WO2022078084A1 - 动态补偿测风激光雷达系统及其测风方法 - Google Patents

动态补偿测风激光雷达系统及其测风方法 Download PDF

Info

Publication number
WO2022078084A1
WO2022078084A1 PCT/CN2021/115237 CN2021115237W WO2022078084A1 WO 2022078084 A1 WO2022078084 A1 WO 2022078084A1 CN 2021115237 W CN2021115237 W CN 2021115237W WO 2022078084 A1 WO2022078084 A1 WO 2022078084A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
signal
pulse
power spectrum
motion
Prior art date
Application number
PCT/CN2021/115237
Other languages
English (en)
French (fr)
Inventor
邵建伟
朱海龙
肖增利
李智
邓晨
Original Assignee
南京牧镭激光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京牧镭激光科技有限公司 filed Critical 南京牧镭激光科技有限公司
Priority to KR1020237012186A priority Critical patent/KR20230121030A/ko
Priority to EP21879130.9A priority patent/EP4215945A1/en
Priority to JP2023518363A priority patent/JP7403028B2/ja
Publication of WO2022078084A1 publication Critical patent/WO2022078084A1/zh
Priority to US18/299,583 priority patent/US11821991B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/95Lidar systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/025Indicating direction only, e.g. by weather vane indicating air data, i.e. flight variables of an aircraft, e.g. angle of attack, side slip, shear, yaw
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/26Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention belongs to the field of laser radar, in particular to a dynamic compensation wind measurement laser radar system and a wind measurement method thereof.
  • the wind measurement lidar system on the market mainly performs radar attitude compensation at each sampling when wind measurement in a dynamic environment.
  • the sampling frequency of radar is usually 1Hz, which leads to the frequency of radar attitude compensation is also 1Hz.
  • the attitude change frequency of radar is often greater than 1Hz, and the attitude compensation frequency of 1Hz obviously cannot meet the needs of wind measurement.
  • Radar needs to measure wind field information at multiple altitudes simultaneously.
  • the pulse radar on the market mainly collects the return light signal of a fixed time, and the measurement distance will not be adjusted in real time with the attitude of the radar.
  • the radar attitude changes, the measured altitude also changes.
  • the current mainstream method is to use the exponential rate interpolation method in the later stage to calculate the wind field information of the set altitude, which is obviously not as accurate as directly measuring the target altitude.
  • the present invention proposes a dynamic compensation wind measurement lidar system and a wind measurement method thereof.
  • the invention first discloses a wind measurement method of a dynamic compensation wind measurement laser radar system, which comprises the following steps:
  • the optical signal generated by the multi-beam laser is periodically switched between the multi-beams at a fixed frequency
  • the beat frequency signal performs balanced detection and A/D conversion, and is transmitted to the signal processor to obtain the signal power spectrum; at the same time, the motion sensor outputs the motion and attitude data of the radar in real time;
  • the signal power spectrum, the real-time motion and attitude data of the radar are packaged and sent to the data processor to obtain the radial wind speed of the beam;
  • the pulse signal power spectrum is obtained by calculating the A/D sampling signal.
  • the sampling interval time of the A/D converter is adjusted in real time according to the attitude and height changes of the radar:
  • the pulse of a single beam cycle of the radar is divided into n segments:
  • t is the dwell time of a single beam
  • the repetition frequency of the laser is FkHz
  • M is the number of pulse accumulations.
  • the invention also discloses a dynamic compensation wind measuring laser radar system, which includes:
  • optical antenna for receiving optical signals scattered by atmospheric aerosols and beat frequency with seed optical signals
  • -Signal processor including power spectrum calculation module, motion sensor and pulse accumulation module:
  • the power spectrum calculation module obtains the signal power spectrum
  • the motion sensor outputs the motion and attitude data of the radar in real time
  • the pulse accumulation module divides the light pulses emitted by a single beam cycle into n segments for accumulation, and adds real-time motion and attitude data collected by motion sensors to each segment of accumulation. noise ratio;
  • the data processor performs data processing according to the signal power spectrum, the motion and attitude data of the radar, and obtains the radial wind speed of the beam; the wind speed and wind direction above the radar are obtained by combining with the radial wind speed of the beam in the previous cycle.
  • the power spectrum calculation module obtains the pulse signal power spectrum by calculating the A/D sampling signal.
  • the signal processor further includes an altitude compensation system, and the altitude compensation system adjusts the sampling interval of the A/D converter in real time according to the attitude and altitude changes of the radar:
  • the pulse of a single beam period of the radar is divided into n segments:
  • t is the dwell time of a single beam
  • the repetition frequency of the laser is FkHz
  • M is the number of pulse accumulations.
  • the invention adopts the method of accumulating the light pulses in the single beam dwell time in sections and superimposing the attitude, which can greatly improve the attitude compensation frequency and make the attitude compensation frequency adjustable. It solves the problem in the background art that "in complex dynamic environments, such as buoys, vehicles, airborne, etc., the attitude change frequency of radar is often greater than 1Hz, and the attitude compensation frequency of 1Hz obviously cannot meet the needs of wind measurement".
  • the invention calculates in real time, and feeds back the AD to adjust the collection time in real time, so as to ensure that the radar always measures the wind field information of the target altitude layer.
  • the problem of "when the radar attitude changes, the measured altitude will also change" in the background art is solved.
  • FIG. 1 is a schematic diagram of the radar system of the present invention
  • Fig. 2 is the segmented attitude and motion compensation timing diagram of the present invention
  • FIG. 3 is a schematic diagram of the height compensation system of the present invention
  • the present invention discloses a dynamic compensation wind measurement lidar system, which includes:
  • optical antenna for receiving optical signals scattered by atmospheric aerosols and beat frequency with seed optical signals
  • -Signal processor including power spectrum calculation module, motion sensor and pulse accumulation module:
  • the power spectrum calculation module obtains the signal power spectrum
  • the motion sensor outputs the motion and attitude data of the radar in real time, including the angles of the x-axis, y-axis, z-axis, g value and angular velocity, etc.;
  • the pulse accumulation module divides the light pulses emitted by a single beam cycle into n segments for accumulation, and adds real-time motion and attitude data collected by motion sensors to each segment of accumulation. noise ratio;
  • the data processor performs data processing according to the signal power spectrum, the motion and attitude data of the radar, and obtains the radial wind speed of the beam; the wind speed and wind direction above the radar are obtained by combining with the radial wind speed of the beam in the previous cycle.
  • the pulse accumulation module accumulates single-beam pulses in segments to increase the frequency of attitude compensation.
  • the repetition frequency can reach several tens of kHz. Assuming that the laser repetition frequency is FkHz, and the single-beam dwell time of beam 1 and beam 2 is t seconds, the number of light pulses emitted by a single beam cycle is 1000*F*t.
  • t is the dwell time of a single beam
  • the repetition frequency of the laser is FkHz
  • M is the number of pulse accumulations.
  • the pulse accumulation times not less than M we can arbitrarily choose the pulse accumulation times not less than M to reasonably adjust the attitude compensation frequency.
  • the maximum attitude compensation frequency can be further increased by increasing the repetition frequency of the laser.
  • the signal processor of the present application also includes an altitude compensation system, which adjusts the sampling interval time of the A/D in real time through changes in the attitude and altitude of the radar.
  • H is the vertical distance from the radar to the altitude before the change, is the vector of the beam in the inertial coordinate axis.
  • the angle between the radar coordinate axis (X', Y', Z') and the inertial coordinate axis becomes ⁇ , ⁇ , ⁇ (the positive direction of the rotation angle is the negative direction along the rotation axis, respectively). Clockwise is positive, counterclockwise is negative). Then the vector of the beam in the inertial coordinate axis becomes:
  • This solution adjusts the collection interval in real time to ensure that the radar measures the wind speed and direction data at the set altitude, and the wind measurement accuracy will not be affected by the altitude error.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Multimedia (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明公开了一种动态补偿测风激光雷达系统,它包括:激光器、A/D转换器、信号处理器和数据处理器,所述信号处理器包括功率谱计算模块、运动传感器和脉冲累积模块,脉冲累积模块将单个光束周期发出的光脉冲分成n段进行累积,在每段累积中加入运动传感器采集的实时运动和姿态数据,通过对多个周期脉冲信号功率谱密度进行累积,从而提高信噪比。本发明采用对单光束驻留时间内的光脉冲进行分段累加并叠加姿态的方式,可以大大提高姿态补偿频率,并做到姿态补偿频率可调。

Description

动态补偿测风激光雷达系统及其测风方法 技术领域
本发明属于激光雷达领域,具体是一种动态补偿测风激光雷达系统及其测风方法。
背景技术
目前市面上的测风激光雷达系统在动态环境测风时,主要在每次采样时进行雷达姿态补偿。雷达的采样频率通常为1Hz,这导致雷达姿态补偿的频率也在1Hz。在复杂的动态环境,例如浮标、车载、机载等,雷达的姿态变化频率往往大于1Hz,1Hz的姿态补偿频率明显不能满足测风需求。
雷达需要同时测量多个高度层的风场信息。目前市面上的脉冲雷达主要采集固定时间的回光信号,测量距离不会随着雷达姿态实时调整。当雷达姿态变化时,测量的高度层也会随之发生变化。现在主流的手段是后期采用指数率进行插值的方法,推算出所设置高度层的风场信息,这种方法明显不如直接测量目标高度层准确。
发明内容
本发明针对背景技术中存在的问题,提出了一种动态补偿测风激光雷达系统及其测风方法。
技术方案:
本发明首先公开了一种动态补偿测风激光雷达系统的测风方法,它包括以下步骤:
S1、多光束激光器产生的光信号以固定频率在多束光之间周期切换;
S2、光信号经大气气溶胶散射后,由光学天线接收并与种子光信号进行拍频;
S3、拍频信号进行平衡探测、A/D转换,传至信号处理器,获得信号功率谱;同时,运动传感器实时输出雷达的运动和姿态数据;
将单个光束周期发出的光脉冲分成n段进行累积,在每段累积中加入运动传感器采集的实时运动和姿态数据,通过对多个周期脉冲信号功率谱密度进行累积,从而提高信噪比;
S4、信号功率谱、雷达的实时运动和姿态数据打包发送给数据处理器,获得光束径向风速;
S5、结合上一周期光束径向风速反演得出雷达上方的风速和风向。
优选的,S3中,通过对A/D采样信号计算,以获得脉冲信号功率谱。
优选的,S3中,根据雷达的姿态和高度变化,实时调整A/D转换器的采样间隔时间:
Figure PCTCN2021115237-appb-000001
式中,t′为变化后的采样间隔时间,
Figure PCTCN2021115237-appb-000002
为变化后的光束在惯性坐标轴的向量,c为真空中光速;L′为变化后的光束至高度层的单程距离,H为变化前雷达至高度层的垂线距离,ΔH为雷达的高度变化。
优选的,S3中,雷达单个光束周期的脉冲分为n段:
Figure PCTCN2021115237-appb-000003
t为单光束驻留时间,激光器重频为FkHz,M为脉冲累积次数。
本发明还公开了一种动态补偿测风激光雷达系统,它包括:
-激光器,用于发射多光束光信号;光学天线,用于接收经大气气溶胶散射后的光信号并与种子光信号进行拍频;
-A/D转换器,对拍频信号进行采样,进行平衡探测、A/D转换,并传给信号处理器;
-信号处理器,包括功率谱计算模块、运动传感器和脉冲累积模块:
-功率谱计算模块获得信号功率谱;
-运动传感器实时输出雷达的运动和姿态数据;
-脉冲累积模块将单个光束周期发出的光脉冲分成n段进行累积,在每段累积中加入运动传感器采集的实时运动和姿态数据,通过对多个周期脉冲信号功率谱密度进行累积,从而提高信噪比;
-数据处理器,根据信号功率谱、雷达的运动和姿态数据进行数据处理,获得光束径向风速;结合上一周期光束径向风速反演得出雷达上方的风速和风向。
优选的,功率谱计算模块通过对A/D采样信号计算,以获得脉冲信号功率谱。
优选的,信号处理器还包括高度补偿系统,高度补偿系统根据雷达的姿态和高度变化,实时调整A/D转换器的采样间隔时间:
Figure PCTCN2021115237-appb-000004
式中,t′为变化后的采样间隔时间,
Figure PCTCN2021115237-appb-000005
为变化后的光束在惯性坐标轴的向量,c为真空中光速;L′为变化后的光束至高度层的单程距离,H为变化前雷达至高度层的垂线距离,ΔH为雷达的高度变化;所述雷达的姿态和高度变化自运动传感器获得。
优选的,雷达单个光束周期的脉冲分为n段:
Figure PCTCN2021115237-appb-000006
t为单光束驻留时间,激光器重频为FkHz,M为脉冲累积次数。
本发明的有益效果
本发明采用对单光束驻留时间内的光脉冲进行分段累加并叠加姿态的方式,可以大大提高姿态补偿频率,并做到姿态补偿频率可调。解决了背景技术中“在复杂的动态环境,例如浮标、车载、机载等,雷达的姿态变化频率往往大于1Hz,1Hz的姿态补偿频率明显不能满足测风需求”的问题。
本发明根据采集的姿态信息,实时计算,并反馈AD实时调整采集时间,保证雷达始终测量的是目标高度层的风场信息。解决了背景技术中“当雷达姿态变化时,测量的高度层也会随之发生变化”的问题。
附图说明
图1为本发明的雷达系统原理图
图2为本发明的分段姿态和运动补偿时序图
图3为本发明的高度补偿系统的原理图
具体实施方式
下面结合实施例对本发明作进一步说明,但本发明的保护范围不限于此:
结合图1,本发明公开了一种动态补偿测风激光雷达系统,它包括:
-激光器,用于发射多光束光信号;光学天线,用于接收经大气气溶胶散射后的光信号并与种子光信号进行拍频;
-A/D转换器,对拍频信号进行采样,进行平衡探测、A/D转换,并传给信号处理器;
-信号处理器,包括功率谱计算模块、运动传感器和脉冲累积模块:
-功率谱计算模块获得信号功率谱;
-运动传感器实时输出雷达的运动和姿态数据,包括x轴、y轴、z轴的角度、g值和角速度等;
-脉冲累积模块将单个光束周期发出的光脉冲分成n段进行累积,在每段累积中加入运动传感器采集的实时运动和姿态数据,通过对多个周期脉冲信号功率谱密度进行累积,从而提高信噪比;
-数据处理器,根据信号功率谱、雷达的运动和姿态数据进行数据处理,获得光束径向风速;结合上一周期光束径向风速反演得出雷达上方的风速和风向。
本申请中,“根据信号功率谱、雷达的运动和姿态数据进行数据处理,获得光束径向风速”;“基于光束径向风速反演得出雷达上方的风速和风向”均为现有技术,具体可参照竹孝鹏论文《相干多普勒测风激光雷达关键技术研究》。本申请的创新点在于:脉冲累积模块将单光束脉冲分段累积提高姿态补偿频率。
由于雷达选用的是高重频激光器,重频可以达到几十kHz。假设激光器重频为FkHz,光束1、光束2的单光束驻留时间为t秒,则单个光束周期发出的光脉冲数为1000*F*t个。
结合图2所示,我们可以针对这1000Ft个脉冲分成n段进行累积,在每段累积中加入运动传感器采集的实时运动和姿态数据。考虑到满足测风要求,需要保证信噪比CNR>Tdb,根据这个可以确认一个最小脉冲累积次数M,则雷达单个光束周期的脉冲可以最大分为:
Figure PCTCN2021115237-appb-000007
t为单光束驻留时间,激光器重频为FkHz,M为脉冲累积次数。
则雷达的最大姿态补偿频率可以达到
Figure PCTCN2021115237-appb-000008
根据实际情况,我们可以任意选择不小于M的脉冲累积次数来合理调整姿态补偿频率。同时还可以通过提高激光器的重频,进一步提高最大姿态补偿频率。
同时,为了解决背景技术中“当雷达姿态变化时,测量的高度层也会随之发生变化”的问题。本申请的信号处理器还包括高度补偿系统,通过雷达的姿态和高度变化,实时调整A/D的采样间隔时间。
结合图3所示,当雷达处于初始姿态时,光束在惯性坐标轴(X,Y,Z)的单位向量为:
Figure PCTCN2021115237-appb-000009
则A/D的采样间隔时间为
Figure PCTCN2021115237-appb-000010
其中c为真空中光速,H为变化前雷达至高度层的垂线距离,
Figure PCTCN2021115237-appb-000011
为光束在惯性坐标轴的向量。
当雷达实时姿态变化时,雷达坐标轴(X’,Y’,Z’)和惯性坐标轴,三个轴的夹角分别变为Δα、Δβ、Δγ(旋转角度正方向为沿旋转轴负向看顺时针为正,逆时针为负)。则光束在惯性坐标轴的向量变为:
Figure PCTCN2021115237-appb-000012
其中:
Figure PCTCN2021115237-appb-000013
Figure PCTCN2021115237-appb-000014
Figure PCTCN2021115237-appb-000015
则A/D的采样间隔时间变为:
Figure PCTCN2021115237-appb-000016
式中,t′为变化后的采样间隔时间,
Figure PCTCN2021115237-appb-000017
为变化后的光束在惯性坐标轴的向量,c为真空中光速;L′为变化后的光束至高度层的单程距离,H为变化前雷达至高度层的垂线距离,ΔH为雷达的高度变化;所述雷达的姿态和高度变化自运动传感器获得。
该方案通过实时调整采集间隔时间,确保雷达测量的就是设置高度层的风速风向数据,不会因为高度误差影响测风精度。
本文中所描述的具体实施例仅仅是对本发明精神做举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (6)

  1. 一种动态补偿测风激光雷达系统的测风方法,其特征在于它包括以下步骤:
    S1、多光束激光器产生的光信号以固定频率在多束光之间周期切换;
    S2、光信号经大气气溶胶散射后,由光学天线接收并与种子光信号进行拍频;
    S3、拍频信号进行平衡探测、A/D转换,传至信号处理器,获得信号功率谱;同时,运动传感器实时输出雷达的运动和姿态数据;
    将单个光束周期发出的光脉冲分成n段进行累积,在每段累积中加入运动传感器采集的实时运动和姿态数据,通过对多个周期脉冲信号功率谱密度进行累积,从而提高信噪比;
    根据雷达的姿态和高度变化,实时调整A/D转换器的采样间隔时间:
    Figure PCTCN2021115237-appb-100001
    式中,t′为变化后的采样间隔时间,
    Figure PCTCN2021115237-appb-100002
    为变化后的光束在惯性坐标轴的向量,c为真空中光速;L′为变化后的光束至高度层的单程距离,H为变化前雷达至高度层的垂线距离,ΔH为雷达的高度变化;
    S4、信号功率谱、雷达的实时运动和姿态数据打包发送给数据处理器,获得光束径向风速;
    S5、结合上一周期光束径向风速反演得出雷达上方的风速和风向。
  2. 根据权利要求1所述的方法,其特征在于S3中,通过对A/D采样信号计算,以获得脉冲信号功率谱。
  3. 根据权利要求1所述的方法,其特征在于S3中,雷达单个光束周期的脉冲分为n段:
    Figure PCTCN2021115237-appb-100003
    t为单光束驻留时间,激光器重频为FkHz,M为脉冲累积次数。
  4. 一种动态补偿测风激光雷达系统,其特征在于它包括:
    -激光器,用于发射多光束光信号;光学天线,用于接收经大气气溶胶散射后的光信号并与种子光信号进行拍频;
    -A/D转换器,对拍频信号进行采样,进行平衡探测、A/D转换,并传给信号处理器;
    -信号处理器,包括功率谱计算模块、运动传感器、脉冲累积模块和高度补偿系统:
    -功率谱计算模块获得信号功率谱;
    -运动传感器实时输出雷达的运动和姿态数据;
    -脉冲累积模块将单个光束周期发出的光脉冲分成n段进行累积,在每段累积中加入运动传感器采集的实时运动和姿态数据,通过对多个周期脉冲信号功率谱密度进行累积,从而提高信噪比;
    -高度补偿系统根据雷达的姿态和高度变化,实时调整A/D转换器的采样间隔时间:
    Figure PCTCN2021115237-appb-100004
    式中,t′为变化后的采样间隔时间,
    Figure PCTCN2021115237-appb-100005
    为变化后的光束在惯性坐标轴的向量,c为真空中光速;L′为变化后的光束至高度层的单程距离,H为变化前雷达至高度层的垂线距离,ΔH为雷达的高度变化;所述雷达的姿态和高度变化自运动传感器获得;
    -数据处理器,根据信号功率谱、雷达的运动和姿态数据进行数据处理,获得光束径向风速;结合上一周期光束径向风速反演得出雷达上方的风速和风向。
  5. 根据权利要求4所述的系统,其特征在于功率谱计算模块通过对A/D采样信号计算,以获得脉冲信号功率谱。
  6. 根据权利要求4所述的系统,其特征在于雷达单个光束周期的脉冲分为n段:
    Figure PCTCN2021115237-appb-100006
    t为单光束驻留时间,激光器重频为FkHz,M为脉冲累积次数。
PCT/CN2021/115237 2020-10-14 2021-08-30 动态补偿测风激光雷达系统及其测风方法 WO2022078084A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237012186A KR20230121030A (ko) 2020-10-14 2021-08-30 동적 보상 바람 측정 레이저 레이더 시스템 및 그 바람 측정 방법
EP21879130.9A EP4215945A1 (en) 2020-10-14 2021-08-30 Dynamic compensation wind measurement laser radar system and wind measurement method therefor
JP2023518363A JP7403028B2 (ja) 2020-10-14 2021-08-30 動的補償風計測ライダシステムおよびその風計測方法
US18/299,583 US11821991B2 (en) 2020-10-14 2023-04-12 Dynamic compensation wind measurement lidar system and wind measurement method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011093266.7A CN111965667B (zh) 2020-10-14 2020-10-14 动态补偿测风激光雷达系统及其测风方法
CN202011093266.7 2020-10-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/299,583 Continuation-In-Part US11821991B2 (en) 2020-10-14 2023-04-12 Dynamic compensation wind measurement lidar system and wind measurement method thereof

Publications (1)

Publication Number Publication Date
WO2022078084A1 true WO2022078084A1 (zh) 2022-04-21

Family

ID=73387114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115237 WO2022078084A1 (zh) 2020-10-14 2021-08-30 动态补偿测风激光雷达系统及其测风方法

Country Status (6)

Country Link
US (1) US11821991B2 (zh)
EP (1) EP4215945A1 (zh)
JP (1) JP7403028B2 (zh)
KR (1) KR20230121030A (zh)
CN (1) CN111965667B (zh)
WO (1) WO2022078084A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115436906A (zh) * 2022-11-07 2022-12-06 成都远望探测技术有限公司 一种提升雷达探测目标位置及风场反演信息准确性的方法
CN115980788A (zh) * 2023-03-17 2023-04-18 安徽科创中光科技股份有限公司 一种相干测风激光雷达的风场处理方法
CN116163882A (zh) * 2023-04-24 2023-05-26 西安中科原子精密制造科技有限公司 一种基于三轴姿态传感器的风机净空距离调整方法及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111965667B (zh) 2020-10-14 2020-12-29 南京牧镭激光科技有限公司 动态补偿测风激光雷达系统及其测风方法
CN113671532B (zh) * 2021-08-10 2023-05-30 南京牧镭激光科技股份有限公司 一种自适应多通道测风激光雷达系统
CN113671509B (zh) * 2021-08-16 2023-07-11 南京牧镭激光科技股份有限公司 一种大能量多通道激光雷达光束切换方法
CN117420570B (zh) * 2023-12-19 2024-03-29 南京牧镭激光科技股份有限公司 一种激光雷达姿态补偿测风方法、设备以及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103605136A (zh) * 2013-12-09 2014-02-26 山东省科学院海洋仪器仪表研究所 海洋浮标平台激光雷达三维风场剖面探测系统及探测方法
CN103616696A (zh) * 2013-11-27 2014-03-05 中国电子科技集团公司第三十八研究所 一种激光成像雷达装置及其测距的方法
JP2014066548A (ja) * 2012-09-25 2014-04-17 Mitsubishi Electric Corp レーザレーダ装置
CN107271725A (zh) * 2017-07-06 2017-10-20 北京怡孚和融科技有限公司 激光测风雷达走航测量速度校准的方法
CN107807367A (zh) * 2017-11-02 2018-03-16 南京牧镭激光科技有限公司 一种相干测风激光雷达装置
CN111965667A (zh) * 2020-10-14 2020-11-20 南京牧镭激光科技有限公司 动态补偿测风激光雷达系统及其测风方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE447724T1 (de) * 2003-11-24 2009-11-15 Soreq Nuclear Res Ct Feuer-regelsystem mit einer lidar-einheit (laseridentifikation, detektion und entfernungsmessung)
JP7097052B2 (ja) * 2018-04-04 2022-07-07 国立研究開発法人宇宙航空研究開発機構 飛行機の突風応答軽減システム及び飛行機の突風応答軽減方法
CN110988905B (zh) * 2019-11-29 2021-08-20 中国华能集团清洁能源技术研究院有限公司 激光雷达测风距离门的自动调节方法
CN111766397B (zh) * 2020-06-19 2022-06-10 北京航空航天大学合肥创新研究院 一种基于惯性/卫星/大气组合的气象风测量方法
CN113671532B (zh) * 2021-08-10 2023-05-30 南京牧镭激光科技股份有限公司 一种自适应多通道测风激光雷达系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014066548A (ja) * 2012-09-25 2014-04-17 Mitsubishi Electric Corp レーザレーダ装置
CN103616696A (zh) * 2013-11-27 2014-03-05 中国电子科技集团公司第三十八研究所 一种激光成像雷达装置及其测距的方法
CN103605136A (zh) * 2013-12-09 2014-02-26 山东省科学院海洋仪器仪表研究所 海洋浮标平台激光雷达三维风场剖面探测系统及探测方法
CN107271725A (zh) * 2017-07-06 2017-10-20 北京怡孚和融科技有限公司 激光测风雷达走航测量速度校准的方法
CN107807367A (zh) * 2017-11-02 2018-03-16 南京牧镭激光科技有限公司 一种相干测风激光雷达装置
CN111965667A (zh) * 2020-10-14 2020-11-20 南京牧镭激光科技有限公司 动态补偿测风激光雷达系统及其测风方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BU, ZHICHAO: "Study on the System Design and Data Processing Algorithm for Coherent Doppler Wind Lidar", INFORMATION & TECHNOLOGY, CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, no. 4, 1 June 2014 (2014-06-01), pages 1 - 141, XP055920603, ISSN: 1674-022X *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115436906A (zh) * 2022-11-07 2022-12-06 成都远望探测技术有限公司 一种提升雷达探测目标位置及风场反演信息准确性的方法
CN115980788A (zh) * 2023-03-17 2023-04-18 安徽科创中光科技股份有限公司 一种相干测风激光雷达的风场处理方法
CN116163882A (zh) * 2023-04-24 2023-05-26 西安中科原子精密制造科技有限公司 一种基于三轴姿态传感器的风机净空距离调整方法及系统

Also Published As

Publication number Publication date
US20230251385A1 (en) 2023-08-10
CN111965667B (zh) 2020-12-29
KR20230121030A (ko) 2023-08-17
JP7403028B2 (ja) 2023-12-21
CN111965667A (zh) 2020-11-20
JP2023538457A (ja) 2023-09-07
EP4215945A1 (en) 2023-07-26
US11821991B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2022078084A1 (zh) 动态补偿测风激光雷达系统及其测风方法
US9891306B2 (en) Geolocating a remote emitter
US5570094A (en) Three dimensional tracking by array doppler radar
KR20160098985A (ko) 간섭계 레이더 고도계를 이용한 속도 및 자세 추정
US8060338B2 (en) Estimation of global position of a sensor node
JP2015502540A (ja) 動き安定lidarおよび風の速さの測定方法
US6806828B1 (en) Passive range and angle measurement system and method
CA2949209C (en) Direct geolocation from tdoa, fdoa, and agl
CN110244308A (zh) 一种适用于无人机测高定姿的激光传感器及其工作方法
JP2005525561A (ja) 地勢相関のための方法および装置
Zhai et al. Shipborne wind measurement and motion-induced error correction of a coherent Doppler lidar over the Yellow Sea in 2014
CN107271725A (zh) 激光测风雷达走航测量速度校准的方法
JP3105867B2 (ja) 合成開口レーダシステム及びそれに用いるプラットフォーム位置計測方法並びにその制御プログラムを記録した記録媒体
CN108761420A (zh) 一种基于mems的船用固态导航雷达目标检测的补偿方法
RU2667484C1 (ru) Способ определения траектории движения низколетящих целей
CN116008913A (zh) 基于stm32和小型麦克风阵列的无人机检测定位方法
US4143547A (en) Method and apparatus for remote measurement of variation in wind velocity
JP2003194928A (ja) ターゲットの受動的位置決定方法、特に空対空位置決定方法
Rogers et al. Accurate group velocity estimation for unmanned aerial vehicle-based acoustic atmospheric tomography
JP7193347B2 (ja) リモートセンシング用の方法及びシステム
JPH01229910A (ja) 航法装置
CN112198504B (zh) 一种主被动观测特征交织的融合滤波方法
JP3530940B2 (ja) 気象物速度測定装置及びその方法
CN109959907B (zh) 一种对高度数据进行处理的方法
CN109959928B (zh) 石油管线巡线无人机雷达高度表系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023518363

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021879130

Country of ref document: EP

Effective date: 20230418

NENP Non-entry into the national phase

Ref country code: DE