WO2022086010A1 - 결정성이 억제된 인산염을 이용한 고분자 가공용 열안정제 및 이의 제조방법 - Google Patents

결정성이 억제된 인산염을 이용한 고분자 가공용 열안정제 및 이의 제조방법 Download PDF

Info

Publication number
WO2022086010A1
WO2022086010A1 PCT/KR2021/013965 KR2021013965W WO2022086010A1 WO 2022086010 A1 WO2022086010 A1 WO 2022086010A1 KR 2021013965 W KR2021013965 W KR 2021013965W WO 2022086010 A1 WO2022086010 A1 WO 2022086010A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
heat stabilizer
phosphate
polymer
derivatives
Prior art date
Application number
PCT/KR2021/013965
Other languages
English (en)
French (fr)
Inventor
김성철
티루쿠마란퍼리야사미
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210134725A external-priority patent/KR102607238B1/ko
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to US18/248,763 priority Critical patent/US20230399489A1/en
Publication of WO2022086010A1 publication Critical patent/WO2022086010A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/38Condensed phosphates
    • C01B25/40Polyphosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/014Stabilisers against oxidation, heat, light or ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/325Calcium, strontium or barium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/328Phosphates of heavy metals

Definitions

  • the present invention relates to a heat stabilizer for polymer processing using a phosphate with suppressed crystallinity and a method for manufacturing the same, and more particularly, to a phosphate formed by controlling the crystallinity of a phosphate to prevent discoloration of the polymer and improve dispersibility. It relates to a heat stabilizer for polymer processing, a method for preparing the same, and a polymer composition using the same.
  • Organic lead (Pb) has been widely used as a heat stabilizer for PVC, and organic Cd has been followed instead of organic lead due to toxicity. .
  • epoxidized soybean oil, organophosphite, etc. are used as additional additives to additionally supplement thermal stability.
  • lanthanum compounds and organic amides such as uracil are excellent. reported as a heat stabilizer.
  • Korean Patent Registration No. 10-1426604 improves the thermal stability of PVC by adding hydrotalcite to PVC. By doing this, it is possible to provide an eco-friendly thermal stabilizer that can improve the heat resistance and stability of PVC. By inserting the reactive interlayer between the layers of hydrotalcite, the thermal stability and colorability of PVC can be improved.
  • the heat stabilizer composition of polyvinyl chloride characterized in that it contains a mixture of niobate nanosheets containing zinc oxide and magnesium oxide, and a hydroxide consisting of calcium hydroxide and aluminum hydroxide.
  • a heat stabilizer composition that improves processing stability and long-term storage as well as properties of heat stability required as a heat stabilizer is presented.
  • An object of the present invention is to reduce crystallinity and reduce particle size through various structural changes of metal phosphate compounds composed of various metal cations and phosphate anions to absorb more HCl in phosphate over a wider surface area, thereby improving thermal stability during polymer processing. It is to provide a heat stabilizer for polymer processing that can be improved.
  • Another object of the present invention is to provide a method for manufacturing a heat stabilizer for polymer processing capable of improving heat stability through various methods.
  • an object of the present invention is to provide a polymer composition capable of preventing discoloration during polymer processing by including the heat stabilizer in various polymers.
  • the heat stabilizer for polymer processing according to the present invention for achieving the above object is represented by the following formula As displayed:
  • A is At least one polyvalent cation selected from the group consisting of Ca, Mg , Al, Fe, Ti, Sn, Ba, Zn, Cu, Cd, Pb, Mn, Ni, Sr, and Mo, and w is in the range of 2 to 5 is satisfied with
  • X is Cl - , Br - , NO 3 - , OH - , acetate, cyanide, thiocyanate, isocyanate, hydrogensulfate, dihydrogen phosphate ( dihydrogen phosphate), phosphite, polyphosphate, carbonate, sulfonate, borate, carbonate, sulfate, carboxylate, adipate , dodecyl sulfate, nitrate, and at least one anion selected from the group consisting of P 2 O 7 4- , wherein z is in the range of 0 to 3,
  • x and y are each independently 0 to 5, x and y cannot be 0 at the same time, neither of them is 0;
  • n is an integer from 0 to 12.
  • the polyvalent cation represented by A in the above formula is used alone, or a part of one metal cation including Ca is used in an amount of 50% or less of the total molar ratio of A. It may be included by substituting another metal cation.
  • X is OH - an anion
  • the displayed heat stabilizer for processing polymers preferably has a particle size in the range of 0.5 to 150 nm.
  • the heat stabilizer for polymer processing according to the present invention is an amine, amide, phosphonate, carboxylic acid, thio Esters (thioesters), alkanoates (alkanoates), diketones (diketones), ketoesters (ketoesters), oxalates (oxalates), malonates (malonates), succinates (succinates), glutarates (glutarates) at least one diester selected from adipates;
  • lactones including maleic anhydride, succinic anhydride, and lactide
  • lactams including caprolactam
  • a chelating agent comprising a polyhydric acid or a salt thereof
  • At least one dispersing agent selected from cellulose acetate derivatives may be further included.
  • the polyvalent cation A and the ligand included in the dispersing agent may be included in a ratio of 1:0.5 to 1:6.
  • the present invention provides a method for preparing a metal phosphate by rapidly reacting an aqueous metal salt solution with a phosphoric acid (salt) containing a metal cation at pH 10 to 13, for 10 minutes to 120 minutes to prepare a metal phosphate, the particle size of the prepared metal phosphate
  • the present invention provides an OH - anion among the anions represented by X in the above formula, Cl - , Br - , NO 3 - , acetate, cyanide, thiocyanate, isocyanate ), hydrogen sulfate, dihydrogen phosphate, phosphite, polyphosphate, carbonate, sulfonate, borate, carbonate , sulfate (sulfate), carboxylate (carboxylate), adipate, dodecyl sulfate, nitrate and P 2 O 7 4- With one or more anions selected from the group consisting of, 0.1 to 100% ion exchange in a molar ratio It is possible to provide a method for manufacturing a heat stabilizer for processing the metal phosphate polymer, comprising the step of improving thermal stability by reducing the crystallinity of the metal phosphate.
  • the present invention additionally serves as a ligand for the polyvalent cation A in the above formula
  • a) can donate an electron pair with a metal cation by ionic bonding, coordination covalent bonding, or strong ion-dipole interactions;
  • amines amides, phosphonates, carboxylic acids, thioesters, alkanoates, diketones, ketoesters, at least one diester selected from oxalates, malonates, succinates, glutarates, and adipates;
  • lactones including maleic anhydride, succinic anhydride, and lactide
  • lactams including caprolactam
  • a chelating agent comprising a polyhydric acid or a salt thereof
  • the present invention relates to one or more polymers selected from the group consisting of PVC, PMMA, PS, PB, PC, PE, PP, ABS, natural rubber, and synthetic rubber by the above formula It is possible to provide a polymer composition comprising a heat stabilizer for processing the indicated polymer.
  • the heat stabilizer for polymer processing is preferably included in an amount of 1 to 5 parts by weight based on the polymer weight.
  • the thermal stabilizer according to the present invention has excellent thermal stability to prevent discoloration of the polymer during processing of polymers such as PVC, and is expected to be applicable to various polymers as well as PVC.
  • the crystallinity of the metal phosphate is lowered by substituting various metal cations in the structure of the conventional metal phosphate, changing the type and content of anions, and using various dispersants that can act as ligands; Using a strong base, the particle size is lowered through pH control and rapid synthesis process to secure a larger surface area, allowing most phosphates to absorb HCl, a thermal decomposition product, and suppressing the accelerated discoloration caused by HCl to discolor during polymer processing.
  • Example 1 is a comparison result of thermal stabilization properties according to the particle size of hydroxyapatite, Ca 5 (PO 4 ) 3 OH in Example 1;
  • Example 2 is a comparison result of thermal stabilization characteristics according to the relative ratio of metal ions and phosphorus in Example 2;
  • Example 3 is a thermal stabilization characteristic analysis result according to the ratio of calcium ions to other metal ions in Example 3;
  • Figure 4 is Ca 4 Ba 1 (PO 4 ) 3 X thermal stabilization characteristics change according to the type of anion X in the compound
  • HA hydroxyapatite
  • the present invention relates to a heat stabilizer for polymer processing using a phosphate with suppressed crystallinity and a method for manufacturing the same.
  • A is At least one polyvalent cation selected from the group consisting of Ca, Mg , Al, Fe, Ti, Sn, Ba, Zn, Cu, Cd, Pb, Mn, Ni, Sr, and Mo, and w is in the range of 2 to 5 ego,
  • X is Cl - , Br - , NO 3 - , OH - , acetate, cyanide, thiocyanate, isocyanate, hydrogensulfate, dihydrogen phosphate ( dihydrogen phosphate), phosphite, polyphosphate, carbonate, sulfonate, borate, carbonate, sulfate, carboxylate, adipate , dodecyl sulfate, nitrate, and at least one anion selected from the group consisting of P 2 O 7 4- , wherein z is in the range of 0 to 3,
  • x and y are each independently 0 to 5, x and y cannot be 0 at the same time, neither of them is 0;
  • n is an integer from 0 to 12.
  • the electrostatic attraction between the two ions is so large that it is easily crystallized.
  • the particle size becomes at least several tens of nanometers or more.
  • At least hundreds of ionic compounds exist in crystals of this size, but only 10% or less of phosphoric acid is present on the surface.
  • each ion can act as an excellent thermal stabilizer, the ionic compound has a strong ionic bond and is bound to crystals, so there is a problem in that it cannot serve as a flame retardant or a thermal stabilizer.
  • the present invention since it is widely distributed in nature, it has excellent human compatibility and is an economical material by suppressing crystal formation through a change in the structure of a metal phosphate compound to reduce the formed particle size, so that most of the phosphate ions in the inorganic compound are converted to HCl. By making it absorbable, it prevents discoloration of polymers such as PVC, and improves dispersibility in the polymer due to its small particle size so that it can be used as a heat stabilizer.
  • the present invention as one method for suppressing the crystallinity of the metal phosphate compound, Ca, Mg , Al, Fe, Ti, Sn, Ba, Zn, Cu, Cd, Pb, Mn as a polyvalent cation represented by A , Ni, Sr, and by using one type selected from the group consisting of Mo alone, or by using a mixture of two or more types to increase the thermal stability.
  • the other metal cations listed above may be used alone instead of the conventional Ca cation, or a part of one metal cation containing Ca may be used by substituting one or two or more other metal cations, and the The content to be substituted may be appropriately adjusted according to the thermal stability characteristics.
  • the substituted other metal is preferably included in an amount of 50% or less of the total molar ratio of A.
  • w is a coefficient of the molecular formula of A, and preferably satisfies the range of 2 to 5 in order to maintain electrical neutrality with the phosphate.
  • X is Cl - , Br - , NO 3 - , OH - , acetate, cyanide, thiocyanate, isocyanate, hydrogensulfate, dihydrogen phosphate, phosphite, polyphosphate, carbonate, sulfonate, borate, carbonate, sulfate, carboxylate ( carboxylate), adipate, dodecyl sulfate, nitrate, and at least one anion selected from the group consisting of P 2 O 7 4- is preferred.
  • X is carboxylate
  • at least one selected from the group consisting of stearate, hexadecanoate, tetradecanoate, laurate, octanoate, octoate, and acetate may be used.
  • the anion represented by X may also be used alone, and thermal stability may be improved by introducing two or more kinds of the anion, or replacing the OH ion of the existing hydroxyapatite with another anion.
  • a metal salt starting material having an additional anion is used instead of an OH ion that maintains charge balance with a metal cation along with phosphoric acid (salt), or an OH ion is added in excess of an ion that binds in the form of a sodium salt.
  • the final heat stabilizer can be prepared by a method such as exchanging with other ions.
  • an organic anion such as stearate having a chemical formula greater than that of the OH ion is more preferable, but is not limited thereto.
  • the thermal stability of stearate was the best around 3300, and octanoate showed excellent thermal properties around 2300. Relatively more than 700 even when using the remaining anions such as adipate, Br-, OH-, Cl-, phosphate, thiocyanate, dodecyl sulfate, sulfate, acetate, carbonate, EDTA, hydrogen sulfate, nitrate, cyanide It was confirmed that good thermal stability was exhibited.
  • z is most preferably in the range of 0 to 3 as the content ratio of anions.
  • x and y are each independently in the range of 0 to 5, x and y cannot be 0 at the same time, and one of them must satisfy a non-zero condition. That is, at least one of a phosphate ion (PO 4 3- ) and a hydrogen phosphate ion (HPO 4 2- ) must be included in the above formula.
  • n is 0 to 12, and water may or may not be included.
  • the heat stabilizer represented by the formula according to the present invention preferably further includes a dispersing agent of various types that can serve as a ligand for the polyvalent cation A of the formula.
  • Examples of specific materials that can be used as the dispersant include amines, amides, phosphonates, carboxylic acids, thioesters, and alkanoates. , diketones (diketones), ketoesters (ketoesters), oxalates (oxalates), malonates (malonates), succinates (succinates), glutarates (glutarates), adipates (adipates) at least one kind selected from esters;
  • lactones including maleic anhydride, succinic anhydride, and lactide
  • lactams including caprolactam
  • a chelating agent comprising a polyhydric acid or a salt thereof
  • At least one selected from cellulose acetate derivatives may be preferably used.
  • the dispersant according to the present invention may perform the following roles.
  • an electron pair can be provided by an ionic bond with a divalent or higher metal ion, a coordinate covalent bond, or a strong ion-dipole interaction.
  • phosphate ions absorb HCl generated by thermal decomposition more quickly and easily, and have a function of helping to quickly form phosphate glass on the surface.
  • the ligand in the dispersing agent in a ratio of 1:0.5 to 1:6 to the polyvalent cation A in order to exert the effects listed above.
  • the addition of the various dispersants can increase the miscibility with polymers such as PVC, PMMA, PS, PB, PC, PE, PP, ABS, natural rubber, synthetic rubber, etc. .
  • the manufacturing method of the heat stabilizer for polymer processing represented by Formula 1 according to the present invention is a first step of preparing a mixed solution by mixing an aqueous metal salt solution and an aqueous solution of phosphoric acid (salt) containing a metal cation, and adding a basic solution to the mixed solution.
  • a second step of adjusting the pH, a third step of adjusting the size of the particles produced by stirring the pH-adjusted mixture for 10 to 120 minutes, and precipitating the mixed solution to prepare metal phosphate particles can be
  • the first step is to prepare an aqueous solution by dissolving phosphoric acid (salt) containing a metal salt and a metal cation in water.
  • the structure is changed by substituting various metal cations in the aqueous metal salt solution, or a metal salt having an additional anion is used as a starting material instead of the OH ion, which is an anion that maintains charge balance with the metal cation together with phosphoric acid (salt), or , it is also possible to prepare the final heat stabilizer compound by a method such as exchanging OH ions with other ions by introducing an excessive amount of ions for ionic bonding in the form of sodium salts.
  • the phosphoric acid (salt) containing the metal cation is preferably reacted with a molar concentration of 0.5:1 to 0.8:1 with respect to the metal salt in terms of reducing the particle size and forming a heat stabilizer having a neutral pH.
  • the second step is a process of adjusting the pH by adding a basic solution to the mixed solution, and the basic solution used in this case may be at least one selected from the group consisting of NH 4 OH, LiOH, NaOH, and KOH.
  • the pH can be adjusted to 7 to 13, and preferably, to adjust the pH to around 10 to 13 using a strong base is more preferable to reduce crystallinity and improve thermal stability by reducing the particle size.
  • the pH-adjusted mixture is stirred for 10 to 120 minutes to complete the reaction, and a third step of adjusting the size of the generated particles is performed, and the particle size adjusted through the stirring process of the third step is non-uniform. and 0.5 to 150 nm.
  • metal phosphate particles can be obtained by precipitating the mixed solution.
  • the prepared heat stabilizer for polymer processing of the present invention is PVC, PMMA, PS, PB, PC, PE, PP, ABS, natural rubber, and synthetic rubber when processing various polymers selected from the group consisting of, the high molecular weight It is included in 1 to 5 parts by weight to exhibit an excellent thermal stability effect. That is, since the metal phosphate compound represented by Formula 1 of the present invention has excellent thermal stability, it is possible to prevent discoloration of the polymer in the polymer processing process by about 3 times or more compared to the existing thermal stabilizer, even when added in a small amount to the polymer used. It can provide an excellent thermal stability effect.
  • Each of the particles prepared according to Examples 1 to 4 was confirmed to have a size of 0.5 to 150 nm as in the results of Table 1 as a result of checking the particle size using SEM.
  • the color change was examined using Congo red test paper, and the results are shown in FIG. 1 .
  • the particle size is different depending on the type, pH, and stirring time of the basic solution used, and in the case of KOH using a strong base and shortening the stirring time, the particle size can be adjusted to be smaller, The smaller the particle size, the larger the surface area, and the lower the crystallinity, the better the thermal stability.
  • Examples 5-11 Example of metal phosphate preparation according to the change in the content ratio of metal cations to the concentration of phosphorus in phosphate
  • the concentration of 85% H 3 PO 4 in 1 L of water is fixed to 0.1 mol, and various metal ions in the metal salt represented by M(NO 3 ) 2 (Example 5: Ca, Example 6: Ba, Examples respectively) 7: Sr, Example 8: Cd, Example 9: Fe, Example 10: Zn, Example 11: Sn), the concentration was changed from 0.05 to 0.08 mol with respect to 0.1 mol of the H 3 PO 4 concentration changed and added.
  • NaOH in an equivalent ratio was momentarily added to adjust the pH to 13.5, and stirred while gradually raising the temperature to 85 o C for 30 minutes to prepare a metal phosphate having a particle size of about 25 nm. It was filtered with filter paper, washed with distilled water, and dried.
  • the thermal stability gradually increased up to 0.65 mol, and then decreased slightly thereafter.
  • Example 12 Preparation of metal phosphates using metal salts having various combinations of metal cations
  • the concentration of H 3 PO 4 is fixed to 0.6 mol with respect to the metal cation, and when the base metal salt is expressed as M(NO 3 ) 2 , the M is another metal for Ca metal.
  • Prepared by changing the concentration by 10% metal phosphate was prepared.
  • metal ions substituted for Ca ions Ba, Cd, Zn, Sn, Al, Ti, and Mo were used, respectively.
  • the pH was fixed to 13 using NaOH to synthesize rapidly. After stirring for 10 minutes, each metal phosphate was prepared by washing and drying in the same manner.
  • thermal stability around 3500 was maintained regardless of the concentration substituted for Ca.
  • the thermal stability tends to decrease slightly until 50:50 mol% with Ca is substituted, but the thermal stability tends to increase again when Ti is substituted for 50:50 mol% or more.
  • the ratio of 85% H 3 PO 4 was fixed to 0.6 with respect to metal ions, and 0.19 mol NaOH was instantaneously added to adjust the pH to 13. Then stearate, octanoate, adipate, Br-, OH-, Cl-, phosphate, thiocyanate, dodecyl sulfate, sulfate, acetate, carbonate, EDTA, hydrogen sulfate, nitrate in a molar ratio of 0.2 to Ba ion
  • the ion compound is synthesized by adding the rate and cyanide to a boiling solution in the form of Na - salt, and after a solid precipitate is formed, Na - anion salt in a molar ratio of 5 to Ba ion is additionally added, and anion exchange reaction for an additional hour was performed. After stirring, the mixture was filtered with filter paper, washed with distilled water, and dried
  • the thermal stability of stearate was the best around 3300, and octanoate showed excellent thermal properties around 2300. Relatively more than 700 even when using the remaining anions such as adipate, Br-, OH-, Cl-, phosphate, thiocyanate, dodecyl sulfate, sulfate, acetate, carbonate, EDTA, hydrogen sulfate, nitrate, cyanide It was confirmed that good thermal stability was exhibited.
  • anions such as adipate, Br-, OH-, Cl-, phosphate, thiocyanate, dodecyl sulfate, sulfate, acetate, carbonate, EDTA, hydrogen sulfate, nitrate, cyanide
  • TEPA tetraethylene pentamine
  • DEM diethyl malonate
  • PVAc poly(vinyl acetate)
  • PEA poly(ethyl acrylate)
  • PEI poly(ethylene imine)
  • CMC Carboxymethyl cellulose
  • uracil caprolactone, caprolactam, adipic acid, and methyl acrylate were each dissolved in 0.5L of acetone in advance, and then the ligand contained in each dispersant was added to the metal ion to be mixed in a ratio of 1:2.
  • the thermal stability of metal phosphate using dispersants such as polyethyleneimine (PEI), diethyl malonate (DEM), polyvinyl acetate (PVAc), adipic acid, and Uracil was found to be as high as 2500 or more, and the remaining TEPA (tetraethylenepentamine) ), PEA (poly(ethyl acrylate)), CMC (carboxymethyl cellulose), caprolactam, caprolactone, 2,4-pentanedione, and methyl acrylate dispersants also showed relatively good thermal stability of 700 or more.
  • dispersants such as polyethyleneimine (PEI), diethyl malonate (DEM), polyvinyl acetate (PVAc), adipic acid, and Uracil was found to be as high as 2500 or more, and the remaining TEPA (tetraethylenepentamine) ), PEA (poly(ethyl acrylate)), CMC (carboxymethyl cellulose), caprolactam
  • Example 15 Preparation of hydroxyapatite according to the type of dispersant
  • Example 15 1 phr of a sample of hydroxyapatite dried using various dispersants was added to 3 g of PVC and dispersed in THF to prepare a film, and the discoloration process of the film was observed in 10 minutes in a 180 degree oven. is shown in Figure 6 below.
  • the film prepared in the order of PEI, 2,4-pentanedione, and PVAc has excellent thermal stability, and in the case of diethyl malonate (DEM), similar to PVA/HA (hydroapatite) without using a dispersant.
  • DEM diethyl malonate
  • PVA/HA hydroapatite
  • thermal stability can be improved to some extent even when Sn or Ba is substituted for Ca as a metal cation and stearate is used as an anion.
  • the thermal stability was compared by increasing the concentration of the metal salt to 3 phr in this experiment.
  • diethyl adipate which can act as a ligand for Zn ions, was added in an equivalent ratio of 1:2 in acetone and stirred for 1 hour to make a complex.
  • phosphate and stearate in an equivalent ratio were rapidly stirred in the Zn-adipate complex solution and then precipitated. After drying in an oven for one day, it was used in the experiment.
  • composition used in this experiment is based on 100 g of polyvinyl chloride, 40 g of dioctyl adipate plasticizer, 3 g of epoxidized soybean oil, 0.5 g of lubricant, Zn 5 (PO 4 ) 3 Stearate, and various metal salts. After mixing the heat stabilizer and extruding at 180 degrees, it was compressed to 1 mm using a hot press to make a film. Thereafter, the color change over time was compared and observed at a constant temperature in an oven at 180 degrees, and the results are shown in FIG. 8 .
  • the thermal stabilizer according to the present invention has excellent thermal stability to prevent discoloration of the polymer during processing of polymers such as PVC, and is expected to be applicable to various polymers as well as PVC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 Aw(PO4)x(HPO4)yXnH2O 로 표시되는 고분자 가공용 열안정제와 이의 제조방법에 관한 것으로, 본 발명에 따른 열안정제는 PVC 등의 고분자 가공시 고분자의 변색을 방지할 수 있는 우수한 열안정성을 가지며, PVC 뿐만 아니라 다양한 고분자에도 적용 가능할 것으로 기대된다. 또한, 본 발명에서는 종래 금속인산염의 구조에서 다양한 금속 양이온 치환, 음이온의 종류 및 함량을 변화, 리간드 역할을 할 수 있는 다양한 분산제를 사용하는 방법으로 금속인산염의 결정성을 떨어뜨리거나; 강염기를 이용하여 pH 조절 및 급속 합성 과정을 통해 입자 크기를 떨어뜨리는 방법으로 고분자 가공시 변색을 방지하는 열안정제의 효과적인 제조방법을 제공한다.

Description

결정성이 억제된 인산염을 이용한 고분자 가공용 열안정제 및 이의 제조방법
본 발명은 결정성이 억제된 인산염을 이용한 고분자 가공용 열안정제 및 이의 제조방법에 관한 것으로서, 상세하게는 인산염의 결정성 조절을 통하여 형성된 인산염을 이용하여 고분자의 변색을 방지하고, 분산성을 개선시킨 고분자 가공용 열안정제, 이의 제조방법, 및 이를 이용한 고분자 조성물에 관한 것이다.
PVC용 열안정제로는 유기 납(Pb)이 많이 사용되어 왔으며, 독성으로 인해 유기 납 대신 유기 Cd이 그 뒤를 이었고, 최근에는 Ba, Ca, Zn, Sn 등 저독성 및 무독성의 제품이 주를 이루고 있다.
그러나 이러한 소재의 열안정성은 과거 사용되어 왔던 납 안정제와 비교해 현저히 떨어지는 문제점이 있었고, 이를 극복하기 위해 다량의 금속염을 사용하거나 2가지 이상의 금속염을 섞어서 사용하고 있다.
또한, 열안정성을 추가적으로 보충하기 위해 부가적인 첨가제로 에폭시 대두유(epoxidized soybean oil), 유기아인산(organophosphite) 등이 사용되고 있으며, 이 외에도 란타늄 화합물, 우라실(uracil)과 같은 유기 아마이드(amide) 등이 우수한 열안정제로 보고되었다.
PVC의 열안정성 향상을 위한 종래 기술을 살피면, 한국 등록특허 10-1426604에서는 하이드로탈사이트를 PVC에 첨가함으로써 PVC의 열 안정성을 향상시키고 있는데, 하이드로탈사이트는 층간 화합물로서 층간 삽입물을 첨가하여 음이온 교환을 함으로써 PVC의 내열성, 안정성을 향상시킬 수 있는 친환경적인 열 안정제를 제공할 수 있다. 상기 반응성 층간 삽입물을 하이드로탈사이트의 층간에 삽입함으로써 PVC의 열 안정성과 착색성을 향상시킬 수 있는데, 다만, 층간에 삽입된 물질은 시간이 지나면서 pH 조건이 변화하게 되어 장기 보관성이 현저히 낮은 문제점이 있었다.
또한, 한국 등록특허 10-2049484에서는 산화아연 및 산화마그네슘을 함유하는 니오브산 나노시트 및 수산화칼슘과 수산화알루미늄으로 이루어진 수산화물의 혼합물을 포함하는 것을 특징으로 하는 폴리염화비닐의 열 안정화제 조성물을 통해 PVC의 열 안정화제로서 요구되는 열 안정성의 특성뿐만 아니라, 가공 안정성 및 장기 보관성을 향상시키는 열 안정화제 조성물을 제시하였다.
본 발명의 목적은 다양한 금속 양이온과 포스페이트 음이온으로 구성된 금속인산염 화합물의 다양한 구조적 변화를 통해서 결정성을 떨어뜨리고 입자의 크기를 줄여 더 넓은 표면적으로 인산염이 더 많은 HCl을 흡수함으로써 고분자 가공시 열안정성을 향상시킬 수 있는 고분자 가공용 열안정제를 제공하는 데 있다.
또한, 본 발명의 다른 목적은 다양한 방법을 통하여 열안정성을 개선시킬 수 있는 고분자 가공용 열안정제의 제조방법을 제공하는 데도 있다.
또한, 추가로 본 발명은 상기 열안정제를 다양한 고분자에 포함시켜 고분자 가공시 변색을 방지할 수 있는 고분자 조성물을 제공하는 데도 그 목적이 있다.
상기 목적을 달성하기 위한 본 발명에 따른 고분자 가공용 열안정제는 다음 화학식으로 표시되는 것으로:
Aw(PO4)x(HPO4)yXnH2O
상기 식에서, A는 Ca, Mg, Al, Fe, Ti, Sn, Ba, Zn, Cu, Cd, Pb, Mn, Ni, Sr, 및 Mo로 이루어진 그룹으로부터 선택되는 1종 이상의 다가 양이온으로, w는 2 ~ 5의 범위를 만족하며,
X는 Cl-, Br-, NO3 -, OH-, 아세테이트(acetate), 시아나이드(cyanide), 티오시아네이트(thiocyanate), 이소시아네이트(isocyanate), 하이드로젠설페이트(hydrogensulfate), 디하이드로젠 포스페이트(dihydrogen phosphate), 포스파이트(phosphite), 폴리포스페이트(polyphosphate), 카보네이트(carbonate), 설포네이트(sulfonate), 보레이트(borate), 카보네이트(carbonate), 설페이트(sulfate), 카복실레이트(carboxylate), 아디페이트, 도데실설페이트, 나이트레이트 및 P2O7 4-로 이루어진 그룹으로부터 선택되는 1종 이상의 음이온으로, z는 0 ~ 3의 범위이고,
x와 y는 각각 독립적으로 0 ~ 5이며, x와 y는 동시에 0이 될 수 없고, 둘 중 하나는 0이 아니며,
상기 식에서 w, x, y, z는 X가 1가의 음이온인 경우 2w = 3x +2y +1z; X가 2가의 음이온인 경우 2w = 3x +2y +0.5z의 식을 만족하며,
n은 0 ~12의 정수이다.
본 발명의 일 실시예에 따르면, 상기 화학식에서 A로 표시되는 다가 양이온은 상기 나열된 금속 양이온을 단독으로 사용하거나, 또는 Ca를 포함하는 하나의 금속 양이온의 일부를 전체 A의 몰비 중 50% 이하의 다른 금속 양이온으로 치환시켜 포함되는 것일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 화학식에서 X는 OH- 음이온을,
Cl-, Br-, NO3 -, 아세테이트(acetate), 시아나이드(cyanide), 티오시아네이트(thiocyanate), 이소시아네이트(isocyanate), 하이드로젠설페이트(hydrogensulfate), 디하이드로젠 포스페이트(dihydrogen phosphate), 포스파이트(phosphite), 폴리포스페이트(polyphosphate), 카복실레이트(carboxylate), 카보네이트(carbonate), 설포네이트(sulfonate), 보레이트(borate), 카보네이트(carbonate), 설페이트(sulfate), 카복실레이트(carboxylate), 아디페이트, 도데실설페이트, 나이트레이트 및 P2O7 4-로 이루어진 그룹으로부터 선택되는 1종 이상의 음이온으로 0.1 ~ 100%의 몰비로 치환시켜 혼합 사용하는 것일 수 있다.
또한, 상기 화학식으로 표시되는 고분자 가공용 열안정제는 0.5~150 nm의 범위의 입자 크기를 가지는 것이 바람직하다.
추가적으로 본 발명에 따른 고분자 가공용 열안정제는 상기 화학식의 다가 양이온 A에 대해서 리간드 역할을 할 수 있도록 아민(amine), 아마이드(amide), 포스포네이트(phosphonate), 카르복실산(carboxylic acid), 티오에스터(thioester), 알카노에이트(alkanoate), 디케톤(diketones), 케토에스터(ketoesters), 옥살레이트(oxalates), 말로네이트(malonates), 석시네이트(succinates), 글루타레이트(glutarates), 아디페이트(adipates) 중에서 선택되는 1종 이상의 디에스터(diester);
하나의 카르복실산과 하나의 에스터기를 가지는 물질(ketoacid);
말레산 무수물(maleic anhydride), 호박산 무수물(succinic anhydride), 락타이드를 포함하는 락톤류;
카프로락탐을 포함하는 락탐류;
다가 산 또는 그 염을 포함하는 킬레이팅제(chelating agent);
비닐 아세테이트를 포함하는 비닐 에스터 유도체;
폴리(에틸렌이민) 및 그 유도체;
(메타)아크릴레이트 및 그 유도체;
셀룰로오스 유도체; 및
셀룰로오스 아세테이트 유도체 중에서 선택되는 1종 이상의 분산제를 더 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 다가 양이온 A와 상기 분산제에 포함된 리간드가 1:0.5 ~ 1:6의 비율로 포함되는 것일 수 있다.
또한, 본 발명은 금속염 수용액과 금속 양이온을 포함하는 인산(염)을 pH 10~13, 10분~120분 동안 급속으로 반응시켜 금속인산염을 제조하는 단계를 포함하여, 제조되는 금속인산염의 입자크기를 0.5~150 nm의 범위로 감소시키는 방법으로 열안정성을 개선시키는 것을 특징으로 하는 제1항에 따른 금속인산염 고분자 가공용 열안정제의 제조방법을 제공할 수 있다.
또한, 본 발명은 상기 화학식에서 X로 표시되는 음이온 중 OH- 음이온을, Cl-, Br-, NO3 -, 아세테이트(acetate), 시아나이드(cyanide), 티오시아네이트(thiocyanate), 이소시아네이트(isocyanate), 하이드로젠설페이트(hydrogensulfate), 디하이드로젠 포스페이트(dihydrogen phosphate), 포스파이트(phosphite), 폴리포스페이트(polyphosphate), 카보네이트(carbonate), 설포네이트(sulfonate), 보레이트(borate), 카보네이트(carbonate), 설페이트(sulfate), 카복실레이트(carboxylate), 아디페이트, 도데실설페이트, 나이트레이트 및 P2O7 4-로 이루어진 그룹으로부터 선택되는 1종 이상의 음이온으로, 0.1 ~ 100%의 몰비로 이온 교환시키는 단계를 포함하여, 금속 인산염의 결정성을 떨어뜨리는 방법으로 열안정성을 개선시키는 것을 특징으로 하는 상기 금속인산염 고분자 가공용 열안정제의 제조방법을 제공할 수 있다.
또한, 추가적으로 본 발명은 상기 화학식에서 다가 양이온 A에 대해서 리간드 역할을 하여,
a)금속 양이온과 이온결합, 배위 공유결합, 또는 강한 이온-쌍극자 상호작용에 의해 전자쌍을 제공할 수 있거나,
b)금속 양이온 A와 음이온 X 간의 이온 거리를 증가시켜 이온 결합력을 감소시키거나,
c) 금속 인산염의 결정 형성을 억제시켜 입자 크기를 작게 하여 입자 표면적을 늘릴 수 있도록,
아민(amine), 아마이드(amide), 포스포네이트(phosphonate), 카르복실산(carboxylic acid), 티오에스터(thioester), 알카노에이트(alkanoate), 디케톤(diketones), 케토에스터(ketoesters), 옥살레이트(oxalates), 말로네이트(malonates), 석시네이트(succinates), 글루타레이트(glutarates), 아디페이트(adipates) 중에서 선택되는 1종 이상의 디에스터(diester);
하나의 카르복실산과 하나의 에스터기를 가지는 물질(ketoacid);
말레산 무수물(maleic anhydride), 호박산 무수물(succinic anhydride), 락타이드를 포함하는 락톤류;
카프로락탐을 포함하는 락탐류;
다가 산 또는 그 염을 포함하는 킬레이팅제(chelating agent);
비닐 아세테이트를 포함하는 비닐 에스터 유도체;
폴리(에틸렌이민) 및 그 유도체;
(메타)아크릴레이트 및 그 유도체;
셀룰로오스 유도체; 및
셀룰로오스 아세테이트 유도체 중에서 선택되는 1종 이상의 분산제를 첨가하는 단계를 포함하여 열안정성을 개선시키는 것을 특징으로 하는 금속인산염 고분자 가공용 열안정제의 제조방법을 제공할 수 있다.
또한, 본 발명은 PVC, PMMA, PS, PB, PC, PE, PP, ABS, 천연고무, 및 합성 고무로 이루어진 그룹으로부터 선택되는 1종 이상인 고분자에 상기 화학식으로 표시되는 고분자 가공용 열안정제를 포함하는 고분자 조성물을 제공할 수 있다.
상기 고분자 가공용 열안정제는 상기 고분자 중량에 대하여 1~5중량부로 포함되는 것이 바람직하다.
본 발명에 따른 열안정제는 PVC 등의 고분자 가공시 고분자의 변색을 방지할 수 있는 우수한 열안정성을 가지며, PVC 뿐만 아니라 다양한 고분자에도 적용 가능할 것으로 기대된다.
또한, 본 발명에서는 종래 금속인산염의 구조에서 다양한 금속 양이온 치환, 음이온의 종류 및 함량을 변화, 리간드 역할을 할 수 있는 다양한 분산제를 사용하는 방법으로 금속인산염의 결정성을 떨어뜨리거나; 강염기를 이용하여 pH 조절 및 급속 합성 과정을 통해 입자 크기를 떨어뜨려 더 넓은 표면적을 확보하여 대부분의 인산염이 열분해 생성물인 HCl을 흡수할 수 있게 하고, HCl에 의한 변색 가속화를 억제함으로써 고분자 가공시 변색을 방지하는 열안정제의 효과적인 제조방법을 제공한다.
도 1은 실시예 1에서 하이드록시아파타이트, Ca5(PO4)3OH의 입자 크기에 따른 열안정화 특성 비교 결과이고,
도 2는 실시예 2에서 금속 이온과 인의 상대적 비율에 따른 열안정화 특성 비교 결과이고,
도 3은 실시예 3에서 칼슘 이온과 다른 금속 이온의 비율에 따른 열안정화 특성 분석 결과이고,
도 4는 Ca4Ba1(PO4)3X 화합물에서 음이온 X의 종류에 따른 열안정화 특성 변화이고,
도 5는 금속 인산염 M5(PO4)3OH (M=Ca:Ba:Zn = 8:1:1)의 분산제 종류에 따른 열안정 특성 비교 결과이고,
도 6은 분산제의 종류에 따른 하이드록시아파타이트(HA)의 열안정화 특성 비교 결과이고,
도 7은 Ca4.5Ba0.5(PO4)2(HPO4)1.5·Stearate와 Ca/Zn-stearate, Sn-stearate, Ba-stearate, Sn-octoate를 1phr 사용한 경우의 시간에 따른 필름의 변색 비교 결과이고,
도 8은 Zn5(PO4)Stearate와 Ca/Zn-stearate, Pb-stearate, Ba-stearate, Sn-octoate를 3phr 사용한 경우의 시간에 따른 필름의 변색 비교 결과이다.
이하에서 본 발명을 더욱 상세하게 설명하면 다음과 같다.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다.
본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는 (comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.
본 발명은 결정성이 억제된 인산염을 이용한 고분자 가공용 열안정제 및 이의 제조방법에 관한 것이다.
본 발명에 따른 인산염을 이용한 고분자 가공용 열안정제는 다음 화학식으로 표시되는 것을 특징으로 한다:
Aw(PO4)x(HPO4)yXnH2O
상기 식에서, A는 Ca, Mg, Al, Fe, Ti, Sn, Ba, Zn, Cu, Cd, Pb, Mn, Ni, Sr, 및 Mo로 이루어진 그룹으로부터 선택되는 1종 이상의 다가 양이온으로, w는 2 ~ 5의 범위이고,
X는 Cl-, Br-, NO3 -, OH-, 아세테이트(acetate), 시아나이드(cyanide), 티오시아네이트(thiocyanate), 이소시아네이트(isocyanate), 하이드로젠설페이트(hydrogensulfate), 디하이드로젠 포스페이트(dihydrogen phosphate), 포스파이트(phosphite), 폴리포스페이트(polyphosphate), 카보네이트(carbonate), 설포네이트(sulfonate), 보레이트(borate), 카보네이트(carbonate), 설페이트(sulfate), 카복실레이트(carboxylate), 아디페이트, 도데실설페이트, 나이트레이트 및 P2O7 4-로 이루어진 그룹으로부터 선택되는 1종 이상의 음이온으로, z는 0 ~ 3의 범위이고,
x와 y는 각각 독립적으로 0 ~ 5이며, x와 y는 동시에 0이 될 수 없고, 둘 중 하나는 0이 아니며,
상기 식에서 w, x, y, z는 X가 1가의 음이온인 경우 2w = 3x +2y +1z; X가 2가의 음이온인 경우 2w = 3x +2y +0.5z의 식을 만족하며,
n은 0~12의 정수이다.
종래 상기 A가 Ca 이온과 같은 2가 이상의 양이온과 포스페이트 음이온으로 구성된 금속 인산염 화합물인 인산수소칼슘염(Ca(H2PO4)2)이나 인산칼슘염(하이드록시 아파타이트, Ca5(PO4)3OH)의 경우, 두 이온 간의 정전기적 인력이 너무 커서 쉽게 결정화되는 성질을 가지고 있다. 이렇게 결정이 형성되면 입자 크기가 최소 수십 나노미터 이상이 되는데, 이러한 크기의 결정에는 최소 수백 개의 이온 화합물이 존재하지만 표면에는 10% 이하의 인산만 존재하게 된다. 그러나, 각각의 이온들이 우수한 열안정제 역할을 할 수 있음에도 그 이온 화합물은 강한 이온 결합력을 가지고 있고 결정으로 묶여 있어서 난연제나 열안정제의 역할을 하지 못하는 문제가 있다.
따라서, 본 발명에서는 자연계에 널리 분포하고 있어서 우수한 인체 친화성을 띄며 경제적인 물질인 금속 인산염 화합물 구조의 변경을 통하여 결정 형성을 억제하여 형성된 입자 크기를 작게 하여 무기 화합물 내 대부분의 phosphate 이온이 HCl을 흡수할 수 있게 하여 PVC 등의 고분자의 변색을 방지하고, 작은 입자 크기로 인해 고분자 내 분산성을 개선하여 열안정제로 사용될 수 있게 할 수 있도록 하였다.
따라서, 본 발명에서는 금속 인산염 화합물의 결정성 억제를 위한 한 가지 방법으로서, 상기 A로 대표되는 다가 양이온으로 Ca, Mg, Al, Fe, Ti, Sn, Ba, Zn, Cu, Cd, Pb, Mn, Ni, Sr, 및 Mo로 이루어진 그룹으로부터 선택되는 1종을 단독으로 사용하거나, 또는 2종 이상 혼합 사용함으로써 열안정성을 높이고자 하였다.
즉, 종래 Ca 양이온 대신에 상기 나열된 다른 금속 양이온을 단독으로 사용하거나, 또는 Ca를 포함하는 하나의 금속 양이온의 일부를 1종 또는 2종 이상의 다른 금속 양이온으로 치환시켜 사용할 수 있으며, 각 금속 양이온의 열안정 특성에 따라 치환되는 함량을 적절히 조절할 수 있다.
본 발명의 바람직한 실시예에서는, 상기 화학식에서 A로 표시되는 다가 양이온으로 Ca를 포함하는 하나의 금속 양이온의 일부를 1종 또는 2종 이상의 다른 금속 양이온으로 치환시켜 사용하는 경우, 상기 치환되는 다른 금속 양이온은 전체 A의 몰비 중 50% 이하로 포함되는 것이 바람직하다.
상기 식에서 w는 상기 A의 분자식의 계수로써 인산염과 전기적 중성을 유지하기 위해 2 ~ 5의 범위를 만족하는 것이 바람직하다. 또한, 본 발명의 바람직한 실시예에서는, 상기 w, x, y, z는 X가 1가의 음이온인 경우 2w = 3x +2y +1z; X가 2가의 음이온인 경우 2w = 3x +2y +0.5z의 식을 만족한다.
추가로 본 발명에서는 상기 화학식에서 X로 표시되는 음이온의 종류를 변경하거나 함량비를 변화시킴으로써 금속 인산염 화합물의 결정성 억제를 통한 열안정성을 향상시키고자 하였다.
구체적으로 상기 화학식에서 X는 Cl-, Br-, NO3 -, OH-, 아세테이트(acetate), 시아나이드(cyanide), 티오시아네이트(thiocyanate), 이소시아네이트(isocyanate), 하이드로젠설페이트(hydrogensulfate), 디하이드로젠 포스페이트(dihydrogen phosphate), 포스파이트(phosphite), 폴리포스페이트(polyphosphate), 카보네이트(carbonate), 설포네이트(sulfonate), 보레이트(borate), 카보네이트(carbonate), 설페이트(sulfate), 카복실레이트(carboxylate), 아디페이트, 도데실설페이트, 나이트레이트 및 P2O7 4-로 이루어진 그룹으로부터 선택되는 1종 이상의 음이온이 바람직하다.
상기 X가 카복실레이트(carboxylate)인 경우 스테아레이트, 헥사데카노에이트, 테트라데카노에이트, 라우레이트, 옥타노에이트, 옥토에이트, 및 아세테이트로 이루어진 그룹으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 X로 표시되는 음이온 역시, 단독으로 사용할 수도 있고 그 종류를 2가지 이상 도입하거나, 기존 하이드록시아파타이트의 OH 이온을 다른 음이온으로 치환시키는 등의 방법으로 열안정성을 개선시킬 수 있다.
구체적으로는 인산(염)과 함께 금속양이온과 전하균형을 유지하는 OH 이온 대신에 추가의 다른 음이온을 가진 금속염 출발물질을 사용하거나, 나트륨염의 형태로 이온결합을 하는 이온을 과량으로 투입하여 OH 이온을 다른 이온으로 교환하는 등의 방법으로 최종 열안정제를 화합물을 제조할 수 있다.
본 발명의 일 실시예에 따르면, X로 표시되는 음이온 중 OH- 음이온 대신에 Cl-, Br-, NO3 -, 아세테이트(acetate), 시아나이드(cyanide), 티오시아네이트(thiocyanate), 이소시아네이트(isocyanate), 하이드로젠설페이트(hydrogensulfate), 디하이드로젠 포스페이트(dihydrogen phosphate), 포스파이트(phosphite), 폴리포스페이트(polyphosphate), 카보네이트(carbonate), 설포네이트(sulfonate), 보레이트(borate), 카보네이트(carbonate), 설페이트(sulfate), 카복실레이트(carboxylate), 아디페이트, 도데실설페이트, 나이트레이트 및 P2O7 4-로 이루어진 그룹으로부터 선택되는 1종 이상의 음이온으로 0.1 ~ 100%의 몰비로 이온 교환시켜 금속 인산염의 결정성을 떨어뜨리는 방법으로 열안정성을 개선시킬 수 있다.
상기 다양한 음이온 중에서도 이온의 화학식량이 OH 이온보다 큰 값을 가지는 스테아레이트(stearate)와 같은 유기계 음이온이 보다 바람직하나, 이에 한정되는 것은 아니다.
상기 음이온 중에서 스테아레이트의 열안정성이 3300 근처로 가장 우수하였고, 옥타노에이트가 2300 근처로 우수한 열 특성을 나타내었다. 나머지 아디페이트, Br-, OH-, Cl-, 포스페이트, 티오시아네이트, 도데실설페이트, 설페이트, 아세테이트, 카보네이트, EDTA, 하이드로전 설페이트, 나이트레이트, 시아나이드와 같은 음이온을 사용한 경우에도 700 이상의 비교적 양호한 열안정성을 나타냄을 확인할 수 있었다.
또한, 상기 식에서 z는 음이온의 함량비로서 0 ~ 3의 범위인 것이 가장 바람직하다.
상기 식에서, x와 y는 각각 독립적으로 0 ~ 5의 범위이고, x와 y는 동시에 0이 될 수 없고, 둘 중 하나는 0이 아닌 조건을 만족해야 한다. 즉, 인산 이온(PO4 3-)과 인산수소 이온(HPO4 2-) 중 적어도 하나는 상기 식에서 포함되어야 한다.
또한, 상기 식에서 n은 0~ 12로서, 물이 포함될 수도 있고 포함되지 않을 수도 있다.
본 발명에 따른 상기 화학식으로 표시되는 열안정제는 상기 화학식의 다가 양이온 A에 대해서 리간드 역할을 할 수 있는 다양한 형태의 분산제를 더 포함하는 것이 바람직하다.
상기 분산제로 사용할 수 있는 구체 물질의 예를 들면, 아민(amine), 아마이드(amide), 포스포네이트(phosphonate), 카르복실산(carboxylic acid), 티오에스터(thioester), 알카노에이트(alkanoate), 디케톤(diketones), 케토에스터(ketoesters), 옥살레이트(oxalates), 말로네이트(malonates), 석시네이트(succinates), 글루타레이트(glutarates), 아디페이트(adipates) 중에서 선택되는 1종 이상의 디에스터(diester);
하나의 카르복실산과 하나의 에스터기를 가지는 물질(ketoacid);
말레산 무수물(maleic anhydride), 호박산 무수물(succinic anhydride), 락타이드를 포함하는 락톤류;
카프로락탐을 포함하는 락탐류;
다가 산 또는 그 염을 포함하는 킬레이팅제(chelating agent);
비닐 아세테이트를 포함하는 비닐 에스터 유도체;
폴리(에틸렌이민) 및 그 유도체;
(메타)아크릴레이트 및 그 유도체;
셀룰로오스 유도체; 및
셀룰로오스 아세테이트 유도체 중에서 선택되는 1종 이상이 바람직하게 사용될 수 있다.
본 발명에 따른 분산제는 다음과 같은 역할을 수행할 수 있다.
첫째, 카보닐기(carbonyl group)을 적어도 하나 이상 가지고 있어서 2가 이상의 금속 이온과 이온결합, 배위 공유결합, 또는 강한 이온-쌍극자 상호작용에 의해 전자쌍을 제공할 수 있다.
둘째, 상기 금속 양이온 A와 음이온 X 간의 이온 거리를 증가시켜 이온 결합력을 감소시킨다.
셋째, 형성된 이온화합물의 결정 형성을 억제해서 고체 입자의 크기를 작게 하여 입자 표면적을 늘일 수 있다.
넷째, 열분해에 의해 발생하는 HCl을 phosphate 이온이 더 빠르고 쉽게 흡수하고, 표면에 phosphate glass가 빨리 형성되도록 도와주는 기능이 있다.
이러한 본 발명에 따른 분산제는 상기 다가 양이온 A에 대해 상기 분산제 중의 리간드가 1:0.5 ~ 1:6의 비율로 포함시키는 것이 상기 열거한 효과들을 발휘하는 데 있어 바람직하다.
또한, 상기 다양한 분산제의 첨가로 PVC는 물론이고, PMMA, PS, PB, PC, PE, PP, ABS, 천연고무, 합성 고무 등과 같은 고분자와의 상용성(miscibility)을 증가시킬 수 있음은 물론이다.
본 발명에 따른 상기 화학식 1로 표시되는 고분자 가공용 열안정제의 제조방법은 금속염 수용액과 금속 양이온을 포함하는 인산(염) 수용액을 혼합시켜 혼합액을 제조하는 제1단계, 상기 혼합액에 염기성 용액을 첨가하여 pH를 조절하는 제2단계, 상기 pH 조절된 혼합액을 10분~120분 동안 교반시켜 생성된 입자의 크기를 조절하는 제 3단계, 및 상기 혼합액을 침전시켜 금속인산염 입자를 제조하는 단계를 거쳐 제조될 수 있다.
제1단계는 금속염과 금속 양이온을 포함하는 인산(염)을 물에 용해시켜 수용액 상태로 제조하는 단계이다. 이때 상기 금속염 수용액에서 다양한 금속 양이온을 치환시켜 구조를 변경시키거나, 인산(염)과 함께 금속양이온과 전하균형을 유지하는 음이온인 OH 이온 대신에 추가의 다른 음이온을 가진 금속염을 출발물질로 사용하거나, 나트륨염의 형태로 이온결합을 하는 이온을 과량으로 투입하여 OH 이온을 다른 이온으로 교환하는 등의 방법으로 최종 열안정제를 화합물을 제조할 수도 있다.
상기 금속 양이온을 포함하는 인산(염)은 금속염에 대해 0.5:1 ~ 0.8:1 의 몰농도로 반응하는 것이 입자크기를 줄이고 pH가 중성인 열안정제를 형성하는 면에서 바람직하다.
제2단계는 상기 혼합액에 염기성 용액을 첨가하여 pH를 조절하는 공정으로, 이때 사용되는 염기성 용액은 NH4OH, LiOH, NaOH, 및 KOH로 이루어진 그룹으로부터 선택되는 1종 이상일 수 있다.
상기 제 2단계는 pH를 7 ~ 13으로 조절할 수 있으며, 바람직하기로는 강염기를 이용하여 pH를 10~13 근처로 맞추는 것이 결정성을 떨어뜨려 입경을 작게 만들어 열안정성을 개선하는 데 보다 바람직하다.
상기 pH 조절된 혼합액을 10분~120분 동안 교반시켜 반응을 완결하고, 생성된 입자의 크기를 조절하는 제 3단계를 거치며, 상기 제 3단계의 교반 과정을 거쳐 조절된 입자 크기는 불균일한 형태와 0.5~150 nm의 범위를 가지는 것일 수 있다.
본 발명에 따른 금속 인산염의 입자는 작을수록 열안정성이 우수하나 상기 입경 크기 내에서도 칼슘스테아레이트 보다 우수한 700 초 이상의 열안정성을 나타내는 것으로 확인되었다.
마지막으로 상기 혼합액을 침전시켜 금속인산염 입자를 얻을 수 있다.
상기 제조된 본 발명의 고분자 가공용 열안정제는 PVC, PMMA, PS, PB, PC, PE, PP, ABS, 천연고무, 및 합성 고무로 이루어진 그룹으로부터 선택되는 다양한 고분자의 가공시, 상기 고분자 중량에 대하여 1~5중량부로 포함되어 우수한 열안정 효과를 나타낼 수 있다. 즉, 본 발명의 상기 화학식 1로 표시되는 금속 인산염 화합물은 우수한 열안정성을 가지므로 사용되는 고분자에 소량만 첨가하여도 기존 열안정제와 비교해 약 3배 이상 고분자 가공 과정에서 고분자가 변색되는 것을 방지할 수 있는 우수한 열안정 효과를 제공할 수 있다.
이하에서 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이하의 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되어서는 안 된다. 또한, 이하의 실시예에서는 특정 화합물을 이용하여 예시하였으나, 이들의 균등물을 사용한 경우에 있어서도 동등 유사한 정도의 효과를 발휘할 수 있음은 당업자에게 자명하다.
실시예 1~4 : 다양한 입자 크기를 가지는 금속인산염(Ca5(PO4)3OH) 제조
0.1mol의 CaCl2를 물 1L에 분산시킨 후, 미리 만든 0.06 mol K3PO4을 상기 염화 칼슘 수용액에 넣은 후 각각 다음 표 1과 같이 염기성 용액의 종류, pH, 교반시간을 달리하면서 조절된 입자 크기를 가지는 금속인산염 입자를 제조하였다. 실시예 1~4에 따른 각각의 염기성 용액을 넣어 pH를 7 ~ 13으로 맞추고, 이후 입자 크기 조절을 위해 10분~120분 간 교반 후 거름종이로 거른 후 증류수를 이용해 세척하고 건조시켰다.
염기성 용액 최종 pH 교반시간(분) 입자크기(nm)
실시예 1 NH4OH 7 300 150
실시예 2 LiOH 9 200 45
실시예 3 NaOH 13 10 30
실시예 4 KOH 13.5 10 2
실험예 1 : 입자크기에 따른 열안정 효과 확인
상기 실시예 1~4에 따라 제조된 각 입자는 SEM을 이용해 입자 크기를 확인한 결과 상기 표 1의 결과에서와 같이 0.5~150 nm의 크기를 가짐을 확인하였다. 또한, 입자 크기에 따른 열안정 효과를 보기 위해 PVC에 대해 1 phr 첨가한 후 Congo red 시험지를 이용해 색깔 변화를 검사하였으며, 그 결과를 다음 도 1에 나타내었다.
다음 도 1을 참조하면, 사용된 염기성 용액의 종류 및 pH, 교반시간에 따라 입자 크기가 상이함을 알 수 있으며, 강염기를 사용하고 교반시간을 짧게 한 KOH 경우 입자 크기를 더 작게 조절할 수 있었으며, 입자 크기가 작을수록 표면적이 넓어지고, 결정성이 떨어져 열안정성은 더 우수한 결과를 나타냈다.
실시예 5~11 : 인산염에서 인의 농도에 대한 금속 양이온의 함량비 변화에 따른 금속인산염 제조예
물 1L에 85%의 H3PO4의 농도는 0.1mol로 고정을 하고, M(NO3)2로 표시되는 금속염에서 다양한 금속 이온(각각 실시예5 : Ca, 실시예 6 : Ba, 실시예 7 : Sr, 실시예 8 : Cd, 실시예 9 : Fe, 실시예 10 : Zn, 실시예 11 : Sn)을 사용하면서, 그 농도를 상기 H3PO4의 농도 0.1몰에 대하여 0.05에서 0.08몰로 변화시키며 첨가하였다.
그 다음, 당량비의 NaOH를 순간적으로 넣어 pH를 13.5으로 맞추고, 30분간 85oC로 서서히 승온하면서 교반시켜 입자 크기 약 25 nm인 금속 인산염을 제조하였다. 이를 거름종이로 거른 후 증류수를 이용해 세척하고 건조시켰다.
실험예 2 : 금속 양이온의 함량비 변화에 따라 제조된 금속인산염의 열안정 효과 확인
상기 실시예 5~11에서 제조된 각 금속인삼염의 금속 이온 종류에 따른 열안정 효과를 보기 위해 PVC에 대해 1 phr 첨가한 후 Congo red 시험지를 이용해 색깔 변화를 검사하였으며, 그 결과를 다음 도 2에 나타내었다.
다음 도 2를 참조하면, 금속 양이온의 종류에 따라서는 다소 차이가 있었지만 모든 실시예에서 1000초 이상의 열안정성을 가지는 것으로 확인되었다. 특히 Ba, Ca, Fe이 상대적으로 우수한 열안정성을 가짐을 알 수 있다.
또한, 인에 대한 금속 양이온의 농도에 따라서는 Ca, Fe, Zn, Cd의 경우에는 0.65몰까지는 열안정성이 조금씩 상승하다가, 그 이후에는 다소 감소하는 것으로 나타났다.
반면, Ba, Sr, Sn의 경우에는 0.65몰까지는 조금씩 상승하다가 0.7몰에서 가장 우수한 열안정성을 가짐을 확인할 수 있다.
실시예 12 : 다양한 금속 양이온 조합을 가지는 금속염을 이용한 금속인산염의 제조
H3PO4의 농도를 금속 양이온에 대해 0.6몰로 고정하고, 기본 금속염을 M(NO3)2로 나타냈을 때 상기 M을 Ca 금속에 대한 다른 금속으로 그 농도를 10%씩 변화시킴에 따라 제조된 금속인산염을 제조하였다. Ca 이온 대신 치환되는 금속 이온은 각각 Ba, Cd, Zn, Sn, Al, Ti, Mo을 사용하였다. 상기 인산염과 금속염을 혼합한 다음, NaOH를 이용해서 pH를 13으로 고정하여 급속 합성하였다. 10분간 교반 후 동일한 방법으로 세척하고 건조시켜 각각의 금속인산염을 제조하였다.
실험예 3 : 다양한 금속 양이온 조합을 가지는 금속염을 이용한 금속인산염의 열안정 효과 확인
상기 실시예 12에서 제조된 각 금속인삼염의 금속 양이온 조합에 따른 열안정 효과를 보기 위해 PVC에 대해 1 phr 첨가한 후 Congo red 시험지를 이용해 색깔 변화를 검사하였으며, 그 결과를 다음 도 3에 나타내었다.
다음 도 3을 참조하면, Ba의 경우 Ca 대신 치환되는 농도에 상관없이 3500 근처의 열안정성이 유지되는 것으로 나타났다. Ti의 경우 Ca과 50:50몰%로 치환될 때까지는 열안정성이 다소 떨어지는 경향을 보이다가, Ti이 50몰% 이상 치환되면서부터 다시 열안정성이 증가하는 경향을 나타냈다.
또한, Zn의 경우 Ca이 전혀 없는 경우(100몰%)에 오히려 결정성이 더 억제되고 PVC에 대한 용해도가 증가하여 열안정성이 개선되는 것을 보였다. 그 외, Cd, Sn, Al, Mo 금속 이온의 경우 Ca 이온 대신 치환되는 함량이 증가할수록 대체로 열안정성은 감소하는 경향을 보였다.
실시예 13 : 음이온 종류에 따른 금속 인산염의 제조
0.1mol의 Ba(NO3)2를 물 1L에 분산시킨 후, 85%의 H3PO4의 비율을 금속 이온에 대해 0.6으로 고정하고, 0.19 mol NaOH를 순간적으로 넣어 pH를 13으로 맞추었다. 이후 Ba 이온에 대해 0.2 몰비의 스테아레이트, 옥타노에이트, 아디페이트, Br-, OH-, Cl-, 포스페이트, 티오시아네이트, 도데실설페이트, 설페이트, 아세테이트, 카보네이트, EDTA, 하이드로전 설페이트, 나이트레이트, 시아나이드를 Na- 염의 형태로 끓는 용액에 투입하여 이온화합물을 합성하고, 고체 침전물이 형성된 후 Ba 이온에 대해 5 몰비의 Na- 음이온염을 추가로 투입하고, 추가로 한시간 동안 음이온 교환 반응을 수행하였다. 교반 후 거름종이로 거른 후 증류수를 이용해 세척하여 건조시켜 금속인산염을 제조하였다.
실험예 4 : 다양한 음이온 사용에 따라 제조된 금속인산염의 열안정 효과 확인
상기 실시예 13에서 제조된 각 금속인삼염의 다양한 음이온 사용에 따른 열안정 효과를 보기 위해 PVC에 대해 1 phr 첨가한 후 Congo red 시험지를 이용해 색깔 변화를 검사하였으며, 그 결과를 다음 도 4에 나타내었다.
다음 도 4를 참조하면, 스테아레이트의 열안정성이 3300 근처로 가장 우수하였고, 옥타노에이트가 2300 근처로 우수한 열 특성을 나타내었다. 나머지 아디페이트, Br-, OH-, Cl-, 포스페이트, 티오시아네이트, 도데실설페이트, 설페이트, 아세테이트, 카보네이트, EDTA, 하이드로전 설페이트, 나이트레이트, 시아나이드와 같은 음이온을 사용한 경우에도 700 이상의 비교적 양호한 열안정성을 나타냄을 확인할 수 있었다.
실시예 14 : 분산제를 사용한 금속 인산염의 제조
Ca(NO3)2, Ba(NO3)2, Zn(NO3)2가 각각 8:1:1의 비율로 혼합된 금속 질산염 0.1mol을 물 0.5L에 용해시켰다. 이와는 별도로, 분산제로서 tetraethylene pentamine(TEPA), 2,4-pentanedione, diethyl malonate(DEM), poly(vinyl acetate)(PVAc), poly(ethyl acrylate)(PEA), poly(ethylene imine)(PEI), carboxymethyl cellulose(CMC), uracil, caprolactone, caprolactam, Adipic acid, Methyl acrylate를 각각 아세톤 0.5L에 미리 용해시킨 다음, 상기 금속 이온에 대해 상기 각 분산제에 포함된 리간드가 1:2의 비율로 혼합되도록 첨가하여 금속 이온과 컴플렉스를 형성시켰다. 이후 0.06 mol의 (NH4)2HPO4을 물 0.1L에 녹여 혼합 용액에 즉시 투입하였다. pH를 13에 맞추기 위해 2M KOH 용액을 떨어뜨린 후 상온에서 1시간 동안 격렬하게 교반하였다. 이후 거름 종이로 거른 후 증류수로 세척하고 오븐에서 건조하였다.
실험예 5 : 분산제의 종류에 따른 금속 인산염의 열안정성 실험
상기 실시예 14에서 다양한 분산제를 사용하여 제조된 금속인산염의 열안정 효과를 보기 위해 PVC에 대해 1 phr 첨가한 후 Congo red 시험지를 이용해 색깔 변화를 검사하였으며, 그 결과를 다음 도 5에 나타내었다.
다음 도 5를 참조하면, PEI(polyethyleneimine), DEM(diethyl malonate), PVAc(polyvinyl acetate), Adipic acid, Uracil 등의 분산제를 사용한 금속인산염의 열안정성이 2500 이상으로 높게 나타났고, 나머지 TEPA(tetraethylenepentamine), PEA(poly(ethyl acrylate)), CMC(carboxymethyl cellulose), caprolactam, caprolactone, 2,4-pentanedione, Methyl acrylate 분산제의 경우에도 700 이상의 비교적 우수한 열안정성을 보임을 확인하였다.
실시예 15 : 분산제의 종류에 따른 하이드록시 아파타이트의 제조
Ca(NO3)2 0.1mol을 물 0.5L에 용해한 후, 아세톤 0.5L에 미리 용해한 분산제인 2,4-pentanedione, diethyl malonate(DEM), poly(vinyl acetate)(PVAc), poly(ethylene imine)(PEI) 등을 칼슘에 대해 리간드의 카보닐기 비율을 1:2로 혼합하여 컴플랙스를 형성하였다. 이후 0.06 mol의 인산을 물 0.1L에 희석하여 혼합 용액에 즉시 투입하였다. pH를 13에 맞추기 위해 2M KOH 용액을 떨어뜨린 후 1시간 동안 격렬하게 교반하였다. 이후 거름 종이로 거른 후 증류수로 세척하고 오븐에서 건조하였다.
실험예 6 : 분산제의 종류에 따른 필름의 변색 과정 비교
상기 실시예 15에서 다양한 분산제를 사용하여 건조된 하이드록시 아파타이트 샘플을 PVC 3g에 대해 1 phr 넣고 THF에 분산해서 필름을 제조하여 180도 오븐에서 필름의 변색과정을 10분 단위로 관찰하였으며, 그 결과를 다음 도 6에 나타내었다.
다음 도 6을 참조하면, PEI, 2,4-pentanedione, PVAc의 순서로 제조된 필름의 열안정성이 우수하고, diethyl malonate(DEM)의 경우 분산제를 사용하지 않은 PVA/HA(하이드로아파타이트)와 비슷한 특성을 나타내는 결과를 보였다. 이러한 결과로부터 분산제의 종류에 따라, PVC의 열안정성이 다소 상이하게 나타남을 확인하였다.
실험예 7 : 금속인산염에 따른 열특성 실험
상기 음이온과 금속 양이온을 변화시킴에 따라 측정된 열안정 실험에서, 비교적 우수한 것으로 나타난 음이온과 금속 양이온으로 선정된 Ca4.5Ba0.5(PO4)2(HPO4)1.5·Stearate와 Ca/Zn-stearate, Sn-stearate, Ba-stearate, Zn-octoate 등의 열안정성을 비교하기 위해 각각 1 phr씩 3g의 PVC에 섞어서 필름을 만든 후 필름의 색깔 변화를 10분 단위로 관찰하였으며, 그 결과를 다음 도 7에 나타내었다.
다음 도 7을 참조하면, PVC 필름의 경우 약 30분 이후부터는 현저하게 열안정성이 떨어지는 반면, 금속 양이온으로 Ca와 Ba을 사용하고, 음이온으로 스테아레이트를 사용한 PVC/CBPS의 경우 120분까지 우수한 열안정성을 가지는 것으로 확인되었다.
또한, 금속 양이온으로 Ca 대신에 Sn나 Ba로 치환시키고 음이온으로 스테아레이트를 사용한 경우에도 어느 정도 열안정성을 개선할 수 있음을 확인하였다.
실험예 8 : 금속인산염에 따른 열특성 비교 실험
열안정제의 양에 따라 열안정화 효과가 상이하므로, 본 실험에서는 금속염의 농도를 3phr로 증가시켜 열안정성을 비교하였다. 우선 Zn 이온에 리간드 역할을 할 수 있는 디에틸아디페이트를 아세톤에서 1:2의 당량비로 넣고 1시간 동안 교반하여 콤플렉스를 만들었다. 이후 음이온을 교환하기 위해 당량비의 포스페이트와 스테아레이트를 Zn-아디페이트 콤플렉스 용액에 급속 교반한 후 침진시켰다. 이후 오븐에서 하루동안 건조한 후 실험에 사용하였다. 본 실험에 사용된 조성은 폴리비닐클로라이드 100g에 대해 디옥틸아디페이트 (dioctyl adipate) 가소제 40g 에폭시 대두유(epoxidized soybean oil) 3g, 윤활제 0.5g에 Zn5(PO4)Stearate와 여러 종류의 금속염 열안정제를 섞어서 180도에서 압출한 후, 핫프레스를 이용해 1mm로 압착해서 필름을 만들었다. 이후 180도의 오븐에서 일정한 온도로 시간에 따른 색깔의 변화를 비교 및 관찰하였으며, 그 결과를 다음 도 8에 나타내었다.
다음 도 8의 결과를 참조하면, Zn 이온을 이용한 경우가 납이나, 바륨, 주석 이온을 이용한 금속염에 비교해서 우수한 성능을 보이는 것을 확인하였다.
본 발명에 따른 열안정제는 PVC 등의 고분자 가공시 고분자의 변색을 방지할 수 있는 우수한 열안정성을 가지며, PVC 뿐만 아니라 다양한 고분자에도 적용 가능할 것으로 기대된다.

Claims (11)

  1. 다음 화학식으로 표시되는 고분자 가공용 열안정제:
    Aw(PO4)x(HPO4)yXnH2O
    상기 식에서, A는 Ca, Mg, Al, Fe, Ti, Sn, Ba, Zn, Cu, Cd, Pb, Mn, Ni, Sr, 및 Mo로 이루어진 그룹으로부터 선택되는 1종 이상의 다가 양이온으로, w는 2 ~ 5의 범위를 만족하며,
    X는 Cl-, Br-, NO3 -, OH-, 아세테이트(acetate), 시아나이드(cyanide), 티오시아네이트(thiocyanate), 이소시아네이트(isocyanate), 하이드로젠설페이트(hydrogensulfate), 디하이드로젠 포스페이트(dihydrogen phosphate), 포스파이트(phosphite), 폴리포스페이트(polyphosphate), 카보네이트(carbonate), 설포네이트(sulfonate), 보레이트(borate), 카보네이트(carbonate), 설페이트(sulfate), 카복실레이트(carboxylate), 아디페이트, 도데실설페이트, 나이트레이트 및 P2O7 4-로 이루어진 그룹으로부터 선택되는 1종 이상의 음이온으로, z는 0 ~ 3의 범위이고,
    x와 y는 각각 독립적으로 0 ~ 5이며, x와 y는 동시에 0이 될 수 없고, 둘 중 하나는 0이 아니며,
    상기 식에서 w, x, y, z는 X가 1가의 음이온인 경우 2w = 3x +2y +1z; X가 2가의 음이온인 경우 2w = 3x +2y +0.5z의 식을 만족하며,
    n은 0 ~12의 정수이다.
  2. 제1항에 있어서,
    상기 화학식에서 A로 표시되는 다가 양이온은 상기 나열된 금속 양이온을 단독으로 사용하거나, 또는 Ca를 포함하는 하나의 금속 양이온의 일부를 전체 A의 몰비 중 50% 이하의 다른 금속 양이온으로 치환시켜 포함되는 것인 고분자 가공용 열안정제.
  3. 제1항에 있어서,
    상기 화학식에서 X는 OH- 음이온을,
    Cl-, Br-, NO3 -, 아세테이트(acetate), 시아나이드(cyanide), 티오시아네이트(thiocyanate), 이소시아네이트(isocyanate), 하이드로젠설페이트(hydrogensulfate), 디하이드로젠 포스페이트(dihydrogen phosphate), 포스파이트(phosphite), 폴리포스페이트(polyphosphate), 카복실레이트(carboxylate), 카보네이트(carbonate), 설포네이트(sulfonate), 보레이트(borate), 카보네이트(carbonate), 설페이트(sulfate), 카복실레이트(carboxylate), 아디페이트, 도데실설페이트, 나이트레이트 및 P2O7 4-로 이루어진 그룹으로부터 선택되는 1종 이상의 음이온으로 0.1 ~ 100%의 몰비로 치환시켜 혼합 사용하는 것인 고분자 가공용 열안정제.
  4. 제1항에 있어서,
    상기 화학식으로 표시되는 고분자 가공용 열안정제는 0.5~150 nm의 범위의 입자 크기를 가지는 것인 고분자 가공용 열안정제.
  5. 제1항에 있어서,
    추가적으로 상기 화학식의 다가 양이온 A에 대해서 리간드 역할을 할 수 있도록 아민(amine), 아마이드(amide), 포스포네이트(phosphonate), 카르복실산(carboxylic acid), 티오에스터(thioester), 알카노에이트(alkanoate), 디케톤(diketones), 케토에스터(ketoesters), 옥살레이트(oxalates), 말로네이트(malonates), 석시네이트(succinates), 글루타레이트(glutarates), 아디페이트(adipates) 중에서 선택되는 1종 이상의 디에스터(diester);
    하나의 카르복실산과 하나의 에스터기를 가지는 물질(ketoacid);
    말레산 무수물(maleic anhydride), 호박산 무수물(succinic anhydride), 락타이드를 포함하는 락톤류;
    카프로락탐을 포함하는 락탐류;
    다가 산 또는 그 염을 포함하는 킬레이팅제(chelating agent);
    비닐 아세테이트를 포함하는 비닐 에스터 유도체;
    폴리(에틸렌이민) 및 그 유도체;
    (메타)아크릴레이트 및 그 유도체;
    셀룰로오스 유도체; 및
    셀룰로오스 아세테이트 유도체 중에서 선택되는 1종 이상의 분산제를 더 포함하는 것인 고분자 가공용 열안정제.
  6. 제7항에 있어서,
    상기 다가 양이온 A와 상기 분산제에 포함된 리간드가 1:0.5 ~ 1:6의 비율로 포함되는 것인 고분자 가공용 열안정제.
  7. 금속염 수용액과 금속 양이온을 포함하는 인산(염)을 pH 10~13, 10분~120분 동안 급속으로 반응시켜 금속인산염을 제조하는 단계를 포함하여,
    제조되는 금속인산염의 입자크기를 0.5~150 nm의 범위로 감소시키는 방법으로 열안정성을 개선시키는 것을 특징으로 하는 제1항에 따른 금속인산염 고분자 가공용 열안정제의 제조방법.
  8. 제1항에 따른 화학식에서,
    X로 표시되는 음이온 중 OH- 음이온을,
    Cl-, Br-, NO3 -, 아세테이트(acetate), 시아나이드(cyanide), 티오시아네이트(thiocyanate), 이소시아네이트(isocyanate), 하이드로젠설페이트(hydrogensulfate), 디하이드로젠 포스페이트(dihydrogen phosphate), 포스파이트(phosphite), 폴리포스페이트(polyphosphate), 카보네이트(carbonate), 설포네이트(sulfonate), 보레이트(borate), 카보네이트(carbonate), 설페이트(sulfate), 카복실레이트(carboxylate), 아디페이트, 도데실설페이트, 나이트레이트 및 P2O7 4-로 이루어진 그룹으로부터 선택되는 1종 이상의 음이온으로, 0.1 ~ 100%의 몰비로 이온 교환시키는 단계를 포함하여,
    금속 인산염의 결정성을 떨어뜨리는 방법으로 열안정성을 개선시키는 것을 특징으로 하는 제1항에 따른 금속인산염 고분자 가공용 열안정제의 제조방법.
  9. 제1항에 따른 화학식에서 다가 양이온 A에 대해서 리간드 역할을 하여,
    a)금속 양이온과 이온결합, 배위 공유결합, 또는 강한 이온-쌍극자 상호작용에 의해 전자쌍을 제공할 수 있거나,
    b)금속 양이온 A와 음이온 X 간의 이온 거리를 증가시켜 이온 결합력을 감소시키거나,
    c) 금속 인산염의 결정 형성을 억제시켜 입자 크기를 작게 하여 입자 표면적을 늘릴 수 있도록,
    아민(amine), 아마이드(amide), 포스포네이트(phosphonate), 카르복실산(carboxylic acid), 티오에스터(thioester), 알카노에이트(alkanoate), 디케톤(diketones), 케토에스터(ketoesters), 옥살레이트(oxalates), 말로네이트(malonates), 석시네이트(succinates), 글루타레이트(glutarates), 아디페이트(adipates) 중에서 선택되는 1종 이상의 디에스터(diester);
    하나의 카르복실산과 하나의 에스터기를 가지는 물질(ketoacid);
    말레산 무수물(maleic anhydride), 호박산 무수물(succinic anhydride), 락타이드를 포함하는 락톤류;
    카프로락탐을 포함하는 락탐류;
    다가 산 또는 그 염을 포함하는 킬레이팅제(chelating agent);
    비닐 아세테이트를 포함하는 비닐 에스터 유도체;
    폴리(에틸렌이민) 및 그 유도체;
    (메타)아크릴레이트 및 그 유도체;
    셀룰로오스 유도체; 및
    셀룰로오스 아세테이트 유도체 중에서 선택되는 1종 이상의 분산제를 첨가하는 단계를 포함하여 열안정성을 개선시키는 것을 특징으로 하는 제1항에 따른 금속인산염 고분자 가공용 열안정제의 제조방법.
  10. PVC, PMMA, PS, PB, PC, PE, PP, ABS, 천연고무, 및 합성 고무로 이루어진 그룹으로부터 선택되는 1종 이상인 고분자에 상기 제1항에 따른 화학식으로 표시되는 고분자 가공용 열안정제를 포함하는 고분자 조성물.
  11. 제10항에 있어서,
    상기 고분자 가공용 열안정제는 상기 고분자 중량에 대하여 1~5중량부로 포함되는 것인 고분자 조성물.
PCT/KR2021/013965 2020-10-22 2021-10-13 결정성이 억제된 인산염을 이용한 고분자 가공용 열안정제 및 이의 제조방법 WO2022086010A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/248,763 US20230399489A1 (en) 2020-10-22 2021-10-13 Heat stabilizer for polymer processing using phosphate with suppressed crystallinity, and method for preparing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200137653 2020-10-22
KR10-2020-0137653 2020-10-22
KR10-2021-0134725 2021-10-12
KR1020210134725A KR102607238B1 (ko) 2020-10-22 2021-10-12 결정성이 억제된 인산염을 이용한 고분자 가공용 열안정제 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2022086010A1 true WO2022086010A1 (ko) 2022-04-28

Family

ID=81290702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013965 WO2022086010A1 (ko) 2020-10-22 2021-10-13 결정성이 억제된 인산염을 이용한 고분자 가공용 열안정제 및 이의 제조방법

Country Status (2)

Country Link
US (1) US20230399489A1 (ko)
WO (1) WO2022086010A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983918A (ja) * 1982-11-01 1984-05-15 Toagosei Chem Ind Co Ltd 粒状4価金属リン酸塩の製造方法
JP2007512401A (ja) * 2003-11-28 2007-05-17 ザッハトレーベン ヒェミー ゲゼルシヤフト ミット ベシュレンクテル ハフツング Ir吸収度が大きい熱可塑性ポリマー材料、その製造方法及びその使用
KR100863285B1 (ko) * 2006-09-14 2008-10-15 동국대학교 산학협력단 Pvc 난연용 수산화금속인산염이 포함된 난연제
JP2013536289A (ja) * 2010-08-23 2013-09-19 カテナ アディティヴス ゲーエムベーハー アンド コー. カーゲー トリアジン挿入金属リン酸塩を含む難燃性組成物
KR20170108948A (ko) * 2015-01-09 2017-09-27 란세스 솔루션스 유에스 아이엔씨. 인함유 난연제를 포함하는 중합체 조성물의 안정화 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983918A (ja) * 1982-11-01 1984-05-15 Toagosei Chem Ind Co Ltd 粒状4価金属リン酸塩の製造方法
JP2007512401A (ja) * 2003-11-28 2007-05-17 ザッハトレーベン ヒェミー ゲゼルシヤフト ミット ベシュレンクテル ハフツング Ir吸収度が大きい熱可塑性ポリマー材料、その製造方法及びその使用
KR100863285B1 (ko) * 2006-09-14 2008-10-15 동국대학교 산학협력단 Pvc 난연용 수산화금속인산염이 포함된 난연제
JP2013536289A (ja) * 2010-08-23 2013-09-19 カテナ アディティヴス ゲーエムベーハー アンド コー. カーゲー トリアジン挿入金属リン酸塩を含む難燃性組成物
KR20170108948A (ko) * 2015-01-09 2017-09-27 란세스 솔루션스 유에스 아이엔씨. 인함유 난연제를 포함하는 중합체 조성물의 안정화 방법

Also Published As

Publication number Publication date
US20230399489A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
WO2018080013A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
JP6476118B2 (ja) 難燃性合成樹脂組成物
CA2904201A1 (en) Stabilized polymer compositions and methods of making same
JP3105496B2 (ja) 防炎プラスチック・コンパウンド及びその製造方法
WO2022086010A1 (ko) 결정성이 억제된 인산염을 이용한 고분자 가공용 열안정제 및 이의 제조방법
KR102379503B1 (ko) 폴리머 조성물
WO2012081770A1 (ko) 합성수지 안정제용 하이드로탈사이트 및 이를 포함하는 합성수지 조성물
US5190700A (en) Flame retardant for halogen-containing vinyl resins
WO2015160145A1 (ko) 클로로에틸렌계 나노복합체 조성물 및 그 제조방법
CN112898231B (zh) 一种金属离子改性聚磷酸哌嗪的制备方法及其应用
JP2004075837A (ja) 塩化ビニル系樹脂組成物
WO2017183876A1 (ko) 가소제 조성물 및 이를 포함하는 수지 조성물
JP4848601B2 (ja) 表面処理ハイドロタルサイト類とこれを含む塩化ビニル系樹脂組成物
KR20090131529A (ko) 가소제 및 이를 포함한 폴리염화비닐 수지 조성물
EP0330411B1 (en) Flame retardant for halogen-containing vinyl resins
WO2021132870A1 (ko) 염화비닐 수지 조성물
KR102607238B1 (ko) 결정성이 억제된 인산염을 이용한 고분자 가공용 열안정제 및 이의 제조방법
TW202140657A (zh) 阻燃劑組成物、阻燃性樹脂組成物、成形品、以及成形品之製造方法
JP3511215B2 (ja) 電線被覆用塩化ビニル系樹脂組成物
JP2009197159A (ja) 安定化された含ハロゲン樹脂組成物
JPH08157671A (ja) 電線被覆用塩化ビニル系樹脂組成物
JP3336115B2 (ja) 塩素含有樹脂組成物
WO2017061829A1 (ko) 염화비닐계 중합체 및 이의 제조방법
JP3511214B2 (ja) 電線被覆用塩化ビニル系樹脂組成物
JP3669770B2 (ja) 電線被覆用塩化ビニル系樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21883081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21883081

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21883081

Country of ref document: EP

Kind code of ref document: A1