WO2022083149A1 - 一种光模块 - Google Patents

一种光模块 Download PDF

Info

Publication number
WO2022083149A1
WO2022083149A1 PCT/CN2021/100972 CN2021100972W WO2022083149A1 WO 2022083149 A1 WO2022083149 A1 WO 2022083149A1 CN 2021100972 W CN2021100972 W CN 2021100972W WO 2022083149 A1 WO2022083149 A1 WO 2022083149A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
heat
circuit board
dissipation member
optical module
Prior art date
Application number
PCT/CN2021/100972
Other languages
English (en)
French (fr)
Inventor
董本正
于帮雨
姬景奇
司宝峰
徐发部
崔伟
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202022334064.9U external-priority patent/CN213302596U/zh
Priority claimed from CN202011165739.XA external-priority patent/CN114488423A/zh
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Publication of WO2022083149A1 publication Critical patent/WO2022083149A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present disclosure relates to the technical field of optical communication, and in particular, to an optical module.
  • Optical communication technology will be used in new business and application modes such as cloud computing, mobile Internet, and video.
  • the optical module realizes the function of photoelectric conversion in the field of optical communication technology, and is one of the key components in optical communication equipment.
  • the optical signal intensity input by the optical module to the external optical fiber directly affects the quality of optical fiber communication.
  • the integration of optical modules is getting higher and higher.
  • the power density of optical modules is also increasing. For example, when the power density of the chip is too large, the heat at the chip is concentrated. If the heat concentrated at the chip cannot be diffused in time, a local high temperature area will be generated, which will seriously affect the optoelectronic performance of the optical module at high temperature.
  • the power consumption of chips such as driver chips is increasing, and the power consumption of optical modules has even reached 20-30W, and its internal heat dissipation has become a difficult problem.
  • the present disclosure provides an optical module, comprising: an upper casing provided with a through hole; a lower casing cooperating with the upper casing to form a wrapping cavity; and a circuit board disposed between the upper casing and the upper casing a wrapping cavity formed by the lower casing; a high heat density component is disposed on the surface of the circuit board and is electrically connected to the circuit board; a first heat dissipation component is disposed on the top surface of the upper casing; A second heat dissipation member, the top side is in contact with the first heat dissipation member through the through hole, and the bottom side is in contact with the high heat density member, and the heat conduction efficiency of the second heat dissipation member is greater than that of the upper casing. Thermal conductivity, the second heat dissipation member is used to conduct heat generated by the high heat density member to the first heat dissipation member.
  • an optical module comprising: a casing, including an upper casing and a lower casing, the upper casing and the lower casing are covered to form a package inner cavity; a first heat dissipation component, It is arranged on the inner wall of the casing and is arranged along the length direction of the optical module; the circuit board is arranged in the inner cavity of the package; the optical sub-module is electrically connected to the circuit board; the first chip is arranged in the The circuit board is electrically connected to the circuit board and is in contact with the first heat dissipating component; the heat dissipating component is arranged on the inner wall of the housing and is in contact with the optical sub-module.
  • Fig. 1 is a schematic diagram of the connection relationship of optical communication terminals
  • Fig. 2 is a schematic diagram of the structure of an optical network unit
  • FIG. 3 is a schematic structural diagram of an optical module according to an embodiment of the present disclosure.
  • FIG. 4 provides a schematic diagram of an exploded structure of an optical module according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of the internal mechanism of an optical module according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of an exploded structure of another optical module provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of the assembly of a VC vapor chamber and a first chip according to an embodiment of the present disclosure
  • FIG. 8 is a schematic assembly diagram of a heat dissipation component and a sub-module housing according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram 1 of an internal structure of another optical module according to an embodiment of the present disclosure.
  • FIG. 10 is a second schematic diagram of the internal structure of another optical module according to an embodiment of the present disclosure.
  • FIG. 11 is a cross-sectional view 1 of an optical module according to an embodiment of the present disclosure.
  • FIG. 12 is a second cross-sectional view of an optical module according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of an exploded structure of another optical module provided by an embodiment of the present disclosure.
  • FIG. 14 is a third schematic diagram of the internal structure of another optical module according to an embodiment of the present disclosure.
  • FIG. 15 is a fourth schematic diagram of the internal structure of another optical module according to an embodiment of the present disclosure.
  • 16 is an exploded schematic diagram of another upper casing, a first heat dissipation component, and a second heat dissipation component provided by an embodiment of the present disclosure
  • FIG. 17 is a first structural schematic diagram of another upper casing provided by an embodiment of the present disclosure.
  • FIG. 18 is a second structural schematic diagram of another upper casing provided by an embodiment of the present disclosure.
  • FIG. 19 is a schematic diagram of an assembly structure of an upper casing and a second heat dissipation component according to an embodiment of the present disclosure
  • FIG. 20 provides a schematic structural diagram of the relative position of a second heat dissipation component and a circuit board according to an embodiment of the present disclosure
  • FIG. 21 is a cross-sectional view of another optical module according to an embodiment of the present disclosure.
  • connection and its derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “connected” may also mean that two or more components are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • One of the core links of optical fiber communication is the mutual conversion of optical and electrical signals.
  • Optical fiber communication uses information-carrying optical signals to transmit in information transmission equipment such as optical fibers/optical waveguides.
  • the passive transmission characteristics of light in optical fibers/optical waveguides can realize low-cost, low-loss information transmission; while computers and other information processing equipment Electrical signals are used.
  • the optical module realizes the mutual conversion function of the above-mentioned optical and electrical signals in the technical field of optical fiber communication, and the mutual conversion of the optical signal and the electrical signal is the core function of the optical module.
  • the optical module realizes the electrical connection with the external host computer through the golden fingers on its internal circuit board.
  • the main electrical connections include power supply, I2C signal, data signal and grounding, etc.
  • the optical module realizes the optical connection with the external optical fiber through the optical interface. There are many ways to connect external optical fibers, and a variety of optical fiber connector types are derived; the use of gold fingers to achieve electrical connection at the electrical interface has become the mainstream connection method in the optical module industry.
  • the definition of the pin has formed a variety of industry protocols/standards; the optical connection method realized by the optical interface and the optical fiber connector has become the mainstream connection method in the optical module industry. Based on this, the optical fiber connector has also formed a variety of industry standards. Such as LC interface, SC interface, MPO interface, etc., the optical interface of the optical module is also designed for the adaptability of the optical fiber connector. Therefore, there are various types of optical fiber adapters set at the optical interface.
  • FIG. 1 is a schematic diagram of a connection relationship of an optical communication terminal.
  • the connection of the optical communication terminal mainly includes the interconnection between the optical network terminal 100, the optical module 200, the optical fiber 101 and the network cable 103;
  • One end of the optical fiber 101 is connected to the remote server, and one end of the network cable 103 is connected to the local information processing device.
  • the connection between the local information processing device and the remote server is completed by the connection between the optical fiber 101 and the network cable 103; and the connection between the optical fiber 101 and the network cable 103 is completed by The optical network terminal 100 with the optical module 200 is completed.
  • the optical interface of the optical module 200 is externally connected to the optical fiber 101, and a two-way optical signal connection is established with the optical fiber 101;
  • the electrical interface of the optical module 200 is externally connected to the optical network terminal 100, and a two-way electrical signal connection is established with the optical network terminal 100;
  • the two-way mutual conversion between optical signals and electrical signals is realized inside the optical module, thereby realizing the establishment of an information connection between the optical fiber and the optical network terminal; in some embodiments of the present disclosure, the optical signal from the optical fiber 101 is converted into an electrical signal by the optical module After being input into the optical network terminal 100 , the electrical signal from the optical network terminal 100 is converted into an optical signal by the optical module and input into the optical fiber 101 .
  • the optical network terminal has an optical module interface 102, which is used to access the optical module 200 and establish a two-way electrical signal connection with the optical module 200; Signal connection (generally the electrical signal of the Ethernet protocol, which belongs to a different protocol/type from the electrical signal used by the optical module);
  • the optical network terminal 100 is used to establish a connection between the optical module 200 and the network cable 103, in some embodiments of the present disclosure Among them, the optical network terminal transmits the signal from the optical module to the network cable, and transmits the signal from the network cable to the optical module, and the optical network terminal acts as the upper computer of the optical module to monitor the operation of the optical module.
  • the optical network terminal is the host computer of the optical module. It provides data signals to the optical module and receives data signals from the optical module. So far, the remote server communicates with the local information processing equipment through optical fibers, optical modules, optical network terminals and network cables. Establish a two-way signal transmission channel.
  • Common local information processing equipment includes routers, home switches, electronic computers, etc.; common optical network terminals include optical network units ONU, optical line terminals OLT, data center servers, and data center switches.
  • FIG. 2 is a schematic structural diagram of an optical network terminal.
  • the optical network terminal 100 has a circuit board 105, and a cage 106 is provided on the surface of the circuit board 105; an electrical connector is provided inside the cage 106 for connecting to an electrical interface (such as a gold finger) of an optical module. etc.); a radiator 107 is provided on the cage 106, and the radiator 107 has raised portions such as fins that increase the heat dissipation area.
  • the optical module 200 is inserted into the optical network terminal, the electrical interface of the optical module is inserted into the electrical connector inside the cage 106 , and the optical interface of the optical module is connected to the optical fiber 101 .
  • the cage 106 is located on the circuit board, and the electrical connectors on the circuit board are wrapped in the cage, so that the interior of the cage is provided with electrical connectors; the optical module is inserted into the cage, the optical module is fixed by the cage, and the heat generated by the optical module is conducted to the cage. 106 and then diffuse through a heat sink 107 on the cage.
  • FIG. 3 is a schematic structural diagram of an optical module according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an exploded structure of an optical module according to an embodiment of the present disclosure.
  • the optical module 200 provided by the embodiment of the present disclosure includes an upper casing 201 , a lower casing 202 , a circuit board 300 , and an optical sub-module 400 .
  • the upper casing 201 is closed on the lower casing 202 to form a wrapping cavity with two openings, which is used as a casing of the optical module; the outer contour of the wrapping cavity generally presents a square shape, in some embodiments of the present disclosure , the lower shell includes a main board and two side plates located on both sides of the main board and vertically arranged with the main board; the upper shell includes a cover plate, and the cover plate is closed on the two side plates of the upper shell to form a wrapping cavity;
  • the upper casing may also include two side walls located on both sides of the cover plate and vertically arranged with the cover plate, and the two side walls are combined with the two side plates to realize that the upper casing is covered on the lower casing.
  • One of the two openings is an electrical port 204, and the gold fingers of the circuit board protrude from the electrical port 204 and are inserted into a host computer such as an optical network terminal; the other opening is an optical port 203, which is used for external optical fiber access; the circuit board
  • the optoelectronic devices such as 300 and the optical sub-module 400 are located in the encapsulation cavity formed by the upper and lower casings.
  • the combination of the upper casing 201 and the lower casing 202 is adopted to facilitate the installation of the circuit board 300, the optical sub-module 400 and other devices into the casing, and the upper casing 201 and the lower casing 202 form the outermost layer of the optical module
  • the upper casing 201 and the lower casing 202 are generally made of metal materials, such as zinc alloy, which are conducive to electromagnetic shielding and heat dissipation; generally, the casing of the optical module is not made into an integral part, so that the circuit board is assembled in this way.
  • heat dissipation fins are provided on the upper case 201 and/or the lower case 202 to assist in increasing the heat dissipation capability of the optical module.
  • the optical module of the present disclosure also includes an unlocking part (not shown in the figure), and the unlocking part is located on the outer wall of the enclosing cavity/lower casing 202, and is used to realize the fixed connection between the optical module and the host computer, or release the optical module from the host computer. fixed connection between machines.
  • the unlocking part has an engaging part that matches the cage of the upper computer; the end of the unlocking part can be pulled to move the unlocking part relatively on the surface of the outer wall; the optical module is inserted into the cage of the upper computer, and the optical module is fixed by the engaging part of the unlocking part In the cage of the host computer; by pulling the unlocking part, the engaging part of the unlocking part moves along with it, thereby changing the connection relationship between the engaging part and the host computer, so as to release the engaging relationship between the optical module and the host computer, so that the optical The module is pulled out from the cage of the upper computer.
  • the circuit board 300 is provided with circuit traces, electronic components (such as capacitors, resistors, triodes, MOS tubes) and chips (such as MCU, clock data recovery CDR, power management chip, data processing chip DSP) and the like.
  • electronic components such as capacitors, resistors, triodes, MOS tubes
  • chips such as MCU, clock data recovery CDR, power management chip, data processing chip DSP
  • the circuit board 300 connects the electrical components in the optical module together according to the circuit design through circuit wiring, so as to realize electrical functions such as power supply, electrical signal transmission, and grounding.
  • the circuit board is generally a rigid circuit board. Due to its relatively hard material, the rigid circuit board can also realize the bearing function. For example, the rigid circuit board can carry the chip smoothly; when the optical transceiver is located on the circuit board, the rigid circuit board can also provide Stable bearing; the rigid circuit board can also be inserted into the electrical connector in the upper computer cage.
  • metal pins/gold fingers are formed on one end surface of the rigid circuit board for connecting with the electrical connector. Connector connections; these are inconvenient to implement with flexible circuit boards.
  • Flexible circuit boards are also used in some optical modules as a supplement to rigid circuit boards; flexible circuit boards are generally used in conjunction with rigid circuit boards.
  • flexible circuit boards can be used to connect the rigid circuit boards and optical transceivers.
  • the optical sub-module 400 may include a light-emitting sub-module and a light-receiving sub-module, and the optical sub-module is electrically connected to the circuit board 300 , such as directly electrically connected to the circuit board or connected to the circuit board 300 through a flexible circuit board.
  • the optical sub-module 400 includes a laser and various optical and electrical devices for assisting the normal operation of the laser. As shown in FIG. 4 , in the optical module provided by the embodiment of the present disclosure, the circuit board 300 is provided with a mounting hole 301 , and the optical sub-module 400 is embedded in the mounting hole 301 ; the optical sub-module 400 is fixed through the mounting hole 301 , which is convenient on the one hand.
  • the connection and fixation between the optical sub-module 400 and the circuit board 300 is realized.
  • the circuit board 300 is usually a printed circuit board, and the thermal conductivity of the printed circuit board is relatively small. Compared with the optical sub-module 400 being disposed on the circuit board 300 , fixing the optical sub-module 400 through the mounting holes 301 is convenient for the optical sub-module. 400 cooling.
  • the optical sub-module 400 may also be physically separated from the circuit board 300, and then connected to the circuit board 300 through a flexible circuit board.
  • FIG. 5 is a schematic diagram of an internal structure of an optical module according to an embodiment of the present disclosure.
  • the optical sub-module 400 includes a sub-module housing 401, and the sub-module housing 401 is used for accommodating lasers, photodetectors, TEC (Thermo Electric Cooler, semiconductor device such as a cooler), which facilitates the integration of the optical sub-module 400.
  • the sub-module case 401 is embedded in the installation hole 301 , so the sub-module case 401 is convenient for the installation and fixation of the optical sub-module 400 .
  • the sub-module housing 401 includes a top surface and a bottom surface arranged opposite to each other, and the top and bottom surfaces of the sub-module housing 401 are respectively the main heat dissipation surfaces of the sub-module housing 401 , and the sub-module housing 401 is convenient for realizing the optical sub-module 400 of heat dissipation. Therefore, the sub-module housing 401 in the embodiment of the present disclosure can facilitate both the installation of the optical sub-module and the heat dissipation of the optical sub-module.
  • the top surface and the bottom surface of the sub-module housing 401 are respectively the surfaces of the sub-module housing 401 that are parallel to the upper surface of the circuit board 300 .
  • the optical sub-module 400 is disposed at the front of the optical module, that is, one end close to the optical port 203 of the optical module.
  • the circuit board 300 is further provided with a first chip 302 .
  • the first chip 302 is mainly a chip that generates a lot of heat during operation in the optical module, that is, the first chip 302 is mainly a high heat density chip in the optical module, such as a data processing chip DSP, a clock data recovery chip ( Clock Data Recovery, CDR), laser driver chip, transimpedance amplifier chip, etc.
  • a data processing chip DSP a clock data recovery chip ( Clock Data Recovery, CDR), laser driver chip, transimpedance amplifier chip, etc.
  • CDR clock Data Recovery
  • the first chip 302 is working, a lot of heat is generated. If the heat cannot be transferred out in time, the heat generated by the first chip 302 will be concentrated on and around it, causing the heat to accumulate at the corresponding position of the first chip 302 of the optical module. Heat concentration occurs.
  • the heat generated by the first chip 302 is transferred to the casing of the optical module by means of self-diffusion; because the zinc alloy has the advantages of easy processing, good castability, low cost, etc., the casing of the optical module A zinc alloy is usually used, but the heat dissipation performance of the zinc alloy is limited, and the thermal diffusivity is not strong, so the heat generated by the first chip 302 will be concentrated in a large amount on the casing around the first chip 302 .
  • the heat will be mainly concentrated in the rear of the casing, such as the rear of the upper casing 201, resulting in uneven temperature at the front and rear ends of the optical module, which will affect the high temperature of the optical module. performance.
  • the optical module provided in the embodiment of the present disclosure further includes a first heat dissipation part, the first heat dissipation part contacts and connects the first chip 302 and the housing, and the first heat dissipation part contacts and connects the first chip 302 and the casing;
  • the heat dissipating member is used to facilitate the transfer and diffusion of the heat generated by the first chip 302 .
  • the first heat dissipation member contacts and connects the first chip 302 and the upper casing 201, so as to transfer and diffuse the heat generated by the first chip 302 on the upper casing 201 more conveniently.
  • the first heat dissipation member contacts and connects the first chip 302 and the upper casing 201; in some embodiments of the present disclosure, the first heat dissipation member contacts and connects to the inner wall of the upper casing 201, such as the first heat dissipation member is inlaid. Inside the cover plate of the upper casing 201 .
  • FIG. 6 is a schematic diagram of an exploded structure of another optical module according to an embodiment of the present disclosure.
  • the optical module provided by the embodiment of the present disclosure further includes a first heat dissipation member 205 , and the first heat dissipation member 205 is used for contacting and connecting the first chip 302 and the upper casing 201 .
  • the upper surface of the upper case 201 is provided with heat dissipation fins, which are the main heat dissipation components of the optical module, and the upper surface of the upper case 201 is the main heat dissipation surface.
  • the heat dissipation fins are protruded and disposed on the upper casing 201 in the shape of strips.
  • the heat dissipation fins provided can increase the contact area with the outside air flow, and the air flow through the heat dissipation fins can accelerate Its circulation speed, and further improves the heat dissipation efficiency between the upper casing 201 and the external environment from the heat dissipation contact area and the circulation speed, that is, improves the heat dissipation efficiency of the surface of the optical module housing.
  • the upper surface of the upper case 201 is not limited to be provided with heat dissipation fins, and the surface of the lower case 202 may also be provided with heat dissipation fins, which are used as the main heat dissipation surface of the optical module.
  • the first heat dissipation component 205 is a good conductor of heat and has good thermal conductivity (the thermal conductivity is higher than that of the zinc alloy). Compared with zinc alloy, VC vapor chamber is more convenient to diffuse heat.
  • the heat in the VC vapor chamber can be evenly distributed on the entire surface with high efficiency, and there are vacuum chambers and cooling liquids inside.
  • the heat source will heat the copper mesh micro-evaporator, and the cooling liquid is heated and quickly evaporated into hot air in a vacuum ultra-low pressure environment.
  • the cooling source After encountering the cooling source on the upper part of the heat sink, it dissipates heat and condenses into liquid again.
  • the condensed cooling liquid flows back to the evaporation source at the bottom of the uniform temperature plate through the copper micro-structure capillary pipe. End, repeated cycle to achieve the purpose of rapid heat transfer and temperature.
  • the first chip 302 is disposed at the rear of the optical module (close to the electrical port 204 of the optical module), and the length of the first heat dissipation member 205 is relatively long, which can almost penetrate from the rear to the front of the optical module, Further, the heat generated by the first chip 302 can be diffused from the rear of the optical module to the rear of the optical module, that is, the heat generated by the first chip 302 can be diffused to the entire upper casing 201 , so that the heat distribution on the upper casing 201 is uniform.
  • FIG. 7 is a schematic diagram of the assembly of a VC vapor chamber and a first chip according to an embodiment of the present disclosure. As shown in FIG. 7 , one end of the first heat dissipation member 205 is in contact with the first chip 302 , and the other end of the first heat dissipation member 205 extends to the periphery of the first chip 302 , for example, the other end of the first heat dissipation member 205 extends to the optical module the front part.
  • one end of the first heat dissipation member 205 can be directly connected to the first chip 302, and one end of the first heat dissipation member 205 can also be indirectly connected to the first chip 302 through a thermally conductive material, such as a thermally conductive pad, a thermally conductive Glue, etc., is convenient to ensure that the first heat dissipation member 205 and the first chip 302 are in full contact.
  • a thermally conductive material such as a thermally conductive pad, a thermally conductive Glue, etc.
  • the laser is packaged in the sub-module housing 401 , the temperature of the laser is controlled by the TEC, and the TEC is packaged in the sub-module housing 401 .
  • the first heat dissipation member 205 is used to transfer the heat generated by the first chip 302 from the rear of the optical module to the front of the optical module, the heat generated by the first chip 302 will spread to the surroundings of the sub-module housing 401 , It will affect the temperature control of the TEC.
  • the optical module provided by the embodiment of the present disclosure further includes a heat-dissipating component, the heat-dissipating component contacts and connects the sub-module housing 401 and the housing, and the heat-dissipating component It is used to transfer the heat generated by the hot surface of the TEC to the sub-module case 401 , then to the heat-dissipating component through the sub-module case 401 , and finally to transfer the heat to the case through the heat-dissipating component.
  • the heat dissipation member is a good conductor.
  • the heat dissipation member 205 contacts and connects the first chip 302 and the upper case 201
  • the heat dissipation member contacts and connects the sub-module case 401 and the lower case 202 for connecting the first chip 302 and the upper case 201 to each other.
  • the heat generated by the hot surface of the TEC is transferred to the lower case 202 to achieve the purpose of optimizing the heat dissipation path of the TEC.
  • the optical module provided by the embodiment of the present disclosure further includes a third heat dissipation member 206 , the third heat dissipation member 206 is used to assist and optimize the heat dissipation of the sub-module housing 401 , and the third heat dissipation member 206 is used to contact The sub-module case 401 and the lower case 202 are connected.
  • the third heat dissipation member 206 may be a copper sheet/block, a VC vapor chamber, or the like. In some embodiments of the present disclosure, the third heat dissipation member 206 is a copper block heat dissipation member.
  • the heat generated by the TEC hot surface is transferred to the sub-module case 401, then to the heat dissipation component through the sub-module case 401, and finally to the lower case 202 through the heat dissipation component.
  • the third heat dissipation component 206 is a copper block, the copper The thermal conductivity and thermal diffusivity of the block are higher, which is more conducive to the conduction of heat, thereby achieving the purpose of optimizing the heat dissipation path of the TEC.
  • the first heat dissipation surface of the sub-module housing 401 is not in contact with the first heat dissipation member 205 .
  • FIG. 8 is a schematic diagram of the assembly of a heat dissipation component and a sub-module housing according to an embodiment of the present disclosure.
  • one end of the third heat dissipation member 206 is in contact with the second heat dissipation surface of the sub-module casing 401 , and the other end of the third heat dissipation member 206 extends to the periphery of the sub-module casing 401 .
  • the other end of the third heat dissipation member 206 extends toward the rear of the optical module.
  • one end of the third heat dissipation member 206 may directly contact the second heat dissipation surface connected to the sub-module housing 401 , and one end of the third heat dissipation member 206 may also indirectly contact the second heat dissipation surface connected to the sub-module housing 401 through a thermally conductive material.
  • the second heat dissipation surface is made of thermally conductive materials such as thermally conductive pads, thermally conductive adhesives, etc., so as to ensure sufficient contact between the third heat dissipation component 206 and the second heat dissipation surface of the sub-module housing 401 .
  • the circuit board 300 provided by the embodiment of the present disclosure further includes chips other than the first chip 302 , such as a second chip and a third chip, which generate relatively more heat, such as a transimpedance amplifier, a limiting amplifier, a laser driver, and an MCU.
  • chips other than the first chip 302 such as a second chip and a third chip, which generate relatively more heat, such as a transimpedance amplifier, a limiting amplifier, a laser driver, and an MCU.
  • the first chip 302, the transimpedance amplifier, the limiting amplifier, the laser driver, the MCU, etc. are scattered on the circuit board 300.
  • the first chip 302 is arranged on the upper surface of the circuit board 300
  • the second chip, the third chip, etc. are arranged on the lower surface of the circuit board 300, and are as far away as possible from the area where the first chip 302 is arranged on the circuit board 300, such as The projected coverage area on the circuit board 300 is not provided for the first chip 302 .
  • FIG. 9 is a schematic diagram 1 of an internal structure of another optical module according to an embodiment of the present disclosure.
  • the optical module provided by the embodiment of the present disclosure further includes a second chip 303 , and the second chip 303 is disposed on the lower surface of the circuit board 300 .
  • the upper surface and the lower surface of the circuit board 300 are relative concepts, only to distinguish the second chip 303 and the first chip 302 are arranged on different surfaces of the circuit board 300, the circuit board 300 is a printed circuit board, and the thermal conductivity is relatively poor, Furthermore, the effect of preventing the heat generated by the first chip 302 from reaching the second chip 303 can be achieved through the circuit board 300 .
  • the projection of the second chip 303 on the circuit board 300 does not coincide with the projection of the first chip 302 on the circuit board 300 , that is, the second chip 303 is not disposed on the circuit board 300 and the first chip 303 is not disposed on the circuit board 300
  • the thermal conduction distance between the second chip 303 and the first chip 302 is correspondingly increased.
  • the second chip 303 on the circuit board 300 is provided with a first heat conduction boss 207 on the backside.
  • the first thermally conductive boss 207 is made of a material with relatively high thermal conductivity; in some embodiments of the present disclosure, the first thermally conductive boss 207 can be made of a metal material, such as copper, aluminum, and alloys thereof.
  • one end of the first heat-conducting boss 207 is fixed on the circuit board 300 by means of heat-conducting glue, and the other end is used for contacting and connecting the upper casing 201 ; and the heat generated by the second chip 303 passes through the first heat-conducting adhesive.
  • the bosses 207 are conducted to the upper casing 201, and then the heat is dissipated through the upper casing 201 to accelerate the heat dissipation of the second chip 303, further avoiding the concentration of heat inside the optical module, and promoting the uniformity of the internal temperature of the optical module.
  • the optical module provided by the embodiment of the present disclosure further includes a third chip 304 , and the third chip 304 is disposed on the lower surface of the circuit board 300 .
  • the projection of the third chip 304 on the circuit board 300 does not overlap with the projection of the first chip 302 on the circuit board 300 , that is, the third chip 304 is not disposed on the circuit board 300 on the backside of the first chip 302 .
  • the thermal conduction distance between the three chips 304 and the first chip 302 is not limited to the thermal conduction distance between the three chips 304 and the first chip 302 .
  • FIG. 10 is a second schematic diagram of the internal structure of another optical module according to an embodiment of the present disclosure.
  • a second heat conduction boss 208 is arranged on the back of the third chip 304 on the circuit board 300 , and the second heat conduction boss 208 is used to assist in improving the conduction of heat on the third chip 304 , diffusion. Further, as shown in FIG. 10 , in the embodiment of the present disclosure, a second heat conduction boss 208 is arranged on the back of the third chip 304 on the circuit board 300 , and the second heat conduction boss 208 is used to assist in improving the conduction of heat on the third chip 304 , diffusion. Further, as shown in FIG.
  • one end of the second heat-conducting boss 208 is fixed on the circuit board 300 through the heat-conducting adhesive 2081 , and the other end is used to contact and connect the upper casing 201 ; and the heat generated by the third chip 304 passes through the second The heat conduction boss 208 conducts to the upper casing 201, and then dissipates the heat through the upper casing 201 to speed up the heat dissipation of the third chip 304, further avoid the concentration of heat inside the optical module, and promote the uniformity of the internal temperature of the optical module.
  • the second heat conduction boss 208 should avoid contacting the first heat dissipation member 205 when contacting the upper casing 201; When the thermally conductive boss 207 is in contact with the upper casing 201 , contact with the first heat dissipation member 205 should be avoided.
  • FIG. 11 is a cross-sectional view 1 of an optical module according to an embodiment of the present disclosure.
  • the first heat dissipation member 205 is a long strip structure, and the first heat dissipation member 205 extends from the rear of the optical module to the front of the optical module, so as to facilitate the realization of The heat distribution at the rear and front of the optical module is uniform; the top surface of the inner wall of the upper casing 201 is provided with a first installation groove 2011 , the first heat dissipation part 205 is embedded in the first installation groove 2011 , and the side surface of the first heat dissipation part 205 The first heat dissipating component 205 is embedded in the upper casing 201 by fitting the side wall of the first installation groove 2011 .
  • the first installation groove 2011 is provided on the upper casing 201 to fix the first heat dissipation member 205 , on the one hand, the installation of the first heat dissipation member 205 in the optical module is convenient, and on the other hand, the first heat dissipation member 205 is fully contacted with the upper casing 201 , to ensure the effect of the first heat dissipating component 205 transferring heat in the direction of the upper casing 201 .
  • the first heat dissipation member 205 is fully contacted and connected to the first chip 302 through the first thermal pad 2051 , so as to ensure the heat transfer effect between the first heat dissipation member 205 and the first chip 302 .
  • the first thermal pad 2051 is made of a thermally conductive material with good thermal conductivity and certain elasticity, so as to ensure the thermal transfer effect between the first chip 302 and the first heat dissipation member 205 .
  • the first thermal pad 2051 can be made of a paste-like thermal interface material such as thermally conductive silicone grease or thermally conductive gel.
  • the heat generated by the first chip 302 is transferred to the rear of the first heat dissipation member 205 through the first thermal pad 2051 , and the heat is transmitted from the rear of the first heat dissipation member 205 to the front of the first heat dissipation member 205 , while passing through the first heat dissipation member 205 is conducted to the upper casing 201, and the heat is dissipated by the convection heat transfer between the heat dissipation fins of the upper casing 201 and the air, so as to achieve good heat dissipation and avoid heat concentration in the optical module.
  • a second installation groove 2021 is provided on the bottom surface of the inner wall of the lower case 202 , the third heat dissipation member 206 is embedded in the second installation groove 2021 , and the third heat dissipation member The side surface of the component 206 is in contact with the side wall of the second installation slot 2021 , so that the first heat dissipation component 205 can be embedded in the lower casing 202 .
  • the third heat dissipation member 206 is fixed by setting the second installation groove 2021 on the lower casing 202 , on the one hand, the arrangement of the third heat dissipation member 206 in the optical module is convenient, and on the other hand, the third heat dissipation member 206 is fully contacted with the lower casing 202 , to ensure the effect of the third heat dissipation component 206 transferring heat in the direction of the lower casing 202 .
  • the third heat dissipation member 206 can fully contact and connect the second heat dissipation surface of the sub-module housing 401 through the second thermal pad 2061 , so as to ensure heat transfer between the third heat dissipation member 206 and the sub-module housing 401 Effect.
  • the second thermal pad 2061 is made of a thermally conductive material with good thermal conductivity and certain elasticity, so as to ensure the thermal transfer effect between the sub-module housing 401 and the third heat dissipation component 206 .
  • the first heat dissipation surface of the sub-module case 401 does not contact the first heat dissipation member 205 .
  • the first installation should be controlled
  • the depth of the groove 2011 and the thickness of the first heat dissipation member 205 should ensure that there is a certain gap between the first heat dissipation surface of the module housing 401 and the first heat dissipation member 205 as much as possible.
  • the heat generated by the optical sub-module 400 is transmitted to the sub-module housing 401 , and is transferred to the third heat-dissipating member 206 through the third heat-dissipating member 206 .
  • the heat is dissipated, so as to achieve a good heat dissipation purpose, thereby avoiding heat concentration in the optical module.
  • FIG. 12 is a second cross-sectional view of an optical module according to an embodiment of the present disclosure.
  • the third chip 304 is disposed on the lower surface of the circuit board 300 , and one end of the second thermally conductive boss 208 is fixed on the opposite side of the third chip 304 by the thermally conductive adhesive 2081 .
  • the other end of the second heat conducting boss 208 is in contact with the inner wall of the upper casing 201 .
  • the heat generated by the third chip 304 is transferred to the second thermally conductive boss 208 through the thermally conductive adhesive 2081 , and then conducted to the upper casing 201 through the second thermally conductive boss 208 . Dissipate heat to achieve good heat dissipation, thereby avoiding heat concentration in the optical module.
  • FIG. 13 is a schematic diagram of an exploded structure of another optical module provided by an embodiment of the present disclosure.
  • the light emitting sub-module 301A includes a laser and various optical and electrical devices for assisting the normal operation of the laser.
  • the circuit board 300 is provided with a mounting hole, and the light emitting sub-module 301A is embedded in the mounting hole; the light emitting sub-module 301A is fixed through the mounting hole, which is convenient for implementation on the one hand. The connection between the light emitting sub-module 301A and the circuit board 300 is fixed.
  • the circuit board 300 is usually a printed circuit board, and the thermal conductivity of the printed circuit board is relatively small. Compared with the light emitting sub-module 301A being embedded on the circuit board 300, the light emitting sub-module 301A is fixed through the mounting hole to facilitate the light emission The transmitting sub-module 301A dissipates heat. Of course, in the embodiment of the present disclosure, the light emitting sub-module 301A may also be physically separated from the circuit board 300, and then connected to the circuit board 300 through a flexible circuit board.
  • a heat dissipation component may be provided above or below the light emitting sub-module 301A, and the heat generated by the light emitting sub-module 301A can be directly conducted to the upper case through the heat dissipation component body 201 or lower case 202.
  • FIG. 14 is a third schematic diagram of the internal structure of another optical module according to an embodiment of the present disclosure
  • FIG. 15 is a fourth schematic diagram of the internal structure of another optical module according to an embodiment of the present disclosure.
  • the light receiving sub-module 302A and the first chip 302 are disposed on different sides of the circuit board 300 .
  • the light receiving sub-module 302A is disposed on the reverse side of the circuit board 300 , close to the lower casing 202
  • the first chip 302 is disposed on the front side of the optical module, close to the upper casing 201 .
  • the light receiving sub-module 302A can be packaged as two independent components.
  • the light receiving sub-module 302A in order to reduce the mutual influence between the heat generated by the light receiving sub-module 302A and the first chip 302, the light receiving sub-module 302A should be as far away as possible from the projection area of the first chip 302 on the circuit board 300 , that is, the light receiving sub-module 302A is not in the projection area of the first chip 302 .
  • the light receiving sub-module 302A and the first chip 302 will generate more heat. If the heat cannot be transferred out in time, the light receiving sub-module 302A and the first chip The heat generated by 302 will accumulate on and around it, causing the heat to concentrate at the corresponding positions of the light receiving sub-module 302A of the optical module and the first chip 302; when the concentrated heat cannot be effectively dissipated, it may affect the light.
  • the receiving sub-module 302A and the first chip 302 work normally.
  • the heat generated by the light receiving sub-module 302A and the first chip 302 is transferred to the housing of the optical module by free diffusion.
  • the zinc alloy has the advantages of easy processing, good castability and low cost
  • the housing of the optical module is usually made of zinc alloy, but the heat dissipation performance of the zinc alloy is limited, and the thermal diffusion ability is not strong, so the heat generated by the light receiving sub-module 302A and the first chip 302 will be concentrated in a large amount in the light receiving sub-module 302A and the first chip 302.
  • On the casing around a chip 302 it is unfavorable to meet the heat dissipation requirements of the light receiving sub-module 302A and the first chip 302 .
  • FIG. 16 is an exploded schematic diagram of another upper casing, a first heat dissipation component, and a second heat dissipation component according to an embodiment of the present disclosure.
  • the heat dissipation performance through the first heat dissipation component 205, will rapidly dissipate the heat transmitted to the upper casing 201.
  • the first heat dissipation member 205 adopts a profile with good heat dissipation performance, such as an aluminum profile.
  • Aluminum profiles not only have good thermal conductivity, but also have the advantages of low density, easy molding, and relatively cheap price.
  • a second heat dissipation member 206A is disposed on the bottom surface of the upper casing 201 .
  • the second heat dissipation member 206A has good heat transfer performance, and the second heat dissipation member 206A further dissipates light through the second heat dissipation member 206A.
  • the heat generated by the high heat density components such as the receiving sub-module 302A and the first chip 302 is quickly conducted to the upper casing 201 or the first heat dissipation component 205 .
  • the second heat dissipation member 206A is made of a material with good thermal conductivity, such as copper and other metal materials with good thermal conductivity. In the embodiment of the present disclosure, in order to ensure that the heat conducted through the second heat dissipation member 206A can be quickly dissipated, the second heat dissipation member 206A is connected to the first heat dissipation member 205 .
  • the first chip 302 is an integrated circuit, with the improvement of the communication rate of the optical module and the improvement of the integration degree of the optical module, its heat density is also increasing. Products, such as OSFP products, will generate local high temperature areas, which will affect the optoelectronic performance of optical modules at high temperatures.
  • the embodiment of the present disclosure adopts the combination of the first heat dissipation member 205 and the second heat dissipation member 206A to dissipate heat to the above-mentioned first chip 302.
  • the heat dissipation method provided by the embodiment of the present disclosure can also be used for other high-temperature optical modules in the optical module.
  • this embodiment only takes the light receiving sub-module 302A and the first chip 302 as examples.
  • the upper casing 201 provided by the embodiment of the present disclosure is provided with a through hole 2013 , and the through hole 2013 is used for clamping the second heat dissipation member 206A.
  • a boss is provided on the top of the second heat dissipation member 206A, and the boss is clamped in the through hole 2013 to realize the clamping connection of the second heat dissipation member 206A to the upper casing 201 .
  • the first heat dissipation member 205 when the first heat dissipation member 205 is assembled on the upper casing 201 , the first heat dissipation member 205 covers the through hole 2013 , and the second heat dissipation member 206A is connected to the first heat dissipation member 205 through the through hole 2013 to facilitate the connection At the same time, it is convenient to realize the fixing of the first heat dissipation component 205 and the second heat dissipation component 206A on the upper casing 201 to a certain extent.
  • solder paste is filled in the gap between the second heat dissipation member 206A and the first heat dissipation member 205, and then the second heat dissipation member 206A is connected to the first heat dissipation member 205 by welding, so that the first heat dissipation member 205 and the second heat dissipation member 206A can be Fixing on the upper casing 201 .
  • the through hole 2013 is a square through hole
  • the boss provided on the top of the second heat dissipation member 206A is a square boss, and the square boss is clamped in the square through hole.
  • FIG. 17 is a first structural schematic diagram of another upper casing provided by an embodiment of the present disclosure.
  • a first positioning fin 2011A and a second positioning fin 2015 are provided on the top surface of the upper casing 201 , and the first positioning fin 2011A and the second positioning fin 2015 are along the length direction of the upper casing 201 Set on the side of the upper casing 201, the first positioning fin 2011A and the second positioning fin 2015 can realize the positioning of the first heat dissipation member 205 in the width direction of the top surface of the upper casing 201, which is convenient to ensure the first heat dissipation member 205. installation accuracy.
  • the first positioning fins 2011A are disposed on the right side of the top surface of the upper casing 201, and the second positioning fins 2015 are disposed on the left side of the top surface of the upper casing 201; of course, the first positioning fins The fins 2011A are not limited to being disposed on the right side of the top surface of the upper casing 201 , and the second positioning fins 2015 are not limited to being disposed on the left side of the top surface of the upper casing 201 .
  • the arrangement positions of the first positioning fins 2011A and the second positioning fins 2015 can be adjusted according to the width of the first heat dissipation member 205 .
  • a first positioning step 2012 and a second positioning step 2016 are provided on the top surface of the upper casing 201 , and the first positioning step 2012 and the second positioning step 2016 are provided on the upper The two ends of the casing 201 in the length direction, and then the first positioning step 2012 and the second positioning step 2016 can realize the positioning of the first heat dissipation member 205 in the length direction of the top surface of the upper casing 201 .
  • the first positioning step 2012 is arranged at the left end of the top surface of the upper casing 201
  • the second positioning step 2016 is arranged at the right end of the top surface of the upper casing 201; of course, the first positioning step 2012 is not limited to being arranged On the left end of the top surface of the upper casing 201 , the second positioning step 2016 is not limited to be disposed on the right end of the top surface of the upper casing 201 .
  • the arrangement positions of the first positioning step 2012 and the second positioning step 2016 can be adjusted according to the length of the first heat dissipation member 205 .
  • a first positioning fin 2011A, a second positioning fin 2015 , a first positioning step 2012 and a second positioning step 2016 are provided on the top surface of the upper casing 201 .
  • the fins 2011A, the second positioning fins 2015 , the first positioning step 2012 and the second positioning step 2016 cooperate with each other to facilitate more accurate positioning of the first heat dissipation member 205 , and thus facilitate the assembly of the first heat dissipation member 205 .
  • FIG. 18 is a second structural schematic diagram of another upper casing provided by an embodiment of the present disclosure.
  • the bottom surface of the upper casing 201 is provided with a first stepped surface 2014, and the first stepped surface 2014 is used to realize the positioning of the second heat dissipation member 206A; at the same time, when the first heat dissipation member 205 and the second heat dissipation member 206A During connection, the first stepped surface 2014 can be used for limiting the position of the second heat dissipation member 206A.
  • FIG. 19 is a schematic diagram of an assembly structure of an upper casing and a second heat dissipation component according to an embodiment of the present disclosure.
  • the top of the second heat dissipation member 206A is clamped in the through hole 2013 , and the second heat dissipation member 206A covers the first stepped surface 2014 .
  • the bottom of the second heat dissipation member 206A is further provided with thermally conductive protrusions 2061A. The distance between the bottom surface of the heat dissipation member 206A and the circuit board 300 .
  • the heat-conducting protrusions 2061A are used for heat dissipation of the light receiving sub-module 302A, that is, the heat generated by the light-receiving sub-module 302A is first conducted to the second heat dissipation member 206A through the heat-conducting protrusions 2061A, and then passes through the second heat dissipation member 206A.
  • the two heat dissipation members 206A are conducted to the first heat dissipation member 205 .
  • FIG. 20 provides a schematic structural diagram of a relative position of a second heat dissipation component and a circuit board according to an embodiment of the present disclosure.
  • the second heat dissipation member 206A covers the top of the first chip 302, so that the heat generated by the first chip 302 can be conducted to the second heat dissipation member 206A, and then transmitted out of the inside of the optical module through the second heat dissipation member 206A .
  • the bottom surface of the second heat dissipation member 206A is in contact with the first chip 302, so that the heat generated by the first chip 302 can be quickly conducted to the second heat dissipation member 206A.
  • the bottom surface of the second heat dissipation member 206A may be in contact with the first chip 302 through the first heat conducting layer.
  • the first heat-conducting layer is filled in the gap formed between the second heat-dissipating member 206A and the first chip 302 , and the first heat-conducting layer has good heat-conducting performance, so that the first chip 302 and the second heat-dissipating member are ensured by the first heat-conducting layer.
  • 206A conducts heat transfer well.
  • the first thermally conductive layer may be formed of thermally conductive materials, such as thermally conductive pads, thermally conductive gels, and the like.
  • the top of the second heat dissipation member 206A is provided with a second stepped surface 206A2.
  • the second stepped surface 206A2 realizes that the second heat dissipation member 206A forms a boss structure.
  • the second stepped surface 206A2 is used to connect with the first stepped surface 2014. In cooperation, the positioning of the second heat dissipation member 206A at the bottom of the upper casing 201 is achieved.
  • the bottom of the second heat dissipating member 206A is provided with thermally conductive bumps 2061A, which are close to or contact the circuit board 300 in the projection area of the light receiving sub-module 302A to accelerate the heat dissipation of the light receiving sub-module 302A.
  • the size of the top of the thermally conductive protrusion 2061A is larger than the size of the bottom of the thermally conductive protrusion 2061A, which can increase the number of light receiving times on the second heat dissipation member 206A while ensuring the heat dissipation requirement of the light receiving sub-module 302A.
  • the heat conduction path from the module 302A to the first chip 302 reduces the heat generated by the second heat dissipation member 206A and the first chip 302 from being conducted to each other through the second heat dissipation member 206A.
  • the bottoms of the thermally conductive bumps 2061A are in contact with the circuit board 300, so that the heat generated by the light receiving sub-module 302A can be quickly conducted to the second heat dissipation member 206A.
  • the bottoms of the thermally conductive protrusions 2061A may be in contact with the circuit board 300 through the second thermally conductive layer.
  • the second heat-conducting layer is filled in the gap formed between the bottom of the heat-conducting protrusion 2061A and the circuit board 300 , and the second heat-conducting layer has good heat-conducting performance, so that the light-receiving sub-module 302A and the second heat-dissipating layer are ensured by the second heat-conducting layer.
  • Component 206A conducts heat transfer well.
  • the second thermally conductive layer may be formed of thermally conductive materials, such as thermally conductive pads, thermally conductive gels, and the like.
  • the front surface of the circuit board 300 is provided with a first copper layer, and the projection of the light receiving sub-module 302A in the direction of the front surface of the circuit board 300 covers the first copper layer, so that the light is accelerated by the first copper layer.
  • the receiving sub-module 302A generates heat transfer, which facilitates the rapid realization of the heat transfer from the light-receiving sub-module 302A to the second heat dissipation member 206A.
  • the bottom of the second heat dissipation component 206A is provided with thermally conductive bumps, and each thermally conductive bump corresponds to the corresponding light-receiving submodule 302A. heat dissipation.
  • FIG. 21 is a cross-sectional view of another optical module according to an embodiment of the present disclosure.
  • the bottom of the first heat dissipation member 205 is clamped in the first positioning step 2012 and the second positioning step 2016
  • the top of the second heat dissipation member 206A is clamped in the through hole 2013
  • the bottom of the first heat dissipation member 205 is clamped in the through hole 2013 .
  • the first stepped surface 2014 confines the second heat dissipation member 206A.
  • the bottom of the second heat dissipation member 206A is in contact with the first chip 302 through the first thermal conductive layer 3021, and the heat generated by the first chip 302 is conducted to the second heat dissipation member 206A through the first thermal conductive layer 3021;
  • the bottom of the thermally conductive bump 2061A is in contact with the circuit board 300 through the second thermally conductive layer 061 , and the heat generated by the light receiving sub-module 302A is conducted to the second heat dissipation member 206A through the contact with the circuit board 300 and the thermally conductive bump 2061A.
  • the heat transferred to the second heat dissipation member 206A is then transferred to the first heat dissipation member 205 through the connection between the second heat dissipation member 206A and the first heat dissipation member 205 and the upper casing 201 , and finally diffuses out through the first heat dissipation member 205 .
  • the first heat dissipation component 205 and the second heat dissipation component 206A directly dissipate heat for high heat density components such as the light receiving sub-module 302A and the first chip 302 in the optical module, which accelerates the speed of the light in the optical module.
  • the heat dissipation of the high heat density components such as the receiving sub-module 302A and the first chip 302 prevents heat from accumulating around the high heat density components such as the light receiving sub-module 302A and the first chip 302, which helps to uniformize the internal temperature of the optical module.
  • a modular design can be achieved; and when the high heat density components and their positions are changed At this time, it is only necessary to properly adjust the structure of the bottom side of the second heat dissipation member 206A, so that the second heat dissipation member 206A can be matched with the changed high heat density member.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

光模块,包括:上壳体(201),设置有通孔(2013);下壳体(202),与上壳体(201)配合形成包裹腔体;电路板(300),设置在上壳体(201)与下壳体(202)配合形成的包裹腔内;高热量密度部件,设置在电路板(300)表面且与电路板(300)电连接;第一散热部件(205),设置在上壳体(201)的顶面上;第二散热部件(206A),顶侧通过通孔(2013)与第一散热部件(205)相接触,底侧与高热量密度部件相接触,第二散热部件(206A)的导热效率大于上壳体(201)的导热效率,第二散热部件(206A)用于将高热量密度部件产生的热量传导至第一散热部件(205)。

Description

一种光模块
本公开要求在2020年10月19日提交中国专利局、申请号为202022334064.9、专利名称为“一种光模块”、在2020年10月27日提交中国专利局、申请号为202011165739.X、专利名称为“一种光模块”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及光通信技术领域,尤其涉及一种光模块。
背景技术
在云计算、移动互联网、视频等新型业务和应用模式,均会用到光通信技术。光模块在光通信技术领域中实现光电转换的功能,是光通信设备中的关键器件之一,光模块向外部光纤中输入的光信号强度直接影响光纤通信的质量。
目前随着光模块传输速率要求的不断提高,光模块的集成度越来越高。而由于光模块集成度越来越高,光模块的功率密度也不断增大。如,当芯片功率密度过大时,芯片处热量集中,若芯片处集中的热量无法及时扩散出去,产生局部高温区,将严重影响光模块在高温下的光电性能。随着光模块速率的增加,驱动芯片等芯片的功耗越来越大,光模块功耗甚至已达20-30W,其内部散热成为棘手问题。
发明内容
一方面,本公开提供的一种光模块,包括:上壳体,设置有通孔;下壳体,与所述上壳体配合形成包裹腔体;电路板,设置在所述上壳体与所述下壳体配合形成的包裹腔体内;高热量密度部件,设置在所述电路板表面且与所述电路板电连接;第一散热部件,设置在所述上壳体的顶面上;第二散热部件,顶侧通过所述通孔与所述第一散热部件相接触,底侧与所述高热量密度部件相接触,所述第二散热部件的导热效率大于所述上壳体的导热效率,所述第二散热部件用于将所述高热量密度部件产生的热量传导至所述第一散热部件。
另一方面,本公开提供的一种光模块,包括:壳体,包括上壳体和下壳体,所述上壳体和所述下壳体盖合形成包裹内腔;第一散热部件,设置在所述壳体的内壁上,沿所述光模块的长度方向设置;电路板,设置在所述包裹内腔中;光学次模块,电连接所述电路板;第一芯片,设置在所述电路板上,电连接所述电路板,与所述第一散热部件相接触;散热部件,设置在所述壳体的内壁上,与所述光学次模块相接触。
附图说明
为了更清楚地说明本公开的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为光通信终端连接关系示意图;
图2为光网络单元结构示意图;
图3为本公开实施例提供的一种光模块结构示意图;
图4为本公开实施例提供光模块分解结构示意图;
图5为本公开实施例提供的一种光模块的内部机构示意图;
图6为本公开实施例提供的另一种光模块的分解结构示意图;
图7为本公开实施例提供的一种VC均温板与第一芯片的装配示意图;
图8为本公开实施例提供的一种散热部件与次模块壳体的装配示意图;
图9为本公开实施例提供的另一种光模块的内部结构示意图一;
图10为本公开实施例提供的另一种光模块的内部结构示意图二;
图11为本公开实施例提供的一种光模块的剖视图一;
图12为本公开实施例提供的一种光模块的剖视图二;
图13为本公开实施例提供的另一种光模块的分解结构示意图;
图14为本公开实施例提供的另一种光模块的内部结构示意图三;
图15为本公开实施例提供的另一种光模块的内部结构示意图四;
图16为本公开实施例提供的另一种上壳体、第一散热部件和第二散热部件的分解示意图;
图17为本公开实施例提供的另一种上壳体的结构示意图一;
图18为本公开实施例提供的另一种上壳体的结构示意图二;
图19为本公开实施例提供的一种上壳体与第二散热部件的装配结构示意图;
图20为本公开实施例提供一种第二散热部件与电路板的相对位置结构示意图;
图21为本公开实施例提供的另一种光模块的剖视图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在说明书的描述中,术语“一个实施例”、“一些实施例”、“示例性实施例(”、“示例”、“特定示例”或“一些示例”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”“”第三“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”“第三”“第四”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。然而,术语“连接”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
本文中“被配置为”的使用意味着开放和包容性的语言,其不排除被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
光纤通信的核心环节之一是光、电信号的相互转换。光纤通信使用携带信息的光信号在光纤/光波导等信息传输设备中传输,利用光在光纤/光波导中的无源传输特性可以实现低成本、低损耗的信息传输;而计算机等信息处理设备使用的是电信号,为了在光纤/光波导等信息传输设备与计算机等信息处理设备之间建立信息连接,就需要实现电信号与光信号的相互转换。
光模块在光纤通信技术领域中实现上述光、电信号的相互转换功能,光信号与电信号的相互转换是光模块的核心功能。光模块通过其内部电路板上的金手指实现与外部上位机之间的电连接,主要的电连接包括供电、I2C信号、数据信号以及接地等;光模块通过光接口实现与外部光纤的光连接,外部光纤的连接方式有多种,衍生出多种光纤连接器类型;在电接口处使用金手指实现电连接,已经成为光模块行业在的主流连接方式,以此为基础,金手指上引脚的定义形成了多种行业协议/规范;采用光接口与光纤连接器实现的光连接方式已经成为光模块行业的主流连接方式,以此为基础,光纤连接器也形成了多种行业标准,如LC接口、SC接口、MPO接口等,光模块的光接口也针对光纤连接器做了适配性的结构设计,在光接口处设置的光纤适配器因此具有多种类型。
图1为光通信终端连接关系示意图。如图1所示,光通信终端的连接主要包括光网络终端100、光模块200、光纤101及网线103之间的相互连接;
光纤101的一端连接远端服务器,网线103的一端连接本地信息处理设备,本地信息处理设备与远端服务器的连接由光纤101与网线103的连接完成;而光纤101与网线103之间的连接由具有光模块200的光网络终端100完成。
光模块200的光接口对外接入光纤101,与光纤101建立双向的光信号连接;光模块200的电接口对外接入光网络终端100中,与光网络终端100建立双向的电信号连接;在光模块内部实现光信号与电信号的双向相互转换,从而实现在光纤与光网络终端之间建立信息连接;在本公开某一些实施例中,来自光纤101的光信号由光模块转换为电信号后输入至光网络终端100中,来自光网络终端100的电信号由光模块转换为光信号输入至光纤101中。
光网络终端具有光模块接口102,用于接入光模块200,与光模块200建立双向的电信号连接;光网络终端具有网线接口104,用于接入网线103,与网线103建立双向的电信号连接(一般为以太网协议的电信号,与光模块使用的电信号属于不同的协议/类型); 光模块200与网线103之间通过光网络终端100建立连接,在本公开某一些实施例中,光网络终端将来自光模块的信号传递给网线,将来自网线的信号传递给光模块,光网络终端作为光模块的上位机监控光模块的工作。光网络终端是光模块的上位机,向光模块提供数据信号,并接收来自光模块的数据信号,至此,远端服务器通过光纤、光模块、光网络终端及网线,与本地信息处理设备之间建立双向的信号传递通道。
常见的本地信息处理设备包括路由器、家用交换机、电子计算机等;常见的光网络终端包括光网络单元ONU、光线路终端OLT、数据中心服务器、数据中心交换机等。
图2为光网络终端结构示意图。如图2所示,在光网络终端100中具有电路板105,在电路板105的表面设置笼子106;在笼子106内部设置有电连接器,用于接入光模块的电接口(如金手指等);在笼子106上设置有散热器107,散热器107具有增大散热面积的翅片等凸起部。
光模块200插入光网络终端中,光模块的电接口插入笼子106内部的电连接器,光模块的光接口与光纤101连接。
笼子106位于电路板上,将电路板上的电连接器包裹在笼子中,从而使笼子内部设置有电连接器;光模块插入笼子中,由笼子固定光模块,光模块产生的热量传导给笼子106,然后通过笼子上的散热器107进行扩散。
图3为本公开实施例提供的一种光模块结构示意图,图4为本公开实施例提供的一种光模块的分解结构示意图。如图3、图4所示,本公开实施例提供的光模块200包括上壳体201、下壳体202、电路板300、光学次模块400。
上壳体201盖合在下壳体202上,以形成具有两个开口的包裹腔体,用作光模块的壳体;包裹腔体的外轮廓一般呈现方形体,在本公开某一些实施例中,下壳体包括主板以及位于主板两侧、与主板垂直设置的两个侧板;上壳体包括盖板,盖板盖合在上壳体的两个侧板上,以形成包裹腔体;上壳体还可以包括位于盖板两侧、与盖板垂直设置的两个侧壁,由两个侧壁与两个侧板结合,以实现上壳体盖合在下壳体上。
两个开口的其中一个开口为电口204,电路板的金手指从电口204伸出,插入光网络终端等上位机中;另一个开口为光口203,用于外部光纤接入;电路板300、光学次模块400等光电器件位于上、下壳体形成的包裹腔体中。
采用上壳体201、下壳体202结合的装配方式,便于将电路板300、光学次模块400等等器件安装到壳体中,由上壳体201、下壳体202形成光模块最外层的封装保护壳体;上壳体201及下壳体202一般采用金属材料,如锌合金,利于实现电磁屏蔽以及散热;一般不会将光模块的壳体做成一体部件,这样在装配电路板等器件时,定位部件、散热以及电磁屏蔽部件无法安装,也不利于生产自动化。在本公开实例中,上壳体201和/或下壳体202上设置散热翅片,用于辅助增加光模块的散热能力。
本公开光模块还包括解锁部件(图中未画出),解锁部件位于包裹腔体/下壳体202的外壁,用于实现光模块与上位机之间的固定连接,或解除光模块与上位机之间的固定连接。
解锁部件具有与上位机笼子匹配的卡合部件;拉动解锁部件的末端可以在使解锁部件 在外壁的表面相对移动;光模块插入上位机的笼子里,由解锁部件的卡合部件将光模块固定在上位机的笼子里;通过拉动解锁部件,解锁部件的卡合部件随之移动,进而改变卡合部件与上位机的连接关系,以解除光模块与上位机的卡合关系,从而可以将光模块从上位机的笼子里抽出。
电路板300上设置有电路走线、电子元件(如电容、电阻、三极管、MOS管)及芯片(如MCU、时钟数据恢复CDR、电源管理芯片、数据处理芯片DSP)等。
电路板300通过电路走线将光模块中的用电器件按照电路设计连接在一起,以实现供电、电信号传输及接地等电功能。
电路板一般为硬性电路板,硬性电路板由于其相对坚硬的材质,还可以实现承载作用,如硬性电路板可以平稳的承载芯片;当光收发器件位于电路板上时,硬性电路板也可以提供平稳的承载;硬性电路板还可以插入上位机笼子中的电连接器中,在本公开某一些实施例中,在硬性电路板的一侧末端表面形成金属引脚/金手指,用于与电连接器连接;这些都是柔性电路板不便于实现的。
部分光模块中也会使用柔性电路板,作为硬性电路板的补充;柔性电路板一般与硬性电路板配合使用,如硬性电路板与光收发器件之间可以采用柔性电路板连接。
光学次模块400可包括光发射次模块及光接收次模块,光学次模块电连接电路板300,如直接电连接电路板或通过柔性电路板连接电路板300。光学次模块400内包括激光器以及用于辅助激光器正常工作的各种光学以及电学器件。如图4所示,本公开实施例提供的光模块中,电路板300上设置安装孔301,光学次模块400嵌设在安装孔301内;通过安装孔301固定光学次模块400,一方面便于实现光学次模块400与电路板300的连接固定。另一方面,电路板300通常采用印刷电路板,印刷电路板导热系数相对比较小,进而相较与光学次模块400设置在电路板300上,通过安装孔301固定光学次模块400方便光学次模块400散热。当然本公开实施例中,光学次模块400还可以与电路板300物理分离,然后通过柔性电路板连接电路板300。
图5为本公开实施例提供的一种光模块的内部结构示意图。如图5所示,本公开实施例提供的光模块中,光学次模块400包括次模块壳体401,次模块壳体401用于容纳盛放激光器、光电探测、TEC(Thermo Electric Cooler,半导体致冷器)等器件,便于实现光学次模块400的集成。次模块壳体401嵌设在安装孔301内,因此次模块壳体401便于实现光学次模块400的安装固定。同时,次模块壳体401包括相对设置的顶面和底面,次模块壳体401的顶面和底面分别为次模块壳体401的主散热面,进而次模块壳体401便于实现光学次模块400的散热。因此本公开实施例中的次模块壳体401,既可方便光学次模块的安装又能便于光学次模块的散热。在本公开实施例中,次模块壳体401的顶面和底面分别为次模块壳体401上平行于电路板300上表面的面。在本公开某一些实施例中,光学次模块400设置在光模块的前部,即靠近光模块的光口203的一端。
如图5所示,本公开实施例提供的光模块中,电路板300上还设置有第一芯片302。在本公开实施例中,第一芯片302主要为光模块中工作时产生热量比较多的芯片,即第一 芯片302主要为光模块中高热量密度芯片,如数据处理芯片DSP、时钟数据恢复芯片(Clock Data Recovery,CDR)、激光驱动芯片、跨阻放大芯片等。当第一芯片302工作时,产生的热量比较多,若无法及时将热量传递出,第一芯片302产生的热量将在其上以及其周围集中,造成热量在光模块的第一芯片302相应位置处出现热量集中。
已有的光模块中,第一芯片302产生的热量通过自有扩散的方式传递至光模块的壳体上;由于锌合金具有易加工、铸造性好、成本低等优点,光模块的壳体通常采用锌合金,但锌合金散热性能存在局限性,热扩散能力不强,进而第一芯片302产生的热量将大量集中在第一芯片302周围的壳体上。若第一芯片302位于光模块的后部,则热量将主要集中在壳体的后部,如上壳体201的后部,导致光模块前后两端的温度不均匀,进而将会影响光模块高温下的性能。为避免第一芯片302造成光模块前后两端的温度不均匀,在本公开实施例提供的光模块中,还包括第一散热部件,第一散热部件接触连接第一芯片302和壳体,第一散热部件用于使第一芯片302产生的热量更便利的传递扩散。在本公开实施例中,第一散热部件接触连接第一芯片302和上壳体201,用于将第一芯片302产生的热量更便利的在上壳体201上进行传递扩散,但本公开实施例中不局限于第一散热部件接触连接第一芯片302和上壳体201;在本公开某一些实施例中,第一散热部件接触连接上壳体201的内壁,如第一散热部件镶嵌设置在上壳体201的盖板内侧。
图6为本公开实施例提供的另一种光模块的分解结构示意图。如图6所示,本公开实施例提供的光模块中,还包括第一散热部件205,第一散热部件205用于接触连接第一芯片302和上壳体201。如图6所示的实施例中,上壳体201的上表面设置有散热翅片,为光模块的主要散热部件,上壳体201的上表面为主要散热面。在本公开某一些实施例中,散热翅片呈条棱状凸出设置在上壳体201上,设置的散热翅片可增大与外界空气流的接触面积,空气流经散热翅片可加快其流通速度,进而从散热接触面积和流通速度提高上壳体201与外界环境之间的散热效率,即提高光模块外壳表面的散热效率。但本公开实施例中不仅限于上壳体201的上表面设置有散热翅片,下壳体202的表面也可以设置散热翅片,用作光模块的主散热面。第一散热部件205为热的良导体,具有良好的导热性能(导热系数高于锌合金),如采用VC均温板,VC均温板是一种导热性能良好的材料,其导热性能远好于锌合金,VC均温板更加便于扩散热量。
VC均温板中的热量可以高效率的均匀分布在整个面,内部存在真空腔和冷却液。均温板底座受热后,热源会加热铜网微状蒸发器,冷却液在真空超低压环境下受热快速蒸发为热空气,热空气在铜网微状环境流通(导热),热空气受热上升,遇散热板上部冷源后散热,重新凝结成液体,凝结后的冷却液通过铜微状结构毛细管道回流到均温板底部蒸发源处,回流的冷却液通过蒸发器受热后再次气化流向冷端,反复循环达到快速传热均温的目的。
如图6所示,第一芯片302设置在光模块的后部(靠近光模块的电口204),第一散热部件205的长度相对较长,近乎可以贯穿光模块的后部至前部,进而可将第一芯片302产生的热量从光模块的后部扩散至光模块的后部,即将第一芯片302产生的热量扩散至整个 上壳体201,使得上壳体201上的热量分布均匀,然后通过上壳体201上的散热翅片散热,散热翅片通过与空气的对流传热,将热量散发出去,从而达到良好的散热目的。
图7为本公开实施例提供的一种VC均温板与第一芯片的装配示意图。如图7所示,第一散热部件205的一端接触连接第一芯片302,第一散热部件205的另一端延伸至第一芯片302的外围,如第一散热部件205的另一端延伸至光模块的前部。在本公开实施例中,第一散热部件205的一端可以直接接触连接第一芯片302,第一散热部件205的一端还可以通过导热材料间接接触连接第一芯片302,导热材料如导热垫、导热胶等,便于保证第一散热部件205和第一芯片302充分接触。
在本公开实施例中,激光器被封装在次模块壳体401中,激光器的温度由TEC控制,次模块壳体401内封装有TEC。当采用第一散热部件205将第一芯片302产生的热量从光模块的后部传递至光模模块的前部时,第一芯片302产生的热量将会扩散至次模块壳体401的周围,将会对TEC的控温造成影响。为避免扩散至次模块壳体401的周围热量对TEC的控温造成影响,本公开实施例提供的光模块中,还包括散热部件,散热部件接触连接次模块壳体401和壳体,散热部件用于将TEC热面产生的热量传递至次模块壳体401,然后通过次模块壳体401传递至散热部件,最后经散热部件将热量传递至壳体。在本公开实施例中,散热部件为良导体,当第一散热部件205接触连接第一芯片302和上壳体201时,散热部件接触连接次模块壳体401和下壳体202,用于将TEC热面产生的热量传递至下壳体202,达到优化TEC散热路径的目的。
如图6所示,本公开实施例提供的光模块中,还包括第三散热部件206,第三散热部件206用于辅助并优化次模块壳体401的散热,第三散热部件206用于接触连接次模块壳体401和下壳体202。第三散热部件206可为铜片/块、VC均温板等。在本公开某一些实施例中,第三散热部件206为铜块散热部件。TEC热面产生的热量传递至次模块壳体401,然后通过次模块壳体401传递至散热部件,最后经散热部件将热量传递至下壳体202,由于第三散热部件206为铜块,铜块的导热系数及热扩散能力较高,更有利于热量的传导,进而达到优化TEC散热路径的目的。在本公开实施例中,为避免第一散热部件205对光学次模块400造成过度的影响,次模块壳体401的第一散热面与第一散热部件205不接触。
图8为本公开实施例提供的一种散热部件与次模块壳体的装配示意图。如图8所示,第三散热部件206的一端接触连接次模块壳体401的第二散热面,第三散热部件206的另一端延伸至次模块壳体401外围。在本公开某一些实施例中,第三散热部件206的另一端向光模块的后部延伸。在本公开实施例中,第三散热部件206的一端可以直接接触连接次模块壳体401的第二散热面,第三散热部件206的一端还可以通过导热材料间接接触连接次模块壳体401的第二散热面,导热材料如导热垫、导热胶等,便于保证第三散热部件206和次模块壳体401的第二散热面充分接触。
本公开实施例提供的电路板300上还包括第一芯片302以外的第二芯片、第三芯片等产热量相对较多的芯片,如跨阻放大器、限幅放大器、激光驱动器、MCU等。为避免热量集中,第一芯片302、跨阻放大器、限幅放大器、激光驱动器、MCU等分散的设置在电 路板300上。如,第一芯片302设置在电路板300的上表面,第二芯片、第三芯片等设置在电路板300的下表面,并尽可能的远离电路板300上设置第一芯片302的区域,如不设置在第一芯片302在电路板300上投影覆盖区域。
图9为本公开实施例提供的另一种光模块的内部结构示意图一。如图9所示,本公开实施例提供的光模块中还包括第二芯片303,第二芯片303设置在电路板300的下表面。电路板300的上表面和下表面为相对概念,仅是为了区分第二芯片303与第一芯片302设置在了电路板300的不同表面,电路板300为印刷电路板,导热性能相对较差,进而可通过电路板300达到阻碍第一芯片302产生的热量向第二芯片303效果。在本公开某一些实施例中,第二芯片303在电路板300上的投影与第一芯片302在电路板300上的投影不重合,即第二芯片303不设置在电路板300上设置第一芯片302的背面,相应的增加第二芯片303与第一芯片302的热传导距离。
在本公开某一些实施例中,在电路板300上设置第二芯片303背面设置第一导热凸台207,第一导热凸台207用于辅助提升第二芯片303上热量的传导、扩散。第一导热凸台207采用导热系数相对较高的材料;在本公开某一些实施例中,第一导热凸台207可采用金属材料,如铜、铝以及其合金等。在本公开一些实施例中,第一导热凸台207的一端通过导热胶固定设置在电路板300上,另一端用于接触连接上壳体201;进而第二芯片303产生的热量通过第一导热凸台207传导至上壳体201上,然后通过上壳体201将热量散发出去,达到加快第二芯片303的散热,进一步避免了光模块内部热量的集中,促进光模块内部温度均匀化。
如图9所示,本公开实施例提供的光模块中还包括第三芯片304,第三芯片304设置在电路板300的下表面。第三芯片304在电路板300上的投影与第一芯片302在电路板300上的投影不重合,即第三芯片304不设置在电路板300上设置第一芯片302的背面,相应的增加第三芯片304与第一芯片302的热传导距离。
图10为本公开实施例提供的另一种光模块的内部结构示意图二。如图10所示,本公开实施例中,在电路板300上设置第三芯片304背面设置第二导热凸台208,第二导热凸台208用于辅助提升第三芯片304上热量的传导、扩散。进一步,如图10所示,第二导热凸台208的一端通过导热胶2081固定设置在电路板300上,另一端用于接触连接上壳体201;进而第三芯片304产生的热量通过第二导热凸台208传导至上壳体201上,然后通过上壳体201将热量散发出去,加快第三芯片304的散热,进一步避免了光模块内部热量的集中,促进光模块内部温度均匀化。因此,为防止第一散热部件205上扩散的热量影响到第三芯片304的散热,第二导热凸台208与上壳体201的接触时应避免接触第一散热部件205;相应的,第一导热凸台207与上壳体201的接触时应避免接触第一散热部件205。
图11为本公开实施例提供的一种光模块的剖视图一。如图11所示,本公开实施例提供的光模块中,第一散热部件205为长条状结构,进而第一散热部件205从光模块的后部延伸至光模块的前部,以便于实现光模块后部与前部热量分布均匀;上壳体201的内壁顶面上设置第一安装槽2011,第一散热部件205嵌设在第一安装槽2011内,且第一散热部 件205的侧面贴合第一安装槽2011的侧壁,实现将第一散热部件205嵌入上壳体201内。通过上壳体201上设置第一安装槽2011固定第一散热部件205,一方面方便第一散热部件205在光模块中的设置,另一方面使第一散热部件205与上壳体201充分接触,保证第一散热部件205向上壳体201方向传递热量的效果。在本公开某一些实施例中,第一散热部件205通过第一导热垫2051实现充分接触连接第一芯片302,便于保证第一散热部件205与第一芯片302热传递效果。第一导热垫2051采用具有良好导热效果且具有一定弹性的导热材料,便于保证第一芯片302与第一散热部件205之间的热传递效果。第一导热垫2051可以采用导热硅脂或导热凝胶等膏状导热界面材料制成。
第一芯片302产生的热量通过第一导热垫2051传递至第一散热部件205后部,热量从第一散热部件205的后部向第一散热部件205的前部传输,同时经过第一散热部件205传导至上壳体201,利用上壳体201的散热翅片与空气的对流传热,将热量散发出去,从而达到良好的散热目的,进而避免光模块中出现热量集中。
如图11所示,本公开实施例提供的光模块中,下壳体202的内壁底面上设置第二安装槽2021,第三散热部件206嵌设在第二安装槽2021内,且第三散热部件206的侧面贴合第二安装槽2021的侧壁,实现将第一散热部件205嵌入下壳体202内。通过下壳体202上设置第二安装槽2021固定第三散热部件206,一方面方便第三散热部件206在光模块中的设置,另一方面使第三散热部件206与下壳体202充分接触,保证第三散热部件206向下壳体202方向传递热量的效果。在本公开某一些实施例中,第三散热部件206通过第二导热垫2061实现充分接触连接次模块壳体401的第二散热面,便于保证第三散热部件206与次模块壳体401热传递效果。第二导热垫2061采用具有良好导热效果且具有一定弹性的导热材料,便于保证次模块壳体401与第三散热部件206之间的热传递效果。在本公开实施例中,次模块壳体401的第一散热面不接触第一散热部件205,为避免次模块壳体401的第一散热面接触到第一散热部件205,应控制第一安装槽2011的深度以及第一散热部件205的厚度,尽量保证模块壳体401的第一散热面与第一散热部件205之间存在一定的间隙。
光学次模块400产生的热量传输至次模块壳体401,经第三散热部件206传递至第三散热部件206,热量最后经第三散热部件206传导至下壳体202,利用下壳体202将热量散发出去,从而达到良好的散热目的,进而避免光模块中出现热量集中。
图12为本公开实施例提供的一种光模块的剖视图二。如图12所示,本公开实施例提供的光模块中,第三芯片304设置在电路板300的下表面,第二导热凸台208的一端通过导热胶2081固定在与第三芯片304相对的电路板300的上表面上,第二导热凸台208的另一端与上壳体201内壁接触。第三芯片304产生的热量通过导热胶2081传递至第二导热凸台208,然后通过第二导热凸台208传导至上壳体201,利用上壳体201的散热翅片与空气的对流传热,将热量散发出去,从而达到良好的散热目的,进而避免光模块中出现热量集中。
图13为本公开实施例提供的另一种光模块的分解结构示意图。如图13所示,在本公 开实施例中,光发射次模块301A包括激光器以及用于辅助激光器正常工作的各种光学以及电学器件。如图13所示,本公开实施例提供的光模块中,电路板300上设置安装孔,光发射次模块301A嵌设在安装孔内;通过安装孔固定光发射次模块301A,一方面便于实现光发射次模块301A与电路板300的连接固定。另一方面,电路板300通常采用印刷电路板,印刷电路板导热系数相对比较小,进而相较与光发射次模块301A嵌设在电路板300上,通过安装孔固定光发射次模块301A便于光发射次模块301A散热。当然本公开实施例中,光发射次模块301A还可以与电路板300物理分离,然后通过柔性电路板连接电路板300。在本公开某一些实施例中,为便于光发射次模块301A的散热可在光发射次模块301A的上方或下方设置散热部件,通过该散热部件将光发射次模块301A产生的热量直接传导至上壳体201或下壳体202。
图14为本公开实施例提供的另一种光模块的内部结构示意图三,图15为本公开实施例提供的另一种光模块的内部结构示意图四。在本公开实施例中,光接收次模块302A与第一芯片302设置在电路板300的不同面。如图14和6所示,光接收次模块302A设置在电路板300的反面,靠近下壳体202,第一芯片302设置在光模块的正面,靠近上壳体201。且如图15所示,光接收次模块302A可封装为两个独立的部件。在本公开某一些实施例中,为减少光接收次模块302A与第一芯片302各自产生热量相互之间的影响,光接收次模块302A应尽量远离第一芯片302在电路板300上的投影区域,即光接收次模块302A不在第一芯片302的投影区域。
在光模块工作过程中,且当光模块的传输速率较高时光接收次模块302A与第一芯片302将产生较多的热量,若无法及时将热量传递出,光接收次模块302A与第一芯片302产生的热量将在其上以及其周围聚集,造成热量在光模块的光接收次模块302A与第一芯片302相应位置处集中;当集中的热量无法进行有效的散出时,可能会影响光接收次模块302A与第一芯片302正常工作。
现有的光模块中,光接收次模块302A与第一芯片302产生的热量通过自由扩散的方式传递至光模块的壳体上;由于锌合金具有易加工、铸造性好、成本低等优点,光模块的壳体通常采用锌合金,但锌合金散热性能存在局限性,热扩散能力不强,进而光接收次模块302A与第一芯片302产生的热量将大量集中在光接收次模块302A与第一芯片302周围的壳体上,不利于满足光接收次模块302A与第一芯片302的散热需求。
图16为本公开实施例提供的另一种上壳体、第一散热部件和第二散热部件的分解示意图。为满足光接收次模块302A与第一芯片302的散热需求,本公开实施例中如图16所示,上壳体201的顶面上设置第一散热部件205,第一散热部件205具有良好的散热性能,通过第一散热部件205将传输至上壳体201上热量的快速扩散。在本公开某一些实施例中,第一散热部件205采用具有良好的散热性能型材,如铝型材。铝型材不仅具有良好的导热性能,还具有密度小、易成型、价格相对便宜等优点。
在本公开某一些实施例中,如图16所示,上壳体201的底面上设置第二散热部件206A,第二散热部件206A具有良好的传热性能,进而通过第二散热部件206A将光接收次模块 302A与第一芯片302等高热量密度部件产生的热量快速的传导至上壳体201或第一散热部件205。在本公开某一些实施例中,第二散热部件206A采用具有良好导热性能侧材料,如铜等具有良好导热性能的金属材料。在本公开实施例中,为保证通过第二散热部件206A传导的热量能够快速的被扩散,第二散热部件206A连接第一散热部件205。
由于第一芯片302为一个集成电路,随着光模块通信速率的提高以及光模块集成度的提高,其热量密度也越来越大,当其散热不好时,尤其对于产品结构尺寸较大的产品、如OSFP产品,将产生局部高温区,进而会影响光模块在高温下的光电性能。本公开实施例采用第一散热部件205与第二散热部件206A相结合的方式,以对上述第一芯片302进行散热,当然,本公开实施例提供的散热方式也可以用于光模块中其它高热量密度部件的散热、如激光驱动芯片、跨阻放大芯片等,本实施例只是以光接收次模块302A、第一芯片302为例。
如图16所示,本公开实施例提供的上壳体201上设置通孔2013,通孔2013用于卡设第二散热部件206A。在本公开某一些实施例中,第二散热部件206A的顶部设置凸台,凸台卡设在通孔2013内以实现第二散热部件206A卡设连接上壳体201。在本公开实施例中,当第一散热部件205装配至上壳体201上时,第一散热部件205覆盖通孔2013,进而通过通孔2013便于实现第二散热部件206A与第一散热部件205连接,同时又能的一定程度上便于实现第一散热部件205、第二散热部件206A在上壳体201上的固定。如在第二散热部件206A与第一散热部件205的间隙处填充焊锡膏,然后通过焊接将第二散热部件206A与第一散热部件205连接,实现第一散热部件205、第二散热部件206A在上壳体201上的固定。在本公开某一些实施例中,通孔2013为方形通孔,第二散热部件206A顶部设置的凸台为方形凸台,方形凸台卡设在方形通孔内。
图17为本公开实施例提供的另一种上壳体的结构示意图一。如图17所示,上壳体201的顶面上设置第一定位翅片2011A和第二定位翅片2015,第一定位翅片2011A和第二定位翅片2015沿上壳体201的长度方向设置在上壳体201的侧边,通过第一定位翅片2011A和第二定位翅片2015可实现第一散热部件205在上壳体201顶面宽度方向的定位,便于保证第一散热部件205的安装精度。在本公开实施例中,第一定位翅片2011A设置在上壳体201顶面的右侧边、第二定位翅片2015设置在上壳体201顶面的左侧边;当然第一定位翅片2011A并不局限于设置在上壳体201顶面的右侧边、第二定位翅片2015并不局限于设置在上壳体201顶面的左侧边。在本公开实施例中,第一定位翅片2011A和第二定位翅片2015的设置位置可根据第一散热部件205宽度进行调整。
在本公开某一些实施例中,如图17所示,上壳体201的顶面上设置第一定位台阶2012和第二定位台阶2016,第一定位台阶2012和第二定位台阶2016设置在上壳体201的长度方向的两端,进而通过第一定位台阶2012和第二定位台阶2016可实现第一散热部件205在上壳体201顶面长度方向的定位。在本公开实施例中,第一定位台阶2012设置在上壳体201顶面的左端,第二定位台阶2016设置在上壳体201顶面的右端;当然第一定位台阶2012并不局限于设置在上壳体201顶面的左端、第二定位台阶2016并不局限于设置在 上壳体201顶面的右端。在本公开实施例中,第一定位台阶2012和第二定位台阶2016的设置位置可根据第一散热部件205长度进行调整。
在本公开某一些实施例中,上壳体201的顶面上设置有第一定位翅片2011A、第二定位翅片2015、第一定位台阶2012和第二定位台阶2016,通过第一定位翅片2011A、第二定位翅片2015、第一定位台阶2012和第二定位台阶2016相互配合便于实现第一散热部件205安装的更精准的定位,进而便于第一散热部件205的装配。
图18为本公开实施例提供的另一种上壳体的结构示意图二。如图18所示,上壳体201的底面上设置第一台阶面2014,第一台阶面2014用于实现第二散热部件206A的定位;同时,当第一散热部件205与第二散热部件206A连接时,第一台阶面2014可用于第二散热部件206A的限位。
图19为本公开实施例提供的一种上壳体与第二散热部件的装配结构示意图。如图19所示,第二散热部件206A的顶部卡设在通孔2013内,且第二散热部件206A覆盖第一台阶面2014。在本公开某一些实施例中,如图19所示,第二散热部件206A的底部还设置导热凸起2061A,导热凸起2061A为第二散热部件206A底部的凸起结构,用于降低第二散热部件206A的底面与电路板300的距离。在本公开某一些实施例中,导热凸起2061A用于光接收次模块302A的散热,即光接收次模块302A产生的热量先经导热凸起2061A传导至第二散热部件206A上,再经第二散热部件206A传导至第一散热部件205上。
图20为本公开实施例提供一种第二散热部件与电路板的相对位置结构示意图。如图20所示,第二散热部件206A覆盖在第一芯片302的上方,进而第一芯片302产生的热量可传导至第二散热部件206A上,然后通过第二散热部件206A传输出光模块的内部。在本公开某一些实施例中,第二散热部件206A的底面接触连接第一芯片302,进而第一芯片302产生的热量可快速的传导至第二散热部件206A。或者,为便于保证第一芯片302产生的热量快速的传导至第二散热部件206A,第二散热部件206A的底面可通过第一导热层接触连接第一芯片302。第一导热层填充在第二散热部件206A与第一芯片302之间形成的间隙内,且第一导热层具有良好的导热性能,进而通过第一导热层保证第一芯片302与第二散热部件206A良好的进行热传递。第一导热层可通过导热材料形成,如导热垫、导热凝胶等。
如图20所示,第二散热部件206A的顶部设置第二台阶面206A2,第二台阶面206A2实现第二散热部件206A形成凸台结构,同时第二台阶面206A2用于与第一台阶面2014配合,实现第二散热部件206A在上壳体201底部的定位。
如图20所示,第二散热部件206A的底部设置导热凸起2061A,导热凸起2061A接近或接触光接收次模块302A投影区域的电路板300,用于加快光接收次模块302A的散热。在本公开某一些实施例中,导热凸起2061A的顶部的尺寸大于导热凸起2061A底部的尺寸,能够在保证光接收次模块302A散热需求的同时,增加在第二散热部件206A上光接收次模块302A到第一芯片302上热传导的路径,减少第二散热部件206A与第一芯片302产生的热量通过第二散热部件206A传导至对方。
在本公开实例中,导热凸起2061A的底部接触连接电路板300,进而光接收次模块302A产生的热量可快速的传导至第二散热部件206A。或者,为便于保证光接收次模块302A产生的热量快速的传导至第二散热部件206A,导热凸起2061A的底部可通过第二导热层接触连接电路板300。第二导热层填充在导热凸起2061A的底部与电路板300之间形成的间隙内,且第二导热层具有良好的导热性能,进而通过第二导热层保证光接收次模块302A与第二散热部件206A良好的进行热传递。第二导热层可通过导热材料形成,如导热垫、导热凝胶等。
在本公开某一些实施例中,电路板300的正面设置第一铺铜层,光接收次模块302A在电路板300正面方向的投影覆盖第一铺铜层,进而通过第一铺铜层加快光接收次模块302A产生热量的热传递,便于快速实现光接收次模块302A到第二散热部件206A的热传递。
在本公开实施例中,若光接收次模块302A封装为两个独立的部件,则第二散热部件206A的底部设置导热凸起,每个导热凸起对应的用于相应光接收次模块302A的散热。
图21为本公开实施例提供的另一种光模块的剖视图。如图21所示,第一散热部件205底部卡设在第一定位台阶2012和第二定位台阶2016内,第二散热部件206A的顶部卡设在通孔2013内,第一散热部件205的底部连接第二散热部件206A的顶部,第一台阶面2014限位第二散热部件206A。在本公开某一些实施例中,第二散热部件206A的底部通过第一导热层3021接触连接第一芯片302,第一芯片302产生的热量通过第一导热层3021传导至第二散热部件206A;导热凸起2061A的底部通过第二导热层061接触连接电路板300,光接收次模块302A产生的热量依次通过与电路板300的接触处、导热凸起2061A传导至第二散热部件206A。然后传递至第二散热部件206A热量通过第二散热部件206A与第一散热部件205的连接处以及上壳体201传递至第一散热部件205,最后经第一散热部件205扩散出去。进而本公开实施例提供的光模块,通过第一散热部件205和第二散热部件206A直接为光模块中光接收次模块302A与第一芯片302等高热量密度部件散热,加快了光模块中光接收次模块302A与第一芯片302等高热量密度部件的散热,避免热量在光接收次模块302A与第一芯片302等高热量密度部件周围聚集,有助于使得光模块内部温度均匀化。
在本公开某一些实施例中,在本公开实施例提供的第一散热部件205与第二散热部件206A相结合的方式中,可以达到模块化设计;且当高热量密度部件及其位置发生改变时,仅需要适当的调整第二散热部件206A底侧的结构,就可使第二散热部件206A与变化后的高热量密度部件相配合。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (20)

  1. 一种光模块,其特征在于,包括:
    上壳体,设置有通孔;
    下壳体,与所述上壳体配合形成包裹腔体;
    电路板,设置在所述上壳体与所述下壳体配合形成的包裹腔体内;
    高热量密度部件,设置在所述电路板表面且与所述电路板电连接;
    第一散热部件,设置在所述上壳体的顶面上;
    第二散热部件,顶侧通过所述通孔与所述第一散热部件相接触,底侧与所述高热量密度部件相接触,所述第二散热部件的导热效率大于所述上壳体的导热效率,所述第二散热部件用于将所述高热量密度部件产生的热量传导至所述第一散热部件。
  2. 根据权利要求1所述的光模块,其特征在于,所述第二散热部件的顶部设置凸台,所述第二散热部件所述凸台卡设在所述通孔内并与所述第一散热部件相接触。
  3. 根据权利要求1所述的光模块,其特征在于,所述上壳体顶面的侧边分别设置第一定位翅片和第二定位翅片,所述第一定位翅片和所述第二定位翅片卡设连接所述第一散热部件的侧边。
  4. 根据权利要求1所述的光模块,其特征在于,所述上壳体顶面的一端设置第一定位台阶,所述上壳体顶部的另一端设置第二定位台阶,所述第一定位台阶和所述第二定位台阶卡设连接所述第一散热部件的端部。
  5. 根据权利要求2所述的光模块,其特征在于,所述通孔为方形通孔,所述凸台为方形凸台,所述方形凸台卡设在所述方形通孔。
  6. 根据权利要求1所述的光模块,其特征在于,所述上壳体的底面上设置第一台阶面,所述第二散热部件的顶部设置第二台阶面,所述第二台阶面贴合连接所述第一台阶面。
  7. 根据权利要求1所述的光模块,其特征在于,所述高热量密度部件包括光发射次模块、光接收次模块和第一芯片,所述电路板上设置通孔,所述光发射次模块镶嵌设置在所述通孔内,所述光接收次模块设置在所述电路板的反面,所述第一芯片设置在所述电路板的正面。
  8. 根据权利要求7所述的光模块,其特征在于,所述第二散热部件的底面通过第一导热层连接所述第一芯片,所述第一导热层用于将所述第一芯片产生的热量传导至所述第二散热部件。
  9. 根据权利要求7所述的光模块,其特征在于,所述电路板的正面设置第一铺铜层,所述光接收次模块在所述电路板正面方向的投影覆盖所述第一铺铜层;
    所述第二散热部件的底部设置导热凸起,所述导热凸起通过第二导热层连接所述第一铺铜层,所述第二导热层用于将所述光接收次模块产生的热量传导至所述导热凸起。
  10. 根据权利要求1所述的光模块,其特征在于,所述第一散热部件为铝型材,所述第二散热部件为铜块。
  11. 一种光模块,其特征在于,包括:
    壳体,包括上壳体和下壳体,所述上壳体和所述下壳体盖合形成包裹内腔;
    第一散热部件205,设置在所述壳体的内壁上,沿所述光模块的长度方向设置;
    电路板,设置在所述包裹内腔中;
    光学次模块,电连接所述电路板;
    第一芯片,设置在所述电路板上,电连接所述电路板,与所述第一散热部件205相接触;
    散热部件,设置在所述壳体的内壁上,与所述光学次模块相接触。
  12. 根据权利要求11所述的光模块,其特征在于,所述上壳体的上表面设置有散热翅片,所述上壳体的内壁顶面上设置第一安装槽,所述第一散热部件205嵌设在所述第一安装槽内且所述第一散热部件205的侧面贴合所述上壳体。
  13. 根据权利要求11所述的光模块,其特征在于,所述电路板上设置有安装孔,所述光学次模块嵌设在所述安装孔内。
  14. 根据权利要求13所述的光模块,其特征在于,所述光学次模块包括次模块壳体,所述次模块壳体嵌设在所述安装孔内,所述次模块壳体包括相对设置的顶面和底面,所述顶面与所述第一散热部件205的距离较所述底面与所述第一散热部件205的距离近;
    所述散热部件设置在所述下壳体的内壁上,与所述次模块壳体的底面相接触。
  15. 根据权利要求12所述的光模块,其特征在于,所述光学次模块位于所述电路板的前部,所述第一芯片位于所述电路板的后部,所述第一散热部件205自所述上壳体的后部延伸至所述上壳体的前部;
    所述光学次模块与所述第一散热部件205不接触。
  16. 根据权利要求14所述的光模块,其特征在于,所述下壳体的内壁底面上设置第二安装槽,所述散热部件嵌设在所述第二安装槽内且所述散热部件的侧面贴合所述下壳体。
  17. 根据权利要求11所述的光模块,其特征在于,所述光模块还包括第二芯片,所述第二芯片设置在所述电路板的下表面且所述第二芯片在所述电路板上的投影与所述第一芯片在所述电路板上的投影不重合。
  18. 根据权利要求17所述的光模块,其特征在于,所述光模块还包括第一导热凸台,所述第一导热凸台的一端连接所述电路板的上表面且所述第一导热凸台在所述电路板上的投影覆盖所述第二芯片在所述电路板上的投影,所述第一导热凸台的另一端接触连接所述上壳体的内壁顶面。
  19. 根据权利要求14所述的光模块,其特征在于,所述散热部件为铜块散热片。
  20. 根据权利要求14所述的光模块,其特征在于,所述第一散热部件205通过第一导热垫接触连接所述第一芯片;所述散热部件通过第二导热垫接触连接所述底面。
PCT/CN2021/100972 2020-10-19 2021-06-18 一种光模块 WO2022083149A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202022334064.9 2020-10-19
CN202022334064.9U CN213302596U (zh) 2020-10-19 2020-10-19 一种光模块
CN202011165739.XA CN114488423A (zh) 2020-10-27 2020-10-27 一种光模块
CN202011165739.X 2020-10-27

Publications (1)

Publication Number Publication Date
WO2022083149A1 true WO2022083149A1 (zh) 2022-04-28

Family

ID=81291490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100972 WO2022083149A1 (zh) 2020-10-19 2021-06-18 一种光模块

Country Status (1)

Country Link
WO (1) WO2022083149A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114942497A (zh) * 2022-06-30 2022-08-26 东莞立讯技术有限公司 光模块
WO2023221682A1 (zh) * 2022-05-20 2023-11-23 华为技术有限公司 一种电路板模组及通信设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329974A (ja) * 1999-05-19 2000-11-30 Japan Aviation Electronics Industry Ltd 光モジュール
US20040062491A1 (en) * 2002-08-23 2004-04-01 Shunsuke Sato Optical data link
US20040257738A1 (en) * 2001-11-23 2004-12-23 Lars Lindberg Heat controlled optoelectrical unit
CN101872042A (zh) * 2010-05-27 2010-10-27 华为技术有限公司 光模块和光通信系统
CN202425276U (zh) * 2011-12-23 2012-09-05 索士亚科技股份有限公司 具有回路式均温板的散热模组
US20130064512A1 (en) * 2011-09-08 2013-03-14 Nayana Ghantiwala Cooling system for an optical module
CN103676027A (zh) * 2012-09-14 2014-03-26 泰科电子(上海)有限公司 连接器
CN210199360U (zh) * 2019-09-04 2020-03-27 东莞铭普光磁股份有限公司 散热光模块
CN111416234A (zh) * 2019-01-08 2020-07-14 泰连公司 可插拔模块组件的传热装置
CN211554398U (zh) * 2020-04-21 2020-09-22 成都凯威电子科技有限公司 一种能够快速散热的光模块
CN213302596U (zh) * 2020-10-19 2021-05-28 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329974A (ja) * 1999-05-19 2000-11-30 Japan Aviation Electronics Industry Ltd 光モジュール
US20040257738A1 (en) * 2001-11-23 2004-12-23 Lars Lindberg Heat controlled optoelectrical unit
US20040062491A1 (en) * 2002-08-23 2004-04-01 Shunsuke Sato Optical data link
CN101872042A (zh) * 2010-05-27 2010-10-27 华为技术有限公司 光模块和光通信系统
US20130064512A1 (en) * 2011-09-08 2013-03-14 Nayana Ghantiwala Cooling system for an optical module
CN202425276U (zh) * 2011-12-23 2012-09-05 索士亚科技股份有限公司 具有回路式均温板的散热模组
CN103676027A (zh) * 2012-09-14 2014-03-26 泰科电子(上海)有限公司 连接器
CN111416234A (zh) * 2019-01-08 2020-07-14 泰连公司 可插拔模块组件的传热装置
CN210199360U (zh) * 2019-09-04 2020-03-27 东莞铭普光磁股份有限公司 散热光模块
CN211554398U (zh) * 2020-04-21 2020-09-22 成都凯威电子科技有限公司 一种能够快速散热的光模块
CN213302596U (zh) * 2020-10-19 2021-05-28 青岛海信宽带多媒体技术有限公司 一种光模块

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023221682A1 (zh) * 2022-05-20 2023-11-23 华为技术有限公司 一种电路板模组及通信设备
CN114942497A (zh) * 2022-06-30 2022-08-26 东莞立讯技术有限公司 光模块
CN114942497B (zh) * 2022-06-30 2023-10-03 东莞讯滔电子有限公司 光模块

Similar Documents

Publication Publication Date Title
CN213302596U (zh) 一种光模块
WO2021212849A1 (zh) 一种光模块
CN212647082U (zh) 一种光模块
WO2022083149A1 (zh) 一种光模块
EP3470899A1 (en) Optical module packaging structure and optical module
TW201436491A (zh) 用於在光學通訊模組中散熱之方法及系統
CN112398541B (zh) 一种光模块
WO2019085229A1 (zh) 一种高速光模块的散热结构
CN112965190A (zh) 一种光模块
US11275223B1 (en) Optical transceiver
WO2022127072A1 (zh) 一种光模块
CN110596833B (zh) 一种光模块
CN111694112A (zh) 一种光模块
CN114035287A (zh) 一种光模块
CN114035286A (zh) 一种光模块
WO2022052842A1 (zh) 一种光模块
CN210775925U (zh) 光发射器及光模块
CN216248434U (zh) 一种光发射次模块及光模块
CN213302597U (zh) 一种光模块
CN114488423A (zh) 一种光模块
CN114637079B (zh) 一种光模块
US20220221667A1 (en) Optical Module
CN114859478A (zh) 一种光模块
CN214474114U (zh) 一种光模块
CN216310330U (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21881570

Country of ref document: EP

Kind code of ref document: A1