WO2022083725A1 - 一种汽油组分的处理方法和系统 - Google Patents

一种汽油组分的处理方法和系统 Download PDF

Info

Publication number
WO2022083725A1
WO2022083725A1 PCT/CN2021/125584 CN2021125584W WO2022083725A1 WO 2022083725 A1 WO2022083725 A1 WO 2022083725A1 CN 2021125584 W CN2021125584 W CN 2021125584W WO 2022083725 A1 WO2022083725 A1 WO 2022083725A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
components
aromatics
cracking
unit
Prior art date
Application number
PCT/CN2021/125584
Other languages
English (en)
French (fr)
Inventor
李经球
孔德金
李旭光
王宗霜
李华英
童伟益
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司上海石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司上海石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to KR1020237017340A priority Critical patent/KR20230093026A/ko
Priority to EP21882139.5A priority patent/EP4219435A4/en
Priority to US18/249,962 priority patent/US20230407193A1/en
Priority to JP2023524328A priority patent/JP2023546230A/ja
Publication of WO2022083725A1 publication Critical patent/WO2022083725A1/zh
Priority to SA523440425A priority patent/SA523440425B1/ar

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/08Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond
    • C07C6/12Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G57/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one cracking process or refining process and at least one other conversion process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/08Xylenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/095Catalytic reforming characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G63/00Treatment of naphtha by at least one reforming process and at least one other conversion process
    • C10G63/02Treatment of naphtha by at least one reforming process and at least one other conversion process plural serial stages only
    • C10G63/04Treatment of naphtha by at least one reforming process and at least one other conversion process plural serial stages only including at least one cracking step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present application relates to the processing of hydrocarbons, and in particular to a method and system for processing gasoline components.
  • Aromatic hydrocarbons are the basic raw materials of petrochemicals, and paraxylene is the most important aromatic hydrocarbon product. In recent years, the domestic supply gap of paraxylene has reached more than 10 million tons per year. Accelerating the development of the aromatics industry is crucial to the development of my country's basic chemical industry.
  • the industrial plant mainly uses naphtha as raw material, produces aromatics through catalytic reforming process, and then converts toluene/benzene and C9 + A to xylene through isomerization and transalkylation unit.
  • CN1923965 discloses a method for preparing ethylene, propylene and aromatic hydrocarbons by catalytic cracking gasoline.
  • the raw material is converted into a mixture of ethylene, propylene and aromatic hydrocarbons by one-time contact with a catalyst.
  • the conversion of non-aromatic hydrocarbon-containing raw materials into aromatic hydrocarbons is mainly achieved through aromatization technology, and low-carbon olefins and alkanes are produced through a complex aromatization process to produce aromatic hydrocarbons, so as to realize the diversification of aromatic hydrocarbon production raw materials, and its product distribution and raw material structure.
  • the main products are benzene, toluene, C8 aromatics, heavy aromatics and non-aromatic components. Therefore, it is difficult to increase the targeted production of high-purity C8 aromatics through aromatization technology alone.
  • CN1122571 discloses a precious metal-containing molecular sieve catalyst, the catalyst is 10-80% (weight ) Mordenite or ⁇ molecular sieve and 0-70% (weight) ZSM-5, 5-90% (weight) ⁇ -Al2O3 as carrier, loading 0.001-0.5 weight part of platinum and 0.01-10.0 weight part of tin or 0.01- 7.0 parts by weight lead.
  • US2008/0026931A1 discloses a catalyst containing acidic molecular sieves and rhenium, tin, and Chu metal components, which is used for the transalkylation of heavy aromatic hydrocarbons, and has higher activity and lower ring loss rate.
  • the aromatic hydrocarbon unit mainly separates aromatic hydrocarbons and non-aromatic hydrocarbons through extraction or rectification process, while the non-aromatic hydrocarbon components are cracked into small molecular light components through chemical cracking process. Hydrocarbons can also improve the purity of aromatic products.
  • US 3,729,409 proposes that non-aromatic hydrocarbons mixed with aromatic hydrocarbons are converted into lower alkanes by a hydrocracking reaction in the presence of a catalyst, and the aromatic hydrocarbons can be separated from the non-aromatic hydrocarbons by a vapor-liquid separator.
  • the purpose of this application is to provide a novel gasoline component processing method and system, which can effectively expand the raw materials for aromatics and olefin production, and realize the efficient comprehensive utilization of gasoline components.
  • the application provides a processing method of gasoline components, comprising the steps:
  • the C 6 -C 7 components and the C 9 + components obtained in the step I) are reacted in the cracking and aromatic hydrocarbon conversion unit, and the reaction products are separated to obtain the C 4 -components , the C 5 components, C 6 -C 7 components, C 8 components and C 9 + components, wherein the reactions occurring in the cracking and aromatics conversion unit include non-aromatic cracking reactions and transalkylation reactions;
  • step III) Optionally, purify at least one of the C8 components obtained in step I) and step II), and separate to obtain a C4 - component, a C5 component, and a C6 - C7 group fractions, C8 aromatics and C9 + components;
  • step IV optionally, subjecting at least a portion of at least one of the C 4 -components obtained in step I), step II) and step III) to a steam cracking or dehydrogenation reaction;
  • step V) optionally, at least a portion of at least one of the C5 components obtained in step I), step II) and step III) is used in gasoline blending;
  • step VI) combining at least one of the C6-C7 component and the C9+ component obtained in step II) and at least one of the C6 - C7 component and the C9+ component obtained in step III) A part is recycled to the cracking and aromatics conversion unit of step II) to continue the reaction.
  • the present application provides a method for treating gasoline components, comprising the steps of:
  • step 2) The C 6 -C 7 component and the C 9 + component obtained in step 1) are reacted in the presence of an aromatic hydrocarbon conversion catalyst, and the reaction product is separated to obtain a C 4 -component , a C 5 component, C 6 - C7 component, C8 component and C9 + component;
  • step 3 purify at least one of the C8 components obtained in step 1 ) and step 2), and separate to obtain a C4 - component, a C5 component, and a C6 - C7 group fractions, C8 aromatics and C9 + components;
  • step 1) steam cracking or dehydrogenation is performed on at least a part of at least one of the C 4 -components obtained in step 1), step 2) and step 3);
  • step 1) At least a portion of at least one of the C5 components obtained in step 1), step 2) and step 3) is used for gasoline blending;
  • step 6 At least one of the C 6 -C 7 components and the C 9 + components obtained in step 2) and at least one of the C 6 -C 7 components and the C 9 + components obtained in step 3) A portion is recycled to step 2) to continue the reaction in the presence of an aromatics conversion catalyst.
  • the present application provides a system for implementing the gasoline component processing method of the present application, comprising:
  • Aromatization unit for reacting gasoline components therein and separating the reaction products to obtain C4 - components, C5 -components, C6 -C7 - components, C8 -components and C9 -components + component;
  • cracking and aromatic hydrocarbon conversion unit which is used for reacting the C 6 -C 7 components and C 9 + components obtained by the aromatization unit, and separating the reaction products to obtain C 4 - components, C 5 components, C 6 -C 7 components, C 8 components and C 9 + components;
  • Optional aromatics purification unit which is used for purifying at least one of the C8 components obtained from the aromatization unit and the cracking and aromatics conversion unit, and separates to obtain C4 - components, C5 components, C6 - C7 components, C8 aromatics and C9 + components;
  • An optional light hydrocarbon conversion unit for steam cracking or dehydrogenating at least a portion of at least one of the C4 - components obtained from the aromatization unit, the cracking and aromatics conversion unit, and the optional aromatics purification unit response;
  • the gasoline component containing non-aromatic hydrocarbons is increased by the aromatization unit to produce mixed aromatic hydrocarbon products, and at the same time, non-aromatic hydrocarbons with low olefin content and high isoparaffin content are by-produced; C6 - C7 groups depleted in C8 aromatics
  • the benzene, toluene and C 9 + aromatics are converted into C8 aromatics by the cracking and aromatics conversion unit , while the non-aromatics are slightly cracked into low-carbon hydrocarbons.
  • the C8 aromatics product is further purified by an aromatics purification unit to obtain high-purity C8 aromatics.
  • the by-produced C 4 and below hydrocarbons can be used as high-quality steam cracking or dehydrogenation reaction raw materials, and the by-produced C 5 components have the characteristics of low olefin ratio and high isoparaffin ratio, and can be used as high-quality gasoline blending materials.
  • the process can effectively convert gasoline components (such as catalytic gasoline components, LPG) into C8 aromatic hydrocarbons, and by-produce low-carbon olefins and high-quality light gasoline to achieve efficient comprehensive utilization.
  • the content of aromatics in the reaction product of the aromatization unit is increased by more than 15%, preferably more than 25%, compared with the raw material; the content of C8 aromatics in the product of the cracking and aromatics conversion unit is higher than that of the raw material.
  • the aromatics purification unit is an extraction separation or non-aromatic selective cracking reaction unit, and the purity of the C8 aromatics product of the aromatics purification unit can reach more than 99%.
  • Fig. 2 is a schematic flow chart of another preferred embodiment of the method of the present application.
  • Figure 3 shows the NH 3 -TPD spectrum of the catalyst obtained in Preparation Example 1 of the present application.
  • FIG. 4 shows the TEM image of the catalyst obtained in Preparation Example 1 of the present application.
  • any specific numerical value disclosed herein, including the endpoints of a numerical range, is not limited to the precise value of the numerical value, but is to be understood to encompass values approximating the precise value, such as within ⁇ 5% of the precise value. all possible values. And, for the disclosed numerical range, between the endpoint values of the range, between the endpoint values and the specific point values in the range, and between the specific point values, one or more new values can be obtained in any combination. Numerical ranges, these new numerical ranges should also be considered to be specifically disclosed herein.
  • gasoline components refers to components whose boiling range is within the gasoline boiling range (usually 30-205°C), including but not limited to catalytically cracked gasoline, hydrocracking gasoline, ethylene pyrolysis gasoline, Catalytic reformate, straight-run gasoline, LPG, any mixture thereof, or a partial fraction thereof.
  • C 4 -components refer to hydrocarbon components with a boiling point below 30°C
  • C 5 components refer to hydrocarbon components with a boiling point in the range of 30°C to below 70°C
  • C 6 -C The 7 component refers to hydrocarbon components with a boiling point in the range of 70°C to below 130°C
  • the C8 component refers to hydrocarbon components with a boiling point in the range of 130°C to 145°C
  • the C9 + component is Refers to hydrocarbon components with a boiling point higher than 145°C.
  • high-purity C8 aromatic hydrocarbons refer to C8 aromatic hydrocarbons whose purity meets or exceeds the purity requirement of the C8 aromatic hydrocarbon feedstock of the paraxylene adsorption separation or paraxylene crystallization separation unit, for example, the purity is higher than 99%.
  • acidic molecular sieve has the meaning commonly understood in the art and refers to a molecular sieve having B acid and/or L acid sites.
  • the medium and strong acid content of the catalyst is calculated according to the peak area of the NH 3 -TPD spectrum in the range of 200-400°C ; The ratio of the peak area in the °C interval to the total peak area in the 100-600 °C interval.
  • any matter or matter not mentioned is directly applicable to those known in the art without any change.
  • any embodiment described herein can be freely combined with one or more other embodiments described herein, and the technical solutions or technical ideas formed thereby are regarded as part of the original disclosure or original record of the present application, and should not be It is considered to be new content not disclosed or anticipated herein, unless a person skilled in the art considers that the combination is obviously unreasonable.
  • the present application provides a method for treating gasoline components, comprising the steps of:
  • the C 6 -C 7 components and the C 9 + components obtained in the step I) are reacted in the cracking and aromatic hydrocarbon conversion unit, and the reaction products are separated to obtain the C 4 -components , the C 5 components, C 6 -C 7 components, C 8 components and C 9 + components, wherein the reactions occurring in the cracking and aromatics conversion unit include non-aromatic cracking reactions and transalkylation reactions;
  • step III) Optionally, purify at least one of the C8 components obtained in step I) and step II), and separate to obtain a C4 - component, a C5 component, and a C6 - C7 group fractions, C8 aromatics and C9 + components;
  • step IV optionally, subjecting at least a portion of at least one of the C 4 -components obtained in step I), step II) and step III) to a steam cracking or dehydrogenation reaction;
  • step V) optionally, at least a portion of at least one of the C5 components obtained in step I), step II) and step III) is used in gasoline blending;
  • step VI) At least one of the C 6 -C 7 components and the C 9 + components obtained in step II), and optionally the C 6 -C 7 components and the C 9 + components obtained in step III) At least a part of the latter is recycled to the cracking and aromatics conversion unit of step II) to continue the reaction.
  • the application provides a method for treating gasoline components, comprising the steps of:
  • step 2) The C 6 -C 7 component and the C 9 + component obtained in step 1) are reacted in the presence of an aromatic hydrocarbon conversion catalyst, and the reaction product is separated to obtain a C 4 -component , a C 5 component, C 6 - C7 component, C8 component and C9 + component;
  • step 3 purify at least one of the C8 components obtained in step 1 ) and step 2), and separate to obtain a C4 - component, a C5 component, and a C6 - C7 group fractions, C8 aromatics and C9 + components;
  • step 1) steam cracking or dehydrogenation is performed on at least a part of at least one of the C 4 -components obtained in step 1), step 2) and step 3);
  • step 1) At least a portion of at least one of the C5 components obtained in step 1), step 2) and step 3) is used for gasoline blending;
  • step 6) at least one of the C 6 -C 7 components and the C 9 + components obtained in step 2) and the C 6 -C 7 components and the C 9 + components obtained in the optional step 3) At least a portion of the latter is recycled to step 2) to continue the reaction in the presence of an aromatics conversion catalyst.
  • step I) and step 1) are carried out by distillation, rectification or fractionation according to the boiling point.
  • the hydrocarbon-containing mixture is separated into components with corresponding boiling points or boiling ranges, and the specific operations and conditions used are easily determined by those skilled in the art according to the target components to be separated, and are not repeated here.
  • gasoline components used in step 1) and step 1) have one or more of the following characteristics:
  • the boiling range is 40-250°C, preferably the boiling range is 50-200°C;
  • the aromatic hydrocarbon content is 10-100%, preferably 20-80%, more preferably 20-35%;
  • the sulfur content is 2-4 ppm by weight
  • the nitrogen content is 0.5-2 ppm by weight
  • the olefin content is 20-40% by weight by weight
  • the alkane content is 40-45% by weight by weight.
  • the gasoline components used in step 1) and step 1) are selected from catalytically cracked gasoline, hydrocracking gasoline, ethylene pyrolysis gasoline, catalytic reformate, straight-run gasoline, LPG or any mixture thereof, or some fractions thereof.
  • the aromatization catalyst used in the aromatization unit of step 1) and the aromatization catalyst used in step 1) can be conventionally selected, for example comprising 50-90 wt% molecular sieve and 0.5-10 wt%
  • the modified metal in terms of metal
  • the molecular sieve is selected from aluminosilicates with a ten-membered ring or twelve-membered ring pore structure, silicon aluminum gallium salts, silicon phosphorus aluminum salts, silicon aluminum iron salts, etc.
  • the modifying metal is selected from metals of Group IB, Group IIB, Group VIB, Group VIIB and Group VIII, preferably metals from Zn, Mo, Ga and Pt.
  • the molecular sieve used in the aromatization catalyst is ZSM-5, and the modified metals are Zn and Ga.
  • reaction conditions of step 1) and step 1) include: reaction temperature of 400-600° C., reaction pressure of 0.2-3MPa, and feed space velocity of 0.5-5h ⁇ 1 .
  • the aromatics conversion catalyst used in the cracking and aromatics conversion unit of step II) and the aromatics conversion catalyst used in step 1) can be conventionally selected, for example, containing 50-90 wt% molecular sieve and 0.05-10 wt% modified catalyst Metal
  • the molecular sieve is selected from aluminosilicates and silicophosphorus aluminum salts with eight-membered ring, ten-membered ring or twelve-membered ring pore structure, preferably ZSM-5 molecular sieve, ZSM-12 molecular sieve, MOR molecular sieve, ⁇ molecular sieve .
  • the modified metal component is selected from the group VB, VIB, VIIB, VIII metals or metal oxides.
  • the aromatics conversion catalyst comprises an acidic molecular sieve component, an oxide promoter, a first metal component (which may be in the form of a metal and/or metal oxide), and a second metal component (which may be in the form of a metal and/or metal oxide).
  • the first metal in the first metal component is selected from one or more of Group VB metals, Group VIB metals, and Group VIIB metals, and the first metal
  • the second metal in the bimetallic component is a metal different from the first metal, the first metal component is immobilized on the acidic molecular sieve component, and the medium and strong acid content of the catalyst is 0.05-2.0 mmol/g catalyst , the proportion of medium and strong acid in the total acid is 60-99%.
  • the amount of medium and strong acid in the catalyst is 0.1-1 mmol/g, and the proportion of medium and strong acid in the total acid amount is 68-92%.
  • metals of Groups VB, VIB and VIIB are used as the first metal component of the aromatics conversion catalyst, which has the advantages of high reactivity and low loss of aromatics.
  • the first metal is selected from Mo, Re, W, or a combination thereof.
  • the first metal is at least two of Mo, Re and W, and the mixed weight ratio of the two is 0.1-10:1 in terms of metal elements; or Mo, Re and The combination of the three W, and the weight ratio of Mo, Re and W in terms of metal elements is 1:0.1-0.4:0.1-0.6.
  • the type of the second metal can be selected in a wide range, and all metals different from the first metal can be used in the present application.
  • the second metal is selected from group IA metals, group IIA metals, Group IIIA metal, Group IVA metal, Group VA metal, lanthanide metal, or a combination thereof, more preferably selected from Sr, Bi, Ce, Zr, Ge, or a combination thereof.
  • the first metal component is immobilized on the acidic molecular sieve component by physical mixing and/or chemical bonding.
  • the second metal component is immobilized on the oxide aid, preferably the second metal component is immobilized on the oxide aid by physical mixing and/or chemical bonding.
  • the first metal component is immobilized on the acidic molecular sieve component by physical mixing and/or chemical bonding; and the second metal component is supported by physical mixing and/or chemical bonding Immobilized on oxide additives.
  • the distribution of supported metals on the catalyst can be regulated.
  • the immobilization of other metals on the oxide auxiliary agent can inhibit the side reaction of hydrogenation and saturation of aromatic hydrocarbons on the surface of the oxide auxiliary agent, thereby greatly improving the conversion of aromatics conversion catalyst for aromatics conversion reaction. Efficiency and target product selectivity.
  • the types of the acidic molecular sieve components can be selected from a wide range, and commonly used acidic molecular sieve components can be used in the present application, preferably selected from the group consisting of an eight-membered ring, a ten-membered ring or a twelve-membered ring
  • An acidic molecular sieve characterized by a pore structure more preferably selected from ZSM-5 molecular sieves, MCM-22 molecular sieves, MOR molecular sieves, beta molecular sieves, ZSM-12 molecular sieves, or combinations thereof.
  • the types of the oxide auxiliary agents can be selected from a wide range, and common oxide auxiliary agents can be used in the application, preferably selected from alumina, magnesium oxide, kaolin, or a combination thereof.
  • the content of each component of the aromatics conversion catalyst can be selected within a wide range, preferably based on the total weight of the catalyst as 100% by weight, the content of the acidic molecular sieve component is 40-90% by weight, the oxide auxiliary
  • the content of the metal component is 5-40 wt %, the content of the first metal component (calculated as metal element) is 0.01-20 wt %, and the content of the second metal component (calculated as metal element) is 0.01-20 wt %.
  • the content of the acidic molecular sieve component is 50-80% by weight
  • the content of the oxide auxiliary agent is 10-30% by weight
  • the first metal The content of the component is 0.05-15% by weight
  • the content of the second metal component is 0.05-15% by weight.
  • the aromatics conversion catalyst is prepared by: a) immobilizing a first metal component on an acidic molecular sieve; b) immobilizing a second metal component on an oxide promoter; and c) The product of step a) and the product of step b) are kneaded and shaped.
  • the aromatics conversion catalyst is prepared by a method comprising the following steps: a) impregnating a first metal source solution with an acidic molecular sieve component source, and performing a first heat treatment to obtain a first solid; b) immersing a first metal source solution The second metal source solution is impregnated with the oxide auxiliary agent source, and a second heat treatment is performed to obtain a second solid; and c) kneading and molding the first solid and the second solid.
  • the impregnation can be in the form of equal volume impregnation, supersaturated impregnation, etc., preferably supersaturated impregnation.
  • the first heat treatment and the second heat treatment each include: firing, or a combination of drying and firing.
  • the first heat treatment and the second heat treatment each include a combination of drying and firing.
  • drying conditions can be selected from a wide range, and common drying conditions can be used in this application, and the preferred drying conditions include: the temperature is 50-200°C, and the time is 1-30h.
  • the calcination conditions can be selected within a wide range, and common calcination conditions can be used in this application.
  • the preferred calcination conditions include: heat treatment at 300-700° C. for 1-30 hours in an oxygen-containing atmosphere .
  • the oxygen-containing atmosphere is a mixed gas of air and water vapor, and the volume ratio of the two is 5-100:1.
  • the first metal source may be a soluble compound containing Group VB, VIB and VIIB metals.
  • Commonly used soluble compounds can be used in the present application, such as nitrate, sulfate, chloride (ie, hydrochloride) or ammonium salt, which will not be repeated here.
  • the second metal source may be a soluble compound containing the second metal.
  • soluble compounds can be used in this application, such as nitrates, sulfates, chlorides or ammonium salts, which will not be repeated here.
  • the source of the acidic molecular sieve component can be selected from, for example, an acidic molecular sieve with eight-membered ring, ten-membered ring or twelve-membered ring pore structure features, preferably selected from ZSM-5 molecular sieve, MCM-22 molecular sieve, MOR Molecular sieve, beta molecular sieve, ZSM-12 molecular sieve, or a combination thereof.
  • the oxide auxiliary source may be selected from alumina, magnesia, kaolin, their precursors, or a combination thereof, for example.
  • the aromatics conversion catalyst can be used for disproportionation and transalkylation of alkyl aromatics, and has the advantages of high reaction activity and low loss of aromatics.
  • the aromatic hydrocarbon conversion catalyst of the present application before being used, is reduced as required, and the reduction step has no special requirements, such as introducing hydrogen for reduction or performing a reduction reaction by using other reducing agents, which will not be repeated in this application.
  • the reaction conditions of step II) and step 2) include: the reaction temperature is 250-500° C., the reaction pressure is 1.5-6.5MPa, the molar ratio of hydrogen to hydrocarbon is 1-10, and the feed weight hourly space velocity is 0.5-5h -1 .
  • the purification treatment in step III) and step 3) is extraction and separation of aromatic hydrocarbons, selective cracking of non-aromatic hydrocarbons, or a combination thereof.
  • the purification treatment is an extractive separation using extractive distillation based on a sulfolane solvent.
  • the catalyst used for the selective cracking of non-aromatic hydrocarbons may be conventionally selected, for example, the catalyst may contain 60-100% by weight of at least one selected from the group consisting of an eight-membered ring, ten-membered ring or twelve-membered ring structure acidic molecular sieves, such as at least one of ZSM-5 molecular sieves, MCM-22 molecular sieves, MOR molecular sieves, and beta molecular sieves, and optionally contain 0.5-10% by weight of metal components selected from Group VIB, VIIB and VIII metals .
  • the catalyst may contain 60-100% by weight of at least one selected from the group consisting of an eight-membered ring, ten-membered ring or twelve-membered ring structure acidic molecular sieves, such as at least one of ZSM-5 molecular sieves, MCM-22 molecular sieves, MOR molecular sieves, and beta molecular sieves, and
  • the operating conditions for the selective cracking of non-aromatic hydrocarbons include: the reaction temperature is 300-600° C., the reaction pressure is 0.5-3.0 MPa, the hydrogen-hydrocarbon molar ratio is 1-10, and the feed weight hourly space velocity is 1-15h -1 .
  • the operating conditions of steam cracking in steps IV) and 4) include: the cracking reaction temperature is 600-1000° C., the residence time is 0.01-0.8 seconds, and the reaction pressure is 0.1-0.3 MPa.
  • the dehydrogenation reactions of step IV) and step 4) are carried out in the presence of a catalyst comprising 0.05-20% by weight of a metal component selected from the group consisting of Pt, Pd, Cr, Fe,
  • the rest are carriers selected from alumina, silica, aluminosilicate, magnesia, and calcium oxide; more preferably, the operating conditions of the dehydrogenation reaction include: the reaction temperature is 500-600° C., and the weight hourly space velocity is 0.5-3.0h -1 , reaction pressure 0.3-1.5MPa.
  • the application provides a system for implementing the gasoline component treatment method of the application, comprising:
  • Aromatization unit for reacting gasoline components therein and separating the reaction products to obtain C4 - components, C5 -components, C6 -C7 - components, C8 -components and C9 -components + component;
  • cracking and aromatic hydrocarbon conversion unit which is used for reacting the C 6 -C 7 components and C 9 + components obtained by the aromatization unit, and separating the reaction products to obtain C 4 - components, C 5 components, C 6 -C 7 components, C 8 components and C 9 + components;
  • Optional aromatics purification unit which is used for purifying at least one of the C8 components obtained from the aromatization unit and the cracking and aromatics conversion unit, and separates to obtain C4 - components, C5 components, C6 - C7 components, C8 aromatics and C9 + components;
  • An optional light hydrocarbon conversion unit for steam cracking or dehydrogenating at least a portion of at least one of the C4 - components obtained from the aromatization unit, the cracking and aromatics conversion unit, and the optional aromatics purification unit response;
  • the aromatization unit is provided with a gasoline component inlet, a C 4 -component outlet, a C 5 component outlet, a C 6 -C 7 component outlet, a C 8 component outlet and a C 9+ component exports;
  • the cracking and aromatics conversion unit is provided with an inlet, a C 4 -component outlet, a C 5 component outlet, a C 6 -C 7 component outlet, a C 8 component outlet and a C 9 + component outlet;
  • the aromatic hydrocarbon purification unit is provided with an inlet, a C 4 -component outlet, a C 5 component outlet, a C 6 -C 7 component outlet, a C 8 aromatic hydrocarbon outlet and a C 9 + component outlet;
  • the light hydrocarbon conversion unit is provided with an inlet and a conversion product outlet;
  • the light gasoline blending unit is provided with an inlet and an outlet for blending gasoline
  • At least one of the C8 component outlet of the aromatization unit and the C8 component outlet of the cracking and aromatics conversion unit is communicated with the inlet of the aromatics purification unit, and the aromatization unit is At least one of the C4 - components outlet, the C4 - components outlet of the cracking and aromatics conversion unit, and the C4 - components outlet of the aromatics purification unit is in communication with the inlet of the light hydrocarbons conversion unit,
  • At least one of the C5 component outlet of the aromatization unit, the C5 component outlet of the cracking and aromatics conversion unit, and the C5 component outlet of the aromatics purification unit is blended with the light gasoline Inlet connectivity to the unit, and
  • At least one of the C6 - C7 component outlet and the C9 + component outlet of the cracking and aromatics conversion unit, and the optional C6 - C7 component outlet and the C9 + component outlet of the aromatics purification unit One is in communication with the inlet of the cracking and aromatics conversion unit.
  • the aromatics purification unit may be an aromatics extraction separation unit, a non-aromatics selective cracking unit, or a combination thereof.
  • the light hydrocarbon conversion unit may be a steam cracking unit, a dehydrogenation reaction unit, or a combination thereof.
  • the aromatization unit may include an aromatization reactor and a separation device, wherein the aromatization reactor may be in the form of a fixed bed or a moving bed commonly used in the art, such as an axial fixed bed reaction
  • the separation device can be in the form of a distillation, rectification or fractionation column commonly used in the art, such as an atmospheric rectification column or a pressurized rectification column.
  • the cracking and aromatics conversion unit may include a cracking and aromatics conversion reactor and a separation device, wherein the cracking and aromatics conversion reactor may be in the form of a fixed bed commonly used in the art, for example, with intermediate cooling Fixed-bed reactor or single-stage fixed-bed reactor; the separation equipment can be in the form of distillation, rectification or fractionation columns commonly used in the art, such as atmospheric rectification columns.
  • the aromatic hydrocarbon extraction and separation unit may include an extraction separator and a separation device, wherein the extraction separator may be in the form of a liquid-liquid extractor, an extractive distillation column, etc. commonly used in the art, for example, in the form of sulfolane It is a solvent extraction distillation column; the separation device can be in the form of a distillation, rectification or fractionation column commonly used in the art, such as an atmospheric rectification column or a pressurized rectification column.
  • the extraction separator may be in the form of a liquid-liquid extractor, an extractive distillation column, etc. commonly used in the art, for example, in the form of sulfolane It is a solvent extraction distillation column
  • the separation device can be in the form of a distillation, rectification or fractionation column commonly used in the art, such as an atmospheric rectification column or a pressurized rectification column.
  • the non-aromatic selective cracking unit may include a cracking reactor and a separation device, wherein the cracking reactor may be in the form of a fixed bed reactor commonly used in the art, such as a radial fixed bed reactor, a multi-stage Cold shock type fixed bed reactor; the separation equipment can be in the form of distillation, rectification or fractionation columns commonly used in the art, such as atmospheric rectification column or pressurized rectification column.
  • the cracking reactor may be in the form of a fixed bed reactor commonly used in the art, such as a radial fixed bed reactor, a multi-stage Cold shock type fixed bed reactor
  • the separation equipment can be in the form of distillation, rectification or fractionation columns commonly used in the art, such as atmospheric rectification column or pressurized rectification column.
  • the steam cracking unit may be in the form of a gas cracking furnace commonly used in the art, such as an ultra-short residence time cracking furnace, a short residence time cracking furnace.
  • the dehydrogenation reaction unit may be in the form of a dehydrogenation reactor commonly used in the art, such as a fixed bed reactor.
  • the feed port and the discharge port of each unit are connected with the feed port and the discharge port of the relevant unit using a communication pipe, and further preferably, in each unit Valves are independently set on the communicating pipelines to adjust the flow.
  • Using the system of the present application for processing gasoline components can effectively convert gasoline components (such as catalytic gasoline components, LPG) into C8 aromatic hydrocarbons, and by-produce low-carbon olefins and high-quality light gasoline to achieve efficient comprehensive utilization .
  • gasoline components such as catalytic gasoline components, LPG
  • LPG catalytic gasoline components
  • the reagents used in the following preparation examples are all commercially available reagents, and the purity is reagent pure.
  • the NH 3 -TPD spectrum of the obtained catalyst was measured by the following method.
  • the heating rate was raised to 500°C and the constant temperature was purged for 30 minutes.
  • the temperature was lowered to 100°C, and NH 3 gas was introduced for adsorption and kept for 10 minutes. Then, it was switched to argon gas (30ml/min) for purging for 1 hour. After that, the temperature was programmed to 600 °C at a heating rate of 10 °C/min, and the NH 3 concentration signal in the effluent was detected by TCD.
  • the medium-strong acid amount of the obtained catalyst is calculated according to the peak area of the NH 3 -TPD spectrum in the interval of 200-400° C.
  • the ratio of the medium-strong acid amount to the total acid amount is that the NH 3 -TPD spectrum is in The ratio of the peak area in the 200-400°C interval to the total peak area in the 100-600°C interval.
  • the TEM pictures of the obtained catalysts were characterized by high-resolution field emission transmission electron microscopy, and the working voltage was 200 kV, and elemental analysis was performed using an energy scattering X-ray analyzer equipped with the transmission electron microscope.
  • the TEM elemental analysis of the obtained catalyst is shown in Fig. 4, in which the upper left image shows the TEM phase diagram of the combination of molecular sieve and alumina, the upper middle image shows the Al element distribution, the upper right image shows the Si element distribution, and the lower left image shows the Mo element distribution , the middle and lower panels show the Sr element distribution.
  • the silicon-rich part corresponds to the mordenite
  • the aluminum-rich part corresponds to the alumina promoter.
  • Mo element is mainly distributed on the surface of the mordenite in the catalyst, while the Sr element (see the lower middle figure) is mainly distributed on the surface of the alumina promoter.
  • Modified molecular sieve and modified alumina were kneaded into molding, and calcined at 500°C for 6 hours to obtain catalyst B with molybdenum content of 3wt% and bismuth content of 5wt%.
  • the composition and properties of the obtained catalyst are shown in Table 1.
  • Catalyst I was prepared according to the method of Preparation Example 1, except that 18 grams of mordenite and 2 grams of ZSM-5 molecular sieve were mixed uniformly, and equal volumes were impregnated with ammonium molybdate and ammonium tungstate solutions. The composition and properties of the obtained catalyst are shown in Table 1.
  • Catalyst J was prepared according to the method of Preparation Example 1, except that 18 grams of mordenite and 2 grams of ZSM-5 molecular sieve were mixed uniformly and then impregnated with ammonium molybdate, ammonium tungstate and ammonium perrhenate solutions in equal volumes.
  • the composition and properties of the obtained catalyst are shown in Table 1.
  • Catalyst M was prepared according to the method of Preparation Example 1, except that 18 grams of mordenite and 2 grams of ZSM-5 molecular sieve were mixed uniformly and then immersed in an equal volume of ammonium molybdate solution.
  • the modified molecular sieve was prepared by calcining at 400°C for 3 hours in a mixed atmosphere of air and water vapor (volume ratio of air and water vapor: 20:1). The composition and properties of the obtained catalyst are shown in Table 1.
  • Catalyst N was prepared according to the method of Preparation Example 1, except that 18 grams of mordenite and 2 grams of ZSM-5 molecular sieve were mixed uniformly and then immersed in an equal volume of ammonium molybdate solution.
  • the modified molecular sieve was prepared by calcining at 400° C. for 3 hours in a mixed atmosphere of air and water vapor (the volume ratio of air and water vapor was 5:1). The composition and properties of the obtained catalyst are shown in Table 1.
  • Catalyst O was prepared according to the method of Preparation Example 1. The difference was that 18 grams of mordenite and 2 grams of ZSM-5 molecular sieve were mixed uniformly and then immersed in an equal volume of ammonium molybdate solution, and the obtained product was dried at 120 °C to obtain a modified molecular sieve. ; Take 7.7 grams of alumina to impregnate the same volume of strontium nitrate, dry at 150 ° C to obtain modified alumina; knead the modified molecular sieve and modified alumina into a shape, calcinate at 550 ° C for 2 hours to obtain a catalyst. The composition and properties of the obtained catalyst are shown in Table 1.
  • Catalyst P was prepared according to the method of Preparation Example 1, except that an equal volume of 20 grams of mordenite was impregnated with ammonium molybdate and ammonium tungstate solutions. The composition and properties of the obtained catalyst are shown in Table 1.
  • Catalyst Q was prepared according to the method of Preparation Example 1, except that an equal volume of 20 grams of ZSM-5 molecular sieve was impregnated with ammonium molybdate and ammonium tungstate solutions. The composition and properties of the obtained catalyst are shown in Table 1.
  • Catalyst R was prepared according to the method of Preparation Example 1, except that 20 grams of ⁇ molecular sieve was taken to impregnate the ammonium molybdate and ammonium tungstate solutions in an equal volume. The composition and properties of the obtained catalyst are shown in Table 1.
  • Catalyst S was prepared according to the method of Preparation Example 1, except that 20 grams of MCM-22 molecular sieves were taken and impregnated with ammonium molybdate and ammonium tungstate solutions in equal volumes. The composition and properties of the obtained catalyst are shown in Table 1.
  • Catalyst T was prepared according to the method of Preparation Example 1, except that equal volumes of 18 grams of MCM-22 molecular sieve and 2 grams of ZSM-5 molecular sieve were impregnated with ammonium molybdate and ammonium tungstate solutions.
  • the composition and properties of the obtained catalyst are shown in Table 1.
  • Catalyst U was prepared according to the method of Preparation Example 1, except that the same amount of kaolin was used instead of alumina as the oxide assistant.
  • the composition and properties of the obtained catalyst are shown in Table 1.
  • Examples 1-2 illustrate the use of conventional catalysts to implement the treatment method of the present application, wherein, unless otherwise specified, all catalysts used are prepared by conventional methods known in the prior art.
  • the catalytically cracked gasoline enters the aromatization unit after desulfurization and denitrification, and aromatization reaction occurs, and the product is cut into C 4 -components , C 5 components according to the boiling range, C6 - C7 components, C8 components and C9 + components.
  • the C 4 -component in the product is used as the cracking raw material for steam cracking; the C 5 component has low olefin content and high isoparaffin, and is used as a blending component of high-quality light gasoline; the C 8 component is removed from the non-aromatic cracking unit to obtain high-purity C8 aromatics; C6 - C7 and C9 + components de-cracking and aromatics conversion unit to increase the production of light hydrocarbons and C8 aromatics.
  • the C 4 -components produced by the cracking and aromatics conversion unit are used as steam cracking raw materials, the C 5 components are used as high-quality light gasoline blending components for light gasoline blending, and the C 8 components are removed from the non-aromatic cracking unit to obtain high-purity C8 aromatics, The unreacted C6 - C7 and C9 + components are recycled back to the cracking and aromatics conversion unit.
  • the non-aromatic hydrocarbon cracking unit further cracks the non-aromatic hydrocarbons in the C8 components to produce high-purity C8 aromatics and cracked light hydrocarbons, of which the C8 aromatics are recovered as products, the C4 - components are used as steam cracking raw materials, and the C5 components are used as high-quality Light gasoline blending components, C 6 + heavy components are partially or fully recycled back to the cracking and aromatics conversion unit.
  • the catalyst used in the aromatization unit is a Zn-modified ZSM-5 molecular sieve, wherein the Zn content (calculated as a metal element) is 2% by weight, the ZSM-5 molecular sieve content is 70% by weight, the balance is alumina, and the reaction temperature is 500 °C, the reaction pressure is 0.5MPa, the feed weight hourly space velocity is 1.5h -1 ;
  • the catalyst used in the cracking and aromatics conversion unit is Pt-modified mordenite, wherein the Pt content (in terms of metal elements) is 0.05wt%, and the mordenite content is 70% by weight, the balance is alumina, the reaction temperature is 350°C, the reaction pressure is 3.0MPa, the weight hourly space velocity of the feed is 3.0h -1 , the molar ratio of hydrogen to hydrocarbon is 3.0;
  • the catalyst used in the non-aromatic hydrocarbon cracking unit is ZSM-5 molecular sieve catalyst, The reaction temperature was 450°C, the reaction pressure was
  • the catalytically cracked gasoline (100 tons/hour) enters the aromatization unit after desulfurization and denitrification, and the aromatization reaction occurs, and the product is cut into C 4 -components , C 5 components according to the boiling range, C6 - C7 components, C8 components and C9 + components.
  • the C 4 -component in the product is used as a cracking raw material for steam cracking; the C 5 component has low olefin content and high isoparaffin, and is used as a high-quality light gasoline blending component for light gasoline blending; C 8 component is obtained from a dearomatic extraction unit High-purity C8 aromatics; C 6 -C 7 and C 9 + components decracking and aromatics conversion unit to increase the production of light hydrocarbons and C 8 aromatics.
  • the C 4 -component by - product of the cracking and aromatics conversion unit is used as the raw material for steam cracking
  • the C 5 component is used as the blending component of high-quality light gasoline
  • the C 8 component is used to obtain high-purity C8 aromatics from the dearomatic extraction unit, and the unreacted C
  • the 6 - C7 and C9 + components are recycled back to the cracking and aromatics conversion unit.
  • the aromatic hydrocarbon extraction unit separates the aromatic hydrocarbons and non-aromatic hydrocarbons in the C 8 component, wherein the C 8 aromatic hydrocarbons are extracted as products, and part or all of the non-aromatic hydrocarbons are recycled back to the cracking and aromatic hydrocarbon conversion unit.
  • the catalyst used in the aromatization unit is Zn-modified ZSM-5 molecular sieve, wherein the Zn content (calculated as metal element) is 3% by weight, the ZSM-5 molecular sieve content is 70% by weight, the balance is alumina, and the reaction temperature is 450 °C °C, the reaction pressure is 1.0MPa, the feed weight hourly space velocity is 1.0h -1 ;
  • the catalyst used in the cracking and aromatics conversion unit is Mo-modified beta zeolite, wherein the Mo content (in terms of metal elements) is 4wt%, and the beta zeolite content is 70% % by weight, the balance is alumina, the reaction temperature is 380° C., the reaction pressure is 3.0 MPa, the weight hourly space velocity of the feed is 3.0 h ⁇ 1 , and the molar ratio of hydrogen to hydrocarbon is 3.0.
  • Example 1 Example 2 raw material FCC gasoline FCC gasoline Sulfur content, ppm-wt 4 2 Nitrogen content, ppm-wt 2 0.5 Aromatics, wt% 35 20 Olefin, wt% 25 36 Alkanes, wt% 40 44 Distillation range, °C 70-200 50-180
  • Example 1 Example 2 reaction unit aromatization unit temperature, °C 500 450 pressure, MPa 0.5 1.0 Weight hourly airspeed, h -1 1.5 1.0 Cracking and Aromatics Conversion Unit temperature, °C 350 380 pressure, MPa 3.0 3.0 Weight hourly airspeed, h -1 3.0 3.0 Molar ratio of hydrogen to hydrocarbon 3.0 3.0 non-aromatic cleavage unit temperature, °C 450 pressure, MPa 3.0 Weight hourly airspeed, h -1 1.0 Molar ratio of hydrogen to hydrocarbon 4.0 steam cracking unit temperature, °C 850 850
  • Example 1 Example 2 product Output, t/h Output, t/h vinyl 18 25 acrylic 15 13 C8 Aromatics 45 40 light gasoline 7 8 C 10+ 2 1 other 13 13
  • the method of the present application can be applied to treat gasoline components of different compositions, and the yield of olefins and C8 aromatics in the product can reach 70-80%.
  • the catalysts A-U obtained in the preparation examples 1-18 were placed in the reactor respectively, and the hydrogen was passed through for reduction at 450 ° C for 3 hours, and then the gasoline feedstock was treated according to the method of Example 1.
  • the aromatic hydrocarbon conversion catalysts were replaced by catalysts A-U respectively, and the remaining operating conditions were unchanged. The results are shown in Table 5.
  • the gasoline feedstock was treated according to the method of Example 10, except that the steam cracking unit used in Example 10 was replaced by a dehydrogenation reaction unit, and the dehydrogenation catalyst used was Cr 2 O 3 modified alumina, wherein the Cr content (in Metal elements) 8wt%, the balance is alumina, the dehydrogenation reaction temperature is 560°C, the reaction pressure is 0.8MPa, the feed weight hourly space velocity is 2h -1 , and other operating conditions remain unchanged.
  • the results are shown in Table 5.
  • Example 3 Example 4 Example 5 product Output, t/h Output, t/h Output, t/h vinyl 20 twenty two twenty three acrylic 15 16 17 C8 Aromatics 48 48 46 light gasoline 5 4 3 C 10+ 2.0 1.5 1 other 10 8.5 10
  • Example 6 Example 7
  • Example 8 product Output, t/h Output, t/h Output, t/h vinyl twenty three twenty one twenty two acrylic 16 17 16
  • Example 11 product Output, t/h Output, t/h Output, t/h vinyl twenty four twenty two twenty three acrylic 16 15 15 C8 Aromatics 46 51 50 light gasoline 3 4 4 C 10+ 1.3 1.2 1.1 other 9.7 6.8 6.9
  • Example 12 Example 13
  • Example 14 product Output, t/h Output, t/h Output, t/h vinyl twenty two twenty one twenty one acrylic 16 15 15 C8 Aromatics 51 52 48 light gasoline 3 4 5 C 10+ 1 0.8 1.8 other 7 7.2 9.2
  • Example 16 Example 17 product Output, t/h Output, t/h Output, t/h vinyl 20 25 18 acrylic 13 18 12 C8 Aromatics 51 42 52 light gasoline 4 3 6 C 10+ 2 0.4 3 other 10 11.6 9
  • Example 18 Example 19 Example 20 product Output, t/h Output, t/h Output, t/h vinyl 17 twenty one twenty two acrylic 13 14 15 C8 Aromatics 53 50 48 light gasoline 6 5 6 C 10+ 2 1.6 1.3 other 9 8.4 7.7
  • Example 21 product Output, t/h vinyl twenty three acrylic 13 C8 Aromatics 51 light gasoline 4 C 10+ 1.2 other 7.8
  • the use of the aromatics conversion catalyst of the present application can further improve the total yield of olefins and C8 aromatics, and in the preferred version (C8 aromatics+ethylene+propylene) The total yield can reach more than 89wt%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

公开了一种汽油组分的处理方法和系统,所述方法包括如下步骤:a)使汽油组分在芳构化单元中反应,并对反应产物进行分离,得到C4-组分,C5组分,C6-C7组分,C8组分及C9 +组分;b)使所得的C6-C7组分和C9 +组分在裂解与芳烃转化单元中反应,并对反应产物进行分离,得到C4-组分,C5组分,C6-C7组分,C8组分及C9 +组分;以及c)将步骤b)所得的C6-C7组分和C9 +组分中的至少一者的至少一部分再循环到步骤b)的裂解与芳烃转化单元中继续反应。所述方法和系统可有效地将汽油组分定向转化为C8芳烃,并副产低碳烯烃及高品质轻质汽油,实现高效的综合利用。

Description

一种汽油组分的处理方法和系统
相关申请的交叉引用
本申请要求2020年10月22日提交的、申请号为202011138771.9、名称为“一种汽油组分的处理系统和处理方法”的专利申请的优先权,其内容经此引用全文并入本文。
技术领域
本申请涉及烃类的加工,具体涉及一种汽油组分的处理方法和系统。
背景技术
芳烃是石油化工的基础原料,对二甲苯是最主要的芳烃产品,近年来国内对二甲苯供应缺口达1000多万吨/年,加快芳烃产业的发展对我国基础化工产业的发展至关重要。工业装置中主要是以石脑油为原料,通过催化重整过程生产芳烃,然后再通过异构化及烷基转移单元将甲苯/苯与C9 +A转化为二甲苯。此外,我国生产低碳烯烃的蒸汽裂解装置同样主要以石脑油为原料,导致芳烃烯烃生产原料相互竞争,芳烃、烯烃原料成本居高不下。因此,寻找更低成本及多样化的芳烃、烯烃生产原料是未来解决芳烃、烯烃产业发展的关键因素。
随着来我国新能源技术的应用推广及汽油的升级,未来车用汽油需求量将呈下降趋势,汽油市场将出现供大于求的矛盾。因此,将部分劣质汽油定向转化为高价值的C8芳烃是拓宽汽油利用的有效途径,同时可缓解对二甲苯生产原料紧张的局面。
CN1923965公开了一种催化裂化汽油制取乙烯、丙烯和芳烃的方法,将原料与催化剂一次接触转化为乙烯、丙烯和芳烃的混合物。
含非芳烃的烃类原料转化为芳烃主要通过芳构化技术实现,将低碳烯烃、烷烃通过复杂的芳构化过程来生产芳烃,从而实现芳烃生产原料的多元化,其产物分布与原料结构密切相关,主要产物有苯、甲苯、C8芳烃、重芳烃及非芳烃组分。因此,单纯通过芳构化技术较难定向增产高纯度C8芳烃。而采用芳烃烷基转移技术可将苯、甲苯及重芳烃最大化转化为C8芳烃,同时副产部分轻烃,如CN1122571公开 了一种含贵金属的分子筛催化剂,该催化剂以10-80%(重量)丝光沸石或β分子筛和0-70%(重量)的ZSM-5,5-90%(重量)的γ-Al2O3为载体,负载0.001-0.5重量份铂及0.01-10.0重量份锡或0.01-7.0重量份铅。
US2008/0026931A1公开了一种含酸性分子筛及铼、锡、褚金属组分的催化剂,用于重芳烃烷基转移,具有较高活性及较低的环损率。
用于生产芳烃产品为目标的过程,获得高纯度产品至关重要,芳烃装置主要通过抽提或精馏过程进行芳烃和非芳烃的分离,而通过化学裂解过程将非芳烃组成裂解为小分子轻烃,也可提高芳烃产品的纯度。
US 3,729,409提出与芳烃混合的非芳烃在催化剂的存在下通过加氢裂解反应而转化成低碳烷烃,通过汽-液分离器可从非芳烃中分离出芳烃。
然而,现有技术的方法仍然存在汽油组分综合利用程度和产品价值不高的问题。
发明内容
本申请的目的是提供一种新颖的汽油组分处理方法和系统,该方法和系统可有效拓展芳烃、烯烃生产原料,实现汽油组分的高效综合利用。
为了实现上述目的,一方面,本申请提供了一种汽油组分的处理方法,包括如下步骤:
I)使汽油组分在芳构化单元中反应,并对反应产物进行分离,得到C 4 -组分,C 5组分,C 6-C 7组分,C 8组分及C 9 +组分,其中所述芳构化单元中发生的反应包括芳构化反应;
II)使步骤I)中得到的C 6-C 7组分和C 9 +组分在裂解与芳烃转化单元中反应,并对反应产物进行分离,得到C 4 -组分,C 5组分,C 6-C 7组分,C 8组分及C 9 +组分,其中所述裂解与芳烃转化单元中发生的反应包括非芳烃裂解反应和烷基转移反应;
III)可选地,对步骤I)和步骤II)中得到的C 8组分中的至少一者进行提纯处理,并分离得到C 4 -组分,C 5组分,C 6-C 7组分,C 8芳烃和C 9 +组分;
IV)可选地,对步骤I)、步骤II)和步骤III)中得到的C 4 -组分中的至少一者的至少一部分进行蒸汽裂解或脱氢反应;
V)可选地,将步骤I)、步骤II)和步骤III)中得到的C 5组分中的至少一者的至少一部分用于汽油调和;以及
VI)将步骤II)中得到的C 6-C 7组分和C 9 +组分、以及步骤III)中得到的C 6-C 7组分和C 9 +组分中的至少一者的至少一部分再循环到步骤II)的裂解与芳烃转化单元中继续反应。
另一方面,本申请提供了一种汽油组分的处理方法,包括如下步骤:
1)使汽油组分在芳构化催化剂存在下反应,并对反应产物进行分离,得到C 4 -组分,C 5组分,C 6-C 7组分,C 8组分及C 9 +组分;
2)使步骤1)中得到的C 6-C 7组分和C 9 +组分在芳烃转化催化剂存在下反应,并对反应产物进行分离,得到C 4 -组分,C 5组分,C 6-C 7组分,C 8组分及C 9 +组分;
3)可选地,对步骤1)和步骤2)中得到的C 8组分中的至少一者进行提纯处理,并分离得到C 4 -组分,C 5组分,C 6-C 7组分,C 8芳烃和C 9 +组分;
4)可选地,对步骤1)、步骤2)和步骤3)中得到的C 4 -组分中的至少一者的至少一部分进行蒸汽裂解或脱氢反应;
5)可选地,将步骤1)、步骤2)和步骤3)中得到的C 5组分中的至少一者的至少一部分用于汽油调和;以及
6)将步骤2)中得到的C 6-C 7组分和C 9 +组分、以及步骤3)中得到的C 6-C 7组分和C 9 +组分中的至少一者的至少一部分再循环到步骤2)中在芳烃转化催化剂存在下继续反应。
再一方面,本申请提供了用于实施本申请的汽油组分处理方法的系统,包括:
芳构化单元,其用于使汽油组分在其中反应,并对反应产物进行分离,得到C 4 -组分,C 5组分,C 6-C 7组分,C 8组分及C 9 +组分;
裂解与芳烃转化单元,其用于使芳构化单元获得的所述C 6-C 7组分及C 9 +组分在其中反应,并对反应产物进行分离,得到C 4 -组分,C 5组分,C 6-C 7组分,C 8组分及C 9 +组分;
可选的芳烃提纯单元,其用于对芳构化单元和裂解与芳烃转化单 元获得的C 8组分中的至少一者进行提纯处理,并分离得到C 4 -组分、C 5组分、C 6-C 7组分,C 8芳烃和C 9 +组分;
可选的轻烃转化单元,其用于对芳构化单元、裂解与芳烃转化单元和可选的芳烃提纯单元获得的C 4 -组分中的至少一者的至少一部分进行蒸汽裂解或脱氢反应;以及
可选的轻质汽油调和单元,其用于使用芳构化单元、裂解与芳烃转化单元和可选的芳烃提纯单元获得的C 5组分中的至少一者的至少一部分进行汽油调和。
本申请的方法和系统中,含非芳烃的汽油组分经芳构化单元增产混合芳烃产物,同时副产低烯烃含量、高异构烷烃含量的非芳烃;贫含C8芳烃的C 6-C 7组分和C 9 +组分再经裂解与芳烃转化单元将其中的苯、甲苯及C 9 +芳烃定向转化为C8芳烃,同时非芳烃轻度裂解为低碳烃。可选地,最后进一步通过芳烃提纯单元提纯C8芳烃产物,获得高纯度C8芳烃。副产的C 4及以下烃类可作为优质的蒸汽裂解或脱氢反应原料,副产的C 5组分具有低烯烃比例及高异构烷烃比例的特点,可作为优质的汽油调和材料。该工艺可有效将汽油组分(如催化汽油组分、LPG)定向转化为C8芳烃,并副产低碳烯烃及高品质轻质汽油,实现高效的综合利用。
通过本申请的方法,以重量百分含量计,所述芳构化单元反应产物中芳烃含量较原料提高15%以上,优选25%以上;所述裂解与芳烃转化单元产物中C8芳烃含量较原料提高20%以上,优选25%以上。可选地,所述芳烃提纯单元为萃取分离或非芳烃选择性裂解反应单元,所述芳烃提纯单元的C8芳烃产物纯度可达99%以上。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1是本申请方法的一种优选实施方式的流程示意图;
图2是本申请方法的另一种优选实施方式的流程示意图;
图3显示了本申请制备实施例1所得催化剂的NH 3-TPD谱图;以及
图4显示了本申请制备实施例1所得催化剂的TEM图。
具体实施方式
以下结合附图对本申请的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
在本文中所披露的任何具体数值(包括数值范围的端点)都不限于该数值的精确值,而应当理解为还涵盖了接近该精确值的值,例如在该精确值±5%范围内的所有可能的数值。并且,对于所披露的数值范围而言,在该范围的端点值之间、端点值与范围内的具体点值之间,以及各具体点值之间可以任意组合而得到一个或多个新的数值范围,这些新的数值范围也应被视为在本文中具体公开。
除非另有说明,本文所用的术语具有与本领域技术人员通常所理解的相同的含义,如果术语在本文中有定义,且其定义与本领域的通常理解不同,则以本文的定义为准。
在本申请中,术语“汽油组分”是指沸程在汽油沸程范围(通常为30-205℃)内的组分,包括但不限于催化裂化汽油、加氢裂解汽油、乙烯裂解汽油、催化重整产物、直馏汽油、LPG,它们的任意混合物,或者其部分馏分。
在本申请中,C 4 -组分是指沸点低于30℃的烃类组分;C 5组分是指沸点在30℃至低于70℃范围内的烃类组分;C 6-C 7组分是指沸点在70℃至低于130℃范围内的烃类组分;C 8组分是指沸点在130℃至145℃范围内的烃类组分;而C 9 +组分是指沸点高于145℃的烃类组分。
本申请中,高纯C8芳烃指的是纯度达到或高于对二甲苯吸附分离或对二甲苯结晶分离单元对C8芳烃原料的纯度要求的C8芳烃,例如纯度高于99%。
在本申请中,术语“酸性分子筛”具有本领域通常理解的含义,指具有B酸和/或L酸性位点的分子筛。
在本申请中,催化剂的中强酸量按照NH 3-TPD谱图在200-400℃区间内的峰面积计算得到;中强酸量占总酸量的比例为NH 3-TPD谱图 在200-400℃区间内的峰面积与100-600℃区间内的总峰面积的比值。
在本申请中,如无相反表示,所给压力均为表压。
本申请中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此形成的技术方案或技术思想均视为本申请原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合明显不合理。
在本文中提及的所有专利和非专利文献,包括但不限于教科书和期刊文章等,均通过引用方式全文并入本文。
如上所述,在第一方面,本申请提供了一种汽油组分的处理方法,包括如下步骤:
I)使汽油组分在芳构化单元中反应,并对反应产物进行分离,得到C 4 -组分,C 5组分,C 6-C 7组分,C 8组分及C 9 +组分,其中所述芳构化单元中发生的反应包括芳构化反应;
II)使步骤I)中得到的C 6-C 7组分和C 9 +组分在裂解与芳烃转化单元中反应,并对反应产物进行分离,得到C 4 -组分,C 5组分,C 6-C 7组分,C 8组分及C 9 +组分,其中所述裂解与芳烃转化单元中发生的反应包括非芳烃裂解反应和烷基转移反应;
III)可选地,对步骤I)和步骤II)中得到的C 8组分中的至少一者进行提纯处理,并分离得到C 4 -组分,C 5组分,C 6-C 7组分,C 8芳烃和C 9 +组分;
IV)可选地,对步骤I)、步骤II)和步骤III)中得到的C 4 -组分中的至少一者的至少一部分进行蒸汽裂解或脱氢反应;
V)可选地,将步骤I)、步骤II)和步骤III)中得到的C 5组分中的至少一者的至少一部分用于汽油调和;以及
VI)将步骤II)中得到的C 6-C 7组分和C 9 +组分、以及可选的步骤III)中得到的C 6-C 7组分和C 9 +组分中的至少一者的至少一部分再循环到步骤II)的裂解与芳烃转化单元中继续反应。
在第二方面,本申请提供了一种汽油组分的处理方法,包括如下步骤:
1)使汽油组分在芳构化催化剂存在下反应,并对反应产物进行分 离,得到C 4 -组分,C 5组分,C 6-C 7组分,C 8组分及C 9 +组分;
2)使步骤1)中得到的C 6-C 7组分和C 9 +组分在芳烃转化催化剂存在下反应,并对反应产物进行分离,得到C 4 -组分,C 5组分,C 6-C 7组分,C 8组分及C 9 +组分;
3)可选地,对步骤1)和步骤2)中得到的C 8组分中的至少一者进行提纯处理,并分离得到C 4 -组分,C 5组分,C 6-C 7组分,C 8芳烃和C 9 +组分;
4)可选地,对步骤1)、步骤2)和步骤3)中得到的C 4 -组分中的至少一者的至少一部分进行蒸汽裂解或脱氢反应;
5)可选地,将步骤1)、步骤2)和步骤3)中得到的C 5组分中的至少一者的至少一部分用于汽油调和;以及
6)将步骤2)中得到的C 6-C 7组分和C 9 +组分、以及可选的步骤3)中得到的C 6-C 7组分和C 9 +组分中的至少一者的至少一部分再循环到步骤2)中在芳烃转化催化剂存在下继续反应。
根据本申请,在步骤I)和步骤1)、步骤II)和步骤2)、以及步骤III)和步骤3)中进行的各组分的分离都是按照沸点通过蒸馏、精馏或者分馏方式将含烃混合物分离成具有相应沸点或者沸程的组分,所用的具体操作和条件是本领域技术人员根据所需分离的目标组分容易确定的,在此不再赘述。
在优选的实施方式中,步骤I)和步骤1)中所用的汽油组分具有以下特征中的一个或多个:
沸程为40-250℃,优选沸程为50-200℃;
以重量百分含量计,芳烃含量为10-100%,优选为20-80%,更优选为20-35%;
以重量计,硫含量为2-4ppm;
以重量计,氮含量为0.5-2ppm;
以重量计,烯烃含量为20-40重量%;以及
以重量计,烷烃含量为40-45重量%。
在优选的实施方式中,步骤I)和步骤1)所用的汽油组分选自催化裂化汽油、加氢裂解汽油、乙烯裂解汽油、催化重整产物、直馏汽油、LPG或者它们的任意混合物,或其部分馏分。
根据上述优选实施方式的汽油组分采用本申请的方法处理能够得 到更高效的利用。
本申请中,步骤I)的芳构化单元中所用的芳构化催化剂和步骤1)中所用的芳构化催化剂可以为常规选择,例如包含50-90重量%的分子筛和0.5-10重量%的改性金属(以金属计),所述分子筛选自具有十元环或十二元环孔结构的硅铝酸盐,硅铝镓盐,硅磷铝,硅铝铁盐等。所述改性金属选自IB族、IIB族、VIB族、VIIB族、VIII族金属,优选自Zn、Mo、Ga、Pt金属。优选地,所述芳构化催化剂所用的分子筛为ZSM-5,改性金属为Zn和Ga。
在优选的实施方式中,步骤I)和步骤1)的反应条件包括:反应温度400-600℃、反应压力0.2-3MPa、进料空速0.5-5h -1
本申请中,步骤II)的裂解与芳烃转化单元中所用的芳烃转化催化剂和步骤1)所用的芳烃转化催化剂可以为常规选择,例如包含50-90重量%的分子筛和0.05-10重量%的改性金属,所述分子筛选自具有八元环、十元环或十二元环孔结构的硅铝酸盐、硅磷铝盐,优选ZSM-5分子筛,ZSM-12分子筛、MOR分子筛,β分子筛。所属改性金属组分选自VB族、VIB族、VIIB族、VIII族金属或金属氧化物。
在优选的实施方式中,所述芳烃转化催化剂包含酸性分子筛组分、氧化物助剂、第一金属组分(其可以为金属和/或金属氧化物形式),和第二金属组分(其可以为金属和/或金属氧化物形式),其中,所述第一金属组分中的第一金属选自VB族金属、VIB族金属和VIIB族金属中的一种或多种,所述第二金属组分中的第二金属为与第一金属不同的金属,第一金属组分固载在所述酸性分子筛组分上,所述催化剂的中强酸酸量为0.05-2.0mmol/g催化剂,中强酸酸量占总酸量的比例为60-99%。
在优选的实施方式中,所述催化剂的中强酸酸量为0.1-1mmol/g,中强酸酸量占总酸量的比例为68-92%。
本申请中使用VB、VIB和VIIB族金属作为芳烃转化催化剂的第一金属组分,具有反应活性高、芳烃损失低等优势。在优选的实施方式,所述第一金属选自Mo、Re、W,或者它们的组合。在进一步优选的实施方式中,所述第一金属为Mo、Re和W中的至少两种,且以金属元素计,二者的混合重量比例为0.1-10∶1;或者为Mo、Re和W三者的组合,且以金属元素计,Mo、Re与W的重量比为1∶0.1-0.4∶0.1-0.6。
根据本申请,所述第二金属的种类可在较宽范围内进行选择,不同于第一金属的金属均可以用于本申请,优选所述第二金属选自IA族金属、IIA族金属、IIIA族金属、IVA族金属、VA族金属、镧系金属,或者它们的组合,更优选选自Sr、Bi、Ce、Zr、Ge,或者它们的组合。
在优选的实施方式中,第一金属组分通过物理混合和/或化学键作用固载在所述酸性分子筛组分上。
在优选的实施方式中,第二金属组分固载在氧化物助剂上,优选所述第二金属组分通过物理混合和/或化学键作用固载在氧化物助剂上。
在特别优选的实施方式中,所述第一金属组分通过物理混合和/或化学键作用固载在所述酸性分子筛组分上;且所述第二金属组分通过物理混合和/或化学键作用固载在氧化物助剂上。
本申请中,首次发现基于不同金属组分对芳烃转化反应过程的影响,调控催化剂上的负载金属分布,其中在分子筛表面固载具有较强加氢功能的VB、VIB、VIIB族金属,可以起到促进芳烃转化效率的作用,而在氧化物助剂上固载其它金属可以抑制氧化物助剂表面上发生芳烃加氢饱和副反应,由此大大提高了芳烃转化催化剂用于芳烃转化反应的转化效率和目标产物选择性。
根据本申请,所述酸性分子筛组分的种类可在较宽范围内进行选择,常用的酸性分子筛组分均可以用于本申请,优选选自具有八元环、十元环或十二元环孔结构特征的酸性分子筛;更优选选自ZSM-5分子筛、MCM-22分子筛、MOR分子筛、β分子筛、ZSM-12分子筛,或者它们的组合。
根据本申请,所述氧化物助剂的种类可在较宽范围内进行选择,常用的氧化物助剂均可以用于本申请,优选选自氧化铝、氧化镁、高岭土,或者它们的组合。
本申请中,芳烃转化催化剂的各组成含量可在较宽范围内进行选择,优选以催化剂总重量为100重量%计,所述酸性分子筛组分的含量为40-90重量%,氧化物助剂的含量为5-40重量%,第一金属组分的含量(以金属元素计)为0.01-20重量%,第二金属组分的含量(以金属元素计)为0.01-20重量%。
在优选的实施方式中,以芳烃转化催化剂总重量为100重量%计,所述酸性分子筛组分的含量为50-80重量%,氧化物助剂的含量为10-30 重量%,第一金属组分的含量为0.05-15重量%,第二金属组分的含量为0.05-15重量%。
满足本申请前述要求的芳烃转化催化剂均可以用于本申请,对其制备方法无特殊要求。在优选的实施方式中,所述芳烃转化催化剂通过如下步骤制备:a)将第一金属组分固载在酸性分子筛上;b)将第二金属组分固载在氧化物助剂上;以及c)将步骤a)的产物和步骤b)的产物进行捏合成型。
在更优选的实施方式中,所述芳烃转化催化剂通过包括如下步骤的方法制备:a)将第一金属源溶液浸渍酸性分子筛组分源,并进行第一热处理得到第一固体;b)将第二金属源溶液浸渍氧化物助剂源,并进行第二热处理得到第二固体;以及c)将所述第一固体与第二固体捏合、成型。在本申请中,所述浸渍可以是等体积浸渍、过饱和浸渍等形式,优选为过饱和浸渍。
在优选的实施方式中,第一热处理和第二热处理各自包括:焙烧,或者干燥和焙烧的组合。
在更优选的实施方式中,第一热处理和第二热处理各自包括干燥和焙烧的组合。
本申请中,所述干燥的条件可在较宽范围内进行选择,常用干燥条件均可以用于本申请,优选的干燥条件包括:温度为50-200℃,时间为1-30h。
本申请中,所述焙烧的条件可在较宽范围内进行选择,常用焙烧条件均可以用于本申请,优选的焙烧条件包括:在含氧气氛中于300-700℃下热处理1-30小时。
在优选的实施方式中,所述含氧气氛为空气与水蒸气的混合气体,二者体积比为5-100∶1。
本申请中,所述第一金属源可以为含VB、VIB、VIIB族金属的可溶性化合物。常用可溶性化合物均可以用于本申请,如硝酸盐、硫酸盐、氯化物(即盐酸盐)或铵盐,在此不进行赘述。
本申请中,所述第二金属源可以为含第二金属的可溶性化合物。常用可溶性化合物均可以用于本申请,如硝酸盐、硫酸盐、氯化物或铵盐,在此不进行赘述。
本申请中,所述酸性分子筛组分源例如可以为选自具有八元环、 十元环或十二元环孔结构特征的酸性分子筛,优选选自ZSM-5分子筛、MCM-22分子筛、MOR分子筛、β分子筛、ZSM-12分子筛,或者它们的组合。
本申请中,所述氧化物助剂源例如可以选自氧化铝、氧化镁、高岭土、它们的前驱体,或者它们的组合。
根据本申请,所述芳烃转化催化剂能够用于烷基芳烃的歧化与烷基转移反应,具有反应活性高、芳烃损失低等优势。
本申请的芳烃转化催化剂,在进行使用前,根据需要进行还原,还原的步骤无特殊要求,如通入氢气进行还原或通过其他还原剂进行还原反应,本申请在此不进行赘述。
在优选的实施方式中,步骤II)和步骤2)的反应条件包括:反应温度为250-500℃,反应压力为1.5-6.5MPa,氢烃摩尔比为1-10,进料重时空速为0.5-5h -1
在优选的实施方式中,步骤III)和步骤3)的提纯处理为芳烃萃取分离、非芳烃选择性裂解,或者它们的组合。
在某些进一步优选的实施方式中,所述提纯处理为采用基于环丁砜溶剂的抽提蒸馏进行的萃取分离。
本申请中,所述非芳烃选择性裂解所用的催化剂可以为常规选择,例如所述催化剂可以含有60-100重量%的至少一种选自具有八元环、十元环或十二元环结构的酸性分子筛,例如ZSM-5分子筛、MCM-22分子筛、MOR分子筛及β分子筛中的至少一种,并且可选地含有0.5-10重量%的选自VIB、VIIB及VIII族金属的金属组分。
在优选的实施方式中,所述非芳烃选择性裂解的操作条件包括:反应温度为300-600℃,反应压力为0.5-3.0MPa,氢烃摩尔比为1-10,进料重时空速为1-15h -1
在某些优选的实施方式中,步骤IV)和步骤4)中蒸汽裂解的操作条件包括:裂解反应温度为600-1000℃,停留时间为0.01-0.8秒,反应压力为0.1-0.3MPa。
在另一些优选的实施方式中,步骤IV)和步骤4)的脱氢反应在催化剂存在下进行,所述催化剂包含0.05-20重量%的选自Pt、Pd、Cr、Fe的金属组分,其余为选自氧化铝、二氧化硅、硅铝酸盐、氧化镁、氧化钙的载体;更优选地,所述脱氢反应的操作条件包括:反应温度 为500-600℃,重时空速为0.5-3.0h -1,反应压力0.3-1.5MPa。
在第二方面,本申请提供了用于实施本申请的汽油组分处理方法的系统,包括:
芳构化单元,其用于使汽油组分在其中反应,并对反应产物进行分离,得到C 4 -组分,C 5组分,C 6-C 7组分,C 8组分及C 9 +组分;
裂解与芳烃转化单元,其用于使芳构化单元获得的所述C 6-C 7组分及C 9 +组分在其中反应,并对反应产物进行分离,得到C 4 -组分,C 5组分,C 6-C 7组分,C 8组分及C 9 +组分;
可选的芳烃提纯单元,其用于对芳构化单元和裂解与芳烃转化单元获得的C 8组分中的至少一者进行提纯处理,并分离得到C 4 -组分、C 5组分、C 6-C 7组分,C 8芳烃和C 9 +组分;
可选的轻烃转化单元,其用于对芳构化单元、裂解与芳烃转化单元和可选的芳烃提纯单元获得的C 4 -组分中的至少一者的至少一部分进行蒸汽裂解或脱氢反应;以及
可选的轻质汽油调和单元,其用于使用芳构化单元、裂解与芳烃转化单元和可选的芳烃提纯单元获得的C 5组分中的至少一者的至少一部分进行汽油调和。
在某些具体实施方式中,所述芳构化单元设有汽油组分入口,C 4 -组分出口,C 5组分出口,C 6-C 7组分出口,C 8组分出口及C 9 +组分出口;
所述裂解与芳烃转化单元设有入口,C 4 -组分出口,C 5组分出口,C 6-C 7组分出口,C 8组分出口及C 9 +组分出口;
所述芳烃提纯单元设有入口、C 4 -组分出口、C 5组分出口、C 6-C 7组分出口,C 8芳烃出口及C 9 +组分出口;
所述轻烃转化单元设有入口和转化产物出口;
所述轻质汽油调和单元设有入口和调和汽油出口,
其中所述芳构化单元的C 6-C 7组分出口及C 9 +组分出口与所述裂解与芳烃转化单元的入口连通,
可选地,所述芳构化单元的C 8组分出口和裂解与芳烃转化单元的C 8组分出口中的至少一者与所述芳烃提纯单元的入口连通,所述芳构化单元的C 4 -组分出口、裂解与芳烃转化单元的C 4 -组分出口和芳烃提纯单元的C 4 -组分出口中的至少一者与所述轻烃转化单元的入口连通,
可选地,所述芳构化单元的C 5组分出口、裂解与芳烃转化单元的 C 5组分出口和芳烃提纯单元的C 5组分出口中的至少一者与所述轻质汽油调和单元的入口连通,以及
所述裂解与芳烃转化单元的C 6-C 7组分出口及C 9 +组分出口、和可选的芳烃提纯单元的C 6-C 7组分出口及C 9 +组分出口中的至少一者与所述裂解与芳烃转化单元的入口连通。
在优选的实施方式中,所述芳烃提纯单元可以是芳烃萃取分离单元、非芳烃选择性裂解单元或者它们的组合。
在优选的实施方式中,所述轻烃转化单元可以是蒸汽裂解单元、脱氢反应单元或者它们的组合。
根据本申请,所述的芳构化单元可以包括芳构化反应器和分离设备,其中所述芳构化反应器可以是本领域常用的固定床或移动床的形式,例如轴向固定床反应器;所述分离设备可以是本领域常用的蒸馏、精馏或分馏塔的形式,例如常压精馏塔或加压精馏塔。
根据本申请,所述的裂解与芳烃转化单元可以包括裂解与芳烃转化反应器和分离设备,其中所述裂解与芳烃转化反应器可以是本领域常用的固定床的形式,例如带中间冷激的固定床反应器或单段固定床反应器;所述分离设备可以是本领域常用的蒸馏、精馏或分馏塔的形式,例如常压精馏塔。
根据本申请,所述的芳烃萃取分离单元可以包括萃取分离器和分离设备,其中所述萃取分离器可以是本领域常用的液-液抽提器、抽提蒸馏塔等的形式,例如以环丁砜为溶剂的抽提蒸馏塔;所述分离设备可以是本领域常用的蒸馏、精馏或分馏塔的形式,例如常压精馏塔或加压精馏塔。
根据本申请,所述的非芳烃选择性裂解单元可以包括裂解反应器和分离设备,其中所述裂解反应器可以是本领域常用的固定床反应器的形式,例如径向固定床反应器,多段冷激式固定床反应器;所述分离设备可以是本领域常用的蒸馏、精馏或分馏塔的形式,例如常压精馏塔或加压精馏塔。
根据本申请,所述的蒸汽裂解单元可以是本领域常用的气体裂解炉的形式,例如超短停留时间裂解炉,短停留时间裂解炉。
根据本申请,所述的脱氢反应单元可以是本领域常用的脱氢反应器的形式,例如固定床反应器。
根据本申请,在优选的实施方式中,依据需要,将各个单元的进料口、出料口与相关单元的进料口、出料口采用连通管道进行连通,并且进一步优选地,在各个所述连通管线上各自独立设置阀门用于调节流量。
采用本申请的系统用于处理汽油组分可有效将汽油组分(如催化汽油组分、LPG)定向转化为C8芳烃,并副产低碳烯烃及高品质轻质汽油,实现高效的综合利用。
实施例
下面通过具体实施例对本申请做进一步说明,但并不构成对本申请的限制。
本申请的芳烃转化催化剂的制备实施例
以下制备实施例中所用试剂均为市售试剂,纯度为试剂纯。
以下制备实施例中,所得催化剂的NH 3-TPD谱图通过如下方法测量,具体方法如下:称取100mg破碎为20-40目的样品,在流通氮气下(30ml/min)以10℃/min的加热速率升温至500℃并恒温吹扫30分钟,热处理完成后降温至100℃,通入NH 3气进行吸附并保持氨气吸附10分钟,再切换至氩气(30ml/min)吹扫1小时后,以10℃/min的升温速率程序升温至600℃,用TCD检测流出物中NH 3浓度信号。
以下制备实施例中,所得催化剂的中强酸量按照NH 3-TPD谱图在200-400℃区间内的峰面积计算而得,中强酸量占总酸量的比例为NH 3-TPD谱图在200-400℃区间内的峰面积与100-600℃区间内的总峰面积的比值。
以下制备实施例中,所得催化剂的TEM照片通过高分辨场发射透射电子显微镜表征,工作电压为200kV,元素分析利用该透射电镜装备的能量散射X射线分析仪进行检测。
制备实施例1
取20克丝光沸石,过饱和浸渍钼酸铵溶液,所得产物经150℃喷雾干燥后,再在空气气氛及400℃下焙烧3小时得到改性分子筛。取7.7克氧化铝等体积浸渍硝酸锶,经150℃干燥10小时制得改性氧化铝。将改性分子筛与改性氧化铝捏合成型,550℃焙烧2小时制得钼含量为 1wt%、锶含量为1.0wt%的催化剂A,所得催化剂组成和性质见表1,所得催化剂的NH 3-TPD谱图如图3所示。
所得催化剂的TEM元素分析如图4所示,其中左上图显示了分子筛与氧化铝结合的TEM相图,中上图显示了Al元素分布,右上图为Si元素分布,左下图显示了Mo元素分布,中下图显示了Sr元素分布。根据所得催化剂的组成可知,富含硅的部分(见右上图)对应丝光沸石,而富含铝的部分(见中上图)对应氧化铝助剂,从Mo元素的分布(见左下图)可知,Mo元素主要分布于催化剂中丝光沸石的表面,而Sr元素(见中下图)主要分布于氧化铝助剂的表面。
制备实施例2
取15克丝光沸石与5克ZSM-5分子筛混合后,过饱和浸渍钼酸铵溶液,所得产物经120℃干燥10小时后,再在空气气氛及450℃下焙烧3小时制得改性分子筛。取7.7克氧化铝等体积浸渍硝酸铋,经120℃干燥10小时,然后于空气气氛及400℃下焙烧3小时制得改性氧化铝。将改性分子筛与改性氧化铝捏合成型,500℃焙烧6小时制得钼含量为3wt%、铋含量为5wt%的催化剂B,所得催化剂组成和性质见表1。
制备实施例3
取15克丝光沸石及5克ZSM-5分子筛混合均匀后,过饱和浸渍钼酸铵溶液,所得产物经120℃干燥10小时后,再在空气气氛及500℃下焙烧3小时制得改性分子筛。取7.7克氧化铝等体积浸渍硝酸铈,经120℃干燥10小时,然后于空气气氛及400℃下焙烧3小时制得改性氧化铝。将改性分子筛与改性氧化铝捏合成型,550℃焙烧2小时制得钼含量为13wt%、铈含量为8.0wt%的催化剂C,所得催化剂组成和性质见表1。
制备实施例4
取15克丝光沸石与5克ZSM-5分子筛混合后,过饱和浸渍钼酸铵溶液,所得产物经160℃快速喷雾干燥,然后经500℃焙烧3小时制得改性分子筛。取7.7克氧化铝等体积浸渍硝酸铋,经160℃干燥10小时,然后经空气气氛500℃焙烧3小时制得改性氧化铝。将改性分子筛与改性氧化铝捏合成型,500℃焙烧6小时制得钼含量为3wt%、铋含量为5wt% 的催化剂D,所得催化剂组成和性质见表1。
制备实施例5
取15克丝光沸石与5克ZSM-5分子筛混合后,过饱和浸渍钼酸铵溶液,所得产物经500℃焙烧3小时制得改性分子筛。取7.7克氧化铝等体积浸渍硝酸铋,经160℃干燥10小时,然后在空气气氛下500℃焙烧3小时制得改性氧化铝。将改性分子筛与改性氧化铝捏合成型,550℃焙烧3小时制得钼含量为3wt%、铋含量为5wt%的催化剂E,所得催化剂组成和性质见表1。
制备实施例6
取15克β分子筛及5克ZSM-5分子筛混合均匀,过饱和浸渍高铼酸铵溶液,所得产物经120℃干燥10小时后,再在空气气氛及500℃下焙烧3小时制得改性分子筛。取7.7克氧化铝等体积浸渍氯化锗,经120℃干燥10小时,然后在空气气氛及500℃下焙烧3小时制得改性氧化铝。将改性分子筛与改性氧化铝捏合成型,550℃焙烧2小时制得铼含量为1wt%、锗含量为3.0wt%的催化剂F,所得催化剂组成和性质见表1。
制备实施例7
取15克ZSM-12分子筛及5克ZSM-5分子筛混合均匀,然后等体积浸渍钼酸铵溶液,所得产物经120℃干燥10小时后,再在空气气氛及400℃下焙烧3小时制得改性分子筛。取4克氧化铝及3.5克氧化镁混合均匀,然后等体积浸渍氯化锆,经120℃干燥10小时,再在空气气氛及400℃下焙烧3小时制得改性氧化物。将改性分子筛与改性氧化物捏合成型,500℃焙烧4小时制得钼含量为8wt%、锆含量为5.0wt%的催化剂G,所得催化剂组成和性质见表1。
制备实施例8
按照制备实施例1的方法制备催化剂I,不同的是,取18克丝光沸石及2克ZSM-5分子筛混合均匀后等体积浸渍钼酸铵和钨酸铵溶液。所得催化剂组成和性质见表1。
制备实施例9
按照制备实施例1的方法制备催化剂J,不同的是,取18克丝光沸石及2克ZSM-5分子筛混合均匀后等体积浸渍钼酸铵、钨酸铵和高铼酸铵溶液。所得催化剂组成和性质见表1。
制备实施例10
按照制备实施例1的方法制备催化剂M,不同的是,取18克丝光沸石及2克ZSM-5分子筛混合均匀后等体积浸渍钼酸铵溶液,所得产物经120℃干燥10小时后,再在空气和水蒸气的混合气氛(空气与水蒸气的体积比20∶1)及400℃下焙烧3小时制得改性分子筛。所得催化剂组成和性质见表1。
制备实施例11
按照制备实施例1的方法制备催化剂N,不同的是,取18克丝光沸石及2克ZSM-5分子筛混合均匀后等体积浸渍钼酸铵溶液,所得产物经120℃干燥10小时后,再在空气和水蒸气的混合气氛(空气与水蒸气的体积比5∶1)及400℃下焙烧3小时制得改性分子筛。所得催化剂组成和性质见表1。
制备实施例12
按照制备实施例1的方法制备催化剂O,不同的是,取18克丝光沸石与2克ZSM-5分子筛混合均匀后等体积浸渍钼酸铵溶液,所得产物经120℃干燥后制得改性分子筛;取7.7克氧化铝等体积浸渍硝酸锶,经150℃干燥制得改性氧化铝;将改性分子筛与改性氧化铝捏合成型,550℃焙烧2小时制得催化剂。所得催化剂组成和性质见表1。
制备实施例13
按照制备实施例1的方法制备催化剂P,不同的是,取20克丝光沸石等体积浸渍钼酸铵和钨酸铵溶液。所得催化剂组成和性质见表1。
制备实施例14
按照制备实施例1的方法制备催化剂Q,不同的是,取20克ZSM-5 分子筛等体积浸渍钼酸铵和钨酸铵溶液。所得催化剂组成和性质见表1。
制备实施例15
按照制备实施例1的方法制备催化剂R,不同的是,取20克β分子筛等体积浸渍钼酸铵和钨酸铵溶液。所得催化剂组成和性质见表1。
制备实施例16
按照制备实施例1的方法制备催化剂S,不同的是,取20克MCM-22分子筛等体积浸渍钼酸铵和钨酸铵溶液。所得催化剂组成和性质见表1。
制备实施例17
按照制备实施例1的方法制备催化剂T,不同的是,取18克MCM-22分子筛及2克ZSM-5分子筛等体积浸渍钼酸铵和钨酸铵溶液。所得催化剂组成和性质见表1。
制备实施例18
按照制备实施例1的方法制备催化剂U,不同的是,以等量的高岭土替代氧化铝作为氧化物助剂。所得催化剂组成和性质见表1。
Figure PCTCN2021125584-appb-000001
Figure PCTCN2021125584-appb-000002
汽油组分处理方法的实施例
以下实施例1-2说明了采用常规催化剂实施本申请的处理方法,其中如未做特别说明,所用各催化剂均采用现有技术中已知的常规方法制备得到。
实施例1
参照图1所示的流程,催化裂化汽油(100吨/小时)经脱硫脱氮后进入芳构化单元发生芳构化反应,产物按沸程切割为C 4 -组分,C 5组分,C 6-C 7组分,C 8组分及C 9 +组分。产物中C 4 -组分作为裂解原料进行蒸汽裂解;C 5组分烯烃含量低、异构烷烃高,作为优质轻汽油调和组分;C 8组分去非芳烃裂解单元获得高纯C8芳烃;C 6-C 7及C 9 +组分去裂解与芳烃转化单元,增产轻烃及C 8芳烃。裂解与芳烃转化单元副产的C 4 -组分作为蒸汽裂解原料,C 5组分作为优质轻汽油调和组分进行轻质汽油调和,C 8组分去非芳烃裂解单元获得高纯C8芳烃,未反应完的C 6-C 7及C 9 +组分循环回裂解与芳烃转化单元。非芳烃裂解单元进一步裂解C 8组分中的非芳烃,生产高纯度C8芳烃及裂解轻烃,其中C 8芳烃作为产品采出,C 4 -组分作为蒸汽裂解原料,C 5组分作为优质轻汽油调和组分,C 6+重质组分部分或全部循环回裂解与芳烃转化单元。
芳构化单元所用的催化剂为Zn改性的ZSM-5分子筛,其中Zn含量(以金属元素计)2重量%,ZSM-5分子筛含量为70重量%,余量为氧化铝,反应温度为500℃,反应压力0.5MPa,进料重时空速1.5h -1;裂解与芳烃转化单元所用的催化剂为Pt改性的丝光沸石,其中Pt含量(以金属元素计)0.05wt%,丝光沸石含量为70重量%,余量为氧化铝,反应温度350℃,反应压力3.0MPa,进料重时空速3.0h -1,氢烃摩尔比3.0;非芳烃裂解单元所用的催化剂为ZSM-5分子筛催化剂,反应温度450℃,反应压力3.0MPa,进料重时空速1.0h -1,氢烃摩尔比4.0。
催化裂化汽油原料的性质如表2所示,各单元的反应条件如表3所示,联合装置的产品收率如表4所示。
实施例2
参照图2所示的流程,催化裂化汽油(100吨/小时)经脱硫脱氮 后进入芳构化单元发生芳构化反应,产物按沸程切割为C 4 -组分,C 5组分,C 6-C 7组分,C 8组分及C 9 +组分。产物中C 4 -组分作为裂解原料进行蒸汽裂解;C 5组分烯烃含量低、异构烷烃高,作为优质轻汽油调和组分进行轻质汽油调和;C 8组分去芳烃抽提单元获得高纯C8芳烃;C 6-C 7及C 9 +组分去裂解与芳烃转化单元,增产轻烃及C 8芳烃。裂解与芳烃转化单元副产的C 4 -组分作为蒸汽裂解原料,C 5组分作为优质轻汽油调和组分,C 8组分去芳烃抽提单元获得高纯C8芳烃,未反应完的C 6-C 7及C 9 +组分循环回裂解与芳烃转化单元。芳烃抽提单元分离C 8组分中的芳烃与非芳烃,其中C 8芳烃作为产品采出,非芳烃部分或全部循环回裂解与芳烃转化单元。
芳构化单元所用的催化剂为Zn改性的ZSM-5分子筛,其中Zn含量(以金属元素计)3重量%,ZSM-5分子筛含量为70重量%,余量为氧化铝,反应温度为450℃,反应压力1.0MPa,进料重时空速1.0h -1;裂解与芳烃转化单元所用的催化剂为Mo改性的β沸石,其中Mo含量(以金属元素计)4wt%,β沸石含量为70重量%,余量为氧化铝,反应温度380℃,反应压力3.0MPa,进料重时空速3.0h -1,氢烃摩尔比3.0。
催化裂化汽油原料的性质如表2所示,各单元的反应条件如表3所示,联合装置的产品收率如表4所示。
表2各实施例所用原料的性质
  实施例1 实施例2
原料 催化裂化汽油 催化裂化汽油
硫含量,ppm-wt 4 2
氮含量,ppm-wt 2 0.5
芳烃,wt% 35 20
烯烃,wt% 25 36
烷烃,wt% 40 44
馏程,℃ 70-200 50-180
表3实施例1-2的反应条件
  实施例1 实施例2
反应单元    
芳构化单元    
温度,℃ 500 450
压力,MPa 0.5 1.0
重时空速,h -1 1.5 1.0
     
裂解与芳烃转化单元    
温度,℃ 350 380
压力,MPa 3.0 3.0
重时空速,h -1 3.0 3.0
氢烃摩尔比 3.0 3.0
     
非芳裂解单元    
温度,℃ 450  
压力,MPa 3.0  
重时空速,h -1 1.0  
氢烃摩尔比 4.0  
     
蒸汽裂解单元    
温度,℃ 850 850
表4实施例1-2的试验结果
  实施例1 实施例2
产品 产量,t/h 产量,t/h
乙烯 18 25
丙烯 15 13
C8芳烃 45 40
轻质汽油 7 8
C 10 + 2 1
其他 13 13
如表4的试验结果所示,本申请的方法可适用于处理不同组成的汽油组分,产物中烯烃和C8芳烃的收率可达70-80%。
以下实施例3-20说明了采用本申请的芳烃转化催化剂实施本申请的处理方法。
实施例3-20
使用前将制备实施例1-18中得到的催化剂A-U分别置于反应器中,通氢气于450℃下还原3小时,然后按照实施例1的方法处理汽油原料,不同的是,实施例1所用的芳烃转化催化剂分别采用催化剂A-U代替,其余操作条件不变,结果见表5。
实施例21
按照实施例10的方法处理汽油原料,不同的是,实施例10所用的蒸汽裂解单元采用脱氢反应单元代替,所用的脱氢催化剂为Cr 2O 3改性的氧化铝,其中Cr含量(以金属元素计)8wt%,余量为氧化铝,脱氢反应温度560℃,反应压力0.8MPa,进料重时空速2h -1,其余操作条件不变,结果见表5。
表5实施例3-21的试验结果
  实施例3 实施例4 实施例5
产品 产量,t/h 产量,t/h 产量,t/h
乙烯 20 22 23
丙烯 15 16 17
C8芳烃 48 48 46
轻质汽油 5 4 3
C 10 + 2.0 1.5 1
其他 10 8.5 10
       
  实施例6 实施例7 实施例8
产品 产量,t/h 产量,t/h 产量,t/h
乙烯 23 21 22
丙烯 16 17 16
C8芳烃 47 48 48
轻质汽油 4 4 5
C 10 + 1.4 1.6 1
其他 8.6 8.4 8
       
  实施例9 实施例10 实施例11
产品 产量,t/h 产量,t/h 产量,t/h
乙烯 24 22 23
丙烯 16 15 15
C8芳烃 46 51 50
轻质汽油 3 4 4
C 10 + 1.3 1.2 1.1
其他 9.7 6.8 6.9
       
  实施例12 实施例13 实施例14
产品 产量,t/h 产量,t/h 产量,t/h
乙烯 22 21 21
丙烯 16 15 15
C8芳烃 51 52 48
轻质汽油 3 4 5
C 10 + 1 0.8 1.8
其他 7 7.2 9.2
       
  实施例15 实施例16 实施例17
产品 产量,t/h 产量,t/h 产量,t/h
乙烯 20 25 18
丙烯 13 18 12
C8芳烃 51 42 52
轻质汽油 4 3 6
C 10 + 2 0.4 3
其他 10 11.6 9
       
  实施例18 实施例19 实施例20
产品 产量,t/h 产量,t/h 产量,t/h
乙烯 17 21 22
丙烯 13 14 15
C8芳烃 53 50 48
轻质汽油 6 5 6
C 10 + 2 1.6 1.3
其他 9 8.4 7.7
       
  实施例21    
产品 产量,t/h    
乙烯 23    
丙烯 13    
C8芳烃 51    
轻质汽油 4    
C 10 + 1.2    
其他 7.8    
如表5的试验结果所示,采用本申请的芳烃转化催化剂可以进一步提高烯烃与C8芳烃的总收率,在优选方案中(C8芳烃+乙烯+丙烯)的总收率可达到89wt%以上。
以上详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (12)

  1. 一种汽油组分的处理方法,包括如下步骤:
    I)使汽油组分在芳构化单元中反应,并对反应产物进行分离,得到C 4 -组分,C 5组分,C 6-C 7组分,C 8组分及C 9 +组分,其中所述芳构化单元中发生的反应包括芳构化反应;
    II)使步骤I)中得到的C 6-C 7组分和C 9 +组分在裂解与芳烃转化单元中反应,并对反应产物进行分离,得到C 4 -组分,C 5组分,C 6-C 7组分,C 8组分及C 9 +组分,其中所述裂解与芳烃转化单元中发生的反应包括非芳烃裂解反应和烷基转移反应;
    III)可选地,对步骤I)和步骤II)中得到的C 8组分中的至少一者进行提纯处理,并分离得到C 4 -组分,C 5组分,C 6-C 7组分,C 8芳烃和C 9 +组分;
    IV)可选地,对步骤I)、步骤II)和步骤III)中得到的C 4 -组分中的至少一者的至少一部分进行蒸汽裂解或脱氢反应;
    V)可选地,将步骤I)、步骤II)和步骤III)中得到的C 5组分中的至少一者的至少一部分用于汽油调和;以及
    VI)将步骤II)中得到的C 6-C 7组分和C 9 +组分,以及可选的步骤III)中得到的C 6-C 7组分和C 9 +组分,中的至少一者的至少一部分再循环到步骤II)的裂解与芳烃转化单元中继续反应。
  2. 一种汽油组分的处理方法,包括如下步骤:
    1)使汽油组分在芳构化催化剂存在下反应,并对反应产物进行分离,得到C 4 -组分,C 5组分,C 6-C 7组分,C 8组分及C 9 +组分;
    2)使步骤1)中得到的C 6-C 7组分和C 9 +组分在芳烃转化催化剂存在下反应,并对反应产物进行分离,得到C 4 -组分,C 5组分,C 6-C 7组分,C 8组分及C 9 +组分;
    3)可选地,对步骤1)和步骤2)中得到的C 8组分中的至少一者进行提纯处理,并分离得到C 4 -组分,C 5组分,C 6-C 7组分,C 8芳烃和C 9 +组分;
    4)可选地,对步骤1)、步骤2)和步骤3)中得到的C 4 -组分中的至少一者的至少一部分进行蒸汽裂解或脱氢反应;
    5)可选地,将步骤1)、步骤2)和步骤3)中得到的C 5组分中 的至少一者的至少一部分用于汽油调和;以及
    6)将步骤2)中得到的C 6-C 7组分和C 9 +组分,以及可选的步骤3)中得到的C 6-C 7组分和C 9 +组分,中的至少一者的至少一部分再循环到步骤2)中在芳烃转化催化剂存在下继续反应。
  3. 根据权利要求1或2所述的方法,其中步骤I)或步骤1)中所用的汽油组分具有以下特征中的一个或多个:
    沸程为40-250℃,优选沸程为50-200℃;
    以重量计,具有10-100%、优选20-80%的芳烃含量;和
    选自催化裂化汽油、加氢裂解汽油、乙烯裂解汽油、催化重整产物、直馏汽油、LPG,或者它们的任意混合物,或其部分馏分。
  4. 根据权利要求1-3中任一项所述的方法,其中,以催化剂的重量计,步骤I)的芳构化单元中所用的芳构化催化剂或者步骤1)中所用的芳构化催化剂包含50-90重量%的分子筛和0.5-10重量%的改性金属,所述分子筛选自具有十元环或十二元环孔结构的硅铝酸盐,硅铝镓盐,硅磷铝,硅铝铁盐或者它们的组合,所述改性金属选自IB族、IIB族、VIB族、VIIB族和VIII族金属,优选选自Zn、Mo、Ga和Pt,
    优选地,步骤I)或步骤1)的反应条件包括:反应温度为400-600℃,反应压力为0.2-3MPa,进料重时空速为0.5-5h -1
  5. 根据权利要求1-4中任一项所述的方法,其中步骤II)的裂解与芳烃转化单元中所用的芳烃转化催化剂或者步骤2)中所用的芳烃转化催化剂包含酸性分子筛组分、氧化物助剂、固载在所述酸性分子筛组分上的第一金属组分、和第二金属组分,其中所述第一金属组分中的第一金属选自VB族金属、VIB族金属、VIIB族金属,或者它们的组合,所述第二金属组分中的第二金属为不同于所述第一金属的金属,所述催化剂的中强酸酸量为0.05-2.0mmol/g催化剂,中强酸酸量占总酸量的比例为60-99%,
    优选地,步骤II)或步骤2)的反应条件包括:反应温度为250-500℃,反应压力为1.5-6.5MPa,氢烃摩尔比为1-10,进料重时空速为0.5-5h -1
  6. 根据权利要求5所述的方法,其中,所述第一金属组分通过物理混合和/或化学键作用固载在所述酸性分子筛组分上;且所述第二金属组分通过物理混合和/或化学键作用固载在氧化物助剂上。
  7. 根据权利要求5或6所述的方法,其中,以催化剂的总重量计,所述芳烃转化催化剂具有40-90重量%的酸性分子筛组分含量,5-40重量%的氧化物助剂含量,0.01-20重量%的第一金属组分含量,和0.01-20重量%的第二金属组分含量。
  8. 根据权利要求5-7中任一项所述的方法,其中所述芳烃转化催化剂具有以下特征中的一个或多个:
    所述酸性分子筛组分选自具有八元环、十元环或十二元环孔结构特征的酸性分子筛组分,优选选自ZSM-5分子筛、MCM-22分子筛、MOR分子筛、β分子筛、ZSM-12分子筛,或者它们的组合;
    所述第一金属选自Mo、Re、W,或者它们的组合,优选地,所述第一金属为Mo、Re和W中两者的组合,其中以金属元素计两者的混合重量比例为0.1-10∶1,或者为Mo、Re和W三者的组合,其中以金属元素计Mo、Re与W的重量比为1∶0.1-0.4∶0.1-0.6;
    所述第二金属选自IA族金属、IIA族金属、IIIA族金属、IVA族金属、VA族金属、镧系金属,或者它们的组合,优选选自Sr、Bi、Ce、Zr、Ge,或者它们的组合;以及
    所述氧化物助剂选自氧化铝、氧化镁、高岭土,或者它们的组合。
  9. 根据权利要求1-8中任一项所述的方法,其中,步骤III)或步骤3)的所述提纯处理包括对所述C 8组分进行芳烃萃取分离、非芳烃选择性裂解或者它们的组合,
    优选地,所述提纯处理包括对所述C 8组分采用基于环丁砜溶剂的抽提蒸馏来进行萃取分离;或者
    优选地,所述提纯处理包括使所述C 8组分在催化剂存在下进行非芳烃选择性裂解,所述催化剂含有选自ZSM-5分子筛、MCM-22分子筛、MOR分子筛、β分子筛,或者它们的组合的分子筛组分,且可选地含有选自VIB族金属、VIIB族金属及VIII族金属的金属组分;
    进一步优选地,所述非芳烃选择性裂解的操作条件包括:反应温度为300-600℃,反应压力为0.5-3.0MPa,氢烃摩尔比为1-10,进料重时空速为1-15h -1
  10. 根据权利要求1-9中任一项所述的方法,其中,步骤IV)或步骤4)的蒸汽裂解的操作条件包括:裂解反应温度为600℃-1000℃,停留时间为0.01-0.8秒,反应压力0.1-0.3MPa;或者
    步骤IV)或步骤4)中的脱氢反应的操作条件包括:反应温度为400-700℃,重时空速为0.5-10,反应压力0.1-2MPa。
  11. 用于实施权利要求1-10中任一项所述的汽油组分处理方法的系统,包括:
    芳构化单元,其用于使汽油组分在其中反应,并对反应产物进行分离,得到C 4 -组分,C 5组分,C 6-C 7组分,C 8组分及C 9 +组分;
    裂解与芳烃转化单元,其用于使芳构化单元获得的所述C 6-C 7组分及C 9 +组分在其中反应,并对反应产物进行分离,得到C 4 -组分,C 5组分,C 6-C 7组分,C 8组分及C 9 +组分;
    可选的芳烃提纯单元,其用于对芳构化单元和裂解与芳烃转化单元获得的C 8组分中的至少一者进行提纯处理,并分离得到C 4 -组分、C 5组分、C 6-C 7组分,C 8芳烃和C 9 +组分;
    可选的轻烃转化单元,其用于对芳构化单元、裂解与芳烃转化单元和可选的芳烃提纯单元获得的C 4 -组分中的至少一者的至少一部分进行蒸汽裂解或脱氢反应;以及
    可选的轻质汽油调和单元,其用于使用芳构化单元、裂解与芳烃转化单元和可选的芳烃提纯单元获得的C 5组分中的至少一者的至少一部分进行汽油调和。
  12. 根据要求11所述的系统,其中:
    所述芳构化单元设有汽油组分入口,C 4 -组分出口,C 5组分出口,C 6-C 7组分出口,C 8组分出口及C 9 +组分出口;
    所述裂解与芳烃转化单元设有入口,C 4 -组分出口,C 5组分出口,C 6-C 7组分出口,C 8组分出口及C 9 +组分出口;
    所述芳烃提纯单元设有入口、C 4 -组分出口、C 5组分出口、C 6-C 7组分出口,C 8芳烃出口及C 9 +组分出口;
    所述轻烃转化单元设有入口和转化产物出口;
    所述轻质汽油调和单元设有入口和调和汽油出口,
    其中所述芳构化单元的C 6-C 7组分出口及C 9 +组分出口与所述裂解与芳烃转化单元的入口连通,
    可选地,所述芳构化单元的C 8组分出口和裂解与芳烃转化单元的C 8组分出口中的至少一者与所述芳烃提纯单元的入口连通,所述芳构化单元的C 4 -组分出口、裂解与芳烃转化单元的C 4 -组分出口和芳烃提 纯单元的C 4 -组分出口中的至少一者与所述轻烃转化单元的入口连通,
    可选地,所述芳构化单元的C 5组分出口、裂解与芳烃转化单元的C 5组分出口和芳烃提纯单元的C 5组分出口中的至少一者与所述轻质汽油调和单元的入口连通,以及
    所述裂解与芳烃转化单元的C 6-C 7组分出口及C 9 +组分出口、和可选的芳烃提纯单元的C 6-C 7组分出口及C 9 +组分出口中的至少一者与所述裂解与芳烃转化单元的入口连通。
PCT/CN2021/125584 2020-10-22 2021-10-22 一种汽油组分的处理方法和系统 WO2022083725A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237017340A KR20230093026A (ko) 2020-10-22 2021-10-22 가솔린 성분 처리 방법 및 시스템
EP21882139.5A EP4219435A4 (en) 2020-10-22 2021-10-22 METHOD AND SYSTEM FOR TREATMENT OF GASOLINE COMPONENTS
US18/249,962 US20230407193A1 (en) 2020-10-22 2021-10-22 Method and System for Processing Gasoline Fractions
JP2023524328A JP2023546230A (ja) 2020-10-22 2021-10-22 ガソリン成分の処理方法およびシステム
SA523440425A SA523440425B1 (ar) 2020-10-22 2023-04-18 طريقة ونظام لمعالجة كسور الجازولين

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011138771.9 2020-10-22
CN202011138771.9A CN114456835B (zh) 2020-10-22 2020-10-22 一种汽油组分的处理系统和处理方法

Publications (1)

Publication Number Publication Date
WO2022083725A1 true WO2022083725A1 (zh) 2022-04-28

Family

ID=81291631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125584 WO2022083725A1 (zh) 2020-10-22 2021-10-22 一种汽油组分的处理方法和系统

Country Status (7)

Country Link
US (1) US20230407193A1 (zh)
EP (1) EP4219435A4 (zh)
JP (1) JP2023546230A (zh)
KR (1) KR20230093026A (zh)
CN (1) CN114456835B (zh)
SA (1) SA523440425B1 (zh)
WO (1) WO2022083725A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3729409A (en) 1970-12-24 1973-04-24 Mobil Oil Corp Hydrocarbon conversion
CN1122571A (zh) 1993-05-13 1996-05-15 森德克斯(美国)股份有限公司 高剂量制剂
CN1485414A (zh) * 2002-09-26 2004-03-31 中国科学院大连化学物理研究所 一种催化裂化汽油非临氢芳构化和脱硫的方法
CN1923965A (zh) 2005-08-31 2007-03-07 中国科学院大连化学物理研究所 催化裂化汽油制取乙烯、丙烯和芳烃的方法
US20080026931A1 (en) 2006-07-28 2008-01-31 Edwin P Boldingh Synergistic Rhenium and Germanium-Containing Catalysts Potentiated with Tin and Alkylaromatic Transalkylation Processes Using Such Catalysts
CN101734986A (zh) * 2008-11-21 2010-06-16 中国石油化工股份有限公司 利用裂解汽油加氢裂解多产苯和二甲苯的方法
CN101880213A (zh) * 2009-05-07 2010-11-10 中国石油天然气股份有限公司 一种裂解汽油选择加氢生产芳烃联产低碳烷烃的方法
CN103261124A (zh) * 2010-12-10 2013-08-21 埃克森美孚化学专利公司 由多种原料进料获得芳烃的方法以及装置
CN103772123A (zh) * 2012-10-25 2014-05-07 中国石油化工股份有限公司 增产btx芳烃的方法
EP3015445A1 (en) * 2014-10-30 2016-05-04 China Petroleum & Chemical Corporation A method for producing an aromatic hydrocarbon with an oxygenate as raw material
CN107285976A (zh) * 2017-06-19 2017-10-24 中国海洋石油总公司 一种由粗苯加氢副产非芳烃与重整c9+重芳烃生产混二甲苯的方法
CN110938464A (zh) * 2019-11-19 2020-03-31 中海油天津化工研究设计院有限公司 一种由瓦斯油生产低碳芳烃及烯烃的集成工艺方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9365468B2 (en) * 2014-05-06 2016-06-14 Uop Llc Methods and systems for reforming and transalkylating hydrocarbons
US9249068B2 (en) * 2014-06-30 2016-02-02 Exxonmobil Chemical Patents Inc. Process for the production of xylenes
US10975313B2 (en) * 2017-01-05 2021-04-13 Sabic Global Technologies B.V. Conversion of waste plastic through pyrolysis to high value products like benzene and xylenes
CN111073687B (zh) * 2018-10-18 2021-08-31 中国石油化工股份有限公司 一种清洁汽油的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3729409A (en) 1970-12-24 1973-04-24 Mobil Oil Corp Hydrocarbon conversion
CN1122571A (zh) 1993-05-13 1996-05-15 森德克斯(美国)股份有限公司 高剂量制剂
CN1485414A (zh) * 2002-09-26 2004-03-31 中国科学院大连化学物理研究所 一种催化裂化汽油非临氢芳构化和脱硫的方法
CN1923965A (zh) 2005-08-31 2007-03-07 中国科学院大连化学物理研究所 催化裂化汽油制取乙烯、丙烯和芳烃的方法
US20080026931A1 (en) 2006-07-28 2008-01-31 Edwin P Boldingh Synergistic Rhenium and Germanium-Containing Catalysts Potentiated with Tin and Alkylaromatic Transalkylation Processes Using Such Catalysts
CN101734986A (zh) * 2008-11-21 2010-06-16 中国石油化工股份有限公司 利用裂解汽油加氢裂解多产苯和二甲苯的方法
CN101880213A (zh) * 2009-05-07 2010-11-10 中国石油天然气股份有限公司 一种裂解汽油选择加氢生产芳烃联产低碳烷烃的方法
CN103261124A (zh) * 2010-12-10 2013-08-21 埃克森美孚化学专利公司 由多种原料进料获得芳烃的方法以及装置
CN103772123A (zh) * 2012-10-25 2014-05-07 中国石油化工股份有限公司 增产btx芳烃的方法
EP3015445A1 (en) * 2014-10-30 2016-05-04 China Petroleum & Chemical Corporation A method for producing an aromatic hydrocarbon with an oxygenate as raw material
CN107285976A (zh) * 2017-06-19 2017-10-24 中国海洋石油总公司 一种由粗苯加氢副产非芳烃与重整c9+重芳烃生产混二甲苯的方法
CN110938464A (zh) * 2019-11-19 2020-03-31 中海油天津化工研究设计院有限公司 一种由瓦斯油生产低碳芳烃及烯烃的集成工艺方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4219435A4

Also Published As

Publication number Publication date
EP4219435A1 (en) 2023-08-02
JP2023546230A (ja) 2023-11-01
CN114456835A (zh) 2022-05-10
US20230407193A1 (en) 2023-12-21
SA523440425B1 (ar) 2024-08-06
CN114456835B (zh) 2023-06-06
KR20230093026A (ko) 2023-06-26
EP4219435A4 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
TWI478768B (zh) Catalysts and methods for the production of light aromatics and light alkanes from hydrocarbon feedstocks
KR101439574B1 (ko) 크실렌 화합물의 제조를 위한 다구역 공정
CN101570698B (zh) 一种石脑油的催化转化方法
CN100509716C (zh) 多环芳烃催化转化为二甲苯
EP2834210B1 (en) Process for the production of xylenes and light olefins from heavy aromatics
JP5462789B2 (ja) ディーゼル燃料および芳香族化合物の製造のためのマルチゾーンプロセス
EP2834004B1 (en) Multimetal zeolites based catalyst for transalkylation of heavy reformate to produce xylenes and petrochemical feedstocks
WO2022078370A1 (zh) 含烃混合物的处理方法和系统
US10899685B1 (en) Catalytic hydrodearylation of heavy aromatic stream containing dissolved hydrogen
JP5631209B2 (ja) 反応区域への供給流を変化させるための方法及び装置
KR20170095304A (ko) 경질 지방족 탄화수소에서 방향족으로의 전환 방법
JP7362368B2 (ja) キシレンの製造方法
WO2022083725A1 (zh) 一种汽油组分的处理方法和系统
US20210139393A1 (en) Catalytic hydrodearylation of heavy aromatic streams containing dissolved hydrogen with fractionation
CN114456036B (zh) 一种生产芳烃及烯烃的方法
CN114426882B (zh) 一种汽油升级方法
CN114426873B (zh) 一种汽油组分生产碳八芳烃的方法
US20170002276A1 (en) Process for conversion of hydrocarbons integrating reforming and dehydrocyclodimerization
CN115595175B (zh) 一种高效生产轻质烃的方法和装置及其应用
US20170002278A1 (en) Process for conversion of hydrocarbons integrating reforming using a non-noble metal catalyst and dehydrocyclodimerization
CN117138832A (zh) 一种加氢裂化催化剂及其从催化柴油生产芳烃的转化方法及系统和应用
US20170002277A1 (en) Process for conversion of hydrocarbons integrating reforming and dehydrocyclodimerization using different entry points
CN115960623A (zh) 一种生产汽油调和组分的方法、得到的汽油调和组分和反应装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882139

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023524328

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021882139

Country of ref document: EP

Effective date: 20230428

WWE Wipo information: entry into national phase

Ref document number: 202347034554

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20237017340

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 523440425

Country of ref document: SA

WWE Wipo information: entry into national phase

Ref document number: 523440425

Country of ref document: SA