9、C10或C11的取代或未取代的杂芳氧基。
作为本申请优选的技术方案,所述反应性基团优选的包括羟基、胺基、不饱和基团、羧基、环氧基、酯基、酸酐、异氰酸酯基或氰基中的任意一种或至少两种的组合。
作为本申请优选的技术方案,所述X和Y分别独立地优选的包括取代或未取代的亚烷基、取代或未取代的亚芳基、亚胺基、O、S、酰胺基或者酯基中的任意一种。
其中,取代或未取代的亚烷基优选为C1~C12的取代或未取代的亚烷基,例如可以是C2、C3、C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的亚烷基;
取代或未取代的亚芳基优选为C6~C12的取代或未取代的亚芳基,例如可以是C7、C8、C9、C10或C11的取代或未取代的亚芳基。
本申请实施例提供一种上述反应型氟硅树脂的制备方法,所述方法包括:含有硅元素的化合物与含氟化合物通过取代反应制备得到。
作为本申请优选的技术方案,所述含有硅元素的化合物包括取代或未取代的硅烷、取代或未取代的硅氧烷、聚硅烷或聚硅氧烷中的任意一种或至少两种组合。
优选地,所述聚硅烷包括硅烷自聚或硅烷与扩链剂共聚所得到的聚合物。
优选地,所述聚硅氧烷包括硅氧烷自聚或硅氧烷与扩链剂共聚所得到的聚 合物。
其中,所述硅烷优选为C1~C12取代或未取代的烷基硅烷、C3~C12取代或未取代的环烷基硅烷、C6~C12取代或未取代的芳香基硅烷或C5~C12取代或未取代的杂芳基硅烷、C1~C12取代或未取代的烷氧基、C3~C12取代或未取代的环烷氧基、C6~C12取代或未取代的芳香氧基或C5~C12取代或未取代的杂芳氧基。
其中,C1~C12取代或未取代的烷基硅烷可以是C2、C3、C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的烷基硅烷;
C3~C12取代或未取代的环烷基硅烷可以是C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的环烷基硅烷;
C6~C12取代或未取代的芳香基硅烷可以是C7、C8、C9、C10或C11的取代或未取代的芳香基硅烷;
C5~C12取代或未取代的杂芳基硅烷可以是C6、C7、C8、C9、C10或C11的取代或未取代的杂芳基硅烷;
C1~C12的取代或未取代的烷氧基,例如可以是C2、C3、C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的烷氧基硅烷;
C3~C12的环烷氧基,例如可以是C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的环烷氧基硅烷;
C6~C12芳香氧基,例如可以是C7、C8、C9、C10或C11的取代或未取代的芳香氧基硅烷;
C5~C12杂芳氧基,例如可以是C6、C7、C8、C9、C10或C11的取代或未取代的杂芳氧基硅烷。
作为本申请优选的技术方案,所述含氟化合物优选地包括至少一个氢原子 被氟原子取代的醇类化合物、羧酸类化合物、酯类化合物、胺类化合物、硫醇类化合物或卤代烃化合物中的任意一种或至少两种的组合。
作为本申请优选的技术方案,所述卤代烃化合物优选地包括氯代烃、溴代烃或碘代烃中的任意一种或者至少两种的组合。
优选地,所述氟化合物包括全氟取代的醇类化合物、羧酸类化合物、酯类化合物、胺类化合物或硫醇类化合物中的任意一种或至少两种的组合。
其中,醇类化合物优选为C2~C18的醇类化合物,例如可以是C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16或C17的醇类化合物;
羧酸类化合物优选为C2~C18的羧酸类化合物,例如可以是C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16或C17的羧酸类化合物;
酯类化合物优选为C2~C18的酯类化合物,例如可以是C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16或C17的酯类化合物;
胺类化合物优选为C2~C18的胺类化合物,例如可以是C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16或C17的胺类化合物;
硫醇类化合物优选为C2~C18的硫醇类化合物,例如可以是C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16或C17的硫醇类化合物。
本申请实施例在于提供一种聚合型氟硅树脂,所述聚合型氟硅树脂由上述任一种所述的反应型氟硅树脂通过自聚或共聚反应制备得到。
作为本申请优选的技术方案,所述聚合型氟硅树脂由上述任一种所述的反应型氟硅树脂与含有反应基的化合物通过共聚制备得到。
本申请实施例在于提供一种上述反应型氟硅树脂的的应用,所述化合物的应用领域包括绝缘材料领域、疏水性涂层领域、热固性树脂领域、光敏性树脂领域、工程塑料领域、弹性体领域、橡胶领域以及尼龙领域。
本申请中,所述反应型氟硅树脂由于具有反应性基团,可以与被添加材料的树脂等原料进行反应,使得所述反应型氟硅树脂与树脂和涂料具有优异的相容性能。同时,由于所述反应型氟硅树脂中含有硅元素,增加了所述反应型氟硅树脂在被添加树脂和涂料中的分散性能。而聚合型氟硅树脂由于其自身即具有高分子结构,其与高分子材料,如工程塑料以及涂料等无需反应型基团参与反应即可具有良好的相容性。由于硅元素的添加,使得被添加涂料与涂覆基底的附着力增加。所述反应型氟硅树脂以及聚合型氟硅树脂同时含有硅元素和氟元素,使得所述反应型氟硅树脂同时具有一定的憎水和憎油特性,使得形成的涂层表面具有良好的自清洁性能。本申请提供的反应型氟硅树脂以及聚合型氟硅树脂的氟含量高,可以有效降低被添加树脂或涂料的介电常数和节点损耗,使得被添加树脂或涂料可以应用5G等通讯领域。本申请提供的反应型氟硅树脂以及聚合型氟硅树脂相比于传统的聚四氟乙烯材料,与被添加树脂或涂料的相容性更好,可以减少分散剂以及增溶剂等添加剂的使用,加工性能明显优于传统聚四氟乙烯材料,且可以提高被添加材料的自清洁性能以及附着性能。
与相关技术相比,本申请实施例至少具有以下有益效果:
(1)本申请实施例公开一种反应型氟硅树脂及其制备方法和应用,所述反应型氟硅树脂作为添加剂可以是被添加材料具有低介电常数,自清洁以及附着力;
(2)本申请实施例公开一种反应型氟硅树脂及其制备方法和应用,所述反应型氟硅树脂作为添加剂加入环氧树脂组合物或热固型酚醛树脂中,可以降低 环氧树脂组合物或热固型酚醛树脂的介电损耗以及介电常数,并使得环氧树脂组合物或热固型酚醛树脂表面具有优异的自清洁性能;
(3)本申请实施例公开一种反应型氟硅树脂以及聚合型氟硅树脂,所述反应型氟硅树脂以及聚合型氟硅树脂作为添加剂加入涂料中,如有机硅树脂涂料、丙烯酸树脂涂料、环氧树脂涂料或聚酯树脂涂料,可以降低涂料的介电损耗以及介电常数,增加涂料的附着性能,同时涂料形成的涂层表面具有优异的自清洁性能。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
为便于理解本申请,本申请列举实施例如下。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供一种反应型氟硅树脂,其结构如式2所示:
Figure PCTCN2021126577-appb-000002
式2所示化合物的制备方法为:将1mol二苯基二甲氧基硅烷溶于100mL  NMP,加入1mol全氟十二醇以及0.01mol二丁基氧化锡,在100℃下反应2.5h,采用蒸馏分离溶剂后,得到产物加入1mol环氧氯丙烷,80℃下反应2h,反应结束后对产物进行提纯得到式2所示化合物。
1H NMR(CDCl 3,500MHz):δ7.60~7.52(m,2H,Ar-H),7.48~7.40(m,4H,Ar-H),7.36~7.27(m,4H,Ar-H),4.19~4.11(s,2H,CH 2),4.10~4.02(d,H,CH 2),3.77~3.71(d,H,CH 2),2.69~2.62(m,H,CH 2),2.69~2.62(m,H,CH),2.36~2.58(m,H,CH 2)。
实施例2
本实施例提供一种反应型氟硅树脂,其结构如式3所示:
Figure PCTCN2021126577-appb-000003
式3所示化合物的制备方法为:将1mol二甲基乙烯基甲氧基硅烷溶于100mL NMP,加入1mol全氟丁醇以及0.01mol二丁基氧化锡,在100℃下反应2h,采用蒸馏分离溶剂后,对产物进行提纯得到式3所示化合物。
1H NMR(CDCl 3,500MHz):δ5.43~5.36(t,H,CH=C H 2),5.35~5.29(t,H,C H=CH 2),5.19~5.11(t,H,CH=C H 2),4.15~4.08(s,2H,CH 2),0.22~0.15(s,6H,CH 3)。
实施例3
本实施例提供一种反应型氟硅树脂,其结构如式4所示:
Figure PCTCN2021126577-appb-000004
式4所示化合物的制备方法为:将1mol氯代甲基二甲氧基硅烷溶于100mL NMP,加入1mol全氟辛醇以及0.01mol二丁基氧化锡,在135℃下反应4.5h,采用蒸馏分离溶剂后,将产物与1mol氨基乙酸以及0.01mol二丁基氧化锡混合,80℃下反应2h,对产物进行提纯得到式4所示化合物。
1H NMR(CDCl 3,500MHz):δ4.15~4.08(s,2H,CH 2),3.83~3.75(t,2H,CH 2),3.58~3.51(s,3H,CH 3),2.67~2.59(s,H,CH 2),1.55~1.47(t,2H,NH 2),0.25~0.17(s,3H,CH 3)。
实施例4
本实施例提供一种反应型氟硅树脂,其结构如式5所示:
Figure PCTCN2021126577-appb-000005
式5所示化合物的制备方法为:将1mol二苯基而甲氧基硅烷溶于100mL NMP、加入1mol全氟己酸以及0.01mol二丁基氧化锡,在120℃下反应2h,采用蒸馏分离溶剂后,将产物与1mol氯代乙腈混合,75℃下反应2.5h,对产物进行提纯得到式5所示化合物。
1H NMR(CDCl 3,500MHz):δ7.58~7.51(m,2H,Ar-H),7.49~7.42(m,4H,Ar-H),7.37~7.29(m,4H,Ar-H),4.99~4.92(t,2H,CH 2)。
实施例5
本实施例提供一种反应型氟硅树脂,其结构如式6所示:
Figure PCTCN2021126577-appb-000006
式6所示化合物的制备方法为:将1mol乙烯基三甲氧基硅烷溶于100mL NMP,加入1mol全氟壬酸以及0.01mol二丁基氧化锡,在100℃下反应3h,采用蒸馏分离溶剂后,对产物进行提纯得到式6所示化合物.
1H NMR(CDCl 3,500MHz):δ5.42~5.35(t,H,CH=C H 2),5.33~5.26(t,H,C H=CH 2),5.19~5.11(t,H,CH=C H 2),3.58~3.51(s,6H,CH 3)。
实施例6
本实施例提供一种反应型氟硅树脂,其结构如式7所示:
Figure PCTCN2021126577-appb-000007
式7所示化合物的制备方法为:将1mol聚甲基苯基硅氧烷(聚合度200)溶于100mL NMP,加入1mol全氟十八酸以及0.01mol二丁基氧化锡,在180℃下反应12h,采用蒸馏分离溶剂后,将产物与1mol氨基乙酸合,60℃下反应3h,对产物进行提纯得到式7所示化合物。
核磁共振氢谱测试表明,上述制备方法制备得到的化合物在1.55~1.47之间出现N-H峰,而在4.25~4.18出现甲氧基的C-H峰。
环氧树脂中的应用
实施例7
本实施例中,将环氧当量为360/eq的双酚A型环氧树脂100重量份,双氰胺6重量份,分别与实施例1-6所示反应型氟硅树脂8重量份混合,120℃下固化1.5h,得到环氧树脂固化物a-f。
对比例1
本对比例中,将环氧当量为360/eq的环氧树脂100重量份,加入6重量份双氰胺,再加入30重量份聚四氟乙烯,120℃下固化1.5h,得到环氧树脂固化物g。
对实施例7以及对比例1提供的环氧树脂固化物a-g的介电常数(Dk)以 及介电损耗(Df)进行测试,介电常数和介电损耗的测试方法为GB1049-78(10GHz);对环氧树脂固化物的表面的自清洁性能进行测试,自清洁性能的测试方法为:分别将水以及植物油低落在环氧树脂固化物的表面,并对水滴和油滴形成的接触角进行测试,测试结果如表1所示。
表1
Figure PCTCN2021126577-appb-000008
从表1的测试结果可以看出,本申请提供的反应型氟硅树脂在添加入环氧树脂体系后,有效降低了环氧树脂体系的介电常数和介电损耗,同时使得环氧树脂兼具优异的自清洁性能。
热固型酚醛树脂中的应用:
实施例8
本实施例中,将实施例1-6制备得到的反应型氟硅树脂260重量份,与苯酚500重量份,甲醛539重量份,三乙醇胺催化剂10重量份在50℃下进行反应2h,反应结束后降温到30℃加入硅烷偶联剂1重量份,得到热固型酚醛树脂a~f。
对比例2
本对比例中,将聚四氟乙烯260重量份,与苯酚500重量份,甲醛539重量份,三乙醇胺催化剂10重量份在50℃下进行反应2h,反应结束后降温到30℃加入硅烷偶联剂1重量份,得到热固型酚醛树脂g。
对实施例8以及对比例2提供的热固型酚醛树脂a-g的介电常数(Dk)以及介电损耗(Df)进行测试,介电常数和介电损耗的测试方法为GB1049-78(10GHz);对热固型酚醛树脂的表面的自清洁性能进行测试,自清洁性能的测试方法为:分别将水以及植物油低落在热固型酚醛树脂的表面,并对水滴和油滴形成的接触角进行测试,测试结果如表2所示。
表2
Figure PCTCN2021126577-appb-000009
Figure PCTCN2021126577-appb-000010
从表2的测试结果可以看出,本申请提供的反应型氟硅树脂在添加入热固型酚醛树脂体系后,有效降低了热固型酚醛树脂体系的介电常数和介电损耗,同时使得热固型酚醛树脂兼具优异的自清洁性能。
有机硅树脂涂料中的应用
实施例9
本实施例提供一种有机硅树脂涂料,所述涂料的原料包括:甲基硅树脂45份、漆酚树脂45份、醇溶酚钡20份、甲基硅油20份、实施例1-6提供的氟硅 树脂20份、甲基丙烯酸10份、高岭土10份、软黑10份、有机硼润土4份、纳米二氧化硅4份、聚醚消泡剂2份、聚丙烯酸酯流平剂1份。上述原料混合后得到有机硅树脂涂料a-f。
对比例3
本对比例提供一种有机硅树脂涂料,所述涂料的原料包括:甲基硅树脂45份、漆酚树脂45份、醇溶酚钡20份、甲基硅油20份、聚四氟乙烯20份、甲基丙烯酸10份、高岭土10份、软黑10份、有机硼润土4份、纳米二氧化硅4份、聚醚消泡剂2份、聚丙烯酸酯流平剂1份。上述原料混合后得到有机硅树脂涂料g。
对实施例9以及对比例3提供的有机硅树脂涂料a-g的介电常数(Dk)以及介电损耗(Df)进行测试,介电常数和介电损耗的测试方法为GB1049-78(10GHz);对有机硅树脂涂料形成的涂层的在纤维水泥板材上的附着力进行测试,附着力测试采用百格测试;对有机硅树脂涂料形成的涂层的自清洁性能进行测试,自清洁性能的测试方法为:分别将水以及植物油低落在有机硅树脂涂料形成的涂层表面,并对水滴和油滴形成的接触角进行测试,测试结果如表3所示。
表3
Figure PCTCN2021126577-appb-000011
Figure PCTCN2021126577-appb-000012
从表3的测试结果可以看出,本申请提供的反应型氟硅树脂在添加入有机硅树脂涂料体系后,有效降低了有机硅树脂涂料体系的介电常数和介电损耗,同时使得有机硅树脂涂料兼具优异的附着力和自清洁性能。
丙烯酸树脂涂料中的应用
实施例10
本实施例提供一种丙烯酸树脂涂料,所述丙烯酸树脂涂料的原料包括:环氧改性丙烯酸树脂60份、钛白粉20份、实施例1-6提供的氟硅树脂10份,二甲苯5、醋酸乙酯3份、乙二醇乙醚醋酸酯5份、BYK-190分散剂0.5份、BYK-022有机硅消泡剂0.5份、BYK-333有机硅流平剂0.5份、BYK-420防沉剂0.5份。上述原料混合后得到丙烯酸树脂涂料a-f。
将实施例2提供的氟硅树脂分散于NMP中,加入偶氮二异丁腈作为引发剂,依次在180℃下反应2h,190℃反应2h以及200℃下反应2h,采用蒸馏分离溶剂后,对产物进行提纯得到聚合型氟硅树脂I。按照上述比例制备得到丙烯酸树脂涂料g。
将实施例5提供的氟硅树脂分散于NMP中,加入偶氮二异丁腈作为引发剂,依次在180℃下反应2h,190℃反应2h以及200℃下反应2h,采用蒸馏分离溶剂后,对产物进行提纯得到聚合型氟硅树脂II。按照上述比例制备得到丙烯酸树脂涂料h。
对比例4
本对比例提供一种丙烯酸树脂涂料,所述丙烯酸树脂涂料的原料包括:环氧改性丙烯酸树脂60份、钛白粉20份、聚四氟乙烯10份,二甲苯5、醋酸乙酯3份、乙二醇乙醚醋酸酯5份、BYK-190分散剂0.5份、BYK-022有机硅消泡剂0.5份、BYK-333有机硅流平剂0.5份、BYK-420防沉剂0.5份。上述原料混合后得到丙烯酸树脂涂料i。
对实施例10以及对比例4提供的有机硅树脂涂料a-g的介电常数(Dk)以及介电损耗(Df)进行测试,介电常数和介电损耗的测试方法为GB1049-78(10GHz);对丙烯酸树脂涂料形成的涂层的在纤维水泥板材上的附着力进行测试,测试采用百格测试;对丙烯酸树脂涂料形成的涂层的自清洁性能进行测试,自清洁性能的测试方法为:分别将水以及植物油低落在丙烯酸树脂涂料形成的涂层表面,并对水滴和油滴形成的接触角进行测试,测试结果如表4所示。
表4
Figure PCTCN2021126577-appb-000013
Figure PCTCN2021126577-appb-000014
从表4的测试结果可以看出,本申请提供的反应型氟硅树脂在添加入丙烯酸树脂涂料体系后,有效降低了丙烯酸树脂涂料体系的介电常数和介电损耗, 同时使得丙烯酸树脂涂料兼具优异的附着力和自清洁性能。
聚酯树脂涂料中的应用
实施例11
本实施例提供一种聚酯树脂涂料,所述聚酯树脂的原料包括:312C饱和聚酯树脂组合物60份,实施例1-6提供的氟硅树脂15份,甲基三乙氧氧基硅烷30份,二甲基二氯硅烷20份,甲基硅油5份,纳米硫酸钡5份,氧化聚丙烯酸酯10份,双氰胺2份,甘油3份。上述原料混合后得到聚酯树脂涂料a-f。
对比例5
本实施例提供一种聚酯树脂涂料,所述聚酯树脂的原料包括:312C饱和聚酯树脂组合物60份,聚四氟乙烯15份,甲基三乙氧氧基硅烷30份,二甲基二氯硅烷20份,甲基硅油5份,纳米硫酸钡5份,氧化聚丙烯酸酯10份,双氰胺2份,甘油3份。上述原料混合后得到聚酯树脂涂料g。
对实施例11以及对比例5提供的聚酯树脂涂料a-g的介电常数(Dk)以及介电损耗(Df)进行测试,介电常数和介电损耗的测试方法为GB1049-78(10GHz);对聚酯树脂涂料形成的涂层的在纤维水泥板材上的附着力进行测试,测试采用百格测试;对聚酯树脂涂料形成的涂层的自清洁性能进行测试,自清洁性能的测试方法为:分别将水以及植物油低落在聚酯树脂涂料形成的涂层表面,并对水滴和油滴形成的接触角进行测试,测试结果如表5所示。
表5
Figure PCTCN2021126577-appb-000015
Figure PCTCN2021126577-appb-000016
从表5的测试结果可以看出,本申请提供的反应型氟硅树脂在添加入聚酯树脂涂料体系后,有效降低了聚酯树脂涂料体系的介电常数和介电损耗,同时使得聚酯树脂涂料兼具优异的附着力和自清洁性能。
环氧树脂涂料中的应用
实施例12
本实施例提供一种环氧树脂涂料,所述环氧树脂涂料的原料包括:环氧当 量为320/eq的环氧树脂50份,实施例1-6提供的氟硅树脂15份,蒸馏水10份,水溶性纤维素醚10份,聚丙烯酸酯10份,钛白粉10份,十六烷基三甲基溴化铵2份,丙烯酸酯流平剂2份,二乙基三胺2份,聚醚消泡剂1份,膨润土1份,甘油1份。上述原料混合后得到环氧树脂涂料a-f。
对比例6
本实施例提供一种环氧树脂涂料,所述环氧树脂涂料的原料包括:环氧当量为320/eq的环氧树脂50份,聚四氟乙烯15份,蒸馏水10份,水溶性纤维素醚10份,聚丙烯酸酯10份,钛白粉10份,十六烷基三甲基溴化铵2份,丙烯酸酯流平剂2份,二乙基三胺2份,聚醚消泡剂1份,膨润土1份,甘油1份。上述原料混合后得到环氧树脂涂料g。
对实施例12以及对比例6提供的聚酯树脂涂料a-g的介电常数(Dk)以及介电损耗(Df)进行测试,介电常数和介电损耗的测试方法为GB1049-78(10GHz);对环氧树脂涂料形成的涂层的在纤维水泥板材上的附着力进行测试,测试采用百格测试;对环氧树脂涂料形成的涂层的自清洁性能进行测试,自清洁性能的测试方法为:分别将水以及植物油低落在环氧树脂涂料形成的涂层表面,并对水滴和油滴形成的接触角进行测试,测试结果如表6所示。
表6
Figure PCTCN2021126577-appb-000017
Figure PCTCN2021126577-appb-000018
从表6的测试结果可以看出,本申请提供的反应型氟硅树脂在添加入环氧树脂涂料后,有效降低了环氧树脂涂料体系的介电常数和介电损耗,同时使得环氧树脂涂料兼具优异的附着力和自清洁性能。
本申请中,附着力的方法为:将涂料喷涂在混凝土板材上后彻底干燥(70~80℃*8H),待冷却后,在薄膜面划1x1mm百格,按GB/T1720方法测试涂层混凝土底材之间的附着力(5B~切口的边缘光滑,格子边缘没有任何剥落;4B~切口相交处有小片剥落,划格区内实际破损不超过5%;3B~切口的边缘和/或相交处有剥落,其面积大于5%,但不到15%;2B~沿切口边缘有部分剥落或整大片剥落,和/或部分格子被整片剥落,被剥落的面积超过15%,但不到35%;1B~沿切口边缘有部分剥落或整大片剥落,和/或部分格子被整片剥落,被剥落的面积超过35%,但不到65%;0B~沿切口边缘有部分剥落或整大片剥落,和/ 或部分格子被整片剥落,被剥落的面积超过65%)。
本申请中,自清洁性能的测试方法为:将水滴或油滴滴于涂料表面,使用接触角测量装置对水滴或油滴在涂料表面形成的接触角进行测试。接触角越大,水或油在涂料表面的润湿性能越差,自清洁效果越好。
申请人声明,本申请通过上述实施例来说明本申请的详细工艺设备和工艺流程,但本申请并不局限于上述详细工艺设备和工艺流程,即不意味着本申请必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。

Claims (15)

  1. 一种反应型氟硅树脂,其中,所述反应型氟硅树脂的结构如式1所示:
    Figure PCTCN2021126577-appb-100001
    其中,R 1~R 6为满足其化学环境的任意基团,所述R 1~R 6中至少一个为含有氟元素的基团,所述含有氟元素的基团为-C aH bF c,所述R 1~R 6中至少一个含有反应性基团,X和Y为满足其化学环境的任意基团,n≥0,a≥1,b≥0,c≥1。
  2. 根据权利要求1所述的反应型氟硅树脂,其中,所述R 1~R 6分别独立地包括取代或未取代的烷基、取代或未取代的环烷基、取代或未取代的芳香基、取代或未取代的杂芳基、取代或未取代的烷氧基、取代或未取代的环烷氧基、取代或未取代的芳香氧基或取代或未取代的杂芳氧基中的任意一种或至少两种的组合。
  3. 根据权利要求2所述的反应型氟硅树脂,其中,所述R 1~R 6分别独立地包括C1~C12取代或未取代的烷基、C3~C12取代或未取代的环烷基、C6~C12取代或未取代的芳香基、C5~C12取代或未取代的杂芳基、C1~C12取代或未取代的烷氧基、C3~C12取代或未取代的环烷氧基、C6~C12取代或未取代的芳香氧基或、C5~C12取代或未取代的杂芳氧基中的任意一种或至少两种的组合。
  4. 根据权利要求1-3任一项所述的反应型氟硅树脂,其中,所述反应性基团包括羟基、胺基、不饱和基团、羧基、环氧基、酯基、酸酐、异氰酸酯基或氰基中的任意一种或至少两种的组合。
  5. 根据权利要求1-4任一项所述的反应型氟硅树脂,其中,所述X和Y分别独立地包括取代或未取代的亚烷基、取代或未取代的亚芳基、亚胺基、O、S、 酰胺基或者酯基中的任意一种。
  6. 一种权利要求1-5任一项所述的反应型氟硅树脂的制备方法,其包括:含有硅元素的化合物与含氟化合物通过取代反应制备得到。
  7. 根据权利要求6所述的制备方法,其中,所述含有硅元素的化合物包括取代或未取代的硅烷、取代或未取代的硅氧烷、聚硅烷或聚硅氧烷中的任意一种或至少两种组合。
  8. 根据权利要求7所述的制备方法,其中,所述聚硅烷包括硅烷自聚或硅烷与扩链剂共聚所得到的聚合物。
  9. 根据权利要求7所述的制备方法,其中,所述聚硅氧烷包括硅氧烷自聚或硅氧烷与扩链剂共聚所得到的聚合物。
  10. 根据权利要求6-9任一项所述的制备方法,其中,所述含氟化合物包括至少一个氢原子被氟原子取代的醇类化合物、羧酸类化合物、酯类化合物、胺类化合物、硫醇类化合物或卤代烃化合物中的任意一种或至少两种的组合。
  11. 根据权利要求10所述的制备方法,其中,所述卤代烃化合物包括氯代烃、溴代烃或碘代烃中的任意一种或者至少两种的组合。
  12. 根据权利要求10或11所述的制备方法,其中,所述含氟化合物包括全氟取代的醇类化合物、羧酸类化合物、酯类化合物、胺类化合物或硫醇类化合物中的任意一种或至少两种的组合。
  13. 一种聚合型氟硅树脂,其中,所述聚合型氟硅树脂由权利要求1-6任一项所述的反应性氟硅树脂通过自聚或共聚反应制备得到。
  14. 一种聚合型氟硅树脂,其中,所述聚合型氟硅树脂由权利要求1-6任一项所述的反应性氟硅树脂与含有反应基的化合物通过共聚制备得到。
  15. 一种权利要求1-6、13或14任一项所述的氟硅树脂的应用,其中,所 述化合物的应用领域包括绝缘材料领域、疏水性涂层领域、热固性树脂领域、光敏性树脂领域、工程塑料领域、弹性体领域、橡胶领域以及尼龙领域。
PCT/CN2021/126577 2020-10-29 2021-10-27 一种反应型氟硅树脂及其制备方法和应用 WO2022089460A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011183107 2020-10-29
CN202011183107.6 2020-10-29
CN202110183821.3 2021-02-08
CN202110183821.3A CN112961354A (zh) 2020-10-29 2021-02-08 一种反应型氟硅树脂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022089460A1 true WO2022089460A1 (zh) 2022-05-05

Family

ID=76284818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126577 WO2022089460A1 (zh) 2020-10-29 2021-10-27 一种反应型氟硅树脂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN112961354A (zh)
WO (1) WO2022089460A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115368572A (zh) * 2022-09-01 2022-11-22 明士新材料有限公司 一种含氟的耐温性硅树脂的合成方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112961354A (zh) * 2020-10-29 2021-06-15 广东广山新材料股份有限公司 一种反应型氟硅树脂及其制备方法和应用
CN113444437A (zh) * 2021-08-19 2021-09-28 株洲时代电气绝缘有限责任公司 一种牵引电机用表面绝缘磁漆及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101583490A (zh) * 2007-01-19 2009-11-18 3M创新有限公司 日光控制多层膜
CN103328491A (zh) * 2010-11-10 2013-09-25 道康宁公司 表面处理组合物、制备表面处理组合物的方法以及经表面处理的制品
WO2016143565A1 (ja) * 2015-03-12 2016-09-15 旭硝子株式会社 積層体の製造方法、積層体および光硬化性組成物
CN106939010A (zh) * 2017-01-24 2017-07-11 广东信翼科技有限公司 一种含烯丙基聚氟硅氧烷的制备方法
CN109627926A (zh) * 2018-12-12 2019-04-16 中昊北方涂料工业研究设计院有限公司 一种增强型含氟硅中间体紫外光固化丙烯酸树脂涂料及其制备
CN112961354A (zh) * 2020-10-29 2021-06-15 广东广山新材料股份有限公司 一种反应型氟硅树脂及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3012006A (en) * 1958-04-24 1961-12-05 Dow Corning Fluorinated alkyl silanes and their use
CN101171274B (zh) * 2005-05-09 2010-11-17 大金工业株式会社 氟硅氧烷以及含氟和硅的表面处理剂
EP3052509A1 (en) * 2013-10-04 2016-08-10 3M Innovative Properties Company Fluoroalkylsilanes and coatings therefrom
CN108659600B (zh) * 2018-05-29 2020-06-30 曹颐戬 一种超双疏、自清洁氟硅涂层材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101583490A (zh) * 2007-01-19 2009-11-18 3M创新有限公司 日光控制多层膜
CN103328491A (zh) * 2010-11-10 2013-09-25 道康宁公司 表面处理组合物、制备表面处理组合物的方法以及经表面处理的制品
WO2016143565A1 (ja) * 2015-03-12 2016-09-15 旭硝子株式会社 積層体の製造方法、積層体および光硬化性組成物
CN106939010A (zh) * 2017-01-24 2017-07-11 广东信翼科技有限公司 一种含烯丙基聚氟硅氧烷的制备方法
CN109627926A (zh) * 2018-12-12 2019-04-16 中昊北方涂料工业研究设计院有限公司 一种增强型含氟硅中间体紫外光固化丙烯酸树脂涂料及其制备
CN112961354A (zh) * 2020-10-29 2021-06-15 广东广山新材料股份有限公司 一种反应型氟硅树脂及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115368572A (zh) * 2022-09-01 2022-11-22 明士新材料有限公司 一种含氟的耐温性硅树脂的合成方法

Also Published As

Publication number Publication date
CN112961354A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2022089460A1 (zh) 一种反应型氟硅树脂及其制备方法和应用
CN108034334B (zh) 一种水性有机硅氟改性氧化石墨烯/环氧树脂涂料及其制备方法
KR101861383B1 (ko) 플루오로옥시알킬렌기 함유 중합체 조성물, 상기 조성물을 포함하는 표면 처리제, 상기 표면 처리제로 처리된 물품 및 광학 물품
JP2009144133A (ja) パーフルオロポリエーテル変性シラン化合物、これを含有する防汚性コーティング剤組成物およびこれを適用した膜
CN112210293A (zh) 疏水疏油涂层组合物及其制备方法
CN111269626B (zh) 一种环氧丙烯酸聚硅氧烷自清洁涂料的制备方法
KR20160089361A (ko) 개선된 내구성을 가지는 투명한 소수성 코팅 물질 및 이를 제조하는 방법
CN113372814B (zh) 一种基于笼状聚倍半硅氧烷的超亲水功能涂层及其制备方法
CN115286996B (zh) 一种超疏水有机硅涂层及其制备方法与应用
CN103601891B (zh) 一种可交联氟硅树脂及其制备与在超双疏材料上的应用
CN109796873B (zh) 一种电气设备防污闪涂料及其制备方法
CN111410886B (zh) 一种双组份超疏水涂料
JP5682396B2 (ja) 塗料組成物、これを用いて得られる超疎水性塗膜及びその製造方法
CN114761490A (zh) 固化性组合物
CN115960495B (zh) 一种亲水型自清洁的氟碳涂料及其制备方法和应用
CN108997879A (zh) 含氟超亲水自清洁涂料
CN116285675B (zh) 一种新型poss功能化的疏水硅烷涂层及其制备方法与应用
CN109627390A (zh) 石墨烯、硅改性氟丙烯酸水性树脂及其制备方法
CN114804648A (zh) 一种无氟自清洁涂层及其制备方法和应用
JP6472249B2 (ja) 製造物品または製造物品の製造プロセス
CN113088190B (zh) 含氟有机聚硅氧烷自清洁涂料的制备方法
CN104558619A (zh) 一种两亲性氟硅树脂和制备方法及其制成的超双疏表面材料
CN112694807B (zh) 一种含氟硅涂料组合物及其制备方法
CN114806478B (zh) 一种防腐单组分硅烷改性聚醚密封胶及其制备方法
KR101457624B1 (ko) 친환경 방오코팅제 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/09/2023).

122 Ep: pct application non-entry in european phase

Ref document number: 21885187

Country of ref document: EP

Kind code of ref document: A1