WO2019085229A1 - 一种高速光模块的散热结构 - Google Patents

一种高速光模块的散热结构 Download PDF

Info

Publication number
WO2019085229A1
WO2019085229A1 PCT/CN2017/118501 CN2017118501W WO2019085229A1 WO 2019085229 A1 WO2019085229 A1 WO 2019085229A1 CN 2017118501 W CN2017118501 W CN 2017118501W WO 2019085229 A1 WO2019085229 A1 WO 2019085229A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
optical module
plate
bottom plate
pcb
Prior art date
Application number
PCT/CN2017/118501
Other languages
English (en)
French (fr)
Inventor
曹芳
付永安
高繁荣
孙莉萍
Original Assignee
武汉电信器件有限公司
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉电信器件有限公司, 武汉光迅科技股份有限公司 filed Critical 武汉电信器件有限公司
Publication of WO2019085229A1 publication Critical patent/WO2019085229A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4272Cooling with mounting substrates of high thermal conductivity

Definitions

  • the present invention relates to the field of optical module technologies, and in particular, to a heat dissipation structure of a high speed optical module.
  • the conventional high-speed optical module 100 is generally configured as follows: currently divided into a transmitting end and a receiving end, the interface unit 101 receives the NRZ signal or the PAM4 signal sent by the system, and converts the NRZ signal into the PAM4 through the PAM electrical chip 102.
  • the model is coded. If the received PAM4 signal is directly encoded, it is directly encoded and sent to the transmitting driver 103.
  • the transmitting driver 103 outputs a current signal or a voltage signal to the laser 104.
  • the laser 104 is excited and emits a modulated optical signal. .
  • the optical signal is transmitted through the transmitting end optical lens 105 and the transmitting fiber port 106 to transmit an optical signal with a modulated waveform to the system network.
  • the receiving end is reversed, and the receiving fiber port 107 in the module receives the optical signal with the modulated waveform introduced into the system, and is incident on the photodetector chip 109 through the receiving end optical lens 108, and the photodetector chip 109 passes
  • the photoelectric conversion converts the received optical signal into a current signal having a modulated waveform, and the current model is amplified by the transimpedance amplifier chip and the limiting amplifier chip 110 and converted into a voltage signal, and then the voltage model is supplied to the PAM chip 102. If the interface unit 101 is connected to the PAM4 signal, the PAM chip 102 directly decodes and then outputs. If the interface unit 101 is connected to the NRZ signal, the PAM chip 102 needs to be converted into an NRZ signal and then output.
  • the entire module is accessed and controlled by the control unit 111 via the I2C communication to the PAM chip 102, the laser driver 103, and the transimpedance amplifier/limiter amplifier 110 to implement the functions of the module.
  • the schematic diagram of the existing module function is shown in Figure 1.
  • the block diagram of the existing module is shown in Figure 2 and Figure 3.
  • the existing heat dissipation structure is shown in Figure 4.
  • the main heat-generating chip is concentrated on the PAM chip 102.
  • the laser driver chip 103, and the transimpedance amplifier chip/limiter amplifier 110 Taking a single transmitting module as an example, as shown in FIG.
  • the current module layout is to package the electric chip with high heat generation and high power consumption on the top layer of the PCB board 101, because the top space is larger, and the optoelectronic component is more favorable. Placement.
  • the heat dissipation area of the external system is also distributed on the top layer, as shown in FIG. 4, and for the current PAM chip 102, the laser driver chip 103, and the transimpedance amplifier chip/limiter amplifier 110.
  • the heat dissipation design of the existing module is not conducive to the rapid heat dissipation of the module in the high temperature environment.
  • the main heat of the module is first scattered to the bottom layer of the shell. It is uploaded to the top layer of the casing through the side wall of the casing and then dissipated through the heat dissipation area of the external system.
  • the technical problem to be solved by the present invention is that the current module layout design is to package the electric chip with large heat generation and high power consumption on the top layer of the PCB board. Because the top space is larger, it is more conducive to the placement of photovoltaic components.
  • the heat dissipation area of the external system is also distributed on the top layer, and for the current, most of the electric chips are positively mounted chips, that is to say, such electric chips need to be dissipated from the bottom layer, therefore, The heat dissipation design of the existing module is not scientific enough.
  • the main heat of the module is first scattered to the bottom layer of the outer casing, and then uploaded to the top layer of the outer casing through the side wall of the outer casing, and then is radiated through the heat dissipation area of the external system.
  • This heat dissipation path is not conducive to the rapid heat dissipation of the module in a high temperature environment, affecting the high temperature performance of the module.
  • the total power consumption of the module is low, the impact is not obvious, but for high-speed high-density optical modules with high power consumption, heat dissipation is a major problem.
  • a heat dissipation structure of a high-speed optical module includes a package base 214, a cover plate 215, and a light engine.
  • the heat dissipation structure further includes a PCB bottom plate 213, a first Z-shaped transition plate 212, and a gold finger sub-plate 201. Specifically:
  • An electrical signal connection is established between the PCB bottom plate 213 and the gold finger sub-board 201 through the first Z-shaped transition plate 212; wherein the first Z-shaped transition plate 212 is such that the PCB bottom plate 213 is fixed to the After the shell base 214, the first surface 2131 of the PCB bottom plate 213 is adjacent to the bottom of the tube base 214, and the second surface 2132 of the PCB is disposed on the PCB bottom plate 213 facing the cover plate 215 side of the optical module;
  • the length of the gold finger sub-board 201 can be set according to the coupling structure of the gold finger sub-board 201 between the shell base 214 and the cover plate 215.
  • the heat dissipation structure further includes a second Z-shaped transition plate 218 connected to the other end of the PCB bottom plate 213;
  • the first Z-shaped transition plate 212 and the second Z-shaped transition plate 218 enable the first bottom surface 2131 of the PCB bottom plate 213 and the package base 214 after the PCB bottom plate 213 is fixed to the package base 214.
  • the bottom is adjacent, and the second surface 2132 of the light engine is disposed on the PCB bottom plate 213 facing the cover plate 215 side of the optical module; the second Z-shaped transition plate 218 is lengthwise according to the second Z-shaped transition plate 218 It can be set by the coupling structure between the casing base 214 and the cover plate 215.
  • the first surface 2131 of the PCB bottom plate 213 and the bottom coupling portion of the package base 214 are provided with a heat sink or a heat dissipating grease.
  • the PCB bottom plate 213 and the first Z-shaped transition plate 212 are integrally formed by a soft band material, wherein the soft band is provided with an electric circuit and the surface of the flexible tape is provided with a pin for completing the light engine welding.
  • the soft strip area of the PCB bottom plate 213 is also provided with a metal bottom plate 219 which is fixed by a heat conductive adhesive with the corresponding flexible tape.
  • the flexible tape is composed of a plurality of materials, including:
  • a 31 located on the intermediate layer of the flexible tape, and a copper foil layer 32 on one or both sides of the 31; a protective layer 33 on the outer surface, and a surface treatment 35 of the designated area for exposing the The copper foil of the designated area is processed into a pad to complete the electrical characteristic connection and the welding of the light engine;
  • the bonding between the different material layers is achieved by the adhesive 34.
  • the PCB bottom plate 213 is specifically a ceramic substrate
  • the first Z-shaped transition plate 212 is a flexible tape
  • the basic connection of the flexible tape 212 with the ceramic
  • the connection of the flexible tape 212 and the golden finger sub-plate 201 are respectively guided by respective leads. The foot welding is completed.
  • the material of the ceramic substrate 413 is an alumina ceramic material or an aluminum nitride ceramic material.
  • the PCB bottom plate 213 is provided with at least three spacers for ensuring a predetermined distance between the PCB bottom plate 213 and the tube base 214 or the cover plate 215.
  • the light engine comprises:
  • interface unit 201 One or more of interface unit 201, PAM electrical chip 202, transmit driver 203, laser 204, transmit optical lens 205, and transmit fiber port 206; and/or,
  • One or more of the fiber optic port 207, the receiving end optical lens 208, the photodetector chip 209, and the limiting amplifier chip 210 are received.
  • the optical module is specifically SFP, SFP+, SFP28, SFP-DD, QSPP+, QSPP28, QSPP-DD package.
  • the invention adjusts the spatial layout of the bottom of the module through various combinations of PCB board, soft belt, metal substrate, ceramic bottom plate and gold finger sub-board, so that the heat generation is serious and the power consumption is high.
  • the light engine part is designed to be mounted on the bottom layer of the PCB board or the carrier substrate (as shown in FIG. 4), which is beneficial for heat dissipation through the top layer of the module, so that it can directly cooperate with the heat sink of the external application system, thereby improving the heat dissipation function of the module. Reduce the working power consumption and improve the high temperature performance of the entire optical module.
  • FIG. 1 is a schematic structural diagram of a conventional high speed optical module according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view showing the structure of a conventional high speed optical module according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a layout of a light board on a PCB in a conventional high-speed optical module structure according to an embodiment of the present invention
  • FIG. 4 is a cage structure and a heat dissipation area inserted by an existing module in an application according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a conventional bar-type light emitting module according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a high speed optical module according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an explosion structure of an optical module in the prior art according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an explosion structure of a high-speed optical module according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an improved high-speed optical module according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another improved high speed optical module according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of another optional high-speed optical module implementation solution according to an embodiment of the present invention.
  • Figure 12 is a cross-sectional view showing a portion of a flexible tape structure according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of another optional high-speed optical module implementation solution according to an embodiment of the present invention.
  • the symbol “/” means a meaning having two functions at the same time, for example, "second in/out port” indicates that the port can enter or exit light.
  • the symbol “A and / or B” indicates that the combination between the front and back objects connected by the symbol includes “A”, “B”, “A and B", such as “backscattered light and / or Reflected light indicates that it can express either “backscattered light”, “reflected light” alone, and “backscattered light and reflected light”.
  • Embodiment 1 of the present invention provides a heat dissipation structure of a high-speed optical module.
  • the device includes a package base 214 , a cover plate 215 , and a light engine.
  • the heat dissipation structure further includes a PCB bottom plate 213 and a first Z-shaped transition.
  • Plate 212 and gold finger sub-board 201 specific:
  • An electrical signal connection is established between the PCB bottom plate 213 and the gold finger sub-board 201 through the first Z-shaped transition plate 212; wherein the first Z-shaped transition plate 212 is such that the PCB bottom plate 213 is fixed to the After the shell base 214, the first surface 2131 of the PCB bottom plate 213 is adjacent to the bottom of the tube base 214, and the second surface 2132 of the PCB is disposed on the PCB bottom plate 213 facing the cover plate 215 side of the optical module;
  • the length of the gold finger sub-board 201 can be set according to the coupling structure of the gold finger sub-board 201 between the shell base 214 and the cover plate 215.
  • the spatial layout of the bottom of the module is adjusted by the combined design of the PCB board, the soft belt and the golden finger sub board, so that the light engine part with high heat generation and high power consumption can be designed and mounted.
  • the optical module may be a package such as SFP, SFP+, SFP28, SFP-DD, QSFP+, QSFP28 or QSFP-DD.
  • the heat dissipation structure further includes a second Z-shaped transition plate 218, and the second Z-shaped transition plate 218 and The other end of the PCB bottom plate 213 is connected;
  • the first Z-shaped transition plate 212 and the second Z-shaped transition plate 218 enable the first bottom surface 2131 of the PCB bottom plate 213 and the package base 214 after the PCB bottom plate 213 is fixed to the package base 214.
  • the bottom is adjacent, and the second surface 2132 of the light engine is disposed on the PCB bottom plate 213 facing the cover plate 215 side of the optical module; the second Z-shaped transition plate 218 is lengthwise according to the second Z-shaped transition plate 218 It can be set by the coupling structure between the casing base 214 and the cover plate 215.
  • the first Z-shaped transition plate 212 and the gold finger sub-plate 201 are illustrated as two separate structures for convenience of description, and as the second Z-shaped transition plate 218, Much of the performance is achieved by the fixation and coupling between the existing package base 214 and, therefore, the range of inclusion thereof preferably refers to the left Z-shaped area as shown in Figure 9, and possibly the Z The left side PCB portion connected to the type area (as shown by the dotted line in Figure 9)
  • the expansion scheme shown in FIG. 9 can be used to achieve a better fixing effect, and in consideration of the prior art, the base 114 and the cover 115 are directed to the straight type PCB bottom plate.
  • a fixed structure is provided, such as a bracket fixed by screws, integrally formed with the base, and the like.
  • the length of the second Z-shaped transition plate 218 described above is set according to the coupling structure of the second Z-shaped transition plate 218 by the coupling structure between the casing base 214 and the cover plate 215, that is, considering the screw fixing,
  • the bracket integrally formed with the base can be disposed more on the second Z-shaped transition plate 218, the first Z-shaped transition plate 212, and the golden finger sub-plate 201, thereby avoiding the PCB bottom plate 213 requiring adjustment of the position.
  • the above-described modification of the second Z-shaped transition plate 218 can be better compatible with the fixed PCB structure on the existing package base 214.
  • the existing shell base 214 structure shown in FIG. 8 can maintain the area where the screw 217 is fixed, and the first Z-shaped transition plate 212 and the second Z-shaped transition plate 218 are combined with the corresponding soft belt to maintain When it is in the same position as the screw 217, the bottom of the PCB bottom plate is brought closer to the bottom layer of the shell base 214, thereby providing space for the light engine to be disposed on the top layer side.
  • the PCB bottom plate 213 can be flattened to be close to/close to the package base 214. Therefore, it can be found that the combination of the first Z-shaped transition plate 212 and the second Z-shaped transition plate 218 can effectively avoid the adjustment of the base structure between the existing straight-type PCBs in the existing base 114 structure. The manufacturing cost of the additional shell base 214 is reduced.
  • the first surface 2131 of the PCB bottom plate 213 and the bottom coupling portion of the package base 214 are provided with heat sinks or heat dissipating grease.
  • the heat sink or heat-dissipating silicone grease also functions to maintain the distance between the PCB bottom plate 213 and the tube cover 215.
  • the embodiment of the present invention provides an optional expansion solution, that is, the PCB bottom plate 213 is provided with at least three spacers 220. As shown in FIG. 10, the spacer 220 is used to ensure that the PCB bottom plate 213 and the tube base 214 or the cover 215 are separated by a predetermined distance.
  • the PCB bottom plate 213 and the first Z-shaped transition plate 212 are integrally formed by a flexible tape material, wherein the flexible tape is disposed therein.
  • the electrical circuit and the flexible tape surface are provided with pins for completing the light engine welding, and the soft band region of the PCB bottom plate 213 is further provided with a metal bottom plate 219, and the metal base plate 219 and the corresponding flexible tape are fixed by a heat conductive adhesive.
  • the flexible tape is composed of multiple layers of materials, including:
  • a 31 located on the intermediate layer of the flexible tape, and a copper foil layer 32 on one or both sides of the 31; a protective layer 33 on the outer surface, and a surface treatment 35 of the designated area for exposing the The copper foil of the designated area is processed into a pad to complete the electrical characteristic connection and the welding of the light engine;
  • the bonding between the different material layers is achieved by the adhesive 34.
  • a simple soft band is supported by the light-free engine, and the soft-belt material usually includes 31, a copper foil layer 32, a bonding layer 34 and a protective layer 33, as shown in FIG.
  • the soft band material is soft, so it is designed to bond a metal bottom plate 219 on the upper layer of the flexible tape 312.
  • the metal bottom plate 219 functions as follows: First, the soft band 312 is supported, and the light engine can be directly mounted on the flexible tape after being supported. It is heat dissipation. The wiring requirements are realized on the flexible tape (completed by the copper foil layer 32), and the metal base plate 219 realizes mechanical support strength and heat dissipation function, that is, the flexible tape + metal base plate 219 is combined to replace the PCB board.
  • the material of the metal bottom plate 219 may be a copper block, may be an aluminum block, or may be various alloy materials for supporting the flexible tape 212 and used for heat dissipation. Bonding is usually done by bonding the two materials together with a thermally conductive adhesive.
  • the light engine portion (202-210) is then mounted on the bottom layer of the flexible tape 212, such that it passes through the top layer of the flexible tape, the metal backplane 219, and then contacts the outer casing. Usually, the outer casing is in contact with the top layer of the PCB to have a high-speed heat dissipation.
  • the heat sink or thermal grease quickly dissipates heat.
  • the PCB bottom plate 213 is specifically a ceramic substrate
  • the first Z-shaped transition plate 212 is a soft band
  • the soft band 212 is substantially connected to the ceramic
  • the soft band 212 and the golden finger pair are used.
  • the connection of the board 201 is done by soldering the respective pins.
  • the material of the ceramic substrate 213 is an alumina ceramic material or an aluminum nitride ceramic material. It can also be connected in such a manner that the connection between the flexible tape 212 and the ceramic substrate is completed by pin welding, and the flexible tape 212 and the golden finger sub-plate 201 are press-bonded by means of a soft and hard bonding plate (ie, a soft and hard bonding plate). ).
  • a preferred implementation manner is further provided. Specifically, a ceramic substrate is used instead of the PCB bottom plate 213, and the PCB board 201 with the golden finger and the ceramic substrate 213 are connected by the flexible tape 212.
  • the connection between the flexible tape 212 and the ceramic base 213 is soldered together by a pin 221 (as shown in FIG. 13), and the solder material may be solder, solder paste, or conductive adhesive.
  • the material of the ceramic substrate 213 may be a ceramic material such as alumina or aluminum nitride, which has a certain mechanical strength to carry the light engine portion, and at the same time, the surface of the metallization may be excessively designed to design circuit leads to realize electrical connection; Has a certain thermal conductivity to achieve heat dissipation.
  • the light engine sections (202 to 210) are attached to the bottom layer of the ceramic substrate 213. When the ceramic substrate is in contact with the outer casing, usually, the surface of the outer casing and the ceramic substrate 213 are padded with a heat dissipating fin (or heat dissipating silicone grease) to dissipate heat rapidly.
  • the above solution adopts a high cost and high stability ceramic substrate for the light engine setting area by using the quality requirement of the current working area, and an ordinary PCB board for the golden finger sub board 201, thereby ensuring the lowest cost basis. To improve the efficiency.
  • the light engine includes:
  • interface unit 201 One or more of interface unit 201, PAM electrical chip 202, transmit driver 203, laser 204, transmit optical lens 205, and transmit fiber port 206; and/or,
  • One or more of the fiber optic port 207, the receiving end optical lens 208, the photodetector chip 209, and the limiting amplifier chip 210 are received.
  • the bending of the PCB board is realized by using the soft and hard bonding board 201.
  • the position of the golden finger portion of the PCB remains unchanged in the outer casing, and the bending of the flexible belt 212 is performed. Fold, raise the PCB board away from the gold finger, so that the bottom space can be increased, and the light engine part (201-210) can have space to be placed on the bottom layer of the PCB board. As shown in FIG.
  • such a large-power electric chip such as the PAM chip 202, the laser driver chip 203, and the transimpedance amplifier chip/limiter amplifier 210 are mounted on the bottom layer of the PCB board 201, and can be contacted through the top layer of the PCB board.
  • a heat sink or thermal grease
  • heat dissipation is used to quickly dissipate heat.

Abstract

一种高速光模块的散热结构,其涉及光模块技术领域。其中,PCB底板(213)与金手指副板(201)之间通过第一Z型过渡板(212)建立电气信号连接;其中,第一Z型过渡板(212)使得PCB底板(213)在固定到管壳底座(214)后,PCB底板(213)的第一表面(2131)与管壳底座(214)的底部相邻,并且PCB底板(213)上设置有光引擎的第二表面(2132)朝向光模块的盖板(215)侧;在光模块设计中,调整了模块底部的空间布局,从而可将发热严重、功耗较高的光引擎部分设计贴装到PCB板或承载基板的底层,有利于通过模块的顶层来散热,可与外部应用系统的散热装置直接配合,从而提升模块的散热功能,降低工作功耗,提升整个光模块的高温性能。

Description

一种高速光模块的散热结构 【技术领域】
本发明涉及光模块技术领域,特别是涉及一种高速光模块的散热结构。
【背景技术】
如图1所示,现有高速光模块100一般结构如下:目前分为发射端和接收端,接口单元101接收到系统发出的NRZ信号或PAM4信号,通过PAM电芯片102将NRZ信号转换为PAM4型号并进行编码,如果接收到的直接是PAM4信号,则直接进行编码后,输送到发射驱动器103,发射驱动器103输出电流信号或电压信号给激光器104,激光器104受激发光,发射出调制光信号。光信号通过发射端光学透镜105和发射光纤端口106传送出去,给系统网络传送出带有调制波形的光信号。
对于接收端则是逆向的,模块中的接收光纤端口107收到系统传入进来带有调制波形的光信号,通过接收端光学透镜108入射到光电探测器芯片109上,光电探测器芯片109通过光电转换,将收到的光信号转换为具有调制波形的电流信号,该电流型号通过跨阻放大器芯片和限幅放大器芯片110后进行放大并转换为电压信号,然后此电压型号输送给PAM芯片102,如果接口单元101接的是PAM4信号,则PAM芯片102直接进行解码然后输出,如果接口单元101接的是NRZ信号,则PAM芯片102解码后还需转换为NRZ信号再输出。
整个模块经控制单元111通过I2C通信对PAM芯片102、激光器驱动器103和跨阻放大器/限幅放大器110进行访问和控制,来实现模块的功能。现有的模块功能示意框架图如下图1,现有的模块结构框图见图2和图3所示,现有的散热结构如图4所示,其中,主要发热的芯片集中在PAM芯片102,激光器驱动器芯片103,和跨阻放大器芯片/限幅放大器110。以单一发射模块为例,如图5 所示,目前的模块布局都是将此发热较大,功耗较高的电芯片封装在PCB板101的顶层,因为顶层空间较大,比较利于光电元件的贴装。但根据协议要求,该模块在实际应用中,外部系统的散热区域也分布在顶层,如图4所示,而针对目前PAM芯片102,激光器驱动器芯片103,和跨阻放大器芯片/限幅放大器110大部分均为正装芯片(即:芯片顶层用来金丝键合,实现电气连接,芯片底层用来贴片,固定于载板上,并通过底层接触传导散热),也就是说此类电芯片需要从底层散热出去,而底层是靠近测试电路板方向,且是悬空的,因此现有模块的散热设计不利于模块在高温环境下的迅速散热,模块的主要热量先散到外壳的底层,再通过外壳的边壁上传到外壳顶层,然后再通过外部系统的散热区域散发出去。此散热路径不够科学,影响到模块的高温性能。当模块总功耗较低时,影响不明显,但对于功耗较高的基于PAM4的光模块而言,散热是个主要问题了。
【发明内容】
本发明要解决的技术问题是目前的模块布局设计都是将发热较大,功耗较高的电芯片封装在PCB板的顶层。因为顶层空间较大,比较利于光电元件的贴装。但根据协议要求,该模块在实际应用中,外部系统的散热区域也分布在顶层,而针对目前这些电芯片大部分均为正装芯片,也就是说此类电芯片需要从底层散热出去,因此,现有模块的散热设计不够科学,模块的主要热量先散到外壳的底层,再通过外壳的边壁上传到外壳顶层,然后再通过外部系统的散热区域散发出去。此散热路径不利于模块在高温环境下的迅速散热,影响到模块的高温性能。当模块总功耗较低时,影响不明显,但对于功耗较高的高速率高密度光模块而言,散热是个主要问题。
本发明采用如下技术方案:
一种高速光模块的散热结构,包括管壳底座214、盖板215和光引擎,散热结构还包括PCB底板213、第一Z型过渡板212和金手指副板201,具体的:
所述PCB底板213与金手指副板201之间通过所述第一Z型过渡板212建立电气信号连接;其中,所述第一Z型过渡板212使得所述PCB底板213在固 定到所述管壳底座214后,PCB底板213的第一表面2131与管壳底座214的底部相邻,并且PCB底板213上设置有光引擎的第二表面2132朝向所述光模块的盖板215侧;
其中,金手指副板201的长度根据所述金手指副板201能够被管壳底座214和盖板215之间的耦合结构固定而设定。
优选的,所述散热结构还包括第二Z型过渡板218,所述第二Z型过渡板218与PCB底板213的另一端连接;
其中,所述第一Z型过渡板212和第二Z型过渡板218使得所述PCB底板213在固定到所述管壳底座214后,PCB底板213的第一表面2131与管壳底座214的底部相邻,并且PCB底板213上设置有光引擎的第二表面2132朝向所述光模块的盖板215侧;所述的第二Z型过渡板218长度根据所述第二Z型过渡板218能够被管壳底座214和盖板215之间的耦合结构固定而设定。
优选的,所述PCB底板213的第一表面2131与管壳底座214的底部耦合区间设置有散热片或散热硅脂。
优选的,所述PCB底板213和第一Z型过渡板212均为软带材料一体制作成型,其中软带内设置有电气线路和软带表面设置有用于完成光引擎焊接的管脚,位于所述PCB底板213的软带区域还设置有金属底板219,所述金属底板219与相应软带通过导热胶粘剂完成固定。
优选的,所述软带由多层材料构成,包括:
位于所述软带中间层的31,以及位于所述31一侧或者两侧的铜箔层32;还有位于外表面的保护胶层33,以及指定区域的表面处理35,用于暴露出该指定区域的铜箔来加工成焊盘,以便完成电器特性连接和光引擎的焊接;
其中,各不同材料层之间通过接着剂34实现贴合。
优选的,所述PCB底板213具体为陶瓷基板,第一Z型过渡板212为软带,软带212与陶瓷基本的连接和软带212与金手指副板201的连接,分别通过各自的引脚焊接完成。
优选的,陶瓷基板413的材料是氧化铝陶瓷材料或者氮化铝陶瓷材料。
优选的,所述PCB底板213上设置有至少三个垫块,所述垫块用于保证所述PCB底板213与管壳底座214或者盖板215之间相差预设距离。
优选的,所述光引擎包括:
接口单元201、PAM电芯片202、发射驱动器203、激光器204、发射端光学透镜205、和发射光纤端口206中的一项或者多项;和/或,
接收光纤端口207、接收端光学透镜208、光电探测器芯片209和限幅放大器芯片210中的一项或者多项。
优选的,所述光模块具体为SFP、SFP+、SFP28、SFP-DD、QSPP+、QSPP28、QSPP-DD封装。
与现有技术相比,本发明的有益效果在于:
本发明在光模块设计中,通过PCB板、软带、金属基板、陶瓷底板和金手指副板的多种组合设计,调整了模块底部的空间布局,从而可将发热严重、功耗较高的光引擎部分设计贴装到PCB板或承载基板的底层(如图4所示),有利于通过模块的顶层来散热,这样可与外部应用系统的散热装置直接配合,从而提升模块的散热功能,降低工作功耗,提升整个光模块的高温性能。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明实施例提供的现有高速光模块的原理框架图;
图2是本发明实施例提供的现有高速光模块结构透视示意图;
图3是本发明实施例提供的现有高速光模块结构中PCB板上光引擎布局示意图;
图4是本发明实施例提供的现有模块在应用中插入的笼子结构和散热区域
图5是本发明实施例提供的现有直板型光发射模块的结构示意图;
图6是本发明实施例提供的一种高速光模块结构示意图;
图7是本发明实施例提供的现有技术中的一种光模块爆炸结构示意图;
图8是本发明实施例提供的现一种高速光模块爆炸结构示意图;
图9是本发明实施例提供的一种改进型高速光模块结构示意图;
图10是本发明实施例提供的另一种改进型高速光模块结构示意图;
图11是本发明实施例提供的另一种可选的高速光模块实现方案的结构示意图;
图12是本发明实施例提供的软带结构部分剖面示意图;
图13是本发明实施例提供的另一种可选的高速光模块实现方案的结构示意图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,术语“内”、“外”、“纵向”、“横向”、“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不应当理解为对本发明的限制。
在本发明各实施例中,符号“/”表示同时具有两种功能的含义,例如“第二进/出光口”表明该端口既可以进光也可以出光。而对于符号“A和/或B”则表明由该符号连接的前后对象之间的组合包括“A”、“B”、“A和B”三种情况,例如“背向散射光和/或反射光”,则表明其可以表达单独的“背向散射光”,单独的“反射光”,以及“背向散射光和反射光”三种含义中的任意一种。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1:
本发明实施例1提供了一种高速光模块的散热结构,如图6和图8所示, 包括管壳底座214、盖板215和光引擎,散热结构还包括PCB底板213、第一Z型过渡板212和金手指副板201,具体的:
所述PCB底板213与金手指副板201之间通过所述第一Z型过渡板212建立电气信号连接;其中,所述第一Z型过渡板212使得所述PCB底板213在固定到所述管壳底座214后,PCB底板213的第一表面2131与管壳底座214的底部相邻,并且PCB底板213上设置有光引擎的第二表面2132朝向所述光模块的盖板215侧;
其中,金手指副板201的长度根据所述金手指副板201能够被管壳底座214和盖板215之间的耦合结构固定而设定。
本发明实施例在光模块设计中,通过PCB板、软带和金手指副板的组合设计,调整了模块底部的空间布局,从而可将发热严重、功耗较高的光引擎部分设计贴装到PCB板或承载基板的底层(如图4所示),有利于通过模块的顶层来散热,可与外部应用系统的散热装置直接配合,从而提升模块的散热功能,降低工作功耗,提升整个光模块的高温性能。
在本发明实施例中,所述光模块具体可以是SFP、SFP+、SFP28、SFP-DD、QSFP+、QSFP28或者QSFP-DD等封装。
在本发明实施例的诸多应用场景中,存在一种可扩展的实现方案,如图9所示,所述散热结构还包括第二Z型过渡板218,所述第二Z型过渡板218与PCB底板213的另一端连接;
其中,所述第一Z型过渡板212和第二Z型过渡板218使得所述PCB底板213在固定到所述管壳底座214后,PCB底板213的第一表面2131与管壳底座214的底部相邻,并且PCB底板213上设置有光引擎的第二表面2132朝向所述光模块的盖板215侧;所述的第二Z型过渡板218长度根据所述第二Z型过渡板218能够被管壳底座214和盖板215之间的耦合结构固定而设定。
在本发明各实施例中,为了描述的方便将第一Z型过渡板212和金手指副板201作为两个独立结构进行阐述,而作为第二Z型过渡板218来说,由于其作用更多的表现在完成与已有的管壳底座214之间的固定和耦合,因此,其包 含的范围优选的是指如图9所示的左侧Z型区域,以及可能存在的与所述Z型区域相连的左侧PCB部分(如图9中虚线框所描述区域)
相比较如图6所述的方案,采用如图9所示的扩展方案能够起到更好的固定效果,并且,考虑到现有技术中,底座114、盖板115都会针对直板型的PCB底板设置固定结构,例如采用螺丝固定、与底座一体加工成型的托架等等。其中,上述所述的第二Z型过渡板218长度根据所述第二Z型过渡板218能够被管壳底座214和盖板215之间的耦合结构固定而设定即考虑所述螺丝固定、与底座一体加工成型的托架能够更多的被设置在第二Z型过渡板218、第一Z型过渡板212和金手指副板201上,从而避开需要调整位置的PCB底板213。
因此,上述设置第二Z型过渡板218的改进方案能够更好的兼容已有的管壳底座214上的固定PCB板结构。例如:图8所示的已有管壳底座214结构,可以将原本设置有螺丝217固定的区域,通过第一Z型过渡板212和第二Z型过渡板218组合相应软带的方式,维持其与螺丝217相对位置不变情况下,实现了PCB底板向管壳底座214的底层的靠拢,从而为在顶层侧设置光引擎提供了空间。
为了便于对照理解本发明实施例所提出的上述改进方案(与第二Z型过渡板218和无第二Z型过渡板218之间的比较),还提供了已有技术中对于直板型PCB底板制作的光模块封装结构爆炸图,如图7所示,可以看出可以通过设置金手指副板201的长度,使其能够包含已有光模块底座114中的固定螺丝117区域,从而使得金手指副板201能够有效的被固定,而对于PCB底板213的另一侧则可以通过适当加工已有管壳底座214中对应图7所示左侧一对螺丝的底托高度(即打薄处理)使得PCB底板213能够平整的向管壳底座214贴合/靠近。从而可以发现,采用上述第一Z型过渡板212和第二Z型过渡板218组合方案,能够有效的避免已有的底座114结构中,对于现有直板型PCB之间的底托结构的调整,减少了额外带来的管壳底座214的制作成本。
结合本发明实施例,还存在一种优选的实现方案,其中,所述PCB底板213的第一表面2131与管壳底座214的底部耦合区间设置有散热片或散热硅脂。其 实,所述散热片或者散热硅脂也起到维持所述PCB底板213与管壳盖板215之间距离的作用。为了起到相同的作用,除了采用所述散热片和散热硅脂以外,本发明实施例还提供了一种可选的扩展方案,即所述PCB底板213上设置有至少三个垫块220,如图10所示,所述垫块220用于保证所述PCB底板213与管壳底座214或者盖板215之间相差预设距离。
在本发明实施例中,存在一种可选的实现方案,如图11所示,所述PCB底板213和第一Z型过渡板212均为软带材料一体制作成型,其中软带内设置有电气线路和软带表面设置有用于完成光引擎焊接的管脚,位于所述PCB底板213的软带区域还设置有金属底板219,所述金属底板219与相应软带通过导热胶粘剂完成固定。
在本发明实施例中,存在一种可选的实现方案,如图12所示,所述软带由多层材料构成,包括:
位于所述软带中间层的31,以及位于所述31一侧或者两侧的铜箔层32;还有位于外表面的保护胶层33,以及指定区域的表面处理35,用于暴露出该指定区域的铜箔来加工成焊盘,以便完成电器特性连接和光引擎的焊接;
其中,各不同材料层之间通过接着剂34实现贴合。
在本发明实施例实现过程中,发现单纯的软带是支撑不起光引擎的,软带材料通常包含31、铜箔层32,粘接层34和保护层33,如下图12所示。软带材质较软,所以设计了在软带312的上层粘接一个金属底板219,该金属底板219的作用:一是支撑软带312,支撑后可以在软带上直接贴装光引擎,二是散热。软带上实现布线需求(通过铜箔层32完成),金属底板219实现机械支撑强度和散热功能,即软带+金属底板219合起来替代PCB板。
其中,所述金属底板219的材料可以是铜块、可以是铝块,也可以是各种合金材料,用来支撑软带212,同时用来散热。粘接方式通常是采用导热胶粘剂将此两物料粘接在一起。然后将光引擎部分(202~210)贴装于软带212的底层,如此,通过软带的顶层、金属底板219,然后与外壳接触,通常外壳与PCB板的顶层接触时会垫有高速散热的散热片(或散热硅脂),迅速散热出去。
在本发明实施例以及其各扩展实现方案中,所述PCB底板213具体为陶瓷基板,第一Z型过渡板212为软带,软带212与陶瓷基本的连接和软带212与金手指副板201的连接,分别通过各自的引脚焊接完成。其中,陶瓷基板213的材料是氧化铝陶瓷材料或者氮化铝陶瓷材料。也可以是这种方式连接:软带212与陶瓷基板的连接通过引脚焊接完成,软带212与金手指副板201通过软硬结合板的方式压配胶接而成(即软硬结合板)。
结合本发明实施例,为了进一步降低开发成本,还提供了一种优选的实现方式,具体的:采用陶瓷基板替代PCB底板213,通过软带212将带金手指的PCB板201和陶瓷基板213连接,其中软带212与陶瓷基本213的连接通过引脚221焊接在一起(如图13所示),焊接材料可以是焊锡、锡膏、也可以是导电胶粘接等。陶瓷基板213的材料可以是氧化铝、氮化铝等陶瓷材料,具有一定的机械强度来承载光引擎部分,同时可以过多做表面金属化的图形来设计电路引线,实现电气连接;另外,还具有一定的导热率实现散热功能。光引擎部分(202~210)则贴装于此陶瓷基板213的底层。通过此陶瓷基板与外壳接触,通常外壳与陶瓷基板213接触面会垫有高速散热的散热片(或散热硅脂),迅速散热出去。上述方案通过区别当前工作区域的质量要求,对于光引擎设置区域采用高成本、高稳定性的陶瓷基板,而对于金手指副板201则采用普通的PCB板,从而保证在最低成本基础上,带来最优效率的提高。
在本发明实施例中,以及各优选的、可选的扩展方案中,所述光引擎包括:
接口单元201、PAM电芯片202、发射驱动器203、激光器204、发射端光学透镜205、和发射光纤端口206中的一项或者多项;和/或,
接收光纤端口207、接收端光学透镜208、光电探测器芯片209和限幅放大器芯片210中的一项或者多项。
在本发明实施例中,通过采用软硬结合板201来实现PCB板的弯折,这样,依据协议的要求,PCB的金手指部分在外壳中的位置依然保持不变,通过软带212的弯折,将远离金手指的PCB板抬高,这样即可增大底层空间,光引擎部分(201~210)则可以有空间贴装于PCB板的底层了。如下图8所示:这样功耗较 大的电芯片如PAM芯片202,激光器驱动器芯片203,和跨阻放大器芯片/限幅放大器210均正装在PCB板201的底层,可通过PCB板的顶层接触到外壳,通常外壳与PCB板的顶层接触时会垫有高速散热的散热片(或散热硅脂),快速散热出去。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种高速光模块的散热结构,包括管壳底座214、盖板215和光引擎,其特征在于,散热结构还包括PCB底板213、第一Z型过渡板212和金手指副板201,具体的:
    所述PCB底板213与金手指副板201之间通过所述第一Z型过渡板212建立电气信号连接;其中,所述第一Z型过渡板212使得所述PCB底板213在固定到所述管壳底座214后,PCB底板213的第一表面2131与管壳底座214的底部相邻,并且PCB底板213上设置有光引擎的第二表面2132朝向所述光模块的盖板215侧;
    其中,金手指副板201的长度根据所述金手指副板201能够被管壳底座214和盖板215之间的耦合结构固定而设定。
  2. 根据权利要求1所述的高速光模块的散热结构,其特征在于,所述散热结构还包括第二Z型过渡板218,
    所述第二Z型过渡板218与PCB底板213的另一端连接;
    其中,所述第一Z型过渡板212和第二Z型过渡板218使得所述PCB底板213在固定到所述管壳底座214后,PCB底板213的第一表面2131与管壳底座214的底部相邻,并且PCB底板213上设置有光引擎的第二表面2132朝向所述光模块的盖板215侧;所述的第二Z型过渡板218长度根据所述第二Z型过渡板218能够被管壳底座214和盖板215之间的耦合结构固定而设定。
  3. 根据权利要求1所述的高速光模块的散热结构,其特征在于,所述PCB底板213的第一表面2131与管壳底座214的底部耦合区间设置有散热片或散热硅脂。
  4. 根据权利要求1所述的高速光模块的散热结构,其特征在于,所述PCB底板213和第一Z型过渡板212均为软带材料一体制作成型,其中软带内设置有电气线路和软带表面设置有用于完成光引擎焊接的管脚,位于所述PCB底板213的软带区域还设置有金属底板219,所述金属底板219与相应软带通过导热胶粘剂完成固定。
  5. 根据权利要求4所述的高速光模块的散热结构,其特征在于,所述软带由多层材料构成,包括:
    位于所述软带中间层的31,以及位于所述31一侧或者两侧的铜箔层32;还有位于外表面的保护胶层33,以及指定区域的表面处理35,用于暴露出该指定区域的铜箔来加工成焊盘,以便完成电器特性连接和光引擎的焊接;
    其中,各不同材料层之间通过接着剂34实现贴合。
  6. 根据权利要求1所述的高速光模块的散热结构,其特征在于,所述PCB底板213具体为陶瓷基板,第一Z型过渡板212为软带,软带212与陶瓷基板的连接和软带212与金手指副板201的连接,分别通过各自的引脚焊接完成。
  7. 根据权利要求6所述的高速光模块的散热结构,其特征在于,陶瓷基板413的材料是氧化铝陶瓷材料或者氮化铝陶瓷材料。
  8. 根据权利要求1所述的高速光模块的散热结构,其特征在于,所述PCB底板213上设置有至少三个垫块,所述垫块用于保证所述PCB底板213与管壳底座214或者盖板215之间相差预设距离。
  9. 根据权利要求1所述的高速光模块的散热结构,其特征在于,所述光引擎包括:
    接口单元201、PAM电芯片202、发射驱动器203、激光器204、发射端光学透镜205、和发射光纤端口206中的一项或者多项;和/或,
    接收光纤端口207、接收端光学透镜208、光电探测器芯片209和限幅放大器芯片210中的一项或者多项。
  10. 根据权利要求1所述的高速光模块的散热结构,其特征在于,所述光模块具体为SFP、SFP+、SFP28、SFP-DD、QSFP+、QSFP28或者QSFP-DD封装。
PCT/CN2017/118501 2017-10-31 2017-12-26 一种高速光模块的散热结构 WO2019085229A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711046780.3A CN107664796A (zh) 2017-10-31 2017-10-31 一种高速光模块的散热结构
CN201711046780.3 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019085229A1 true WO2019085229A1 (zh) 2019-05-09

Family

ID=61143660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118501 WO2019085229A1 (zh) 2017-10-31 2017-12-26 一种高速光模块的散热结构

Country Status (2)

Country Link
CN (1) CN107664796A (zh)
WO (1) WO2019085229A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110297297A (zh) * 2019-06-27 2019-10-01 昂纳信息技术(深圳)有限公司 一种光模块及其光学引擎安装方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108548102A (zh) * 2018-04-23 2018-09-18 青岛海信宽带多媒体技术有限公司 一种光模块
CN109128560B (zh) * 2018-10-26 2020-10-09 黄山市光锐通信股份有限公司 25g光模块的装配系统
WO2020088011A1 (zh) * 2018-11-02 2020-05-07 青岛海信宽带多媒体技术有限公司 光接收次模块及光模块
CN111352192B (zh) * 2018-12-20 2021-08-10 青岛海信宽带多媒体技术有限公司 一种光模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654607A (zh) * 2011-03-02 2012-09-05 日立电线株式会社 光电传输模块
CN104965267A (zh) * 2015-07-13 2015-10-07 青岛海信宽带多媒体技术有限公司 光模块
CN105549163A (zh) * 2016-02-02 2016-05-04 武汉电信器件有限公司 一种光互连组件
CN205232234U (zh) * 2015-12-24 2016-05-11 中航海信光电技术有限公司 一种光模块
CN205301638U (zh) * 2015-12-23 2016-06-08 福州高意通讯有限公司 光模块的散热结构
US20170168253A1 (en) * 2015-12-11 2017-06-15 Arista Networks, Inc. Pluggable Optical Module with Heat Sink

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI3121630T3 (fi) * 2015-07-21 2023-06-29 Tyco Electronics Svenska Holdings Ab Lämmönhallinnaltaan parannettu optoelektroninen moduuli

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654607A (zh) * 2011-03-02 2012-09-05 日立电线株式会社 光电传输模块
CN104965267A (zh) * 2015-07-13 2015-10-07 青岛海信宽带多媒体技术有限公司 光模块
US20170168253A1 (en) * 2015-12-11 2017-06-15 Arista Networks, Inc. Pluggable Optical Module with Heat Sink
CN205301638U (zh) * 2015-12-23 2016-06-08 福州高意通讯有限公司 光模块的散热结构
CN205232234U (zh) * 2015-12-24 2016-05-11 中航海信光电技术有限公司 一种光模块
CN105549163A (zh) * 2016-02-02 2016-05-04 武汉电信器件有限公司 一种光互连组件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110297297A (zh) * 2019-06-27 2019-10-01 昂纳信息技术(深圳)有限公司 一种光模块及其光学引擎安装方法

Also Published As

Publication number Publication date
CN107664796A (zh) 2018-02-06

Similar Documents

Publication Publication Date Title
WO2019085229A1 (zh) 一种高速光模块的散热结构
CN212647082U (zh) 一种光模块
CN213302596U (zh) 一种光模块
TWM618403U (zh) 光學收發模組及光纖纜線模組
CN114035287B (zh) 一种光模块
CN112965190A (zh) 一种光模块
CN111694112A (zh) 一种光模块
CN114637081B (zh) 一种光模块
CN213302597U (zh) 一种光模块
CN218767433U (zh) 一种光模块
CN114488423A (zh) 一种光模块
CN213302589U (zh) 一种光模块
WO2022193734A1 (zh) 一种光模块
US20230333335A1 (en) Optical module package structure
CN214474114U (zh) 一种光模块
WO2021139200A1 (zh) 一种光模块
CN113093349B (zh) 一种光模块
JP2010161146A (ja) 光送信モジュール
CN210775923U (zh) 一种光模块
CN113009649B (zh) 一种光模块
CN114637079A (zh) 一种光模块
CN114859478A (zh) 一种光模块
CN110850531A (zh) 具有高效散热能力与高集成度的多通道光模块集成结构
CN117170047B (zh) 基于三维封装形式下的高速光模块
CN211653218U (zh) 具有高效散热能力与高集成度的多通道光模块集成结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931055

Country of ref document: EP

Kind code of ref document: A1