WO2022080487A1 - 鉄(Fe)-ニッケル(Ni)系合金粉の製造方法 - Google Patents

鉄(Fe)-ニッケル(Ni)系合金粉の製造方法 Download PDF

Info

Publication number
WO2022080487A1
WO2022080487A1 PCT/JP2021/038261 JP2021038261W WO2022080487A1 WO 2022080487 A1 WO2022080487 A1 WO 2022080487A1 JP 2021038261 W JP2021038261 W JP 2021038261W WO 2022080487 A1 WO2022080487 A1 WO 2022080487A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
nickel
reaction
iron
water
Prior art date
Application number
PCT/JP2021/038261
Other languages
English (en)
French (fr)
Inventor
雅也 行延
民燮 申
しおり 水野
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2022557484A priority Critical patent/JPWO2022080487A1/ja
Priority to CN202180069806.4A priority patent/CN116391052A/zh
Priority to US18/031,997 priority patent/US20230381861A1/en
Publication of WO2022080487A1 publication Critical patent/WO2022080487A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0235Starting from compounds, e.g. oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • B22F2302/256Silicium oxide (SiO2)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/056Particle size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/058Particle size above 300 nm up to 1 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a method for producing an iron (Fe) -nickel (Ni) alloy powder.
  • the iron-nickel alloy known as permalloy is a soft magnetic material with high magnetic permeability and is used for the magnetic core of magnetic parts such as choke coils and inductors.
  • iron-nickel alloy powder is used as a material for a compact core (compact magnetic core) for a magnetic core obtained by compression molding the iron-nickel alloy powder.
  • permalloy such as 78 permalloy (Permalloy A) and 45 permalloy are known, and they are used properly according to their magnetic characteristics and applications.
  • 78 Permalloy is an iron-nickel alloy having a nickel content of about 78.5% by mass, and is characterized by having a high magnetic permeability.
  • 45 Permalloy is an iron-nickel alloy having a nickel content of 45% by mass, and is characterized by having a slightly low magnetic permeability but a high saturation magnetic flux density.
  • Losses mainly include hysteresis loss and eddy current loss.
  • hysteresis loss In order to suppress the hysteresis loss, it is effective to lower the coercive force of the alloy powder.
  • eddy current loss a thin insulating coating is applied to the surface of the alloy powder particles to reduce the eddy current between the particles, to make the alloy powder finer, and to reduce the particle size distribution. Is valid. This is because the presence of coarse particles facilitates the flow of eddy currents and causes loss due to Joule heat.
  • the atomizing method is a method in which water or gas is sprayed on a molten metal to quench and solidify the molten metal.
  • the gas phase reduction method is a method for hydrogen reducing a metal halide in a gas phase state.
  • the dry reduction method is a method of reducing a metal oxide using a reducing agent.
  • Patent Document 1 describes that a Ni—Fe-based alloy powder used as a material for a noise filter, a choke coil, an inductor, etc. is manufactured by a vapor phase reduction method (Patent Document 1 [0001] and []. 0014]). Further, Patent Document 1 states that a mixture of NiCl 2 and FeCl 3 is heated and vaporized chloride and hydrogen gas are brought into contact with each other to cause a reduction reaction to produce a fine powder of a Ni—Fe alloy. It is disclosed (Patent Document 1 [0016]). Further, Patent Document 2 describes that Fe—Ni alloy powder used as a material for electronic parts such as choke coils and inductors is produced by reducing the oxides of Fe and Ni in a reducing gas. (Claim 1 of Patent Document 2).
  • Patent Document 3 describes nickel-iron alloy nanoparticles by adding a reducing agent such as hydrazine to an aqueous solution containing a nickel salt and an iron salt to simultaneously reduce the nickel ions and iron ions contained in the aqueous solution.
  • a method for producing nickel-iron alloy nanoparticles which is characterized by producing nickel-iron alloy nanoparticles, is disclosed (claims 1 to 6 of Patent Document 3).
  • nickel-iron alloy nanoparticles having an average primary particle of 200 nm or less which is suitable as a filler for imparting magnetic properties, can be efficiently produced on an industrial scale at a low production cost. It is said that this can be done (Patent Document 3 [0015]).
  • the alloy powder produced by the atomizing method has a large average particle size of several ⁇ m or more, and does not sufficiently meet the demand for miniaturization.
  • the particle size distribution of the obtained alloy powder is wide. Therefore, the alloy powder contains coarse particles, which is insufficient for reducing the eddy current loss.
  • the composition and particle size of the alloy powder are not stable. Since the dry reduction method proposed in Patent Document 2 requires high-temperature heating, there is a problem that the obtained alloy powder is easily sintered to form coarse agglomerated particles.
  • the wet method proposed in Patent Document 3 has an advantage that coarse agglomerated particles are difficult to be generated because the reduction reaction proceeds at a low temperature. Further, even if the agglomerated particles are formed, the agglomerated particles are easily crushed because the bonds between the particles are not strong.
  • an alloy powder having excellent powder characteristics and magnetic properties can be obtained by using a specific nucleating agent and a complexing agent in producing an iron-nickel alloy powder by a wet method. rice field.
  • the amount of reducing agent used is very small, the aggregation is small, the surface is smooth, and the saturation magnetic flux is flux.
  • the present invention has been completed based on such findings, and an object of the present invention is to provide a method for producing an iron-nickel alloy powder having excellent powder characteristics and magnetic characteristics.
  • the present invention includes the following aspects (1) to (32).
  • the expression "-" includes the numerical values at both ends thereof. That is, "X to Y” is synonymous with “X or more and Y or less”.
  • a method for producing an iron (Fe) -nickel (Ni) alloy powder containing at least iron (Fe) and nickel (Ni) as magnetic metals wherein the method is as follows; Preparation process for preparing magnetic metal sources, nucleating agents, complexing agents, reducing agents, and pH adjusters as starting materials, A crystallization step of preparing a reaction solution containing the starting material and water and crystallizing the crystallization powder containing the magnetic metal in the reaction solution by a reduction reaction, and recovering the crystallization powder from the reaction solution. With a collection process, The magnetic metal source contains a water-soluble iron salt and a water-soluble nickel salt, and contains.
  • the nucleating agent is a water-soluble salt of a metal that is noble than nickel.
  • the complexing agent is at least one selected from the group consisting of hydroxycarboxylic acids, salts of hydroxycarboxylic acids, and derivatives of hydroxycarboxylic acids.
  • the reducing agent is hydrazine (N 2 H 4 ).
  • the method, wherein the pH regulator is alkali hydroxide.
  • the water-soluble iron salt is at least one selected from the group consisting of ferrous chloride (FeCl 2 ), ferrous sulfate (FeSO 4 ), and ferrous nitrate (Fe (NO 3 ) 2 ). There is the method of (1) above.
  • the water-soluble nickel salt is at least one selected from the group consisting of nickel chloride (NiCl 2 ), nickel sulfate (NiSO 4 ), and nickel nitrate (Ni (NO 3 ) 2 ). Or the method of (2).
  • nucleating agent is at least one selected from the group consisting of a copper salt, a palladium salt, and a platinum salt.
  • the complexing agent is at least one hydroxycarboxylic acid selected from tartaric acid ((CH (OH) COOH) 2 ) and citric acid (C (OH) (CH 2 COOH) 2 COOH). Any method from 1) to (4).
  • pH adjuster is at least one selected from sodium hydroxide (NaOH) and potassium hydroxide (KOH).
  • the magnetic metal further contains cobalt (Co), and the magnetic metal further contains cobalt (Co).
  • the iron (Fe) content is 60 mol% or more and 85 mol% or less
  • the cobalt (Co) content is 10 mol% or more and 30 mol% or less.
  • the content ratio of the water-soluble iron salt is 60 mol% or more and 85 mol% or less
  • the content ratio of the water-soluble cobalt salt is 10 mol% or more and 30 mol% or less.
  • the water-soluble cobalt salt is at least one selected from the group consisting of cobalt chloride (CoCl 2 ), cobalt sulfate (CoSO 4 ), and cobalt nitrate (Co (NO 3 ) 2 ). Or the method of (8).
  • the starting material is two or more primary amino groups (-NH 2 ), one primary amino group (-NH 2 ) and one or more secondary amino groups (-NH-). ), Or the method according to any one of (1) to (9) above, further comprising an amine compound containing two or more secondary amino groups (-NH-) in the molecule.
  • the alkyleneamine and / or the alkyleneamine derivative has at least the structure represented by the following (A), in which the nitrogen atom of the amino group in the molecule is bonded via a carbon chain having 2 carbon atoms. 11) Method.
  • the amine compounds include ethylenediamine (H 2 NC 2 H 4 NH 2 ), diethylene triamine (H 2 NC 2 H 4 NHC 2 H 4 NH 2 ), and triethylene tetramine (H 2 N (C 2 H 4 NH)).
  • a reducing agent solution and a pH adjusting solution in which the pH adjusting agent is dissolved in water are prepared, and the metal salt raw material solution and the pH adjusting solution are mixed to form a mixed solution, and the mixed solution and the reducing agent are prepared.
  • the metal salt raw material solution in which the magnetic metal source, the nucleating agent, and the complexing agent are dissolved in water, the reducing agent, and the pH adjusting agent are used.
  • the reducing agent solution is added to the metal salt raw material solution, or conversely, the metal salt raw material solution is added to the reducing agent solution and mixed. the method of.
  • reaction start temperature The temperature of the reaction solution at the start of crystallization of the crystallization powder (reaction start temperature) is 40 ° C. or higher and 90 ° C. or lower, and the temperature of the reaction solution held during crystallization after the start of crystallization (reaction).
  • the method according to any one of (1) to (22) above, wherein the holding temperature) is 60 ° C. or higher and 99 ° C. or higher.
  • a crushing step of crushing the agglomerated particles contained in the crystallization powder by subjecting the crystallization powder after the recovery step or the crystallization powder in the middle of the recovery step to a crushing treatment using collision energy.
  • the crystallization powder after the recovery step or the crystallization powder in the middle of the recovery step is heat-treated in an inert atmosphere, a reducing atmosphere, or a vacuum atmosphere at a temperature of more than 150 ° C. and 400 ° C. or lower.
  • Insulation coating treatment is applied to the crystallization powder obtained through the recovery step to form an insulation coat layer made of a metal oxide on the particle surface of the crystallization powder, thereby improving the insulation between the particles.
  • the crystallization powder is dispersed in a mixed solvent containing water and an organic solvent, and a metal alkoxide is further added and mixed with the mixed solvent to prepare a slurry, and the metal alkoxide is prepared in the slurry. Is hydrolyzed and dehydrated and shrunk to form an insulating coat layer made of a metal oxide on the surface of the particles of the crystallization powder, and then the crystallization powder on which the insulating coat layer is formed is recovered from the slurry. )the method of.
  • 6 is an SEM image of the alloy powder obtained in Example 1.
  • 6 is an SEM image of the alloy powder obtained in Example 2.
  • 6 is an SEM image of the alloy powder (before and after the spiral jet crushing treatment) obtained in Example 6. It is the STEM image of the alloy powder (before and after high temperature heat treatment) obtained in Example 8, and the EDS ray analysis result. It is the STEM image of the particle cross section of the alloy powder obtained in Example 9, and the EDS line analysis result.
  • 6 is an SEM image of the alloy powder obtained in Example 10.
  • 6 is an SEM image of the alloy powder (before and after the insulating coating treatment) obtained in Example 12.
  • 6 is an SEM image of the alloy powder obtained in Example 13.
  • 6 is an SEM image of the alloy powder obtained in Example 14.
  • 6 is an SEM image of the alloy powder obtained in Comparative Example 1.
  • 6 is an SEM image of the alloy powder obtained in Comparative Example 2.
  • 6 is an SEM image of the alloy powder obtained in Comparative Example 3.
  • the present embodiment A specific embodiment of the present invention (hereinafter referred to as "the present embodiment") will be described.
  • the present invention is not limited to the following embodiments, and various modifications can be made without changing the gist of the present invention.
  • the method for producing an iron (Fe) -nickel (Ni) alloy powder of the present embodiment is as follows: a starting material containing a magnetic metal source, a nucleating agent, a complexing agent, a reducing agent, and a pH adjusting agent is prepared. A preparatory step, a crystallization step of preparing a reaction solution containing the starting material and water, and crystallization of the crystallization powder containing the magnetic metal by a reduction reaction in the reaction solution, and crystallization from the obtained reaction solution. It is provided with a recovery step of recovering the sample.
  • the iron (Fe) -nickel (Ni) alloy powder contains at least iron (Fe) and nickel (Ni) as magnetic metals.
  • the magnetic metal source also contains a water-soluble iron salt and a water-soluble nickel salt.
  • the nucleating agent is a water-soluble salt of a metal that is noble than nickel.
  • the complexing agent is at least one selected from the group consisting of hydroxycarboxylic acids, salts of hydroxycarboxylic acids, and derivatives of hydroxycarboxylic acids.
  • the reducing agent is hydrazine (N 2 H 4 ).
  • the iron (Fe) -nickel (Ni) -based alloy powder of the present embodiment (hereinafter, may be simply referred to as "alloy powder”) contains at least iron (Fe) and nickel (Ni). Further, the alloy powder may contain cobalt (Co), if necessary. That is, the alloy powder may be an iron-nickel alloy powder containing only iron and nickel, or an iron-nickel-cobalt alloy powder containing iron, nickel and cobalt. Iron, nickel and cobalt are all magnetic metals exhibiting ferromagnetism. Therefore, iron-nickel alloy powder and iron-nickel-cobalt alloy powder have a high saturation magnetic flux density and are excellent in magnetic characteristics.
  • magnetic metal is a general term for iron, nickel and cobalt. That is, when the alloy does not contain cobalt, the magnetic metal is a general term for iron and nickel, and when the alloy contains cobalt, it is a general term for iron, nickel and cobalt.
  • the proportions of iron (Fe), nickel (Ni) and cobalt (Co) contained in the alloy powder of this embodiment are not particularly limited.
  • the amount of iron may be 10 mol% or more and 95 mol% or less, 25 mol% or more and 90 mol% or less, and 40 mol% or more and 80 mol% or less.
  • the amount of nickel may be 5 mol% or more and 90 mol% or less, 10 mol% or more and 75 mol% or less, and 20 mol% or more and 60 mol% or less.
  • the amount of cobalt may be 0 mol% or more and 40 mol% or less, and may be 5 mol% or more and 20 mol% or less. However, the total amount of iron, nickel and cobalt is 100 mol% or less.
  • the alloy powder of this embodiment does not exclude the inclusion of additive components other than magnetic metals (Fe, Ni and Co).
  • additive components include copper (Cu) and / or boron (B).
  • the content of the additive component other than the magnetic metal is small.
  • the content of the components other than the magnetic metal may be 10% by mass or less, 5% by mass or less, 1% by mass or less, or 0% by mass.
  • the alloy powder may contain impurities (unavoidable impurities) that are inevitably mixed in during the manufacturing process. Examples of such unavoidable impurities include oxygen (O), carbon (C), chlorine (Cl), and alkaline components (Na, K, etc.).
  • the amount of unavoidable impurities is preferably 5% by mass or less, more preferably 3% by mass or less, for oxygen (O) contained in the oxide film always formed on the surface of the alloy powder.
  • the carbon (C), chlorine (Cl), and alkaline component (Na, K, etc.) are preferably 1% by mass or less, more preferably 0.5% by mass or less, and even more preferably 0.1% by mass or less.
  • the alloy powder may contain a magnetic metal and may have a composition consisting of residual unavoidable impurities.
  • the method for producing the alloy powder of the present embodiment includes at least a preparation step, a crystallization step, and a recovery step. Further, if necessary, a crushing step and a high-temperature heat treatment step may be provided after the recovery step or during the recovery step, or an insulating coating step may be provided after the recovery step.
  • FIG. 1 schematically shows an example of a process in the manufacturing method of the present embodiment. Although FIG. 1 shows a crushing treatment, a high-temperature heat treatment, and an insulating coating treatment, these treatments may be provided as needed and are not essential treatments. Further, when the crushing treatment, the high temperature heat treatment, and / or the insulating coating treatment are performed, there is no particular restriction on the order in which these treatments are performed.
  • the crushing treatment after the high temperature heat treatment.
  • the connection (bonding) between the alloy particles strengthened by the high temperature heat treatment can be reduced or eliminated.
  • it is preferable to perform the crushing treatment before the insulating coating This is because it is possible to uniformly insulate and coat the entire surface of each of the alloy particles in which the connection is reduced or eliminated.
  • the insulating coat layer is not formed at the connected portion. Therefore, it is preferable to reduce or eliminate the connection as much as possible before the insulating coating treatment. Details of each step will be described below.
  • a magnetic metal source In the preparation step, a magnetic metal source, a nucleating agent, a complexing agent, a reducing agent, and a pH adjusting agent are prepared as starting materials.
  • the magnetic metal source is a raw material for iron and nickel, but may contain a cobalt raw material if necessary. Further, the starting material may contain an amine compound. Each raw material will be described below.
  • the magnetic metal source is a raw material for a magnetic metal and contains at least a water-soluble iron salt and a water-soluble nickel salt.
  • the iron salt is a raw material (iron source) for the iron component contained in the alloy powder, and is not particularly limited as long as it is an easily water-soluble iron salt.
  • the iron salt include iron chloride containing divalent and / or trivalent iron ions, iron sulfate, iron nitrate, or a mixture thereof.
  • the water-soluble iron salt is preferably at least one selected from the group consisting of ferrous chloride (FeCl 2 ), ferrous sulfate (FeSO 4 ), and ferrous nitrate (Fe (NO 3 ) 2 ). ..
  • the nickel salt is a raw material (nickel source) for the nickel component contained in the alloy powder, and is not particularly limited as long as it is an easily water-soluble nickel salt.
  • the water-soluble nickel salt is preferably at least one selected from the group consisting of nickel chloride (NiCl 2 ), nickel sulfate (NiSO 4 ), and nickel nitrate (Ni (NO 3 ) 2 ), particularly preferably chloride. It is at least one selected from the group consisting of nickel (NiCl 2 ) and nickel sulfate (NiSO 4 ).
  • the magnetic metal may further contain cobalt (Co), and the magnetic metal source may further contain a water-soluble cobalt salt.
  • Co cobalt
  • the magnetic metal source may further contain a water-soluble cobalt salt.
  • the water-soluble cobalt salt has an action of promoting a reduction reaction (reduction promoting action) at the time of crystallization of the alloy powder, and particularly when the content ratio of iron (Fe) in the magnetic metal is as large as 60 mol% or more. , This reduction promoting action becomes more remarkable. Further, the water-soluble cobalt salt also has an action of turning the alloy powder into spherical particles having a smooth surface (spheroidizing promoting action). Therefore, if the content of the water-soluble iron salt is 60 mol% or more and 85 mol% or less and the content of the water-soluble cobalt salt is 10 mol% or more and 30 mol% or less in the magnetic metal source, hydrazine as a reducing agent is used.
  • an iron-nickel-cobalt alloy powder having an extremely high saturation magnetic flux density for example, 2T (tesla) or more
  • This alloy powder has, for example, an iron content of 60 mol% or more and 85 mol% or less, and a cobalt content of 10 mol% or more and 30 mol% or less.
  • the water-soluble cobalt salt is not particularly limited as long as it is an easily water-soluble cobalt salt.
  • the water-soluble cobalt salt is preferably at least one selected from the group consisting of cobalt chloride (CoCl 2 ), cobalt sulfate (CoSO 4 ), and cobalt nitrate (Co (NO 3 ) 2 ), and is particularly preferably chloride. It is at least one selected from the group consisting of cobalt (CoCl 2 ) and cobalt sulfate (CoSO 4 ).
  • Nuclear agent A nuclear agent is a water-soluble salt of a metal that is noble than nickel.
  • This nucleating agent a water-soluble salt of a metal nobler than nickel
  • a metal nobler than nickel is a metal having a higher potential in the standard potential series than nickel in an aqueous solution. It can also be said that a metal nobler than nickel is a metal having a lower ionization tendency than nickel.
  • Such metals include tin (Sn), lead (Pb), antimony (Sb), bismuth (Bi), copper (Cu), silver (Ag), palladium (Pd), iridium (Ir), and platinum (Pt). , And gold (Au).
  • a water-soluble salt of a metal nobler than nickel as the nucleating agent, it is possible to control the formation of the crystallization powder in the reaction solution in the subsequent crystallization step. For example, if the amount of the nucleating agent added is increased, fine crystallization powder can be obtained. That is, in the crystallization step, magnetic metal ions and complex ions contained in the reaction solution are reduced and precipitated to form crystallization powder.
  • nickel has more noble properties than iron and cobalt, and has a low ionization tendency. Therefore, if a water-soluble salt (nuclear agent) of a metal nobler than nickel is contained in the reaction solution, the metal nobler than nickel is reduced and precipitated prior to all the magnetic metals. A metal nobler than the precipitated nickel acts as an initial nucleus, and this initial nucleus grows into grains to form a crystallization powder consisting of a magnetic metal. Control becomes possible.
  • the nucleating agent is not particularly limited as long as it is a water-soluble salt of a metal nobler than nickel.
  • the nucleating agent is preferably at least one selected from the group consisting of copper salts, palladium salts, and platinum salts. Copper (Cu), palladium (Pd) and platinum (Pt) have particularly strong noble properties and have a low ionization tendency. Therefore, it is particularly excellent in its effect as a nuclear agent.
  • Examples of the water-soluble copper salt include, but are not limited to, copper sulfate.
  • examples of the water-soluble palladium salt include, but are not limited to, palladium (II) chloride sodium, palladium (II) ammonium chloride, palladium (II) nitrate, palladium (II) sulfate and the like.
  • the nucleating agent is particularly preferably a palladium salt. When the palladium salt is used, the particle size of the crystallization powder (alloy powder) can be controlled more finely.
  • the blending amount of the nucleating agent may be adjusted so that the particle size of the finally obtained alloy powder becomes a desired value.
  • the blending amount of the nucleating agent with respect to the total amount of the magnetic metal may be 0.001 mol ppm or more and 5.0 mol ppm or less, and may be 0.005 mol ppm or more and 2.0 mol ppm or less.
  • the blending amount of the nucleating agent is not limited to the above range.
  • the blending amount of the nucleating agent may be set to more than 5.0 mol ppm.
  • the complexing agent is at least one selected from the group consisting of hydroxycarboxylic acid, a salt of hydroxycarboxylic acid, and a derivative of hydroxycarboxylic acid.
  • This complexing agent (hydroxycarboxylic acid or the like) has an effect of homogenizing the reaction in the subsequent crystallization step. That is, the magnetic metal component is dissolved as magnetic metal ions (Fe 2+ , Ni 2+ , etc.) in the reaction solution, but the reaction solution becomes strongly alkaline due to the pH adjuster (NaOH, etc.), so that it dissolves in the reaction solution. The amount of magnetic metal ions is extremely small.
  • the magnetic metal component can be dissolved in large amounts as complex ions (Fe complex ion, Ni complex ion, etc.). Due to the presence of such complex ions, the reduction reaction rate is increased, the local uneven distribution of the magnetic metal component is suppressed, and the reaction system can be made uniform.
  • the complexing agent also has the effect of changing the complex stability balance of a plurality of magnetic metal ions in the reaction solution. Therefore, in the presence of the complexing agent, the reduction reaction of the magnetic metal changes, and the balance between the nucleation rate and the grain growth rate changes.
  • the complexing agent (hydroxycarboxylic acid, etc.) specified in the present embodiment By using the complexing agent (hydroxycarboxylic acid, etc.) specified in the present embodiment, the above-mentioned actions work in a complex manner, and the reaction proceeds in a preferable direction, resulting in powder characteristics of the alloy powder obtained. Particle size, particle size distribution, sphericality, surface texture of particles) are improved. Further, the alloy powder having improved powder characteristics has excellent filling property and is suitable as a raw material for a powder core.
  • the complexing agent (hydroxycarboxylic acid or the like) of the present embodiment has functions as a reduction reaction accelerator, a spheroidization accelerator, and a surface smoothing agent.
  • Suitable complexing agents include at least one hydroxycarboxylic acid selected from tartaric acid ((CH (OH) COOH) 2 ) and citric acid (C (OH) (CH 2 COOH) 2 COOH).
  • the blending amount of the complexing agent with respect to the total amount of the magnetic metal is preferably 5 mol% or more and 100 mol% or less, more preferably 10 mol% or more and 75 mol% or less, and further preferably 15 mol% or more and 50 mol% or less.
  • the blending amount is 5 mol% or more, the functions as a reduction reaction accelerator, a spheroidizing accelerator, and a surface smoothing agent are sufficiently exhibited, so that the powder characteristics (particle size, particle size distribution, spherical shape) of the alloy powder are exhibited. (Characteristics, surface texture of particles) will be even better.
  • the amount of the complexing agent used can be suppressed without causing a large difference in the degree of functional expression as the complexing agent, which leads to a reduction in manufacturing cost.
  • the reducing agent is hydrazine (N 2 H 4 , molecular weight: 32.05).
  • This reducing agent (hydrazine) has an action of reducing magnetic metal ions and complex ions in the reaction solution in the subsequent crystallization step.
  • Hydrazine has the advantages of having strong reducing power and not producing by-products associated with the reducing reaction in the reaction solution. Moreover, it is easy to obtain high-purity hydrazine with few impurities.
  • hydrazine in addition to anhydrous hydrazine, hydrazine hydrate, hydrazine hydrate ( N2 H4 ⁇ H2O , molecular weight: 50.06) is known. Either may be used.
  • water-holding hydrazine for example, commercially available industrial grade 60% by mass water-holding hydrazine can be used.
  • the blending amount of the reducing agent largely depends on the composition of the iron (Fe) -nickel (Ni) alloy powder, and the larger the content ratio of iron that is difficult to reduce, the larger the amount is required. In addition to the composition of the alloy powder, it is also affected by the temperature of the reaction solution, the blending amount of the complexing agent and the pH adjuster, and the like.
  • the blending amount of the reducing agent with respect to the total amount of magnetic metals is preferably 1.8 or more and 7.0 or less in terms of molar ratio. It is more preferably 0 or more and 6.0 or less, and further preferably 2.5 or more and 5.0 or less.
  • the blending amount of the reducing agent with respect to the total amount of magnetic metals is 2.5 or more and 9.0 or less in terms of molar ratio. Is preferable, and 3.5 or more and 8.0 or less are more preferable.
  • the iron content of the iron-nickel alloy powder is more than 75 mol% and 95 mol% or less, the blending amount of the reducing agent with respect to the total amount of magnetic metals is 3.5 or more and 10.0 or less in terms of molar ratio. Is preferable, and 4.5 or more and 9.0 or less are more preferable.
  • the amount of the reducing agent compounded can be significantly reduced as compared with the iron-nickel alloy powder due to the action of the water-soluble cobalt salt described above.
  • the action of the water-soluble cobalt salt is remarkable in the production of alloy powder having a large iron content.
  • the blending amount of the reducing agent with respect to the above is preferably 1.0 or more and 4.0 or less in terms of molar ratio, and more preferably 1.2 or more and 2.0 or less.
  • the blending amount is equal to or higher than the above-mentioned lower limit, the reduction of magnetic metal ions and complex ions proceeds sufficiently, and crystallization powder (alloy powder) without contamination of unreduced substances such as iron hydroxide. Can be obtained. Further, when the blending amount is not more than the above-mentioned upper limit value, the amount of the reducing agent (hydrazine) used can be suppressed, which leads to a reduction in manufacturing cost.
  • the pH adjuster is an alkali hydroxide.
  • This pH adjuster (alkali hydroxide) has the effect of strengthening the reduction reaction of hydrazine, which is a reducing agent. That is, the higher the pH of the reaction solution, the stronger the reducing power of hydrazine. Therefore, the use of alkali hydroxide as the pH adjuster promotes the reduction reaction of magnetic metal ions and complex ions in the reaction solution and the accompanying precipitation of crystallization powder.
  • the type of alkali hydroxide is not particularly limited. However, in terms of availability and price, it is preferred that the pH regulator comprises at least one selected from sodium hydroxide (NaOH) and potassium hydroxide (KOH).
  • the blending amount of the pH adjuster may be adjusted so that the reducing power of the reducing agent (hydrazine) is sufficiently high.
  • the pH of the reaction solution at the reaction temperature is preferably 9.5 or more, more preferably 10 or more, still more preferably 10.5 or more. Therefore, the blending amount of alkali hydroxide may be adjusted so that the pH is within this range.
  • the starting material may further contain an amine compound.
  • This amine compound may have two or more primary amino groups (-NH 2 ), one primary amino group (-NH 2 ) and one or more secondary amino groups (-NH-), or It contains two or more secondary amino groups (-NH-) in the molecule.
  • the amine compound has an action of accelerating the reduction reaction in the subsequent crystallization step. That is, the amine compound has a function as a complexing agent, and has a function of complexing magnetic metal ions (Fe 2+ , Ni 2+ , etc.) in the reaction solution to form complex ions (Fe complex ion, Ni complex ion, etc.). There is. As a result of the presence of complex ions in the reaction solution, it is considered that the reduction reaction further proceeds.
  • the amine compound has an effect of suppressing autolysis of hydrazine, which is a reducing agent. That is, when crystallization powder made of a magnetic metal is deposited in the reaction solution, nickel (Ni) in the magnetic metal acts as a catalyst, and as a result, hydrazine may be decomposed. This is called hydrazine autolysis.
  • This decomposition reaction is a reaction in which hydrazine (N 2 H 4 ) is decomposed into nitrogen (N 2 ) and ammonia (NH 3 ) as shown in the following formula (1). When such autolysis occurs, the function of hydrazine as a reducing agent is impaired, which is not preferable.
  • the amine compound By adding the amine compound to the compounding solution, it becomes possible to suppress the autolysis of hydrazine.
  • the detailed mechanism is unknown, but it is speculated that it may be because the excessive contact between hydrazine and the crystallization powder in the reaction solution is hindered. That is, among the amino groups contained in the amine compound molecule, particularly the primary amino group (-NH 2 ) and the secondary amino group (-NH-) are strongly adsorbed on the surface of the crystallization powder in the reaction solution. It is believed that the amine compound molecule covering and protecting the crystallization powder prevents excessive contact between the hydrazine molecule and the crystallization powder, thereby suppressing the autolysis of hydrazine. Since the autolysis of hydrazine becomes remarkable when the content of nickel in the magnetic metal is large, the amine compound works effectively especially in such a case.
  • the amine compound is preferably at least one of an alkylene amine and an alkylene amine derivative. Further, the alkyleneamine and / or the alkyleneamine derivative preferably has at least the structure represented by the following (A) in which the nitrogen atom of the amino group in the molecule is bonded via a carbon chain having 2 carbon atoms.
  • alkylene amine having the structure represented by (A) above examples include ethylenediamine (abbreviation: EDA) (H 2 NC 2 H 4 NH 2 ) and diethylenetriamine (abbreviation: DETA) (H 2 NC 2 H 4 NHC 2 ).
  • EDA ethylenediamine
  • DETA diethylenetriamine
  • H 4 NH 2 triethylenetetramine (abbreviation: TETA) (H 2 N (C 2 H 4 NH) 2 C 2 H 4 NH 2 ), tetraethylenepentamine (abbreviation: TEPA) (H 2 N (C 2 ) H 4 NH) 3 C 2 H 4 NH 2 ), pentaethylenehexamine (abbreviation: PEHA) (H 2 N (C 2 H 4 NH) 4 C 2 H 4 NH 2 ), propylenediamine (other names: 1, 2) -Diaminopropane, 1,2-propanediamine) (abbreviation: PDA) (CH 3 CH (NH 2 ) CH 2 NH 2 ) is one or more selected from the group.
  • TETA triethylenetetramine
  • TEPA tetraethylenepentamine
  • PEHA pentaethylenehexamine
  • PDA propylenediamine
  • CH 3 CH (NH 2 ) CH 2 NH 2 ) is one or more selected from the group.
  • alkyleneamine derivative having the structure represented by (A) above include tris (2-aminoethyl) amine (abbreviation: TAEA) (N (C 2 H 4 NH 2 ) 3 ), N- (2).
  • -Aminoethyl) Ethanolamine (Alternative name: 2- (2-Aminoethylamino) Ethanol (abbreviation: AEEA) (H 2 NC 2 H 4 NHC 2 H 4 OH), N- (2-Aminoethyl) propanolamine ( Another name: 2- (2-aminoethylamino) propanol (abbreviation: AEPA) (H 2 NC 2 H 4 NHC 3 H 6 OH), L (or D, DL) -2,3-diaminopropionic acid (separately) Name: 3-amino-L (or D, DL) -alanine) (abbreviation: DAPA) (H 2 NCH 2 CH (
  • alkylene amines and alkylene amine derivatives are water-soluble, and among them, ethylenediamine and diethylenetriamine have a relatively strong self-decomposition inhibitory effect on hydrazine and are easily available. It is preferable because it is inexpensive and inexpensive.
  • Ethylenediamine Ethylenediamine
  • DETA diethylenetriamine
  • TETA triethylenetetramine
  • TEPA tetraethylenepentamine
  • PEHA pentaethylenehexamine
  • PDA propylenediamine
  • TAEA tris (2-aminoethyl) amine
  • AEEA Structure of N- (2-aminoethyl) ethanolamine
  • AEPA N- (2-aminoethyl) propanolamine
  • L or D, DL) -2,3-diaminopropionic acid
  • the blending amount of the amine compound with respect to the total amount of the magnetic metal is preferably 0.00 mol% or more and 5.00 mol% or less, more preferably 0.01 mol% or more and 5.00 mol% or less, and 0.03 mol% or more and 5 More preferably, it is 0.00 mol% or less.
  • the blending amount of the amine compound is 0.00 mol%, that is, the amine compound may not be blended. However, when the blending amount is 0.01 mol% or more, the effect of suppressing the autolysis of hydrazine based on the amine compound and the effect of promoting the reduction reaction can be fully exerted. Further, by setting the blending amount to 5.00 mol% or less, the function as a complexing agent can be appropriately expressed.
  • the blending amount of the amine compound exceeds 5.00 mol%, the function as a complexing agent becomes too strong. There is a risk that the particle growth will be abnormal and the powder properties of the alloy powder will deteriorate.
  • ⁇ Crystalization process> a reaction solution containing the prepared starting material and water is prepared, and the crystallization powder containing the magnetic metal is crystallized in this reaction solution by a reduction reaction.
  • the preparation of the reaction solution and the crystallization of the crystallization powder will be described below.
  • the crystallization reaction starts at the same time as the reaction solution is prepared, but there is a possibility that the crystallization reaction starts even slightly during the preparation of the reaction solution.
  • the crystallization reaction referred to here is a reaction that occurs in the crystallization process.
  • reaction vessel a reaction vessel
  • a reaction vessel with a steam jacket or a reaction vessel with a heater is used.
  • the reaction vessel (reaction vessel) and the stirring blade for stirring the reaction solution are made of an inert material that does not easily generate nuclei on their surfaces when in contact with the reaction solution from the viewpoint of not interfering with the action of the nucleating agent. In addition, it is required to have excellent strength and thermal conductivity.
  • a metal container coated with a fluororesin (PTFE, PFA, etc.) (Teflon (registered trademark) -coated stainless steel container, etc.) or a stirring blade (Teflon (registered trademark) -coated stainless steel stirring blade, etc.) is suitable. Is.
  • reaction solution First, a magnetic metal source, a nucleating agent, a complexing agent, a reducing agent, a pH adjuster, and if necessary, an amine compound, which are starting materials, are dissolved in water and then mixed. Then, the reaction solution can be prepared.
  • the water used for preparing this reaction solution it is preferable to use a highly pure water in order to reduce the amount of impurities in the finally obtained alloy powder.
  • high-purity water pure water having a conductivity of 1 ⁇ S / cm or less and ultrapure water having a conductivity of 0.06 ⁇ S / cm or less can be used, and among them, pure water which is inexpensive and easily available. It is preferable to use.
  • the starting material is a solid such as iron salt, nickel salt, cobalt salt, alkali hydroxide, etc.
  • the starting material and water may be mixed by a known method such as stirring and mixing.
  • the procedure for mixing the starting material and the aqueous solution is not particularly limited as long as the uniformity of the reaction solution is not impaired.
  • a metal salt raw material solution in which a magnetic metal source, a nucleating agent, and a complexing agent are dissolved in water, and a reducing agent in which a reducing agent is dissolved in water are used.
  • do. 2 and 3 show a process diagram showing an example of reaction solution preparation and alloy powder production in the first aspect.
  • the metal salt raw material solution dissolves a magnetic metal source (water-soluble iron salt, water-soluble nickel salt, etc.), a nucleating agent (water-soluble salt of a metal nobler than nickel), and a complexing agent (hydroxycarboxylic acid, etc.) in water.
  • the reducing agent solution is prepared by dissolving the reducing agent (hydrazine) in water.
  • the pH adjusting solution is prepared by dissolving a pH adjusting agent (alkali hydroxide) in water. Then, the metal salt raw material solution and the pH adjustment solution are mixed to prepare a mixed solution.
  • the magnetic metal salt (water-soluble iron salt, water-soluble nickel salt, etc.) contained in the metal salt raw material solution reacts with the alkali hydroxide contained in the pH adjuster to form a magnetic metal hydroxide.
  • This hydroxide is iron hydroxide (Fe (OH) 2 ), nickel hydroxide (Ni (OH) 2 ), cobalt hydroxide (Co (OH) 2 ), iron nickel hydroxide ((Fe, Ni)). (OH) 2 ), iron nickel cobalt hydroxide ((Fe, Ni, Co) (OH) 2 ) and the like.
  • the reducing agent solution is mixed with the obtained mixed solution to prepare a reaction solution.
  • the metal salt raw material solution has the largest amount (volume). Therefore, it is possible to realize a uniform mixed state by sequentially adding other solutions to the metal salt raw material solution having a large amount of liquid and mixing them, as compared with adding the metal salt raw material solution to the other solutions, and it is uniform in the reaction solution. This is because the reduction reaction can proceed.
  • the amine compound When blending an amine compound, the amine compound may be added to at least one of the metal salt raw material solution, the reducing agent solution and the pH adjuster solution. Further, the amine compound may be added after mixing all of these solutions.
  • FIG. 2 shows an embodiment in which an amine compound is added to at least one of a metal salt raw material solution, a reducing agent solution, and a pH adjusting solution.
  • FIG. 3 shows an embodiment in which an amine compound is added to a reaction solution obtained by mixing all of a metal salt raw material solution, a reducing agent solution and a pH adjusting solution.
  • a reducing agent solution is mixed with a mixed solution of a metal salt raw material solution and a pH adjuster to prepare a reaction solution, and the reduction reaction proceeds from the time when the reducing agent solution is added.
  • the concentration of the reducing agent (hydrazine) rises locally in the minute region where the reducing agent is added.
  • the mixed solution contains a pH adjuster (alkali hydroxide), and the pH of the mixed solution (reaction solution) is still high at the initial stage of mixing the reducing agent solution with the mixed solution.
  • the higher the pH the stronger the reducing agent (hydrazine) exerts its reducing power.
  • the concentration and pH of the reducing agent are locally increased, and the nucleation caused by the nucleating agent and the reduction reaction for producing crystallization powder occur rapidly.
  • the pH of the mixed solution reaction solution
  • the reducing power of the reducing agent is not as strong as at the initial stage, and the nucleation and the reduction reaction proceed slowly. Therefore, there is a difference in the reducing power of the reducing agent between the initial stage and the final stage of the reduction solution mixing.
  • the time (mixing time) required to mix the reducing agent solution with the mixed solution of the metal salt raw material solution and the pH adjuster is preferably 180 seconds or less, more preferably 120 seconds or less, still more preferably 60 seconds or less.
  • the mixing time may be 1 second or longer, 3 seconds or longer, or 5 seconds or longer.
  • the time (mixing time) required to mix the pH adjuster is preferably 180 seconds or less, more preferably 120 seconds or less, still more preferably 80 seconds or less.
  • the mixing time may be 1 second or longer, 3 seconds or longer, or 5 seconds or longer.
  • stirring and mixing may be performed using a stirring device such as a stirring blade.
  • a metal salt raw material solution in which a magnetic metal source, a nucleating agent, and a complexing agent are dissolved in water, and a reducing agent and a pH adjusting agent are dissolved in water.
  • a metal salt raw material solution in which a magnetic metal source, a nucleating agent, and a complexing agent are dissolved in water, and a reducing agent and a pH adjusting agent are dissolved in water.
  • the metal salt raw material solution contains a magnetic metal source (water-soluble iron salt, water-soluble nickel salt, etc.), a nucleating agent (water-soluble salt of a metal nobler than nickel), and a complexing agent (hydroxycarboxylic acid, etc.) in water.
  • a magnetic metal source water-soluble iron salt, water-soluble nickel salt, etc.
  • a nucleating agent water-soluble salt of a metal nobler than nickel
  • a complexing agent hydroxycarboxylic acid, etc.
  • the reducing agent solution is prepared by dissolving the reducing agent (hydrazine) and the pH adjuster (alkali hydroxide) in water.
  • the metal source raw material solution and the reducing agent solution are mixed to prepare a reaction solution.
  • the second aspect differs from the first aspect in that the reducing agent solution contains a pH adjuster.
  • the reducing agent solution is added to the metal salt raw material solution and mixed, or conversely, the metal salt raw material solution is added to the reducing agent solution and mixed.
  • the liquid amount (volume) of the reducing agent solution containing both the reducing agent and the pH adjuster (alkali hydroxide) is at the same level as the liquid amount (volume) of the metal salt raw material solution. Therefore, by adding one of them to the other and mixing them, a uniform mixed state can be basically realized, and a uniform reduction reaction can be promoted in the reaction solution.
  • the metal salt raw material solution it is preferable to add the metal salt raw material solution to the reducing agent solution and mix them. This is because it is desired that the concentration of the metal salt raw material in the reaction solution be maintained at a predetermined level or higher (30 to 40 g / L for the metal component) from the viewpoint of ensuring the productivity of the crystallization step. That is, under the above-mentioned crystallization conditions, the liquid amount (volume) of the reducing agent solution is considerably larger than the liquid amount (volume) of the metal salt raw material solution. Therefore, it is better to add a metal salt raw material solution having a small amount (volume) to a reducing agent solution having a large amount (volume) and mix them to achieve a uniform mixed state, and a uniform reduction reaction in the reaction solution. Can be advanced.
  • the time (mixing time) required to mix the reducing agent solution with the metal salt solution is preferably 180 seconds or less, more preferably 120 seconds or less, and more preferably 60 seconds. The following is more preferable.
  • the mixing time may be 1 second or longer, 3 seconds or longer, or 5 seconds or longer. It is also effective to stir and mix when mixing the reducing agent solution.
  • an additional raw material solution is further added and mixed with the reaction solution before the reduction reaction is completed.
  • the additional raw material liquid is obtained by dissolving at least one of the above-mentioned water-soluble nickel salt and water-soluble cobalt salt in water.
  • an additional raw material solution is prepared in addition to the solution used for preparing the reaction solution of the first aspect and the second aspect.
  • This additional raw material liquid is prepared by dissolving at least one of a water-soluble nickel salt and a water-soluble cobalt salt in water.
  • the additional raw material liquid may be added to the reaction liquid by a method such as batch addition, divided addition, and / or dropping. The addition is not inevitable, but is preferably performed at a timing before the reduction reaction is completed. When the reduction reaction is completely completed, the crystallized particles begin to form aggregates. If the additional raw material liquid is added at this timing to promote the precipitation of the metal component by the reduction reaction, the bonds between the particles contained in the aggregate may be strengthened.
  • the amount of the reducing agent used can be reduced as compared with the first aspect and the second aspect.
  • Iron ion (or iron hydroxide) is less likely to be reduced than nickel ion (or nickel hydroxide) or cobalt ion (or cobalt hydroxide). This is because if an additional raw material solution containing a nickel component or a cobalt component is added to the reaction solution, the reduction reaction of iron ions (or iron hydroxide), which are difficult to reduce, can be promoted at the final stage of crystallization.
  • the amount of magnetic metal (Ni, Co) in the additional raw material liquid may be set according to the degree to which the surface of the crystallization powder is rich in nickel and cobalt components. However, considering the composition uniformity of the entire particles, it is preferably 5 mol% to 50 mol% with respect to the total amount of magnetic metals (Ni, Co) excluding iron in the alloy powder.
  • the particle surface becomes rich in nickel and cobalt components, the iron component that tends to form a porous oxide film decreases. Therefore, a dense oxide film is formed and the amount of oxidation on the particle surface is suppressed, so that not only is it more stable in the atmosphere, but also magnetic characteristics such as saturation magnetic flux density are improved.
  • the reduction reaction in the crystallization step will be described using a reaction formula.
  • the reduction reaction of iron (Fe), nickel (Ni) and cobalt (Co) is a two-electron reaction as shown in the following equations (2) to (4).
  • the reaction of hydrazine (N 2 H 4 ) as a reducing agent is a 4-electron reaction as shown in the following formula (5).
  • Magnetic metal chlorides FeCl 2 , NiCl 2 , CoCl 2
  • sodium hydroxide NaOH
  • the magnetic metal chloride and sodium hydroxide undergo a neutralization reaction to produce hydroxides ((Fe, Ni, Co) (OH) 2 , etc.).
  • this hydroxide ((Fe, Ni, Co) (OH) 2 , etc.) is reduced by the action of the reducing agent (hydrazine) to become crystallization powder.
  • reducing agent 0.5 mol of reducing agent (hydrazine) is required.
  • sodium hydroxide used as a pH adjuster also has an effect of accelerating the reduction reaction by hydrazine.
  • the reduction of ions (or hydroxides) of each element of the magnetic metal proceeds simultaneously to some extent by co-reduction.
  • the co-reduction refers to a phenomenon in which when a reduction reaction of a certain element occurs, another reduction reaction occurs concomitantly.
  • iron ion or iron hydroxide
  • nickel ion or nickel hydroxide
  • cobalt ion or cobalt hydroxide
  • an additional raw material solution is added to the reaction solution during the crystallization reaction to promote the reduction reaction of iron ions (or iron hydroxide) that are difficult to reduce at the final stage of crystallization. are doing. Therefore, it is possible to improve the crystallization reaction (reduction reaction) for a long time, especially when the iron content ratio is large, and the composition non-uniformity in the obtained alloy powder particles.
  • the temperature of the reaction solution at the start of crystallization of the crystallization powder is preferably 40 ° C. or higher and 90 ° C. or lower, more preferably 50 ° C. or higher and 80 ° C. or lower, and further preferably 60 ° C. or higher and 70 ° C. or lower.
  • the reaction solution at the start of crystallization is a reaction solution containing water and a starting material immediately after preparation.
  • the temperature of the reaction solution held during crystallization after the start of crystallization (reaction holding temperature) is preferably 60 ° C. or higher and 99 ° C. or lower, more preferably 70 ° C. or higher and 95 ° C. or lower, and 80 ° C. or higher and 90 ° C. or lower.
  • reaction start temperature within a suitable range
  • a metal salt raw material solution such as a metal salt raw material solution and a reducing agent solution used for preparing the reaction solution.
  • a reducing agent solution used for preparing the reaction solution.
  • preheat one of a plurality of solutions such as a metal salt raw material solution and a reducing agent solution (for example, 70 ° C.) from the viewpoint of making nucleation more uniform and obtaining crystallization powder having a sharp particle size distribution.
  • a reaction solution having a predetermined temperature for example, 55 ° C.
  • a predetermined temperature for example, 55 ° C.
  • both of the two solutions for example, the metal salt raw material solution and the reducing agent solution
  • both of the two solutions for example, the metal salt raw material solution and the reducing agent solution
  • non-uniform nucleation is likely to occur.
  • reaction solution when two solutions are added and mixed, heat generation of mixing of the solutions occurs. Therefore, the added and mixed solution (reaction solution) becomes locally high temperature (for example, about 78 ° C.) at the start of mixing, and nuclear generation occurs instantaneously. While nucleation occurs, the two solutions are added and mixed, and this state tends to cause non-uniformity of nucleation.
  • the above describes more preferable examples, and does not exclude the case where all of a plurality of solutions such as a metal salt raw material solution and a reducing agent solution are preheated.
  • the solution may be heated and its temperature may be set so that the reaction start temperature and the reaction holding temperature fall within the above-mentioned ranges.
  • reaction start temperature is excessively low, the nuclear generation becomes more uniform, but the progress of the reduction reaction is slow, and the heating time required for raising the temperature to the reaction holding temperature at which the reduction reaction can be promoted becomes long.
  • reaction holding temperature is excessively low, the progress of the reduction reaction is slow and the heating time required for crystallization becomes long. In either case, the cycle time required in the crystallization step becomes long and the productivity decreases.
  • the autolysis of hydrazine progresses, a large amount of hydrazine is required, resulting in an increase in manufacturing cost.
  • the crystallization powder is recovered from the reaction solution obtained in the crystallization step.
  • the crystallization powder may be recovered by a known method. For example, a method of solid-liquid separation of crystallized powder from a reaction solution using a separation device such as a Denver filter, a filter press, a centrifuge, or a decanter can be mentioned. Further, the crystallization powder may be washed at the time of solid-liquid separation or after solid-liquid separation. Cleaning may be performed using a cleaning liquid. High-purity pure water having a conductivity of 1 ⁇ S / cm or less may be used as the cleaning liquid. The crystallization powder after washing may be subjected to a drying treatment.
  • the drying treatment is performed using a general-purpose drying device such as an air dryer, a hot air dryer, an inert gas atmosphere dryer, a reducing gas atmosphere dryer, or a vacuum dryer, and the temperature is 40 ° C or higher and 150 ° C or lower, preferably 50. It may be carried out at a temperature of ° C. or higher and 120 ° C. or lower.
  • a general-purpose drying device such as an air dryer, a hot air dryer, an inert gas atmosphere dryer, a reducing gas atmosphere dryer, or a vacuum dryer, and the temperature is 40 ° C or higher and 150 ° C or lower, preferably 50. It may be carried out at a temperature of ° C. or higher and 120 ° C. or lower.
  • an inert gas atmosphere dryer and a reducing gas atmosphere dryer are used rather than an air dryer or a hot air dryer using the air. It is preferable to use a machine or a vacuum dryer.
  • the particle surface of the crystallization powder dried in the closed container of the inert gas atmosphere dryer, the reducing gas atmosphere dryer, or the vacuum dryer is not so much oxidized. Therefore, if the particles are taken out of the dryer into the atmosphere immediately after drying, the surface of the particles is rapidly oxidized, and the heat generated by the oxidation reaction may cause the crystallization powder to burn. This phenomenon is particularly likely to occur with fine crystallization powder (for example, a particle size of 0.1 ⁇ m or less). Therefore, it is desirable to perform a slow oxidation treatment to stabilize the particle surface of the crystallization powder by forming a thin oxide film in advance on the particle surface of the crystallization powder whose surface is not so oxidized after drying.
  • the temperature of the crystallization powder heated and dried in the closed container of the inert gas atmosphere dryer, the reducing gas atmosphere dryer, or the vacuum dryer is set to about room temperature to 40 ° C.
  • a gas with a low oxygen concentration for example, nitrogen gas or argon gas containing 0.1 to 2% by volume of oxygen
  • a method of forming a thin oxide film can be considered. Since the crystallization powder that has been subjected to the slow oxidation treatment is not easily oxidized and is stable, there is no risk of heat generation or combustion even if it is left in the atmosphere.
  • a high temperature heat treatment step of applying a high temperature heat treatment to the crystallization powder may be provided.
  • the high temperature heat treatment may be performed after the drying treatment.
  • high temperature heat treatment may be performed instead of the drying treatment.
  • the high temperature heat treatment may be performed in an inert atmosphere, a reducing atmosphere, or a vacuum atmosphere at a temperature of more than 150 ° C. and 400 ° C. or lower, preferably 200 ° C. or higher and 350 ° C. or lower.
  • High-temperature heat treatment promotes diffusion of dissimilar elements such as Fe and Ni in iron (Fe) -nickel (Ni) alloy particles to improve composition uniformity in the particles, or adjust magnetic properties such as magnetic force. It is possible to do it. If necessary, the above-mentioned slow oxidation treatment may be performed after the high temperature heat treatment.
  • a crushing step may be provided in which the crystallization powder recovered in the recovery step or the crystallization powder before the drying treatment is crushed during the recovery process.
  • the alloy particles constituting the crystallization powder are deposited in the crystallization step, the alloy particles may come into contact with each other and fuse to form aggregated particles. Therefore, the crystallization powder obtained through the crystallization step may contain coarse agglomerated particles. As described above, coarse agglomerated particles may have eddy currents flowing through them to increase the loss due to Joule heat or hinder the filling property of the powder. Aggregated particles can be crushed by providing a crushing step after the recovery step or during the recovery step.
  • the crushing may be performed by using dry crushing such as spiral jet crushing treatment and counter jet mill crushing treatment, wet crushing such as high-pressure fluid collision crushing treatment, and other general-purpose crushing methods. Dry crushing can be applied as it is to the crystallization powder that is the dry powder recovered in the recovery step. Further, if the crystallization powder, which is the dry powder after the recovery step, is made into a slurry, wet crushing can be applied to the slurry. Further, if it is a slurry-like crystallized powder before drying obtained in the middle of the recovery step, wet crushing can be applied as it is. In these crushing methods, agglomerated particles are crushed into pieces by utilizing the collision energy of the particles. Since the surface smoothing progresses due to collision during the crushing process, this effect also helps to improve the filling property of the powder.
  • an insulating coating step may be provided after the recovery step.
  • the crystallization powder obtained through the recovery step is subjected to an insulating coating treatment to form an insulating coating layer made of a highly resistant metal oxide on the particle surface of the crystallization powder, thereby insulating the particles.
  • Improve sex Similar to the increase in loss due to eddy current in coarse agglomerated particles, in a dust core obtained by compression molding iron-nickel alloy powder, the eddy current flowing between the particles may increase due to contact between the alloy particles.
  • By forming the insulating coat layer it becomes possible to suppress the generation of eddy current due to the contact between the alloy particles.
  • the crystallization powder is dispersed in a mixed solvent containing water and an organic solvent, and a metal alkoxide is further added and mixed with the mixed solvent to prepare a slurry, and the metal alkoxide is hydrolyzed and mixed in the obtained slurry.
  • An insulating coat layer is formed on the surface of the particles of the crystallization powder by dehydration shrink polymerization, and then the cake-like crystallization powder on which the insulating coat layer is formed is solid-liquid separated from the slurry, and the separated crystallization powder is dried.
  • the crystallization powder on which the insulating coat layer made of a highly resistant metal oxide is formed is recovered. If necessary, the separated and dried crystallization powder may be heat-treated.
  • a hydrolysis catalyst such as an acid or a base (alkali) is added.
  • a base catalyst alkaline catalyst
  • the high resistance metal oxide is at least one selected from the group consisting of silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), and titanium dioxide (TIO 2 ).
  • SiO 2 silicon dioxide
  • Al 2 O 3 aluminum oxide
  • ZrO 2 zirconium oxide
  • Ti 2 titanium dioxide
  • those containing silicon dioxide (SiO 2 ) as a main component are particularly preferable because they are inexpensive and have excellent insulating properties.
  • the main component is at least one selected from the group consisting of silicon alkoxide (alkyl silicate), aluminum alkoxide (alkyl alkoxide), zirconium alkoxide (alkyl zirconate), and titanium alkoxide (alkyl titanate).
  • silicon alkoxide (alkyl silicate) as a main component are particularly preferable.
  • a component for example, boron alkoxide or the like
  • boron alkoxide or the like a component that is incorporated into the insulating coat layer by hydrolysis or the like. A small amount may be added to the above-mentioned metal alkoxide.
  • the surface of the alloy powder treated with insulation coating is coated with a high resistance metal oxide which is an inorganic substance.
  • an organic functional group may be introduced on the surface of the inorganic substance.
  • a small amount of a silicon-based, titanium-based, zirconium-based, or aluminum-based coupling agent is blended with the metal alkoxide used in the insulating coating treatment, and the organic functional group is metallized during hydrolysis / dehydration shrink polymerization of the metal alkoxide.
  • a method of incorporating into an oxide can be mentioned.
  • Another method is to surface-treat the insulatingly coated alloy powder with the above-mentioned coupling agent to modify the surface of the metal oxide with an organic functional group.
  • the introduction of an organic functional group enhances the affinity with the resin, so it is expected that the strength of the molded body will be improved when the alloy powder treated with an insulating coat is mixed with a resin binder or the like and molded. ..
  • silicon alkoxide alkyl silicate
  • alkoxide alkyl silicate
  • TMOS tetramethoxysilane
  • Si (OCH 3 ) 4 silicon tetramethoxydo
  • Tetraethyl orthosilicate, silicon tetraethoxyoxide) (abbreviation: TEOS) (Si (OC 2H 5 ) 4 ), tetrapropoxysilane (other names: tetrapropyl orthosilicate, silicon tetrapropoxide) (Si (OC) 3 H 7 ) 4 , tetrabutoxysilane (other names: tetrabutyl orthosilicate, and silicon tetrabutoxide) (Si (OC 4 H 9 ) 4 and the like, and one or more selected from these alkoxide alkoxides.
  • TEOS silicon tetraethoxyoxide
  • alkoxide in which the group is substituted with another alkoxide group may be used, or a commercially available alkyl silicate as a silicate oligomer which has already been polymerized to a 4- to pentamer (for example, Elsilicate 40 (trade name) manufactured by Corcote, Inc., L. Silicate 48 (trade name), methyl silicate 51 (trade name), etc.) may be used.
  • Elsilicate 40 trade name
  • L. Silicate 48 trade name
  • methyl silicate 51 trade name
  • TEOS tetraethoxysilane
  • aluminum alkoxide alkyl aluminate
  • alkoxide alkyl aluminate
  • Alkoxide alkyl aluminate
  • Alkoxide alkyl aluminate
  • Alkoxide alkyl aluminate
  • Alkoxide alkyl aluminate
  • Alkoxide alkyl aluminate
  • Alkoxide alkyl aluminate
  • Al (OCH 3 ) 3 aluminum trimethoxydo
  • Al (OC 2 H 5 ) 3 aluminum triethoxydo
  • Al (OC 2 H 5 5) 3 aluminum triisopropoxide
  • aluminum tri-n-butoxide Al (On-C 4 H 9 ) 3
  • aluminum tri-sec-butoxide Al (O-s-C 4 H 9 ))
  • one or more selected from aluminum tri-tert-butoxide Al (Ot - C 4H 9 ) 3 ) and the
  • zirconium alkoxide examples include, for example, zirconium tetraethoxyd (Zr (OC 2 H 5 ) 4 ), zirconium tetra-n-propoxide (Zr (On-C 3 H 7 ) 4 ).
  • Zirconium Tetraisopropoxide Zr (O-iso-C 3H 7 ) 4
  • Zirconium Tetra-n-Butoxide Zr ( On -C 4H 9 ) 4
  • Zirconium Tetra-tert-Butoxide Zr (Ot-C 4 H 9 ) 4
  • zirconium tetraisobutoxide Zr (O-iso-C 4 H 9 ) 4
  • the like and one or more selected from these can be mentioned.
  • titanium alkoxide alkyl titanate
  • Ti (OCH 3 ) 4 titanium tetramethoxydo
  • Ti (OC 2 H 5 ) 4 titanium tetraethoxydo
  • Ti (O) titanium tetraisopropoxide
  • Titanium Tetraisobutoxide Ti (O-iso-C 4 H 9 ) 4
  • Titanium Tetra-n-Butoxide Ti (On-C 4 H 9 ) 4
  • Titanium tetra-tert-butoxide Ti (Ot-C 4 H 9 ) 4
  • Titanium tetra-sec-butoxide Ti (O-s-C 4 H 9 ) 4
  • etc. Can be mentioned.
  • boron alkoxides alkyl boronates
  • B (OCH 3 ) 3 boron trimethoxydo
  • B (OC 2 H 5 ) 3 boron triethoxydo
  • B (Ot-C 4 H 9 ) 3 boron tri-tert-butoxide.
  • the organic solvent used for the slurry in the insulating coating treatment is preferably one that forms a mixed solvent with water and is moderately easy to dry. That is, those having high compatibility with water and a relatively low boiling point (about 60 ° C to 90 ° C) are preferable. In addition, those that are highly safe, easy to handle, easy to obtain, and inexpensive are preferable. Considering these, a modified alcohol containing ethyl alcohol as a main component is preferable.
  • the hydrolysis reaction and dehydration-condensation polymerization reaction of the metal alkoxide in the insulation coating treatment will be described using a reaction formula when a silicon alkoxide (Si (OR) 4 , R: alkyl group) is used as the metal alkoxide.
  • the silicon atom (Si) is a pronuclear hydroxy ion (OH ⁇ ) as shown in the following equation (7).
  • a base catalyst such as ammonia (NH 3 )
  • the silicon atom (Si) is a pronuclear hydroxy ion (OH ⁇ ) as shown in the following equation (7).
  • one of the alkoxy groups (-OR) is first hydrolyzed. This reduces the charge on the silicon atom and makes it more vulnerable to the attack of pronuclear hydroxy ions (OH- ) .
  • all four alkoxy groups (—OR) are hydrolyzed to silanol groups (Si—OH).
  • the next hydrolysis does not occur immediately, and the alkoxy group ( ⁇ OR) of another unhydrolyzed silicon alkoxide molecule is more susceptible to hydrolysis.
  • the hydrolysis of the alkoxy group ( ⁇ OR) proceeds evenly in all the silicon alkoxide molecules as shown in the following formula (10). Therefore, there is no completely hydrolyzed molecule or no hydrolyzed molecule at all, and the slurry is in a state where evenly hydrolyzed molecules (Si (OH) X (OR) 4-X ; 0 ⁇ x ⁇ 4) are present. Occurs inside.
  • silicon dioxide (SiO 2 ) and alcohol are produced as shown in the following formula (13).
  • TEOS tetraethoxysilane
  • R C 2 H 5
  • silicon dioxide (SiO 2 ) and ethyl alcohol (C 2 H 5 OH) are produced.
  • the metal alkoxide in the insulating coating treatment using a base catalyst (alkali catalyst) rather than an acid catalyst.
  • the preferred catalyst is different from the case where the solvent is applied to the substrate for coating. That is, when it is used as a binder for a coating liquid which is applied to a base material to dry the solvent instead of coating the particle surface in a solvent, the polymer is polymerized linearly or branched by the acid catalyst described above. Is preferable.
  • the embodiment in which the crystallization powder and the metal alkoxide are uniformly mixed in the slurry and then hydrolyzed by the hydrolysis catalyst has been described so far.
  • this embodiment is not limited to the mode of hydrolysis at this timing.
  • a metal oxide sol obtained by previously hydrolyzing a metal alkoxide with a hydrolysis catalyst (silica sol in the case of silicon alkoxide) may be prepared, and this metal oxide sol may be mixed with crystallization powder to form a slurry. It is possible. If the average molecular weight of the metal oxide sol is as small as about 500 to 5000, the timing of hydrolysis of the metal alkoxide has almost no effect.
  • the slurry containing crystallization powder, water, an organic solvent, a metal alkoxide, and a catalyst for hydrolysis can be agitated by a stirring blade using a stirrer. It is preferable to perform a treatment such as stirring by rotating the container using a dedicated roller.
  • the treatment time and treatment temperature of the insulating coating treatment vary depending on the type of metal alkoxide applied and the required thickness of the insulating coating layer. For example, in general, metal methoxide has a higher rate of hydrolysis than metal ethoxide. Therefore, the processing time and the processing temperature may be set appropriately, and are not particularly limited.
  • the treatment time may be several hours to one week, and the treatment temperature may be room temperature to 60 ° C. When the treatment temperature is as high as 40 ° C. to 60 ° C., the treatment speed can be increased to several times that at room temperature.
  • the thickness of the insulating coat layer is not unconditionally limited because it depends on the degree of insulating property required. Speaking of which, 1 nm to 30 nm is preferable, 2 nm to 25 nm is more preferable, and 3 nm to 20 nm is further preferable. Even if it is excessively thick, the insulating property is saturated, but the content ratio of the soft magnetic component is lowered, and the magnetic characteristics such as the saturated magnetic flux density are only deteriorated. When the thickness is within the above range, it is possible to exert the insulating function of the insulating coat layer without significantly deteriorating the characteristics such as magnetic characteristics.
  • the crystallization powder on which the insulating coat layer was formed by hydrolysis and dehydration shrink polymerization of the metal alkoxide was made into a cake from the slurry by using a known separation device such as a Denver filter, a filter press, a centrifuge, or a decanter. It is solid-liquid separated as crystallization powder. If necessary, the crystallization powder may be washed at the time of solid-liquid separation or the like. For cleaning, water, an organic solvent such as alcohol having a relatively low boiling point, or a mixed solvent thereof may be used as a cleaning solution.
  • the cake-shaped crystallization powder separated by solid and liquid is dried and, if necessary, heat-treated to recover the crystallization powder on which an insulating coat layer made of a highly resistant metal oxide is formed. Drying is not particularly limited as long as it can suppress excessive oxidation during drying. However, it is preferable to use a drying device such as an inert gas atmosphere dryer, a reducing gas atmosphere dryer, or a vacuum dryer, and the temperature may be 40 ° C. or higher and 150 ° C. or lower. The higher the drying temperature, the more the dehydration polycondensation of the metal alkoxide hydrolyzed polymer constituting the insulating coat layer progresses, and the metal oxide becomes harder, denser and more insulating.
  • a drying device such as an inert gas atmosphere dryer, a reducing gas atmosphere dryer, or a vacuum dryer
  • the heat treatment may be performed in an inert gas atmosphere, a reducing gas atmosphere, or a vacuum at a temperature of more than 150 ° C and less than 450 ° C. Since the insulating coat layer has already been formed, it is basically unnecessary to perform a slow oxidation treatment after drying.
  • the insulating coating treatment greatly enhances the insulating property of the crystallization powder (alloy powder).
  • the resistivity of an iron-nickel alloy powder not coated with insulation is usually 0.1 ⁇ ⁇ cm or less, whereas the thickness of this iron-nickel alloy powder is 0.015 ⁇ m.
  • an insulating coating treatment for forming an insulating coating layer made of nickel dioxide (SiO 2 ) of about (15 nm) is applied, the resistivity of the powder compact is improved to 106 ⁇ ⁇ cm or more.
  • the iron (Fe) -nickel (Ni) -based alloy powder of the present embodiment can be produced.
  • the production method of the present embodiment has the effects of promoting a reduction reaction, promoting spheroidization, and surface smoothing with a specific nucleating agent (a water-soluble salt of a metal nobler than nickel) having an effect of refining alloy powder. It is characterized by using a specific complexing agent (hydroxycarboxylic acid or the like), which makes it possible to improve the powder characteristics while maintaining the magnetic characteristics of the alloy powder after production.
  • a specific complexing agent hydroxycarboxylic acid or the like
  • this alloy powder is spherical and its surface is smooth. Therefore, it is excellent in filling property. Further, although not limited, the amount of hydrazine used can be suppressed by using an amine compound having a function as an autolysis inhibitor of hydrazine and a reduction reaction accelerator. Therefore, it is possible to reduce the manufacturing cost and improve the powder characteristics of the alloy powder.
  • Iron-nickel alloy powder >> The iron (Fe) -nickel (Ni) alloy powder of the present embodiment has a small particle size distribution. Further, the average particle size of this alloy powder can be freely controlled. Therefore, miniaturization is easy and the particle size distribution can be reduced. In addition, it is spherical, has high surface smoothness, and has excellent filling properties.
  • the alloy powder of the present embodiment having such an advantage can be used for various electronic components such as noise filters, choke coils, inductors, and radio wave absorbers, and is particularly compact for choke coils and inductors. Suitable as a core material.
  • the average particle size of the alloy powder is preferably 0.10 ⁇ m or more and 0.60 ⁇ m or less, and more preferably 0.10 ⁇ m or more and 0.50 ⁇ m or less.
  • the coefficient of variation (CV value) in the particle size distribution of the alloy powder is preferably 25% or less, more preferably 20% or less, and further preferably 15% or less.
  • the coefficient of variation is an index of particle size variation, and the smaller the coefficient of variation, the narrower the particle size distribution.
  • the coefficient of variation (CV value) is calculated according to the following equation (14) by obtaining the average particle size and standard deviation in the number particle size distribution of the alloy powder.
  • the powder compact density of the alloy powder depends on the composition and particle size of the alloy powder.
  • an iron-nickel alloy powder having an average particle size of 0.3 ⁇ m to 0.5 ⁇ m and an iron content of iron (Fe) of 45 mol% to 60 mol% having a specific gravity of 8.2 to 8.3.
  • the powder density (applied pressure: 100 MPa) is preferably 3.60 g / cm 3 or more, and more preferably 3.70 g / cm 3 or more.
  • an iron-nickel alloy powder having an average particle size of 0.3 ⁇ m to 0.5 ⁇ m and an iron content ratio of iron (Fe) of 10 mol% to 20 mol% having a specific gravity of 7.9 to 8.0.
  • the powder compact density (applied pressure: 100 MPa) is preferably 3.45 g / cm 3 or more, and more preferably 3.55 g / cm 3 or more.
  • the powder compact density (applied pressure: 100 MPa) is 0.1 g / g.
  • About cm 3 tends to decrease.
  • the crystallite diameter of the alloy powder is preferably 30 nm or less, more preferably 10 nm or less. By keeping the crystallite diameter appropriately small, there is an effect that a small coercive force can be easily obtained as in the case of an amorphous soft magnetic material.
  • the saturation magnetic flux density of the alloy powder is preferably 1 T (tesla) or more, more preferably 1.2 T or more, and even more preferably 1.5 T (tesla) or more. It is even more preferable if the saturation magnetic flux density of pure iron powder (1.95T to 2.0T) or higher.
  • the coercive force of the alloy powder is preferably 2000 A / m or less, more preferably 1600 A / m or less, and even more preferably 1200 A / m or less. By suppressing the coercive force of the alloy powder, it becomes possible to prevent an increase in hysteresis loss.
  • iron ion or iron hydroxide
  • nickel ion or nickel hydroxide
  • cobalt ion or cobalt hydroxide
  • iron (Fe) -nickel with a high iron content In (Ni) -based alloy powder (for example, the iron content of the alloy powder exceeds 60 mol%), the central part of the particle has a rich composition of nickel and cobalt, and the closer to the particle surface, the richer the iron. , Core-shell structure) is likely to be formed in the particles. The composition tends to be non-uniform within the particles.
  • the non-uniform composition in the particles affects the characteristics of the alloy powder, but it does not have a large effect on the magnetic characteristics (saturation magnetic flux density, coercive force, etc.).
  • the saturated magnetic flux density shows a positive correlation with the iron content (the higher the iron content, the higher the saturated magnetic flux density), so the composition becomes non-uniform in the particles and iron.
  • the holding power does not change significantly depending on the degree of non-uniformity of the composition that occurs in the particles.
  • the non-uniform composition in the particles may affect the chemical and physical characteristics such as oxidation resistance and coefficient of thermal expansion.
  • the oxidation resistance for example, if the particle surface has a more iron-rich composition due to the inclined structure, the oxidation may proceed easily and the oxidation resistance may deteriorate. If the particle surface can be modified to a nickel-rich composition according to the third aspect of the above, there is a possibility that the oxidation resistance can be improved.
  • the coefficient of thermal expansion unlike the case of the saturated magnetic flux density, the coefficient of thermal expansion of the iron-nickel alloy does not show a positive or negative correlation with the iron content, and the iron content is 65 mol%.
  • the low coefficient of thermal expansion alloy of this composition is called an Inver alloy (65 mol% of iron and 35 mol% of nickel are the main components).
  • the coefficient of thermal expansion does not decrease in either the region where the iron content is larger than 65 mol% or the region where the iron content is small.
  • Ni) -based alloy powder is used as Invar alloy powder, it is necessary to make the composition uniform by the above-mentioned high-temperature heat treatment or the like.
  • Patent Document 3 discloses a method for producing nickel-iron alloy nanoparticles by a wet method. In this method, a nucleating agent consisting of a water-soluble salt of a metal nobler than nickel or a hydroxycarboxylic acid is disclosed. No complexing agent consisting of such substances is used. Therefore, it is presumed that the alloy powder produced by this method is inferior in its powder characteristics (particle size, particle size distribution, spheroidity, surface texture of particles). In fact, Patent Document 3 shows a transmission electron micrograph of a fine powder as an example sample (FIG. 1 of Patent Document 3), and as estimated from this photograph, the coefficient of variation (CV value) in the particle size distribution of the fine powder is shown. ) Is as large as about 35%.
  • CV value coefficient of variation
  • Patent Document 3 which does not use a nucleating agent or a complexing agent, it is necessary to use a large amount of reducing agent (hydrazine) in order to obtain a fine alloy powder.
  • reducing agent hydrazine
  • alloy nanoparticles using 16.6 g of nickel chloride hexahydrate, 4.0 g of ferrous chloride tetrahydrate, and 135 g of hydrazine position hydrate as raw materials. Is being manufactured.
  • a large amount of hydrazine is blended, which is about 30 times the molar ratio of the total amount of iron and nickel.
  • Such a method requiring a large amount of hydrazine is not practical because the cost of the reducing agent is significantly increased.
  • Example 1 An iron-nickel alloy powder (iron-nickel alloy powder) containing 50 mol% of iron (Fe) and 50 mol% of nickel (Ni) was prepared according to the procedure shown in FIG. In Example 1, when preparing the reaction solution, a reduction solution at room temperature was added to the metal salt raw material solution heated using a water bath and mixed.
  • palladium (II) chloride ammonium also known as: ammonium tetrachloropalladium (II) acid
  • (NH 4 ) 2 PdCl 4 , molecular weight: 284.31, reagent manufactured by Wako Pure Chemical Industries, Ltd.) is complicated.
  • trisodium citrate dihydrate Na 3 (C 3H 5 O (COO) 3 ), 2H 2 O, molecular weight: 294.1, reagent manufactured by Wako Pure Chemical Industries, Ltd.
  • An industrial grade 60% by mass hydrazine hydrate (manufactured by MGC Otsuka Chemical Industries, Ltd.) was prepared, and sodium hydroxide (NaOH, molecular weight: 40.0, reagent manufactured by Wako Pure Chemical Industries, Ltd.) was prepared as a pH adjuster.
  • the 60% by mass hydrazine hydrate was obtained by diluting hydrazine hydrate ( N2 H4 ⁇ H2O , molecular weight: 50.06) 1.67 times with pure water.
  • ethylenediamine (EDA; H 2 NC 2 H 4 NH 2 , molecular weight: 60.1, reagent manufactured by Wako Pure Chemical Industries, Ltd.) was prepared as an amine compound.
  • sodium hydroxide 346 g is dissolved in pure water: 850 mL to prepare a sodium hydroxide solution, and 60% by mass of hydrazine hydrate: 707 g is added to and mixed with this sodium hydroxide solution to prepare a reducing agent solution.
  • a sodium hydroxide solution 60% by mass of hydrazine hydrate: 707 g is added to and mixed with this sodium hydroxide solution to prepare a reducing agent solution.
  • reaction start temperature 55 ° C. the temperature of the reaction solution continued to rise by heating with a water bath after the start of the reaction, and was maintained at the liquid temperature of 70 ° C. after 10 minutes from the start of the reaction (reaction holding temperature 70 ° C.).
  • the color tone of the reaction solution was dark green immediately after the start of the reaction (preparation of the reaction solution), but changed to dark gray after a few minutes.
  • the color tone immediately after the start of the reaction turned dark green because the reaction according to the above formula (6) proceeded and both iron hydroxide (Fe (OH) 2 ) and nickel hydroxide (Ni (OH) 2 ) were used. It is considered that the deposit was formed in the reaction solution.
  • the amine compound solution was added dropwise to the reaction solution over 10 minutes from 3 minutes to 13 minutes after the start of the reaction when the color tone of the reaction solution changed to dark gray, and the reduction reaction proceeded.
  • iron-nickel crystallization powder was deposited in the reaction solution.
  • the color tone of the reaction solution at this time was black, but the supernatant solution of the reaction solution became transparent within 20 minutes from the start of the reaction. It is considered that the reduction reaction of the above formula (6) was completed and all of the iron component and the nickel component in the reaction solution were reduced to metallic iron and metallic nickel.
  • the reaction solution after the reaction was completed was a slurry containing iron-nickel crystallization powder.
  • the slurry-like reaction liquid obtained in the crystallization step was subjected to filtration washing and solid-liquid separation treatment to recover cake-like iron-nickel crystallization powder.
  • Filtration washing was performed using pure water having a conductivity of 1 ⁇ S / cm until the conductivity of the filtrate filtered from the slurry became 10 ⁇ S / cm or less.
  • the recovered cake-like crystallization powder was dried in a vacuum dryer set at 50 ° C. Then, the dried crystallization powder was cooled to 35 ° C. in a vacuum, and then nitrogen gas containing 1.0% by volume of oxygen was supplied to slowly oxidize the crystallization powder. In this way, an iron-nickel alloy powder was obtained.
  • the obtained alloy powder was composed of spherical particles having a smooth surface. The particle size distribution was sharp and the average particle size was 0.41 ⁇ m.
  • Example 2 an iron-nickel alloy powder (iron-nickel-cobalt) containing 50 mol% of iron (Fe), 40 mol% of nickel (Ni) and 10 mol% of cobalt (Co) was according to the procedure shown in FIG. Cobalt powder) was produced.
  • a pH adjustment solution alkali hydroxide solution
  • a reducing agent solution at room temperature is added. And mixed.
  • Example 2 The same raw materials as in Example 1 were prepared as a water-soluble iron salt, a water-soluble nickel salt, a nucleating agent, a complexing agent, a reducing agent, a pH adjuster, and an amine compound.
  • cobalt chloride hexahydrate (CoCl 2.6H 2 O , molecular weight: 237.93 Wako Pure Chemical Industries, Ltd. reagent) was prepared as a water-soluble cobalt salt.
  • weighing was performed so that the amount of trisodium citrate with respect to the total amount of magnetic metals (Fe, Ni and Co) was 0.362 (36.2 mol%) in terms of molar ratio.
  • ferrous chloride tetrahydrate 173.60 g
  • nickel chloride hexahydrate 166.04 g
  • cobalt chloride hexahydrate 41.55 g
  • palladium (II) chloride ammonium 9.93 ⁇ g.
  • disodium trisodium dihydrate 185.9 g was dissolved in pure water: 1200 mL to prepare a metal salt raw material solution.
  • pH adjusting solution alkali hydroxide solution
  • a pH adjusting solution alkali hydroxide solution containing sodium hydroxide (pH regulator) and water was prepared.
  • weighing was performed so that the amount of sodium hydroxide with respect to the total amount of magnetic metals (Fe, Ni and Co) was 4.96 in terms of molar ratio.
  • 346 g of sodium hydroxide was dissolved in 850 mL of pure water to prepare a pH adjustment solution.
  • the concentration of the magnetic metal (Fe, Ni and Co) in the reaction solution was 32.3 g / L.
  • reaction start temperature 55 ° C. The temperature of the reaction solution continued to rise by heating with a water bath after the start of the reaction, and was maintained at the liquid temperature of 70 ° C. after 10 minutes from the start of the reaction (reaction holding temperature 70 ° C.).
  • the color tone of the reaction solution was dark green immediately after the start of the reaction (preparation of the reaction solution), but changed to dark gray after a few minutes.
  • the color tone immediately after the start of the reaction turned dark green because the reaction proceeded according to the above formula (6), and iron hydroxide (Fe (OH) 2 ), nickel hydroxide (Ni (OH) 2 ), and water. It is considered that a co-precipitate of cobalt oxide (Co (OH) 2 ) was formed in the reaction solution.
  • the color tone changed to dark gray several minutes after the start of the reaction, probably because nucleation occurred due to the action of the nucleating agent (palladium salt).
  • the amine compound solution was added dropwise to the reaction solution over 10 minutes from 3 minutes to 13 minutes after the start of the reaction when the color tone of the reaction solution changed to dark gray, and the reduction reaction proceeded.
  • iron-nickel-cobalt crystallization powder was deposited in the reaction solution.
  • the color tone of the reaction solution at this time was black, but the supernatant solution of the reaction solution became transparent within 20 minutes from the start of the reaction. It is considered that the reduction reaction of the above formula (6) was completed and all of the iron component, nickel component and cobalt component in the reaction solution were reduced to metallic iron, metallic nickel and metallic cobalt.
  • the reaction solution after the reaction was completed was a slurry containing iron-nickel-cobalt crystallization powder.
  • the slurry-like reaction liquid obtained in the crystallization step was subjected to filtration washing and solid-liquid separation treatment to recover cake-like iron-nickel-cobalt crystallization powder.
  • Filtration washing was performed using pure water having a conductivity of 1 ⁇ S / cm until the conductivity of the filtrate filtered from the slurry became 10 ⁇ S / cm or less.
  • the recovered cake-like crystallization powder was dried in a vacuum dryer set at 50 ° C. Then, the dried crystallization powder was cooled to 35 ° C. in a vacuum, and then nitrogen gas containing 1.0% by volume of oxygen was supplied to slowly oxidize the crystallization powder. In this way, an iron-nickel-cobalt alloy powder was obtained.
  • the obtained alloy powder was composed of spherical particles having a smooth surface. The particle size distribution was sharp and the average particle size was 0.33 ⁇ m.
  • Example 3 an iron-nickel alloy powder (iron-nickel alloy powder) containing 50 mol% of iron (Fe) and 50 mol% of nickel (Ni) was prepared according to the procedure shown in FIG. In Example 3, when preparing the reaction solution, a reduction solution at room temperature was added to the metal salt raw material solution heated using a water bath and mixed.
  • ⁇ Preparation process> The same raw materials as in Example 1 were prepared as a water-soluble iron salt, a water-soluble nickel salt, a nucleating agent, a reducing agent, a pH adjuster, and an amine compound.
  • a complexing agent tartaric acid ((CH (OH) COOH) 2 , molecular weight: 150.09, reagent manufactured by Wako Pure Chemical Industries, Ltd.) was prepared instead of trisodium citrate dihydrate.
  • ferrous chloride tetrahydrate 173.60 g
  • nickel chloride hexahydrate 207.55 g
  • palladium (II) chloride ammonium 9.93 ⁇ g
  • tartrate acid 52.4 g as pure water:
  • a metal salt raw material solution was prepared by dissolving in 1200 mL.
  • sodium hydroxide 346 g is dissolved in pure water: 850 mL to prepare a sodium hydroxide solution, and 60% by mass of hydrazine hydrate: 707 g is added to and mixed with this sodium hydroxide solution to prepare a reducing agent solution.
  • a sodium hydroxide solution 60% by mass of hydrazine hydrate: 707 g is added to and mixed with this sodium hydroxide solution to prepare a reducing agent solution.
  • An iron-nickel alloy powder (iron-nickel alloy powder) was produced from the slurry-like reaction solution obtained in the crystallization step in the same manner as in Example 1.
  • the obtained alloy powder was composed of spherical particles having a smooth surface. The particle size distribution was sharp and the average particle size was 0.40 ⁇ m.
  • Example 4 an iron-nickel alloy powder (iron-nickel alloy powder) containing 56 mol% of iron (Fe) and 44 mol% of nickel (Ni) was prepared according to the procedure shown in FIG. In Example 4, when preparing the reaction solution, a metal salt raw material solution at room temperature was added to the reducing solution heated using a water bath and mixed.
  • ⁇ Preparation process> The same raw materials as in Example 1 were prepared as a nucleating agent, a reducing agent, a pH adjusting agent, a complexing agent, and an amine compound.
  • a water-soluble iron salt instead of ferrous chloride tetrahydrate, ferrous sulfate heptahydrate (FeSO 4.7H 2 O, molecular weight: 278.05, reagent manufactured by Wako Pure Chemical Industries, Ltd.)
  • As a water-soluble nickel salt instead of nickel chloride hexahydrate, prepare nickel sulfate hexahydrate (NiSO 4.6H 2 O, molecular weight: 262.85, reagent manufactured by Wako Pure Chemical Industries, Ltd.). bottom.
  • sodium hydroxide 326 g is dissolved in pure water: 800 mL to prepare a sodium hydroxide solution, and 60% by mass of hydrazine hydrate: 934 g is added to and mixed with this sodium hydroxide solution to prepare a reducing agent solution.
  • a sodium hydroxide solution 60% by mass of hydrazine hydrate: 934 g is added to and mixed with this sodium hydroxide solution to prepare a reducing agent solution.
  • reaction start temperature 59 ° C. The temperature of the reaction solution continued to rise by heating with a water bath after the start of the reaction, and was maintained at the liquid temperature of 70 ° C. after 10 minutes from the start of the reaction (reaction holding temperature 70 ° C.).
  • the color tone of the reaction solution was dark green immediately after the start of the reaction (preparation of the reaction solution), but changed to dark gray after a few minutes.
  • the color tone immediately after the start of the reaction turned dark green because the reaction according to the above formula (6) proceeded and both iron hydroxide (Fe (OH) 2 ) and nickel hydroxide (Ni (OH) 2 ) were used. It is considered that the deposit was formed in the reaction solution.
  • the amine compound solution was added dropwise to the reaction solution over 10 minutes from 3 minutes to 13 minutes after the start of the reaction when the color tone of the reaction solution changed to dark gray, and the reduction reaction proceeded.
  • iron-nickel crystallization powder was deposited in the reaction solution.
  • the color tone of the reaction solution at this time was black, but the supernatant solution of the reaction solution became transparent within 30 minutes from the start of the reaction. It is considered that the reduction reaction of the above formula (6) was completed and all of the iron component and the nickel component in the reaction solution were reduced to metallic iron and metallic nickel.
  • the reaction solution after the reaction was completed was a slurry containing iron-nickel crystallization powder.
  • the slurry-like reaction liquid obtained in the crystallization step was subjected to filtration washing and solid-liquid separation treatment to recover cake-like iron-nickel crystallization powder.
  • Filtration washing was performed using pure water having a conductivity of 1 ⁇ S / cm until the conductivity of the filtrate filtered from the slurry became 10 ⁇ S / cm or less.
  • the recovered cake-like crystallization powder was dried in a vacuum dryer set at 50 ° C. Then, the dried crystallization powder was cooled to 35 ° C. in a vacuum, and then nitrogen gas containing 1.0% by volume of oxygen was supplied to slowly oxidize the crystallization powder. In this way, an iron-nickel alloy powder was obtained.
  • the obtained alloy powder was composed of spherical particles having a smooth surface. The particle size distribution was sharp and the average particle size was 0.38 ⁇ m.
  • Example 5 an iron-nickel alloy powder (iron-nickel alloy powder) containing 51 mol% of iron (Fe) and 49 mol% of nickel (Ni) having a nickel-rich surface composition according to the procedure shown in FIG. was produced. At this time, an additional raw material liquid was added and mixed at the end of the crystallization step. Specifically, iron-nickel alloy powder (iron) containing 56 mol% of iron (Fe) and 44 mol% of nickel (Ni) in the same manner as in Example 4 except that the amount of hydrazine as a reducing agent is different. -The crystallization of nickel alloy powder) was advanced, and in the middle of this crystallization, a water-soluble nickel salt aqueous solution as an additional raw material solution was added and mixed with the reaction solution.
  • ⁇ Preparation process> The same raw materials as in Example 4 were prepared as a water-soluble iron salt, a water-soluble nickel salt, a nucleating agent, a reducing agent, a pH adjuster, a complexing agent, and an amine compound.
  • the amount of sodium hydroxide with respect to the total amount of magnetic metals (Fe and Ni) at the start of the reaction was 4.67 in terms of molar ratio (4 in terms of molar ratio with respect to the total amount of magnetic metals (Fe and Ni) at the time of adding the additional raw material liquid). Weighing was performed so as to be .24). Specifically, sodium hydroxide: 326 g is dissolved in pure water: 800 mL to prepare a sodium hydroxide solution, and 60% by mass of hydrazine hydrate: 707 g is added to and mixed with this sodium hydroxide solution to prepare a reducing agent solution. Was prepared.
  • reaction start temperature 57 ° C. The temperature of the reaction solution continued to rise by heating with a water bath after the start of the reaction, and was maintained at the liquid temperature of 70 ° C. after 10 minutes from the start of the reaction (reaction holding temperature 70 ° C.).
  • the color tone of the reaction solution was dark green immediately after the start of the reaction (preparation of the reaction solution), but changed to dark gray after a few minutes.
  • the color tone immediately after the start of the reaction turned dark green because the reaction according to the above formula (6) proceeded and both iron hydroxide (Fe (OH) 2 ) and nickel hydroxide (Ni (OH) 2 ) were used. It is considered that the deposit was formed in the reaction solution.
  • the amine compound solution was added dropwise to the reaction solution over 10 minutes from 3 minutes to 13 minutes after the start of the reaction when the color tone of the reaction solution changed to dark gray, and the reduction reaction proceeded.
  • iron-nickel crystallization powder was deposited in the reaction solution.
  • Precipitated iron-nickel crystallized powder while promoting the reduction of iron ions (or iron hydroxide) that are difficult to reduce by adding and mixing the additional raw material liquid little by little from 11 minutes to 16 minutes after the start of the reaction.
  • the reduction reaction was carried out so that the surface of the iron had a more nickel-rich composition.
  • the concentration of the magnetic metal (Fe and Ni) in the reaction solution after the addition of the additional raw material solution was 32.8 g / L.
  • the color tone of the reaction solution at this time was black, but the supernatant solution of the reaction solution became transparent within 30 minutes from the start of the reaction. It is considered that all the reduction reactions were completed and all the iron components and nickel components in the reaction solution were reduced to metallic iron and metallic nickel.
  • the reaction solution after the reaction was completed was a slurry containing iron-nickel crystallization powder.
  • the slurry-like reaction liquid obtained in the crystallization step was subjected to filtration washing and solid-liquid separation treatment to recover cake-like iron-nickel crystallization powder.
  • Filtration washing was performed using pure water having a conductivity of 1 ⁇ S / cm until the conductivity of the filtrate filtered from the slurry became 10 ⁇ S / cm or less.
  • the recovered cake-like crystallization powder was dried in a vacuum dryer set at 50 ° C. Then, the dried crystallization powder was cooled to 35 ° C. in a vacuum, and then nitrogen gas containing 1.0% by volume of oxygen was supplied to slowly oxidize the crystallization powder. In this way, an iron-nickel alloy powder was obtained.
  • the obtained alloy powder was composed of spherical particles having a smooth surface. The particle size distribution was sharp and the average particle size was 0.40 ⁇ m.
  • Example 6 the crystallization powder obtained in Example 1 was dry-crushed using an ultra-small jet crusher (Nippon Pneumatic Co., Ltd., JKE-30) at a crushing gas pressure of 0.5 MPa.
  • the spiral jet crushing treatment was carried out to prepare an iron-nickel alloy powder (iron-nickel alloy powder) containing 50 mol% of iron (Fe) and 50 mol% of nickel (Ni).
  • the obtained alloy powder had a sharp particle size distribution as in Example 1, and the average particle size was 0.41 ⁇ m.
  • the spiral jet crushing treatment reduced the agglomerated particles and improved the filling property (increased powder density), and also reduced the surface irregularities and composed of very smooth spherical particles.
  • Example 7 In Example 7, following the crystallization step, iron (Fe) 50 is subjected to high-pressure fluid collision crushing treatment, which is wet crushing, on the slurry-like crystallization powder before drying in the middle of the recovery step. An iron-nickel alloy powder (iron-nickel alloy powder) containing mol% and 50 mol% of nickel (Ni) was prepared.
  • the above-mentioned washed crystallization powder slurry was passed through a high-pressure fluid collision crusher (manufactured by Sugino Machine; pressure: 200 MPa) for 2 passes to perform crushing treatment, and then solid-liquid separation treatment was performed to form a cake-like iron.
  • Nickel crystallization powder was recovered.
  • the recovered cake-like crystallization powder was dried in a vacuum dryer set at 50 ° C. Then, after cooling the dried crystallization powder to 35 ° C. in vacuum, nitrogen gas containing 1.0% by volume of oxygen is supplied, and the crystallization powder is subjected to a slow oxidation treatment to obtain an iron-nickel alloy powder. rice field.
  • the obtained alloy powder had a sharp particle size distribution as in Example 1, and the average particle size was 0.41 ⁇ m.
  • the high-pressure fluid collision crushing treatment reduced the agglomerated particles and improved the filling property (increased powder density), and also reduced the surface irregularities and composed of very smooth spherical particles.
  • Example 8 the crystallization powder obtained according to the procedure shown in FIG. 6 is subjected to high-temperature heat treatment to obtain an iron-nickel alloy powder (iron) containing 65 mol% of iron (Fe) and 35 mol% of nickel (Ni). -Nickel alloy powder) was prepared.
  • iron iron
  • Ni nickel
  • -Nickel alloy powder a metal salt raw material solution at room temperature was added to the reducing solution heated using a water bath and mixed.
  • ⁇ Preparation process> The same raw materials as in Example 4 were prepared as a water-soluble iron salt, a water-soluble nickel salt, a nucleating agent, a reducing agent, a pH adjuster, a complexing agent, and an amine compound.
  • ferrous sulfate heptahydrate 318.1 g
  • nickel sulfate hexahydrate 161.9 g
  • palladium (II) chloride ammonium 750.5 ⁇ g
  • trisodium citrate dihydrate 374.7 g was dissolved in pure water: 950 mL to prepare a metal salt raw material solution.
  • sodium hydroxide 497.5 g is dissolved in pure water: 1218 mL to prepare a sodium hydroxide solution, and 60% by mass of hydrazine hydrate: 1318 g is added to and mixed with this sodium hydroxide solution for reduction. A solution of the agent was prepared.
  • reaction solution Preparation of reaction solution and precipitation of crystallization powder
  • the prepared reducing agent solution was placed in a Teflon (registered trademark) -coated stainless steel container (reaction tank) with a stirring blade installed in a water bath, and the solution temperature was 80 ° C. It was heated while stirring so as to become. Then, a metal salt raw material solution having a liquid temperature of 25 ° C. was added to and mixed with the reducing agent solution heated in a water bath for a mixing time of 10 seconds to obtain a reaction liquid having a liquid temperature of 71 ° C.
  • the concentration of magnetic metals (Fe and Ni) in the reaction solution was 25.0 g / L.
  • reaction start temperature 71 ° C. The temperature of the reaction solution continued to rise by heating with a water bath after the start of the reaction, and was maintained at the liquid temperature of 80 ° C. after 10 minutes from the start of the reaction (reaction holding temperature 80 ° C.).
  • the color tone of the reaction solution was dark green immediately after the start of the reaction (preparation of the reaction solution), but changed to dark gray after a few minutes.
  • the color tone immediately after the start of the reaction turned dark green because the reaction according to the above formula (6) proceeded and both iron hydroxide (Fe (OH) 2 ) and nickel hydroxide (Ni (OH) 2 ) were used. It is considered that the deposit was formed in the reaction solution.
  • the amine compound solution was added dropwise to the reaction solution over 10 minutes from 3 minutes to 13 minutes after the start of the reaction when the color tone of the reaction solution changed to dark gray, and the reduction reaction proceeded.
  • iron-nickel crystallization powder was deposited in the reaction solution.
  • the color tone of the reaction solution at this time was black, but the supernatant solution of the reaction solution became transparent within 40 minutes from the start of the reaction. It is considered that all the reduction reactions were completed and all the iron components and nickel components in the reaction solution were reduced to metallic iron and metallic nickel.
  • the reaction solution after the reaction was completed was a slurry containing iron-nickel crystallization powder.
  • ⁇ Recovery process> The slurry-like reaction liquid obtained in the crystallization step was subjected to filtration washing and solid-liquid separation treatment to recover cake-like iron-nickel crystallization powder. Filtration washing was performed using pure water having a conductivity of 1 ⁇ S / cm until the conductivity of the filtrate filtered from the slurry became 10 ⁇ S / cm or less.
  • the recovered cake-like crystallization powder was dried in a vacuum dryer set at 50 ° C. Then, the dried crystallization powder was cooled to 35 ° C. in a vacuum, and then nitrogen gas containing 1.0% by volume of oxygen was supplied to slowly oxidize the crystallization powder.
  • the crystallization powder thus obtained is subjected to high temperature heat treatment by heating at 350 ° C. for 60 minutes in a nitrogen atmosphere, and is an iron-nickel system containing 65 mol% of iron (Fe) and 35 mol% of nickel (Ni).
  • An alloy powder (iron-nickel alloy powder) was prepared.
  • the obtained alloy powder had a sharp particle size distribution as in Example 1, and the average particle size was 0.27 ⁇ m.
  • the high temperature heat treatment promoted the diffusion of Fe and Ni in the iron (Fe) -nickel (Ni) alloy particles, improved the composition uniformity in the particles, and reduced the variation in characteristics in the particles.
  • Example 9 an iron-nickel alloy powder (iron-nickel alloy powder) containing 65 mol% of iron (Fe) and 35 mol% of nickel (Ni) having a nickel-rich surface composition according to the procedure shown in FIG. was produced.
  • an additional raw material liquid was added and mixed in the middle of the crystallization step.
  • a metal salt raw material solution at room temperature is added and mixed with a reduction solution heated using a water bath to prepare a reaction solution.
  • ⁇ Preparation process> The same raw materials as in Example 4 were prepared as a water-soluble iron salt, a water-soluble nickel salt, a nucleating agent, a reducing agent, a pH adjuster, a complexing agent, and an amine compound.
  • the amount of sodium hydroxide with respect to the total amount of magnetic metals (Fe and Ni) at the start of the reaction is 7.33 in terms of molar ratio (7 in terms of molar ratio with respect to the total amount of magnetic metals (Fe and Ni) at the time of adding the additional raw material liquid). Weighing was performed so as to be .07). Specifically, sodium hydroxide: 497.5 g is dissolved in pure water: 1218 mL to prepare a sodium hydroxide solution, and 60% by mass of hydrazine hydrate: 1080 g is added to and mixed with this sodium hydroxide solution for reduction. A solution of the agent was prepared.
  • reaction start temperature 75 ° C. 75 ° C.
  • the temperature of the reaction solution continued to rise by heating with a water bath after the start of the reaction, and was maintained at the liquid temperature of 80 ° C. after 10 minutes from the start of the reaction (reaction holding temperature 80 ° C.).
  • the color tone of the reaction solution was dark green immediately after the start of the reaction (preparation of the reaction solution), but changed to dark gray after a few minutes.
  • the color tone immediately after the start of the reaction turned dark green because the reaction according to the above formula (6) proceeded and both iron hydroxide (Fe (OH) 2 ) and nickel hydroxide (Ni (OH) 2 ) were used. It is considered that the deposit was formed in the reaction solution.
  • the color tone changed to dark gray several minutes after the start of the reaction, probably because nucleation occurred due to the action of the nucleating agent (palladium salt).
  • the amine compound solution was added dropwise to the reaction solution over 10 minutes from 3 minutes to 13 minutes after the start of the reaction when the color tone of the reaction solution changed to dark gray, and the reduction reaction proceeded.
  • iron-nickel crystallization powder was deposited in the reaction solution.
  • the additional raw material solution is added and mixed little by little while accelerating the reduction of iron ions (or iron hydroxide) that are difficult to reduce, and the precipitated iron-nickel crystallized powder.
  • the reduction reaction was carried out so that the surface of the iron had a more nickel-rich composition.
  • the concentration of the magnetic metal (Fe and Ni) in the reaction solution after the addition of the additional raw material solution was 28.4 g / L.
  • the color tone of the reaction solution at this time was black, but the supernatant solution of the reaction solution became transparent within 40 minutes from the start of the reaction. It is considered that all the reduction reactions were completed and all the iron components and nickel components in the reaction solution were reduced to metallic iron and metallic nickel.
  • the reaction solution after the reaction was completed was a slurry containing iron-nickel crystallization powder.
  • the slurry-like reaction liquid obtained in the crystallization step was subjected to filtration washing and solid-liquid separation treatment to recover cake-like iron-nickel crystallization powder.
  • Filtration washing was performed using pure water having a conductivity of 1 ⁇ S / cm until the conductivity of the filtrate filtered from the slurry became 10 ⁇ S / cm or less.
  • the recovered cake-like crystallization powder was dried in a vacuum dryer set at 50 ° C. Then, the dried crystallization powder was cooled to 35 ° C. in a vacuum, and then nitrogen gas containing 1.0% by volume of oxygen was supplied to slowly oxidize the crystallization powder. In this way, an iron-nickel alloy powder was obtained.
  • the obtained alloy powder was composed of spherical particles having a smooth surface. The particle size distribution was sharp and the average particle size was 0.39 ⁇ m.
  • Example 10 an iron-nickel alloy powder (iron-nickel alloy powder) containing 80 mol% of iron (Fe) and 20 mol% of nickel (Ni) having a large iron content according to the procedure shown in FIG. was produced.
  • an additional raw material liquid was added and mixed in the middle of the crystallization step.
  • a metal salt raw material solution at room temperature is added and mixed with a reduction solution heated using a water bath to prepare a reaction solution.
  • iron (Fe) 83.3 mol% and nickel (Ni) 16 Crystallization of iron-nickel alloy powder (iron-nickel alloy powder) containing 7 mol% was advanced. Then, in the middle of this crystallization, a water-soluble nickel salt aqueous solution as an additional raw material solution was added and mixed with the reaction solution.
  • ⁇ Preparation process> The same raw materials as in Example 4 were prepared as a water-soluble iron salt, a water-soluble nickel salt, a nucleating agent, a reducing agent, a pH adjuster, a complexing agent, and an amine compound.
  • ferrous sulfate heptahydrate 394.3 g
  • nickel sulfate hexahydrate 74.6 g
  • palladium (II) chloride ammonium 201.6 ⁇ g
  • trisodium citrate dihydrate 377.5 g was dissolved in pure water: 836 mL to prepare a metal salt raw material solution.
  • the amount of sodium hydroxide with respect to the total amount of magnetic metals (Fe and Ni) at the start of the reaction is 7.37 in molar ratio (7 in molar ratio with respect to the total amount of magnetic metals (Fe and Ni) at the time of adding the additional raw material liquid). Weighing was performed so as to be .07). Specifically, 501.3 g of sodium hydroxide is dissolved in 1228 mL of pure water to prepare a sodium hydroxide solution, and 60% by mass of hydrazine hydrate: 1334 g is added to and mixed with this sodium hydroxide solution for reduction. A solution of the agent was prepared.
  • reaction start temperature 71 ° C. The temperature of the reaction solution continued to rise by heating with a water bath after the start of the reaction, and was maintained at the liquid temperature of 80 ° C. after 10 minutes from the start of the reaction (reaction holding temperature 80 ° C.).
  • the color tone of the reaction solution was dark green immediately after the start of the reaction (preparation of the reaction solution), but changed to dark gray after a few minutes.
  • the color tone immediately after the start of the reaction turned dark green because the reaction according to the above formula (6) proceeded and both iron hydroxide (Fe (OH) 2 ) and nickel hydroxide (Ni (OH) 2 ) were used. It is considered that the deposit was formed in the reaction solution.
  • the amine compound solution was added dropwise to the reaction solution over 10 minutes from 3 minutes to 13 minutes after the start of the reaction when the color tone of the reaction solution changed to dark gray, and the reduction reaction proceeded.
  • iron-nickel crystallization powder was deposited in the reaction solution.
  • the additional raw material solution is added and mixed little by little while advancing the reduction of iron ions (or iron hydroxide) that are difficult to reduce, and the precipitated iron-nickel crystallized powder.
  • the reduction reaction was carried out so that the surface of the iron had a more nickel-rich composition.
  • the concentration of the magnetic metal (Fe and Ni) in the reaction solution after the addition of the additional raw material solution was 24.2 g / L.
  • the color tone of the reaction solution at this time was black, but the supernatant liquid of the reaction solution became transparent within 60 minutes from the start of the reaction. It is considered that all the reduction reactions were completed and all the iron components and nickel components in the reaction solution were reduced to metallic iron and metallic nickel.
  • the reaction solution after the reaction was completed was a slurry containing iron-nickel crystallization powder.
  • the slurry-like reaction liquid obtained in the crystallization step was subjected to filtration washing and solid-liquid separation treatment to recover cake-like iron-nickel crystallization powder.
  • Filtration washing was performed using pure water having a conductivity of 1 ⁇ S / cm until the conductivity of the filtrate filtered from the slurry became 10 ⁇ S / cm or less.
  • the recovered cake-like crystallization powder was dried in a vacuum dryer set at 50 ° C. Then, the dried crystallization powder was cooled to 35 ° C. in a vacuum, and then nitrogen gas containing 1.0% by volume of oxygen was supplied to slowly oxidize the crystallization powder. In this way, an iron-nickel alloy powder was obtained.
  • the obtained alloy powder was composed of spherical particles having a smooth surface. The particle size distribution was sharp and the average particle size was 0.48 ⁇ m.
  • Example 11 an iron-nickel alloy powder (iron-nickel alloy powder) containing 90 mol% of iron (Fe) and 10 mol% of nickel (Ni) having a large iron content according to the procedure shown in FIG. was produced.
  • an additional raw material liquid was added and mixed in the middle of the crystallization step.
  • a metal salt raw material solution at room temperature is added and mixed with a reduction solution heated using a water bath to prepare a reaction solution.
  • iron (Fe) 91.8 mol% and nickel (Ni) 8. Crystallization of iron-nickel alloy powder (iron-nickel alloy powder) containing 2 mol% was advanced. Then, in the middle of this crystallization, a water-soluble nickel salt aqueous solution as an additional raw material solution was added and mixed with the reaction solution.
  • ⁇ Preparation process> The same raw materials as in Example 4 were prepared as a water-soluble iron salt, a water-soluble nickel salt, a nucleating agent, a reducing agent, a pH adjuster, a complexing agent, and an amine compound.
  • the amount of sodium hydroxide with respect to the total amount of magnetic metals (Fe and Ni) at the start of the reaction was 8.29 in terms of molar ratio (8 in terms of molar ratio with respect to the total amount of magnetic metals (Fe and Ni) at the time of adding the additional raw material liquid). Weighing was performed so as to be .13). Specifically, sodium hydroxide: 579 g is dissolved in pure water: 1418 mL to prepare a sodium hydroxide solution, and 60% by mass of hydrazine hydrate: 1334 g is added to and mixed with this sodium hydroxide solution to prepare a reducing agent solution. Was prepared.
  • reaction start temperature 78 ° C. The temperature of the reaction solution continued to rise by heating with a water bath after the start of the reaction, and was maintained at the liquid temperature of 85 ° C. 10 minutes after the start of the reaction (reaction holding temperature 85 ° C.).
  • the color tone of the reaction solution was dark green immediately after the start of the reaction (preparation of the reaction solution), but changed to dark gray after a few minutes.
  • the color tone immediately after the start of the reaction turned dark green because the reaction according to the above formula (6) proceeded and both iron hydroxide (Fe (OH) 2 ) and nickel hydroxide (Ni (OH) 2 ) were used. It is considered that the deposit was formed in the reaction solution.
  • the amine compound solution was added dropwise to the reaction solution over 10 minutes from 3 minutes to 13 minutes after the start of the reaction when the color tone of the reaction solution changed to dark gray, and the reduction reaction proceeded.
  • iron-nickel crystallization powder was deposited in the reaction solution.
  • the additional raw material solution is added and mixed little by little while advancing the reduction of iron ions (or iron hydroxide) that are difficult to reduce, and the precipitated iron-nickel crystallized powder.
  • the reduction reaction was carried out so that the surface of the iron had a more nickel-rich composition.
  • the concentration of the magnetic metal (Fe and Ni) in the reaction solution after the addition of the additional raw material solution was 24.8 g / L.
  • the color tone of the reaction solution at this time was black, but the supernatant solution of the reaction solution became transparent within 50 minutes from the start of the reaction. It is considered that all the reduction reactions were completed and all the iron components and nickel components in the reaction solution were reduced to metallic iron and metallic nickel.
  • the reaction solution after the reaction was completed was a slurry containing iron-nickel crystallization powder.
  • the slurry-like reaction liquid obtained in the crystallization step was subjected to filtration washing and solid-liquid separation treatment to recover cake-like iron-nickel crystallization powder.
  • Filtration washing was performed using pure water having a conductivity of 1 ⁇ S / cm until the conductivity of the filtrate filtered from the slurry became 10 ⁇ S / cm or less.
  • the recovered cake-like crystallization powder was dried in a vacuum dryer set at 50 ° C. Then, the dried crystallization powder was cooled to 35 ° C. in a vacuum, and then nitrogen gas containing 1.0% by volume of oxygen was supplied to slowly oxidize the crystallization powder. In this way, an iron-nickel alloy powder was obtained.
  • the obtained alloy powder was composed of spherical particles having a smooth surface. The particle size distribution was sharp and the average particle size was 0.38 ⁇ m.
  • Example 12 the crystallization powder obtained according to the procedure shown in FIG. 5 is subjected to an insulating coating treatment, and iron (Fe) 55 coated with nickel dioxide (SiO 2 ), which is an insulating metal oxide.
  • An iron-nickel alloy powder (iron-nickel alloy powder) containing mol% and 45 mol% of nickel (Ni) was prepared.
  • a metal salt raw material solution at room temperature was added to the reducing solution heated using a water bath and mixed.
  • ⁇ Preparation process> The same raw materials as in Example 4 were prepared as a water-soluble iron salt, a water-soluble nickel salt, a nucleating agent, a reducing agent, a pH adjuster, a complexing agent, and an amine compound.
  • sodium hydroxide 346 g is dissolved in pure water: 848 mL to prepare a sodium hydroxide solution, and 60% by mass of hydrazine hydrate: 709 g is added to and mixed with this sodium hydroxide solution to prepare a reducing agent solution.
  • a sodium hydroxide solution 60% by mass of hydrazine hydrate: 709 g is added to and mixed with this sodium hydroxide solution to prepare a reducing agent solution.
  • reaction start temperature 59 ° C. The temperature of the reaction solution continued to rise by heating with a water bath after the start of the reaction, and was maintained at the liquid temperature of 70 ° C. after 10 minutes from the start of the reaction (reaction holding temperature 70 ° C.).
  • the color tone of the reaction solution was dark green immediately after the start of the reaction (preparation of the reaction solution), but changed to dark gray after a few minutes.
  • the color tone immediately after the start of the reaction turned dark green because the reaction according to the above formula (6) proceeded and both iron hydroxide (Fe (OH) 2 ) and nickel hydroxide (Ni (OH) 2 ) were used. It is considered that the deposit was formed in the reaction solution.
  • the amine compound solution was added dropwise to the reaction solution over 10 minutes from 3 minutes to 13 minutes after the start of the reaction when the color tone of the reaction solution changed to dark gray, and the reduction reaction proceeded.
  • iron-nickel crystallization powder was deposited in the reaction solution.
  • the color tone of the reaction solution at this time was black, but the supernatant solution of the reaction solution became transparent within 30 minutes from the start of the reaction. It is considered that the reduction reaction of the above formula (6) was completed and all of the iron component and the nickel component in the reaction solution were reduced to metallic iron and metallic nickel.
  • the reaction solution after the reaction was completed was a slurry containing iron-nickel crystallization powder.
  • ⁇ Recovery process> The slurry-like reaction liquid obtained in the crystallization step was subjected to filtration washing and solid-liquid separation treatment to recover cake-like iron-nickel crystallization powder. Filtration washing was performed using pure water having a conductivity of 1 ⁇ S / cm until the conductivity of the filtrate filtered from the slurry became 10 ⁇ S / cm or less.
  • the recovered cake-like crystallization powder was dried in a vacuum dryer set at 50 ° C. Then, the dried crystallization powder was cooled to 35 ° C. in a vacuum, and then nitrogen gas containing 1.0% by volume of oxygen was supplied to slowly oxidize the crystallization powder.
  • crystallization powder iron-nickel alloy powder
  • alloy powder alloy powder
  • the obtained crystallization powder was composed of spherical particles having a smooth surface. The particle size distribution was sharp and the average particle size was 0.39 ⁇ m.
  • ⁇ Insulation coating process 50.0 g of the crystallization powder (alkoxide powder) obtained in the above recovery step is placed in a closed polypropylene container, and further, 7.0 g of pure water, ethyl alcohol (C 2 H 5 OH, molecular weight: 46.07, sum). After adding 50.0 g of a reagent manufactured by Kojunyaku Kogyo Co., Ltd. and dispersing the above crystallization powder (alloy powder) in a mixed solvent of water and ethyl alcohol, tetraethoxysilane (also known as orthosilicate) as a silicon alkoxide.
  • tetraethoxysilane also known as orthosilicate
  • Tetraethyl acid, tetraethyl silicate) (abbreviation: TEOS) (Si (OC 2H 5 ) 4 , molecular weight: 208.33, reagent manufactured by Wako Pure Chemical Industries, Ltd.) 9.8 g was added and mixed thoroughly, and further silicon alkoxide was added.
  • 2.4 g of 1% by mass ammonia water as a base catalyst (alkali catalyst) for hydrolysis was added with stirring to obtain a uniform slurry.
  • the 1% by mass ammonia water is a reagent obtained by diluting 28 to 30% by mass ammonia water (NH 3 , molecular weight: 17.03, reagent manufactured by Wako Pure Chemical Industries, Ltd.) with pure water and crystallization.
  • the powder (alloy powder), water, ethyl alcohol, tetraethoxysilane, and 1% by mass aqueous ammonia are all used at room temperature, and addition and mixing are all performed at room
  • the above slurry containing crystallization powder (alloy powder), water, ethyl alcohol, tetraethoxysilane, and ammonia is kept at 40 ° C. for 2 days in a rotating polypropylene airtight container, and the slurry is stirred while tetraethoxy.
  • the surface of the particles of the crystallization powder (alloy powder) contains a hydrolyzed polymer of tetraethoxysilane (silanol group (Si—OH) in a small amount, but almost silicon dioxide (SiO 2 ). ) was formed as the main component of the insulating coat layer.
  • the slurry was subjected to filtration washing and solid-liquid separation treatment to recover cake-like crystallization powder (alloy powder).
  • Filtration washing was first performed using ethanol containing 50% by mass of pure water, and then using ethanol.
  • the hydrolyzate polymer of tetraethoxysilane that remains in the slurry without being consumed by the insulating coat on the particle surface of the crystallization powder (alloy powder) is particles (silica sol) having a very small molecular weight, and is used for filtration and cleaning. Since it is removed as a filtrate at the time, it does not remain in the recovered cake-like crystallization powder (alloy powder).
  • the recovered cake-like crystallization powder (alloy powder) was dried at 50 ° C. in a vacuum dryer, and then heat-treated at 150 ° C. for 2 hours in vacuum.
  • the hydrolyzed polymer of tetraethoxysilane constituting the insulating coat layer is further subjected to dehydration polycondensation to become harder and more dense silicon dioxide (SiO 2 ), which is the insulating coat layer.
  • the insulation is further improved.
  • an iron-nickel alloy powder having an insulating coating layer made of high-resistance silicon dioxide (SiO 2 ) formed on the particle surface was obtained.
  • the obtained alloy powder was composed of spherical particles having a smooth surface.
  • the particle size distribution was sharp, the average particle size was 0.42 ⁇ m, and the thickness of the insulating coat layer was estimated to be about 0.015 ⁇ m (about 15 nm).
  • the powder resistivity (applied pressure: 64 MPa) significantly increased from 0.04 ⁇ ⁇ cm before the insulation coat treatment to over the measurement range (> 107 ⁇ ⁇ cm) due to the insulation coating treatment.
  • Example 13 an iron-nickel alloy powder (iron-nickel-cobalt) containing 80 mol% of iron (Fe), 10 mol% of nickel (Ni) and 10 mol% of cobalt (Co) was according to the procedure shown in FIG. Cobalt powder) was prepared.
  • a metal salt raw material solution at room temperature was added to the reducing solution heated using a water bath and mixed.
  • Example 4 The same raw materials as in Example 4 were prepared as a water-soluble iron salt, a water-soluble nickel salt, a nucleating agent, a complexing agent, a reducing agent, a pH adjuster, and an amine compound.
  • cobalt sulfate heptahydrate (CoSO 4.7H 2 O , molecular weight: 281.103, reagent manufactured by Wako Pure Chemical Industries, Ltd.) was prepared as a water-soluble cobalt salt.
  • reaction start temperature 70 ° C. The temperature of the reaction solution continued to rise by heating with a water bath after the start of the reaction, and was maintained at the liquid temperature of 85 ° C. 10 minutes after the start of the reaction (reaction holding temperature 85 ° C.).
  • the color tone of the reaction solution was dark green immediately after the start of the reaction (preparation of the reaction solution), but changed to dark gray after a few minutes.
  • the color tone immediately after the start of the reaction turned dark green because the reaction proceeded according to the above formula (6), and iron hydroxide (Fe (OH) 2 ), nickel hydroxide (Ni (OH) 2 ), and water.
  • the amine compound solution was added dropwise to the reaction solution over 10 minutes from 3 minutes to 13 minutes after the start of the reaction when the color tone of the reaction solution changed to dark gray, and the reduction reaction proceeded.
  • iron-nickel-cobalt crystallization powder was deposited in the reaction solution.
  • the color tone of the reaction solution at this time was black, but the supernatant solution of the reaction solution became transparent within 40 minutes from the start of the reaction. It is considered that the reduction reaction of the above formula (6) was completed and all of the iron component, nickel component and cobalt component in the reaction solution were reduced to metallic iron, metallic nickel and metallic cobalt.
  • the reaction solution after the reaction was completed was a slurry containing iron-nickel-cobalt crystallization powder.
  • the slurry-like reaction liquid obtained in the crystallization step was subjected to filtration washing and solid-liquid separation treatment to recover cake-like iron-nickel-cobalt crystallization powder.
  • Filtration washing was performed using pure water having a conductivity of 1 ⁇ S / cm until the conductivity of the filtrate filtered from the slurry became 10 ⁇ S / cm or less.
  • the recovered cake-like crystallization powder was dried in a vacuum dryer set at 50 ° C. Then, the dried crystallization powder was cooled to 35 ° C. in a vacuum, and then nitrogen gas containing 1.0% by volume of oxygen was supplied to slowly oxidize the crystallization powder. In this way, an iron-nickel-cobalt alloy powder was obtained.
  • the obtained alloy powder was composed of spherical particles having a smooth surface. The particle size distribution was sharp and the average particle size was 0.42 ⁇ m.
  • Example 14 an iron-nickel alloy powder (iron-nickel-cobalt) containing 70 mol% of iron (Fe), 10 mol% of nickel (Ni) and 20 mol% of cobalt (Co) was according to the procedure shown in FIG. (Alloy powder) was produced.
  • a metal salt raw material solution at room temperature was added to the reducing solution heated using a water bath and mixed.
  • ⁇ Preparation process> The same raw materials as in Example 13 were prepared as a water-soluble iron salt, a water-soluble nickel salt, a water-soluble cobalt salt, a nucleating agent, a complexing agent, a reducing agent, a pH adjuster, and an amine compound.
  • sodium hydroxide 499 g is dissolved in pure water: 1221 mL to prepare a sodium hydroxide solution, and 60% by mass of hydrazine hydrate: 215 g is added to and mixed with this sodium hydroxide solution to prepare a reducing agent solution.
  • a sodium hydroxide solution 60% by mass of hydrazine hydrate: 215 g is added to and mixed with this sodium hydroxide solution to prepare a reducing agent solution.
  • reaction start temperature 67 ° C. The temperature of the reaction solution continued to rise by heating with a water bath after the start of the reaction, and was maintained at the liquid temperature of 85 ° C. 10 minutes after the start of the reaction (reaction holding temperature 85 ° C.).
  • the color tone of the reaction solution was dark green immediately after the start of the reaction (preparation of the reaction solution), but changed to dark gray after a few minutes.
  • the color tone immediately after the start of the reaction turned dark green because the reaction proceeded according to the above formula (6), and iron hydroxide (Fe (OH) 2 ), nickel hydroxide (Ni (OH) 2 ), and water.
  • the amine compound solution was added dropwise to the reaction solution over 10 minutes from 3 minutes to 13 minutes after the start of the reaction when the color tone of the reaction solution changed to dark gray, and the reduction reaction proceeded.
  • iron-nickel-cobalt crystallization powder was deposited in the reaction solution.
  • the color tone of the reaction solution at this time was black, but the supernatant solution of the reaction solution became transparent within 40 minutes from the start of the reaction. It is considered that the reduction reaction of the above formula (6) was completed and all of the iron component, nickel component and cobalt component in the reaction solution were reduced to metallic iron, metallic nickel and metallic cobalt.
  • the reaction solution after the reaction was completed was a slurry containing iron-nickel-cobalt crystallization powder.
  • the slurry-like reaction liquid obtained in the crystallization step was subjected to filtration washing and solid-liquid separation treatment to recover cake-like iron-nickel-cobalt crystallization powder.
  • Filtration washing was performed using pure water having a conductivity of 1 ⁇ S / cm until the conductivity of the filtrate filtered from the slurry became 10 ⁇ S / cm or less.
  • the recovered cake-like crystallization powder was dried in a vacuum dryer set at 50 ° C. Then, the dried crystallization powder was cooled to 35 ° C. in a vacuum, and then nitrogen gas containing 1.0% by volume of oxygen was supplied to slowly oxidize the crystallization powder. In this way, an iron-nickel-cobalt alloy powder was obtained.
  • the obtained alloy powder was composed of spherical particles having a smooth surface. The particle size distribution was sharp and the average particle size was 0.40 ⁇ m.
  • Example 15 an iron-nickel alloy powder (iron-nickel-cobalt) containing 65 mol% of iron (Fe), 10 mol% of nickel (Ni) and 25 mol% of cobalt (Co) was according to the procedure shown in FIG. (Alloy powder) was produced.
  • a metal salt raw material solution at room temperature was added to the reducing solution heated using a water bath and mixed.
  • ⁇ Preparation process> The same raw materials as in Example 13 were prepared as a water-soluble iron salt, a water-soluble nickel salt, a water-soluble cobalt salt, a nucleating agent, a complexing agent, a reducing agent, a pH adjuster, and an amine compound.
  • sodium hydroxide 497 g is dissolved in pure water: 1216 mL to prepare a sodium hydroxide solution, and 60% by mass of hydrazine hydrate: 215 g is added to and mixed with this sodium hydroxide solution to prepare a reducing agent solution.
  • a sodium hydroxide solution 60% by mass of hydrazine hydrate: 215 g is added to and mixed with this sodium hydroxide solution to prepare a reducing agent solution.
  • reaction start temperature 67 ° C. The temperature of the reaction solution continued to rise by heating with a water bath after the start of the reaction, and was maintained at the liquid temperature of 85 ° C. 10 minutes after the start of the reaction (reaction holding temperature 85 ° C.).
  • the color tone of the reaction solution was dark green immediately after the start of the reaction (preparation of the reaction solution), but changed to dark gray after a few minutes.
  • the color tone immediately after the start of the reaction turned dark green because the reaction proceeded according to the above formula (6), and iron hydroxide (Fe (OH) 2 ), nickel hydroxide (Ni (OH) 2 ), and water.
  • the amine compound solution was added dropwise to the reaction solution over 10 minutes from 3 minutes to 13 minutes after the start of the reaction when the color tone of the reaction solution changed to dark gray, and the reduction reaction proceeded.
  • iron-nickel-cobalt crystallization powder was deposited in the reaction solution.
  • the color tone of the reaction solution at this time was black, but the supernatant solution of the reaction solution became transparent within 30 minutes from the start of the reaction. It is considered that the reduction reaction of the above formula (6) was completed and all of the iron component, nickel component and cobalt component in the reaction solution were reduced to metallic iron, metallic nickel and metallic cobalt.
  • the reaction solution after the reaction was completed was a slurry containing iron-nickel-cobalt crystallization powder.
  • the slurry-like reaction liquid obtained in the crystallization step was subjected to filtration washing and solid-liquid separation treatment to recover cake-like iron-nickel-cobalt crystallization powder.
  • Filtration washing was performed using pure water having a conductivity of 1 ⁇ S / cm until the conductivity of the filtrate filtered from the slurry became 10 ⁇ S / cm or less.
  • the recovered cake-like crystallization powder was dried in a vacuum dryer set at 50 ° C. Then, the dried crystallization powder was cooled to 35 ° C. in a vacuum, and then nitrogen gas containing 1.0% by volume of oxygen was supplied to slowly oxidize the crystallization powder. In this way, an iron-nickel-cobalt alloy powder was obtained.
  • the obtained alloy powder was composed of spherical particles having a smooth surface. The particle size distribution was sharp and the average particle size was 0.42 ⁇ m.
  • Comparative Example 1 In Comparative Example 1, palladium (II) chloride ammonium (nucleating agent) was not added when preparing the metal salt raw material solution. Other than that, the reaction solution was prepared and the crystallization powder was precipitated in the same manner as in Example 1, and iron-nickel alloy powder (iron-) containing 50 mol% of iron (Fe) and 50 mol% of nickel (Ni). Nickel alloy powder) was prepared. The concentration of magnetic metals (Fe and Ni) in the reaction solution was 32.3 g / L. The obtained alloy powder was composed of spherical particles, and the surface of these particles was uneven. The particle size distribution was sharp and the average particle size was 0.65 ⁇ m.
  • Comparative Example 2 In Comparative Example 2, trisodium citrate dihydrate (complexing agent) was not added when preparing the metal salt raw material solution. Other than that, the reaction solution was prepared and the crystallization powder was precipitated in the same manner as in Example 1, and iron-nickel alloy powder (iron-) containing 50 mol% of iron (Fe) and 50 mol% of nickel (Ni). Nickel alloy powder) was prepared. The concentration of magnetic metals (Fe and Ni) in the reaction solution was 33.3 g / L. The obtained alloy powder was composed of particles having a distorted shape, and the surface of these particles was uneven. The particle size distribution was broad and the average particle size was 0.26 ⁇ m.
  • Comparative Example 3 In Comparative Example 3, palladium (II) chloride ammonium (nuclear agent) and trisodium citrate dihydrate (complexing agent) were not blended when preparing the metal salt raw material solution. Further, when preparing the reducing agent solution, a large amount of hydrazine (reducing agent) was added. An iron-nickel alloy powder (iron-nickel alloy powder) was produced in the same manner as in Example 1 except for the above. The metal salt raw material solution and the reducing agent solution were prepared as shown below.
  • a metal salt raw material solution containing ferrous chloride tetrahydrate (water-soluble iron salt), nickel chloride hexahydrate (water-soluble nickel salt), and water was prepared. Specifically, 173.60 g of ferrous chloride tetrahydrate and 207.55 g of nickel chloride hexahydrate were dissolved in 1200 mL of pure water to prepare a metal salt raw material solution.
  • sodium hydroxide: 346 g is dissolved in pure water: 850 mL to prepare a sodium hydroxide solution, and 60% by mass of hydrazine hydrate: 2828 g is added to and mixed with this sodium hydroxide solution to prepare a reducing agent solution.
  • the reducing agent solution was used after being heated to a liquid temperature of 37 ° C. so that the reaction starting temperature would be 55 ° C. when the reducing agent solution was added and mixed with the metal salt raw material solution.
  • the obtained alloy powder was composed of spherical particles having a relatively smooth surface.
  • the particle size distribution was broad and the average particle size was 0.22 ⁇ m.
  • Table 1 summarizes the production conditions of the alloy powders of Examples 1 to 15 and Comparative Examples 1 to 3 above.
  • X-ray diffraction (XRD) measurement was performed using an X-ray diffractometer, and the presence or absence of alloy powder formation was confirmed from the obtained XRD data.
  • the amount of oxygen is measured by an inert gas melting method using an oxygen analyzer (manufactured by LECO Corporation, TC436), and the amount of carbon and the amount of sulfur are measured by a combustion method using a carbon sulfur analyzer (manufactured by LECO Corporation, CS600). Measured at.
  • the amount of chlorine was measured using a fluorescent X-ray analyzer (Magix, manufactured by Spectris Co., Ltd.), and the amount of silicon and the amount of sodium were measured using an ICP emission spectrophotometer (5100, manufactured by Agilent Technologies, Inc.).
  • the alloy powder embedded in the resin is thinned to a thickness of about 100 nm using a focused ion beam (FIB) device, and the cross section of the alloy particles is scanned in the processed sample with a scanning transmission electron microscope (STEM; Observed with HD-2300A) manufactured by Hitachi High Technologies. The observation was carried out under the condition of magnification: 100,000 to 200,000 times. Then, the composition distribution in the alloy particles was determined by line analysis using an energy dispersive X-ray spectroscopy (EDS) apparatus. At this time, the composition was calculated from the number of detection counts of the characteristic X-rays (K-rays) of the measurement element.
  • EDS energy dispersive X-ray spectroscopy
  • ⁇ Crystal diameter> The alloy powder was analyzed by the X-ray diffraction (XRD) method, and the crystallite diameter was evaluated from the half-value width of the X-ray diffraction peak on the (111) plane based on the Scherrer equation.
  • the XRD measurement conditions were the same as for the composition analysis.
  • the crystallinity indicates the degree of crystallization, and the larger the crystallinity, the higher the crystallinity.
  • ⁇ Cross powder resistivity> The green compact resistivity of the alloy powder was measured using a powder resistance measuring system (MCP-PD51 manufactured by Mitsubishi Chemical Analytech), and the conductivity (insulation) was evaluated. Specifically, about 4 g of alloy powder is filled in the columnar sample chamber of the device, and a pressure of 64 MPa is applied using the press machine attached to the device, and the powder resistivity (unit: ⁇ ⁇ . cm) was calculated.
  • FIGS. 10 (a) and 10 (b) SEM images of the alloy powders obtained in Examples 1, 2, 10, 13 and 14 are shown in FIGS. 8, 9, 13, 15, and 16, respectively, and the alloy powders obtained in Example 6 are shown.
  • the SEM images of are shown in FIGS. 10 (a) and 10 (b).
  • FIG. 10A is an SEM image of the alloy powder before the spiral jet crushing treatment
  • FIG. 10B is an SEM image of the alloy powder after the spiral jet crushing treatment.
  • STEM images and EDS line analysis results of the particle cross sections of the alloy powders obtained in Examples 8 and 9 are shown in FIGS. 11 (a), 11 (b) and 12, respectively.
  • FIG. 11 (a), 11 (b) and 12 STEM images and EDS line analysis results of the particle cross sections of the alloy powders obtained in Examples 8 and 9 are shown in FIGS. 11 (a), 11 (b) and 12, respectively.
  • FIG. 11 (a), 11 (b) and 12 STEM images and EDS line analysis results of the particle cross sections of the alloy powders obtained in
  • FIGS. 14 (a) shows the STEM image and EDS line analysis result of the particle cross section of the alloy powder before the high temperature heat treatment
  • FIG. 11 (b) shows the STEM image and EDS line analysis of the particle cross section of the alloy powder after the high temperature heat treatment.
  • the SEM images of the alloy powder obtained in Example 12 are shown in FIGS. 14 (a) and 14 (b).
  • FIG. 14A is an SEM image of the alloy powder before the insulation coating treatment
  • FIG. 14B is an SEM image of the alloy powder after the insulation coating treatment.
  • SEM images of the respective alloy powders obtained in Comparative Examples 1 to 3 are shown in FIGS. 17 to 19.
  • Examples 1, 3 and Comparative Examples 1 to 3 are examples in which iron-nickel alloy powder was produced with the reaction start temperature in the crystallization step set to 55 ° C and the reaction holding temperature set to 70 ° C.
  • the obtained alloy powder had an average particle size of 0, even though the amount of hydrazine used as a reducing agent was small. It was as fine as 40 to 0.41 ⁇ m, had a small CV value, and had a sharp particle size distribution. Further, this alloy powder was spherical and had a smooth surface.
  • Comparative Example 1 in which no nucleating agent was used, the obtained alloy powder had a large average particle size of 0.65 ⁇ m as compared with Example 1 and Example 3, and it was difficult to make the alloy powder finer. Although it was spherical, the surface unevenness was large.
  • Comparative Example 2 in which no complexing agent was used, the average particle size of the obtained alloy powder was as fine as 0.26 ⁇ m, but the CV value was large and the particle size distribution was wide. Moreover, the alloy powder had a large surface unevenness and a distorted shape.
  • the obtained alloy powder was a spherical powder having a relatively smooth surface. It is considered that this is because the reduction reaction worked strongly by blending a large amount of hydrazine.
  • the obtained alloy powder had an average particle size of 0.22 ⁇ m, which was fine. However, the CV value was large and the particle size distribution was wide.
  • Example 2 is an example of producing an iron-nickel-cobalt alloy powder using a specific nucleating agent and a complexing agent with a reaction starting temperature of 55 ° C. and a reaction holding temperature of 70 ° C. in the crystallization step.
  • the obtained alloy powder had a fine average particle size of about 0.3 ⁇ m and a sharp particle size distribution.
  • the surface of this alloy powder was smooth and spherical. The saturation magnetization of the alloy powder was high.
  • Example 5 an additional raw material solution containing a water-soluble nickel salt was added and mixed with the reaction solution during crystallization, and 51 mol% of iron (Fe) and 49 mol% of nickel (Ni) having a nickel-rich surface composition were added and mixed.
  • This is an example of producing an iron-nickel alloy powder containing. A dense oxide film is formed due to the nickel-rich surface composition, and the amount of oxidation on the particle surface is suppressed. Therefore, this alloy powder is not only more stable in the atmosphere, but also has excellent magnetic properties such as saturation magnetic flux density.
  • Example 6 is an example in which a crystallization powder as a dry powder obtained through a crystallization step and a recovery step is subjected to a spiral jet crushing treatment to produce a spherical iron-nickel alloy powder having a very smooth surface. .. Further, Example 7 is an example in which a slurry-like crystallization powder in the middle of the recovery process after the crystallization process is subjected to a high-pressure fluid collision crushing treatment to produce a spherical and extremely smooth iron-nickel alloy powder. be. In addition to the smooth surface, these alloy powders also have reduced agglomerated particles. Therefore, the filling property is improved (the powder compact density is increased). Further, by reducing the number of agglomerated particles, improvement of eddy current loss through the particles can be expected.
  • Example 8 the iron (Fe) 65 obtained by subjecting the crystallization powder obtained in the crystallization step to a reaction start temperature of 71 ° C. and a reaction holding temperature of 80 ° C. to a high temperature heat treatment to improve the composition uniformity in the particles.
  • This is an example of producing an iron-nickel alloy powder containing mol% and nickel (Ni) 35 mol%.
  • this alloy powder has a uniform composition (65 mol% of iron and 35 mol% of nickel) in the particles, and is a low thermal expansion material other than the soft magnetic material. It can also be expected to be used as (Invar alloy).
  • Example 9 an additional raw material solution containing a water-soluble nickel salt was added and mixed with the reaction solution during crystallization, and 65 mol% of iron (Fe) and 35 mol% of nickel (Ni) having a nickel-rich surface composition were added and mixed.
  • This is an example of producing an iron-nickel alloy powder containing.
  • a nickel-rich layer having a thickness of about 10 to 15 nm is formed on the particle surface, and a dense oxide film due to this nickel-rich surface composition is formed to suppress the amount of oxidation on the particle surface. Will be done. Therefore, this alloy powder is not only more stable in the atmosphere, but also has excellent magnetic properties such as saturation magnetic flux density.
  • an additional raw material solution containing a water-soluble nickel salt is added and mixed with the reaction solution during crystallization to promote the reduction of iron ions (or iron hydroxide) that are difficult to reduce.
  • the iron content is as large as 80 mol% to 90 mol% and the composition is close to that of pure iron, even if the amount of hydrazine used as a reducing agent is relatively small, reduction failure does not occur and the average particle size is 0.4 to.
  • the saturation magnetization of the alloy powder was as high as that of pure iron powder (1.95T to 2.0T).
  • the powder density of the obtained iron-nickel alloy powder is smaller than that in Examples 1 to 7.
  • the iron-nickel alloy powder of Examples 1 to 7 iron-nickel alloy powder containing 56 to 50 mol% Fe and 44 to 50 mol% Ni, iron-nickel containing 50 mol% Fe, 40 mol% Ni and 10 mol% Co).
  • the iron-nickel alloy powder has a true specific gravity of 8.2 to 8.25, whereas the iron-nickel alloy powders of Examples 8 and 9 (iron-nickel alloy powder containing 65 mol% Fe and 35 mol% Ni)
  • the true specific gravity is 8.1
  • the true specific gravity of the iron-nickel alloy powder of Example 10 iron-nickel alloy powder containing 80 mol% Fe and 20 mol% Ni
  • the iron-nickel alloy of Example 11 The true specific gravity of the powder (iron-nickel alloy powder containing 90 mol% Fe and 10 mol% Ni) is 7.9, and the true specific gravity of the iron-nickel alloy powder decreases as the iron content increases.
  • the green compact density according to each example is good.
  • Example 12 iron-nickel obtained by subjecting the crystallization powder as a dry powder obtained through the crystallization step and the recovery step to an insulating coating treatment and coating the particle surface with high-resistance silicon dioxide (SiO 2 ).
  • This is an example of producing a system alloy powder. Since this alloy powder has significantly improved insulating properties between particles (resistivity of green compacts has greatly increased), improvement of eddy current loss between particles can be expected.
  • a water-soluble cobalt salt is contained in addition to a water-soluble iron salt and a water-soluble nickel salt in a magnetic metal source to promote the reduction of iron ions (or iron hydroxide) that are difficult to reduce, and cobalt.
  • This is an example of producing an iron-nickel alloy powder having a high content ratio of 10 mol% to 25 mol% and a large iron content ratio of 65 mol% to 80 mol%.
  • the iron content is as large as 65 mol% to 80 mol%, the spherical alloy powder does not cause reduction failure even when the amount of hydrazine used as a reducing agent is very small due to the effect of promoting the reduction reaction by adding cobalt. Obtained.
  • the alloy powder had a fine average particle size of about 0.4 ⁇ m, a sharp particle size distribution, and a smooth surface.
  • the saturation magnetization of the alloy powder was as high as or higher than that of pure iron powder (1.95T to 2.0T).
  • the true specific gravity of the iron-nickel alloy powder (iron-nickel-cobalt alloy powder) obtained in Examples 13 to 15 is estimated to be about 8.0 to 8.1, but the powder density in each case is estimated to be about 8.0 to 8.1. Was large and good. It is considered that this is because the reduction reaction was completed before the aggregation of the particles proceeded due to the reduction reaction promoting effect of the addition of cobalt, and as a result, the aggregation of the particles during crystallization was suppressed. It is also considered that the promotion of spheroidization, which is another action of the addition of cobalt, improves the filling property of the particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

粉体特性及び磁気特性に優れる鉄-ニッケル系合金粉の製造方法が提供される。この方法は、少なくとも鉄(Fe)及びニッケル(Ni)を磁性金属として含む鉄(Fe)-ニッケル(Ni)系合金粉の製造方法である。またこの方法は以下の工程;磁性金属源、核剤、錯化剤、還元剤、及びpH調整剤を出発原料として準備する準備工程、前記出発原料と水とを含む反応液を調製し、前記反応液中で、前記磁性金属を含む晶析粉を還元反応により晶析させる晶析工程、及び前記反応液から前記晶析粉を回収する回収工程、を備える。前記磁性金属源は、水溶性鉄塩及び水溶性ニッケル塩を含み、前記核剤は、ニッケルよりも貴な金属の水溶性塩であり、前記錯化剤は、ヒドロキシカルボン酸、ヒドロキシカルボン酸の塩、及びヒドロキシカルボン酸の誘導体からなる群から選択される少なくとも一種である。前記還元剤は、ヒドラジン(N2H4)であり、前記pH調整剤は、水酸化アルカリである。

Description

鉄(Fe)-ニッケル(Ni)系合金粉の製造方法
 本発明は、鉄(Fe)-ニッケル(Ni)系合金粉の製造方法に関する。
 パーマロイとして知られる鉄-ニッケル系合金は、高い透磁率を有する軟磁性材料であり、チョークコイルやインダクタなどの磁性部品の磁芯に用いられる。特に鉄-ニッケル系合金粉は、これを圧縮成形して得られる磁芯用圧粉コア(圧粉磁芯)の材料として利用されている。
 パーマロイには、78パーマロイ(パーマロイA)や45パーマロイといった種々のものが知られており、その磁気特性や用途に応じて、使い分けられている。78パーマロイは、ニッケル含有量が約78.5質量%の鉄-ニッケル合金であり、透磁率が高いという特徴がある。45パーマロイは、ニッケル含有量が45質量%の鉄-ニッケル合金であり、透磁率がやや低いものの、飽和磁束密度が高いという特徴がある。
 近年、ノートパソコンやスマートフォンなどのモバイル機器の小型化・高性能化が急速に進んでいる。また、これに伴い、インダクタなどの磁性部品には、磁気特性向上に加えて高周波化への対応が求められている。そしてそのためには、圧粉コアの材料には、磁束密度が高いとともに、損失の低減が求めれている。損失には、主としてヒステリシス損失と渦電流損失がある。ヒステリシス損失を抑えるためには、合金粉の保磁力を低くすることが有効である。一方で渦電流損失を抑えるためには、合金粉の粒子表面に薄い絶縁コーティングを施し、それにより粒子間の渦電流を低減することや、合金粉を微細にするとともに、粒度分布を小さくすることが有効である。粗大な粒子が存在すると、その中で渦電流が流れやすくなりジュール熱による損失が発生するからである。
 微細な合金粉を作製する手法として、アトマイズ法、気相還元法及び乾式還元法などの乾式法が従来から知られている。アトマイズ法は、金属溶湯に水又はガスを吹き付けて、溶湯を急冷凝固させる手法である。気相還元法は、気相状態の金属ハロゲン化物を水素還元する手法である。乾式還元法は、還元剤を用いて金属酸化物を還元する手法である。
 例えば特許文献1には、ノイズフィルタ、チョークコイル、インダクタなどの素材として用いるNi-Fe系合金粉末に関して、気相還元法により製造する旨が記載されている(特許文献1の[0001]及び[0014])。また特許文献1には、NiClとFeClの混合物を加熱し、蒸気化した塩化物と水素ガスとを接触させて還元反応を起こさせて、Ni-Fe合金の微粉末を作製する旨が開示されている(特許文献1の[0016])。また特許文献2には、チョークコイルやインダクタ等の電子部品の材料として用いられるFe-Ni系合金粉末に関して、FeとNiの酸化物を還元性ガス中で還元して作製する旨が記載されている(特許文献2の請求項1)。
 一方で、湿式法を用いて、より微細な合金粉を作製することが提案されている。例えば、特許文献3には、ニッケル塩と鉄塩を含む水溶液に、ヒドラジンなどの還元剤を添加して、水溶液に含まれるニッケルイオンおよび鉄イオンを同時に還元することにより、ニッケル-鉄合金ナノ粒子を生成することを特徴とするニッケル-鉄合金ナノ粒子の製造方法が開示されている(特許文献3の請求項1~6)。またこの製造方法によれば、磁気特性を付与するためのフィラーとして好適な、平均一次粒子が200nm以下のニッケル-鉄合金ナノ粒子を、工業的規模にて低製造コストで、効率的に製造することができるとされている(特許文献3の[0015])。
特開2003-193160号公報 特開2012-197474号公報 特開2008-024961号公報
 このように乾式法や湿式法で微細な合金粉を作製することが提案されるものの、従来の技術には、粉体特性に優れた合金粉を得る上で改良の余地があった。例えば、アトマイズ法で製造した合金粉は、その平均粒径が数μm以上と大きく、微細化の要求に十分に応えていない。また特許文献1で提案される気相還元法では、得られる合金粉の粒度分布が広い。そのため合金粉は、粗大粒子を含んでおり、渦電流損失低減を図る上で不十分である。また合金粉末の組成や粒径が安定しないという問題もある。特許文献2で提案される乾式還元法は、高温加熱を必要とするため、得られる合金粉が焼結して粗大な凝集粒子を形成しやすいという問題がある。
 特許文献3で提案される湿式法は、乾式法とは異なり低温で還元反応が進むため、粗大な凝集粒子が生成しにくいという利点がある。また凝集粒子が形成されたとしても、粒子同士の結合は強固でないため、凝集粒子を解砕することが容易である。しかしながら特許文献3で提案される手法では、還元剤として多量のヒドラジンを用いる必要がある。そのため還元剤コストが大幅に増加して実用的でない。また得られる合金粉末の粒度分布が十分に小さいとは言えなかった。
 本発明者らは、このような従来の問題点に鑑みて鋭意検討を行った。その結果、湿式法で鉄-ニッケル系合金粉を製造するにあたり、特定の核剤と錯化剤を用いることで、粉体特性及び磁気特性に優れる合金粉を得ることができるとの知見を得た。また、鉄含有割合が大きい場合に、所定の含有割合のコバルトを加えると、コバルトの還元反応促進作用と球状化促進作用により、非常に少ない還元剤使用量で、凝集が少なく表面平滑で飽和磁束密度の大きい球状の合金粉を得ることができるという知見も得た。
 本発明は、このような知見に基づき完成されたものであり、粉体特性及び磁気特性に優れる鉄-ニッケル系合金粉の製造方法の提供を目的とする。
 本発明は、下記(1)~(32)の態様を包含する。なお本明細書において「~」なる表現は、その両端の数値を含む。すなわち「X~Y」は「X以上Y以下」と同義である。
(1)少なくとも鉄(Fe)及びニッケル(Ni)を磁性金属として含む鉄(Fe)-ニッケル(Ni)系合金粉の製造方法であって、前記方法が以下の工程;
 磁性金属源、核剤、錯化剤、還元剤、及びpH調整剤を出発原料として準備する準備工程、
 前記出発原料と水を含む反応液を調製し、前記反応液中で、前記磁性金属を含む晶析粉を還元反応により晶析させる晶析工程、及び
 前記反応液から前記晶析粉を回収する回収工程、を備え、
 前記磁性金属源は、水溶性鉄塩及び水溶性ニッケル塩を含み、
 前記核剤は、ニッケルよりも貴な金属の水溶性塩であり、
 前記錯化剤は、ヒドロキシカルボン酸、ヒドロキシカルボン酸の塩、及びヒドロキシカルボン酸の誘導体からなる群から選択される少なくとも一種であり、
 前記還元剤は、ヒドラジン(N)であり、
 前記pH調整剤は、水酸化アルカリである、方法。
(2)前記水溶性鉄塩は、塩化第一鉄(FeCl)、硫酸第一鉄(FeSO)、及び硝酸第一鉄(Fe(NO)からなる群から選ばれる少なくとも一種である、上記(1)の方法。
(3)前記水溶性ニッケル塩は、塩化ニッケル(NiCl)、硫酸ニッケル(NiSO)、及び硝酸ニッケル(Ni(NO)からなる群から選ばれる少なくとも一種である、上記(1)又は(2)の方法。
(4)前記核剤は、銅塩、パラジウム塩、及び白金塩からなる群から選ばれる少なくとも一種である、上記(1)~(3)のいずれかの方法。
(5)前記錯化剤は、酒石酸((CH(OH)COOH))及びクエン酸(C(OH)(CHCOOH)COOH)から選ばれる少なくとも一種のヒドロキシカルボン酸である、上記(1)~(4)のいずれかの方法。
(6)前記pH調整剤は、水酸化ナトリウム(NaOH)及び水酸化カリウム(KOH)から選ばれる少なくとも一種である、上記(1)~(5)のいずれかの方法。
(7)前記磁性金属がコバルト(Co)をさらに含み、
 前記磁性金属源が水溶性コバルト塩をさらに含む、上記(1)~(6)のいずれかの方法。
(8)前記磁性金属において、鉄(Fe)の含有割合が60モル%以上85モル%以下で、かつ、コバルト(Co)の含有割合が10モル%以上30モル%以下であり、
 前記磁性金属源において、水溶性鉄塩の含有割合が60モル%以上85モル%以下で、かつ、水溶性コバルト塩の含有割合が10モル%以上30モル%以下である、上記(7)の方法。
(9)前記水溶性コバルト塩は、塩化コバルト(CoCl)、硫酸コバルト(CoSO)、及び硝酸コバルト(Co(NO)からなる群から選ばれる少なくとも一種である、上記(7)又は(8)の方法。
(10)前記出発原料は、2個以上の第1級アミノ基(-NH)、1個の第1級アミノ基(-NH)及び1個以上の第2級アミノ基(-NH-)、又は2個以上の第2級アミノ基(-NH-)を分子内に含有するアミン化合物をさらに含む、上記(1)~(9)のいずれかの方法。
(11)前記アミン化合物は、アルキレンアミン及びアルキレンアミン誘導体の少なくとも一種である、上記(10)の方法。
(12)前記アルキレンアミン及び/又はアルキレンアミン誘導体は、分子内のアミノ基の窒素原子が炭素数2の炭素鎖を介して結合した、下記(A)で表される構造を少なくとも有する、上記(11)の方法。
Figure JPOXMLDOC01-appb-C000002
(13)前記アミン化合物は、エチレンジアミン(HNCNH)、ジエチレントリアミン(HNCNHCNH)、トリエチレンテトラミン(HN(CNH)NH)、テトラエチレンペンタミン(HN(CNH)NH)、ペンタエチレンヘキサミン(HN(CNH)NH)、及びプロピレンジアミン(CHCH(NH)CHNH)からなる群から選ばれる少なくとも一種のアルキレンアミン、及び/又はトリス(2-アミノエチル)アミン(N(CNH)、N-(2-アミノエチル)エタノールアミン(HNCNHCOH)、N-(2-アミノエチル)プロパノールアミン(HNCNHCOH)、2,3-ジアミノプロピオン酸(HNCHCH(NH)COOH)、エチレンジアミン-N,N’-二酢酸(HOOCCHNHCNHCHCOOH)、及び1,2-シクロヘキサンジアミン(HNCH10NH)からなる群から選ばれる少なくとも一種のアルキレンアミン誘導体である、上記(10)~(12)のいずれかの方法。
(14)前記磁性金属の合計量に対するアミン化合物の配合量は0.01モル%以上5.00モル%以下である、上記(10)~(13)のいずれかの方法。
(15)前記晶析工程で反応液を調製する際、前記磁性金属源、前記核剤、及び前記錯化剤を水に溶解させた金属塩原料溶液と、前記還元剤を水に溶解させた還元剤溶液と、前記pH調整剤を水に溶解させたpH調整溶液と、をそれぞれ用意し、前記金属塩原料溶液と前記pH調整溶液を混合して混合溶液とし、前記混合溶液と前記還元剤溶液を混合する、上記(1)~(14)のいずれかの方法。
(16)前記反応液を調製する際、前記pH調整溶液及び前記還元剤溶液を前記金属塩原料溶液に順次添加して混合する、上記(15)の方法。
(17)前記混合溶液と前記還元剤溶液の混合に要する時間を1秒以上180秒以下にする、上記(15)又は(16)の方法。
(18)前記晶析工程で反応液を調製する際、前記磁性金属源、前記核剤、及び前記錯化剤を水に溶解させた金属塩原料溶液と、前記還元剤及び前記pH調整剤を水に溶解させた還元剤溶液と、をそれぞれ用意し、前記金属塩原料溶液と前記還元剤溶液を混合する、上記(1)~(14)のいずれかの方法。
(19)前記反応液を調製する際、前記金属塩原料溶液に前記還元剤溶液を添加する、あるいは逆に、前記還元剤溶液に前記金属塩原料溶液を添加して混合する、上記(18)の方法。
(20)前記金属塩原料溶液と前記還元剤溶液の混合に要する時間を1秒以上180秒以下にする、上記(18)又は(19)の方法。
(21)前記晶析工程において、還元反応が終了する前に、前記水溶性ニッケル塩と前記水溶性コバルト塩の少なくともいずれかを水に溶解させた追加原料液を前記反応液にさらに添加して混合する、上記(1)~(20)のいずれかの方法。
(22)前記金属塩原料溶液、前記還元剤溶液、前記pH調整溶液、及び反応溶液の少なくとも一つにアミン化合物を配合する、上記(15)~(21)のいずれかの方法。
(23)晶析粉の晶析開始時の反応液の温度(反応開始温度)が40℃以上90℃以下であり、且つ晶析開始後の晶析中に保持される反応液の温度(反応保持温度)が60℃以上99℃以である、上記(1)~(22)のいずれかの方法。
(24)回収工程後の晶析粉または回収工程途中の晶析粉に対して衝突エネルギーを用いた解砕処理を施して、晶析粉に含まれる凝集粒子を解砕する解砕工程をさらに備える、上記(1)~(23)のいずれかの方法。
(25)回収工程後の晶析粉の解砕処理を乾式解砕または湿式解砕で行う、あるいは回収工程途中の晶析粉の解砕を湿式解砕で行う、上記(24)の方法。
(26)前記乾式解砕がスパイラルジェット解砕である、上記(25)の方法。
(27)前記湿式解砕が高圧流体衝突解砕である、上記(25)の方法。
(28)回収工程後の晶析粉または回収工程途中の晶析粉に対して、不活性雰囲気、還元性雰囲気、または真空雰囲気中で150℃超400℃以下での加熱処理を施し、それにより鉄(Fe)-ニッケル(Ni)系合金粉の粒子内の組成均一性を向上させる高温熱処理工程をさらに備える、上記(1)~(27)のいずれかの方法。
(29)回収工程を経て得られた晶析粉に絶縁コート処理を施して晶析粉の粒子表面に金属酸化物からなる絶縁コート層を形成し、それにより粒子間の絶縁性を向上させる絶縁コート工程をさらに備える、上記(1)~(28)のいずれかの方法。
(30)前記絶縁コート工程の際、水と有機溶剤を含む混合溶媒に晶析粉を分散し、さらに金属アルコキシドを前記混合溶媒に添加及び混合してスラリーを調製し、前記スラリー中で金属アルコキシドを加水分解及び脱水縮重合させて晶析粉の粒子表面に金属酸化物からなる絶縁コート層を形成し、その後、絶縁コート層が形成された晶析粉を前記スラリーから回収する、上記(29)の方法。
(31)前記金属アルコキシドはシリコンアルコキシド(アルキルシリケート)を主成分とし、前記金属酸化物は二酸化けい素(SiO)を主成分とする、上記(30)の方法。
(32)前記金属アルコキシドの加水分解を塩基触媒(アルカリ触媒)の共存下で行う、上記(30)又は(31)の方法。
 本発明によれば、粉体特性及び磁気特性に優れる鉄-ニッケル系合金粉の製造方法が提供される。
本実施形態の合金粉の製造方法の説明に供するプロセス図である。 第1の態様における反応液調製及び合金粉製造の説明に供するプロセス図である。 第1の態様における反応液調製及び合金粉製造の説明に供するプロセス図である。 第2の態様における反応液調製及び合金粉製造の説明に供するプロセス図である。 第2の態様における反応液調製及び合金粉製造の説明に供するプロセス図である。 第3の態様における反応液調製及び合金粉製造の説明に供するプロセス図である。 実施例1の晶析工程における反応槽内の液温推移を示す図である。 実施例1で得られた合金粉のSEM像である。 実施例2で得られた合金粉のSEM像である。 実施例6で得られた合金粉(スパイラルジェット解砕処理前後)のSEM像である。 実施例8で得られた合金粉(高温熱処理前後)のSTEM像、及びEDS線分析結果である。 実施例9で得られた合金粉の粒子断面のSTEM像、及びEDS線分析結果である。 実施例10で得られた合金粉のSEM像である。 実施例12で得られた合金粉(絶縁コート処理前後)のSEM像である。 実施例13で得られた合金粉のSEM像である。 実施例14で得られた合金粉のSEM像である。 比較例1で得られた合金粉のSEM像である。 比較例2で得られた合金粉のSEM像である。 比較例3で得られた合金粉のSEM像である。
 本発明の具体的な実施形態(以下、「本実施形態」という)について説明する。なお本発明は以下の実施形態に限定されるものでなく、本発明の要旨を変更しない範囲において種々の変更が可能である。
<<1.鉄-ニッケル系合金粉の製造方法>>
 本実施形態の鉄(Fe)-ニッケル(Ni)系合金粉の製造方法は、以下の工程;磁性金属源、核剤、錯化剤、還元剤、及びpH調整剤を含む出発原料を準備する準備工程、この出発原料と水とを含む反応液を調製し、この反応液中で、前記磁性金属を含む晶析粉を還元反応により晶析させる晶析工程、及び得られた反応液から晶析粉を回収する回収工程、を備える。ここで鉄(Fe)-ニッケル(Ni)系合金粉は少なくとも鉄(Fe)及びニッケル(Ni)を磁性金属として含む。また磁性金属源は水溶性鉄塩及び水溶性ニッケル塩を含む。核剤はニッケルよりも貴な金属の水溶性塩である。錯化剤はヒドロキシカルボン酸、ヒドロキシカルボン酸の塩、及びヒドロキシカルボン酸の誘導体からなる群から選択される少なくとも一種である。還元剤はヒドラジン(N)である。
 本実施形態の鉄(Fe)-ニッケル(Ni)系合金粉(以下、単に「合金粉」と称する場合がある)は、少なくとも鉄(Fe)及びニッケル(Ni)を含む。また合金粉は、必要に応じてコバルト(Co)を含んでもよい。すなわち合金粉は、鉄及びニッケルのみを含む鉄-ニッケル合金粉であってもよく、あるいは鉄、ニッケル及びコバルトを含む鉄-ニッケル-コバルト合金粉であってもよい。鉄、ニッケル及びコバルトは、いずれも強磁性を示す磁性金属である。そのため鉄-ニッケル合金粉や鉄-ニッケル-コバルト合金粉は飽和磁束密度が高く、磁気特性に優れている。なお本明細書において磁性金属は鉄、ニッケル及びコバルトの総称である。すなわち合金がコバルトを含まない場合には、磁性金属は鉄とニッケルの総称であり、合金がコバルトを含む場合には、鉄、ニッケル及びコバルトの総称である。
 本実施形態の合金粉に含まれる鉄(Fe)、ニッケル(Ni)及びコバルト(Co)の割合は特に限定されない。鉄量は10モル%以上95モル%以下であってよく、25モル%以上90モル%以下であってよく、40モル%以上80モル%以下であってよい。またニッケル量は5モル%以上90モル%以下であってよく、10モル%以上75モル%以下であってよく、20モル%以上60モル%以下であってよい。コバルト量は、0モル%以上40モル%以下であってよく、5モル%以上20モル%以下であってよい。ただし、鉄、ニッケル及びコバルトの合計量は100モル%以下である。
 本実施形態の合金粉は、磁性金属(Fe、Ni及びCo)以外の他の添加成分の含有を排除しない。このような添加成分として、銅(Cu)及び/又はホウ素(B)などが挙げられる。しかしながら、磁性金属に基づく効果を最大限に活用する上で、磁性金属以外の添加成分の含有量は、少ないほど好ましい。磁性金属以外の他の成分の含有量は10質量%以下であってよく、5質量%以下であってよく、1質量%以下であってよく、0質量%であってもよい。また合金粉には、製造工程中に不可避的に混入する不純物(不可避不純物)が含まれる場合がある。このような不可避不純物として、酸素(O)、炭素(C)、塩素(Cl)、アルカリ成分(Na、K等)が挙げられる。不可避不純物は合金粉の特性劣化をもたらす恐れがあるため、その量を極力抑えることが好ましい。不可避不純物量は、合金粉表面に必ず形成される酸化被膜に含まれる酸素(O)では、5質量%以下が好ましく、3質量%以下がより好ましい。一方で、炭素(C)、塩素(Cl)、アルカリ成分(Na、K等)は、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.1質量%以下がさらに好ましい。合金粉は、磁性金属を含み、残部不可避不純物からなる組成を有してもよい。
 本実施形態の合金粉の製造方法は、少なくとも準備工程、晶析工程、及び回収工程を備える。また必要に応じて、回収工程後や回収工程の途中に解砕工程、高温熱処理工程を備えたり、あるいは回収工程後に絶縁コート工程を設けたりしてもよい。図1に、本実施形態の製造方法におけるプロセスの一例を概略的に示す。図1では、解砕処理や高温熱処理や絶縁コート処理が示されているが、これらの処理は必要に応じて設ければよく、必須の処理ではない。また、解砕処理、高温熱処理、及び/又は絶縁コート処理を行う場合には、これらの処理を実施する順番について特に制約はない。しいて言えば、解砕処理を高温熱処理後に行うことが好ましい。高温熱処理で強化した合金粒子同士の連結(結合)を低減または解消できるためである。また解砕処理を絶縁コート前に行なうことが好ましい。連結が低減または解消された合金粒子のそれぞれの表面全体に均一に絶縁コートできるからである。これに対して、合金粒子が連結した状態だと連結部には絶縁コート層が形成されない。したがって、絶縁コート処理の前にできるだけ連結を低減または解消しておく方が好ましい。各工程の詳細について、以下に説明する。
 <準備工程>
 準備工程では、磁性金属源、核剤、錯化剤、還元剤、及びpH調整剤を出発原料として準備する。磁性金属源は鉄とニッケルの原料であるが、必要に応じてコバルト原料を含んでもよい。また出発原料にアミン化合物が含まれてもよい。各原料について、以下に説明する。
(a)磁性金属源
 磁性金属源は磁性金属の原料であり、少なくとも水溶性鉄塩及び水溶性ニッケル塩を含む。鉄塩は、合金粉に含まれる鉄成分の原料(鉄源)であり、易水溶性の鉄塩である限り、特に限定されない。鉄塩として、2価及び/又は3価の鉄イオンを含む塩化鉄、硫酸鉄、硝酸鉄、又はこれらの混合物が挙げられる。水溶性鉄塩は、好適には塩化第一鉄(FeCl)、硫酸第一鉄(FeSO)、及び硝酸第一鉄(Fe(NO)からなる群から選ばれる少なくとも一種である。ニッケル塩は、合金粉に含まれるニッケル成分の原料(ニッケル源)であり、易水溶性のニッケル塩である限り、特に限定されない。水溶性ニッケル塩は、好適には塩化ニッケル(NiCl)、硫酸ニッケル(NiSO)、及び硝酸ニッケル(Ni(NO)からなる群から選ばれる少なくとも一種である、特に好適には塩化ニッケル(NiCl)、及び硫酸ニッケル(NiSO)からなる群から選ばれる少なくとも一種である。
 必要に応じて、磁性金属がコバルト(Co)をさらに含み、磁性金属源が水溶性コバルト塩をさらに含む態様にしてもよい。これにより鉄-ニッケル-コバルト合金粉の製造が可能になる。鉄やニッケルの一部をコバルトで置換した鉄-ニッケル-コバルト合金粉は、特に飽和磁束密度が高いという特徴を有している。
 水溶性コバルト塩は、合金粉の晶析時において還元反応を促進する作用(還元促進作用)を有し、特に、磁性金属中の鉄(Fe)の含有割合が60モル%以上と大きい場合に、この還元促進作用がより顕著になる。さらに、水溶性コバルト塩は、合金粉を表面が平滑な球状粒子にする作用(球状化促進作用)も有している。したがって、磁性金属源において、水溶性鉄塩の含有割合を60モル%以上85モル%以下とし、水溶性コバルト塩の含有割合を10モル%以上30モル%以下とすれば、還元剤としてのヒドラジン使用量を非常に少なくしても、飽和磁束密度が極めて大きく(例えば2T(テスラ)以上)、表面が平滑で球状の鉄-ニッケル-コバルト合金粉を得ることができる。この合金粉は、例えば、鉄の含有割合が60モル%以上85モル%以下で、コバルトの含有割合が10モル%以上30モル%以下である。
水溶性コバルト塩は、易水溶性のコバルト塩である限り、特に限定されない。水溶性コバルト塩は、好適には塩化コバルト(CoCl)、硫酸コバルト(CoSO)、及び硝酸コバルト(Co(NO)からなる群から選ばれる少なくとも一種であり、特に好適には塩化コバルト(CoCl)、及び硫酸コバルト(CoSO)からなる群から選ばれる少なくとも一種である。
(b)核剤
 核剤はニッケルよりも貴な金属の水溶性塩である。この核剤(ニッケルよりも貴な金属の水溶性塩)は、後続する晶析工程で反応液中において優先的に還元されて初期核を生成し、その初期核が晶析粉の析出を促す作用がある。ここでニッケルよりも貴な金属とは、水溶液中で、標準電位系列における電位がニッケルよりも高い金属のことである。またニッケルよりも貴な金属は、ニッケルよりもイオン化傾向が小さい金属ということもできる。このような金属として、スズ(Sn)、鉛(Pb)、アンチモン(Sb)、ビスマス(Bi)、銅(Cu)、銀(Ag)、パラジウム(Pd)、イリジウム(Ir)、白金(Pt)、及び金(Au)が挙げられる。
 核剤としてニッケルよりも貴な金属の水溶性塩を用いることで、後続する晶析工程で、晶析粉の反応液中での形成を制御することができる。例えば、核剤添加量を増やせば微細な晶析粉を得ることができる。すなわち晶析工程では、反応液に含まれる磁性金属のイオンや錯イオンが還元されて析出して、晶析粉が形成される。磁性金属のなかでニッケルは鉄やコバルトより貴な性質を有しており、イオン化傾向が小さい。そのため、ニッケルよりも貴な金属の水溶性塩(核剤)が反応液に含まれていると、全ての磁性金属に先立ち、ニッケルよりも貴な金属が還元析出する。析出したニッケルよりも貴な金属は初期核として働き、この初期核が粒成長して磁性金属からなる晶析粉を形成するため、初期核数を決める核剤添加量によって晶析粉の粒径制御が可能になる。
 核剤は、ニッケルよりも貴な金属の水溶性塩である限り、特に限定されない。しかしながら、核剤は、好適には銅塩、パラジウム塩、及び白金塩からなる群から選ばれる少なくとも一種である。銅(Cu)、パラジウム(Pd)及び白金(Pt)は、特に貴な性質が強く、イオン化傾向が小さい。そのため核剤としての効果に特に優れている。水溶性銅塩として、限定されるものではないが、硫酸銅が挙げられる。また水溶性のパラジウム塩として、限定されるものではないが、塩化パラジウム(II)ナトリウム、塩化パラジウム(II)アンモニウム、硝酸パラジウム(II)、硫酸パラジウム(II)などが挙げられる。核剤は、特に好適にはパラジウム塩である。パラジウム塩を用いると、晶析粉(合金粉)の粒径をより一層微細に制御することが可能になる。
 核剤の配合量は、最終的に得られる合金粉の粒径が所望の値になるように調製すればよい。例えば、磁性金属の合計量に対する核剤の配合量は、0.001モルppm以上5.0モルppm以下であってよく、0.005モルppm以上2.0モルppm以下であってもよい。核剤の配合量をこの範囲内に設定することで、平均粒径0.2μm以上0.6μm以下の合金粉を得ることができる。しかしながら核剤の配合量は上述した範囲内に限定される訳ではない。例えば、平均粒径0.2μm未満の微細な合金粉を作製する場合には、核剤の配合量を5.0モルppm超に設定すればよい。
(c)錯化剤
 錯化剤は、ヒドロキシカルボン酸、ヒドロキシカルボン酸の塩、及びヒドロキシカルボン酸の誘導体からなる群から選択される少なくとも一種である。この錯化剤(ヒドロキシカルボン酸等)は、後続する晶析工程で反応の均一化を図る作用がある。すなわち磁性金属成分は反応液中では磁性金属イオン(Fe2+、Ni2+等)として溶解しているが、pH調整剤(NaOH等)により反応液が強アルカリ性となるため、反応液中で溶解する磁性金属イオン量は極めて微量である。ところが錯化剤が存在すると、磁性金属成分は、錯イオン(Fe錯イオン、Ni錯イオン等)として多く溶解できるようになる。このような錯イオンの存在により、還元反応速度が大きくなるとともに、磁性金属成分の局所的偏在が抑制され、反応系の均一化が可能になる。また錯化剤は、反応液中での複数の磁性金属イオンの錯安定性バランスを変化させる作用がある。そのため、錯化剤が存在すると、磁性金属の還元反応が変化し、核生成速度と粒成長速度のバランスが変化する。本実施形態で特定される錯化剤(ヒドロキシカルボン酸等)を用いることで、上述した作用が複合的に働くとともに、反応が好ましい方向に進み、その結果、得られる合金粉の粉体特性(粒子径、粒度分布、球状性、粒子の表面性状)が向上する。また粉体特性が向上した合金粉は、充填性に優れており、圧粉コア用原料として好適である。この点、本実施形態の錯化剤(ヒドロキシカルボン酸等)は、還元反応促進剤、球状化促進剤、及び表面平滑剤としての機能を有するということができる。好適な錯化剤は、酒石酸((CH(OH)COOH))及びクエン酸(C(OH)(CHCOOH)COOH)から選ばれる少なくとも一種のヒドロキシカルボン酸を含む。
 磁性金属の合計量に対する錯化剤の配合量は、5モル%以上100モル%以下が好ましく、10モル%以上75モル%以下がより好ましく、15モル%以上50モル%以下がさらに好ましい。配合量が5モル%以上であると、還元反応促進剤、球状化促進剤、及び表面平滑剤としての機能が十分に発揮されるため、合金粉の粉体特性(粒子径、粒度分布、球状性、粒子の表面性状)がより一層優れたものになる。また配合量が100モル%以下であると、錯化剤としての機能発現の度合いに大きな違いを生じることなく、錯化剤の使用量を抑えることができるため、製造コスト低減につながる。
(d)還元剤
 還元剤は、ヒドラジン(N、分子量:32.05)である。この還元剤(ヒドラジン)は、後続する晶析工程で、反応液中の磁性金属のイオン及び錯イオンを還元する作用がある。ヒドラジンは、還元力が強いとともに、還元反応に伴う副生成物が反応液中に生成しないという利点がある。また不純物の少ない高純度のヒドラジンを入手することは容易である。
 ヒドラジンには、無水のヒドラジンの他に、ヒドラジン水和物である抱水ヒドラジン(N・HO、分子量:50.06)が知られている。いずれを用いてもよい。抱水ヒドラジンとして、例えば、市販されている工業グレードの60質量%抱水ヒドラジンを用いることができる。
 還元剤の配合量は、鉄(Fe)-ニッケル(Ni)系合金粉の組成に大きく依存し、還元されにくい鉄の含有割合が大きいほど多く必要になる。また、合金粉の組成以外にも、反応液の温度、あるいは錯化剤やpH調整剤の配合量などにも影響される。例えば、鉄-ニッケル合金粉において鉄含有量が60モル%以下の場合には、磁性金属の合計量に対する還元剤の配合量は、モル比で1.8以上7.0以下が好ましく、2.0以上6.0以下がより好ましく、2.5以上5.0以下がさらに好ましい。鉄-ニッケル合金粉の鉄含有量が60モル%を超えて75モル%以下の場合であれば、磁性金属の合計量に対する還元剤の配合量は、モル比で2.5以上9.0以下が好ましく、3.5以上8.0以下がより好ましい。鉄-ニッケル合金粉の鉄含有量が75モル%を超えて95モル%以下の場合であれば、磁性金属の合計量に対する還元剤の配合量は、モル比で3.5以上10.0以下が好ましく、4.5以上9.0以下がより好ましい。一方で、鉄-ニッケル-コバルト合金粉を製造する場合には、先述した水溶性コバルト塩の作用により、鉄-ニッケル合金粉に比べて還元剤の配合量を大幅に低減できる。特に鉄含有割合が大きい合金粉の製造では水溶性コバルト塩の作用は顕著である。例えば、鉄の含有割合が60モル%以上85モル%以下で、コバルト(Co)の含有割合が10モル%以上30モル%以下の組成の合金粉を製造する場合には、磁性金属の合計量に対する還元剤の配合量は、モル比で1.0以上4.0以下が好ましく、1.2以上2.0以下がより好ましい。
いずれの場合においても、配合量が上述した下限値以上であると、磁性金属イオン及び錯イオンの還元が十分に進み、水酸化鉄などの未還元物の混入のない晶析粉(合金粉)を得ることができる。また配合量が上述した上限値以下であると、還元剤(ヒドラジン)の使用量を抑えることができるため、製造コスト低減につながる。
(e)pH調整剤
 pH調整剤は、水酸化アルカリである。このpH調整剤(水酸化アルカリ)は、還元剤たるヒドラジンの還元反応を強くする作用がある。すなわちヒドラジンは反応液のpHが高いほど、還元力が強くなる。したがってpH調整剤として水酸化アルカリを用いることで、反応液中磁性金属イオン及び錯イオンの還元反応、及びそれに伴う晶析粉の析出が促される。水酸化アルカリの種類は特に限定されない。しかしながら、入手の容易さ及び価格の点で、pH調整剤が、水酸化ナトリウム(NaOH)及び水酸化カリウム(KOH)から選ばれる少なくとも一種を含むことが好適である。
 pH調整剤(水酸化アルカリ)の配合量は、還元剤(ヒドラジン)の還元力が十分に高くなるように調製すればよい。具体的には、反応温度における反応液のpHは9.5以上が好ましく、10以上がより好ましく、10.5以上がさらに好ましい。したがってpHがこの範囲内に収まるよう、水酸化アルカリの配合量を調製すればよい。
(f)アミン化合物
 必要に応じて、出発原料は、アミン化合物をさらに含んでもよい。このアミン化合物は、2個以上の第1級アミノ基(-NH)、1個の第1級アミノ基(-NH)及び1個以上の第2級アミノ基(-NH-)、又は2個以上の第2級アミノ基(-NH-)を分子内に含有する。
 アミン化合物は、後続する晶析工程での還元反応を促進する作用がある。すなわちアミン化合物には錯化剤としての機能があり、反応液中の磁性金属イオン(Fe2+、Ni2+等)を錯化して、錯イオン(Fe錯イオン、Ni錯イオン等)を形成する働きがある。そして錯イオンが反応液中に存在する結果、還元反応がより一層進行すると考えられる。
 またアミン化合物は、還元剤たるヒドラジンの自己分解を抑制する作用がある。すなわち、反応液中に磁性金属からなる晶析粉が析出すると、この磁性金属中のニッケル(Ni)が触媒として働く結果、ヒドラジンが分解してしまうことがある。これをヒドラジンの自己分解とよぶ。この分解反応は、下記(1)式に示すように、ヒドラジン(N)が窒素(N)とアンモニア(NH)に分解する反応である。このような自己分解が起こると、ヒドラジンの還元剤としての機能が損なわれるため好ましくない。
Figure JPOXMLDOC01-appb-M000003
 配合液中にアミン化合物を加えておくことで、ヒドラジンの自己分解を抑制することが可能になる。その詳細なメカニズムは不明であるが、反応液中のヒドラジンと晶析粉との過剰接触が妨げられるためではないかと推測している。すなわちアミン化合物分子に含まれるアミノ基の内、特に第1級アミノ基(-NH)や第2級アミノ基(-NH-)は、反応液中の晶析粉表面に強く吸着する。アミン化合物分子が晶析粉を覆って保護することで、ヒドラジン分子と晶析粉との過剰接触が妨げられ、それによりヒドラジンの自己分解が抑制されるのではないかと考えている。ヒドラジンの自己分解は、磁性金属中のニッケルの含有割合が大きいと顕著になるため、特にそういう場合においてアミン化合物は有効に作用する。
 アミン化合物は、好適にはアルキレンアミン及びアルキレンアミン誘導体の少なくとも一種である。またアルキレンアミン及び/又はアルキレンアミン誘導体は、分子内のアミノ基の窒素原子が炭素数2の炭素鎖を介して結合した、下記(A)で表される構造を少なくとも有するものが好適である。
Figure JPOXMLDOC01-appb-C000004
 このようなアルキレンアミンやアルキレンアミン誘導体をアミン化合物として用いることで、ヒドラジン(還元剤)の自己分解抑制の効果をより一層効果的に発揮することができる。その理由として、このようなアルキレンアミンやアルキレンアミン誘導体は、それに含まれる炭素鎖が短いが故に、晶析粉へのヒドラジン分子の接触を効果的に抑制するためと考えている。これに対して、アミノ基の窒素原子が過剰に長い炭素鎖を介して結合している場合には、このアミノ基が晶析粉に吸着したとしても、炭素鎖の運動の自由度が大きい。そのため、晶析粉とヒドラジン分子の接触が効果的に妨げられなくなるのではないかと推測している。
 上記(A)で表される構造を有するアルキレンアミンの具体例は、エチレンジアミン(略称:EDA)(HNCNH)、ジエチレントリアミン(略称:DETA)(HNCNHCNH)、トリエチレンテトラミン(略称:TETA)(HN(CNH)NH)、テトラエチレンペンタミン(略称:TEPA)(HN(CNH)NH)、ペンタエチレンヘキサミン(略称:PEHA)(HN(CNH)NH)、プロピレンジアミン(別名称:1,2-ジアミノプロパン、1,2-プロパンジアミン)(略称:PDA)(CHCH(NH)CHNH)からなる群から選ばれる一種以上である。また上記(A)で表される構造を有するアルキレンアミン誘導体の具体例は、トリス(2-アミノエチル)アミン(略称:TAEA)(N(CNH)、N-(2-アミノエチル)エタノールアミン(別名称:2-(2-アミノエチルアミノ)エタノール(略称:AEEA)(HNCNHCOH)、N-(2-アミノエチル)プロパノールアミン(別名称:2-(2-アミノエチルアミノ)プロパノール(略称:AEPA)(HNCNHCOH)、L(または、D、DL)-2,3-ジアミノプロピオン酸(別名称:3-アミノ-L(または、D、DL)-アラニン)(略称:DAPA)(HNCHCH(NH)COOH)、エチレンジアミン-N,N’-二酢酸(別名称:エチレン-N,N’-ジグリシン)(略称:EDDA)(HOOCCHNHCNHCHCOOH)、1,2-シクロヘキサンジアミン(別名称:1,2-ジアミノシクロヘキサン)(略称:CHDA)(HNC10NH)から選ばれる1種以上である。これらのアルキレンアミンやアルキレンアミン誘導体は水溶性であり、なかでもエチレンジアミン及びジエチレントリアミンは、ヒドラジンの自己分解抑制作用が比較的強く、かつ入手が容易で安価なため好ましい。
 エチレンジアミン(EDA)、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、テトラエチレンペンタミン(TEPA)、ペンタエチレンヘキサミン(PEHA)、プロピレンジアミン(PDA)、トリス(2-アミノエチル)アミン(TAEA)、N-(2-アミノエチル)エタノールアミン(AEEA)、N-(2-アミノエチル)プロパノールアミン(AEPA)、及びL(または、D、DL)-2,3-ジアミノプロピオン酸(DAPA)の構造式を、下記(B)~(M)に示す。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 磁性金属の合計量に対するアミン化合物の配合量は0.00モル%以上5.00モル%以下が好ましく、0.01モル%以上5.00モル%以下がより好ましく、0.03モル%以上5.00モル%以下がさらに好ましい。アミン化合物の配合量は0.00モル%、すなわちアミン化合物を配合しなくてもよい。しかしながら配合量を0.01モル%以上にすることで、アミン化合物に基づくヒドラジンの自己分解抑制の効果及び還元反応促進の効果を十分に発揮させることが可能になる。また配合量を5.00モル%以下にすることで、錯化剤としての機能を適度に発現させることが可能になる。そのため、合金粉の粉体特性(粒子径、粒度分布、球状性、粒子の表面性状)をより優れたものにすることが可能になる。アミン化合物の配合量が5.00モル%を超えて多くなると、錯化剤としての働きが強くなり過ぎる。粒子成長が異常をきたして、合金粉の粉体特性が劣化する恐れがある。
 <晶析工程>
 晶析工程では、準備した出発原料と水とを含む反応液を調製し、この反応液中で、前記磁性金属を含む晶析粉を還元反応により晶析させる。反応液の調製と晶析粉の晶析について、以下にそれぞれ説明する。なお実際の製造では、ほとんどの場合には、反応液を調製すると同時に晶析反応が始まるものの、反応液を調製する途中にわずかではあっても晶析反応が始まる可能性がある。なお、ここで言う晶析反応は、晶析過程で起きる反応のことである。すなわち、ヒドラジンによる還元反応(後述の(6)式など)を主とするものの、それ以外にもヒドラジンの自己分解反応(前述の(1)式)などを含む。したがって、還元反応よりも広い意味合いで晶析反応なる用語を用いている。
 晶析工程では、金属塩原料溶液や還元剤溶液などの複数の溶液のうち少なくともいずれかを加熱した後に混合して反応液を調製し、反応液を反応槽内で加熱撹拌しながら所定温度に保ち、その状態で晶析反応を進める。加熱には汎用の方法を適用でき、例えば、反応槽(反応容器)をウォーターバス内に設置したり、あるいは蒸気ジャケット付き反応槽やヒーター付き反応槽を用いたりする手法が挙げられる。反応槽(反応容器)や反応液撹拌のための撹拌翼には、核剤の働きを妨げないという観点から反応液と接した際にそれらの表面でできるだけ核発生しにくい不活性な材質であること、さらには強度や熱伝導性に優れることなどが求められる。これらを満足するには、例えば、フッ素樹脂(PTFE、PFAなど)で被覆した金属容器(テフロン(登録商標)被覆ステンレス容器など)や撹拌翼(テフロン(登録商標)被覆ステンレス撹拌翼など)が好適である。
(a)反応液の調製
 まず出発原料である磁性金属源、核剤、錯化剤、還元剤、pH調整剤、及び必要に応じてアミン化合物を、必要に応じて水に溶解させた後に混合して、反応液を調製することができる。この反応液を調製する際に用いられる水として、最終的に得られる合金粉の不純物量低減を図るために、高純度なものを用いることが好ましい。高純度な水として、導電率が1μS/cm以下の純水や、導電率が0.06μS/cm以下の超純水を用いることが可能であり、なかでも、安価で入手が容易な純水を用いることが好ましい。
 鉄塩、ニッケル塩、コバルト塩、及び水酸化アルカリなどのように、出発原料が固体の場合は、これらを水と予め混合して溶解して水溶液にしておくことが好ましい。出発原料と水との混合は、撹拌混合など公知の手法で行えばよい。出発原料や水溶液の混合の手順は、反応液の均一性が損なわなければ特に限定されない。しかしながら、反応液の均一性を確保する観点から、各出発原料を含む水溶液を予め別個に調製し、調製した水溶液を混合することが好ましく、以下に説明する第1の態様又は第2の態様にしたがって反応液を調製することが特に好ましい。
 第1の態様では、晶析工程で反応液を調製する際、磁性金属源、核剤、及び錯化剤を水に溶解させた金属塩原料溶液と、還元剤を水に溶解させた還元剤溶液と、pH調整剤を水に溶解させたpH調整溶液と、をそれぞれ用意し、金属塩原料溶液とpH調整溶液を混合して混合溶液とし、得られた混合溶液と還元剤溶液とを混合する。第1の態様における反応液調製及び合金粉製造の一例を示すプロセス図を、図2及び図3に示す。
 第1の態様では、金属塩原料溶液、還元剤溶液及びpH調整溶液の3つの溶液をそれぞれ別個に調製する。金属塩原料溶液は、磁性金属源(水溶性鉄塩、水溶性ニッケル塩等)、核剤(ニッケルよりも貴な金属の水溶性塩)、錯化剤(ヒドロキシカルボン酸等)を水に溶解させて調製する。還元剤溶液は、還元剤(ヒドラジン)を水に溶解させて調製する。pH調整溶液は、pH調整剤(水酸化アルカリ)を水に溶解させて調製する。次いで、金属塩原料溶液とpH調整溶液とを混合して混合溶液を作製する。この際、金属塩原料溶液に含まれる磁性金属の塩(水溶性鉄塩、水溶性ニッケル塩等)とpH調整剤に含まれる水酸化アルカリとが反応して、磁性金属の水酸化物が形成される。この水酸化物は、水酸化鉄(Fe(OH))、水酸化ニッケル(Ni(OH))、水酸化コバルト(Co(OH))、鉄ニッケル水酸化物((Fe、Ni)(OH))、鉄ニッケルコバルト水酸化物((Fe、Ni、Co)(OH))などである。その後、得られた混合溶液に還元剤溶液を混合して反応液にする。
 第1の態様における反応液の具体的な調製手順としては、金属塩原料溶液に、pH調整溶液、及び還元剤溶液を順次添加して混合することが好ましい。金属塩原料溶液、還元剤溶液、pH調整溶液の3種類の溶液を用いる第1の態様において、金属塩原料溶液は、その液量(体積)が最も多い。したがって、液量の多い金属塩原料溶液に他の溶液を順次添加して混合した方が、他の溶液に金属塩原料溶液を加えるよりも、均一な混合状態を実現でき、反応液中で均一に還元反応を進めることができるからである。
 アミン化合物を配合する場合には、金属塩原料溶液、還元剤溶液及びpH調整剤溶液の少なくとも一つにアミン化合物を加えればよい。またこれらの溶液全てを混合した後にアミン化合物を加えてもよい。図2は、金属塩原料溶液、還元剤溶液及びpH調整液の少なくとも一つにアミン化合物を加える態様を示している。図3は金属塩原料溶液、還元剤溶液及びpH調整溶液の全てを混合して得た反応液にアミン化合物を加える態様を示している。
 第1の態様では、金属塩原料溶液とpH調整剤の混合溶液に、還元剤溶液を混合して反応液を調製しており、還元剤溶液を加えた時点から還元反応が進行する。還元剤溶液を混合する際、還元剤が加わる微小領域では、局所的に還元剤(ヒドラジン)濃度が急上昇する。また混合溶液はpH調整剤(水酸化アルカリ)を含んでおり、この混合溶液に還元剤溶液を混合する初期段階で、混合溶液(反応液)のpHは依然として高い。先述したように、pHが高いほど、還元剤(ヒドラジン)は強い還元力を発揮する。したがって還元剤溶液混合の初期には、局所的に還元剤濃度及びpHが高くなり、核剤に起因した核発生及び晶析粉を生成する還元反応が急激に起こる。一方で還元剤溶液を加えるに伴い、混合溶液(反応液)のpHは徐々に低くなる。そのため還元剤溶液混合の終期段階では、還元剤の還元力は初期ほど強くはなく、核発生及び還元反応は緩やかに進行する。したがって還元溶液混合の初期と終期とでは、還元剤の還元力に差が生じることになる。
 初期と終期とでの還元力の差が大きいと、核発生反応及び還元反応の均一性が低下し、得られる晶析粉の粉体特性(粒径、表面平滑性等)のバラツキが大きくなる恐れがある。したがって、できるだけ還元力の差を小さくすることが望ましい。そのためには還元剤溶液をできるだけ速やかに混合することが好ましい。金属塩原料溶液とpH調整剤の混合溶液に還元剤溶液を混合するのに要する時間(混合時間)は180秒以下が好ましく、120秒以下がより好ましく、60秒以下がさらに好ましい。一方で製造装置の制約から、混合時間を過度に短くすることは困難な場合がある。混合時間は1秒以上であってよく、3秒以上であってよく、5秒以上であってもよい。
 なお、金属塩原料溶液にpH調整剤溶液を混合する際も、混合時間が長いと、形成される磁性金属水酸化物の特性にバラツキが生じ、これが晶析粉の粉体特性バラツキをもたらす恐れがある。その影響は、還元剤溶液を混合する際ほど大きくはないが、混合時間は短いほど好ましい。pH調整剤を混合するのに要する時間(混合時間)は180秒以下が好ましく、120秒以下がより好ましく、80秒以下がさらに好ましい。また混合時間は1秒以上であってよく、3秒以上であってよく、5秒以上であってよい。
 晶析粉の粉体特性バラツキを抑制する上で、還元剤溶液やpH調整剤溶液を混合する際に、溶液を撹拌しながら混合する撹拌混合を行うことも有効である。撹拌することで溶液中の成分濃度の急上昇が抑えられるため、晶析粉の特性バラツキを抑えることが可能になる。撹拌混合は、撹拌羽根などの撹拌装置を用いて行えばよい。
 第2の態様では、晶析工程で反応液を調製する際、磁性金属源、核剤、及び錯化剤を水に溶解させた金属塩原料溶液と、還元剤及びpH調整剤を水に溶解させた還元剤溶液と、をそれぞれ用意し、金属塩原料溶液及び還元剤溶液を混合する。第2の態様における反応液調製及び合金粉製造の一例を示すプロセス図を、図4及び図5に示す。
 第2の態様では、金属塩原料溶液及び還元剤溶液及の2つの溶液をそれぞれ別個に調製する。金属塩原料溶液は、磁性金属源(水溶性鉄塩、水溶性ニッケル塩等)、核剤(ニッケルよりも貴な金属の水溶性塩)、及び錯化剤(ヒドロキシカルボン酸等)を水に溶解させて調製する。還元剤溶液は、還元剤(ヒドラジン)及びpH調整剤(水酸化アルカリ)を水に溶解させて調製する。次いで、金属源原料溶液と還元剤溶液を混合して反応液にする。第2の態様では、還元剤溶液がpH調整剤を含む点が、第1の態様とは異なる。
 第2の態様における反応液の具体的な調製手順として、金属塩原料溶液に還元剤溶液を添加して混合するか、あるいは、逆に、還元剤溶液に金属塩原料溶液を添加して混合する、という2通りのやり方が可能である。第1の態様と異なり、還元剤とpH調整剤(水酸化アルカリ)の両方を含む還元剤溶液の液量(体積)は、金属塩原料溶液の液量(体積)と同等レベルである。そのため、いずれか一方を他方に添加して混合することで、基本的には均一な混合状態を実現でき、反応液中で均一な還元反応を進めることができる。
 ただし、還元剤やpH調整剤(水酸化アルカリ)の金属塩原料に対する配合割合が多い晶析条件の場合には、還元剤溶液に金属塩原料溶液を添加して混合することが好ましい。これは、晶析工程の生産性確保の観点から反応液中の金属塩原料濃度は所定レベル以上に維持(金属成分で30~40g/L)されることが望まれるからである。すなわち、上述した晶析条件では、還元剤溶液の液量(体積)が、金属塩原料溶液の液量(体積)よりもかなり多い。したがって、液量(体積)の多い還元剤溶液に、液量(体積)の少ない金属塩原料溶液を添加して混合した方が、均一な混合状態を実現でき、反応液中で均一に還元反応を進めることができる。
 第2の態様においても、第1の態様と同じ理由で、金属塩溶液に還元剤溶液を混合するのに要する時間(混合時間)は180秒以下が好ましく、120秒以下がより好ましく、60秒以下がさらに好ましい。また混合時間は1秒以上であってよく、3秒以上であってよく、5秒以上であってもよい。また還元剤溶液を混合する際に撹拌混合することも有効である。
 第3の態様では、第1の態様や第2の態様の晶析工程において、還元反応が終了する前に追加原料液を反応液にさらに添加及び混合する。これにより晶析粉の表面をニッケルやコバルト成分リッチにする。ここで、追加原料液は、前述した水溶性ニッケル塩と水溶性コバルト塩の少なくともいずれかを水に溶解させたものである。第3の態様における合金粉製造の一例を示すプロセス図を、図6に示す。
 第3の態様では、第1の態様や第2の態様の反応液調製に用いた溶液に加えて、追加原料液を調製する。この追加原料液は、水溶性ニッケル塩と水溶性コバルト塩の少なくともいずれかを水に溶解させて調製したものである。追加原料液の反応液への添加は、一気添加、分割添加、及び/又は滴下などの手法で行なえばよい。添加は、必然ではないが、還元反応が終了する前のタイミングで行うことが好ましい。還元反応が完全に終了すると晶析粒子同志が凝集体を形成し始める。このタイミングで追加原料液を添加して還元反応による金属成分の析出を進めると、凝集体に含まれる粒子同士の結合を強化することがある。
 また、第3の態様によれば、第1の態様や第2の態様に比べて、還元剤の使用量を低減できるという利点がある。鉄イオン(または水酸化鉄)は、ニッケルイオン(または水酸化ニッケル)やコバルトイオン(または水酸化コバルト)よりも還元されにくい。ニッケル成分やコバルト成分を含む追加原料液を反応液へ追加すると、還元されにくい鉄イオン(または水酸化鉄)の還元反応を晶析終盤で促進することができるからである。
 追加原料液中の磁性金属(Ni、Co)の量は、晶析粉表面をニッケルやコバルト成分リッチにする程度に応じて設定すればよい。しかしながら、粒子全体の組成均一性を考慮すれば、合金粉中の鉄を除く磁性金属(Ni、Co)の合計量に対して、5モル%~50モル%であるのが好ましい。粒子表面がニッケルやコバルト成分リッチになると、ポーラスな酸化被膜を形成しやすい鉄成分が減少する。そのため、緻密な酸化被膜が形成されて粒子表面の酸化量が抑制されるため、大気中でより安定なだけでなく、飽和磁束密度などの磁気特性も向上する。
(b)晶析粉の晶析
 反応液を調製すると、この反応液中で還元反応が起こる。すなわちpH調整剤(水酸化アルカリ)及び核剤(ニッケルよりも貴な金属の塩)の共存下で磁性金属源のイオンや錯イオンが還元剤(ヒドラジン)により還元され、それにより磁性金属を含む晶析粉が形成される。
 晶析工程における還元反応を、反応式を用いて説明する。鉄(Fe)、ニッケル(Ni)及びコバルト(Co)の還元反応は、下記(2)~(4)式に示すように2電子反応である。一方で、還元剤としてのヒドラジン(N)の反応は下記(5)式に示すように4電子反応である。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
 磁性金属の塩化物(FeCl、NiCl、CoCl)を磁性金属源として用い、水酸化ナトリウム(NaOH)をpH調整剤に用いた場合には、下記(6)式に示すように、まず磁性金属塩化物と水酸化ナトリウムとが中和反応を起こして、水酸化物((Fe、Ni、Co)(OH)等)が生じる。そして、この水酸化物((Fe、Ni、Co)(OH)等)が還元剤(ヒドラジン)の働きにより還元されて、晶析粉になる。1モルの磁性金属(Fe、Ni、Co)を還元するためには、0.5モルの還元剤(ヒドラジン)が必要である。また上記(5)式を見て分かるように、アルカリ性(pH)が高いほど、ヒドラジンの還元力は高い。そのためpH調整剤として利用される水酸化ナトリウムは、ヒドラジンによる還元反応を促進する効果もある。
Figure JPOXMLDOC01-appb-M000021
 上記(6)式の還元反応において、磁性金属(Fe、Ni、Co)それぞれの元素のイオン(または水酸化物)の還元は、共還元によって、ある程度は同時に進行する。ここで、共還元とは、ある元素の還元反応が生じる際に別の還元反応が付随的に起きる現象を指す。しかしながら、先述したように、鉄イオン(または水酸化鉄)は、ニッケルイオン(または水酸化ニッケル)やコバルトイオン(または水酸化コバルト)に比べて還元されにくい。そのため、晶析反応終盤には、反応液中でニッケルイオン(または水酸化ニッケル)やコバルトイオン(または水酸化コバルト)が還元反応で消費されて消失し、鉄イオン(または水酸化鉄)が残存する傾向にある。この傾向は、鉄の含有割合が大きい場合(例えば、合金粉の鉄含有量が60モル%超)に特に顕著である。このような現象が起こると、晶析反応(還元反応)完了までに長時間を要するだけでなく、粒子内で組成が不均一な傾斜構造が形成されやすい。傾斜構造が形成されると、得られる合金粉の粒子中心部はニッケルやコバルトがリッチな組成となり、粒子表面に近くなるほど鉄リッチな組成になる。
 これに対して、先述した第3の態様では、晶析反応の途中で追加原料液を反応液に添加して、還元されにくい鉄イオン(または水酸化鉄)の還元反応を晶析終盤で促進している。そのため、特に鉄含有割合が大きい場合の晶析反応(還元反応)長時間化や、得られる合金粉粒子内での組成不均一化を改善することが可能になる。
 晶析粉の晶析開始時の反応液の温度(反応開始温度)は40℃以上90℃以下が好ましく、50℃以上80℃以下がより好ましく、60℃以上70℃以下がさらに好ましい。ここで晶析開始時の反応液とは、調製した直後の出発原料と水とを含む反応液のことである。また、晶析開始後の晶析中に保持される反応液の温度(反応保持温度)は60℃以上99℃以下が好ましく、70℃以上95℃以下がより好ましく、80℃以上90℃以下がさらに好ましい。反応開始温度を好適な範囲内に調製するためには、反応液の調製に用いる金属塩原料溶液や還元剤溶液などの複数の溶液のうち少なくともいずれかを予め加熱しておくことが望ましい。反応保持温度を好適な範囲内に調製するためには、反応液調製後に反応液の加熱を継続することが望ましい。
 核発生をより均一にしてシャープな粒度分布の晶析粉を得る観点から、可能であれば、金属塩原料溶液や還元剤溶液などの複数の溶液のうちの一つを予め加熱(例えば70℃に加熱)しておき、他方の溶液は予め加熱せず(例えば25℃に保持)、それらを添加混合して所定温度(例えば55℃)の反応液を調製することが好ましい。これに対して、2つの溶液(例えば、金属塩原料溶液と還元剤溶液)の両方を予め加熱(例えば70℃に加熱)すると、不均一な核発生が起こり易い。すなわち2つの溶液を添加混合すると溶液の混合発熱が起こる。そのため添加混合された溶液(反応液)が混合開始時に局所的に高温(例えば78℃程度)になり、核発生が瞬時に起きる。核発生が起きながら2つの溶液を添加混合する状態になり、この状態は核発生の不均一化をもたらしやすい。
 2つの溶液の添加時間を極端に短くする、あるいは強力に撹拌するといった手法で核発生均一化の改善を図ることが考えられるものの、このような手法は必ずしも好ましい態様とは言えない。先述した一方の溶液だけを予め加熱(例えば70℃に加熱)してから添加混合して反応液を調製する手法では、添加混合された溶液(反応液)は低温(例えば55℃)に維持され、局所的に高温化されることがない。核発生のタイミングが遅れるため、2つの溶液がよく混合されてから核発生が進行する。したがって核発生が均一に起こり易い。以上はより好ましい事例を述べたものであり、金属塩原料溶液や還元剤溶液などの複数の溶液の全てを予め加熱する場合を排除するものではない。反応開始温度と反応保持温度が先述した範囲に収まるように溶液の加熱及びその温度を設定すればよい。
 反応開始温度が過度に低いと、核発生はより均一化するが、還元反応の進行が遅く、且つ還元反応促進が可能な反応保持温度までの昇温に必要な加熱時間が長くなる。同様に反応保持温度が過度に低いと還元反応の進行が遅く晶析に必要な加熱時間が長くなる。いずれの場合であっても、晶析工程で必要とされるサイクルタイムが長時間化し、生産性が低下する。その上、ヒドラジンの自己分解が進行するため、多量のヒドラジンが必要になり、その結果、製造コストが増大する。反応開始温度や反応保持温度が高いと、還元反応が促進されて晶析工程で必要とされるサイクルタイムが短縮するとともに、得られる晶析粉が高結晶化する傾向にある。しかしながら、同時にヒドラジンの自己分解速度が大きくなる。したがって、反応開始温度や反応保持温度が過度に高いと、核発生の不均一化が起こるのみならず、過度な高結晶化により粒子表面の平滑性が悪化して、表面の凹凸が大きくなる恐れがある。また適切なタイミングで晶析を終了しないと、還元反応によりヒドラジンが自己分解して優先的に消費される恐れがある。そのため、多量のヒドラジンが必要になり、製造コスト増大につながるとの懸念がある。反応開始温度や反応保持温度を先述した好適な範囲内に設定することで、高い生産性を維持しながら、高性能な合金粉を安価に製造することが可能になる。
 <回収工程>
 回収工程では、晶析工程で得られた反応液から晶析粉を回収する。晶析粉の回収は公知の手法で行えばよい。例えば、デンバーろ過器、フィルタープレス、遠心分離機、又はデカンターなどの分離装置を用いて反応液から晶析粉を固液分離する手法が挙げられる。また固液分離の際、または固液分離後に晶析粉を洗浄してもよい。洗浄は、洗浄液を用いて行えばよい。洗浄液として導電率1μS/cm以下の高純度純水などを用いればよい。洗浄後の晶析粉に乾燥処理を施してもよい。乾燥処理は、大気乾燥機、熱風乾燥機、不活性ガス雰囲気乾燥機、還元性ガス雰囲気乾燥機、または真空乾燥機などの汎用の乾燥装置を用いて、40℃以上150℃以下、好ましくは50℃以上120℃以下の温度で行えばよい。ただし、乾燥処理中の晶析粉の過剰な酸化による磁気特性悪化を防止する観点からすると、大気乾燥機や大気を用いた熱風乾燥機よりも、不活性ガス雰囲気乾燥機、還元性ガス雰囲気乾燥機、または真空乾燥機を用いる方が好ましい。
 なお、不活性ガス雰囲気乾燥機、還元性ガス雰囲気乾燥機、または真空乾燥機の密閉容器内で乾燥された晶析粉は、その粒子表面があまり酸化されていない。そのため、乾燥後に乾燥機からすぐに大気中に取り出すと粒子表面が急激に酸化し、その酸化反応の発熱により晶析粉が燃焼する恐れがある。この現象は、特に微細な晶析粉(例えば、粒径0.1μm以下)で起こりやすい。そこで、乾燥後の粒子表面があまり酸化されていない晶析粉の粒子表面に、予め薄い酸化被膜を形成して安定化させる徐酸化処理を施すことが望ましい。具体的な徐酸化処理の手順としては、不活性ガス雰囲気乾燥機、還元性ガス雰囲気乾燥機、または真空乾燥機の密閉容器内で加熱乾燥された晶析粉の温度を室温~40℃程度に低下させた後、密閉容器内に酸素濃度の低いガス(例えば、酸素0.1~2体積%を含む窒素ガスやアルゴンガス)を供給し、晶析粉の粒子表面を少しずつゆっくりと酸化させて薄い酸化被膜を形成させる方法が考えられる。徐酸化処理が施された晶析粉は、酸化されにくく安定なため、大気中に放置しても発熱や燃焼を生じる恐れがない。
 <高温熱処理工程>
 回収工程後、あるいは回収工程の途中で、晶析粉に高温熱処理を施す高温熱処理工程を設けてもよい。回収工程後に高温熱処理を施す場合には、乾燥処理後に高温熱処理を行えばよい。また回収工程の途中で高温熱処理を施す場合には、乾燥処理に代えて高温熱処理を行えばよい。高温熱処理は、不活性雰囲気、還元性雰囲気、または真空雰囲気中で150℃超400℃以下、好ましくは200℃以上350℃以下の温度で行えばよい。高温熱処理により、鉄(Fe)-ニッケル(Ni)系合金粒子内でFeとNiなどの異種元素の拡散が促進されて粒子内の組成均一性を向上させたり、あるいは磁力などの磁気特性を調製したりすることが可能である。なお、必要に応じて、高温熱処理後に前述した徐酸化処理を行ってもよい。
 <解砕工程>
 必要に応じて、回収工程で回収した晶析粉、または回収途中で乾燥処理前の晶析粉に解砕処理を施す解砕工程を設けてもよい。晶析工程で晶析粉を構成する合金粒子が析出する際に、合金粒子同士が接触して融着し、凝集粒子を形成することがある。したがって晶析工程を経て得られた晶析粉には粗大な凝集粒子が含まれることがある。先述したとおり、粗大な凝集粒子は、その中を渦電流が流れてジュール熱による損失を増大させたり、あるいは粉の充填性を阻害したりすることがある。回収工程後や回収工程途中に解砕工程を設けることで、凝集粒子を解砕することできる。解砕は、スパイラルジェット解砕処理、カウンタージェットミル解砕処理などの乾式解砕や、高圧流体衝突解砕処理などの湿式解砕、その他の汎用の解砕方法を用いて行えばよい。回収工程で回収した乾粉たる晶析粉には、乾式解砕をそのまま適用できる。また回収工程後の乾粉たる晶析粉をスラリー状にすれば、これに湿式解砕を適用できる。さらに回収工程途中で得られた乾燥前のスラリー状晶析粉であれば、湿式解砕をそのまま適用できる。これらの解砕方法では、粒子の衝突エネルギーを活用して凝集粒子をバラバラに解砕する。解砕過程で衝突により表面平滑化も進むため、この効果も粉の充填性向上に役立つ。
 <絶縁コート工程>
 必要に応じて、回収工程後に絶縁コート工程を設けてもよい。絶縁コート工程では、回収工程を経て得られた晶析粉に絶縁コート処理を施して晶析粉の粒子表面に高抵抗な金属酸化物からなる絶縁コート層を形成し、それにより粒子間の絶縁性を向上させる。粗大凝集粒子における渦電流による損失増大と同様に、鉄-ニッケル系合金粉を圧縮成形して得られる圧粉コアでは、合金粒子同士の接触により粒子間を流れる渦電流が大きくなる恐れがある。絶縁コート層を形成することで、合金粒子同士の接触による渦電流発生を抑えることが可能になる。
 絶縁コート処理では、水と有機溶剤を含む混合溶媒に晶析粉を分散し、さらに金属アルコキシドを混合溶媒に添加及び混合してスラリーを調製し、得られたスラリー中で金属アルコキシドを加水分解及び脱水縮重合させて晶析粉の粒子表面に絶縁コート層を形成し、その後、絶縁コート層を形成したケーキ状の晶析粉をスラリーから固液分離し、分離した晶析粉を乾燥して高抵抗な金属酸化物からなる絶縁コート層が形成された晶析粉を回収する。必要に応じて分離及び乾燥した晶析粉に加熱処理を施してもよい。水と有機溶剤を含む混合溶媒中での金属アルコキシドの加水分解反応は、そのままでは非常にゆっくりとしか進まないため、一般的には酸や塩基(アルカリ)などの加水分解用触媒を微量添加して反応促進を図る。本実施形態でも塩基触媒(アルカリ触媒)を添加することが好ましい。
 高抵抗な金属酸化物としては、二酸化けい素(SiO)、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)、及び二酸化チタン(TiO)からなる群から選ばれる少なくとも1つ以上を主成分としたものが好ましい。とりわけ二酸化けい素(SiO)を主成分とするものは、安価で絶縁性に優れるため、特に好ましい。
 このような金属酸化物を得るために、絶縁コート処理でのスラリーに用いる金属アルコキシドとしては、加水分解と脱水縮重合により最終的に金属酸化物を形成できるアルコキシドを選定する。具体的には、シリコンアルコキシド(アルキルシリケート)、アルミニウムアルコキシド(アルキルアルミネート)、ジルコニウムアルコキシド(アルキルジルコネート)、及びチタンアルコキシド(アルキルチタネート)からなる群から選ばれる少なくとも1つ以上を主成分としたものが好ましく、中でもシリコンアルコキシド(アルキルシリケート)を主成分としたものが特に好ましい。なお、必要に応じて、金属アルコキシドが加水分解及び脱水縮重合して絶縁コート層を形成する際に、加水分解などにより絶縁コート層に取込まれるような成分(例えば、ボロンアルコキシドなど)を、上述した金属アルコキシドに少量添加してもよい。
 絶縁コート処理した合金粉の表面は、無機物である高抵抗な金属酸化物で被覆される。必要に応じてその無機物の表面に、有機官能基を導入してもよい。具体的には、例えば、絶縁コート処理で用いる金属アルコキシドにシリコン系、チタン系、ジルコニウム系、アルミニウム系のカップリング剤を少量配合し、金属アルコキシドの加水分解・脱水縮重合時に有機官能基を金属酸化物に取込む手法が挙げられる。また、別の方法としては、絶縁コート処理された合金粉を上記のカップリング剤で表面処理して金属酸化物表面を有機官能基で修飾する手法も挙げられる。いずれの手法であっても、有機官能基を導入すると樹脂との親和性が高まるため、絶縁コート処理された合金粉を樹脂バインダーなどと配合して成型した際に成型体の強度向上が期待できる。
 シリコンアルコキシド(アルキルシリケート)の具体例として、例えば、テトラメトキシシラン(別名称:オルトけい酸テトラメチル、シリコンテトラメトキシド)(略称:TMOS)(Si(OCH)、テトラエトキシシラン(別名称:オルトけい酸テトラエチル、シリコンテトラエトキシド)(略称:TEOS)(Si(OC)、テトラプロポキシシラン(別名称:オルトけい酸テトラプロピル、シリコンテトラプロポキシド)(Si(OC、テトラブトキシシラン(別名称:オルトけい酸テトラブチル、及びシリコンテトラブトキシド)(Si(OCなどから選ばれる1種以上が挙げられる。また、これらのアルコキシドのアルコキシル基を別のアルコキシル基で置換したアルコキシドでもよく、あるいは既に4~5量体まで重合を進ませたシリケートオリゴマーとしての市販のアルキルシリケート(例えば、コルコート社製のエルシリケート40(商品名)、エルシリケート48(商品名)、メチルシリケート51(商品名)など)でもよい。なかでもテトラエトキシシラン(TEOS)は、有害性が低く、かつ入手が容易で安価なため好ましい。
 アルミニウムアルコキシド(アルキルアルミネート)の具体例として、例えば、アルミニウムトリメトキシド(Al(OCH)、アルミニウムトリエトキシド(Al(OC)、アルミニウムトリイソプロポキシド(Al(O-iso-C)、アルミニウムトリ-n-ブトキシド(Al(O-n-C)、アルミニウムトリ-sec-ブトキシド(Al(O-s-C)、アルミニウムトリ-tert-ブトキシド(Al(O-t-C)などから選ばれる1種以上が挙げられる。
 ジルコニウムアルコキシド(アルキルジルコネート)の具体例として、例えば、ジルコニウムテトラエトキシド(Zr(OC)、ジルコニウムテトラ-n-プロポキシド(Zr(O-n-C)、ジルコニウムテトライソプロポキシド(Zr(O-iso-C)、ジルコニウムテトラ-n-ブトキシド(Zr(O-n-C)、ジルコニウムテトラ-tert-ブトキシド(Zr(O-t-C)、ジルコニウムテトライソブトキシド(Zr(O-iso-C)、などから選ばれる1種以上が挙げられる。
 チタンアルコキシド(アルキルチタネート)の具体例として、例えば、チタニウムテトラメトキシド(Ti(OCH)、チタニウムテトラエトキシド(Ti(OC)、チタニウムテトライソプロポキシド(Ti(O-iso-C)、チタニウムテトライソブトキシド(Ti(O-iso-C)、チタニウムテトラ-n-ブトキシド(Ti(O-n-C)、チタニウムテトラ-tert-ブトキシド(Ti(O-t-C)、チタニウムテトラ-sec-ブトキシド(Ti(O-s-C)などから選ばれる1種以上が挙げられる。
 その他の金属アルコキシドとしては、ボロンアルコキシド(アルキルボロネート)、例えば、ボロントリメトキシド(B(OCH)、ボロントリエトキシド(B(OC)、ボロントリ-tert-ブトキシド(B(O-t-C)などから選ばれる1種以上が挙げられる。
 絶縁コート処理でのスラリーに用いる有機溶剤は、水との混合溶媒を形成し、かつ適度に乾燥しやすいものが好ましい。すなわち、水との相溶性が高くて沸点が比較的低い(60℃~90℃程度)ものが好ましい。加えて、安全性が高くて取扱い易く、入手が容易で安価なものがよい。これらを考慮すると、エチルアルコールを主成分とする変性アルコールが好ましい。
 絶縁コート処理における金属アルコキシドの加水分解反応と脱水縮重合反応を、金属アルコキシドとしてシリコンアルコキシド(Si(OR)、R:アルキル基)を用いた場合について、反応式を使って説明する。
 加水分解反応において、アンモニア(NH)などの塩基触媒(アルカリ触媒)の共存下では、下記(7)式に示すようにシリコン原子(Si)は、親核性のヒドロキシイオン(OH)の直接攻撃を受けてアルコキシ基(-OR)の一つがまず加水分解する。そうするとシリコン原子上の電荷が減少して親核性のヒドロキシイオン(OH)の攻撃をますます受けやすくなる。その結果、下記(8)式に示すように4つのアルコキシ基(-OR)が全て加水分解してシラノール基(Si-OH)に変わる。このように、塩基触媒(アルカリ触媒)を用いると、加水分解を受けたシリコンアルコキシド分子では全てのアルコキシ基(-OR)が加水分解するため、完全に加水分解した分子(Si(OH))と全く加水分解していない分子(Si(OR))が共存する状態がスラリー中において生じる。
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
 一方、硝酸(HNO)などの酸触媒の共存下では、下記(9)式に示すように、プロトン(H)によるアルコキシ基(-OR)のプロトン化でシリコン原子(Si)は水(HO)の攻撃を受けやすくなる。そのため、まずアルコキシ基(-OR)の一つが加水分解してシラノール基(Si-OH)に変わる。詳細は割愛するが、こうなると、シリコン原子上の電荷と酸素原子(O)上の電荷が減少するためプロトン(H)の攻撃を受けにくくなる。そのため、すぐには次の加水分解が起きずに、他の加水分解していないシリコンアルコキシド分子のアルコキシ基(-OR)の方が加水分解を受けやすくなる。このように、酸触媒を用いると、下記(10)式に示すように全てのシリコンアルコキシド分子において均等にアルコキシ基(-OR)の加水分解が進む。そのため、完全に加水分解した分子や全く加水分解していない分子がなく、均等に加水分解した分子(Si(OH)(OR)4-X;0<x<4)が存在する状態がスラリー中において生じる。
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
 脱水縮重合反応は、下記(11)式に示すように、加水分解したシリコンアルコキシド分子同士でのシラノール基(Si-OH)の脱水縮重合反応によるシロキサン結合(Si-O-Si)の形成が進む反応であり、この脱水縮重合反応が進んで完結すると下記(12)式に示すように二酸化けい素(SiO)が生成する。
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
 以上をまとめると、シリコンアルコキシドの加水分解、及び脱水縮重合を完結させると、下記(13)式に示すように二酸化けい素(SiO)とアルコールが生じる。例えば、テトラエトキシシラン(TEOS:Si(OR)、R:C)を用いた場合であれば二酸化けい素(SiO)とエチルアルコール(COH)が生じる。
Figure JPOXMLDOC01-appb-M000028
 上記(13)式は、シリコンアルコキシドが加水分解してさえいれば、塩基触媒(アルカリ触媒)や酸触媒に関係なく成立するが、脱水縮重合の進行で生じる二酸化けい素(SiO)の形態は、先述した加水分解用触媒による加水分解の状態により大きく影響を受ける。
 酸触媒により均等に加水分解したシリコンアルコキシド分子(Si(OH)(OR)4-X;0<x<4)では、分子内に加水分解していないアルコキシ基(-OR)が存在する。そのため、分子間でのシラノール基(Si-OH)の脱水縮重合が進行すると、直線状や分岐した線状に高分子化した加水分解重合物が生成する。これが絶縁コート処理でのスラリー中において生じると、晶析粉の酸化鉄(FeO)や酸化ニッケル(NiO)からなる粒子表面でシリコンアルコキシドの加水分解重合物が生成される。しかしながら、これらは直線状や分岐した線状に高分子化しているためスラリーの溶媒中では緻密化しにくく、そのため緻密な絶縁コート層の形成は容易ではない。
 一方で、塩基触媒(アルカリ触媒)を用いた場合には、完全に加水分解した分子(Si(OH))が存在している。そのため、分子間でのシラノール基(Si-OH)の脱水縮重合が進行すると、塊状に高分子化した緻密な加水分解重合物が生成する。したがって、絶縁コート処理でのスラリーの溶媒中においても、晶析粉の酸化鉄(FeO)や酸化ニッケル(NiO)からなる粒子表面でシリコンアルコキシドの緻密な加水分解重合物が生成され、その結果、緻密な絶縁コート層の形成が可能である。なお、塩基触媒(アルカリ触媒)を用いた場合では、全く加水分解していない分子(Si(OR))が存在する可能性がある。しかしながら、後述するように、絶縁コート処理で晶析粉の絶縁コートに消費されずにスラリー中に残存する全く加水分解していない分子や分子量が非常に小さい粒子状のシリコンアルコキシドの加水分解重合物(シリカゾル)は、絶縁コート工程のろ過洗浄の際にろ液とともに系外に除去される。そのため、絶縁コート処理には影響を及ぼさない。
 以上の理由から、絶縁コート処理における金属アルコキシドの加水分解は、酸触媒よりも塩基触媒(アルカリ触媒)を用いて行うのが好ましい。この点、溶剤を基材に塗布してコーティングを行う場合と、好ましい触媒が異なる。すなわち、溶媒中での粒子表面へのコーティングでなく、基材に塗布して溶媒を乾燥させるコーティング液のバインダーに用いる場合には、上述した酸触媒による直線状や分岐した線状に高分子化したものの方が好ましい。
 絶縁コート処理における金属アルコキシドの加水分解のタイミングについては、これまではスラリー中で晶析粉と金属アルコキシドが均一に混合した状態で加水分解用触媒により加水分解する態様を説明した。しかしながら、本実施形態は、このタイミングで加水分解する態様に限定される訳ではない。例えば加水分解用触媒により予め金属アルコキシドを加水分解して得た金属酸化物ゾル(シリコンアルコキシドの場合はシリカゾル)を調合し、この金属酸化物ゾルを晶析粉と混合してスラリーとすることも可能である。金属酸化物ゾルの平均分子量が500~5000程度と小さければ、金属アルコキシドの加水分解のタイミングの影響はほとんど生じない。これは、晶析粉表面の酸化鉄(FeO)や酸化ニッケル(NiO)と金属酸化物ゾルの加水分解基(シリコンアルコキシドの場合はシラノール基(Si-OH))との結合により、晶析粉の粒子表面が小さな金属酸化物ゾル粒子で覆われ、その後にゾル粒子同志の重合が進むからである。
 絶縁コート処理において、絶縁コート層を均一に形成するという観点から、晶析粉、水、有機溶剤、金属アルコキシド、及び加水分解用触媒を含むスラリーには、撹拌機を用いた撹拌翼による撹拌や専用ローラーを用いた容器回転による撹拌などの処理を施すことが好ましい。絶縁コート処理の処理時間や処理温度は、適用する金属アルコキシドの種類や必要な絶縁コート層の厚みによって変わる。例えば、一般的に、金属メトキシドは金属エトキシドよりも加水分解速度が大きい。そのため、処理時間や処理温度は適度設定すればよく、特に限定はされない。例えば処理時間は数時間~1週間程度、処理温度は室温~60℃とすればよい。処理温度が40℃~60℃程度の高温であれば、室温の場合の数倍程度にまで処理速度を高めることができる。
 絶縁コート層の厚みは、必要とする絶縁性の度合いにもよるため一概には限定されない。しいて言えば1nm~30nmが好ましく、2nm~25nmがより好ましく、3nm~20nmがさらに好ましい。過度に厚くても、絶縁性が飽和する一方で軟磁性成分の含有割合が低下して飽和磁束密度などの磁気特性が悪化するだけである。厚みが上記範囲であれば、磁気特性などの特性をそれほど悪化させずに絶縁コート層の絶縁機能を発揮させることが可能である。
 金属アルコキシドの加水分解及び脱水縮重合により絶縁コート層が形成された晶析粉は、デンバーろ過器、フィルタープレス、遠心分離機、又はデカンターなどの公知の分離装置を用いて、スラリーからケーキ状の晶析粉として固液分離される。必要に応じて、固液分離の際などに晶析粉を洗浄してもよい。洗浄には、水、比較的低沸点のアルコールなどの有機溶剤、あるいはそれらの混合溶媒を洗浄液を用いればよい。先述したように、絶縁コートに消費されずにスラリー中に残存した金属アルコキシドやその加水分解重合物(加水分解していない分子や分子量が小さい金属酸化物ゾル)が存在する場合には、これらは、固液分離や洗浄の際にろ液や洗浄廃液とともに系外に除去される。
 固液分離されたケーキ状の晶析粉に、乾燥、及び必要に応じて加熱処理を行い、高抵抗な金属酸化物からなる絶縁コート層が形成された晶析粉を回収する。乾燥は、乾燥中の過剰な酸化を抑制できれば特に制約はない。しかしながら、不活性ガス雰囲気乾燥機や還元性ガス雰囲気乾燥機や真空乾燥機などの乾燥装置を用いることが好適であり、40℃以上150℃以下の温度で行えばよい。乾燥温度が高いほど、絶縁コート層を構成している金属アルコキシド加水分解重合物の脱水縮重合が進んで、より硬くてより緻密でより絶縁性の高い金属酸化物となる。さらなる向上を望むのであれば、不活性ガス雰囲気中や還元性ガス雰囲気や真空中で150℃を超えて450℃以下の加熱処理を施してもよい。なお、既に絶縁コート層が形成されているため、乾燥後には基本的に徐酸化処理を行う必要はない。
 絶縁コート処理により、晶析粉(合金粉)の絶縁性は大幅に高まる。例えば、絶縁コート処理していない鉄-ニッケル合金粉の圧粉体抵抗率(印加圧力:64MPa)は通常0.1Ω・cm以下であるのに対し、この鉄-ニッケル合金粉に厚み0.015μm(15nm)程度の二酸化けい素(SiO)からなる絶縁コート層を形成する絶縁コート処理を施すと、圧粉体抵抗率は10Ω・cm以上まで改善される。
 このようにして、本実施形態の鉄(Fe)-ニッケル(Ni)系合金粉を製造することができる。本実施形態の製造方法は、合金粉微細化の効果がある特定の核剤(ニッケルよりも貴な金属の水溶性塩)と、還元反応促進、球状化促進、及び表面平滑化の効果がある特定の錯化剤(ヒドロキシカルボン酸等)を用いる点に特徴があり、これにより製造後の合金粉の磁気特性を維持しつつ粉体特性を改善することが可能である。具体的には、製造後の合金粉の平均粒径を自在に制御でき、微細な合金粉を得ることが可能である。また得られる合金粉は、粒度分布が狭く、粒径が均一である。さらにこの合金粉は、球状であり、その表面は平滑である。そのため充填性に優れる。また限定される訳ではないが、ヒドラジンの自己分解抑制剤及び還元反応促進剤としての機能を有するアミン化合物を用いることで、ヒドラジンの使用量を抑えることができる。そのため、製造コスト低減につながるとともに、合金粉の粉体特性をより優れたものにすることが可能になる。
<<2.鉄-ニッケル系合金粉>>
 本実施形態の鉄(Fe)-ニッケル(Ni)系合金粉は、粒度分布が小さい。またこの合金粉の平均粒径を自在に制御することができる。そのため微細化が容易であるとともに、粒度分布を小さくすることが可能である。その上、球状であり表面平滑性が高く、充填性に優れている。このような利点を有する本実施形態の合金粉は、ノイズフィルタ、チョークコイル、インダクタ、及び電波吸収体などの様々な電子部品の用途に用いることができ、特にチョークコイルやインダクタのための圧粉コアの材料として好適である。
 合金粉の平均粒径は、0.10μm以上0.60μm以下が好ましく、0.10μm以上0.50μm以下がより好ましい。平均粒径を適度に大きくすることで、表面酸化による磁気特性の劣化や充填性の低下を抑制することができる。また平均粒径を適度に小さくすることで、渦電流損失を抑えることが可能である。
 合金粉は、粒度分布における変動係数(CV値)が25%以下であることが好ましく、20%以下であることがより好ましく、15%以下であることがさらに好ましい。ここで変動係数は、粒径バラツキの指標となるものであり、変動係数が小さいほど、粒度分布が狭いことを意味する。変動係数を小さく抑えることで、粗大粒子や、表面酸化の大きい過度に微細な粒子が少なくなるため、優れた磁気特性を維持しつつ渦電流損失の増大を防ぐことができる。なお変動係数(CV値)は、合金粉の個数粒度分布における平均粒径と標準偏差を求め、これらを用いて下記(14)式にしたがって算出される。
Figure JPOXMLDOC01-appb-M000029
 合金粉の圧粉体密度は合金粉の組成や粒径に依存し、鉄の含有割合が大きいと合金の比重が小さくなるために低下し、また粒径が小さいと粒子同士が充填しにくくなって同様に低下する傾向にある。そこで、平均粒径が0.3μm~0.5μmで、且つ、比重が8.2~8.3となる鉄含有割合が鉄(Fe)45モル%~60モル%の鉄-ニッケル系合金粉について言えば、その圧粉体密度(印加圧力:100MPa)は3.60g/cm以上が好ましく、3.70g/cm以上がより好ましい。また、平均粒径が0.3μm~0.5μmで、且つ、比重が7.9~8.0となる鉄含有割合が鉄(Fe)10モル%~20モル%の鉄-ニッケル系合金粉の場合であれば、その圧粉体密度(印加圧力:100MPa)は3.45g/cm以上が好ましく、3.55g/cm以上がより好ましい。合金粉の粒径について言えば、平均粒径が0.3μm~0.5μmから0.2μm~0.25μm程度にまで微細化すると、圧粉体密度(印加圧力:100MPa)は0.1g/cm程度は低下する傾向にある。圧粉体密度を高くすることで、磁気特性(磁束密度)に優れた圧粉コアを作製することが可能になる。合金粉の結晶子径は、30nm以下が好ましく、10nm以下がより好ましい。結晶子径を適度に小さく抑えることで、アモルファス軟磁性材料のように小さな保磁力が得られやすくなるという効果がある。合金粉の飽和磁束密度は1T(テスラ)以上が好ましく、1.2T以上がより好ましく、1.5T(テスラ)以上がさらに好ましい。純鉄粉の飽和磁束密度(1.95T~2.0T)以上であればより一層好ましい。合金粉の飽和磁束密度を高めることで、圧粉コアの磁気特性(磁束密度)を高めることができる。合金粉の保磁力は2000A/m以下が好ましく、1600A/m以下がより好ましく、1200A/m以下がさらに好ましい。合金粉の保磁力を抑えることで、ヒステリシス損失の増大を防ぐことが可能になる。
 前述のとおり、鉄イオン(または水酸化鉄)は、ニッケルイオン(または水酸化ニッケル)やコバルトイオン(または水酸化コバルト)よりも還元されにくいため、鉄の含有割合が大きい鉄(Fe)-ニッケル(Ni)系合金粉(例えば、合金粉の鉄含有量が60モル%超)では、粒子中心部はニッケルやコバルトがリッチな組成で、粒子表面に近くなるほど鉄リッチな組成という傾斜構造(あるいは、コア-シェル構造)が粒子内に形成されやすい。粒子内で組成が不均一になりやすい。
 このような粒子内の不均一組成が、合金粉の特性にどう作用するかだが、磁気特性(飽和磁束密度、保磁力など)については大きな影響を及ぼさない。それは、例えば、飽和磁束密度だと、鉄の含有割合に対して正の相関(鉄の含有割合が大きいほど飽和磁束密度も増加)を示すため、仮に粒子内で組成が不均一になって鉄の含有割合が平均値よりも大きい領域と平均値よりも小さい領域ができたとしても、飽和磁束密度についても平均値よりも高い領域と平均値よりも小さい領域ができて、合金粉全体で平均すれば組成が不均な場合とほとんど変わらなくなるからである。また、保持力については、そもそも鉄-ニッケル(-コバルト)系における組成依存性がそれほど大きくないため、粒子内で生じる程度の組成の不均一度合いでは、大きく変化しない。
 一方で、上記粒子内の不均一組成は、耐酸化性や熱膨張率などの化学特性・物理特性には影響を及ぼす可能性がある。このような事例として、耐酸化性については、例えば、傾斜構造により粒子表面がより鉄リッチな組成になった場合であれば酸化が進みやすくなって耐酸化性が悪化する恐れがあるが、前述の第3の態様により粒子表面をニッケルリッチな組成に改質できた場合は、逆に耐酸化性を向上できる可能性がある。次に、熱膨張率についてだが、鉄-ニッケル合金の熱膨張率は、飽和磁束密度の場合と異なり、鉄の含有割合に対して正や負の相関を示さず、鉄含有量が65モル%(64質量%)付近においてだけ非常に小さくなる特徴があり、この組成の低熱膨張率合金はインバー合金(鉄65モル%及びニッケル35モル%が主要成分)と呼ばれる。この組成の場合には、粒子内で組成が不均一だと、鉄含有量が65モル%よりも大きい領域と小さい領域のいずれにおいても熱膨張率は小さくならないので、鉄(Fe)-ニッケル(Ni)系合金粉をインバー合金粉として用いるような場合には、前述の高温熱処理などにより組成を均一化する必要がある。
 本発明者らの知る限り、このように優れた特性を有する鉄-ニッケル合金粉を簡便かつ安価に製造する方法は知られていない。例えば、特許文献3には湿式法でニッケル-鉄合金ナノ粒子を製造する方法が開示されているが、この方法では、ニッケルよりも貴な金属の水溶性塩からなる核剤や、ヒドロキシカルボン酸などからなる錯化剤は用いられていない。したがってこの方法で製造される合金粉は、その粉体特性(粒子径、粒度分布、球状性、粒子の表面性状)が劣ると推察される。実際、特許文献3には実施例サンプルたる微粉末の透過型電子顕微鏡写真が示されており(特許文献3の図1)、この写真から見積もるに、微粉末の粒度分布における変動係数(CV値)は約35%と大きい。
 その上、核剤や錯化剤を用いない特許文献3の方法では、微細な合金粉を得るために、多量の還元剤(ヒドラジン)を用いる必要がある。実際、特許文献3の実施例では、16.6gの塩化ニッケル六水和物、4.0gの塩化第一鉄四水和物、及び135gのヒドラジン位置水和物を原料に用いて合金ナノ粒子を製造している。この配合量から換算するに、鉄とニッケルの合計量に対してモル比で約30倍と多量のヒドラジンを配合していることになる。このように多量のヒドラジンを必要とする方法では、還元剤コストが大幅に増加してしまい、実際的ではない。
 本発明を、以下の実施例及び比較例を用いて更に詳細に説明する。しかしながら本発明は以下の実施例に限定されるものではない。
(1)鉄-ニッケル系合金粉の作製
 [実施例1]
 実施例1では、図5に示す手順にしたがい、鉄(Fe)50モル%及びニッケル(Ni)50モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル合金粉)を作製した。実施例1では、反応液を調製する際に、ウォーターバスを用いて加熱した金属塩原料溶液に常温の還元溶液を添加して混合した。
 <準備工程>
 水溶性鉄塩として塩化第一鉄4水和物(FeCl・4HO、分子量:198.81、和光純薬工業株式会社製試薬)を、水溶性ニッケル塩として塩化ニッケル6水和物(NiCl・6HO、分子量:237.69、和光純薬工業株式会社製試薬)をそれぞれ準備した。また核剤として塩化パラジウム(II)アンモニウム(別名:テトラクロロパラジウム(II)酸アンモニウム)((NHPdCl、分子量:284.31、和光純薬工業株式会社製試薬)を、錯化剤としてクエン酸三ナトリウム2水和物(Na(CO(COO))・2HO、分子量:294.1、和光純薬工業株式会社製試薬)を、還元剤として市販工業グレードの60質量%抱水ヒドラジン(エムジーシー大塚ケミカル株式会社製)を、pH調整剤として水酸化ナトリウム(NaOH、分子量:40.0、和光純薬工業株式会社製試薬)をそれぞれ準備した。60質量%抱水ヒドラジンは、抱水ヒドラジン(N・HO、分子量:50.06)を純水で1.67倍に希釈したものであった。さらにアミン化合物としてエチレンジアミン(EDA;HNCNH、分子量:60.1、和光純薬工業株式会社製試薬)を準備した。
 <晶析工程>
 (a)金属塩原料溶液の調製
 塩化第一鉄4水和物(水溶性鉄塩)、塩化ニッケル6水和物(水溶性ニッケル塩)、塩化パラジウム(II)アンモニウム(核剤)、クエン酸三ナトリウム2水和物(錯化剤)及び水を含む金属塩原料溶液を調製した。この際、得られた金属塩原料溶液において、磁性金属(Fe及びNi)合計量に対するパラジウム(Pd)量が0.037質量ppm(0.02モルppm)になるように秤量を行った。また磁性金属(Fe及びNi)合計量に対するクエン酸三ナトリウム量がモル比で0.362(36.2モル%)になるように秤量を行った。具体的には、塩化第一鉄4水和物:173.60g、塩化ニッケル6水和物:207.55g、塩化パラジウム(II)アンモニウム:9.93μg、及びクエン酸三ナトリウム2水和物:185.9gを純水:1200mLに溶解して金属塩原料溶液を調製した。
 (b)還元剤溶液の調製
 水酸化ナトリウム(pH調整剤)、ヒドラジン(還元剤)及び水を含む還元剤溶液を調製した。この際、後続する晶析工程で調製する反応液において、磁性金属(Fe及びNi)合計量に対するヒドラジン量がモル比で4.85になるように秤量を行った。また磁性金属(Fe及びNi)合計量に対する水酸化ナトリウム量がモル比で4.96になるように秤量を行った。具体的には、水酸化ナトリウム:346gを純水:850mLに溶解して水酸化ナトリウム溶液を調製し、この水酸化ナトリウム溶液に60質量%抱水ヒドラジン:707gを添加及び混合して還元剤溶液を調製した。
 (c)アミン化合物溶液の調製
 エチレンジアミン(アミン化合物)及び水を含むアミン化合物溶液を調製した。この際、後続する晶析工程で調製する反応液において、磁性金属(Fe及びNi)合計量に対するエチレンジアミン量がモル比で0.01(1.0モル%)と微量になるように秤量を行った。具体的には、エチレンジアミン:1.05gを純水:18mLに溶解して、アミン化合物溶液を調製した。
 (d)反応液の調製及び晶析粉の析出
 調製した金属塩原料溶液を、ウォーターバス内に設置した撹拌羽根付テフロン(登録商標)被覆ステンレス容器(反応槽)内に入れて、液温70℃になるように撹拌しながら加熱した。その後、ウォーターバス内で加熱されている金属塩原料溶液に液温25℃の還元剤溶液を混合時間10秒間で添加混合して、液温55℃の反応液を得た。反応液中の磁性金属(Fe及びNi)の濃度は32.3g/Lであった。これにより還元反応(晶析反応)が開始された(反応開始温度55℃)。図7に示すように、反応液の温度は、反応開始後からウォーターバスによる加熱で上昇し続け、反応開始から10分以降は液温70℃に保たれた(反応保持温度70℃)。反応液の色調は、反応開始(反応液調合)直後は暗緑色であったが、数分後には暗灰色に変化した。反応開始直後の色調が暗緑色になったのは、上記(6)式にしたがう反応が進行して、水酸化鉄(Fe(OH))と水酸化ニッケル(Ni(OH))の共沈物が反応液中に形成されたためと考えられる。また反応開始数分後に色調が暗灰色に変化したのは、核剤(パラジウム塩)の働きにより核発生が起こったためと考えられる。
 反応液の色調が暗灰色に変化した反応開始3分後から13分後までの10分間にかけて、アミン化合物溶液を反応液に滴下混合して、還元反応を進めた。これにより鉄-ニッケル晶析粉が反応液中に析出した。このときの反応液の色調は黒色であったが、反応開始から20分以内に反応液の上澄み液は透明になった。上記(6)式の還元反応が完了して、反応液中の鉄成分とニッケル成分の全てが金属鉄と金属ニッケルに還元されたと考えられる。反応完了後の反応液は、鉄-ニッケル晶析粉を含むスラリーであった。
 <回収工程>
 晶析工程で得られたスラリー状の反応液に、ろ過洗浄及び固液分離処理を施して、ケーキ状の鉄-ニッケル晶析粉を回収した。ろ過洗浄は、導電率が1μS/cmの純水を用いて、スラリーからろ過したろ液の導電率が10μS/cm以下になるまで行った。回収したケーキ状の晶析粉を50℃に設定した真空乾燥機中で乾燥した。そして、乾燥した晶析粉を真空中で35℃まで冷却した後、酸素1.0体積%を含む窒素ガスを供給して、晶析粉に徐酸化処理を施した。このようにして鉄-ニッケル合金粉を得た。得られた合金粉は、表面平滑な球状粒子で構成されていた。粒度分布はシャープであり、平均粒径は0.41μmであった。
 [実施例2]
 実施例2では、図3に示す手順にしたがい、鉄(Fe)50モル%、ニッケル(Ni)40モル%及びコバルト(Co)10モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル-コバルト合金粉)を作製した。実施例2では、反応液を調製する際に、ウォーターバスを用いて加熱した金属塩原料溶液に、まず常温のpH調整溶液(水酸化アルカリ溶液)を、続けて常温の還元剤溶液を添加して混合した。
 <準備工程>
 水溶性鉄塩、水溶性ニッケル塩、核剤、錯化剤、還元剤、pH調整剤、及びアミン化合物として、実施例1と同様の原料を準備した。また、それ以外に水溶性コバルト塩として、塩化コバルト6水和物(CoCl・6HO、分子量:237.93和光純薬工業株式会社製試薬)を準備した。
 <晶析工程>
 (a)金属塩原料溶液の調製
 塩化第一鉄4水和物(水溶性鉄塩)、塩化ニッケル6水和物(水溶性ニッケル塩)、塩化コバルト6水和物(水溶性コバルト塩)、塩化パラジウム(II)アンモニウム(核剤)、クエン酸三ナトリウム2水和物(錯化剤)及び水を含む金属塩原料溶液を調製した。この際、得られた金属塩原料溶液において、磁性金属(Fe、Ni及びCo)合計量に対してパラジウム(Pd)量が0.037質量ppm(0.02モルppm)になるように秤量を行った。また磁性金属(Fe、Ni及びCo)合計量に対するクエン酸三ナトリウム量がモル比で0.362(36.2モル%)になるように秤量を行った。具体的には、塩化第一鉄4水和物:173.60g、塩化ニッケル6水和物:166.04g、塩化コバルト6水和物:41.55g、塩化パラジウム(II)アンモニウム:9.93μg、及びクエン酸三ナトリウム2水和物:185.9gを純水:1200mLに溶解して金属塩原料溶液を調製した。
 (b)還元剤溶液の調製
 ヒドラジン(還元剤)及び水を含む還元剤溶液を調製した。この際、後続する晶析工程で調製する反応液中で、磁性金属(Fe、Ni及びCo)の合計量に対するモル比が4.85となるように、ヒドラジン配合量を設定した。具体的には、60質量%抱水ヒドラジン:707gを秤量して還元剤溶液を調製した。
 (c)pH調整溶液(水酸化アルカリ溶液)の調製
 水酸化ナトリウム(pH調整剤)及び水を含むpH調整溶液(水酸化アルカリ溶液)を調製した。この際、後続する晶析工程で調製する反応液において、磁性金属(Fe、Ni及びCo)合計量に対する水酸化ナトリウムの量がモル比で4.96になるように秤量を行った。具体的には、水酸化ナトリウム:346gを純水:850mLに溶解して、pH調整溶液を調製した。
 (d)アミン化合物溶液の調製
 エチレンジアミン(アミン化合物)及び水を含むアミン化合物溶液を調製した。この際、後続する晶析工程で調製する反応液において、磁性金属(Fe、Ni及びCo)合計量に対するエチレンジアミン配合量がモル比で0.01(1.0モル%)と微量になるように秤量を行った。具体的には、エチレンジアミン:1.05gを純水:18mLに溶解して、アミン化合物溶液を調製した。
 (e)反応液の調製及び晶析粉の析出
 調製した金属塩原料溶液を、ウォーターバス内に設置した撹拌羽根付テフロン(登録商標)被覆ステンレス容器(反応槽)内に入れて、液温70℃になるように撹拌しながら加熱した。その後、ウォーターバス内で加熱されている金属塩原料溶液に液温25℃のpH調整溶液(水酸化アルカリ溶液)を混合時間10秒間で添加混合し、さらに続けて液温25℃の還元剤溶液を混合時間10秒間で添加混合して、液温55℃の反応液を得た。反応液中の磁性金属(Fe、Ni及びCo)の濃度は32.3g/Lであった。これにより還元反応(晶析反応)が開始された(反応開始温度55℃)。反応液の温度は、反応開始後からウォーターバスによる加熱で上昇し続け、反応開始から10分以降は液温70℃に保たれた(反応保持温度70℃)。反応液の色調は、反応開始(反応液調合)直後は暗緑色であったが、数分後には暗灰色に変化した。反応開始直後の色調が暗緑色になったのは、上記(6)式にしたがう反応が進行して、水酸化鉄(Fe(OH))と水酸化ニッケル(Ni(OH))と水酸化コバルト(Co(OH))の共沈物が反応液中に形成されたためと考えられる。また反応開始数分後に色調が暗灰色に変化したのは、核剤(パラジウム塩)の働きにより核発生が起こったためと考えられる。
 反応液の色調が暗灰色に変化した反応開始後3分後から13分後までの10分間にかけて、アミン化合物溶液を反応液に滴下混合して、還元反応を進めた。これにより鉄-ニッケル-コバルト晶析粉が反応液中に析出した。このときの反応液の色調は黒色であったが、反応開始から20分以内に反応液の上澄み液は透明になった。上記(6)式の還元反応が完了して、反応液中の鉄成分とニッケル成分とコバルト成分の全てが金属鉄と金属ニッケルと金属コバルトに還元されたと考えられる。反応完了後の反応液は、鉄-ニッケル-コバルト晶析粉を含むスラリーであった。
 <回収工程>
 晶析工程で得られたスラリー状の反応液に、ろ過洗浄及び固液分離処理を施して、ケーキ状の鉄-ニッケル-コバルト晶析粉を回収した。ろ過洗浄は、導電率が1μS/cmの純水を用いて、スラリーからろ過したろ液の導電率が10μS/cm以下になるまで行った。回収したケーキ状の晶析粉を50℃に設定した真空乾燥機中で乾燥した。そして、乾燥した晶析粉を真空中で35℃まで冷却した後、酸素1.0体積%を含む窒素ガスを供給して、晶析粉に徐酸化処理を施した。このようにして鉄-ニッケル-コバルト合金粉を得た。得られた合金粉は、表面平滑な球状粒子で構成されていた。粒度分布はシャープであり、平均粒径は0.33μmであった。
 [実施例3]
 実施例3では、図5に示す手順にしたがい、鉄(Fe)50モル%及びニッケル(Ni)50モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル合金粉)を作製した。実施例3では、反応液を調製する際に、ウォーターバスを用いて加熱した金属塩原料溶液に常温の還元溶液を添加して混合した。
 <準備工程>
 水溶性鉄塩、水溶性ニッケル塩、核剤、還元剤、pH調整剤、及びアミン化合物として、実施例1と同様の原料を準備した。また錯化剤として、クエン酸三ナトリウム2水和物の代わりに、酒石酸((CH(OH)COOH)、分子量:150.09、和光純薬工業株式会社製試薬)を準備した。
 <晶析工程>
 (a)金属塩原料溶液の調製
 塩化第一鉄4水和物(水溶性鉄塩)、塩化ニッケル6水和物(水溶性ニッケル塩)、塩化パラジウム(II)アンモニウム(核剤)、酒石酸(錯化剤)及び水を含む金属塩原料溶液を調製した。この際、得られた金属塩原料溶液において、磁性金属(Fe及びNi)合計量に対してパラジウム(Pd)量が0.037質量ppm(0.02モルppm)になるように秤量を行った。また磁性金属(Fe及びNi)合計量に対する酒石酸量がモル比で0.200(20.0モル%)になるように秤量を行った。具体的には、塩化第一鉄4水和物:173.60g、塩化ニッケル6水和物:207.55g、塩化パラジウム(II)アンモニウム:9.93μg、及び酒石酸:52.4gを純水:1200mLに溶解して金属塩原料溶液を調製した。
 (b)還元剤溶液の調製
 水酸化ナトリウム(pH調整剤)、ヒドラジン(還元剤)及び水を含む還元剤溶液を調製した。この際、後続する晶析工程で調製する反応液において、磁性金属(Fe及びNi)合計量に対するヒドラジン量がモル比で4.85になるように秤量を行った。また磁性金属(Fe及びNi)合計量に対する水酸化ナトリウム量がモル比で4.96になるように秤量を行った。具体的には、水酸化ナトリウム:346gを純水:850mLに溶解して水酸化ナトリウム溶液を調製し、この水酸化ナトリウム溶液に60質量%抱水ヒドラジン:707gを添加及び混合して還元剤溶液を調製した。
 (c)アミン化合物溶液の調製
 実施例1と同様にしてアミン化合物溶液を調製した。
 (d)反応液の調製及び晶析粉の析出
 上記金属塩原料溶液、還元剤溶液、及びアミン化合物溶液を用いて、実施例1と同様にして反応液の調製及び晶析粉の析出を行った。反応液中の磁性金属(Fe及びNi)の濃度は33.0g/Lであった。
 <回収工程>
 晶析工程で得られたスラリー状の反応液から、実施例1と同様にして鉄-ニッケル系合金粉(鉄-ニッケル合金粉)を作製した。得られた合金粉は、表面平滑な球状粒子で構成されていた。粒度分布はシャープであり、平均粒径は0.40μmであった。
 [実施例4]
 実施例4では、図5に示す手順にしたがい、鉄(Fe)56モル%及びニッケル(Ni)44モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル合金粉)を作製した。実施例4では、反応液を調製する際に、ウォーターバスを用いて加熱した還元溶液に常温の金属塩原料溶液を添加して混合した。
 <準備工程>
 核剤、還元剤、pH調整剤、錯化剤、及びアミン化合物として、実施例1と同様の原料を準備した。また、水溶性鉄塩として、塩化第一鉄4水和物の代わりに、硫酸第一鉄7水和物(FeSO・7HO、分子量:278.05、和光純薬工業株式会社製試薬)を、水溶性ニッケル塩として、塩化ニッケル6水和物の代わりに、硫酸ニッケル6水和物(NiSO・6HO、分子量:262.85、和光純薬工業株式会社製試薬)を準備した。
 <晶析工程>
 (a)金属塩原料溶液の調製
 硫酸第一鉄7水和物(水溶性鉄塩)、硫酸ニッケル6水和物(水溶性ニッケル塩)、塩化パラジウム(II)アンモニウム(核剤)、クエン酸三ナトリウム2水和物(錯化剤)及び水を含む金属塩原料溶液を調製した。この際、得られた金属塩原料溶液において、磁性金属(Fe及びNi)合計量に対してパラジウム(Pd)量が0.37質量ppm(0.2モルppm)になるように秤量を行った。また磁性金属(Fe及びNi)合計量に対するクエン酸三ナトリウム2水和物量がモル比で0.318(31.8モル%)になるように秤量を行った。具体的には、硫酸第一鉄7水和物:272.0g、硫酸ニッケル6水和物:202.0g、塩化パラジウム(II)アンモニウム:99.3μg、及びクエン酸三ナトリウム2水和物:163.5gを純水:950mLに溶解して金属塩原料溶液を調製した。
 (b)還元剤溶液の調製
 水酸化ナトリウム(pH調整剤)、ヒドラジン(還元剤)及び水を含む還元剤溶液を調製した。この際、後続する晶析工程で調製する反応液において、磁性金属(Fe及びNi)合計量に対するヒドラジン量がモル比で6.41になるように秤量を行った。また磁性金属(Fe及びNi)合計量に対する水酸化ナトリウム量がモル比で4.67になるように秤量を行った。具体的には、水酸化ナトリウム:326gを純水:800mLに溶解して水酸化ナトリウム溶液を調製し、この水酸化ナトリウム溶液に60質量%抱水ヒドラジン:934gを添加及び混合して還元剤溶液を調製した。
 (c)アミン化合物溶液の調製
 実施例1と同様にしてアミン化合物溶液を調製した。
 (d)反応液の調製及び晶析粉の析出
 調製した還元剤溶液を、ウォーターバス内に設置した撹拌羽根付テフロン(登録商標)被覆ステンレス容器(反応槽)内に入れて、液温70℃になるように撹拌しながら加熱した。その後、ウォーターバスで加熱されている還元剤溶液に液温25℃の金属塩原料溶液を混合時間10秒間で添加混合して、液温59℃の反応液を得た。反応液中の磁性金属(Fe及びNi)の濃度は32.6g/Lであった。これにより還元反応(晶析反応)が開始された(反応開始温度59℃)。反応液の温度は、反応開始後からウォーターバスによる加熱で上昇し続け、反応開始から10分以降は液温70℃に保たれた(反応保持温度70℃)。反応液の色調は、反応開始(反応液調合)直後は暗緑色であったが、数分後には暗灰色に変化した。反応開始直後の色調が暗緑色になったのは、上記(6)式にしたがう反応が進行して、水酸化鉄(Fe(OH))と水酸化ニッケル(Ni(OH))の共沈物が反応液中に形成されたためと考えられる。また反応開始数分後に色調が暗灰色に変化したのは、核剤(パラジウム塩)の働きにより核発生が起こったためと考えられる。
 反応液の色調が暗灰色に変化した反応開始3分後から13分後までの10分間にかけて、アミン化合物溶液を反応液に滴下混合して、還元反応を進めた。これにより鉄-ニッケル晶析粉が反応液中に析出した。このときの反応液の色調は黒色であったが、反応開始から30分以内に反応液の上澄み液は透明になった。上記(6)式の還元反応が完了して、反応液中の鉄成分とニッケル成分の全てが金属鉄と金属ニッケルに還元されたと考えられる。反応完了後の反応液は、鉄-ニッケル晶析粉を含むスラリーであった。
 <回収工程>
 晶析工程で得られたスラリー状の反応液に、ろ過洗浄及び固液分離処理を施して、ケーキ状の鉄-ニッケル晶析粉を回収した。ろ過洗浄は、導電率が1μS/cmの純水を用いて、スラリーからろ過したろ液の導電率が10μS/cm以下になるまで行った。回収したケーキ状の晶析粉を50℃に設定した真空乾燥機中で乾燥した。そして、乾燥した晶析粉を真空中で35℃まで冷却した後、酸素1.0体積%を含む窒素ガスを供給して、晶析粉に徐酸化処理を施した。このようにして鉄-ニッケル合金粉を得た。得られた合金粉は、表面平滑な球状粒子で構成されていた。粒度分布はシャープであり、平均粒径は0.38μmであった。
 [実施例5]
 実施例5では、図6に示す手順にしたがい、ニッケルリッチな表面組成を有する鉄(Fe)51モル%及びニッケル(Ni)49モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル合金粉)を作製した。この際、晶析工程の終盤で追加原料液を添加して混合した。具体的には、まずは還元剤としてのヒドラジンの配合量が異なる以外は実施例4と同様にして鉄(Fe)56モル%及びニッケル(Ni)44モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル合金粉)の晶析を進め、そしてこの晶析の途中で、反応液に追加原料液としての水溶性ニッケル塩水溶液を添加混合した。
 <準備工程>
 水溶性鉄塩、水溶性ニッケル塩、核剤、還元剤、pH調整剤、錯化剤、及びアミン化合物として、実施例4と同様の原料を準備した。
 <晶析工程>
 (a)金属塩原料溶液の調製
 硫酸第一鉄7水和物(水溶性鉄塩)、硫酸ニッケル6水和物(水溶性ニッケル塩)、塩化パラジウム(II)アンモニウム(核剤)、クエン酸三ナトリウム2水和物(錯化剤)及び水を含む金属塩原料溶液を調製した。この際、得られた金属塩原料溶液において、磁性金属(Fe及びNi)合計量に対してパラジウム(Pd)量が0.37質量ppm(0.2モルppm)になるように秤量を行った。また磁性金属(Fe及びNi)合計量に対するクエン酸三ナトリウム2水和物がモル比で0.318(31.8モル%)になるように秤量を行った。具体的には、硫酸第一鉄7水和物:272.0g、硫酸ニッケル6水和物:202.0g、塩化パラジウム(II)アンモニウム:99.3μg、及びクエン酸三ナトリウム2水和物:163.5gを純水:950mLに溶解して金属塩原料溶液を調製した。
 (b)還元剤溶液の調製
 水酸化ナトリウム(pH調整剤)、ヒドラジン(還元剤)及び水を含む還元剤溶液を調製した。この際、後続する晶析工程で調製する反応液において、反応開始時の磁性金属(Fe及びNi)合計量に対するヒドラジン量がモル比で4.85(追加原料液添加時の磁性金属(Fe及びNi)合計量に対してはモル比で4.41)になるように秤量を行った。また反応開始時の磁性金属(Fe及びNi)合計量に対する水酸化ナトリウム量がモル比で4.67(追加原料液添加時の磁性金属(Fe及びNi)合計量に対してはモル比で4.24)になるように秤量を行った。具体的には、水酸化ナトリウム:326gを純水:800mLに溶解して水酸化ナトリウム溶液を調製し、この水酸化ナトリウム溶液に60質量%抱水ヒドラジン:707gを添加及び混合して還元剤溶液を調製した。
 (c)アミン化合物溶液の調製
 エチレンジアミン(アミン化合物)及び水を含むアミン化合物溶液を調製した。この際、後続する晶析工程における反応液において、追加原料液添加後の磁性金属(Fe及びNi)合計量に対するエチレンジアミン量がモル比で0.01(1.0モル%)と微量になるように秤量を行った。具体的には、エチレンジアミン:1.16gを純水:18mLに溶解して、アミン化合物溶液を調製した。
 (d)追加原料液の調製
 硫酸ニッケル6水和物(水溶性ニッケル塩)及び水を含む追加原料液を調製した。この際、得られた追加原料液中の磁性金属(Ni)量は0.175モルで、金属塩原料溶液中の磁性金属(Fe及びNi)合計量の1.747モルに対して0.10倍となるように秤量を行った。具体的には、硫酸ニッケル6水和物:46.0gを純水:200mLに溶解して追加原料液を調製した。
 (e)反応液の調製及び晶析粉の析出
 調製した還元剤溶液を、ウォーターバス内に設置した撹拌羽根付テフロン(登録商標)被覆ステンレス容器(反応槽)内に入れて、液温70℃になるように撹拌しながら加熱した。その後、ウォーターバスで加熱されている還元剤溶液に液温25℃の金属塩原料溶液を混合時間10秒間で添加混合して、液温57℃の反応液を得た。反応液中の磁性金属(Fe及びNi)の濃度は35.2g/Lであった。これにより還元反応(晶析反応)が開始された(反応開始温度57℃)。反応液の温度は、反応開始後からウォーターバスによる加熱で上昇し続け、反応開始から10分以降は液温70℃に保たれた(反応保持温度70℃)。反応液の色調は、反応開始(反応液調合)直後は暗緑色であったが、数分後には暗灰色に変化した。反応開始直後の色調が暗緑色になったのは、上記(6)式にしたがう反応が進行して、水酸化鉄(Fe(OH))と水酸化ニッケル(Ni(OH))の共沈物が反応液中に形成されたためと考えられる。また反応開始数分後に色調が暗灰色に変化したのは、核剤(パラジウム塩)の働きにより核発生が起こったためと考えられる。
 反応液の色調が暗灰色に変化した反応開始3分後から13分後までの10分間にかけて、アミン化合物溶液を反応液に滴下混合して、還元反応を進めた。これにより鉄-ニッケル晶析粉が反応液中に析出した。反応開始11分後から16分後にかけて追加原料液を少しずつ滴下しながら添加混合して、還元されにくい鉄イオン(または水酸化鉄)の還元を促進させながら、析出した鉄-ニッケル晶析粉の表面がよりニッケルリッチ組成となるように還元反応を進めた。追加原料液添加後の反応液中の磁性金属(Fe及びNi)の濃度は32.8g/Lであった。このときの反応液の色調は黒色であったが、反応開始から30分以内に反応液の上澄み液は透明になった。還元反応が全て完了して、反応液中の鉄成分とニッケル成分の全てが金属鉄と金属ニッケルに還元されたと考えられる。反応完了後の反応液は、鉄-ニッケル晶析粉を含むスラリーであった。
 <回収工程>
 晶析工程で得られたスラリー状の反応液に、ろ過洗浄及び固液分離処理を施して、ケーキ状の鉄-ニッケル晶析粉を回収した。ろ過洗浄は、導電率が1μS/cmの純水を用いて、スラリーからろ過したろ液の導電率が10μS/cm以下になるまで行った。回収したケーキ状の晶析粉を50℃に設定した真空乾燥機中で乾燥した。そして、乾燥した晶析粉を真空中で35℃まで冷却した後、酸素1.0体積%を含む窒素ガスを供給して、晶析粉に徐酸化処理を施した。このようにして鉄-ニッケル合金粉を得た。得られた合金粉は、表面平滑な球状粒子で構成されていた。粒度分布はシャープであり、平均粒径は0.40μmであった。
 [実施例6]
 実施例6では、実施例1で得られた晶析粉に対し、超小型ジェット粉砕機(日本ニューマチック株式会社、JKE-30、)を用い、解砕ガス圧力0.5MPaで、乾式解砕であるスパイラルジェット解砕処理を施して、鉄(Fe)50モル%及びニッケル(Ni)50モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル合金粉)を作製した。得られた合金粉は、実施例1と同様にシャープな粒度分布であり、平均粒径は0.41μmであった。またスパイラルジェット解砕処理により凝集粒子が低減して充填性が向上(圧粉体密度が上昇)するとともに、表面の凹凸が減って非常に表面平滑な球状粒子で構成されていた。
 [実施例7]
 実施例7では、以下の通り、晶析工程に引続き、回収工程途中で、乾燥前のスラリー状の晶析粉に湿式解砕である高圧流体衝突解砕処理を施して、鉄(Fe)50モル%及びニッケル(Ni)50モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル合金粉)を作製した。
 <回収工程(解砕工程を含む)>
 実施例1と同様の晶析工程で得られた鉄-ニッケル晶析粉を含むスラリー状の反応液を、ろ過洗浄した後、導電率が1μS/cmの純水を用いて鉄-ニッケル晶析粉の濃度20質量%の洗浄晶析粉スラリーを調製した。上記ろ過洗浄は、導電率が1μS/cmの純水を用いて、スラリーからろ過したろ液の導電率が10μS/cm以下になるまで行った。上記洗浄晶析粉スラリーを、高圧流体衝突解砕装置(スギノマシン製;圧力:200MPa)に2パス通過させて解砕処理を施した後、固液分離処理を施して、ケーキ状の鉄-ニッケル晶析粉を回収した。回収したケーキ状の晶析粉を50℃に設定した真空乾燥機中で乾燥した。そして、乾燥した晶析粉を真空中で35℃まで冷却した後、酸素1.0体積%を含む窒素ガスを供給して、晶析粉に徐酸化処理を施して鉄-ニッケル合金粉を得た。得られた合金粉は、実施例1と同様にシャープな粒度分布であり、平均粒径は0.41μmであった。また高圧流体衝突解砕処理により凝集粒子が低減して充填性が向上(圧粉体密度が上昇)するとともに、表面の凹凸が減って非常に表面平滑な球状粒子で構成されていた。
 [実施例8]
 実施例8では、図6に示す手順にしたがって得られた晶析粉に高温熱処理を施して、鉄(Fe)65モル%及びニッケル(Ni)35モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル合金粉)を作製した。実施例8では、反応液を調製する際に、ウォーターバスを用いて加熱した還元溶液に常温の金属塩原料溶液を添加して混合した。
 <準備工程>
 水溶性鉄塩、水溶性ニッケル塩、核剤、還元剤、pH調整剤、錯化剤、及びアミン化合物として、実施例4と同様の原料を準備した。
 <晶析工程>
 (a)金属塩原料溶液の調製
 硫酸第一鉄7水和物(水溶性鉄塩)、硫酸ニッケル6水和物(水溶性ニッケル塩)、塩化パラジウム(II)アンモニウム(核剤)、クエン酸三ナトリウム2水和物(錯化剤)及び水を含む金属塩原料溶液を調製した。この際、得られた金属塩原料溶液において、磁性金属(Fe及びNi)合計量に対してパラジウム(Pd)量が2.81質量ppm(1.50モルppm)になるように秤量を行った。また磁性金属(Fe及びNi)合計量に対するクエン酸三ナトリウム2水和物がモル比で0.724(72.4モル%)になるように秤量を行った。具体的には、硫酸第一鉄7水和物:318.1g、硫酸ニッケル6水和物:161.9g、塩化パラジウム(II)アンモニウム:750.5μg、及びクエン酸三ナトリウム2水和物:374.7gを純水:950mLに溶解して金属塩原料溶液を調製した。
 (b)還元剤溶液の調製
 水酸化ナトリウム(pH調整剤)、ヒドラジン(還元剤)及び水を含む還元剤溶液を調製した。この際、後続する晶析工程で調製する反応液において、反応開始時の磁性金属(Fe及びNi)合計量に対するヒドラジン量がモル比で8.98になるように秤量を行った。また反応開始時の磁性金属(Fe及びNi)合計量に対する水酸化ナトリウム量がモル比で7.07になるように秤量を行った。具体的には、水酸化ナトリウム:497.5gを純水:1218mLに溶解して水酸化ナトリウム溶液を調製し、この水酸化ナトリウム溶液に60質量%抱水ヒドラジン:1318gを添加及び混合して還元剤溶液を調製した。
 (c)アミン化合物溶液の調製
 エチレンジアミン(アミン化合物)及び水を含むアミン化合物溶液を調製した。この際、後続する晶析工程における反応液において、追加原料液添加後の磁性金属(Fe及びNi)合計量に対するエチレンジアミン量がモル比で0.01(1.0モル%)と微量になるように秤量を行った。具体的には、エチレンジアミン:1.06gを純水:18mLに溶解して、アミン化合物溶液を調製した。
 (d)反応液の調製及び晶析粉の析出
 調製した還元剤溶液を、ウォーターバス内に設置した撹拌羽根付テフロン(登録商標)被覆ステンレス容器(反応槽)内に入れて、液温80℃になるように撹拌しながら加熱した。その後、ウォーターバスで加熱されている還元剤溶液に液温25℃の金属塩原料溶液を混合時間10秒間で添加混合して、液温71℃の反応液を得た。反応液中の磁性金属(Fe及びNi)の濃度は25.0g/Lであった。これにより還元反応(晶析反応)が開始された(反応開始温度71℃)。反応液の温度は、反応開始後からウォーターバスによる加熱で上昇し続け、反応開始から10分以降は液温80℃に保たれた(反応保持温度80℃)。反応液の色調は、反応開始(反応液調合)直後は暗緑色であったが、数分後には暗灰色に変化した。反応開始直後の色調が暗緑色になったのは、上記(6)式にしたがう反応が進行して、水酸化鉄(Fe(OH))と水酸化ニッケル(Ni(OH))の共沈物が反応液中に形成されたためと考えられる。また反応開始数分後に色調が暗灰色に変化したのは、核剤(パラジウム塩)の働きにより核発生が起こったためと考えられる。
 反応液の色調が暗灰色に変化した反応開始3分後から13分後までの10分間にかけて、アミン化合物溶液を反応液に滴下混合して、還元反応を進めた。これにより鉄-ニッケル晶析粉が反応液中に析出した。このときの反応液の色調は黒色であったが、反応開始から40分以内に反応液の上澄み液は透明になった。還元反応が全て完了して、反応液中の鉄成分とニッケル成分の全てが金属鉄と金属ニッケルに還元されたと考えられる。反応完了後の反応液は、鉄-ニッケル晶析粉を含むスラリーであった。
 <回収工程>
 晶析工程で得られたスラリー状の反応液に、ろ過洗浄及び固液分離処理を施して、ケーキ状の鉄-ニッケル晶析粉を回収した。ろ過洗浄は、導電率が1μS/cmの純水を用いて、スラリーからろ過したろ液の導電率が10μS/cm以下になるまで行った。回収したケーキ状の晶析粉を50℃に設定した真空乾燥機中で乾燥した。そして、乾燥した晶析粉を真空中で35℃まで冷却した後、酸素1.0体積%を含む窒素ガスを供給して、晶析粉に徐酸化処理を施した。
 <高温熱処理工程>
 このように得られた晶析粉に対し、窒素雰囲気中で350℃で60分間加熱する高温熱処理を施して、鉄(Fe)65モル%及びニッケル(Ni)35モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル合金粉)を作製した。得られた合金粉は、実施例1と同様にシャープな粒度分布であり、平均粒径は0.27μmであった。また上記高温熱処理により、鉄(Fe)-ニッケル(Ni)系合金粒子内でFeとNiの拡散が促進されて粒子内の組成均一性が向上し、粒子内での特性バラツキが低減された。
 [実施例9]
 実施例9では、図6に示す手順にしたがい、ニッケルリッチな表面組成を有する鉄(Fe)65モル%及びニッケル(Ni)35モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル合金粉)を作製した。この際、晶析工程の途中で追加原料液を添加して混合した。具体的には、ウォーターバスを用いて加熱した還元溶液に常温の金属塩原料溶液を添加混合し、反応液を調製して、まずは鉄(Fe)67.4モル%及びニッケル(Ni)32.6モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル合金粉)の晶析を進めた。そしてこの晶析の途中で、反応液に追加原料液としての水溶性ニッケル塩水溶液を添加混合した。
 <準備工程>
 水溶性鉄塩、水溶性ニッケル塩、核剤、還元剤、pH調整剤、錯化剤、及びアミン化合物として、実施例4と同様の原料を準備した。
 <晶析工程>
 (a)金属塩原料溶液の調製
 硫酸第一鉄7水和物(水溶性鉄塩)、硫酸ニッケル6水和物(水溶性ニッケル塩)、塩化パラジウム(II)アンモニウム(核剤)、クエン酸三ナトリウム2水和物(錯化剤)及び水を含む金属塩原料溶液を調製した。この際、得られた金属塩原料溶液において、磁性金属(Fe及びNi)合計量に対してパラジウム(Pd)量が0.97質量ppm(0.52モルppm)になるように秤量を行った。また磁性金属(Fe及びNi)合計量に対するクエン酸三ナトリウム2水和物がモル比で0.750(75.0モル%)になるように秤量を行った。具体的には、硫酸第一鉄7水和物:318.1g、硫酸ニッケル6水和物:145.7g、塩化パラジウム(II)アンモニウム:250.0μg、及びクエン酸三ナトリウム2水和物:374.7gを純水:500mLに溶解して金属塩原料溶液を調製した。
 (b)還元剤溶液の調製
 水酸化ナトリウム(pH調整剤)、ヒドラジン(還元剤)及び水を含む還元剤溶液を調製した。この際、後続する晶析工程で調製する反応液において、反応開始時の磁性金属(Fe及びNi)合計量に対するヒドラジン量がモル比で7.62(追加原料液添加時の磁性金属(Fe及びNi)合計量に対してはモル比で7.36)になるように秤量を行った。また反応開始時の磁性金属(Fe及びNi)合計量に対する水酸化ナトリウム量がモル比で7.33(追加原料液添加時の磁性金属(Fe及びNi)合計量に対してはモル比で7.07)になるように秤量を行った。具体的には、水酸化ナトリウム:497.5gを純水:1218mLに溶解して水酸化ナトリウム溶液を調製し、この水酸化ナトリウム溶液に60質量%抱水ヒドラジン:1080gを添加及び混合して還元剤溶液を調製した。
 (c)アミン化合物溶液の調製
 エチレンジアミン(アミン化合物)及び水を含むアミン化合物溶液を調製した。この際、後続する晶析工程における反応液において、追加原料液添加後の磁性金属(Fe及びNi)合計量に対するエチレンジアミン量がモル比で0.01(1.0モル%)と微量になるように秤量を行った。具体的には、エチレンジアミン:1.06gを純水:18mLに溶解して、アミン化合物溶液を調製した。
 (d)追加原料液の調製
 硫酸ニッケル6水和物(水溶性ニッケル塩)及び水を含む追加原料液を調製した。この際、得られた追加原料液中の磁性金属(Ni)量は0.0616モルで、金属塩原料溶液中の磁性金属(Fe及びNi)合計量の1.760モルに対して0.035倍となるように秤量を行った。具体的には、硫酸ニッケル6水和物:16.2gを純水:200mLに溶解して追加原料液を調製した。
 (e)反応液の調製及び晶析粉の析出
 調製した還元剤溶液を、ウォーターバス内に設置した撹拌羽根付テフロン(登録商標)被覆ステンレス容器(反応槽)内に入れて、液温80℃になるように撹拌しながら加熱した。その後、ウォーターバスで加熱されている還元剤溶液に液温25℃の金属塩原料溶液を混合時間10秒間で添加混合して、液温75℃の反応液を得た。反応液中の磁性金属(Fe及びNi)の濃度は29.1g/Lであった。これにより還元反応(晶析反応)が開始された(反応開始温度75℃)。反応液の温度は、反応開始後からウォーターバスによる加熱で上昇し続け、反応開始から10分以降は液温80℃に保たれた(反応保持温度80℃)。反応液の色調は、反応開始(反応液調合)直後は暗緑色であったが、数分後には暗灰色に変化した。反応開始直後の色調が暗緑色になったのは、上記(6)式にしたがう反応が進行して、水酸化鉄(Fe(OH))と水酸化ニッケル(Ni(OH))の共沈物が反応液中に形成されたためと考えられる。また反応開始数分後に色調が暗灰色に変化したのは、核剤(パラジウム塩)の働きにより核発生が起こったためと考えられる。
 反応液の色調が暗灰色に変化した反応開始3分後から13分後までの10分間にかけて、アミン化合物溶液を反応液に滴下混合して、還元反応を進めた。これにより鉄-ニッケル晶析粉が反応液中に析出した。反応開始25分後から35分後にかけて追加原料液を少しずつ滴下しながら添加混合して、還元されにくい鉄イオン(または水酸化鉄)の還元を促進させながら、析出した鉄-ニッケル晶析粉の表面がよりニッケルリッチ組成となるように還元反応を進めた。追加原料液添加後の反応液中の磁性金属(Fe及びNi)の濃度は28.4g/Lであった。このときの反応液の色調は黒色であったが、反応開始から40分以内に反応液の上澄み液は透明になった。還元反応が全て完了して、反応液中の鉄成分とニッケル成分の全てが金属鉄と金属ニッケルに還元されたと考えられる。反応完了後の反応液は、鉄-ニッケル晶析粉を含むスラリーであった。
 <回収工程>
 晶析工程で得られたスラリー状の反応液に、ろ過洗浄及び固液分離処理を施して、ケーキ状の鉄-ニッケル晶析粉を回収した。ろ過洗浄は、導電率が1μS/cmの純水を用いて、スラリーからろ過したろ液の導電率が10μS/cm以下になるまで行った。回収したケーキ状の晶析粉を50℃に設定した真空乾燥機中で乾燥した。そして、乾燥した晶析粉を真空中で35℃まで冷却した後、酸素1.0体積%を含む窒素ガスを供給して、晶析粉に徐酸化処理を施した。このようにして鉄-ニッケル合金粉を得た。得られた合金粉は、表面平滑な球状粒子で構成されていた。粒度分布はシャープであり、平均粒径は0.39μmであった。
 [実施例10]
 実施例10では、図6に示す手順にしたがい、鉄含有割合の大きな組成の鉄(Fe)80モル%及びニッケル(Ni)20モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル合金粉)を作製した。この際、晶析工程の途中で追加原料液を添加して混合した。具体的には、ウォーターバスを用いて加熱した還元溶液に常温の金属塩原料溶液を添加混合し、反応液を調製して、まずは鉄(Fe)83.3モル%及びニッケル(Ni)16.7モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル合金粉)の晶析を進めた。そしてこの晶析の途中で、反応液に追加原料液としての水溶性ニッケル塩水溶液を添加混合した。
 <準備工程>
 水溶性鉄塩、水溶性ニッケル塩、核剤、還元剤、pH調整剤、錯化剤、及びアミン化合物として、実施例4と同様の原料を準備した。
 <晶析工程>
 (a)金属塩原料溶液の調製
 硫酸第一鉄7水和物(水溶性鉄塩)、硫酸ニッケル6水和物(水溶性ニッケル塩)、塩化パラジウム(II)アンモニウム(核剤)、クエン酸三ナトリウム2水和物(錯化剤)及び水を含む金属塩原料溶液を調製した。この際、得られた金属塩原料溶液において、磁性金属(Fe及びNi)合計量に対してパラジウム(Pd)量が0.79質量ppm(0.42モルppm)になるように秤量を行った。また磁性金属(Fe及びNi)合計量に対するクエン酸三ナトリウム2水和物がモル比で0.754(75.4モル%)になるように秤量を行った。具体的には、硫酸第一鉄7水和物:394.3g、硫酸ニッケル6水和物:74.6g、塩化パラジウム(II)アンモニウム:201.6μg、及びクエン酸三ナトリウム2水和物:377.5gを純水:836mLに溶解して金属塩原料溶液を調製した。
 (b)還元剤溶液の調製
 水酸化ナトリウム(pH調整剤)、ヒドラジン(還元剤)及び水を含む還元剤溶液を調製した。この際、後続する晶析工程で調製する反応液において、反応開始時の磁性金属(Fe及びNi)合計量に対するヒドラジン量がモル比で9.40(追加原料液添加時の磁性金属(Fe及びNi)合計量に対してはモル比で9.02)になるように秤量を行った。また反応開始時の磁性金属(Fe及びNi)合計量に対する水酸化ナトリウム量がモル比で7.37(追加原料液添加時の磁性金属(Fe及びNi)合計量に対してはモル比で7.07)になるように秤量を行った。具体的には、水酸化ナトリウム:501.3gを純水:1228mLに溶解して水酸化ナトリウム溶液を調製し、この水酸化ナトリウム溶液に60質量%抱水ヒドラジン:1334gを添加及び混合して還元剤溶液を調製した。
 (c)アミン化合物溶液の調製
 エチレンジアミン(アミン化合物)及び水を含むアミン化合物溶液を調製した。この際、後続する晶析工程における反応液において、追加原料液添加後の磁性金属(Fe及びNi)合計量に対するエチレンジアミン量がモル比で0.01(1.0モル%)と微量になるように秤量を行った。具体的には、エチレンジアミン:1.07gを純水:18mLに溶解して、アミン化合物溶液を調製した。
 (d)追加原料液の調製
 硫酸ニッケル6水和物(水溶性ニッケル塩)及び水を含む追加原料液を調製した。この際、得られた追加原料液中の磁性金属(Ni)量は0.0709モルで、金属塩原料溶液中の磁性金属(Fe及びNi)合計量の1.773モルに対して0.04倍となるように秤量を行った。具体的には、硫酸ニッケル6水和物:18.64gを純水:200mLに溶解して追加原料液を調製した。
 (e)反応液の調製及び晶析粉の析出
 調製した還元剤溶液を、ウォーターバス内に設置した撹拌羽根付テフロン(登録商標)被覆ステンレス容器(反応槽)内に入れて、液温80℃になるように撹拌しながら加熱した。その後、ウォーターバスで加熱されている還元剤溶液に液温25℃の金属塩原料溶液を混合時間10秒間で添加混合して、液温71℃の反応液を得た。反応液中の磁性金属(Fe及びNi)の濃度は24.5g/Lであった。これにより還元反応(晶析反応)が開始された(反応開始温度71℃)。反応液の温度は、反応開始後からウォーターバスによる加熱で上昇し続け、反応開始から10分以降は液温80℃に保たれた(反応保持温度80℃)。反応液の色調は、反応開始(反応液調合)直後は暗緑色であったが、数分後には暗灰色に変化した。反応開始直後の色調が暗緑色になったのは、上記(6)式にしたがう反応が進行して、水酸化鉄(Fe(OH))と水酸化ニッケル(Ni(OH))の共沈物が反応液中に形成されたためと考えられる。また反応開始数分後に色調が暗灰色に変化したのは、核剤(パラジウム塩)の働きにより核発生が起こったためと考えられる。
 反応液の色調が暗灰色に変化した反応開始3分後から13分後までの10分間にかけて、アミン化合物溶液を反応液に滴下混合して、還元反応を進めた。これにより鉄-ニッケル晶析粉が反応液中に析出した。反応開始8分後から18分後にかけて追加原料液を少しずつ滴下しながら添加混合して、還元されにくい鉄イオン(または水酸化鉄)の還元を促進させながら、析出した鉄-ニッケル晶析粉の表面がよりニッケルリッチ組成となるように還元反応を進めた。追加原料液添加後の反応液中の磁性金属(Fe及びNi)の濃度は24.2g/Lであった。このときの反応液の色調は黒色であったが、反応開始から60分以内に反応液の上澄み液は透明になった。還元反応が全て完了して、反応液中の鉄成分とニッケル成分の全てが金属鉄と金属ニッケルに還元されたと考えられる。反応完了後の反応液は、鉄-ニッケル晶析粉を含むスラリーであった。
 <回収工程>
 晶析工程で得られたスラリー状の反応液に、ろ過洗浄及び固液分離処理を施して、ケーキ状の鉄-ニッケル晶析粉を回収した。ろ過洗浄は、導電率が1μS/cmの純水を用いて、スラリーからろ過したろ液の導電率が10μS/cm以下になるまで行った。回収したケーキ状の晶析粉を50℃に設定した真空乾燥機中で乾燥した。そして、乾燥した晶析粉を真空中で35℃まで冷却した後、酸素1.0体積%を含む窒素ガスを供給して、晶析粉に徐酸化処理を施した。このようにして鉄-ニッケル合金粉を得た。得られた合金粉は、表面平滑な球状粒子で構成されていた。粒度分布はシャープであり、平均粒径は0.48μmであった。
 [実施例11]
 実施例11では、図6に示す手順にしたがい、鉄含有割合の大きな組成の鉄(Fe)90モル%及びニッケル(Ni)10モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル合金粉)を作製した。この際、晶析工程の途中で追加原料液を添加して混合した。具体的には、ウォーターバスを用いて加熱した還元溶液に常温の金属塩原料溶液を添加混合し、反応液を調製して、まずは鉄(Fe)91.8モル%及びニッケル(Ni)8.2モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル合金粉)の晶析を進めた。そしてこの晶析の途中で、反応液に追加原料液としての水溶性ニッケル塩水溶液を添加混合した。
 <準備工程>
 水溶性鉄塩、水溶性ニッケル塩、核剤、還元剤、pH調整剤、錯化剤、及びアミン化合物として、実施例4と同様の原料を準備した。
 <晶析工程>
 (a)金属塩原料溶液の調製
 硫酸第一鉄7水和物(水溶性鉄塩)、硫酸ニッケル6水和物(水溶性ニッケル塩)、塩化パラジウム(II)アンモニウム(核剤)、クエン酸三ナトリウム2水和物(錯化剤)及び水を含む金属塩原料溶液を調製した。この際、得られた金属塩原料溶液において、磁性金属(Fe及びNi)合計量に対してパラジウム(Pd)量が0.77質量ppm(0.41モルppm)になるように秤量を行った。また磁性金属(Fe及びNi)合計量に対するクエン酸三ナトリウム2水和物がモル比で0.369(36.9モル%)になるように秤量を行った。具体的には、硫酸第一鉄7水和物:446.0g、硫酸ニッケル6水和物:37.5g、塩化パラジウム(II)アンモニウム:202.6μg、及びクエン酸三ナトリウム2水和物:189.7gを純水:720mLに溶解して金属塩原料溶液を調製した。
 (b)還元剤溶液の調製
 水酸化ナトリウム(pH調整剤)、ヒドラジン(還元剤)及び水を含む還元剤溶液を調製した。この際、後続する晶析工程で調製する反応液において、反応開始時の磁性金属(Fe及びNi)合計量に対するヒドラジン量がモル比で9.15(追加原料液添加時の磁性金属(Fe及びNi)合計量に対してはモル比で8.97)になるように秤量を行った。また反応開始時の磁性金属(Fe及びNi)合計量に対する水酸化ナトリウム量がモル比で8.29(追加原料液添加時の磁性金属(Fe及びNi)合計量に対してはモル比で8.13)になるように秤量を行った。具体的には、水酸化ナトリウム:579gを純水:1418mLに溶解して水酸化ナトリウム溶液を調製し、この水酸化ナトリウム溶液に60質量%抱水ヒドラジン:1334gを添加及び混合して還元剤溶液を調製した。
 (c)アミン化合物溶液の調製
 エチレンジアミン(アミン化合物)及び水を含むアミン化合物溶液を調製した。この際、後続する晶析工程における反応液において、追加原料液添加後の磁性金属(Fe及びNi)合計量に対するエチレンジアミン量がモル比で0.01(1.0モル%)と微量になるように秤量を行った。具体的には、エチレンジアミン:1.07gを純水:18mLに溶解して、アミン化合物溶液を調製した。
 (d)追加原料液の調製
 硫酸ニッケル6水和物(水溶性ニッケル塩)及び水を含む追加原料液を調製した。この際、得られた追加原料液中の磁性金属(Ni)量は0.0356モルで、金属塩原料溶液中の磁性金属(Fe及びNi)合計量の1.747モルに対して0.02倍となるように秤量を行った。具体的には、硫酸ニッケル6水和物:9.37gを純水:100mLに溶解して追加原料液を調製した。
 (e)反応液の調製及び晶析粉の析出
 調製した還元剤溶液を、ウォーターバス内に設置した撹拌羽根付テフロン(登録商標)被覆ステンレス容器(反応槽)内に入れて、液温85℃になるように撹拌しながら加熱した。その後、ウォーターバスで加熱されている還元剤溶液に液温25℃の金属塩原料溶液を混合時間10秒間で添加混合して、液温78℃の反応液を得た。反応液中の磁性金属(Fe及びNi)の濃度は25.0g/Lであった。これにより還元反応(晶析反応)が開始された(反応開始温度78℃)。反応液の温度は、反応開始後からウォーターバスによる加熱で上昇し続け、反応開始から10分以降は液温85℃に保たれた(反応保持温度85℃)。反応液の色調は、反応開始(反応液調合)直後は暗緑色であったが、数分後には暗灰色に変化した。反応開始直後の色調が暗緑色になったのは、上記(6)式にしたがう反応が進行して、水酸化鉄(Fe(OH))と水酸化ニッケル(Ni(OH))の共沈物が反応液中に形成されたためと考えられる。また反応開始数分後に色調が暗灰色に変化したのは、核剤(パラジウム塩)の働きにより核発生が起こったためと考えられる。
 反応液の色調が暗灰色に変化した反応開始3分後から13分後までの10分間にかけて、アミン化合物溶液を反応液に滴下混合して、還元反応を進めた。これにより鉄-ニッケル晶析粉が反応液中に析出した。反応開始8分後から18分後にかけて追加原料液を少しずつ滴下しながら添加混合して、還元されにくい鉄イオン(または水酸化鉄)の還元を促進させながら、析出した鉄-ニッケル晶析粉の表面がよりニッケルリッチ組成となるように還元反応を進めた。追加原料液添加後の反応液中の磁性金属(Fe及びNi)の濃度は24.8g/Lであった。このときの反応液の色調は黒色であったが、反応開始から50分以内に反応液の上澄み液は透明になった。還元反応が全て完了して、反応液中の鉄成分とニッケル成分の全てが金属鉄と金属ニッケルに還元されたと考えられる。反応完了後の反応液は、鉄-ニッケル晶析粉を含むスラリーであった。
 <回収工程>
 晶析工程で得られたスラリー状の反応液に、ろ過洗浄及び固液分離処理を施して、ケーキ状の鉄-ニッケル晶析粉を回収した。ろ過洗浄は、導電率が1μS/cmの純水を用いて、スラリーからろ過したろ液の導電率が10μS/cm以下になるまで行った。回収したケーキ状の晶析粉を50℃に設定した真空乾燥機中で乾燥した。そして、乾燥した晶析粉を真空中で35℃まで冷却した後、酸素1.0体積%を含む窒素ガスを供給して、晶析粉に徐酸化処理を施した。このようにして鉄-ニッケル合金粉を得た。得られた合金粉は、表面平滑な球状粒子で構成されていた。粒度分布はシャープであり、平均粒径は0.38μmであった。
 [実施例12]
 実施例12では、図5に示す手順にしたがって得られた晶析粉に絶縁コート処理を施して、絶縁性の金属酸化物である二酸化けい素(SiO)で被覆された鉄(Fe)55モル%及びニッケル(Ni)45モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル合金粉)を作製した。実施例12では、反応液を調製する際に、ウォーターバスを用いて加熱した還元溶液に常温の金属塩原料溶液を添加して混合した。
 <準備工程>
 水溶性鉄塩、水溶性ニッケル塩、核剤、還元剤、pH調整剤、錯化剤、及びアミン化合物として、実施例4と同様の原料を準備した。
 <晶析工程>
 (a)金属塩原料溶液の調製
 硫酸第一鉄7水和物(水溶性鉄塩)、硫酸ニッケル6水和物(水溶性ニッケル塩)、塩化パラジウム(II)アンモニウム(核剤)、クエン酸三ナトリウム2水和物(錯化剤)及び水を含む金属塩原料溶液を調製した。この際、得られた金属塩原料溶液において、磁性金属(Fe及びNi)合計量に対してパラジウム(Pd)量が0.56質量ppm(0.3モルppm)になるように秤量を行った。また磁性金属(Fe及びNi)合計量に対するクエン酸三ナトリウム2水和物量がモル比で0.543(54.3モル%)になるように秤量を行った。具体的には、硫酸第一鉄7水和物:267.7g、硫酸ニッケル6水和物:207.1g、塩化パラジウム(II)アンモニウム:149.3μg、及びクエン酸三ナトリウム2水和物:279.6gを純水:950mLに溶解して金属塩原料溶液を調製した。
 (b)還元剤溶液の調製
 水酸化ナトリウム(pH調整剤)、ヒドラジン(還元剤)及び水を含む還元剤溶液を調製した。この際、後続する晶析工程で調製する反応液において、磁性金属(Fe及びNi)合計量に対するヒドラジン量がモル比で4.85になるように秤量を行った。また磁性金属(Fe及びNi)合計量に対する水酸化ナトリウム量がモル比で4.95になるように秤量を行った。具体的には、水酸化ナトリウム:346gを純水:848mLに溶解して水酸化ナトリウム溶液を調製し、この水酸化ナトリウム溶液に60質量%抱水ヒドラジン:709gを添加及び混合して還元剤溶液を調製した。
 (c)アミン化合物溶液の調製
 エチレンジアミン(アミン化合物)及び水を含むアミン化合物溶液を調製した。この際、後続する晶析工程における反応液において、追加原料液添加後の磁性金属(Fe及びNi)合計量に対するエチレンジアミン量がモル比で0.01(1.0モル%)と微量になるように秤量を行った。具体的には、エチレンジアミン:1.05gを純水:18mLに溶解して、アミン化合物溶液を調製した。
 (d)反応液の調製及び晶析粉の析出
 調製した還元剤溶液を、ウォーターバス内に設置した撹拌羽根付テフロン(登録商標)被覆ステンレス容器(反応槽)内に入れて、液温70℃になるように撹拌しながら加熱した。その後、ウォーターバスで加熱されている還元剤溶液に液温25℃の金属塩原料溶液を混合時間10秒間で添加混合して、液温59℃の反応液を得た。反応液中の磁性金属(Fe及びNi)の濃度は33.9g/Lであった。これにより還元反応(晶析反応)が開始された(反応開始温度59℃)。反応液の温度は、反応開始後からウォーターバスによる加熱で上昇し続け、反応開始から10分以降は液温70℃に保たれた(反応保持温度70℃)。反応液の色調は、反応開始(反応液調合)直後は暗緑色であったが、数分後には暗灰色に変化した。反応開始直後の色調が暗緑色になったのは、上記(6)式にしたがう反応が進行して、水酸化鉄(Fe(OH))と水酸化ニッケル(Ni(OH))の共沈物が反応液中に形成されたためと考えられる。また反応開始数分後に色調が暗灰色に変化したのは、核剤(パラジウム塩)の働きにより核発生が起こったためと考えられる。
 反応液の色調が暗灰色に変化した反応開始3分後から13分後までの10分間にかけて、アミン化合物溶液を反応液に滴下混合して、還元反応を進めた。これにより鉄-ニッケル晶析粉が反応液中に析出した。このときの反応液の色調は黒色であったが、反応開始から30分以内に反応液の上澄み液は透明になった。上記(6)式の還元反応が完了して、反応液中の鉄成分とニッケル成分の全てが金属鉄と金属ニッケルに還元されたと考えられる。反応完了後の反応液は、鉄-ニッケル晶析粉を含むスラリーであった。
 <回収工程>
 晶析工程で得られたスラリー状の反応液に、ろ過洗浄及び固液分離処理を施して、ケーキ状の鉄-ニッケル晶析粉を回収した。ろ過洗浄は、導電率が1μS/cmの純水を用いて、スラリーからろ過したろ液の導電率が10μS/cm以下になるまで行った。回収したケーキ状の晶析粉を50℃に設定した真空乾燥機中で乾燥した。そして、乾燥した晶析粉を真空中で35℃まで冷却した後、酸素1.0体積%を含む窒素ガスを供給して、晶析粉に徐酸化処理を施した。このようにして乾粉としての晶析粉(鉄-ニッケル合金粉)を得た。得られた晶析粉(合金粉)は、表面平滑な球状粒子で構成されていた。粒度分布はシャープであり、平均粒径は0.39μmであった。
 <絶縁コート工程>
 上記回収工程で得られた晶析粉(合金粉)50.0gを、ポリプロピレン製密閉容器に入れ、さらに、純水7.0g、エチルアルコール(COH、分子量:46.07、和光純薬工業株式会社製試薬)50.0gを添加し、上記晶析粉(合金粉)を水とエチルアルコールの混合溶媒中に分散させた後、シリコンアルコキシドとしてのテトラエトキシシラン(別名:オルトけい酸テトラエチル、テトラエチルシリケート)(略称:TEOS)(Si(OC、分子量:208.33、和光純薬工業株式会社製試薬)9.8gを添加し十分に混合し、さらにシリコンアルコキシドの加水分解のための塩基触媒(アルカリ触媒)としての1質量%アンモニア水2.4gを撹拌しながら添加して均一なスラリーとした。なお、上記1質量%アンモニア水は、試薬の28~30質量%アンモニア水(NH、分子量:17.03、和光純薬工業株式会社製試薬)を純水で希釈したものであり、晶析粉(合金粉)、水、エチルアルコール、テトラエトキシシラン、1質量%アンモニア水は、全て室温で用いられ、添加や混合も全て室温で行われている。
 晶析粉(合金粉)、水、エチルアルコール、テトラエトキシシラン、及びアンモニアを含む上記スラリーを、回転しているポリプロピレン製密閉容器内において40℃で2日間保ち、スラリーの撹拌を行いながらテトラエトキシシランの加水分解及び脱水縮重合を進めて、晶析粉(合金粉)の粒子表面にテトラエトキシシランの加水分解重合物(シラノール基(Si-OH)を少量含むもののほぼ二酸化けい素(SiO)の組成)を主成分とする絶縁コート層を形成した。この後、スラリーに、ろ過洗浄及び固液分離処理を施して、ケーキ状の晶析粉(合金粉)を回収した。ろ過洗浄は、まず、純水を50質量%含むエタノール、次にエタノールを用いて行った。なお、晶析粉(合金粉)の粒子表面の絶縁コートに消費されずにスラリー中に残存するテトラエトキシシランの加水分解重合物は、分子量が非常に小さい粒子(シリカゾル)であり、ろ過洗浄の際にろ液として除去されるため、回収されたケーキ状の晶析粉(合金粉)には残留しない。
 回収したケーキ状の晶析粉(合金粉)を、真空乾燥機中で50℃で乾燥した後、引き続き真空中で150℃で2時間の加熱処理を行った。この加熱処理により、絶縁コート層を構成しているテトラエトキシシランの加水分解重合物は、さらなる脱水縮重合が進んで、より硬くてより緻密な二酸化けい素(SiO)となり、絶縁コート層の絶縁性はさらに向上した。このような絶縁コート処理により、粒子表面に高抵抗の二酸化けい素(SiO)からなる絶縁コート層が形成された鉄-ニッケル合金粉を得た。得られた合金粉は、表面平滑な球状粒子で構成されていた。粒度分布はシャープで、平均粒径は0.42μmであり、絶縁コート層の厚みは約0.015μm(約15nm)と見積もられた。また、絶縁コート処理により圧粉体抵抗率(印加圧力:64MPa)は、絶縁コート処理前の0.04Ω・cmから測定範囲オーバー(>10Ω・cm)まで大幅に上昇した。
 [実施例13]
 実施例13では、図5に示す手順にしたがい、鉄(Fe)80モル%、ニッケル(Ni)10モル%及びコバルト(Co)10モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル-コバルト合金粉)を作製した。実施例13では、反応液を調製する際に、ウォーターバスを用いて加熱した還元溶液に常温の金属塩原料溶液を添加して混合した。
 <準備工程>
 水溶性鉄塩、水溶性ニッケル塩、核剤、錯化剤、還元剤、pH調整剤、及びアミン化合物として、実施例4と同様の原料を準備した。また、それ以外に水溶性コバルト塩として、硫酸コバルト7水和物(CoSO・7HO、分子量:281.103、和光純薬工業株式会社製試薬)を準備した。
 <晶析工程>
 (a)金属塩原料溶液の調製
 硫酸第一鉄7水和物(水溶性鉄塩)、硫酸ニッケル6水和物(水溶性ニッケル塩)、硫酸コバルト7水和物(水溶性コバルト塩)、塩化パラジウム(II)アンモニウム(核剤)、クエン酸三ナトリウム2水和物(錯化剤)及び水を含む金属塩原料溶液を調製した。この際、得られた金属塩原料溶液において、磁性金属(Fe、Ni及びCo)合計量に対してパラジウム(Pd)量が0.38質量ppm(0.2モルppm)になるように秤量を行った。また磁性金属(Fe、Ni及びCo)合計量に対するクエン酸三ナトリウム量がモル比で0.362(36.2モル%)になるように秤量を行った。具体的には、硫酸第一鉄7水和物:394.1g、硫酸ニッケル6水和物:46.6g、硫酸コバルト7水和物:49.8g、塩化パラジウム(II)アンモニウム:100.8μg、及びクエン酸三ナトリウム2水和物:188.7gを純水:1000mLに溶解して金属塩原料溶液を調製した。
 (b)還元剤溶液の調製
 水酸化ナトリウム(pH調整剤)、ヒドラジン(還元剤)及び水を含む還元剤溶液を調製した。この際、後続する晶析工程で調製する反応液において、磁性金属(Fe、Ni及びCo)合計量に対するヒドラジン量がモル比で3.65になるように秤量を行った。また磁性金属(Fe、Ni及びCo)合計量に対する水酸化ナトリウム量がモル比で7.07になるように秤量を行った。具体的には、水酸化ナトリウム:501gを純水:1227mLに溶解して水酸化ナトリウム溶液を調製し、この水酸化ナトリウム溶液に60質量%抱水ヒドラジン:540gを添加及び混合して還元剤溶液を調製した。
 (d)アミン化合物溶液の調製
 エチレンジアミン(アミン化合物)及び水を含むアミン化合物溶液を調製した。この際、後続する晶析工程で調製する反応液において、磁性金属(Fe、Ni及びCo)合計量に対するエチレンジアミン配合量がモル比で0.01(1.0モル%)と微量になるように秤量を行った。具体的には、エチレンジアミン:1.07gを純水:18mLに溶解して、アミン化合物溶液を調製した。
 (e)反応液の調製及び晶析粉の析出
 調製した金属塩原料溶液を、ウォーターバス内に設置した撹拌羽根付テフロン(登録商標)被覆ステンレス容器(反応槽)内に入れて、液温85℃になるように撹拌しながら加熱した。その後、ウォーターバスで加熱されている還元剤溶液に液温25℃の金属塩原料溶液を混合時間10秒間で添加混合して、液温70℃の反応液を得た。反応液中の磁性金属(Fe、Ni及びCo)の濃度は31.2g/Lであった。これにより還元反応(晶析反応)が開始された(反応開始温度70℃)。反応液の温度は、反応開始後からウォーターバスによる加熱で上昇し続け、反応開始から10分以降は液温85℃に保たれた(反応保持温度85℃)。反応液の色調は、反応開始(反応液調合)直後は暗緑色であったが、数分後には暗灰色に変化した。反応開始直後の色調が暗緑色になったのは、上記(6)式にしたがう反応が進行して、水酸化鉄(Fe(OH))と水酸化ニッケル(Ni(OH))と水酸化コバルト(Co(OH))の共沈物が反応液中に形成されたためと考えられる。また反応開始数分後に色調が暗灰色に変化したのは、核剤(パラジウム塩)の働きにより核発生が起こったためと考えられる。
 反応液の色調が暗灰色に変化した反応開始後3分後から13分後までの10分間にかけて、アミン化合物溶液を反応液に滴下混合して、還元反応を進めた。これにより鉄-ニッケル-コバルト晶析粉が反応液中に析出した。このときの反応液の色調は黒色であったが、反応開始から40分以内に反応液の上澄み液は透明になった。上記(6)式の還元反応が完了して、反応液中の鉄成分とニッケル成分とコバルト成分の全てが金属鉄と金属ニッケルと金属コバルトに還元されたと考えられる。反応完了後の反応液は、鉄-ニッケル-コバルト晶析粉を含むスラリーであった。
 <回収工程>
 晶析工程で得られたスラリー状の反応液に、ろ過洗浄及び固液分離処理を施して、ケーキ状の鉄-ニッケル-コバルト晶析粉を回収した。ろ過洗浄は、導電率が1μS/cmの純水を用いて、スラリーからろ過したろ液の導電率が10μS/cm以下になるまで行った。回収したケーキ状の晶析粉を50℃に設定した真空乾燥機中で乾燥した。そして、乾燥した晶析粉を真空中で35℃まで冷却した後、酸素1.0体積%を含む窒素ガスを供給して、晶析粉に徐酸化処理を施した。このようにして鉄-ニッケル-コバルト合金粉を得た。得られた合金粉は、表面平滑な球状粒子で構成されていた。粒度分布はシャープであり、平均粒径は0.42μmであった。
 [実施例14]
 実施例14では、図5に示す手順にしたがい、鉄(Fe)70モル%、ニッケル(Ni)10モル%及びコバルト(Co)20モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル-コバルト合金粉)を作製した。実施例14では、反応液を調製する際に、ウォーターバスを用いて加熱した還元溶液に常温の金属塩原料溶液を添加して混合した。
 <準備工程>
 水溶性鉄塩、水溶性ニッケル塩、水溶性コバルト塩、核剤、錯化剤、還元剤、pH調整剤、及びアミン化合物として、実施例13と同様の原料を準備した。
 <晶析工程>
 (a)金属塩原料溶液の調製
 硫酸第一鉄7水和物(水溶性鉄塩)、硫酸ニッケル6水和物(水溶性ニッケル塩)、硫酸コバルト7水和物(水溶性コバルト塩)、塩化パラジウム(II)アンモニウム(核剤)、クエン酸三ナトリウム2水和物(錯化剤)及び水を含む金属塩原料溶液を調製した。この際、得られた金属塩原料溶液において、磁性金属(Fe、Ni及びCo)合計量に対してパラジウム(Pd)量が0.38質量ppm(0.2モルppm)になるように秤量を行った。また磁性金属(Fe、Ni及びCo)合計量に対するクエン酸三ナトリウム量がモル比で0.362(36.2モル%)になるように秤量を行った。具体的には、硫酸第一鉄7水和物:343.0g、硫酸ニッケル6水和物:46.3g、硫酸コバルト7水和物:99.1g、塩化パラジウム(II)アンモニウム:100.2μg、及びクエン酸三ナトリウム2水和物:187.6gを純水:1100mLに溶解して金属塩原料溶液を調製した。
 (b)還元剤溶液の調製
 水酸化ナトリウム(pH調整剤)、ヒドラジン(還元剤)及び水を含む還元剤溶液を調製した。この際、後続する晶析工程で調製する反応液において、磁性金属(Fe、Ni及びCo)合計量に対するヒドラジン量がモル比で1.46になるように秤量を行った。また磁性金属(Fe、Ni及びCo)合計量に対する水酸化ナトリウム量がモル比で7.07になるように秤量を行った。具体的には、水酸化ナトリウム:499gを純水:1221mLに溶解して水酸化ナトリウム溶液を調製し、この水酸化ナトリウム溶液に60質量%抱水ヒドラジン:215gを添加及び混合して還元剤溶液を調製した。
 (d)アミン化合物溶液の調製
 エチレンジアミン(アミン化合物)及び水を含むアミン化合物溶液を調製した。この際、後続する晶析工程で調製する反応液において、磁性金属(Fe、Ni及びCo)合計量に対するエチレンジアミン配合量がモル比で0.01(1.0モル%)と微量になるように秤量を行った。具体的には、エチレンジアミン:1.06gを純水:18mLに溶解して、アミン化合物溶液を調製した。
 (e)反応液の調製及び晶析粉の析出
 調製した金属塩原料溶液を、ウォーターバス内に設置した撹拌羽根付テフロン(登録商標)被覆ステンレス容器(反応槽)内に入れて、液温85℃になるように撹拌しながら加熱した。その後、ウォーターバスで加熱されている還元剤溶液に液温25℃の金属塩原料溶液を混合時間10秒間で添加混合して、液温67℃の反応液を得た。反応液中の磁性金属(Fe、Ni及びCo)の濃度は33.7g/Lであった。これにより還元反応(晶析反応)が開始された(反応開始温度67℃)。反応液の温度は、反応開始後からウォーターバスによる加熱で上昇し続け、反応開始から10分以降は液温85℃に保たれた(反応保持温度85℃)。反応液の色調は、反応開始(反応液調合)直後は暗緑色であったが、数分後には暗灰色に変化した。反応開始直後の色調が暗緑色になったのは、上記(6)式にしたがう反応が進行して、水酸化鉄(Fe(OH))と水酸化ニッケル(Ni(OH))と水酸化コバルト(Co(OH))の共沈物が反応液中に形成されたためと考えられる。また反応開始数分後に色調が暗灰色に変化したのは、核剤(パラジウム塩)の働きにより核発生が起こったためと考えられる。
 反応液の色調が暗灰色に変化した反応開始後3分後から13分後までの10分間にかけて、アミン化合物溶液を反応液に滴下混合して、還元反応を進めた。これにより鉄-ニッケル-コバルト晶析粉が反応液中に析出した。このときの反応液の色調は黒色であったが、反応開始から40分以内に反応液の上澄み液は透明になった。上記(6)式の還元反応が完了して、反応液中の鉄成分とニッケル成分とコバルト成分の全てが金属鉄と金属ニッケルと金属コバルトに還元されたと考えられる。反応完了後の反応液は、鉄-ニッケル-コバルト晶析粉を含むスラリーであった。
 <回収工程>
 晶析工程で得られたスラリー状の反応液に、ろ過洗浄及び固液分離処理を施して、ケーキ状の鉄-ニッケル-コバルト晶析粉を回収した。ろ過洗浄は、導電率が1μS/cmの純水を用いて、スラリーからろ過したろ液の導電率が10μS/cm以下になるまで行った。回収したケーキ状の晶析粉を50℃に設定した真空乾燥機中で乾燥した。そして、乾燥した晶析粉を真空中で35℃まで冷却した後、酸素1.0体積%を含む窒素ガスを供給して、晶析粉に徐酸化処理を施した。このようにして鉄-ニッケル-コバルト合金粉を得た。得られた合金粉は、表面平滑な球状粒子で構成されていた。粒度分布はシャープであり、平均粒径は0.40μmであった。
 [実施例15]
 実施例15では、図5に示す手順にしたがい、鉄(Fe)65モル%、ニッケル(Ni)10モル%及びコバルト(Co)25モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル-コバルト合金粉)を作製した。実施例15では、反応液を調製する際に、ウォーターバスを用いて加熱した還元溶液に常温の金属塩原料溶液を添加して混合した。
 <準備工程>
 水溶性鉄塩、水溶性ニッケル塩、水溶性コバルト塩、核剤、錯化剤、還元剤、pH調整剤、及びアミン化合物として、実施例13と同様の原料を準備した。
 <晶析工程>
 (a)金属塩原料溶液の調製
 硫酸第一鉄7水和物(水溶性鉄塩)、硫酸ニッケル6水和物(水溶性ニッケル塩)、硫酸コバルト7水和物(水溶性コバルト塩)、塩化パラジウム(II)アンモニウム(核剤)、クエン酸三ナトリウム2水和物(錯化剤)及び水を含む金属塩原料溶液を調製した。この際、得られた金属塩原料溶液において、磁性金属(Fe、Ni及びCo)合計量に対してパラジウム(Pd)量が0.37質量ppm(0.2モルppm)になるように秤量を行った。また磁性金属(Fe、Ni及びCo)合計量に対するクエン酸三ナトリウム量がモル比で0.362(36.2モル%)になるように秤量を行った。具体的には、硫酸第一鉄7水和物:317.6g、硫酸ニッケル6水和物:46.2g、硫酸コバルト7水和物:123.5g、塩化パラジウム(II)アンモニウム:100.0μg、及びクエン酸三ナトリウム2水和物:187.1gを純水:1100mLに溶解して金属塩原料溶液を調製した。
 (b)還元剤溶液の調製
 水酸化ナトリウム(pH調整剤)、ヒドラジン(還元剤)及び水を含む還元剤溶液を調製した。この際、後続する晶析工程で調製する反応液において、磁性金属(Fe、Ni及びCo)合計量に対するヒドラジン量がモル比で1.47になるように秤量を行った。また磁性金属(Fe、Ni及びCo)合計量に対する水酸化ナトリウム量がモル比で7.07になるように秤量を行った。具体的には、水酸化ナトリウム:497gを純水:1216mLに溶解して水酸化ナトリウム溶液を調製し、この水酸化ナトリウム溶液に60質量%抱水ヒドラジン:215gを添加及び混合して還元剤溶液を調製した。
 (d)アミン化合物溶液の調製
 エチレンジアミン(アミン化合物)及び水を含むアミン化合物溶液を調製した。この際、後続する晶析工程で調製する反応液において、磁性金属(Fe、Ni及びCo)合計量に対するエチレンジアミン配合量がモル比で0.01(1.0モル%)と微量になるように秤量を行った。具体的には、エチレンジアミン:1.06gを純水:18mLに溶解して、アミン化合物溶液を調製した。
 (e)反応液の調製及び晶析粉の析出
 調製した金属塩原料溶液を、ウォーターバス内に設置した撹拌羽根付テフロン(登録商標)被覆ステンレス容器(反応槽)内に入れて、液温85℃になるように撹拌しながら加熱した。その後、ウォーターバスで加熱されている還元剤溶液に液温25℃の金属塩原料溶液を混合時間10秒間で添加混合して、液温67℃の反応液を得た。反応液中の磁性金属(Fe、Ni及びCo)の濃度は33.7g/Lであった。これにより還元反応(晶析反応)が開始された(反応開始温度67℃)。反応液の温度は、反応開始後からウォーターバスによる加熱で上昇し続け、反応開始から10分以降は液温85℃に保たれた(反応保持温度85℃)。反応液の色調は、反応開始(反応液調合)直後は暗緑色であったが、数分後には暗灰色に変化した。反応開始直後の色調が暗緑色になったのは、上記(6)式にしたがう反応が進行して、水酸化鉄(Fe(OH))と水酸化ニッケル(Ni(OH))と水酸化コバルト(Co(OH))の共沈物が反応液中に形成されたためと考えられる。また反応開始数分後に色調が暗灰色に変化したのは、核剤(パラジウム塩)の働きにより核発生が起こったためと考えられる。
 反応液の色調が暗灰色に変化した反応開始後3分後から13分後までの10分間にかけて、アミン化合物溶液を反応液に滴下混合して、還元反応を進めた。これにより鉄-ニッケル-コバルト晶析粉が反応液中に析出した。このときの反応液の色調は黒色であったが、反応開始から30分以内に反応液の上澄み液は透明になった。上記(6)式の還元反応が完了して、反応液中の鉄成分とニッケル成分とコバルト成分の全てが金属鉄と金属ニッケルと金属コバルトに還元されたと考えられる。反応完了後の反応液は、鉄-ニッケル-コバルト晶析粉を含むスラリーであった。
 <回収工程>
 晶析工程で得られたスラリー状の反応液に、ろ過洗浄及び固液分離処理を施して、ケーキ状の鉄-ニッケル-コバルト晶析粉を回収した。ろ過洗浄は、導電率が1μS/cmの純水を用いて、スラリーからろ過したろ液の導電率が10μS/cm以下になるまで行った。回収したケーキ状の晶析粉を50℃に設定した真空乾燥機中で乾燥した。そして、乾燥した晶析粉を真空中で35℃まで冷却した後、酸素1.0体積%を含む窒素ガスを供給して、晶析粉に徐酸化処理を施した。このようにして鉄-ニッケル-コバルト合金粉を得た。得られた合金粉は、表面平滑な球状粒子で構成されていた。粒度分布はシャープであり、平均粒径は0.42μmであった。
 [比較例1]
 比較例1では、金属塩原料溶液を調製する際に、塩化パラジウム(II)アンモニウム(核剤)を配合しなかった。それ以外は実施例1と同様にして、反応液の調製及び晶析粉の析出を行い、鉄(Fe)50モル%及びニッケル(Ni)50モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル合金粉)を作製した。反応液中の磁性金属(Fe及びNi)の濃度は32.3g/Lであった。得られた合金粉は、球状粒子で構成され、この粒子の表面はでこぼこしていた。粒度分布はシャープであり、平均粒径は0.65μmであった。
 [比較例2]
 比較例2では、金属塩原料溶液を調製する際に、クエン酸三ナトリウム2水和物(錯化剤)を配合しなかった。それ以外は実施例1と同様にして、反応液の調製及び晶析粉の析出を行い、鉄(Fe)50モル%及びニッケル(Ni)50モル%を含む鉄-ニッケル系合金粉(鉄-ニッケル合金粉)を作製した。反応液中の磁性金属(Fe及びNi)の濃度は33.3g/Lであった。得られた合金粉は、いびつな形状の粒子で構成され、この粒子の表面はでこぼこしていた。粒度分布はブロードであり、平均粒径は0.26μmであった。
 [比較例3]
 比較例3では、金属塩原料溶液を調製する際に、塩化パラジウム(II)アンモニウム(核剤)とクエン酸三ナトリウム2水和物(錯化剤)を配合しなかった。また還元剤溶液を調製する際に、ヒドラジン(還元剤)を多量に配合した。それ以外は実施例1と同様にして、鉄-ニッケル系合金粉(鉄-ニッケル合金粉)を作製した。金属塩原料溶液と還元剤溶液の調製は以下に示すとおり行った。
 (a)金属塩原料溶液の調製
 塩化第一鉄4水和物(水溶性鉄塩)、塩化ニッケル6水和物(水溶性ニッケル塩)、及び水を含む金属塩原料溶液を調製した。具体的には、塩化第一鉄4水和物:173.60g、塩化ニッケル6水和物:207.55gを純水:1200mLに溶解して金属塩原料溶液を調製した。
 (b)還元剤溶液の調製
 水酸化ナトリウム(pH調整剤)、ヒドラジン(還元剤)及び水を含む還元剤溶液を調製した。この際、後続する晶析工程で調製する反応液中で、磁性金属(Fe及びNi)合計量に対するヒドラジン量がモル比で19.4になるように秤量を行った。また磁性金属(Fe及びNi)量に対する水酸化ナトリウム量がモル比で4.96になるように秤量を行った。具体的には、水酸化ナトリウム:346gを純水:850mLに溶解して水酸化ナトリウム溶液を調製し、この水酸化ナトリウム溶液に60質量%抱水ヒドラジン:2828gを添加及び混合して還元剤溶液を調製した。なお、還元剤溶液を金属塩原料溶液に添加混合した際に、反応開始温度が55℃となるように、還元剤溶液は液温37℃に加温してから用いた。
 得られた合金粉は、表面が比較的平滑な球状粒子で構成されていた。粒度分布はブロードであり、平均粒径は0.22μmであった。
 以上の実施例1~15及び比較例1~3の合金粉の製造条件を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000030
(2)鉄-ニッケル系合金粉の評価
 実施例1~15及び比較例1~3で得られた鉄-ニッケル系合金粉につき、各種特性の評価を以下のとおり行った。
 <組成分析>
 X線回折装置を用いてX線回折(XRD)測定を行ない、得られたXRDデータから、合金粉生成の有無を確認した。
<金属不純物の分析>
  不純物の含有率を分析した。酸素量は、酸素分析装置(LECO Corporation製、TC436)を用いて不活性ガス溶融法で測定し、炭素量と硫黄量は、炭素硫黄分析装置(LECO Corporation社製、CS600)を用いて燃焼法で測定した。また塩素量は蛍光X線分析装置(スペクトリス株式会社製、Magix)を用いて測定し、シリコン量とナトリウム量はICP発光分光分析装置(アジレント・テクノロジー株式会社製、5100)を用いて測定した。
 <粒度(平均粒径、変動係数)>
 合金粉を走査電子顕微鏡(SEM;JEOL Ltd.製、JSM-7100F)で観察(倍率:5000~80000倍)した。観察像(SEM像)を画像解析し、その結果から、数平均で求められた平均粒径と粒子径の標準偏差を算出した。さらに下記(14)式にしたがって変動係数(CV値)を算出して、合金粉の粒度(平均粒径、変動係数)を求めた。
Figure JPOXMLDOC01-appb-M000031
 <粒子内組成分析>
 樹脂中に包埋された合金粉を集束イオンビーム(FIB:Focused Ion Beam)装置を用いて厚さ約100nmに薄膜化加工し、その加工試料において合金粒子断面を走査型透過電子顕微鏡(STEM;日立ハイテクノロジーズ社製、HD-2300A)で観察した。観察は、倍率:100000~200000倍の条件で行った。そして、合金粒子内の組成分布を、エネルギー分散型X線分析(EDS:Energy dispersive x-ray spectroscopy)装置による線分析により求めた。この際、組成は、測定元素の特性X線(K線)の検出カウント数から算出した。
 <結晶子径>
 X線回折(XRD)法で合金粉を分析し、(111)面のX線回折ピークの半価幅からScherrerの式に基づき結晶子径を評価した。XRD測定条件は、組成分析と同様に行った。結晶子径は結晶化の程度を表し、結晶子径が大きいほど結晶性が高いことを意味する。
 <圧粉体密度>
 合金粉の圧粉体密度を評価した。具体的には、約0.3gの合金粉を金型の円柱状穴部(内径5mm)に充填した。次いで、プレス機を用いて100MPaの圧力で、直径5mm、高さ3~4mmのペレット形状に成形した。得られたペレットの質量と高さを室温で測定して、圧粉体密度を算出した。
 <圧粉体抵抗率>
 合金粉の圧粉体抵抗率を粉体抵抗測定システム(三菱ケミカルアナリテック製、MCP-PD51)を用いて測定し、導電性(絶縁性)を評価した。具体的には、約4gの合金粉を装置の円柱状試料室内に充填し、装置に付帯しているプレス機を用いて64MPaの圧力を印可して、圧粉体抵抗率(単位:Ω・cm)を求めた。
 <磁気特性(飽和磁束密度、保磁力)>
 振動試料型磁力計(VSM)を用いた測定を行い、合金粉の磁気特性(飽和磁束密度(T:テスラ)、保磁力(A/m))を評価した。測定で得られたB-H曲線(磁気ヒステリシス曲線)から飽和磁束密度及び保磁力の値を算出した。なお比較例2で得られた合金粉は、その形状がいびつでインダクタ等の素子に適用できないため、磁気特性の測定を行わなかった。
(3)評価結果
 実施例1~15及び比較例1~3について得られた評価結果を表2にまとめて示す。また実施例1、2、10、13及び14で得られた合金粉のそれぞれのSEM像を図8、図9、図13、図15及び図16に示し、実施例6で得られた合金粉のSEM像を図10(a)及び(b)に示す。ここで図10(a)はスパイラルジェット解砕処理前の合金粉のSEM像であり、図10(b)はスパイラルジェット解砕処理後の合金粉のSEM像である。また、実施例8及び実施例9で得られた合金粉の粒子断面のSTEM像及びEDS線分析結果をそれぞれ図11(a)、(b)及び図12に示す。ここで図11(a)は高温熱処理前の合金粉の粒子断面のSTEM像及びEDS線分析結果であり、図11(b)は高温熱処理後の合金粉の粒子断面のSTEM像及びEDS線分析結果である。実施例12で得られた合金粉のSEM像を図14(a)及び(b)に示す。ここで図14(a)は絶縁コート処理前の合金粉のSEM像であり、図14(b)は絶縁コート処理後の合金粉のSEM像である。さらに比較例1~3で得られたそれぞれの合金粉のSEM像を図17~図19に示す。
 実施例1、実施例3及び比較例1~3は、いずれも晶析工程での反応開始温度を55℃、反応保持温度を70℃として鉄-ニッケル合金粉を製造した例である。極微量の特定の核剤と錯化剤を用いた実施例1と実施例3では、還元剤としてのヒドラジンの使用量が少ないにもかかわらず、得られた合金粉は平均粒径が0.40~0.41μmと微細であり、かつCV値が小さく粒度分布がシャープであった。またこの合金粉は、球状であり、且つ表面が平滑であった。
 一方で、核剤を用いていない比較例1では、実施例1や実施例3と比べると、得られた合金粉は平均粒径が0.65μmと大きく、微細化が困難であった。また球状であるものの、表面凹凸が大きかった。錯化剤を用いていない比較例2では、得られた合金粉の平均粒径が0.26μmと微細であるものの、CV値が大きく、粒度分布が広かった。その上、合金粉は表面凹凸が大きく、いびつな形状であった。核剤と錯化剤を用いず、還元剤(ヒドラジン)を多量に配合した比較例3では、得られた合金粉は、表面が比較的平滑な球状粉であった。これはヒドラジンを多量に配合したことで還元反応が強く働いたためであると考えられる。また得られた合金粉は平均粒径が0.22μmと微細であった。しかしながらCV値が大きく、粒度分布が広かった。
 実施例2は、特定の核剤と錯化剤を用い、晶析工程での反応開始温度を55℃、反応保持温度を70℃として鉄-ニッケル-コバルト合金粉を製造した例である。還元剤としてのヒドラジンの使用量が少ないにもかかわらず、得られた合金粉は、平均粒径が0.3μm程度と微細であり、且つ粒度分布がシャープであった。またこの合金粉は、表面平滑で球状であった。また合金粉の飽和磁化は高かった。
 実施例5は、晶析の途中で水溶性ニッケル塩を含む追加原料液を反応液に添加混合して、ニッケルリッチな表面組成を有する鉄(Fe)51モル%及びニッケル(Ni)49モル%を含む鉄-ニッケル系合金粉を製造した例である。ニッケルリッチな表面組成に起因した緻密な酸化被膜が形成されて粒子表面の酸化量が抑制される。そのため、この合金粉は、大気中でより安定なだけでなく、飽和磁束密度などの磁気特性にも優れている。
 実施例6は、晶析工程、回収工程を経て得られた乾粉としての晶析粉にスパイラルジェット解砕処理を施して球状で非常に表面平滑な鉄-ニッケル系合金粉を製造した例である。また、実施例7は、晶析工程後の回収工程途中のスラリー状の晶析粉に 高圧流体衝突解砕処理を施して球状で非常に表面平滑な鉄-ニッケル系合金粉を製造した例である。これらの合金粉は、平滑な表面に加えて、凝集粒子も低減されている。そのため、充填性が向上(圧粉体密度が上昇)している。また、凝集粒子の低減により、粒子同士を介した渦電流損失の改善も期待できる。
 実施例8は、晶析工程で反応開始温度を71℃、反応保持温度を80℃として得られた晶析粉に高温熱処理を施して粒子内の組成均一性を向上させた鉄(Fe)65モル%及びニッケル(Ni)35モル%を含む鉄-ニッケル系合金粉を製造した例である。この合金粉は、図11(b)から明らかなように、粒子内において均一な組成(鉄65モル%及びニッケル35モル%)が実現されており、軟磁性材料として以外にも、低熱膨張材料(インバー合金)としての利用も期待できる。
 実施例9は、晶析の途中で水溶性ニッケル塩を含む追加原料液を反応液に添加混合して、ニッケルリッチな表面組成を有する鉄(Fe)65モル%及びニッケル(Ni)35モル%を含む鉄-ニッケル系合金粉を製造した例である。図12から明らかなように厚さ10~15nm程度のニッケルリッチ層が粒子表面に形成されており、このニッケルリッチな表面組成に起因した緻密な酸化被膜が形成されて粒子表面の酸化量が抑制される。そのため、この合金粉は、大気中でより安定なだけでなく、飽和磁束密度などの磁気特性にも優れている。
 実施例10と実施例11は、それぞれ晶析の途中で水溶性ニッケル塩を含む追加原料液を反応液に添加混合して、還元されにくい鉄イオン(または水酸化鉄)の還元を促進させながら、粒子表面がよりニッケルリッチ組成となるようした鉄含有割合が大きい、鉄(Fe)80モル%及びニッケル(Ni)20モル%を含む鉄-ニッケル系合金粉と鉄(Fe)90モル%及びニッケル(Ni)10モル%を含む鉄-ニッケル系合金粉を製造した例である。鉄の含有量が80モル%~90モル%と大きくて純鉄に近い組成でありながら、比較的少ない還元剤としてのヒドラジン使用量でも還元不良を生じずに、平均粒径が0.4~0.5μm程度と微細で、且つ粒度分布がシャープな、表面平滑で球状の合金粉が得られた。また合金粉の飽和磁化は純鉄粉(1.95T~2.0T)並みに高かった。
 実施例8~11は、実施例1~7と比べると、得られた鉄-ニッケル系合金粉の圧粉体密度が小さい。ただし、実施例1~7の鉄-ニッケル系合金粉(Fe56~50モル%及びNi44~50モル%を含む鉄-ニッケル合金粉、Fe50モル%、Ni40モル%及びCo10モル%を含む鉄-ニッケル-コバルト合金粉)の真比重が8.2~8.25なのに対し、実施例8と実施例9の鉄-ニッケル系合金粉(Fe65モル%及びNi35モル%を含む鉄-ニッケル合金粉)の真比重は8.1、実施例10の鉄-ニッケル系合金粉(Fe80モル%及びNi20モル%を含む鉄-ニッケル合金粉)の真比重は8.0、実施例11の鉄-ニッケル系合金粉(Fe90モル%及びNi10モル%を含む鉄-ニッケル合金粉)の真比重は7.9であり、鉄の含有割合が大きくなるほど鉄-ニッケル系合金粉の真比重が小さくなることを考慮すれば、各実施例に係る圧粉体密度は、いずれも良好であることが分かる。
 実施例12は、晶析工程、回収工程を経て得られた乾粉としての晶析粉に絶縁コート処理を施して、粒子表面が高抵抗の二酸化けい素(SiO)で被覆された鉄-ニッケル系合金粉を製造した例である。この合金粉は、粒子間の絶縁性が大幅に向上(圧粉体抵抗率が大きく上昇)しているため、粒子同士を介した渦電流損失の改善が期待できる。
 実施例13~15は、磁性金属源において水溶性鉄塩、水溶性ニッケル塩に加えて水溶性コバルト塩を含ませ、還元されにくい鉄イオン(または水酸化鉄)の還元を促進して、コバルト含有割合が10モル%~25モル%で、鉄含有割合が65モル%~80モル%と大きい、鉄-ニッケル系合金粉を製造した例である。具体的には、Fe80モル%、Ni10モル%及びCo10モル%を含む鉄-ニッケル-コバルト合金粉、Fe70モル%、Ni10モル%及びCo20モル%を含む鉄-ニッケル-コバルト合金粉、及びFe65モル%、Ni10モル%及びCo25モル%を含む鉄-ニッケル-コバルト合金粉を製造した例である。鉄の含有量が65モル%~80モル%と大きい組成でありながら、コバルト添加による還元反応促進作用のおかげで非常に少ない還元剤としてのヒドラジン使用量でも還元不良を生じずに球状合金粉が得られた。この合金粉は、その平均粒径が0.4μm程度と微細で、且つ粒度分布がシャープな、表面平滑であった。また合金粉の飽和磁化は純鉄粉(1.95T~2.0T)と同等かそれを超える程に高かった。
 さらに、実施例13~15で得られた鉄-ニッケル系合金粉(鉄-ニッケル-コバルト合金粉)の真比重は8.0~8.1程度と推定されるが、いずれも圧粉体密度は大きく良好であった。これは、コバルト添加の還元反応促進効果により、粒子同志の凝集が進行する前に還元反応が完了し、その結果、晶析中の粒子同志の凝集が抑制されたためと考えられる。またコバルト添加のもう一つの作用である球状化促進により、粒子の充填性が向上したことも関係すると考えられる。
Figure JPOXMLDOC01-appb-T000032

 

Claims (32)

  1.  少なくとも鉄(Fe)及びニッケル(Ni)を磁性金属として含む鉄(Fe)-ニッケル(Ni)系合金粉の製造方法であって、前記方法が以下の工程;
     磁性金属源、核剤、錯化剤、還元剤、及びpH調整剤を出発原料として準備する準備工程、
     前記出発原料と水を含む反応液を調製し、前記反応液中で、前記磁性金属を含む晶析粉を還元反応により晶析させる晶析工程、及び
     前記反応液から前記晶析粉を回収する回収工程、を備え、
     前記磁性金属源は、水溶性鉄塩及び水溶性ニッケル塩を含み、
     前記核剤は、ニッケルよりも貴な金属の水溶性塩であり、
     前記錯化剤は、ヒドロキシカルボン酸、ヒドロキシカルボン酸の塩、及びヒドロキシカルボン酸の誘導体からなる群から選択される少なくとも一種であり、
     前記還元剤は、ヒドラジン(N)であり、
     前記pH調整剤は、水酸化アルカリである、方法。
  2.  前記水溶性鉄塩は、塩化第一鉄(FeCl)、硫酸第一鉄(FeSO)、及び硝酸第一鉄(Fe(NO)からなる群から選ばれる少なくとも一種である、請求項1に記載の方法。
  3.  前記水溶性ニッケル塩は、塩化ニッケル(NiCl)、硫酸ニッケル(NiSO)、及び硝酸ニッケル(Ni(NO)からなる群から選ばれる少なくとも一種である、請求項1又は2に記載の方法。
  4.  前記核剤は、銅塩、パラジウム塩、及び白金塩からなる群から選ばれる少なくとも一種である、請求項1~3のいずれか一項に記載の方法。
  5.  前記錯化剤は、酒石酸((CH(OH)COOH))及びクエン酸(C(OH)(CHCOOH)COOH)から選ばれる少なくとも一種のヒドロキシカルボン酸である、請求項1~4のいずれか一項に記載の方法。
  6.  前記pH調整剤は、水酸化ナトリウム(NaOH)及び水酸化カリウム(KOH)から選ばれる少なくとも一種である、請求項1~5のいずれか一項に記載の方法。
  7.  前記磁性金属がコバルト(Co)をさらに含み、
     前記磁性金属源が水溶性コバルト塩をさらに含む、請求項1~6のいずれか一項に記載の方法。
  8.  前記磁性金属において、鉄(Fe)の含有割合が60モル%以上85モル%以下で、かつ、コバルト(Co)の含有割合が10モル%以上30モル%以下であり、
     前記磁性金属源において、水溶性鉄塩の含有割合が60モル%以上85モル%以下で、かつ、水溶性コバルト塩の含有割合が10モル%以上30モル%以下である、請求項7に記載の方法。
  9.  前記水溶性コバルト塩は、塩化コバルト(CoCl)、硫酸コバルト(CoSO)、及び硝酸コバルト(Co(NO)からなる群から選ばれる少なくとも一種である、請求項7又は8に記載の方法。
  10.  前記出発原料は、2個以上の第1級アミノ基(-NH)、1個の第1級アミノ基(-NH)及び1個以上の第2級アミノ基(-NH-)、又は2個以上の第2級アミノ基(-NH-)を分子内に含有するアミン化合物をさらに含む、請求項1~9のいずれか一項に記載の方法。
  11.  前記アミン化合物は、アルキレンアミン及びアルキレンアミン誘導体の少なくとも一種である、請求項10に記載の方法。
  12.  前記アルキレンアミン及び/又はアルキレンアミン誘導体は、分子内のアミノ基の窒素原子が炭素数2の炭素鎖を介して結合した、下記(A)で表される構造を少なくとも有する、請求項11に記載の方法。
    Figure JPOXMLDOC01-appb-C000001
  13.  前記アミン化合物は、エチレンジアミン(HNCNH)、ジエチレントリアミン(HNCNHCNH)、トリエチレンテトラミン(HN(CNH)NH)、テトラエチレンペンタミン(HN(CNH)NH)、ペンタエチレンヘキサミン(HN(CNH)NH)、及びプロピレンジアミン(CHCH(NH)CHNH)からなる群から選ばれる少なくとも一種のアルキレンアミン、及び/又はトリス(2-アミノエチル)アミン(N(CNH)、N-(2-アミノエチル)エタノールアミン(HNCNHCOH)、N-(2-アミノエチル)プロパノールアミン(HNCNHCOH)、2,3-ジアミノプロピオン酸(HNCHCH(NH)COOH)、エチレンジアミン-N,N’-二酢酸(HOOCCHNHCNHCHCOOH)、及び1,2-シクロヘキサンジアミン(HNCH10NH)からなる群から選ばれる少なくとも一種のアルキレンアミン誘導体である、請求項10~12のいずれか一項に記載の方法。
  14.  前記磁性金属の合計量に対するアミン化合物の配合量は0.01モル%以上5.00モル%以下である、請求項10~13のいずれか一項に記載の方法。
  15.  前記晶析工程で反応液を調製する際、前記磁性金属源、前記核剤、及び前記錯化剤を水に溶解させた金属塩原料溶液と、前記還元剤を水に溶解させた還元剤溶液と、前記pH調整剤を水に溶解させたpH調整溶液と、をそれぞれ用意し、前記金属塩原料溶液と前記pH調整溶液を混合して混合溶液とし、前記混合溶液と前記還元剤溶液を混合する、請求項1~14のいずれか一項に記載の方法。
  16.  前記反応液を調製する際、前記pH調整溶液及び前記還元剤溶液を前記金属塩原料溶液に順次添加して混合する、請求項15に記載の方法。
  17.  前記混合溶液と前記還元剤溶液の混合に要する時間を1秒以上180秒以下にする、請求項15又は16に記載の方法。
  18.  前記晶析工程で反応液を調製する際、前記磁性金属源、前記核剤、及び前記錯化剤を水に溶解させた金属塩原料溶液と、前記還元剤及び前記pH調整剤を水に溶解させた還元剤溶液と、をそれぞれ用意し、前記金属塩原料溶液と前記還元剤溶液を混合する、請求項1~14のいずれか一項に記載の方法。
  19.  前記反応液を調製する際、前記金属塩原料溶液に前記還元剤溶液を添加する、あるいは逆に、前記還元剤溶液に前記金属塩原料溶液を添加して混合する、請求項18に記載の方法。
  20.  前記金属塩原料溶液と前記還元剤溶液の混合に要する時間を1秒以上180秒以下にする、請求項18又は19に記載の方法。
  21.  前記晶析工程において、還元反応が終了する前に、前記水溶性ニッケル塩と前記水溶性コバルト塩の少なくともいずれかを水に溶解させた追加原料液を前記反応液にさらに添加して混合する、請求項1~20のいずれか一項に記載の方法。
  22.  前記金属塩原料溶液、前記還元剤溶液、前記pH調整溶液、及び反応溶液の少なくとも一つにアミン化合物を配合する、請求項15~21のいずれか一項に記載の方法。
  23.  晶析粉の晶析開始時の反応液の温度(反応開始温度)が40℃以上90℃以下であり、且つ晶析開始後の晶析中に保持される反応液の温度(反応保持温度)が60℃以上99℃以である、請求項1~22のいずれか一項に記載の方法。
  24.  回収工程後の晶析粉または回収工程途中の晶析粉に対して衝突エネルギーを用いた解砕処理を施して、晶析粉に含まれる凝集粒子を解砕する解砕工程をさらに備える、請求項1~23のいずれか一項に記載の方法。
  25.  回収工程後の晶析粉の解砕処理を乾式解砕または湿式解砕で行う、あるいは回収工程途中の晶析粉の解砕を湿式解砕で行う、請求項24に記載の方法。
  26.  前記乾式解砕がスパイラルジェット解砕である、請求項25に記載の方法。
  27.  前記湿式解砕が高圧流体衝突解砕である、請求項25に記載の方法。
  28.  回収工程後の晶析粉または回収工程途中の晶析粉に対して、不活性雰囲気、還元性雰囲気、または真空雰囲気中で150℃超400℃以下での加熱処理を施し、それにより鉄(Fe)-ニッケル(Ni)系合金粉の粒子内の組成均一性を向上させる高温熱処理工程をさらに備える、請求項1~27のいずれか一項に記載の方法。
  29.  回収工程を経て得られた晶析粉に絶縁コート処理を施して晶析粉の粒子表面に金属酸化物からなる絶縁コート層を形成し、それにより粒子間の絶縁性を向上させる絶縁コート工程をさらに備える、請求項1~28のいずれか一項に記載の方法。
  30.  前記絶縁コート工程の際、水と有機溶剤を含む混合溶媒に晶析粉を分散し、さらに金属アルコキシドを前記混合溶媒に添加及び混合してスラリーを調製し、前記スラリー中で金属アルコキシドを加水分解及び脱水縮重合させて晶析粉の粒子表面に金属酸化物からなる絶縁コート層を形成し、その後、絶縁コート層が形成された晶析粉を前記スラリーから回収する、請求項29に記載の方法。
  31.  前記金属アルコキシドはシリコンアルコキシド(アルキルシリケート)を主成分とし、前記金属酸化物は二酸化けい素(SiO)を主成分とする、請求項30に記載の方法。
  32.  前記金属アルコキシドの加水分解を塩基触媒(アルカリ触媒)の共存下で行う、請求項30又は31に記載の方法。
     

     
PCT/JP2021/038261 2020-10-16 2021-10-15 鉄(Fe)-ニッケル(Ni)系合金粉の製造方法 WO2022080487A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022557484A JPWO2022080487A1 (ja) 2020-10-16 2021-10-15
CN202180069806.4A CN116391052A (zh) 2020-10-16 2021-10-15 铁(Fe)-镍(Ni)系合金粉的制造方法
US18/031,997 US20230381861A1 (en) 2020-10-16 2021-10-15 METHOD FOR MANUFACTURING IRON (Fe)-NICKEL (Ni) ALLOY POWDER

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020175002 2020-10-16
JP2020-175002 2020-10-16
JP2021037396 2021-03-09
JP2021-037396 2021-03-09
JP2021140962 2021-08-31
JP2021-140962 2021-08-31

Publications (1)

Publication Number Publication Date
WO2022080487A1 true WO2022080487A1 (ja) 2022-04-21

Family

ID=81208124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038261 WO2022080487A1 (ja) 2020-10-16 2021-10-15 鉄(Fe)-ニッケル(Ni)系合金粉の製造方法

Country Status (4)

Country Link
US (1) US20230381861A1 (ja)
JP (1) JPWO2022080487A1 (ja)
CN (1) CN116391052A (ja)
WO (1) WO2022080487A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114905049A (zh) * 2022-05-11 2022-08-16 江南大学 一种手性钴超粒子及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776702A (ja) * 1993-09-07 1995-03-20 Japan Synthetic Rubber Co Ltd 複合粒子の製造方法
JPH10259401A (ja) * 1997-03-19 1998-09-29 Nittetsu Mining Co Ltd 多層膜被覆粉体の製造方法
US6156428A (en) * 1995-06-02 2000-12-05 Gibson; Charles P. Base metal particles having anisometric morphology
JP2010242143A (ja) * 2009-04-02 2010-10-28 Sumitomo Electric Ind Ltd 金属粉末および金属粉末製造方法、導電性ペースト、並びに積層セラミックコンデンサ
JP2015086469A (ja) * 2013-08-07 2015-05-07 ニホンハンダ株式会社 金属微粒子の連続的製造方法、導電性硬化性組成物および電子機器
CN108274020A (zh) * 2018-04-10 2018-07-13 宇辰新能源材料科技无锡有限公司 一种超细球形镍铁合金粉的制备方法
JP2018150607A (ja) * 2017-03-14 2018-09-27 住友金属鉱山株式会社 ニッケル粉末の水スラリーとその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776702A (ja) * 1993-09-07 1995-03-20 Japan Synthetic Rubber Co Ltd 複合粒子の製造方法
US6156428A (en) * 1995-06-02 2000-12-05 Gibson; Charles P. Base metal particles having anisometric morphology
JPH10259401A (ja) * 1997-03-19 1998-09-29 Nittetsu Mining Co Ltd 多層膜被覆粉体の製造方法
JP2010242143A (ja) * 2009-04-02 2010-10-28 Sumitomo Electric Ind Ltd 金属粉末および金属粉末製造方法、導電性ペースト、並びに積層セラミックコンデンサ
JP2015086469A (ja) * 2013-08-07 2015-05-07 ニホンハンダ株式会社 金属微粒子の連続的製造方法、導電性硬化性組成物および電子機器
JP2018150607A (ja) * 2017-03-14 2018-09-27 住友金属鉱山株式会社 ニッケル粉末の水スラリーとその製造方法
CN108274020A (zh) * 2018-04-10 2018-07-13 宇辰新能源材料科技无锡有限公司 一种超细球形镍铁合金粉的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114905049A (zh) * 2022-05-11 2022-08-16 江南大学 一种手性钴超粒子及其制备方法
CN114905049B (zh) * 2022-05-11 2023-06-02 江南大学 一种手性钴超粒子及其制备方法

Also Published As

Publication number Publication date
JPWO2022080487A1 (ja) 2022-04-21
US20230381861A1 (en) 2023-11-30
CN116391052A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
US11264155B2 (en) Epsilon-type iron oxide magnetic particles and method for producing the same, magnetic powder, magnetic coating material and magnetic recording medium containing magnetic particles
JP6892797B2 (ja) 鉄粉およびその製造方法並びに前駆体の製造方法並びにインダクタ用成形体およびインダクタ
JP6676493B2 (ja) 鉄系酸化物磁性粒子粉の製造方法
JP2008117855A (ja) ナノコンポジット磁石の製造方法
JP5996160B2 (ja) 圧粉磁心、及び圧粉磁心を用いたインダクタ
JP6427062B2 (ja) コア−シェル−コアナノ粒子系、コア−シェル−コアFeCo/SiO2/MnBiナノ粒子系を調製する方法、およびMnBiナノ粒子とのFeCo/SiO2ナノ粒子のコア−シェル−コアナノ凝集体
WO2022080487A1 (ja) 鉄(Fe)-ニッケル(Ni)系合金粉の製造方法
JP2008081818A (ja) ニッケル―鉄合金ナノ粒子の前駆体粉末の製造方法およびニッケル―鉄合金ナノ粒子の前駆体粉末、ニッケル―鉄合金ナノ粒子の製造方法およびニッケル―鉄合金ナノ粒子
WO2022186226A1 (ja) 軟磁性金属粉末
JP2012193409A (ja) 鉄微粒子、及びその製造方法
JP2021054711A (ja) 鉄系酸化物磁性粉およびその製造方法
JP2017201672A (ja) 磁性粉末の製造方法
JP6427061B2 (ja) コア−シェル−シェルFeCo/SiO2/MnBiナノ粒子を調製する方法、およびコア−シェル−シェルFeCo/SiO2/MnBiナノ粒子
KR102387491B1 (ko) 철분 및 이의 제조 방법 및 인덕터용 성형체 및 인덕터
JP7097702B2 (ja) Fe-Co合金粉並びにそれを用いたインダクタ用成形体およびインダクタ
JP2011058058A (ja) 非晶質軟磁性合金粉末及びその製造方法、並びに非晶質軟磁性合金粉末を用いた圧粉磁心、インダクタ及び磁性シート
JP2022138129A (ja) (Fe)-ニッケル(Ni)系合金粉、前記合金粉を含む圧粉体又はシート、並びに前記圧粉体又はシートを備えたインダクタ、リアクトル、チョークコイル、ノイズフィルタ、トランス、回転機、発電機、又は電波吸収体
JP7002179B2 (ja) Fe-Ni合金粉並びにそれを用いたインダクタ用成形体およびインダクタ
JP2022119746A (ja) 金属粉末
JP5076135B2 (ja) hcp構造をもつニッケル粉の製法
JP2005175289A (ja) 磁性材料及びその製造方法
JP2018182302A (ja) 複合磁性材料、モータ、および複合磁性材料の製造方法
WO2023176926A1 (ja) コバルトフェライト粒子の製造方法とそれにより製造されたコバルトフェライト粒子
WO2024048500A1 (ja) 球形化率の高い軟磁性金属粉末及びその製造方法
JP2007284713A (ja) ニッケル微粉末の製造方法およびニッケル微粉末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880222

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18031997

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022557484

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880222

Country of ref document: EP

Kind code of ref document: A1