WO2022080470A1 - 架橋ポリエステル樹脂 - Google Patents

架橋ポリエステル樹脂 Download PDF

Info

Publication number
WO2022080470A1
WO2022080470A1 PCT/JP2021/038128 JP2021038128W WO2022080470A1 WO 2022080470 A1 WO2022080470 A1 WO 2022080470A1 JP 2021038128 W JP2021038128 W JP 2021038128W WO 2022080470 A1 WO2022080470 A1 WO 2022080470A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
epoxy
crosslinked
group
crosslinked polyester
Prior art date
Application number
PCT/JP2021/038128
Other languages
English (en)
French (fr)
Inventor
翔子 内山
幹大 林
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022557461A priority Critical patent/JPWO2022080470A1/ja
Priority to EP21880205.6A priority patent/EP4230675A1/en
Priority to KR1020237016310A priority patent/KR20230088438A/ko
Priority to US18/031,770 priority patent/US20230383115A1/en
Priority to CN202180070052.4A priority patent/CN116348520A/zh
Publication of WO2022080470A1 publication Critical patent/WO2022080470A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4246Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof polymers with carboxylic terminal groups
    • C08G59/4269Macromolecular compounds obtained by reactions other than those involving unsaturated carbon-to-carbon bindings
    • C08G59/4276Polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3227Compounds containing acyclic nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/20Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
    • C08G63/21Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups in the presence of unsaturated monocarboxylic acids or unsaturated monohydric alcohols or reactive derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/688Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a polyester resin in which a polyester resin having a carboxy group in a side chain is crosslinked with an epoxy-based cross-linking agent having a plurality of epoxy groups.
  • the polyester resin is a polycondensate synthesized by dehydrating and condensing a polyvalent carboxylic acid and a polyalcohol, and examples thereof include linear polymers produced from terephthalic acid or an ester-forming derivative thereof and ethylene glycol. ..
  • the polyester resin is excellent in versatility and practicality, and is suitably used as a material for, for example, films, sheets, fibers, bottles and the like.
  • polyester resin is expected to be applied to various applications in the future due to its excellent mechanical properties, weather resistance, and chemical resistance. For example, it is used for industrial parts such as electrical insulation, solar cells, and tire cords. Can be mentioned.
  • polyester resin is also used as a crosslinked polyester resin by cross-linking polyester resins with a cross-linking agent.
  • Patent Document 1 describes a carboxylic acid group having a high degree of moisture resistance and heat resistance that can be used for lead-free soldering under high humidity while maintaining good adhesion to various plastic films, metals, and glass epoxies.
  • An adhesive composition containing a contained polymer compound is described.
  • This carboxylic acid group-containing polymer compound contains at least a polymer polyol (A), a polymer polyol (B) different from the polymer polyol (A), and a tetracarboxylic acid dianhydride as a copolymerization component. ..
  • Patent Document 1 As an example of the adhesive composition, 100 parts of the solid content of the carboxylic acid group-containing polymer compound (C1) is used, and the epoxy resin is YDCN-700 manufactured by Nittetsu Chemical & Materials Co., Ltd. Add 9 parts of -10 (novolak type epoxy resin) and 0.1 part of TETRAD (registered trademark) -X (N, N, N', N'-tetraglycidyl-m-xylenediamine) manufactured by Mitsubishi Gas Chemicals Co., Ltd. , Disclosed is an adhesive composition obtained by adjusting the solid content concentration to 35% using methyl ethyl ketone.
  • Patent Document 2 also describes an adhesive composition containing a carboxylic acid group-containing polymer compound having the same characteristics as those of Patent Document 1.
  • This adhesive composition is an adhesive composition containing a carboxylic acid group-containing polyester resin (A) and an epoxy resin (B), and the carboxylic acid group-containing polyester resin (A) is a polymer polyol as a copolymerization component. It contains (A1), a polymer polyol (A2) different from the polymer polyol (A1), and a tetracarboxylic acid dianhydride.
  • Patent Document 2 As an example of the adhesive composition, 100 parts of the solid content of the carboxylic acid group-containing polyester resin (A-1) and the epoxy resin, YDCN-manufactured by Nittetsu Chemical & Materials Co., Ltd. 9 parts of 700-10 (novolak type epoxy resin) and 0.1 part of TETRAD (registered trademark) -X (N, N, N', N'-tetraglycidyl-m-xylenediamine) manufactured by Mitsubishi Gas Chemical Company, Inc.
  • TETRAD registered trademark
  • -X N, N, N', N'-tetraglycidyl-m-xylenediamine
  • Patent Documents 1 and 2 are excellent in moisture and heat resistance.
  • Patent Document 3 describes a crosslinked polyester resin exhibiting self-adhesiveness, remoldability, and scratch repairability.
  • This crosslinked polyester resin is characterized in that it contains a polymer backbone containing multiple ester bonds, a polyester resin containing multiple covalently bonded crosslinked portions containing ester bonds and free OH groups, and an ester exchange catalyst. are doing. Since the crosslinked polyester resin described in Patent Document 3 contains a transesterification catalyst, the free OH group is one of a large number of ester bonds existing in the vicinity due to the action of the transesterification catalyst present in the vicinity thereof. By attacking the CO bond of one ester bond, a transesterification reaction occurs, and properties such as self-adhesiveness can be enjoyed. In the examples of Patent Document 3, an example in which zinc acetate is used as a transesterification catalyst is disclosed.
  • the present invention has been made by paying attention to the above circumstances, and an object thereof is high strength at room temperature due to dynamic covalent bond cross-linking capable of transesterification at high temperature, but above the softening temperature. It can be reprocessed, adhered between films, and self-repaired, and exhibits softening behavior due to bond exchange due to transesterification reaction without the addition of a transesterification catalyst.
  • the present invention is to provide a crosslinked polyester resin showing the above.
  • Another object of the present invention is to provide a crosslinked polyester resin capable of lowering the processing temperature while maintaining heat resistance even when a transesterification catalyst is blended.
  • the polyester resin having a carboxy group in the side chain is a resin crosslinked with an epoxy-based cross-linking agent having a plurality of epoxy groups, and as the epoxy-based cross-linking agent, two or more tertiary aminos in the molecule.
  • the epoxyamine compound is 3 to 30 mol parts with respect to 100 mol parts of the carboxy group of the polyester resin containing an epoxyamine compound having a group and two or more epoxy groups and having a carboxy group in the side chain.
  • a cross-linked polyester resin characterized by.
  • the molar ratio of the carboxy group of the polyester resin having a carboxy group in the side chain to the epoxy group of the epoxyamine compound is 1: 0.125 to 1: 1.2 for the carboxy group: the epoxy group.
  • a polyester resin having a carboxy group in the side chain is crosslinked with an epoxy-based cross-linking agent containing an epoxyamine compound having two or more tertiary amino groups and two or more epoxy groups in the molecule.
  • an epoxy-based cross-linking agent containing an epoxyamine compound having two or more tertiary amino groups and two or more epoxy groups in the molecule acts like a transesterification catalyst, it exhibits softening behavior due to bond exchange by the transesterification reaction without blending the transesterification catalyst.
  • a crosslinked polyester resin exhibiting self-adhesiveness, remoldability, and scratch repairability can be provided.
  • the cross-linked polyester resin of the present invention may be a cross-linked polyester resin composition containing a transesterification catalyst, and even when the transesterification catalyst is mixed, the number of cross-linking points by the epoxyamine compound is the transesterification catalyst. Since it does not change compared to when it is not used, the processing temperature can be lowered while maintaining heat resistance.
  • FIG. 1 is a graph showing the results of measuring the change in the coefficient of linear expansion of the crosslinked polyester resin.
  • FIG. 2 is a graph showing the results of measuring the storage elastic modulus (DMA) of the crosslinked polyester resin.
  • DMA storage elastic modulus
  • the present inventors provide a crosslinked polyester resin that exhibits softening behavior due to bond exchange due to a transesterification reaction without blending a transesterification catalyst containing a metal, and exhibits self-adhesiveness, reformability, and scratch repairability. Aiming to do so, we have been studying hard.
  • a cross-linking agent for cross-linking the polyester resins an epoxy-based cross-linking agent containing an epoxy amine compound having two or more tertiary amino groups and two or more epoxy groups in the molecule is used to obtain the polyester resin.
  • an epoxy-based cross-linking agent containing an epoxy amine compound having two or more tertiary amino groups and two or more epoxy groups in the molecule is used to obtain the polyester resin.
  • the crosslinked polyester resin according to the present invention is a resin in which a polyester resin having a carboxy group in the side chain is crosslinked with an epoxy-based cross-linking agent having a plurality of epoxy groups, and two of the epoxy-based cross-linking agents are used in the molecule. It contains an epoxyamine compound having the above tertiary amino group and two or more epoxy groups.
  • the side chain has a structure having a carboxy group in a substituent (for example, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, an alicyclic hydrocarbon group, etc.) branched from the main chain of the aromatic polyester resin.
  • the aromatic polyester resin may have a structure having a direct carboxy group.
  • the side chain is preferably a structure having a carboxy group directly on the aromatic polyester resin.
  • the polyester resin is crosslinked by the reaction of two or more epoxy groups contained in the epoxyamine compound with the carboxy group of the side chain of the polyester resin. That is, the crosslinked polyester resin has an ester group and a hydroxyl group formed by reacting the carboxy group of the side chain of the polyester resin with the epoxy group of the epoxyamine compound.
  • the heat resistance of the polyester resin is improved by being crosslinked.
  • the epoxy group contained in the epoxy amine compound may be two or more, may be three or more, or may be four or more.
  • the upper limit of the number of epoxy groups is not particularly limited, but for example, 6 or less is preferable, and 5 or less is more preferable.
  • the epoxy amine compound has a tertiary amino group in the molecule.
  • the tertiary amino group has the same action as the transesterification catalyst, and the hydroxyl group contained in the crosslinked polyester resin by heating the crosslinked polyester resin can be a tertiary amino without blending the transesterification catalyst.
  • the CO bond of the ester group existing in the vicinity of the hydroxyl group is attacked, the bond exchange occurs by the transesterification reaction, and the softening behavior is exhibited.
  • the transesterification reaction does not proceed sufficiently, so that self-adhesiveness, remoldability, and scratch repairability are not exhibited. Further, even if the transesterification catalyst is blended to positively promote the transesterification reaction, according to the present invention, the number of cross-linking points by the epoxyamine compound does not change as compared with the case where the transesterification catalyst is not blended.
  • the softening temperature can be reduced while maintaining the heat resistance of the polyester resin itself, and the processing temperature can be lowered.
  • the number of tertiary amino groups contained in the molecule of the epoxy amine compound is two or more. Softening behavior can be exhibited by containing two or more tertiary amino groups.
  • the epoxy amine compound is 3 to 30 mol parts with respect to 100 mol parts of the carboxy group of the polyester resin having a carboxy group in the side chain.
  • the epoxy amine compound is 3 mol parts or more, preferably 5 mol parts or more, and more preferably 10 mol parts or more.
  • the epoxy amine compound exceeds 30 mol parts, the ratio of the epoxy group to the carboxy group increases, and it is considered that the epoxy groups contained in excess are self-polymerized and the crosslink density becomes too high. Therefore, it is considered that the mobility of the crosslinked polymer is lowered and the softening temperature becomes too high. Therefore, the epoxy amine compound is 30 mol parts or less, preferably 28 mol parts or less, and more preferably 26 mol parts or less.
  • the number of carboxy groups per polymer chain of the polyester resin (hereinafter, may be referred to as NCOOH ) can be calculated by the following method.
  • the acid value of the polyester resin is A (mgKOH / g)
  • the molecular weight of KOH is 56.1 g / mol
  • the number of moles of carboxy groups per 1 g of polyester resin having carboxy groups in the side chain is It can be expressed as A / 56.1 (mmol / g).
  • the number average molecular weight of the polyester resin having a carboxy group in the side chain is B (g / mol)
  • the number of carboxy groups in the polymer chain may be expressed as A / 56.1 ⁇ B / 1000 (pieces). This is defined as the number of carboxy groups N COOH per polymer chain.
  • the tertiary amino group and the epoxy group contained in the epoxyamine compound constitute a diglycidylamino group represented by the following formula.
  • * indicates a bond.
  • the number of diglycidylamino groups contained in the molecule of the epoxyamine compound may be one, preferably two or more. By containing two or more diglycidylamino groups, the softening behavior caused by the bond exchange by the transesterification reaction is likely to occur.
  • the number of diglycidylamino groups is preferably, for example, 3 or less.
  • the diglycidylamino group may be bonded to an aliphatic hydrocarbon having about 1 to 10 carbon atoms (hereinafter referred to as a linking group 1), and may be bonded to an aromatic hydrocarbon ring having about 6 to 20 carbon atoms (hereinafter referred to as a linking group). It may be bonded to (2), and a group in which two or more aromatic hydrocarbon rings having 6 to 20 carbon atoms are bonded to an aliphatic hydrocarbon having 1 to 10 carbon atoms (hereinafter referred to as linking group 3). ) May be combined.
  • the diglycidylamino group is preferably bonded to the linking group 2 or the linking group 3, and it is particularly preferable that the diglycidylamino group is bonded to the aromatic hydrocarbon ring (preferably a benzene ring).
  • Examples of the epoxyamine compound include N, N, N', N'-tetraglycidyl-m-xylene diamine, 4,4'-methylenebis (N, N-diglycidylaniline) and the like.
  • N, N, N', N'-tetraglycidyl-m-xylene diamine is commercially available from Mitsubishi Gas Chemical Company, Inc. as a polyfunctional epoxy compound "TETRAD-X”.
  • 4,4'-Methylenebis (N, N-diglycidylaniline) is available from Tokyo Chemical Industry Co., Ltd. (TCI).
  • As the epoxy amine compound one kind may be used, or two or more kinds may be used.
  • the molecular weight of the epoxyamine compound is preferably 800 or less. When the molecular weight is 800 or less, the epoxyamine compound can enter between the polyester chains to easily form a three-dimensional crosslink and improve the heat resistance.
  • the molecular weight of the epoxyamine compound is more preferably 700 or less, still more preferably 600 or less.
  • the lower limit of the molecular weight of the epoxy amine compound is, for example, 250 or more.
  • the epoxy-based cross-linking agent in addition to the above-mentioned epoxyamine compound (hereinafter referred to as the first epoxyamine compound), a polyfunctional epoxy compound other than the above-mentioned first epoxyamine compound (hereinafter referred to as another polyfunctional epoxy compound) is used. You may use it. That is, as another polyfunctional epoxy compound, it is a cross-linking agent that undergoes a curing reaction to crosslink with a carboxy group on the side chain of a polyester resin, has two or more epoxy groups in the molecule, and has a third in the molecule.
  • a compound containing no secondary amino group (hereinafter referred to as a non-amine type epoxy compound), a compound containing two or more epoxy groups and one tertiary amino group in the molecule (hereinafter referred to as a second epoxyamine compound).
  • a non-amine type epoxy compound a compound containing two or more epoxy groups and one tertiary amino group in the molecule
  • a second epoxyamine compound a compound containing two or more epoxy groups and one tertiary amino group in the molecule
  • non-amine type epoxy compound examples include a cresol novolac type epoxy resin, a phenol novolac type epoxy resin, and an epoxy resin having a dicyclopentadiene skeleton.
  • a cresol novolac type epoxy resin or a phenol novolac type epoxy resin is used, the crosslink density can be lowered and the stress at the time of peeling can be relieved.
  • a commercially available cresol novolak type epoxy resin for example, YDCN-700 manufactured by Nittetsu Chemical & Materials Co., Ltd. can be used.
  • a commercially available phenol novolac type epoxy resin for example, EPICLON N-700A manufactured by DIC Corporation can be used.
  • the dicyclopentadiene skeleton of the epoxy compound having a dicyclopentadiene skeleton is rigid, the hygroscopicity is extremely small, the crosslink density can be lowered, and the stress at the time of peeling can be relaxed.
  • the HP7200 series manufactured by DIC Corporation can be used as a commercially available epoxy compound having a dicyclopentadiene skeleton.
  • Examples of the second epoxyamine compound include triglycidyl paraaminophenol (also referred to as N, N-diglycidyl-4- (glycidyloxy) aniline).
  • triglycidyl paraaminophenol also referred to as N, N-diglycidyl-4- (glycidyloxy) aniline.
  • jER630 manufactured by Mitsubishi Chemical Corporation can be used as a commercially available product of triglycidyl para-aminophenol.
  • the first epoxyamine compound is 30 mol parts or more.
  • the first epoxyamine compound is more preferably 50 mol parts or more, still more preferably 80 mol parts or more. Particularly preferably, it is 100 mol parts, and it is preferable to use only an epoxyamine compound having two or more epoxy groups and two or more tertiary amino groups in the molecule as the epoxy-based cross-linking agent.
  • polyester resin The polyester resin has a carboxy group in the side chain, and the polyester resin is crosslinked by the reaction between the carboxy group and the epoxy group contained in the epoxy-based cross-linking agent.
  • the polyester resin having a carboxy group in the side chain may be an aliphatic polyester or an aromatic polyester. From the viewpoint of enhancing self-adhesiveness, it is more preferable to use an aliphatic polyester, from the viewpoint of enhancing heat resistance, it is more preferable to use an aromatic polyester, and an aliphatic polyester and an aromatic polyester may be used in combination.
  • the crosslinked polyester resin is used as an adhesive sheet or an adhesive film for adhering a film base material or a metal base material, it is preferable to use aromatic polyester rather than aliphatic polyester as the polyester resin having a carboxy group in the side chain. ..
  • a polyester resin having a carboxy group in the side chain can be used, for example, by polycondensing a dicarboxylic acid containing a polyvalent carboxylic acid, a polyhydric alcohol, and a nucleophilic reactive group (such as a thiol group) with the nucleophilic reactant.
  • the polyvalent carboxylic acid may be mainly composed of a dicarboxylic acid (for example, 60 mol parts or more, preferably 80 mol parts or more of the dicarboxylic acid with respect to 100 mol parts of the polyvalent carboxylic acid), and the dicarboxylic acid may be, for example, Aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, phenylenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid; Alicyclic dicarboxylic acids such as acids and dimer acids; alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, tetrahydrophthalic acid, hexahydroisophthalic acid and 1,2-cyclohexenedicarboxylic acid; fumaric acid, maleic acid, terpene.
  • Aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic
  • -An unsaturated group-containing dicarboxylic acid such as a maleic acid adduct; and the like can be mentioned.
  • dicarboxylic acid one kind or two or more kinds can be used from these.
  • the polyvalent carboxylic acid include tricarboxylic acids, pyromeric acids, tricarboxylic acids such as 3,3', 4,4'-benzophenone tetracarboxylic acid, and tetracarboxylic acids, and these tricarboxylic acids and tetracarboxylic acids are used.
  • the acid is preferably subjected to a polycondensation reaction as an acid anhydride.
  • polyhydric alcohol examples include neopentyl glycol, ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, and 2,2-dimethyl-1,3-.
  • Polyether glycols such as glycols, polyolefin glycols, polytetramethylene glycol; 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, tricyclodecane
  • Alicyclic polyols such as glycols and water-added bisphenols; ethylene glycol modified products of terephthalic acid (eg, bis-2-hydroxyethyl terephthalate (BHET)), propylene glycol modified products of terephthalic acid, ethylene glycol modified products of isophthalic acid.
  • BHET bis-2-hydroxyethyl terephthalate
  • Glycol-modified products of aromatic dicarboxylic acids such as propylene glycol-modified products of isophthalic acid, ethylene-glycol-modified products of orthophthalic acid, and propylene glycol-modified products of orthophthalic acid. From these, one kind or two or more kinds can be used.
  • dicarboxylic acid containing a nucleophilic reactive group examples include a dicarboxylic acid containing a thiol group as a reactive group, and an aliphatic dicarboxylic acid having a thiol group such as thioapple acid and having about 4 to 10 carbon atoms. Will be.
  • Examples of the unsaturated carboxylic acid that reacts with the nucleophilic reactive group include aliphatic ⁇ and ⁇ -unsaturated monocarboxylic acids having about 3 to 10 carbon atoms such as acrylic acid, methacrylic acid, crotonic acid, and isocrotonic acid. Can be mentioned.
  • Examples of the unsaturated polyvalent carboxylic acid include aliphatic ⁇ and ⁇ -unsaturated dicarboxylic acids having about 4 to 10 carbon atoms such as maleic acid and fumaric acid.
  • Examples of the carboxylic acid having a nucleophilic reactive group that reacts with the unsaturated group of the unsaturated polyvalent carboxylic acid include aliphatic groups having a thiol group such as thioglycolic acid and mercaptopropionic acid and having about 2 to 10 carbon atoms. Examples include monocarboxylic acids.
  • the molar ratio of the carboxy group of the polyester resin having a carboxy group in the side chain to the epoxy group of the first epoxyamine compound is carboxy group: epoxy group, preferably 1: 0.125 to 1: 1.2.
  • the more preferable lower limit of the molar ratio is 1: 0.3, and the more preferable upper limit is 1: 1.1.
  • the molar ratio is most preferably 1: 1.
  • the number average molecular weight (Mn) of the polyester resin having a carboxy group in the side chain is preferably 6000 to 20000, for example.
  • the heat resistance can be improved by having the number average molecular weight of the polyester resin having a carboxy group in the side chain of 6000 or more.
  • the number average molecular weight is more preferably 6500 or more, still more preferably 7000 or more.
  • the number average molecular weight is preferably 20000 or less, more preferably 19000 or less, still more preferably 18000 or less.
  • the molecular weight dispersion (PDI) of the polyester resin having a carboxy group in the side chain is preferably 1.3 to 1.8.
  • the PDI value is more preferably 1.4 or more. However, if the PDI value becomes too large, the variation in chain length becomes large, so that the variation in strength tends to occur. Therefore, the PDI value is preferably 1.8 or less, more preferably 1.7 or less.
  • the number of carboxy groups ( NCOOH ) per polymer chain of the polyester resin is preferably 3 to 50.
  • N COOH is 3 or more, the carboxy group of the side chain of the polyester resin is crosslinked with an epoxy-based cross-linking agent, and the heat resistance is improved.
  • N COOH is more preferably 3.5 or more, still more preferably 4 or more.
  • the NCOOH is preferably 50 or less, more preferably 48 or less, still more preferably 45 or less.
  • the acid value of the polyester resin having a carboxy group in the side chain is preferably 5 mgKOH / g or more. Heat resistance can be improved by setting the acid value to 5 mgKOH / g or more.
  • the acid value is more preferably 10 mgKOH / g or more, still more preferably 15 mgKOH / g or more.
  • the acid value is preferably 250 mgKOH / g or less, more preferably 230 mgKOH / g or less, and further preferably 200 mgKOH / g or less.
  • the crosslinked polyester resin of the present invention does not have to contain a transesterification catalyst, but may be a crosslinked polyester resin composition containing a transesterification catalyst as long as the effects of the present invention are not impaired.
  • the transesterification reaction can be promoted, so that the softening temperature can be lowered while maintaining the heat resistance of the crosslinked polyester resin itself, and the processing temperature can be lowered.
  • ester exchange catalyst for example, zinc acetate, triphenylphosphine, trimethylamine, triethylamine and the like can be used, and among these, zinc acetate is preferably used.
  • zinc acetate is preferably used.
  • One type of transesterification catalyst may be used, or two or more types may be used.
  • the transesterification catalyst When the transesterification catalyst is blended, it is preferably 30 mol parts or less, more preferably 28 mol parts or less, and further preferably 25 mol parts or less with respect to 100 mol parts of the carboxy group of the polyester resin.
  • the lower limit is, for example, 1 mol part or more, more preferably 2 mol parts or more, still more preferably 3 mol parts or more, based on 100 mol parts of the carboxy group of the polyester resin.
  • a plurality of types of transesterification catalysts When a plurality of types of transesterification catalysts are used, it means the total amount.
  • the crosslinked polyester resin of the present invention preferably has a softening temperature of, for example, 155 to 300 ° C. due to bond exchange due to the transesterification reaction.
  • the softening temperature in the case of the crosslinked polyester resin composition containing the transesterification catalyst is, for example, preferably 155 ° C. or higher, more preferably 160 ° C. or higher, still more preferably 165 ° C. or higher.
  • the softening temperature is, for example, preferably 175 ° C. or higher, more preferably 180 ° C. or higher, still more preferably 190 ° C. or higher.
  • the softening temperature of the crosslinked polyester resin is the temperature at the bending point of the linear expansion rate change curve by measuring the change in the linear expansion rate when heated from room temperature to 300 ° C. with tension applied. ..
  • the specific measurement method will be described in detail in the section of Examples.
  • the crosslinked polyester resin (crosslinked polyester resin composition) of the present invention preferably has a glass transition temperature (Tg) of ⁇ 50 to 150 ° C. Heat resistance can be ensured when Tg is ⁇ 50 ° C. or higher. Tg is more preferably ⁇ 40 ° C. or higher, still more preferably ⁇ 30 ° C. or higher. However, if the Tg is too high, it becomes difficult to process, so the Tg is preferably 150 ° C. or lower. Tg is more preferably 130 ° C. or lower, still more preferably 100 ° C. or lower.
  • the crosslinked polyester resin of the present invention can be produced by a known method. For example, a method of dissolving a polyester resin having a carboxy group in the side chain and an epoxy-based cross-linking agent containing the first epoxy amine compound in a solvent, removing the solvent, and heating under reduced pressure to cross-link may be mentioned.
  • the molar ratio of the carboxy group of the polyester resin having a carboxy group in the side chain to the epoxy group of the first epoxyamine compound is carboxy group: epoxy group, preferably 1: 0.125 to 1: 1.2.
  • the more preferable lower limit of the molar ratio is 1: 0.3, the more preferable upper limit is 1: 1.1, and the most preferable is 1: 1.
  • the crosslinked polyester resin of the present invention has self-adhesiveness, and when the crosslinked polyester resins of the present invention are laminated and laminated and heated and pressed, ester exchange occurs at the interface of the crosslinked polyester resin, and no adhesive is used.
  • cross-linked polyester resins can be bonded to each other.
  • the crosslinked polyester resin of the present invention has remoldability, and after being deformed into a predetermined shape, transesterification occurs by heating in the deformed state, and the resin is remolded and has a predetermined shape even when cooled. To hold.
  • the crosslinked polyester resin of the present invention has scratch repair properties, and even if the surface is scratched with a cutter knife or the like, the bond is replaced by a transesterification reaction by heating, and self-repair is performed. Therefore, the crosslinked polyester resin of the present invention can be used as the main component of the self-healing material.
  • the self-healing material for example, it can be used as a paint material.
  • the crosslinked polyester resin of the present invention can be used as the main component of the molding material. That is, the crosslinked polyester resin is useful as a molding material because it has good molding processability and extrusion moldability, and can be used, for example, as a material for a 3D printer or a material for a filamentous molded product.
  • the crosslinked polyester resin can be used as a material for a network structure.
  • the net-like structure is a structure in which a part of the thread-like molded body is connected to each other.
  • the network structure can be manufactured by melting a crosslinked polyester resin, discharging the melt from a nozzle, and solidifying the discharged material while welding it.
  • the content of the crosslinked polyester resin in the solid content of the self-adhesive, self-healing material or molding material is preferably 60% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more. There is no problem even if it is 100% by mass.
  • the crosslinked polyester resin of the present invention has good solvent resistance because it is difficult to dissolve even when immersed in a solvent (particularly, an organic solvent). Therefore, the crosslinked polyester resin can be suitably used as a laminating material, for example.
  • the crosslinked polyester resin of the present invention has good room temperature storage stability. That is, the gel fraction hardly changes even when stored at a predetermined temperature for a predetermined period. In addition, even if it is stored at a predetermined temperature for a predetermined period, it exhibits the same softening behavior as before storage.
  • the crosslinked polyester resins of the present invention when an aromatic polyester resin is used as the polyester resin having a carboxy group in the side chain, the crosslinked polyester resin can be used, for example, as an adhesive sheet, an adhesive film, or a molding material. ..
  • the crosslinked polyester resin of the present invention may be sandwiched between the members to be adhered and heated. By heating, bond exchange occurs due to the transesterification reaction, and the bonded members can be bonded to each other.
  • Examples of the member to be adhered include a resin film, a metal foil, and the like, and the crosslinked polyester resin can be used as an adhesive between the resin films, the metal foils, and the resin film and the metal foil.
  • Examples of the resin film include a polyimide film, a polyester film, and a PET film.
  • Examples of the metal foil include copper foil, silver foil, and gold leaf.
  • the adhesiveness of the crosslinked aromatic polyester resin can be evaluated based on the 90 ° peel strength shown in the examples.
  • the crosslinked polyester resins of the present invention when an aromatic polyester resin is used as the polyester resin having a carboxy group in the side chain, the crosslinked polyester resin is heated to a temperature higher than the ester bond exchange activation temperature (softening temperature). Since the bond exchange is possible, when the crosslinked polyester resin is used as the material of the adhesive, the adhesive is easily peeled off by heating it to a temperature higher than the ester bond exchange activation temperature. Therefore, the crosslinked polyester resin can be used as a material for an adhesive for repairs that can be pasted and peeled off.
  • the peelability of the crosslinked polyester resin when heated to a high temperature can be evaluated based on the 90 ° peel strength when heated shown in Examples.
  • crosslinked polyester resin composition containing a crosslinked polyester resin and an ester exchange catalyst can also be used for the same purpose.
  • a crosslinked polyester resin was produced by cross-linking a polyester resin having a carboxy group in the side chain with an epoxy-based cross-linking agent having a plurality of epoxy groups.
  • an aliphatic polyester resin or an aromatic polyester resin was used as the polyester resin.
  • Production Example 1 (aliphatic polyester resin A1) A glass flask equipped with a stirrer and having a capacity of 50 ml is charged with 15 mol parts of thioapple acid, 35 mol parts of adipic acid, 50 mol parts of 1,5-pentanediol, and 0.5 mol parts of scandium triflate at 80 ° C. It was made uniform by stirring with. After dissolution, the pressure inside the glass flask was reduced to 5 mmHg over 30 minutes, and a polycondensation reaction was further carried out at 80 ° C. for 20 hours under a vacuum of 0.3 mmHg or less. After the reaction, the contents were taken out and cooled to obtain a polyester resin raw material.
  • polyester resin raw material 70 mol parts was dissolved in 10 ml of N, N-dimethylformamide (DMF) in a 20 ml eggplant flask, 15 mol parts of acrylic acid and 2.1 mol parts of triethylamine as a catalyst were charged, and the temperature was changed to room temperature. The mixture was stirred for 15 hours with Michael addition between the thiol group of the thioapple acid unit and the double bond portion of acrylic acid. This was reprecipitated with methanol to prepare a polyester resin having a carboxy group in the side chain.
  • the obtained polyester resin is hereinafter referred to as an aliphatic polyester resin A1.
  • polyester resin raw material 50 mol parts of the polyester resin raw material was dissolved in 10 ml of N, N-dimethylformamide (DMF) in a 20 ml eggplant flask, and then 25 mol parts of thioglycolic acid and 1.6 mol parts of triethylamine as a catalyst were charged. The mixture was stirred at room temperature for 15 hours, and thioglycolic acid was added with a thiol group to the maleic acid unit of the polyester resin raw material. This was reprecipitated with acetone to prepare a polyester resin having a carboxy group in the side chain and having an aromatic structure. The obtained polyester resin is hereinafter referred to as aromatic polyester resin B1.
  • aromatic polyester resin B1 aromatic polyester resin
  • Production Example 3 (Aromatic Polyester Resin B2) A polyester resin raw material was produced in the same manner as in Production Example 2 except that the charging ratios of maleic acid and bis-2-hydroxyethyl terephthalate (BHET) were changed as shown in Table 1 without adding adipic acid. Next, by adding thioglycolic acid to the polyester resin raw material in the same manner as in Production Example 2, a polyester resin having a carboxy group in the side chain and having an aromatic structure was prepared. The obtained polyester resin is hereinafter referred to as aromatic polyester resin B2.
  • aromatic polyester resin B2 aromatic polyester resin
  • the initial polymerization was carried out while gradually reducing the pressure to 10 mmHg, the temperature was raised to 250 ° C., and the late polymerization was further carried out at 1 mmHg or less until a predetermined torque was reached. Then, nitrogen was introduced into the reaction vessel, the pressure was returned to normal pressure, 5 mol parts of trimellitic anhydride was added, and the reaction was carried out at 220 ° C. for 30 minutes to obtain a polymer polyol c1.
  • Aromatic polyester resin C1 In a reaction vessel equipped with a stirrer, a thermometer, and a reflux tube, 160 parts of polymer polyol c1, 40 parts of polymer polyol c2, 5.2 parts of anhydrous pyromellitic acid, and 200 parts of toluene were charged at 80 ° C. It was melted while gradually raising the temperature to.
  • compositions (molar ratios) of the aliphatic polyester resins A1 and the aromatic polyester resins B1 and B2 obtained in Production Examples 1 to 4 are shown in Table 1 below.
  • NCOOH Number of carboxy groups per polymer chain of polyester resin (N COOH )
  • the number of carboxy groups ( NCOOH ) per polymer chain was calculated by the following method. For example, when the acid value of the polyester resin having a carboxy group in the side chain is A (mgKOH / g), the number of moles of the carboxy group per 1 g of the polyester resin having a carboxy group in the side chain is 56. Since it is 1 g / mol, it can be expressed as A / 56.1 (mmol / g).
  • the number of carboxy groups in the polymer chain may be expressed as A / 56.1 ⁇ B / 1000 (pieces). This was defined as the number of carboxy groups N COOH per polymer chain.
  • epoxy-based cross-linking agents were used.
  • Polyfunctional epoxy compound "TETRAD-X” (trade name) manufactured by Mitsubishi Gas Chemical Company, Inc. (N, N, N', N'-tetraglycidyl-m-xylene diamine) (2) 4,4'-Methylenebis (N, N-diglycidylaniline) (3) 1,4-Butanediol diglycidyl ether (4) "jER630” (trade name) (triglycidyl para-aminophenol) manufactured by Mitsubishi Chemical Corporation.
  • the polyfunctional epoxy compound "TETRAD-X” (trade name) and 4,4'-methylenebis (N, N-diglycidylaniline) manufactured by Mitsubishi Gas Chemicals Co., Ltd. are both tertiary in the molecule. It is an epoxyamine compound having an amino group and four epoxy groups, and each has two diglycidylamino groups.
  • "JER630" (trade name) manufactured by Mitsubishi Chemical Co., Ltd. is a polyfunctional epoxy compound having one tertiary amino group and three epoxy groups in the molecule, and has one diglycidylamino group. There is. 1,4-Butanediol diglycidyl ether is a polyfunctional epoxy compound having two epoxy groups in the molecule but no tertiary amino group.
  • Example 1 An aliphatic polyester resin A1 as a polyester resin, 4,4'-methylenebis (N, N-diglycidylaniline) as an epoxy-based cross-linking agent, a molar of a carboxy group of the polyester resin and an epoxy group of an epoxyamine compound.
  • the mixture was blended in a ratio of 1: 1. Specifically, assuming that the carboxy group of the aliphatic polyester resin A1 is 100 mol parts, the epoxy group of 4,4'-methylenebis (N, N-diglycidylaniline) is 25 mol parts.
  • Examples 2 to 8 As shown in Table 2-1.
  • TTRAD-X trade name
  • 4,4'-methylenebis N, N-diglycidylaniline
  • Aromatic polyester resin C1 as a polyester resin, a polyfunctional epoxy compound "TETRAD-X” (trade name) manufactured by Mitsubishi Gas Chemicals Co., Ltd. as an epoxy-based cross-linking agent, and an ester exchange catalyst are placed on the polyester resin side.
  • the carboxy group of the chain and the epoxy group of the epoxy amine compound were blended in a molar ratio of 1: 1.
  • the carboxy group of the aromatic polyester resin C1 is 100 mol parts
  • the epoxy group of "TETRAD-X" (trade name) is 25 mol parts
  • the zinc acetate as a transesterification catalyst is 5 mol parts.
  • Example 10 As shown in Table 2-2, a crosslinked polyester resin film (thickness 0.7 mm) was produced under the same conditions as those of Example 9 except that the blending amount of the transesterification catalyst was changed.
  • compositions (molar parts) of the crosslinked polyester resin films obtained in Examples 1 to 11 and Comparative Examples 1 to 4 are shown in Tables 2-1 and 2-2 below.
  • the storage elastic modulus (DMA) of the crosslinked polyester resin film was measured.
  • the storage elastic modulus (DMA) is 200 at a temperature rise rate of 4 ° C./min from room temperature with a resin set in a dynamic viscoelasticity measuring device "DVA-200" manufactured by IT Measurement Control Co., Ltd., with a measurement frequency of 10 Hz.
  • the resin was heated to about 300 ° C. for measurement.
  • the results of Example 11, Comparative Example 2, and Comparative Example 4 are shown in FIG.
  • the vertical axis shows the storage modulus.
  • the solid line shows the result of Example 11
  • the dotted line shows the result of Comparative Example 2
  • the alternate long and short dash line shows the result of Comparative Example 4.
  • the upper limit of the heating temperature was 290 ° C. in Example 11, 200 ° C. in Comparative Example 2, and 300 ° C. in Comparative Example 4.
  • a crosslinked polyester resin film (thickness 0.7 mm) was spirally wound around a spatula, and both ends of the film were fixed to the spatula with tape and left at a high temperature (softening temperature + about 20 ° C.) for 2 hours. Then, after allowing to cool to room temperature, the tape was removed and the crosslinked polyester resin film was removed from the spatula.
  • the cross-linked polyester resin film is removed from the spatula and the wound shape is maintained, it is remoldable ( ⁇ ), and when the wound shape cannot be maintained and it returns to a flat shape, it is not remoldable ( ⁇ ). evaluated.
  • Glass transition temperature Tg Glass transition temperature
  • a test piece having a length of 20 mm and a width of 50 mm was cut out from the obtained crosslinked polyester resin film (thickness 0.7 mm).
  • a PET film manufactured by Toyobo Co., Ltd.
  • PET film / crosslinked polyester resin film / PET film Each layer was bonded by pressurizing and heating at 170 ° C., 2 MPa, and 280 seconds with a hot press machine.
  • the laminated body obtained by adhesion was used as a 90 ° peel strength evaluation sample.
  • a polyimide film (PI, "Apical” (registered trademark) manufactured by Kaneka Co., Ltd., thickness 12.5 ⁇ m) is used, and a three-layer structure of "PI / crosslinked polyester resin film / PI" is used.
  • PI polyimide film
  • a 90 ° peel strength evaluation sample was prepared under the same conditions except for the above.
  • a rolled copper foil thickness 20 ⁇ m
  • a polyimide film PI, “Apical” (registered trademark) manufactured by Kaneka Co., Ltd., thickness 12.5 ⁇ m
  • PI polyimide film
  • a 90 ° peel strength evaluation sample was prepared under the same conditions except that the three-layer structure of "/ PI" was used.
  • the 90 ° peel strength was measured at 25 ° C. and a tensile speed of 50 mm / min using an autograph AG-Xplus manufactured by Shimadzu Corporation. Based on the measured 90 ° peel strength, the adhesiveness of the film was evaluated according to the following criteria. The evaluation results are shown in Table 3-1 and Table 3-2 below. In addition, "-" means not implemented.
  • ⁇ Evaluation criteria> ⁇ : 1.0 N / mm or more ⁇ : 0.5 N / mm or more and less than 1.0 N / mm ⁇ : 0.35 N / mm or more and less than 0.5 N / mm ⁇ : less than 0.35 N / mm
  • the room temperature storage stability of the obtained crosslinked polyester resin film was evaluated based on the rate of change in the gel fraction and the softening behavior.
  • the case where the softening behavior is shown is ⁇ , any of the temperatures of 100 ° C, 150 ° C, and 180 ° C.
  • the case where the stress relaxation test at temperature did not show softening behavior was evaluated as x.
  • the evaluation results are shown in Table 3-1 and Table 3-2 below. The fact that stress relaxation is observed after storage at 25 ° C. for 6 months indicates that the softening characteristics due to bond exchange are maintained even after storage, and there is no change from the initial behavior during the long-term storage period at room temperature.
  • the crosslinked polyester resin film obtained in Example 7 is chopped into fine resin shapes (width 5 mm ⁇ length 5 mm ⁇ thickness 0.7 mm), melted at a temperature of 200 ° C., and has a nozzle effective surface having a width of 40 cm and a length of 4 cm.
  • a round solid-shaped orifice having a hole diameter of 1.0 mm was discharged into the cooling water at a single hole discharge rate of 1.0 g / min from a nozzle arranged at intervals of 4 mm, and solidified.
  • the cooling water is arranged 10 cm below the discharge position, and a pair of taking-up conveyors are arranged in parallel at intervals of 3 cm so that a part of the stainless steel endless net having a width of 50 cm is above the water surface.
  • the contact portions While fusing the contact portions and sandwiching both sides, the contact portions were drawn into the cooling water at a speed of 1.0 m / min and solidified. Then, it was dried in a hot air dryer at 70 ° C. for 15 minutes, and then cut into a predetermined size. As a result, a network structure having a thickness of 3 cm and a density of 0.060 g / cm 3 was obtained.
  • the crosslinked polyester resins obtained in Examples 1 to 11 all use an epoxyamine compound having two or more tertiary amino groups and two or more epoxy groups in the molecule as an epoxy-based crosslinking agent. It is obtained and satisfies the requirements specified in the present invention.
  • the softening behavior caused by the bond exchange by the transesterification reaction was exhibited without blending the transesterification catalyst, and the self-adhesiveness, remoldability, and scratch repair property were obtained. It is considered that the reformability was exhibited because the exchange of ester bonds was activated at high temperature and was immobilized on a new equilibrium network structure during cooling.
  • the wound repair property was exhibited because the exchange of ester bonds was activated at high temperature and the rearrangement of the molecular chains in the vicinity of the surface of the crosslinked polyester resin film was promoted. Further, in Examples 1 to 8, since the transesterification catalyst is not blended, the crosslinked polyester resin film can be applied to the material around the electronic material.
  • Examples 9 to 11 as the epoxy-based cross-linking agent, an epoxyamine compound having two or more tertiary amino groups and two or more epoxy groups in the molecule was used, and then a transesterification catalyst was added.
  • the ester exchange catalyst is blended, and as the blending amount is increased, the bond exchange by the transesterification reaction becomes active and the heat resistance is maintained.
  • the softening temperature tended to decrease. That is, it was found that the softening temperature can be adjusted based on the blending amount of the transesterification catalyst.
  • the crosslinked polyester resin films of Examples 1 to 11 were excellent in moldability, extrusion moldability, room temperature storage stability, and solvent resistance.
  • the crosslinked polyester resin films of Examples 4 to 11 in which an aromatic polyester resin is used as the polyester resin having a carboxy group in the side chain have a large 90 ° peel strength and are useful as an adhesive. Further, it was found that the crosslinked polyester resin films of Examples 4 to 11 had a small 90 ° peel strength when heated to a softening temperature of + 30 ° C. and were easily peeled off.
  • the crosslinked polyester resins obtained in Comparative Examples 1 to 4 each contain an epoxyamine compound having two or more tertiary amino groups and two or more epoxy groups in the molecule as an epoxy-based crosslinking agent. It is not used and does not satisfy the requirements specified in the present invention.
  • Comparative Example 1 the bond exchange by the transesterification reaction did not proceed, and the self-adhesiveness, reformability, and scratch repair property were not exhibited.
  • Comparative Example 2 since the transesterification catalyst was blended, the bond exchange due to the transesterification reaction became active, and the properties of self-adhesiveness, remoldability, and scratch repair property were exhibited.
  • the softening temperature was relatively low as compared with Example 11 in which the same amount of transesterification catalyst was blended.
  • the epoxy-based cross-linking agent used in Comparative Example 3 has three epoxy groups in the molecule, but since it has one tertiary amino group, the bond exchange by the ester exchange reaction does not proceed sufficiently. , Self-adhesiveness, remoldability, and scratch repair properties were not exhibited.
  • Comparative Example 4 since the transesterification catalyst was blended with respect to the example of Comparative Example 3, the bond exchange by the transesterification reaction became active, and the characteristics of self-adhesiveness, remoldability, and scratch repair property were exhibited.
  • the softening temperature was relatively low as compared with Example 11 in which the same amount of transesterification catalyst was blended.
  • Example 11 Next, a 180 ° peeling test and a shearing test were performed using a test piece in which the crosslinked polyester resin film (thickness 0.7 mm) obtained in Example 11 was sandwiched between a PET film, a PI film, or an Al substrate, and crosslinked.
  • the adhesiveness of the polyester resin film was evaluated. Specifically, the crosslinked polyester resin film obtained in Example 11 was sandwiched between two PET films having a thickness of 100 ⁇ m and pressed at 180 ° C. at 20 MPa for 10 minutes to obtain a test piece a.
  • the crosslinked polyester resin film obtained in Example 11 was sandwiched between two PI films having a thickness of 25 ⁇ m and pressed at 180 ° C. at 20 MPa for 10 minutes to obtain a test piece b.
  • the crosslinked polyester resin film obtained in Example 11 was sandwiched between two Al substrates having a thickness of 1.5 mm and held at 200 ° C. for 1 hour to obtain a test piece c.
  • the maximum stress when peeling off one end of the bonded PET film or PI film while folding back 180 ° along the plane direction of the test piece was measured.
  • the 180 ° peeling test was not performed on the test piece c.
  • the shear test the maximum value of the shearing force when the bonded PET film, PI film, or Al substrate was pulled in opposite directions along the plane direction of the test piece was measured. The measurement results are shown in Table 4 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

高温で結合交換が可能な動的共有結合架橋により、室温では高強度であるが、軟化温度以上では、再加工やフィルム間の接着、自己修復が可能であり、さらにエステル交換触媒を配合しなくてもエステル交換反応による結合交換に起因する軟化挙動を示し、自己接着性、再成形性、傷修復性を示す架橋ポリエステル樹脂を提供する。 側鎖にカルボキシ基を有するポリエステル樹脂が、複数のエポキシ基を有するエポキシ系架橋剤で架橋された樹脂であり、前記エポキシ系架橋剤として、分子内に2つ以上の第3級アミノ基と2つ以上のエポキシ基とを有するエポキシアミン化合物を含み、前記側鎖にカルボキシ基を有するポリエステル樹脂のカルボキシ基100モル部に対して、前記エポキシアミン化合物は3~30モル部である架橋ポリエステル樹脂。

Description

架橋ポリエステル樹脂
 本発明は、側鎖にカルボキシ基を有するポリエステル樹脂が、複数のエポキシ基を有するエポキシ系架橋剤で架橋されたポリエステル樹脂に関する。
 ポリエステル樹脂は、多価カルボン酸とポリアルコールとを脱水縮合して合成された重縮合体であり、例えば、テレフタル酸またはそのエステル形成性誘導体とエチレングリコールから製造される線状高分子が挙げられる。ポリエステル樹脂は、汎用性、実用性の点で優れており、例えば、フィルム、シート、繊維、ボトルなどの素材として好適に用いられている。また、ポリエステル樹脂は、その優れた機械特性、耐候性、耐薬品性により今後も様々な用途への応用が期待されており、例えば、電気絶縁用途、太陽電池用途、タイヤコードといった工業部品用途が挙げられる。
 こうしたポリエステル樹脂は、ポリエステル樹脂同士を架橋剤で架橋し、架橋ポリエステル樹脂としても用いられている。例えば、特許文献1には、各種プラスチックフィルムや、金属、ガラスエポキシへの良好な接着性を維持しつつ、高湿度下での鉛フリーハンダにも対応できる高度の耐湿熱性に優れたカルボン酸基含有高分子化合物を含有する接着剤組成物が記載されている。このカルボン酸基含有高分子化合物は、共重合成分として高分子ポリオール(A)と、高分子ポリオール(A)とは異なる高分子ポリオール(B)と、テトラカルボン酸二無水物とを少なくとも含むものである。特許文献1の実施例には、接着剤組成物の一例として、カルボン酸基含有高分子化合物(C1)の固形分100部に、エポキシ樹脂として、日鉄ケミカル&マテリアル(株)製YDCN-700-10(ノボラック型エポキシ樹脂)9部と三菱ガス化学(株)製TETRAD(登録商標)-X(N,N,N’,N’-テトラグリシジル-m-キシレンジアミン)を0.1部加え、メチルエチルケトンを用いて固形分濃度が35%になるように調整して得られた接着剤組成物が開示されている。
 特許文献2にも上記特許文献1と同様の特性を有するカルボン酸基含有高分子化合物を含有する接着剤組成物が記載されている。この接着剤組成物は、カルボン酸基含有ポリエステル樹脂(A)およびエポキシ樹脂(B)を含む接着剤組成物であって、カルボン酸基含有ポリエステル樹脂(A)が、共重合成分として高分子ポリオール(A1)と、高分子ポリオール(A1)とは異なる高分子ポリオール(A2)およびテトラカルボン酸二無水物を含むものである。特許文献2の実施例には、接着剤組成物の一例として、カルボン酸基含有ポリエステル樹脂(A-1)の固形分100部に、エポキシ樹脂として、日鉄ケミカル&マテリアル(株)製YDCN-700-10(ノボラック型エポキシ樹脂)9部と三菱ガス化学(株)製TETRAD(登録商標)-X(N,N,N’,N’-テトラグリシジル-m-キシレンジアミン)を0.1部加え、メチルエチルケトンを用いて固形分濃度が35%になるように調整して得られた接着剤組成物が記載されている。
 特許文献1、2に記載されている接着剤組成物は、耐湿熱性に優れている。
 ところで、架橋ポリエステル樹脂として自己接着性、再成形性、傷修復性を示すものが特許文献3に記載されている。この架橋ポリエステル樹脂は、エステル結合を多点で含む高分子主鎖と、エステル結合とフリーOH基を含む多点の共有結合架橋部分を含むポリエステル樹脂、及びエステル交換触媒を含む点に特徴を有している。特許文献3に記載の架橋ポリエステル樹脂にはエステル交換触媒が配合されているため、フリーOH基が、その付近に存在するエステル交換触媒の作用により、付近に存在する多数のエステル結合のうちの一つのエステル結合のC-O結合をアタックすることによってエステル交換反応が起こり、自己接着性等の特性を享受できている。特許文献3の実施例では、エステル交換触媒として酢酸亜鉛を用いた例が開示されている。
国際公開第2018/105543号 国際公開第2018/179707号 国際公開第2020/045439号
 特許文献3の実施例で用いている酢酸亜鉛は金属であるため、こうした酢酸亜鉛を含む架橋ポリエステル樹脂を電材用途に適用することは難しかった。そこで、エステル交換触媒を配合しなくても高温で軟化特性を示し、自己接着性、再成形性、傷修復性を示す架橋ポリエステル樹脂が求められている。
 本発明は上記の様な事情に着目してなされたものであって、その目的は、高温で結合交換が可能な動的共有結合架橋により、室温では高強度であるが、軟化温度以上では、再加工やフィルム間の接着、自己修復が可能であり、さらにエステル交換触媒を配合しなくてもエステル交換反応による結合交換に起因する軟化挙動を示し、自己接着性、再成形性、傷修復性を示す架橋ポリエステル樹脂を提供することにある。また、本発明の他の目的は、エステル交換触媒を配合した場合でも耐熱性を維持しながら加工温度を低くすることができる架橋ポリエステル樹脂を提供することにある。
 本発明は、以下の通りである。
 [1] 側鎖にカルボキシ基を有するポリエステル樹脂が、複数のエポキシ基を有するエポキシ系架橋剤で架橋された樹脂であり、前記エポキシ系架橋剤として、分子内に2つ以上の第3級アミノ基と2つ以上のエポキシ基とを有するエポキシアミン化合物を含み、前記側鎖にカルボキシ基を有するポリエステル樹脂のカルボキシ基100モル部に対して、前記エポキシアミン化合物は3~30モル部であることを特徴とする架橋ポリエステル樹脂。
 [2] 前記側鎖にカルボキシ基を有するポリエステル樹脂のカルボキシ基と前記エポキシアミン化合物のエポキシ基のモル比は、前記カルボキシ基:前記エポキシ基で、1:0.125~1:1.2である[1]に記載の架橋ポリエステル樹脂。
 [3] 前記エポキシアミン化合物に含まれる第3級アミノ基とエポキシ基がジグリシジルアミノ基を構成している[1]または[2]に記載の架橋ポリエステル樹脂。
 [4] 前記エポキシアミン化合物の分子量が800以下である[1]~[3]のいずれかに記載の架橋ポリエステル樹脂。
 [5] エステル交換触媒および[1]~[4]のいずれかに記載の架橋ポリエステル樹脂を含む架橋ポリエステル樹脂組成物。
 本発明では、側鎖にカルボキシ基を有するポリエステル樹脂を、分子内に2つ以上の第3級アミノ基と2つ以上のエポキシ基とを有するエポキシアミン化合物を含むエポキシ系架橋剤で架橋している。その結果、エポキシアミン化合物の分子内に含まれる第3級アミノ基がエステル交換触媒のように作用するため、エステル交換触媒を配合しなくてもエステル交換反応による結合交換に起因する軟化挙動を示し、自己接着性、再成形性、傷修復性を示す架橋ポリエステル樹脂を提供できる。また、本発明の架橋ポリエステル樹脂は、エステル交換触媒が配合された架橋ポリエステル樹脂組成物であってもよく、エステル交換触媒を配合した場合でもエポキシアミン化合物による架橋点の数はエステル交換触媒を配合しないときと比べて変化しないため、耐熱性を維持しながら加工温度を低くすることができる。
図1は、架橋ポリエステル樹脂の線膨張率変化を測定した結果を示すグラフである。 図2は、架橋ポリエステル樹脂の貯蔵弾性率(DMA)を測定した結果を示すグラフである。
 本発明者らは、金属を含むエステル交換触媒を配合しなくてもエステル交換反応による結合交換に起因する軟化挙動を示し、自己接着性、再成形性、傷修復性を示す架橋ポリエステル樹脂を提供することを目指して、鋭意検討を重ねてきた。その結果、ポリエステル樹脂同士を架橋する架橋剤として、分子内に2つ以上の第3級アミノ基と2つ以上のエポキシ基とを有するエポキシアミン化合物を含むエポキシ系架橋剤を用い、ポリエステル樹脂のカルボキシ基100モル部に対して、エポキシアミン化合物を3~30モル部の範囲で配合すれば、上記課題を解決できることを見出し、本発明を完成した。
 以下、本発明について詳述する。
 本発明に係る架橋ポリエステル樹脂は、側鎖にカルボキシ基を有するポリエステル樹脂が、複数のエポキシ基を有するエポキシ系架橋剤で架橋された樹脂であり、前記エポキシ系架橋剤として、分子内に2つ以上の第3級アミノ基と2つ以上のエポキシ基とを有するエポキシアミン化合物を含んでいる。ここで側鎖は、芳香族ポリエステル樹脂の主鎖から分岐した置換基(例えば、脂肪族炭化水素基、芳香族炭化水素基、脂環族炭化水素基等)にカルボキシ基を有している構造でもよいし、芳香族ポリエステル樹脂に直接カルボキシ基を有している構造でもよい。側鎖は、好ましくは芳香族ポリエステル樹脂に直接カルボキシ基を有している構造である。エポキシアミン化合物に含まれる2つ以上のエポキシ基が、ポリエステル樹脂の側鎖のカルボキシ基と反応することにより、ポリエステル樹脂は架橋される。即ち、架橋ポリエステル樹脂は、ポリエステル樹脂の側鎖のカルボキシ基とエポキシアミン化合物のエポキシ基が反応して形成されたエステル基と水酸基を有している。ポリエステル樹脂は、架橋されることにより耐熱性が向上する。
 エポキシアミン化合物に含まれるエポキシ基は、2つ以上であればよく、3つ以上であってもよいし、4つ以上であってもよい。エポキシ基の数の上限は特に限定されないが、例えば、6つ以下が好ましく、より好ましくは5つ以下である。
 また、エポキシアミン化合物は、分子内に第3級アミノ基を有している。第3級アミノ基は、エステル交換触媒と同様の作用を有しており、架橋ポリエステル樹脂を加熱することによって架橋ポリエステル樹脂に含まれる水酸基は、エステル交換触媒を配合しなくても第3級アミノ基の作用によって水酸基の近傍に存在するエステル基のC-O結合をアタックし、エステル交換反応による結合交換が起こり、軟化挙動を示す。しかし、エポキシアミン化合物の分子内に含まれる第3級アミノ基が1つでは、エステル交換反応が充分に進まないため、自己接着性、再成形性、傷修復性を示さない。また、エステル交換触媒を配合してエステル交換反応を積極的に促進しても、本発明によればエポキシアミン化合物による架橋点の数はエステル交換触媒を配合しないときと比べて変化しないため、架橋ポリエステル樹脂自体の耐熱性を維持しながら軟化温度を低減でき、加工温度を低くすることができる。
 本発明では、エポキシアミン化合物の分子内に含まれる第3級アミノ基の数は2つ以上とする。第3級アミノ基を2つ以上含むことによって軟化挙動を発現できる。
 エポキシアミン化合物は、側鎖にカルボキシ基を有するポリエステル樹脂のカルボキシ基100モル部に対して3~30モル部である。エポキシアミン化合物が3モル部を下回るとカルボキシ基に対するエポキシ基の割合が少なくなり、架橋密度が低くなり過ぎるため硬化しなくなる。従ってエポキシアミン化合物は、3モル部以上であり、好ましくは5モル部以上、より好ましくは10モル部以上である。しかしエポキシアミン化合物が30モル部を超えるとカルボキシ基に対するエポキシ基の割合が多くなり、過剰に含まれるエポキシ基同士が自己重合し、架橋密度が高くなりすぎると考えられる。そのため、架橋ポリマーの運動性が低下し、軟化温度が高くなり過ぎると考えられる。従ってエポキシアミン化合物は、30モル部以下であり、好ましくは28モル部以下、より好ましくは26モル部以下である。
 ポリエステル樹脂の高分子鎖当たりのカルボキシ基の点数(以下、NCOOHと表記することがある)は、次の方法で算出できる。例えば、ポリエステル樹脂の酸価がA(mgKOH/g)であった場合、KOHの分子量は56.1g/molであるので、側鎖にカルボキシ基を有するポリエステル樹脂1gあたりのカルボキシ基モル数は、A/56.1(mmol/g)と表すことができる。側鎖にカルボキシ基を有するポリエステル樹脂の数平均分子量がB(g/mol)の場合、高分子鎖中のカルボキシ基の点数は、A/56.1×B/1000(個)と表すことができ、これを高分子鎖当たりのカルボキシ基の点数NCOOHとする。
 エポキシアミン化合物に含まれる第3級アミノ基とエポキシ基は、下記式で表されるジグリシジルアミノ基を構成していることが好ましい。式中、*は結合手を示している。
Figure JPOXMLDOC01-appb-C000001
 エポキシアミン化合物の分子内に含まれるジグリシジルアミノ基の数は1つでもよく、2つ以上が好ましい。ジグリシジルアミノ基を2つ以上含むことによってエステル交換反応による結合交換に起因する軟化挙動が発現しやすくなる。ジグリシジルアミノ基の数は、例えば、3つ以下が好ましい。
 ジグリシジルアミノ基は、炭素数1~10程度の脂肪族炭化水素(以下、連結基1という)に結合していてもよく、炭素数6~20程度の芳香族炭化水素環(以下、連結基2という)に結合していてもよく、2つ以上の炭素数6~20程度の芳香族炭化水素環が炭素数1~10程度の脂肪族炭化水素に結合した基(以下、連結基3という)に結合していてもよい。ジグリシジルアミノ基は、連結基2又は連結基3に結合していることが好ましく、ジグリシジルアミノ基が芳香族炭化水素環(好ましくはベンゼン環)に結合していていることが特に好ましい。
 エポキシアミン化合物としては、例えば、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、4,4’-メチレンビス(N,N-ジグリシジルアニリン)などが挙げられる。N,N,N’,N’-テトラグリシジル-m-キシレンジアミンは、三菱ガス化学株式会社から多官能エポキシ化合物「TETRAD-X」として市販されている。4,4’-メチレンビス(N,N-ジグリシジルアニリン)は、東京化成工業株式会社(TCI)から入手できる。エポキシアミン化合物は、1種を用いてもよいし、2種以上を用いてもよい。
 エポキシアミン化合物の分子量は、800以下が好ましい。分子量が800以下であることによりエポキシアミン化合物がポリエステル鎖の間に入り込み、3次元架橋を形成しやすく耐熱性を向上できる。エポキシアミン化合物の分子量は、より好ましくは700以下、更に好ましくは600以下である。エポキシアミン化合物の分子量の下限は、例えば、250以上である。
 エポキシ系架橋剤としては、上記エポキシアミン化合物(以下、第1のエポキシアミン化合物という)に加え、上記第1のエポキシアミン化合物以外の多官能エポキシ化合物(以下、他の多官能エポキシ化合物という)を用いてもよい。即ち、他の多官能エポキシ化合物として、ポリエステル樹脂の側鎖にあるカルボキシ基と硬化反応して架橋する架橋剤であって、分子内に2つ以上のエポキシ基を有し、分子内に第3級アミノ基を含まない化合物(以下、非アミン型エポキシ化合物という)、分子内に2つ以上のエポキシ基と1つの第3級アミノ基を含む化合物(以下、第2のエポキシアミン化合物という)を用いることができる。第1のエポキシアミン化合物と共に他の多官能エポキシ化合物を用いることで3次元架橋を形成しやすく耐熱性を向上できる。
 非アミン型エポキシ化合物としては、例えば、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ジシクロペンタジエン骨格を有するエポキシ樹脂が挙げられる。クレゾールノボラック型エポキシ樹脂やフェノールノボラック型エポキシ樹脂を用いると、架橋密度を下げて剥離時の応力を緩和させることができる。クレゾールノボラック型エポキシ樹脂の市販品としては、例えば、日鉄ケミカル&マテリアル(株)製のYDCN-700等を用いることができる。フェノールノボラック型エポキシ樹脂の市販品としては、例えば、DIC社製のEPICLON N-700A等を用いることができる。
 ジシクロペンタジエン骨格を有するエポキシ化合物は、ジシクロペンタジエン骨格が剛直であるため、吸湿性が極めて小さくなり、架橋密度を下げて、剥離時の応力を緩和させることができる。ジシクロペンタジエン骨格を有するエポキシ化合物の市販品としては、例えば、DIC社製のHP7200シリーズを用いることができる。
 第2のエポキシアミン化合物としては、例えば、トリグリシジルパラアミノフェノール(N,N-ジグリシジル-4-(グリシジルオキシ)アニリンともいう)などが挙げられる。トリグリシジルパラアミノフェノールの市販品としては、例えば、三菱ケミカル社製のjER630等を用いることができる。
 これらの他の多官能エポキシ化合物は、単独でまたは2種以上を用いることができる。
 エポキシ系架橋剤全体を100モル部としたとき、第1のエポキシアミン化合物は30モル部以上であることが好ましい。第1のエポキシアミン化合物は、より好ましくは50モル部以上、更に好ましくは80モル部以上である。特に好ましくは100モル部であり、エポキシ系架橋剤として、分子内に2つ以上のエポキシ基と2つ以上の第3級アミノ基を有するエポキシアミン化合物のみを用いるのがよい。
 (ポリエステル樹脂)
 ポリエステル樹脂は、側鎖にカルボキシ基を有しており、このカルボキシ基と上記エポキシ系架橋剤に含まれるエポキシ基とが反応することによりポリエステル樹脂は架橋される。
 側鎖にカルボキシ基を有するポリエステル樹脂は、脂肪族ポリエステルでもよいし、芳香族ポリエステルでもよい。自己接着性を高める観点では脂肪族ポリエステルを用いることがより好ましく、耐熱性を高める観点では芳香族ポリエステルを用いることがより好ましく、脂肪族ポリエステルと芳香族ポリエステルを併用してもよい。また、架橋ポリエステル樹脂を、フィルム基材や金属基材を接着する接着シートや接着フィルムとして用いる場合は、側鎖にカルボキシ基を有するポリエステル樹脂として脂肪族ポリエステルよりも芳香族ポリエステルを用いることが好ましい。
 側鎖にカルボキシ基を有するポリエステル樹脂は、例えば、多価カルボン酸、多価アルコール、および求核性反応基(チオール基など)を含むジカルボン酸を重縮合させた後、求核性反応基と不飽和カルボン酸を反応させる方法や、多価カルボン酸、多価アルコール、および不飽和多価カルボン酸又はその無水物を重縮合させた後、不飽和基と求核性反応基を有するカルボン酸とを反応させる方法などによって調製できる。
 多価カルボン酸は、ジカルボン酸を主体(例えば、多価カルボン酸100モル部に対してジカルボン酸を60モル部以上、好ましくは80モル部以上)としていればよく、ジカルボン酸としては、例えば、フタル酸、イソフタル酸、テレフタル酸、フェニレンジカルボン酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸;コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、ダイマー酸などの脂肪族ジカルボン酸;1,4-シクロヘキサンジカルボン酸、テトラヒドロフタル酸、ヘキサヒドロイソフタル酸、1,2-シクロヘキセンジカルボン酸などの脂環族ジカルボン酸;フマル酸、マレイン酸、テルペン-マレイン酸付加体などの不飽和基含有ジカルボン酸;などを挙げることができる。ジカルボン酸は、これらの中から1種または2種以上を用いることができる。また多価カルボン酸としては、例えば、トリメリット酸、ピロメリット酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸などのトリカルボン酸、テトラカルボン酸が挙げられ、これらトリカルボン酸、テトラカルボン酸は酸無水物として重縮合反応に供されることが好ましい。
 多価アルコールとしては、例えば、ネオペンチルグリコール、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,3-ペンタンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,6-ヘキサンジオール、4-メチル-1,7-ヘプタンジオール、2-メチル-1,8-オクタンジオール、4-メチル-1,8-オクタンジオール、4-プロピル-1,8-オクタンジオール、1,9-ノナンジオール等の脂肪族グリコール;ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリオレフィングリコール、ポリテトラメチレングリコールなどのポリエーテルグリコール類;1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、トリシクロデカングリコール類、水添加ビスフェノール類などの脂環族ポリオール;テレフタル酸のエチレングリコール変性物(例えば、ビス-2-ヒドロキシエチルテレフタレート(BHET))、テレフタル酸のプロピレングリコール変性物、イソフタル酸のエチレングリコール変性物、イソフタル酸のプロピレングリコール変性物、オルソフタル酸のエチレングリコール変性物、オルソフタル酸のプロピレングリコール変性物などの芳香族ジカルボン酸のグリコール変性物;などを挙げることができる。これらの中から1種または2種以上を用いることができる。
 求核性反応基を含むジカルボン酸としては、例えば、反応性基としてチオール基を含むジカルボン酸が挙げられ、チオリンゴ酸などのチオール基を有する炭素数が4~10程度の脂肪族ジカルボン酸が挙げられる。
 求核性反応基と反応する不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸などの炭素数が3~10程度の脂肪族α,β-不飽和モノカルボン酸などが挙げられる。
 不飽和多価カルボン酸としては、例えば、マレイン酸、フマル酸などの炭素数が4~10程度の脂肪族α,β-不飽和ジカルボン酸などが挙げられる。
 不飽和多価カルボン酸の不飽和基と反応する求核性反応基を有するカルボン酸としては、例えば、チオグリコール酸、メルカプトプロピオン酸などのチオール基を有する炭素数が2~10程度の脂肪族モノカルボン酸が挙げられる。
 側鎖にカルボキシ基を有するポリエステル樹脂のカルボキシ基と第1のエポキシアミン化合物のエポキシ基のモル比は、カルボキシ基:エポキシ基で、1:0.125~1:1.2が好ましい。モル比のより好ましい下限は1:0.3であり、より好ましい上限は1:1.1である。モル比は、最も好ましくは1:1である。
 側鎖にカルボキシ基を有するポリエステル樹脂の数平均分子量(Mn)は、例えば、6000~20000が好ましい。側鎖にカルボキシ基を有するポリエステル樹脂の数平均分子量が6000以上であることにより耐熱性を向上できる。数平均分子量は、より好ましくは6500以上であり、更に好ましくは7000以上である。しかし側鎖にカルボキシ基を有するポリエステル樹脂の数平均分子量が大きくなり過ぎると硬くなり過ぎて脆くなる。従って数平均分子量は20000以下が好ましく、より好ましくは19000以下、更に好ましくは18000以下である。
 側鎖にカルボキシ基を有するポリエステル樹脂の分子量分散度(PDI)は、1.3~1.8が好ましい。分子量分散度は、重量平均分子量(Mw)と数平均分子量(Mn)に基づいて次式で算出できる。
PDI値=Mw/Mn
 PDI値は、より好ましくは1.4以上である。しかしPDI値が大きくなり過ぎると鎖長のバラツキが大きくなるため、強度のバラツキが生じやすくなる。従ってPDI値は1.8以下が好ましく、より好ましくは1.7以下である。
 ポリエステル樹脂の高分子鎖当たりのカルボキシ基数(NCOOH)は、3~50が好ましい。NCOOHが3以上であることによりポリエステル樹脂の側鎖のカルボキシ基はエポキシ系架橋剤で架橋され、耐熱性が向上する。NCOOHは、より好ましくは3.5以上、更に好ましくは4以上である。しかしNCOOHが大きくなり過ぎるとポリエステル樹脂が過剰に架橋されるため、硬くなり過ぎて脆くなる。従ってNCOOHは50以下が好ましく、より好ましくは48以下、更に好ましくは45以下である。
 側鎖にカルボキシ基を有するポリエステル樹脂の酸価は、5mgKOH/g以上が好ましい。酸価を5mgKOH/g以上とすることにより耐熱性を向上できる。酸価は、より好ましくは10mgKOH/g以上、更に好ましくは15mgKOH/g以上である。しかし酸価が高すぎると架橋密度が高くなり過ぎて硬くなり、接着性が低下することがある。従って酸価は250mgKOH/g以下が好ましく、より好ましくは230mgKOH/g以下、更に好ましくは200mgKOH/g以下である。
 (エステル交換触媒)
 本発明の架橋ポリエステル樹脂は、エステル交換触媒を配合していなくてよいが、本発明の作用効果を損なわない範囲でエステル交換触媒を配合した架橋ポリエステル樹脂組成物であってもよい。エステル交換触媒を配合することによって、エステル交換反応を促進できるため、架橋ポリエステル樹脂自体の耐熱性を維持しながら軟化温度を下げることができ、加工温度を低くすることができる。
 エステル交換触媒としては、例えば、酢酸亜鉛、トリフェニルホスフィン、トリメチルアミン、トリエチルアミンなどを用いることができ、これらのなかでも酢酸亜鉛を用いることが好ましい。エステル交換触媒は、1種を用いてもよいし、2種以上を用いてもよい。
 エステル交換触媒を配合する場合は、ポリエステル樹脂のカルボキシ基100モル部に対して30モル部以下であることが好ましく、より好ましくは28モル部以下、更に好ましくは25モル部以下である。エステル交換触媒を配合する場合の下限は、ポリエステル樹脂のカルボキシ基100モル部に対して、例えば、1モル部以上が好ましく、より好ましくは2モル部以上、更に好ましくは3モル部以上である。なお、エステル交換触媒を複数種類用いる場合は合計量を意味している。
 (架橋ポリエステル樹脂)
 本発明の架橋ポリエステル樹脂は、エステル交換反応による結合交換に起因する軟化温度が、例えば、155~300℃であることが好ましい。エステル交換触媒を含む架橋ポリエステル樹脂組成物の場合の軟化温度は、例えば、155℃以上が好ましく、より好ましくは160℃以上、更に好ましくは165℃以上である。架橋ポリエステル樹脂がエステル交換触媒を含まない場合の軟化温度は、例えば、175℃以上が好ましく、より好ましくは180℃以上、更に好ましくは190℃以上である。
 架橋ポリエステル樹脂(架橋ポリエステル樹脂組成物)の軟化温度は、張力を加えた状態で室温から300℃まで加熱したときの線膨張率変化を測定し、線膨張率変化曲線の屈曲点における温度とする。具体的な測定方法は実施例の項で詳述する。
 本発明の架橋ポリエステル樹脂(架橋ポリエステル樹脂組成物)は、ガラス転移温度(Tg)が-50~150℃であることが好ましい。Tgが-50℃以上であることにより耐熱性を確保できる。Tgは、より好ましくは-40℃以上、更に好ましくは-30℃以上である。しかしTgが高すぎると加工しにくくなるためTgは150℃以下が好ましい。Tgは、より好ましくは130℃以下、更に好ましくは100℃以下である。
 次に、本発明に係る架橋ポリエステル樹脂の製造方法について説明する。
 本発明の架橋ポリエステル樹脂は、公知の方法により製造することができる。例えば、側鎖にカルボキシ基を有するポリエステル樹脂と、第1のエポキシアミン化合物を含むエポキシ系架橋剤を溶媒に溶解した後、溶媒を除去し、減圧下で加熱して架橋させる方法が挙げられる。側鎖にカルボキシ基を有するポリエステル樹脂のカルボキシ基と第1のエポキシアミン化合物のエポキシ基のモル比は、カルボキシ基:エポキシ基で、1:0.125~1:1.2が好ましい。モル比のより好ましい下限は1:0.3であり、より好ましい上限は1:1.1であり、最も好ましくは1:1である。
 本発明の架橋ポリエステル樹脂は自己接着性を有しており、本発明の架橋ポリエステル樹脂同士を重ねて積層し、加熱加圧することにより架橋ポリエステル樹脂の界面でエステル交換が起こり、接着剤を用いなくても架橋ポリエステル樹脂同士を接着できる。
 本発明の架橋ポリエステル樹脂は再成形性を有しており、所定の形状に変形させた後、変形させた状態で加熱することによりエステル交換が起こり、再成形され、冷却しても所定の形状を保持する。
 本発明の架橋ポリエステル樹脂は傷修復性を有しており、表面がカッターナイフなどで傷つけられても加熱することによりエステル交換反応による結合交換が起こり、自己修復する。そのため、本発明の架橋ポリエステル樹脂は自己修復材料の主成分として用いることができる。自己修復材料としては、例えば、塗料の材料として用いることができる。
 本発明の架橋ポリエステル樹脂は、成形材料の主成分として用いることができる。即ち、架橋ポリエステル樹脂は、成形加工性や押出成形性が良好であるため、成形材料として有用であり、例えば、3Dプリンター用の材料や糸状成形体の材料として用いることができる。
 また、架橋ポリエステル樹脂は、網状構造体の材料として用いることができる。網状構造体とは、糸状成形体の一部同士が接続されている構造体である。網状構造体は、架橋ポリエステル樹脂を溶融し、溶融物をノズルから吐出し、吐出物を溶着させつつ固化させることによって製造できる。
 前記自己接着剤、自己修復材料または成形材料の固形分における架橋ポリエステル樹脂の含有量は60質量%以上であることが好ましく、より好ましくは80質量%以上であり、更に好ましくは90質量%以上であり、100質量%であっても差し支えない。
 本発明の架橋ポリエステル樹脂は、溶剤(特に、有機溶剤)に浸漬しても溶解しにくいため、耐溶剤性が良好である。従って架橋ポリエステル樹脂は、例えば、ラミネート材として好適に用いることができる。
 本発明の架橋ポリエステル樹脂は、室温保存安定性が良好である。即ち、所定の温度で所定期間保管しても、ゲル分率は殆ど変化しない。また、所定の温度で所定期間保管しても保管前と同程度の軟化挙動を示す。
 本発明の架橋ポリエステル樹脂のなかでも、側鎖にカルボキシ基を有するポリエステル樹脂として芳香族ポリエステル樹脂を用いた場合は、架橋ポリエステル樹脂は、例えば、接着シートや接着フィルム、成形材料として用いることができる。接着シートや接着フィルムとして用いる場合は、本発明の架橋ポリエステル樹脂を接着させたい被接着部材の間に挟み、加熱すればよい。加熱することによりエステル交換反応による結合交換が起こり、被接着部材同士を接着できる。
 被接着部材としては、例えば、樹脂製フィルム、金属箔などが挙げられ、架橋ポリエステル樹脂を、樹脂製フィルム同士、金属箔同士、樹脂製フィルムと金属箔などの接着剤として用いることができる。樹脂製フィルムとしては、例えば、ポリイミドフィルム、ポリエステルフィルム、PETフィルムなどが挙げられる。金属箔としては、例えば、銅箔、銀箔、金箔などが挙げられる。架橋芳香族ポリエステル樹脂の接着性は、実施例に示した90°ピール強度に基づいて評価できる。
 本発明の架橋ポリエステル樹脂のなかでも、側鎖にカルボキシ基を有するポリエステル樹脂として芳香族ポリエステル樹脂を用いた場合、架橋ポリエステル樹脂は、エステル結合交換活性化温度(軟化温度)以上に加熱することにより結合交換が可能となるため、架橋ポリエステル樹脂を接着剤の材料として用いると、接着剤をエステル結合交換活性化温度以上に加熱することにより、剥離し易くなる。そのため架橋ポリエステル樹脂は、貼って剥がせるタイプのリペア用途の接着剤の材料として用いることができる。架橋ポリエステル樹脂を高温に加熱したときの剥離性は、実施例に示した加熱時の90°ピール強度に基づいて評価できる。
 なお、上記では、架橋ポリエステル樹脂の用途について説明したが、架橋ポリエステル樹脂とエステル交換触媒を含む架橋ポリエステル樹脂組成物についても同様の用途で用いることができる。
 本願は、2020年10月16日に出願された日本国特許出願第2020-174536号に基づく優先権の利益を主張するものである。上記日本国特許出願第2020-174536号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限を受けるものではなく、前記および後記の趣旨に適合し得る範囲で変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。以下、「部」は「質量部」を表す。
 側鎖にカルボキシ基を有するポリエステル樹脂を、複数のエポキシ基を有するエポキシ系架橋剤で架橋して架橋ポリエステル樹脂を製造した。ポリエステル樹脂は、脂肪族ポリエステル樹脂または芳香族ポリエステル樹脂を用いた。
 製造例1(脂肪族ポリエステル樹脂A1)
 撹拌機を備え、容量が50mlのガラスフラスコに、チオリンゴ酸を15モル部、アジピン酸を35モル部、1,5-ペンタンジオールを50モル部、スカンジウムトリフラートを0.5モル部仕込み、80℃で攪拌して均一化した。溶解後、ガラスフラスコ内を30分間かけて5mmHgまで減圧し、さらに0.3mmHg以下の真空下で、80℃で、20時間重縮合反応を行った。反応後、内容物を取り出し、冷却し、ポリエステル樹脂原料を得た。次に、容量20mlのナスフラスコでポリエステル樹脂原料70モル部をN,N-ジメチルホルムアミド(DMF)10mlに溶解した後、アクリル酸を15モル部、触媒としてトリエチルアミンを2.1モル部仕込み、室温で15時間撹拌し、チオリンゴ酸単位のチオール基とアクリル酸の二重結合部間でMichael付加させた。これをメタノールで再沈殿し、側鎖にカルボキシ基を有するポリエステル樹脂を調製した。得られたポリエステル樹脂を、以下、脂肪族ポリエステル樹脂A1とする。
 製造例2(芳香族ポリエステル樹脂B1)
 撹拌機を備え、容量が50mlのガラスフラスコに、マレイン酸を25モル部、アジピン酸を25モル部、ビス-2-ヒドロキシエチルテレフタレート(BHET)を50モル部、スカンジウムトリフラートを0.5モル部仕込み、100℃で攪拌して均一化した。溶解後、ガラスフラスコ内を30分間かけて5mmHgまで減圧し、さらに0.3mmHg以下の真空下、110℃で、4時間重縮合反応を行った。反応後、内容物を取り出し、冷却し、ポリエステル樹脂原料を得た。次に、容量20mlのナスフラスコでポリエステル樹脂原料50モル部をN,N-ジメチルホルムアミド(DMF)10mlに溶解した後、チオグリコール酸を25モル部、触媒としてトリエチルアミンを1.6モル部仕込み、室温で15時間撹拌し、ポリエステル樹脂原料のマレイン酸単位にチオグリコール酸をチオール基でMichael付加させた。これをアセトンで再沈殿し、側鎖にカルボキシ基を有し、芳香族構造を有するポリエステル樹脂を調製した。得られたポリエステル樹脂を、以下、芳香族ポリエステル樹脂B1とする。
 製造例3(芳香族ポリエステル樹脂B2)
 アジピン酸を添加せず、マレイン酸およびビス-2-ヒドロキシエチルテレフタレート(BHET)の仕込み比を表1に示すように変更する以外は、製造例2と同様にしてポリエステル樹脂原料を製造した。次に、製造例2と同様にしてポリエステル樹脂原料にチオグリコール酸を付加させることによって、側鎖にカルボキシ基を有し、芳香族構造を有するポリエステル樹脂を調製した。得られたポリエステル樹脂を、以下、芳香族ポリエステル樹脂B2とする。
 製造例4(芳香族ポリエステル樹脂C1)
 (1)高分子ポリオールc1
 撹拌機、温度計、流出用冷却器を備えた反応容器内に、テレフタル酸を135モル部、イソフタル酸を311モル部、無水トリメリット酸を5モル部、2-メチル-1,3-プロパンジオールを74モル部、1,4-シクロヘキサンジオールを417モル部、テトラブチルチタネートを0.2モル部仕込み、250℃まで徐々に昇温し、留出する水を系外に除きつつエステル化反応を行った。エステル化反応終了後、10mmHgまで徐々に減圧しながら初期重合を行うと共に250℃まで昇温し、更に1mmHg以下で所定のトルクとなるまで後期重合を行った。その後、反応容器内に窒素を導入し、常圧に戻し、無水トリメリット酸を5モル部投入し、220℃で30分間反応させることによって高分子ポリオールc1を得た。
 (2)高分子ポリオールc2
 撹拌機、温度計、流出用冷却器を備えた反応容器内に、テレフタル酸を390モル部、イソフタル酸を390モル部、エチレングリコールを440モル部、2,2-ジメチル-1,3-プロパンジオールを362モル部、テトラブチルチタネートを0.2モル部仕込み、250℃まで徐々に昇温し、留出する水を系外に除きつつエステル化反応を行った。エステル化反応終了後、10mmHgまで徐々に減圧しながら初期重合を行うと共に250℃まで昇温し、更に1mmHg以下で所定のトルクとなるまで後期重合を行い、高分子ポリオールc2を得た。
 (3)芳香族ポリエステル樹脂C1
 撹拌機、温度計、還流管を備えた反応容器内に、高分子ポリオールc1を160部、高分子ポリオールc2を40部、無水ピロメリット酸を5.2部、トルエンを200部仕込み、80℃まで徐々に昇温させつつ溶解させた。溶解後、反応触媒としてトリエチルアミンを0.1部添加したのち、105℃まで徐々に昇温して24時間反応させた。反応が終了したことを赤外分光法(IR)にて確認した後、トルエンを108部添加して希釈することによって、側鎖にカルボキシ基を有するポリエステル樹脂の固形分濃度が40%の溶解液を得た。側鎖にカルボキシ基を有するポリエステル樹脂を、以下、芳香族ポリエステル樹脂C1とする。
 製造例1~4で得られた脂肪族ポリエステル樹脂A1、芳香族ポリエステル樹脂B1、B2の組成(モル比)を下記表1に示す。
Figure JPOXMLDOC01-appb-T000002
 得られた脂肪族ポリエステル樹脂A1、芳香族ポリエステル樹脂B1、B2、C1について、数平均分子量(Mn)、分子量分散度(PDI)、ポリエステル樹脂の高分子鎖当たりのカルボキシ基数(NCOOH)、および酸価を求め、結果を上記表1に示した。これら諸特性の求め方は、以下の通りである。
 (数平均分子量(Mn)、および分子量分散度(PDI))
 脂肪族ポリエステル樹脂または芳香族ポリエステル樹脂を、濃度が0.5質量%程度となるようにテトラヒドロフランに溶解し、孔径が0.5μmのポリ四フッ化エチレン製メンブランフィルターで濾過したものを試料とした。但し、テトラヒドロフランに溶解しない場合は、テトラヒドロフランに代えてN,N-ジメチルホルムアミドを用いた。テトラヒドロフランを移動相とし、示差屈折計を検出器とするゲル浸透クロマトグラフィーにより数平均分子量(Mn)および重量平均分子量(Mw)を測定した。流速は1mL/分、カラム温度は30℃とした。カラムは昭和電工製のKF-802、KF-804L、KF-806Lを用いた。標準物質(分子量標準)には単分散ポリスチレンを用いた。数平均分子量が1000未満の低分子化合物(オリゴマー等)はカウントせずに省いた。測定した数平均分子量(Mn)および重量平均分子量(Mw)に基づいて、次式から分子量分散度(PDI)を算出した。
PDI値=Mw/Mn
 (酸価)
 脂肪族ポリエステル樹脂または芳香族ポリエステル樹脂0.2gを、クロロホルム20mlに溶解し、この溶液に指示薬としてのフェノールフタレインを加え、0.1Nの水酸化カリウムエタノール溶液で中和滴定を行なった。滴定量から、中和に消費された水酸化カリウムのmg数(mgKOH)を脂肪族ポリエステル樹脂または芳香族ポリエステル樹脂1gあたりの量に換算して酸価(mgKOH/g)を算出した。
 (ポリエステル樹脂の高分子鎖当たりのカルボキシ基の点数(NCOOH))
 高分子鎖当たりのカルボキシ基の点数(NCOOH)は、次の方法で算出した。例えば、側鎖にカルボキシ基を有するポリエステル樹脂の酸価がA(mgKOH/g)であった場合、側鎖にカルボキシ基を有するポリエステル樹脂1gあたりのカルボキシ基モル数は、KOHの分子量が56.1g/molであるので、A/56.1(mmol/g)と表すことができる。側鎖にカルボキシ基を有するポリエステル樹脂の数平均分子量がB(g/mol)の場合、高分子鎖中のカルボキシ基の点数は、A/56.1×B/1000(個)と表すことができ、これを高分子鎖当たりのカルボキシ基の点数NCOOHとした。
 以下の実施例では、次のエポキシ系架橋剤を用いた。
 (1)三菱ガス化学株式会社製の多官能エポキシ化合物「TETRAD-X」(商品名)(N,N,N’,N’-テトラグリシジル-m-キシレンジアミン)
 (2)4,4’-メチレンビス(N,N-ジグリシジルアニリン)
 (3)1,4-ブタンジオールジグリシジルエーテル
 (4)三菱ケミカル株式会社製の「jER630」(商品名)(トリグリシジルパラアミノフェノール)
 なお、三菱ガス化学株式会社製の多官能エポキシ化合物「TETRAD-X」(商品名)と4,4’-メチレンビス(N,N-ジグリシジルアニリン)は、いずれも分子内に2つの第3級アミノ基と4つのエポキシ基とを有するエポキシアミン化合物であり、いずれもジグリシジルアミノ基を2つ有している。三菱ケミカル株式会社製の「jER630」(商品名)は、分子内に1つの第3級アミノ基と3つのエポキシ基とを有する多官能エポキシ化合物であり、ジグリシジルアミノ基を1つ有している。1,4-ブタンジオールジグリシジルエーテルは、分子内に2つのエポキシ基を有するが、第3級アミノ基を有さない多官能エポキシ化合物である。
 (実施例1)
 ポリエステル樹脂としての脂肪族ポリエステル樹脂A1と、エポキシ系架橋剤としての4,4’-メチレンビス(N,N-ジグリシジルアニリン)とを、ポリエステル樹脂のカルボキシ基と、エポキシアミン化合物のエポキシ基のモル比が1:1となる割合で配合した。具体的には、脂肪族ポリエステル樹脂A1のカルボキシ基を100モル部とすると、4,4’-メチレンビス(N,N-ジグリシジルアニリン)のエポキシ基が25モル部となる。これら脂肪族ポリエステル樹脂A1を10質量部と4,4’-メチレンビス(N,N-ジグリシジルアニリン)を1.3質量部とをテトラヒドロフラン(THF)10質量部に溶解し、この溶液をテフロン(登録商標)コーティングした型内に入れ、40℃に加熱してTHFを揮発除去した。THFを除去した試料を、120℃で、4時間、真空条件下で加熱し、架橋ポリエステル樹脂フィルム(厚み0.7mm)を得た。
 (実施例2~8)
 表2-1に示すように、ポリエステル樹脂としての脂肪族ポリエステル樹脂A1、芳香族ポリエステル樹脂B1、B2、またはC1を用い、エポキシ系架橋剤としての三菱ガス化学株式会社製の多官能エポキシ化合物「TETRAD-X」(商品名)、または4,4’-メチレンビス(N,N-ジグリシジルアニリン)を用いる以外は、実施例1の製造条件と同じ条件で架橋ポリエステル樹脂フィルム(厚み0.7mm)を製造した。
 (実施例9)
 ポリエステル樹脂としての芳香族ポリエステル樹脂C1と、エポキシ系架橋剤としての三菱ガス化学株式会社製の多官能エポキシ化合物「TETRAD-X」(商品名)と、更にエステル交換触媒とを、ポリエステル樹脂の側鎖のカルボキシ基と、エポキシアミン化合物のエポキシ基のモル比が1:1となる割合で配合した。具体的には、芳香族ポリエステル樹脂C1のカルボキシ基を100モル部とすると、「TETRAD-X」(商品名)のエポキシ基が25モル部となり、エステル交換触媒としての酢酸亜鉛は5モル部となる。これら芳香族ポリエステル樹脂C1を10質量部と「TETRAD-X」(商品名)を0.27質量部とをテトラヒドロフラン(THF)10質量部に溶解し、酢酸亜鉛0.03質量部をジメチルホルムアミド(DMF)1質量部に溶解し、これら2種類の溶液をテフロン(登録商標)コーティングした型内で混合して溶解し、その後、40℃に加熱して溶剤を揮発除去した。溶剤を除去した試料を、120℃で、4時間、真空条件下で加熱し、架橋ポリエステル樹脂フィルム(厚み0.7mm)を得た。
 (実施例10、11)
 表2-2に示すように、エステル交換触媒の配合量を変更する以外は、実施例9の製造条件と同じ条件で架橋ポリエステル樹脂フィルム(厚み0.7mm)を製造した。
 (比較例1、3)
 エポキシ系架橋剤としての「TETRAD-X」(商品名)25モル部の代わりに、1,4-ブタンジオールジグリシジルエーテルを50モル部(0.30質量部)用いるか、「jER630」(商品名)を33モル部(0.27質量部)用いる以外は、実施例7の製造条件と同じ条件で架橋ポリエステル樹脂フィルム(厚み0.7mm)を製造した。
 (比較例2、4)
 エポキシ系架橋剤としての「TETRAD-X」(商品名)25モル部の代わりに、1,4-ブタンジオールジグリシジルエーテルを50モル部(0.30質量部)用いるか、「jER630」(商品名)を33モル部(0.27質量部)用いる以外は、実施例11の製造条件と同じ条件で架橋ポリエステル樹脂フィルム(厚み0.7mm)を製造した。
 実施例1~11、比較例1~4で得られた架橋ポリエステル樹脂フィルムの組成(モル部)を下記表2-1、表2-2に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 後記する表3-1、表3-2に示した架橋ポリエステル樹脂フィルムの特性は、以下のようにして評価した結果である。
 (軟化温度)
 HITACHI製の「TMA7100」を用い、架橋ポリエステル樹脂フィルムの線膨張率変化を測定した。初期の治具間距離は15mmとし、架橋ポリエステル樹脂フィルムから切り出した試験片(幅4mm×長さ20mm×厚み0.7mmの長方形)のたわみを防ぐために微一定張力(20mN)印加下、窒素ガス雰囲気下で、室温から300℃まで試験片を昇温速度10℃/分で加熱して測定した。測定結果のうち、実施例11、比較例2、比較例4の結果を図1に示す。縦軸は線膨張率の変位を示している。図1中、実線は実施例11の結果、点線は比較例2の結果、一点鎖線は比較例4の結果を示している。線膨張率変化曲線の屈曲点における温度を軟化温度として求めた。
 (貯蔵弾性率(DMA))
 架橋ポリエステル樹脂フィルムの貯蔵弾性率(DMA)を測定した。貯蔵弾性率(DMA)は、アイティー計測制御株式会社製の動的粘弾性測定装置「DVA-200」に樹脂をセットし、測定周波数を10Hzとし、室温から昇温速度4℃/分で200~300℃まで樹脂を加熱して測定した。測定結果のうち、実施例11、比較例2、比較例4の結果を図2に示す。縦軸は貯蔵弾性率を示している。図2中、実線は実施例11の結果、点線は比較例2の結果、一点鎖線は比較例4の結果を示している。なお、加熱温度の上限は、実施例11は290℃、比較例2は200℃、比較例4は300℃とした。
 図2から明らかなように、いずれの樹脂でも200℃前後で貯蔵弾性率の急激な変化は認められなかったため、200℃では架橋構造が維持できていると考えられる。
 (自己接着性)
 架橋ポリエステル樹脂フィルム(厚み0.7mm)2枚の一端同士を重ね、軟化温度以上の温度に加熱した状態で、積層方向に400kPaで押圧し、この状態で2時間保持して積層架橋ポリエステル樹脂フィルムを作製した。重ね合せた積層部分が接着した場合を自己接着性有り(〇)、接着しなかった場合を自己接着性なし(×)と評価した。
 (再成形性)
 架橋ポリエステル樹脂フィルム(厚み0.7mm)をスパーテルに螺旋状に巻き付けてからフィルムの両端をテープでスパーテルに固定し、高温(軟化温度+約20℃)で2時間放置した。その後、室温まで放冷した後、テープを外して架橋ポリエステル樹脂フィルムをスパーテルから取り外した。架橋ポリエステル樹脂フィルムをスパーテルから取り外しても巻き付きの形状が維持された場合を再成形性有り(〇)、巻き付きの形状を維持できず、平面状に戻った場合を再成形性なし(×)と評価した。
 (傷修復性)
 架橋ポリエステル樹脂フィルム(厚み0.7mm)の表面に、長さ約1cm、深さ約0.1mmの傷をカッターで付けた。このフィルムを高温(軟化温度+約20℃)で10分間放置した後、室温まで放冷した。架橋ポリエステル樹脂フィルムに付けた傷が消失した場合を傷修復性有り(〇)、架橋ポリエステル樹脂フィルムに付けた傷が消失しなかった場合を傷修復性なし(×)と評価した。
 (ガラス転移温度Tg)
 実施例および比較例で得られた架橋ポリエステル樹脂フィルムについて、株式会社日立ハイテクサイエンス社製のDSC装置「型式:DSC7020」を用い、窒素雰囲気中で、温度-100℃から300℃まで昇温速度20℃/分で加熱して熱分析を行い、ガラス転移温度(Tg)を測定した。
 (90°ピール強度)
 得られた架橋ポリエステル樹脂フィルム(厚み0.7mm)から縦20mm×横50mmの試験片を切り出した。切り出した試験片を、厚さ25μmのPETフィルム(東洋紡株式会社製)上に載せ、試験片の上に、同じ種類のPETフィルムを載せることで、「PETフィルム/架橋ポリエステル樹脂フィルム/PETフィルム」の3層構成とし、熱プレス機で、170℃、2MPa、280秒加圧加熱することでそれぞれの層を接着した。接着して得られた積層体を90°ピール強度評価サンプルとした。
 また、上記PETフィルムの代わりに、ポリイミドフィルム(PI、株式会社カネカ製の「アピカル」(登録商標)、厚み12.5μm)を用い、「PI/架橋ポリエステル樹脂フィルム/PI」の3層構成とする以外は同じ条件で、90°ピール強度評価サンプルを作製した。
 また、上記PETフィルムの代わりに、圧延銅箔(厚み20μm)とポリイミドフィルム(PI、株式会社カネカ製の「アピカル」(登録商標)、厚み12.5μm)を用い、「Cu/架橋ポリエステル樹脂フィルム/PI」の3層構成とする以外は同じ条件で、90°ピール強度評価サンプルを作製した。
 90°ピール強度は、島津製作所製オートグラフAG-Xplusを用い、25℃、引張速度50mm/minで測定した。測定した90°ピール強度に基づいて、下記基準でフィルムの接着性を評価した。評価結果を下記表3-1、表3-2に示す。なお、「-」は未実施を意味する。
 <評価基準>
 ◎:1.0N/mm以上
 ○:0.5N/mm以上1.0N/mm未満
 △:0.35N/mm以上0.5N/mm未満
 ×:0.35N/mm未満
 (成形加工性)
 得られた架橋ポリエステル樹脂フィルム(厚み0.7mm)を幅5mm×長さ5mmに切断したサンプルをモールドに詰めた。モールドは、厚さ1mmのテフロン(登録商標)シートに直径8mmの円を切り抜き作製したものを用いた。その後、熱プレス機にて加圧・加熱を施した。加圧条件は4MPa、加熱条件は軟化温度+30℃、15分間とした。
 架橋ポリエステル樹脂フィルム片をモールド形状に成形できた場合を成形加工性〇、成形できなかった場合を成形加工性×として評価した。評価結果を下記表3-1、表3-2に示す。なお、「-」は未実施を意味する。
 (押出成形性)
 得られた架橋ポリエステル樹脂フィルム(厚み0.7mm)6gを幅5mm×長さ5mmに切断したサンプルを、HAAKE社製二軸押出機「MiniLab」にバレル温度150℃で3回に分けて投入し、スクリュー回転数50min-1でサンプル投入完了後5分間混練した後、混練物をバレルから押し出した。混練後、混練物を吐出でき、糸状の成形体が得られた場合を押出成形性○、混練物を吐出できず、糸状の成形体が得られなかった場合を押出成形性×として評価した。評価結果を下記表3-1、表3-2に示す。なお、実施例6、8は、バレル温度を200℃に変更して押出成形性を評価した。「-」は未実施を意味する。
 (室温保存安定性)
 得られた架橋ポリエステル樹脂フィルムの室温保存安定性は、ゲル分率の変化率と、軟化挙動に基づいて評価した。
 (1)ゲル分率の変化率
 まず、得られた架橋ポリエステル樹脂フィルムのゲル分率を測定する。ゲル分率は、下記の方法で測定した。
 得られた架橋ポリエステル樹脂フィルムを0.125g計量し、これをメチルエチルケトン25mLに室温で2時間浸漬した後、残ったゲル成分のみを真空乾燥機で80℃、1時間乾燥し、質量を測定した。下記式によってゲル分率を測定した。
ゲル分率(%)=(残ったゲル成分の乾燥後重量÷0.125)×100
 次に、架橋ポリエステル樹脂フィルムを、5℃、25℃、または40℃の一定温度で6ヶ月間保管し、6ヶ月経過時に上記の方法でゲル分率を測定した。保管開始時におけるゲル分率と6ヶ月保管後におけるゲル分率に基づき、保管開始時におけるゲル分率からの変化率を算出した。変化率は下記式のとおり、6カ月経過前後のゲル分率(%)の差の絶対値とした。
変化率=6カ月経過時のゲル分率(%)-保管開始時のゲル分率(%)
 変化率が10%未満の場合は○、変化率が10%以上25%以下の場合は△、変化率が25%を超えた場合は×として評価した。評価結果を下記表3-1、表3-2に示す。なお、「-」は未実施を意味する。
 (2)軟化挙動
 得られた架橋ポリエステル樹脂フィルムを25℃で6ヶ月保管した際に、結合交換反応による軟化挙動の有無を応力緩和測定によって評価した。応力緩和測定にはMCR302(Anton paar社製)を用い、温度100℃、150℃、180℃で応力緩和試験を行った。試験はNガス雰囲気下で行った。試験片は、上記架橋ポリエステル樹脂フィルムから切り出した直径8mm×厚み0.7mmのディスク状試料を用いた。
 25℃で6ヶ月保管した後に、温度100℃、150℃、180℃のいずれの温度で応力緩和試験を行っても軟化挙動を示す場合を○、温度100℃、150℃、180℃のいずれの温度で応力緩和試験を行っても軟化挙動を示さない場合を×と評価した。評価結果を下記表3-1、表3-2に示す。25℃で6ヶ月保管した後に応力緩和がみられるということは、保管後も結合交換による軟化特性を保持しており、室温長期保存期間中に初期挙動と変化がないことを示している。
 (耐溶剤性)
 得られた架橋ポリエステル樹脂フィルム(厚み0.7mm)を幅5mm×長さ5mmに切断したサンプルを、スクリュー瓶1本につき1個投入したものを、1水準につき3本準備し、それぞれにエタノール、ジメチルホルムアミド(DMF)、またはテトラヒドロフラン(THF)を3mL添加して、室温で5時間静置した。5時間静置後、浸漬前と変化がなかった場合を耐溶剤性良好◎、サンプルの膨潤は認められたが溶解しなかった場合を耐溶剤性有り○、溶解した場合を耐溶剤性無し×として評価した。評価結果を下記表3-1、表3-2に示す。なお、「-」は未実施を意味する。
 (加熱時の90°ピール強度)
 加熱時の90°ピール強度は、上記の90°ピール強度評価サンプルのうち「Cu/架橋ポリエステル樹脂フィルム/PI」について、恒温槽(島津製作所製、THERMOSTATIC CHAMBER)を用い、表3-1、表3-2に記載した各サンプルの軟化温度+30℃で測定した。90°ピール強度の測定には、島津製作所製オートグラフAG-Xplusを用い、各サンプルの軟化温度+30℃の温度で、引張速度50mm/minで測定した。測定した加熱時の90°ピール強度に基づいて、下記基準で積層体の剥離性を評価した。評価結果を下記表3-1、表3-2に示す。なお、「-」は未実施を意味する。
 <評価基準>
 ◎:0.35N/mm未満
 ○:0.35N/mm以上0.5N/mm未満
 △:0.5N/mm以上1.0N/mm未満
 ×:1.0N/mm以上
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例7で得られた架橋ポリエステル樹脂フィルムを細かいレジン形状(幅5mm×長さ5mm×厚さ0.7mm)に切り刻み、200℃の温度で溶融し、幅40cm、長さ4cmのノズル有効面に孔径1.0mmの丸型中実形状オリフィスを4mmの間隔で配列したノズルより、単孔吐出量1.0g/分で冷却水中へ吐出させ、固化させた。詳細には、吐出位置より10cm下に冷却水を配し、幅50cmのステンレス製エンドレスネットを平行に3cm間隔で一対の引取りコンベアを水面上に一部出るように配した上に引取り、接触部分を融着させつつ、両面を挟み込みつつ、毎分1.0mの速度で冷却水中へ引込み固化させた。次いで、70℃の熱風乾燥機中で15分乾燥処理した後、所定の大きさに切断した。その結果、厚み3cm、密度0.060g/cmの網状構造体が得られた。
 表3-1、表3-2の結果から次のように考察できる。
 実施例1~11で得られた架橋ポリエステル樹脂は、いずれもエポキシ系架橋剤として、分子内に2つ以上の第3級アミノ基と2つ以上のエポキシ基とを有するエポキシアミン化合物を用いて得られたものであり、本発明で規定する要件を満足している。実施例1~8では、エステル交換触媒を配合しなくてもエステル交換反応による結合交換に起因する軟化挙動を示し、自己接着性、再成形性、傷修復性の特性が得られた。再成形性が発現したのは、高温時にエステル結合の交換が活性化され、放冷中に新しい平衡網目構造に固定化されたためと考えられる。傷修復性が発現したのは、高温時にエステル結合の交換が活性化され、架橋ポリエステル樹脂フィルムの表面近傍における分子鎖の再配列が促されたためと考えられる。また、実施例1~8では、エステル交換触媒を配合していないため、架橋ポリエステル樹脂フィルムを電子材料周辺の材料に適用することが可能となる。
 実施例9~11では、エポキシ系架橋剤として、分子内に2つ以上の第3級アミノ基と2つ以上のエポキシ基とを有するエポキシアミン化合物を用いたうえで、エステル交換触媒を配合した例であり、実施例9~11と上記実施例7を比較すると、エステル交換触媒を配合し、その配合量を増加するに連れてエステル交換反応による結合交換が活発になり、耐熱性を維持しつつ軟化温度が低下する傾向が確認できた。即ち、エステル交換触媒の配合量に基づいて軟化温度を調整できることがわかった。
 実施例1~11の架橋ポリエステル樹脂フィルムは、成形加工性、押出成形性、室温保存安定性、耐溶剤性に優れていた。これらのなかでも、側鎖にカルボキシ基を有するポリエステル樹脂として芳香族ポリエステル樹脂を用いている実施例4~11の架橋ポリエステル樹脂フィルムは、90°ピール強度が大きく、接着剤として有用であった。また、実施例4~11の架橋ポリエステル樹脂フィルムは、軟化温度+30℃に加熱したときの90°ピール強度が小さく、剥離し易いことが分かった。
 一方、比較例1~4で得られた架橋ポリエステル樹脂は、いずれもエポキシ系架橋剤として、分子内に2つ以上の第3級アミノ基と2つ以上のエポキシ基とを有するエポキシアミン化合物を用いていないものであり、本発明で規定する要件を満足していない。比較例1では、エステル交換反応による結合交換が進行せず、自己接着性、再成形性、傷修復性の特性が発現しなかった。比較例2では、エステル交換触媒を配合したため、エステル交換反応による結合交換が活発になり、自己接着性、再成形性、傷修復性の特性が発現した。しかし、同量のエステル交換触媒を配合した実施例11と比較すると、軟化温度は相対的に低くなった。比較例3で用いたエポキシ系架橋剤は、分子内に3つのエポキシ基を有しているが、第3級アミノ基が1つであったため、エステル交換反応による結合交換が充分に進行せず、自己接着性、再成形性、傷修復性の特性が発現しなかった。比較例4は、比較例3の例に対し、エステル交換触媒を配合したため、エステル交換反応による結合交換が活発になり、自己接着性、再成形性、傷修復性の特性が発現した。しかし、同量のエステル交換触媒を配合した実施例11と比較すると、軟化温度は相対的に低くなった。
 次に、実施例11で得られた架橋ポリエステル樹脂フィルム(厚み0.7mm)をPETフィルム、PIフィルム、またはAl基材で挟んだ試験片を用い、180°剥離試験および剪断試験を行ない、架橋ポリエステル樹脂フィルムの接着性を評価した。具体的には、実施例11で得られた架橋ポリエステル樹脂フィルムを厚み100μmのPETフィルム2枚で挟み、180℃で、20MPaで10分間押圧したものを試験片aとした。実施例11で得られた架橋ポリエステル樹脂フィルムを厚み25μmのPIフィルム2枚で挟み、180℃で、20MPaで10分間押圧したものを試験片bとした。実施例11で得られた架橋ポリエステル樹脂フィルムを厚み1.5mmのAl基材2枚で挟み、200℃で、1時間保持したものを試験片cとした。
 180°剥離試験では、貼り合わせたPETフィルムまたはPIフィルムの一方側の端部を、試験片の平面方向に沿って180°折り返しつつ引き剥がすときの最大応力を測定した。試験片cについては、180°剥離試験を行わなかった。剪断試験では、貼り合わせたPETフィルム、PIフィルム、またはAl基材を、試験片の平面方向に沿って互いに反対方向に引っ張ったときの剪断力の最大値を測定した。測定結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000007
 表4の結果から明らかなように、実施例11で得られた架橋ポリエステル樹脂フィルムを用いることにより、PETフィルム、PIフィルム、Al基材を接着できることが分かった。

Claims (5)

  1.  側鎖にカルボキシ基を有するポリエステル樹脂が、複数のエポキシ基を有するエポキシ系架橋剤で架橋された樹脂であり、
     前記エポキシ系架橋剤として、分子内に2つ以上の第3級アミノ基と2つ以上のエポキシ基とを有するエポキシアミン化合物を含み、
     前記側鎖にカルボキシ基を有するポリエステル樹脂のカルボキシ基100モル部に対して、前記エポキシアミン化合物は3~30モル部であることを特徴とする架橋ポリエステル樹脂。
  2.  前記側鎖にカルボキシ基を有するポリエステル樹脂のカルボキシ基と前記エポキシアミン化合物のエポキシ基のモル比は、前記カルボキシ基:前記エポキシ基で、1:0.125~1:1.2である請求項1に記載の架橋ポリエステル樹脂。
  3.  前記エポキシアミン化合物に含まれる第3級アミノ基とエポキシ基がジグリシジルアミノ基を構成している請求項1または2に記載の架橋ポリエステル樹脂。
  4.  前記エポキシアミン化合物の分子量が800以下である請求項1~3のいずれかに記載の架橋ポリエステル樹脂。
  5.  エステル交換触媒および請求項1~4のいずれかに記載の架橋ポリエステル樹脂を含む架橋ポリエステル樹脂組成物。
PCT/JP2021/038128 2020-10-16 2021-10-14 架橋ポリエステル樹脂 WO2022080470A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022557461A JPWO2022080470A1 (ja) 2020-10-16 2021-10-14
EP21880205.6A EP4230675A1 (en) 2020-10-16 2021-10-14 Crosslinked polyester resin
KR1020237016310A KR20230088438A (ko) 2020-10-16 2021-10-14 가교 폴리에스테르 수지
US18/031,770 US20230383115A1 (en) 2020-10-16 2021-10-14 Crosslinked polyester resin
CN202180070052.4A CN116348520A (zh) 2020-10-16 2021-10-14 交联聚酯树脂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-174536 2020-10-16
JP2020174536 2020-10-16

Publications (1)

Publication Number Publication Date
WO2022080470A1 true WO2022080470A1 (ja) 2022-04-21

Family

ID=81208162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038128 WO2022080470A1 (ja) 2020-10-16 2021-10-14 架橋ポリエステル樹脂

Country Status (7)

Country Link
US (1) US20230383115A1 (ja)
EP (1) EP4230675A1 (ja)
JP (1) JPWO2022080470A1 (ja)
KR (1) KR20230088438A (ja)
CN (1) CN116348520A (ja)
TW (1) TW202227545A (ja)
WO (1) WO2022080470A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114920903A (zh) * 2022-06-30 2022-08-19 浙江华峰合成树脂有限公司 一种封闭型异氰酸酯固化剂及其制备方法和应用
WO2023063386A1 (ja) * 2021-10-14 2023-04-20 東洋紡株式会社 架橋ポリエステル樹脂、接着剤組成物および接着シート

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104733A (ja) * 1994-10-03 1996-04-23 Mazda Motor Corp 低溶剤型樹脂組成物、それを用いる塗料組成物、並びにその塗装方法
JP2001279170A (ja) * 2000-03-29 2001-10-10 Nissan Chem Ind Ltd 高強度粉体塗料用樹脂組成物
JP2014141603A (ja) * 2013-01-25 2014-08-07 Toyo Ink Sc Holdings Co Ltd 誘電特性に優れる接着剤組成物、それを用いた接着剤シート、およびプリント配線板
WO2018105543A1 (ja) 2016-12-06 2018-06-14 東洋紡株式会社 カルボン酸基含有高分子化合物およびそれを含有する接着剤組成物
WO2018179707A1 (ja) 2017-03-28 2018-10-04 東洋紡株式会社 カルボン酸基含有ポリエステル系接着剤組成物
JP2019119872A (ja) * 2017-12-29 2019-07-22 三菱ケミカル株式会社 ポリエステル系粘着剤組成物、ポリエステル系粘着剤、粘着フィルム、耐熱粘着フィルム用粘着剤組成物、マスキング用耐熱粘着フィルム、マスキング用耐熱粘着フィルムの使用方法
WO2020045439A1 (ja) 2018-08-27 2020-03-05 国立大学法人名古屋工業大学 自己接着性、再成型性、傷修復性を示すソフトな架橋ポリエステル樹脂・フィルム及びその製造方法
JP2020174536A (ja) 2019-04-15 2020-10-29 本田技研工業株式会社 収穫装置およびその制御方法、並びにプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6828886B2 (ja) 2016-12-26 2021-02-10 株式会社パロマ ガスコンロ用の照明装置及びガス調理システム
TWI805572B (zh) * 2017-02-27 2023-06-21 日商日產化學工業股份有限公司 液晶配向劑、液晶配向膜及液晶顯示元件
JP6864528B2 (ja) 2017-04-11 2021-04-28 三菱重工業株式会社 ステルス性低下領域通知システム、ステルス性低下領域通知方法及びプログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104733A (ja) * 1994-10-03 1996-04-23 Mazda Motor Corp 低溶剤型樹脂組成物、それを用いる塗料組成物、並びにその塗装方法
JP2001279170A (ja) * 2000-03-29 2001-10-10 Nissan Chem Ind Ltd 高強度粉体塗料用樹脂組成物
JP2014141603A (ja) * 2013-01-25 2014-08-07 Toyo Ink Sc Holdings Co Ltd 誘電特性に優れる接着剤組成物、それを用いた接着剤シート、およびプリント配線板
WO2018105543A1 (ja) 2016-12-06 2018-06-14 東洋紡株式会社 カルボン酸基含有高分子化合物およびそれを含有する接着剤組成物
WO2018179707A1 (ja) 2017-03-28 2018-10-04 東洋紡株式会社 カルボン酸基含有ポリエステル系接着剤組成物
JP2019119872A (ja) * 2017-12-29 2019-07-22 三菱ケミカル株式会社 ポリエステル系粘着剤組成物、ポリエステル系粘着剤、粘着フィルム、耐熱粘着フィルム用粘着剤組成物、マスキング用耐熱粘着フィルム、マスキング用耐熱粘着フィルムの使用方法
WO2020045439A1 (ja) 2018-08-27 2020-03-05 国立大学法人名古屋工業大学 自己接着性、再成型性、傷修復性を示すソフトな架橋ポリエステル樹脂・フィルム及びその製造方法
JP2020174536A (ja) 2019-04-15 2020-10-29 本田技研工業株式会社 収穫装置およびその制御方法、並びにプログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063386A1 (ja) * 2021-10-14 2023-04-20 東洋紡株式会社 架橋ポリエステル樹脂、接着剤組成物および接着シート
CN114920903A (zh) * 2022-06-30 2022-08-19 浙江华峰合成树脂有限公司 一种封闭型异氰酸酯固化剂及其制备方法和应用
CN114920903B (zh) * 2022-06-30 2024-02-02 浙江华峰合成树脂有限公司 一种封闭型异氰酸酯固化剂及其制备方法和应用

Also Published As

Publication number Publication date
KR20230088438A (ko) 2023-06-19
JPWO2022080470A1 (ja) 2022-04-21
US20230383115A1 (en) 2023-11-30
TW202227545A (zh) 2022-07-16
CN116348520A (zh) 2023-06-27
EP4230675A1 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
WO2022080470A1 (ja) 架橋ポリエステル樹脂
EP3486268B1 (en) Polyester resin composition for a hot melt adhesive
JP2010516847A (ja) 非ハロゲン化溶剤中での良好な溶解性を有する結晶性のコポリエステル及びその使用
CN107922597B (zh) 聚酯组合物
JP7211403B2 (ja) 接着剤組成物及び接着剤
JP7334827B2 (ja) 接着剤組成物及び接着剤
JP7002122B2 (ja) 積層体
JP6513374B2 (ja) ポリエステル系樹脂、ポリエステル系樹脂水性液、及びポリエステル系樹脂組成物
WO2022239439A1 (ja) アミノ基含有ポリエステル樹脂、およびアミノ基含有架橋ポリエステル樹脂
WO2022080469A1 (ja) 架橋芳香族ポリエステル樹脂組成物およびその製造方法
JP5415087B2 (ja) 接着剤材料用ポリエステル樹脂、およびそれを用いた接着剤の製造方法
JP6754119B2 (ja) 樹脂組成物、それを用いた塗膜および積層体
JP5684689B2 (ja) ポリエステル樹脂およびそれを用いたポリエステルフィルム
JP5979923B2 (ja) コーティング剤、塗膜および積層体
JP5339519B2 (ja) ポリエステルブロック共重合体、およびその製造方法
CN115279858A (zh) 粘接剂组合物
TW202400749A (zh) 聚酯系黏著劑組成物、聚酯系黏著劑、黏著片、裝飾薄膜、電子構件用薄膜及裝飾成形體
TW202305031A (zh) 熱收縮聚酯標籤膜及其製備方法、容器
JP2017002228A (ja) 粘着剤用ポリエステル樹脂組成物
JP2005329553A (ja) ポリエステル成形品、その製造方法、およびicキャリアケース

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557461

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18031770

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202347033007

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20237016310

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021880205

Country of ref document: EP

Effective date: 20230516