WO2022078035A1 - 一种兆瓦级塔式光热发电集热器安装方法及安装系统装置 - Google Patents

一种兆瓦级塔式光热发电集热器安装方法及安装系统装置 Download PDF

Info

Publication number
WO2022078035A1
WO2022078035A1 PCT/CN2021/111827 CN2021111827W WO2022078035A1 WO 2022078035 A1 WO2022078035 A1 WO 2022078035A1 CN 2021111827 W CN2021111827 W CN 2021111827W WO 2022078035 A1 WO2022078035 A1 WO 2022078035A1
Authority
WO
WIPO (PCT)
Prior art keywords
collector
tower
sliding
csp
hydraulic
Prior art date
Application number
PCT/CN2021/111827
Other languages
English (en)
French (fr)
Inventor
钟成春
钟建民
袁大鹏
谭杰
黄桂宝
何祥平
Original Assignee
中国能源建设集团湖南火电建设有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国能源建设集团湖南火电建设有限公司 filed Critical 中国能源建设集团湖南火电建设有限公司
Publication of WO2022078035A1 publication Critical patent/WO2022078035A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F3/00Devices, e.g. jacks, adapted for uninterrupted lifting of loads
    • B66F3/46Combinations of several jacks with means for interrelating lifting or lowering movements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F17/00Safety devices, e.g. for limiting or indicating lifting force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F3/00Devices, e.g. jacks, adapted for uninterrupted lifting of loads
    • B66F3/24Devices, e.g. jacks, adapted for uninterrupted lifting of loads fluid-pressure operated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F2700/00Lifting apparatus
    • B66F2700/05Hydraulic jacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the invention relates to a hoisting method and a hoisting device for a tower-type solar thermal power generation system, in particular to a hoisting safety control method and device for a megawatt-level tower-type solar-thermal power generation collector;
  • the safety control method and device for hoisting a thermal power generation collector can effectively prevent failure of a megawatt tower type solar thermal power collector during the hoisting process, and belong to the technical field of hoisting operations for heavy objects.
  • Solar thermal power generation refers to the use of large-scale arrays of parabolic or dish-shaped mirrors to collect solar thermal energy, to provide steam through heat exchange devices, and to combine the technology of traditional steam turbine generators to achieve the purpose of generating electricity.
  • the use of solar thermal power generation technology avoids the expensive silicon photoelectric conversion process, which can greatly reduce the cost of solar power generation.
  • this form of solar energy utilization has an incomparable advantage over other forms of solar energy conversion, that is, the water heated by solar energy can be stored in a huge container, and it can still drive steam turbines to generate electricity a few hours after the sun goes down. .
  • solar thermal power generation is mainly divided into four types: tower type, trough type, dish type and linear Fresnel type.
  • tower solar thermal power generation has better development prospects due to its incomparable comprehensive advantages such as trough, butterfly and linear Fresnel in terms of scale, photoelectric conversion efficiency, and investment cost.
  • countries are paying more and more attention to the development and research of tower CSP technology.
  • the so-called tower solar thermal power generation is mainly composed of multiple heliostats to form a heliostat field, and the solar energy is reflected and concentrated on the high-temperature receiver (also called a collector) on the top of the tower in the middle of the mirror field. It is passed to the working medium to heat up, passes through the heat accumulator, and then enters the heat engine to drive the generator to generate electricity.
  • the tower CSP system is composed of five subsystems: concentrating photon system, heat collecting subsystem, power generation subsystem, heat storage subsystem and auxiliary energy subsystem. Among them, the condensing photon system and the heat collecting subsystem are the core technologies of its composition.
  • a key point in the construction and installation of a tower CSP station is the installation of the collector.
  • the collectors With the increasing power of solar thermal power generation, the collectors are also getting larger and larger, and the collectors are generally hoisted to the heat absorption tower as a whole after being assembled on the ground, which can not only shorten the total construction period of the project, but also The installation quality can be guaranteed, but as the capacity of the solar thermal unit increases, the construction difficulty of hoisting becomes more and more difficult. Therefore, how to safely install the collector to the top of the tower has become one of the key issues of tower solar thermal power generation. .
  • the patent number is CN201920324645.9, and the utility model patent titled "A Construction Device for Building Electrical Equipment” discloses a construction device for building electrical equipment, including a gantry frame, and the interior of the gantry frame is horizontally provided with a fixed plate There is a clamping mechanism under the fixed plate, first connecting rods are fixed on both sides of the fixed plate, and the opposite inner side walls of the gantry frame are vertically opened with a first strip hole, and the two first strip holes are Both ends of the two one-way screws are rotatably connected to the upper and lower sides of the corresponding first bar-shaped groove through the first rolling bearing, and the upper ends are all penetrated to the top of the gantry frame and are fixed with
  • first moving blocks are slidably connected inside the two first strip grooves, and the upper sides of the two first moving blocks are threadedly connected to the rod walls of the two one-way screws through the first threaded holes.
  • the patent number is CN202010365560.2 and the invention patent is entitled "A hoisting and positioning method for a trough solar collector", which discloses a hoisting and positioning method for a trough solar collector, including: S1, before lifting Two trough solar collectors; S2, lifting the remaining trough solar collectors; S3, adjusting and connecting the trough solar collectors.
  • S1 before lifting Two trough solar collectors
  • S2 lifting the remaining trough solar collectors
  • S3, adjusting and connecting the trough solar collectors adjust the orientation of the trough solar collectors by coordinating all the trough solar collectors with the positioning shaft and the positioning hole to locate the center position.
  • the tower ruler suspended on the left and right cantilevers on the left and right sides of the trough solar collector is aligned with the level indicator, it means that the trough solar collector is just facing upwards.
  • the adjacent trough solar thermal collectors can be fixedly connected together after adjusting all the trough solar thermal collectors to face upward
  • the patent number is CN201620778657.5, which is a utility model patent named "Integral hoisting and hoisting device of solar thermal power generation collector module".
  • the technical problem of the large size of the module and the difficulty of hoisting Including a U-shaped front bracket at the central position of the front cross arm, a U-shaped rear bracket at the central position of the rear cross arm, and a torque tube on the collector module arranged on the U-shaped front bracket and the U-shaped rear bracket.
  • a front semicircular hoop is fastened to the front end of the torque tube
  • the front semicircular hoop is connected with the U-shaped front bracket
  • a rear semicircular hoop is fastened to the rear end of the torque tube.
  • the rear semi-circular hoop is connected with the U-shaped rear bracket.
  • the purpose of the present invention is to propose a new installation method and installation system device of a new megawatt-level tower type CSP collector installation method and an installation system device in view of the deficiencies in the existing installation methods of the existing megawatt-level tower type CSP collectors.
  • the installation method and installation system of a megawatt-level tower-type solar thermal power collector Effectively shorten the construction period and reduce a lot of high-altitude operations, so that safe construction is greatly guaranteed.
  • the present invention provides a method for installing a megawatt tower type solar thermal power collector.
  • a heat absorption tower is established on the ground where the tower type solar thermal power collector is installed, and according to the tower type Depending on the size of the CSP collector, an internal space is reserved inside the heat absorption tower for the tower CSP collector to be hoisted; then the tower CSP collector is assembled on the ground as a whole; then assembled
  • the tower-type solar thermal power collector, as a whole is slid from the assembly site to the center of the heat-absorbing tower through a sliding channel through a sliding device; finally, a gantry and a hydraulic crane are used on the top of the heat-absorbing tower to lift the megawatt tower.
  • the whole type of solar thermal power collector is hoisted from the bottom of the heat absorption tower to the top of the heat absorption tower, and is installed as a whole using a support frame.
  • the tower type CSP collector assembly area is set in the safe area around the heat absorption tower, and the tower type CSP collector is installed in the safe area around the heat absorption tower.
  • the collector support ring is made in the assembly area of Then, on the collector support ring, according to the assembly requirements of the tower CSP collector, carry out the ground assembly of the tower CSP collector, and install all the components of the tower CSP collector.
  • the ground assembly of the tower type CSP collector is to combine the various components of the tower type CSP collector on the support ring. After the assembly is completed, the ground inspection and acceptance are qualified, so that the tower type CSP collector is qualified.
  • the device meets the requirements of skidding and lifting.
  • the construction of the sliding channel on the ground from the assembly site to the inner center of the heat absorption tower is to set a main channel from the assembly area of the tower CSP collector to the inner center of the heat absorption tower, as a sliding movement.
  • a sliding track is laid on the sliding moving channel; 4 sets of sliding devices are installed on the sliding track, and the collector support ring is installed on the sliding device; when the components of the collector are assembled on the support ring , through the sliding device, the support ring installed with the tower-type solar thermal power collector is completely slid to the inner center of the heat absorbing tower.
  • the overall sliding of the support ring with the tower-type solar thermal power generation collector installed to the inner center of the heat absorbing tower through the sliding device is synchronously divided by a plurality of sliding devices arranged under the collector support ring.
  • the sliding device includes a sliding shoe with a floating plate, and the entire sliding system has a total of 4 A set of sliding devices, each sliding device is provided with two sliding shoes, the two sliding shoes support a floating device, the floating device and the sliding shoes are floatingly connected to form a floating sliding device that can adjust the horizontal plane;
  • the bottom of the shoe is made of stainless steel, and the stainless steel part of the sliding shoe is installed in the sliding track, and there are PTFE or high-density polyethylene pads on the sliding track to form a sliding shoe with low friction resistance; floating device
  • the main oil top is installed on it.
  • the main oil top flange is facing the bottom of the support ring beam, and through the floating device, the upper flange of the main oil top is close to the bottom of the collector support ring beam.
  • Surface flange after alignment, the upper flange of the main oil top and the lower surface flange of the collector support ring beam are fastened together by fasteners; the back of the slip shoe is connected with the hydraulic crawler, and the hydraulic crawler pushes the sliding
  • the device slides; when sliding, the support ring of the collector is first jacked up by the main oil, so that the legs of the support ring of the collector leave the ground, and then the sliding device is pushed by the hydraulic crawler to slide;
  • the distance is 500-700mm.
  • the computer control system is used to monitor whether the stroke and load of each sliding device are consistent.
  • the load of the sliding device in one stroke should be basically the same, and the deviation should not be greater than 5%;
  • the load and stroke of the pushing device are adjusted by the computer control system to ensure that the four sliding devices operate synchronously, and the above operations are repeated until the collector slides to just below the seated position in the tower.
  • the foundation of the assembly area and the sliding movement channel needs to be calculated and designed according to the weight of the tower type CSP collector to meet the bearing capacity of the super-large and overweight components, and the assembly area and the sliding movement channel should be used as the collection area.
  • the whole tower-type solar thermal power collector is hoisted from the bottom of the heat-absorbing tower to the top of the heat-absorbing tower by using a gantry and a hydraulic crane from the top of the heat-absorbing tower, which is to surround the top of the heat-absorbing tower at the top of the heat-absorbing tower.
  • a number of gantry are arranged around the circumference, and hydraulic cranes are installed on the gantry.
  • Each set of hydraulic cranes lowers the steel strands from the tower, and the steel strands of each set of hydraulic cranes are connected to the steel beams at the bottom of the collector with anchors and pins respectively.
  • the lifting lugs are operated synchronously by hydraulic cranes on multiple gantry arranged in a circle, and the whole tower-type CSP collector is hoisted from the bottom of the heat-absorbing tower to the top of the heat-absorbing tower at the top of the heat-absorbing tower, and then the support frame is used to Secure in place.
  • the synchronous operation of the hydraulic cranes is that multiple hydraulic cranes lift or move the structural heavy objects through the increments of the hydraulic steel wire jacks, and each increment is equivalent to the stroke of the hydraulic steel wire jacks; the described Multiple gantry frames are connected as a whole by I-beams and fasteners at the top of the heat absorption tower to prevent the gantry from swinging under the influence of wind during the hoisting process; the hydraulic steel strand jack is extended or retracted in sequence through the jack piston. Carry out lifting or pulling operation to realize the overall lifting of the tower-type solar thermal power collector; the hydraulic steel wire jack is equipped with a wedge-shaped clamping mechanism, which automatically locks the steel strand. When the piston extends, the steel strand passes through the jack, Then lock it in the new position when the piston is retracted, reset.
  • the lower end of the hydraulic steel strand is connected to the lifting lug, and the lifting lug and the tower-type solar thermal power collector are connected through the support beam at the bottom of the collector; on the one hand, the support beam at the bottom of the collector is connected on the The bottom of the tower type CSP collector supports the tower type CSP collector; on the other hand, a support beam at the bottom of the collector protrudes upward from the outer end of the support beam at the bottom of the collector.
  • the hoisting block is connected as a whole, and the hoisting block has a pin matching the lifting lug; the lifting lug falls into the hoisting block during hoisting, and is inserted into the hoisting lug through the bolt on the hoisting block to form a connection with the hoisting lug; in order to avoid the The collision causes damage to the collector equipment.
  • An anti-collision block is arranged at the outer end of the support beam at the bottom of the collector. The anti-collision block is fixed on the outer end of the support beam at the bottom of the collector with bolts.
  • the anti-collision block is a Prevent the collector from colliding with the inner wall of the concrete tower body; the anti-collision block is composed of connecting steel plates and rubber blocks, and is fixed on the outer end of the support beam at the bottom of the collector with bolts; the overall installation positioning is supported at the bottom of the collector The bottom of the beam is connected with a fixed anchor. After the tower type solar thermal power collector is hoisted to the top, the fixed anchor is moved to the groove of the cylinder wall set at the top of the heat absorption tower by a mobile device, and is locked and fixed.
  • a megawatt tower type solar thermal power generation collector installation system device comprising a tower type solar thermal power generation collector sliding system and a tower type solar thermal power generation collector hoisting system; wherein, the tower type solar thermal power generation collector
  • the collector sliding system includes a collector support ring, a sliding device, and a sliding track; the sliding device is installed on the sliding track, and the sliding track is installed from the collector support ring to the tower type CSP collector.
  • the assembly area of the solar thermal power generation collector extends into the center of the heat absorption tower, and the support ring of the collector is placed on the sliding device when sliding, and multiple sliding devices are synchronously slipped into the center of the heat absorption tower;
  • tower type The solar thermal power collector hoisting system includes a heat absorption tower, multiple gantry, hydraulic crane and lifting lugs; the gantry is installed on the top of the heat absorption tower, the hydraulic crane is installed on the gantry, and the hydraulic crane is equipped with a hydraulic steel wire jack , the hydraulic steel wire jack and the lifting lug are connected by steel wire;
  • the tower type solar thermal power collector hoisting system is formed by the combination of multiple gantries installed with hydraulic cranes, and the tower type solar thermal power collector lifting system is formed by the hydraulic steel wire jack of the hydraulic crane
  • the solar thermal power collector is hoisted to the top of the heat absorption tower as a whole.
  • the sliding device includes a sliding shoe provided with a floating plate.
  • each sliding device is provided with two sliding shoes, and the two sliding shoes support one Floating device, the floating device and the sliding shoe are floatingly connected to form a floating sliding device with adjustable horizontal plane;
  • the bottom of the sliding shoe is made of stainless steel, and the stainless steel part of the sliding shoe is installed in the sliding track and on the sliding track
  • the floating device is equipped with a main oil cap, and by adjusting the position of the slip device, the main oil cap flange faces the support ring beam and through the floating device, the upper flange of the main oil top is close to the lower surface flange of the collector support ring beam.
  • the upper flange of the main oil top and the collector support ring beam are connected by fastener
  • the surface flanges are fastened together; the back of the slip shoe is connected with the hydraulic crawler, and the slip device is pushed by the hydraulic crawler to slide.
  • the hoisting system for tower-type solar thermal power generation collectors formed by the combination of a plurality of gantry mounted with hydraulic cranes includes a plurality of gantry annularly arranged around the top of the heat-absorbing tower, and the plurality of gantry The top of the top is connected as a whole by I-beams and fasteners to prevent the gantry from swinging under the influence of wind during the hoisting process; a hydraulic crane is set on each gantry, and the hydraulic steel strand passes through the hydraulic crane; the hydraulic steel Strand jacks carry out lifting or pulling operations by extending or retracting the jack pistons in sequence; hydraulic steel wire jacks are provided with a wedge-shaped clamping mechanism, which automatically locks the strands, and when the piston extends, the strands pass through The jack is then locked in a new position when the piston is retracted and reset; the lower end of the hydraulic steel strand is connected to the lifting lug, and the lifting lug and the tower CSP collector are connected through the support beam at
  • a fixing anchor protrudes upward from the outer end of the fixing anchor, and is inserted into the lifting lug through the matching pin of the fixing anchor and the lifting lug, and is connected with the lifting lug; in order to avoid damage to the collector equipment due to collision during hoisting, it is fixed at the bottom of the collector.
  • An anti-collision block is set at the rear end of the anchor, and the anti-collision block is fixed at the rear end of the fixed anchor with bolts. This anti-collision block prevents the collector from colliding with the inner wall of the concrete tower body; the anti-collision block is composed of connecting steel plates and rubber blocks , bolted to the support beam at the bottom of the collector.
  • the tower type CSP collector is installed on the ground as a whole, then slides to the inner center of the heat absorption tower, and the tower type CSP collector is hoisted as a whole by using the inner space of the center of the heat absorption tower, which can save energy
  • the installation time can also be improved, and the installation quality can be improved; the main advantages are as follows:
  • the present invention uses multiple sets of sliding devices to synchronously slide the tower-type solar thermal power generation collector into the heat absorption tower as a whole, and is hydraulically hoisted by the gantry in the tower to solve the problem of the 100MW tower-type solar thermal collector. After the combination, the weight and height of the components are abnormally high, and the overall sliding and hoisting are difficult;
  • the floating sliding device is used to support the sliding support ring beam of the collector in the overall sliding, and the foundation needs to be redesigned and treated before the sliding, which provides the prerequisite for the smooth sliding of the super large components;
  • the slippage method is optimized, and the command is unified and coordinated, which solves the risk of the component being deflected or even overturned due to external force and improper operation during the slippage process;
  • the present invention proposes a hoisting operation standard table, which provides experience for reference for subsequent similar hoisting.
  • FIG. 2 is a schematic diagram of a support ring beam of a sliding part according to an embodiment of the present invention
  • FIG. 3 is an overall structural diagram of a sliding device of a sliding system according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a sliding shoe of the sliding device of the present embodiment.
  • FIG. 5 is a schematic structural diagram of the floating device of the sliding device according to the present embodiment.
  • FIG. 6 is a schematic structural diagram of a hoisting system according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a hoisting gantry system according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a fixed anchor and an anti-collision device according to an embodiment of the present invention.
  • a 100MW megawatt tower type CSP collector installation system device the entire installation system device 1 consists of two parts; one part is the overall sliding part 2 of the tower type CSP collector , and the other part is the hoisting part 3 of the tower type CSP collector.
  • the whole tower CSP collector installation includes collector sliding track installation, sliding device installation and debugging, collector sliding, collector hoisting temporary platform installation, collector hoisting gantry, hydraulic lifting device , Steel strand installation and debugging, collector hoisting, collector hoisting temporary measures to remove.
  • the overall installation method is to first build a heat absorption tower on the ground where the tower CSP collector is installed, and according to the size of the tower CSP collector, set aside the heat absorption tower for tower CSP power generation.
  • the support frame is installed as a whole.
  • the sliding part 2 of the tower-type solar thermal power collector includes a collector supporting ring beam 4, a sliding device 5, and a sliding track 6; the sliding device 5 is installed on the sliding track 6, and the sliding track 6 extends from The tower CSP collector assembly area where the tower CSP collector is installed extends to the center of the heat absorbing tower, and the collector support ring beam 4 is placed on the sliding device 5 when sliding, and there are four The sliding device synchronously slides the collector support ring beam installed with the tower CSP collector 7 into the center of the heat absorption tower;
  • the collector supporting ring beam 4 is formed by a combination of 12 outriggers 401 and a ring-shaped steel structure ring beam 402 formed by a combination of a multi-segment module, as shown in FIG. 2;
  • the modules 403 are assembled together by fasteners to form an annular steel beam;
  • a structural tie rod 404 is arranged in the annular steel beam, and the overall rigidity of the annular beam is enhanced by the structural tie rod.
  • the described sliding device 5, see Figures 3 and 4 includes a sliding shoe 501 provided with a floating plate, the entire sliding system has 4 sets of sliding devices, and each sliding device is provided with two sliding shoes, Two sliding shoes support a floating device 502.
  • the floating device 502 and the sliding shoe 501 are floatingly connected to form a floating sliding device that can adjust the horizontal plane;
  • the bottom of the sliding shoe 501 is a sliding block 503 made of stainless steel, see the attached drawings 4,;
  • the sliding block 503 is installed in the sliding track 6, and a polytetrafluoroethylene or high-density polyethylene pad is arranged on the sliding track 6 to form a sliding shoe structure with small frictional resistance;
  • the floating device 502 is equipped with The main oil cap 504, a floating block 506 is arranged under the floating device 502, the floating block 506 is attached to the floating spherical surface 507 on the upper surface of the sliding shoe 5, and an elastic damping material 508 is arranged around it, see FIG.
  • the floating device 502 can perform floating adjustment within a range of 360 degrees; by adjusting the position of the sliding device, the flange of the main oil cap 504 is facing the bottom of the support ring beam, and through the floating of the floating device 502, the main oil cap 504 The upper flange is close to the lower surface flange of the collector support ring beam. After alignment, the upper flange of the main oil top and the lower surface flange of the collector support ring beam are fastened together by fasteners; behind the sliding shoe 501 It is connected 505 with the hydraulic crawler, and the sliding device is pushed by the hydraulic crawler 505 to perform sliding.
  • the foundation treatment is carried out according to the design requirements.
  • the foundation cushion concrete is C10, the rest is C30, and the steel bar is not GRB-400.
  • the concrete foundation is 150mm higher than the original ground, the longitudinal reinforcement of the connecting beam extends into the track beam 600mm, and the track beam extends into the tower body 500mm .
  • the sliding track is laid on the tower-type solar thermal power generation collector assembly area and the sliding moving channel foundation, and then 4 Set of skids, each set of skids has 2 skid shoes.
  • the support ring beam is assembled in the assembly area of the tower CSP collector.
  • the support ring beam is composed of 12 outriggers and an annular steel structure.
  • the support ring beam adopts a polygonal steel composite structure; the polygonal combination forms an annular support ring beam.
  • the support ring beam On the support ring beam, according to the manufacturer's technical specifications and the requirements of the installation technical scheme, gradually install all the components of the tower type CSP collector; when the tower type CSP collector is combined, the outriggers of the support ring beam are supported on the ground .
  • Sliding equipment and systems include supporting ring beams, 4 sliding devices, and 1 set of computer control system.
  • Each set of sliding devices includes connecting accessories such as floating device, 2 sliding shoes, and 1 main jack.
  • the bottom of the floating device is floatingly connected with the sliding shoe.
  • the contact part between the bottom of the sliding shoe and the sliding track is made of stainless steel.
  • a propulsion system is arranged behind the bottom of the skid shoe, and the propulsion system and the skid shoe are hingedly connected; the propulsion system is equipped with a power unit, and the power unit provides sufficient pressure and flow to reach the design sliding speed, and each propulsion system is equipped with a brake .
  • Each push-pull unit is equipped with a control box (which contains hydraulic valves, connections, etc.) capable of collecting the following data: master cylinder pressure load, master cylinder stroke, push/pull cylinder pressure (load); push/pull cylinder stroke, Sideshift system. All of this data is sent to a computer system to control and monitor the load, vertical and horizontal displacement, actual center of gravity, propulsion travel, etc. of each skid system unit.
  • the collector sliding track is composed of two parallel slide rails.
  • the number of slide rails for each line is 19, each with a length of 5.4m, and the total length of a single track is 102.9m.
  • Track installation method The track is directly laid on the surface of the concrete foundation by the tower crane. After the alignment and acceptance, each track is fixed on the foundation with four blocks and bolts.
  • the sliding shoe of the sliding device is installed at the bottom of the floating device, and a floating plate is arranged under the floating device.
  • the floating plate is installed on the top of the sliding shoe to form a floating connection, so as to adjust the flatness of the floating device and ensure the
  • the upper flange of the main oil top is close to the flange on the lower surface of the collector ring beam, and the sliding device is adjusted so that the oil top flange faces the beam bottom flange of the support ring beam, and is connected by bolts and finally tightened.
  • the sliding shoe is installed in the sliding track, the bottom of the sliding shoe in contact with the sliding track is made of stainless steel, and PTFE or high-density polyethylene pads are laid on the contact part of the sliding track and the sliding shoe to prevent Reduce friction damping during slippage.
  • the push-pull device is placed under the support ring beam, connected with the slip shoes, the main oil cap set on the floating device can be lifted until it contacts the support ring beam flange to be bolted. After connecting the bolts, jack up the integrated unit composed of the collector.
  • the position of the support ring beam is not necessarily the position described in the construction plan, it is possible that the tail bracket of the support ring beam is not within the range of the center of the tail shoe, so a 300-350mm micro-adjustment trial slip is required;
  • the propulsion system pushes 300-350mm of the support ring beam installed with the tower type CSP collector.
  • the load should be basically the same, and the deviation should not be greater than 5%; every time the sliding of one stroke is completed, the load and stroke of the pushing device are adjusted by the computer control system to ensure that the four sliding devices operate synchronously, and the above operation is repeated until the set The heater slides to just below its seat in the tower.
  • the hoisting part 3 of the tower-type CSP collector is shown in FIG. 6, including a heat absorption tower 8, a plurality of gantry frames 9, a hydraulic crane 10 and a lifting lug 11; the gantry frame is installed on the top of the heat absorption tower, The hydraulic crane is installed on the gantry, and the hydraulic crane is equipped with a hydraulic steel wire jack, and the hydraulic steel wire jack and the lifting lug are connected by a steel wire; a tower type is formed by a combination of multiple gantry frames 9 installed with hydraulic cranes 10
  • the solar thermal power generation collector hoisting system is used to hoist the tower type solar thermal power collector to the top of the heat absorption tower as a whole through the hydraulic steel wire jack of the hydraulic crane.
  • the multiple masts installed with hydraulic cranes are combined to form a tower-type solar thermal power collector hoisting system, including multiple masts 9 annularly arranged around the top of the heat-absorbing tower, and multiple masts 9 are absorbing heat.
  • the top of the top of the tower is connected as a whole by I-beams and fasteners to prevent the gantry from swinging under the influence of wind during the hoisting process;
  • a hydraulic crane 10 is arranged on each gantry, and the hydraulic steel strand passes through the hydraulic crane;
  • the said Hydraulic steel strand jacks carry out lifting or pulling operations by extending or retracting the jack pistons in sequence;
  • the hydraulic steel strand jacks are provided with a wedge-shaped clamping mechanism, which automatically locks the steel strands, and the steel strands are automatically locked when the piston extends.
  • the wire passes through the jack, and then locks it in a new position when the piston is retracted and reset; the lower end of the hydraulic steel strand is connected to the lifting lug 11, and the lifting lug 11 and the tower CSP collector support the beam 12 at the bottom of the collector Connection; the bottom support beam 12 of the collector is connected to the bottom 13 of the tower type CSP collector through fasteners on the one hand, see Figure 7, and supports the tower type CSP collector; the other On the one hand, a hoisting block 14 protrudes upward from the outer end of the support beam 12 at the bottom of the collector, and is inserted into the hoisting lug through the matching pin of the hoisting block 14 and the hoisting lug, and is connected with the hoisting lug 11; If the collector equipment is damaged, an anti-collision block 15 is set at the outer end of the support beam 12 at the bottom of the collector, and the anti-collision block 15 is fixed on the outer end of the support beam 12 at the bottom of the collector with bolts. Prevent the collector from
  • the support beam 12 at the bottom of the collector is provided with a movable fixed anchor block 16, see FIG. 8;
  • the fixed anchor block 16 is composed of two beams, respectively an upper fixed anchor block 17 and a lower fixed anchor block 18; 19 is connected as a whole, and the upper and lower distance between the upper and lower fixed anchor blocks is 2450mm.
  • the fixed anchor block 16 is hung on the track below the support beam 12 at the bottom of the collector through the bracket 20 , and is driven and moved by the push-pull oil cylinder 21 .
  • the overall hoisting method of the collector 16 gantries and hydraulic cranes are installed on the top of the heat absorption tower as the main machinery for the hoisting of the collector.
  • Each set of hydraulic devices puts down 12 steel strands from the tower, and connects 16 groups of steel strands to the lifting lugs of the steel beam at the bottom of the collector by using anchors and pins respectively.
  • the platform is installed on the top of the collector tower with an elevation of 219.6m, and is divided into five types.
  • Platform 1 is used to store electrical equipment
  • Platform 2 is used for pedestrian access
  • Platforms 2A and 2B are used to access construction lifts
  • Platform 3 is used as a rest area.
  • a small platform is arranged below platform 1 and platform 3 for platform installers to stand.
  • the hoisting gantry on the top of the collector tower is composed of 16 individual hoisting gantry.
  • a single gantry mainly includes: flange base, support frame, hydraulic crane arrangement and operation platform, and guide rope pipe.
  • the construction sequence is: gantry ground assembly, bottom support flange in place, gantry hoisting in place and adjustment.
  • the hydraulic lifting system includes the following parts:
  • Steel strand jack device The steel strand jack device lifts or moves the structural heavy objects through the increment of the hydraulic jack, and each increment is equivalent to the stroke of the jack.
  • the strand jack device is used for lifting or pulling operations by extending or retracting the jack pistons in sequence.
  • the wedge clamping mechanism automatically locks on the strand, the strand passes through the jack when the piston is extended, and then locks it in its new position when the piston is retracted and reset.
  • the descending process is slightly more complicated, requiring the addition of secondary hydraulics to the gripping mechanism to cover their automatic operation. This allows the jack to open without lifting during reset and allows the strand to pass through the lower handle when it is actually lowered.
  • a special feature common to all jacks is their fail-safe mechanism, which ensures that in the event of any hydraulic or power failure, the load is automatically locked in the bottom anchor of the jack.
  • both the jack piston and the main anchor under the jack can be serviced with the jack system suspended if desired.
  • the distal ends of the lift strands are secured using anchor blocks that have the same braking mechanism used in the jacks.
  • Hydraulic device for strand jacks The hoisting system will be operated by a system of 4 electro-hydraulic devices installed on top of the tower. The motor speed of the hydraulics can be changed by the control software to ensure that all units run at the same speed. This allows the jacks to run in synchrony regardless of their relative loads.
  • the hydraulic unit is also equipped with an auxiliary hydraulic system for operating and controlling the clamping mechanism of the jack.
  • the hydraulic unit can operate the programmed process directly or through the remote control for the actual strand tensioning operation.
  • the monitoring system of the remote control computer can detect the operating power of the hydraulic device, the individual jacks and the system pressure, and can also display the stroke data of each jack and the graphic format, the status of the clamping mechanism and all the information required for safe operation.
  • the hydraulics receive information from the jack electronics and can, in part, display this information directly on the built-in control panel. At the same time the information is sent to the control computer.
  • a signal cable connects the power pack to the control computer.
  • the hoisting is controlled by a remote control system directly connected by cables.
  • the system works on a master-slave bus.
  • the normal operating mode of the entire system will be via remote control, i.e. the operator will only monitor the operation and all data from the jack will be displayed on the computer display.
  • the automatic function can be overridden at any time (i.e. during equipment installation and commissioning) for individual load adjustments.
  • the control system allows the load in any jack to be increased or decreased relative to the load in the remaining jacks.
  • Emergency stop buttons are installed on all major components in the system. The buttons are connected in series, so if any button is activated, the system will shut down and only the diagnostic and alternate functions can be manually restarted.
  • the control system uses computerized technology to control and monitor the performance of the hoisting system.
  • the maximum number of jacks displayed on each screen is limited to 20, but only 16 are displayed in this project. Record in detail the load on the jack, the sum of the total loads of the 16 hoisting systems, the sum of the total loads of each hoisting system, the strokes of the jacks, and the sum of the total strokes to obtain approximate movement values, etc.
  • the control system can also be programmed to determine all the interactions between the individual jacks and the oil pump according to the specific hoist requirements.
  • backup computers which are loaded with full operating systems and can be used as backup hosts or backup computers in the event of an unexpected situation with the computer.
  • Strand support system The strands coming out of the jacks during the lifting process are guided through the support box conduits installed above the gantry, and then pass through the work platform through the deflection tubes of the hoisting frame in the gantry hanger legs The reserved openings allow the strands to hang along the outer tower wall.
  • the steel strand is mechanically braked by the claws installed in the jack. In the event of a power failure or failure of the hoisting device, the claws are free to brake to prevent the collector from sliding down.
  • the collector hydraulic lifting system is composed of 16 sets of hydraulic lifting devices and four control systems. Each hydraulic device includes 1 hydraulic lifting device and 12 steel strands. And monitor the performance of the lifting system, each control system controls 4 hydraulic lifting devices;
  • the hydraulic lifting device is equipped with hydraulic jacks and steel strands in the open area on the ground. Before the steel strands are installed, they are checked item by item according to the quality inspection list. After confirmation, the steel strands are installed.
  • the method of threading the steel strand is as follows: insert the steel strand jack into the lead end of the steel strand drum, use a forklift to move the steel strand drum until the length of the steel strand reaches 230m, then cut the steel strand, and thread the steel strand for each jack. The method is the same, clean the dust and oil stains on the surface of the steel strand before penetrating the strand hole, check the integrity of the steel strand, and make an inspection record.
  • the 12 strands After the 12 strands are installed, they are fixed with the claws inside the jack. A truck crane and two forklifts are used to transfer the assembled jack and steel strands to the inside of the tower. After the tower top gantry is installed and accepted, the construction crane is used. After being lifted from the tower to the in-position position, the hydraulic device is fixed on the gantry beam by connecting bolts, and the operating system is fixed above the temporary operating platform.
  • the anti-collision device structure is a steel base plate with a bumper made of Nylatron 703 XL material.
  • the M24 grade 10.9 bolts are used to fix the nylon parts on the bottom plate, and the M30 grade 10.9 bolts are used to fix the entire anti-collision device on the collector lifting arm.
  • the tower type CSP collector is installed on the ground as a whole, then slides to the inner center of the heat absorption tower, and the tower type CSP collector is hoisted as a whole by using the inner space of the center of the heat absorption tower, which can save energy
  • the installation time can also be improved, and the installation quality can be improved; the main advantages are as follows:
  • the present invention uses multiple sets of sliding devices to synchronously slide the tower-type solar thermal power generation collector into the heat absorption tower as a whole, and is hydraulically hoisted by the gantry in the tower to solve the problem of the 100MW tower-type solar thermal collector. After the combination, the weight and height of the components are abnormally high, and the overall sliding and hoisting are difficult;
  • the floating sliding device is used to support the sliding support ring beam of the collector in the overall sliding, and the foundation needs to be redesigned and treated before the sliding, which provides the prerequisite for the smooth sliding of the super large components;
  • the slippage method is optimized, and the command is unified and coordinated, which solves the risk of the component being deflected or even overturned due to external force and improper operation during the slippage process;
  • the present invention proposes a hoisting operation standard table, which provides experience for reference for subsequent similar hoisting.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种兆瓦级塔式光热发电集热器安装方法及安装系统,先在塔式光热发电集热器安装的位置地面上建立吸热塔(8),并按照塔式光热发电集热器的大小,在吸热塔(8)内部留出供塔式光热发电集热器吊装的内部空间;然后在地面将塔式光热发电集热器整体组装好;再将组装好的塔式光热发电集热器,整体从组装场地利用滑移装置(5)通过滑移通道滑移到吸热塔(8)内中心;最后利用吸热塔塔顶采用门架(9)和液压起重机(10),将兆瓦级塔式光热发电集热器整体从吸热塔(8)底部吊装到吸热塔(8)顶部,并利用支撑架进行整体安装。通过先在地面上将兆瓦级塔式光热发电集热器组装好,整体从吸热塔内部吊装到塔顶,能有效缩短工期,减少大量高空作业,使得安全施工得到很大保证。

Description

一种兆瓦级塔式光热发电集热器安装方法及安装系统装置 技术领域
本发明涉及到一种塔式光热发电系统的吊装方法及吊装装置,尤其是指一种兆瓦级塔式光热发电集热器吊装安全控制方法及装置;该种兆瓦级塔式光热发电集热器吊装安全控制方法及装置可以有效防止兆瓦级塔式光热发电集热器在吊装过程中发生故障;属于重型物件吊装作业技术领域。
背景技术
太阳能光热发电是指利用大规模阵列抛物或碟形镜面收集太阳热能,通过换热装置提供蒸汽,结合传统汽轮发电机的工艺,从而达到发电的目的。采用太阳能光热发电技术,避免了昂贵的硅晶光电转换工艺,可以大大降低太阳能发电的成本。而且,这种形式的太阳能利用还有一个其他形式的太阳能转换所无法比拟的优势,即太阳能所烧热的水可以储存在巨大的容器中,在太阳落山后几个小时仍然能够带动汽轮发电。因此,光热发电作为一种洁净能源来源,随着技术的不断完善,以及世界对环保的重视程度越来越高,太阳能光热发电在世界各地的应用越来越普遍,发电的功率也越来越大。太阳能光热发电成为了新能源利用的一个重要方向。
按太阳能采集方式不同,太阳能光热发电主要分为塔式、槽式、碟式、线性菲涅尔式四种。其中,塔式太阳能光热发电以其在规模化、光电转化效率,以及投资成本等多方面具有槽式、蝶式以及线性菲涅耳式等难以媲美的综合优势,而具有更好的发展前景,目前各国都越来越关注塔式光热发电技术的发展和研究。
所谓的塔式太阳能光热发电主要由多台定日镜组成定日镜场,将太阳能反射集中到镜场中间高塔顶部的高温接收器(也称集热器)上,转换成热能后,传给工质升温,经过蓄热器,再输入热力发动机,驱动发电机发电。塔式光热发电系统由聚光子系统,集热子系统,发电子系统,蓄热子系统,辅助能源子系统五个子系统组成。其中,聚光子系统与集热子系统为其组成核心技术。塔式光热发电站施工安装的一个关键点是集热器的安装。随着太阳能光热发电的功率越来越大,集热器也越来越大,而且集热器一般都是在地面组合后整体吊装到吸 热塔上,这样既能缩短项目总工期,又能保证安装质量,但是随着光热机组容量提升,吊装的施工难度也越来越大,因此如何将集热器安全地安装到塔顶成为了塔式太阳能光热发电一个关键的问题之一。
通过专利检索,尚未发现有相关的专利技术文献报道,最为相接近的为一篇论文,相关文献有以下几个:
1、专利号为CN201920324645.9,名称为“一种建筑电气设备施工装置”的实用新型专利,该专利公开了一种建筑电气设备施工装置,包括龙门架,龙门架的内部水平设有固定板,固定板的下方设有夹紧机构,固定板的两侧均固定设有第一连接杆,龙门架相对的内侧壁均竖直开设有第一条形孔,两个第一条形孔的内部均竖直设有单向螺杆,两个单向螺杆的两端均通过第一滚动轴承与对应第一条形槽的上下两侧转动连接且上端均贯穿至龙门架的上方并均固定设有第一锥齿轮,两个第一条形槽的内部均滑动连接有第一移动块,两个第一移动块的上侧均通过第一螺纹孔与两个单向螺杆的杆壁螺纹连接。
2、专利号为CN202010365560.2,名称为“一种槽式太阳能集热器吊装定位方法”的发明专利,该专利公开了一种槽式太阳能集热器吊装定位方法,包括:S1、起吊前两个槽式太阳能集热器;S2、起吊其余槽式太阳能集热器;S3、调整并连接槽式太阳能集热器。起吊槽式太阳能集热器时,将所有的槽式太阳能集热器通过定位轴和定位孔配合进行中心位置的定位后调整槽式太阳能集热器的朝向。当悬挂在槽式太阳能集热器左右两侧悬臂上对称结构位置的塔尺对准水准仪的指示读数相同时,则意味着槽式太阳能集热器刚好正向朝上。可以方便地调节所有的槽式太阳能集热器正向朝上后将相邻的槽式太阳能集热器固定连接在一起。
3、专利号为CN201620778657.5,名称为“光热发电集热器模块整体吊装吊具”的实用新型专利,该专利公开了光热发电集热器模块整体吊装吊具,解决了集热器模块外形尺寸大,吊装难的技术问题。包括在前横担的中央位置设置有U形前托架,在后横担的中央位置设置有U形后托架,集热器模块上的扭矩管设置在U形前托架和U形后托架中,在扭矩管的前端扣接有前半圆形抱箍,前半圆形抱箍是与U形前托架连接在一起的,在扭矩管的后端扣接有后半圆形抱箍,后半圆形抱箍是与U形后托架连接在一起的。
技术问题
通过上述专利文献的分析,我们发现这些专利虽都涉及对吊装,而且也有关于光热发电集热器模块整体吊装所进行的研究,也提出了一些改进的技术方案,但是现有的这些技术方案都仍存在一些问题;目前对于集热器都是采用塔吊进行安装,这对于兆瓦级以下的中小型塔式太阳能光热发电系统来说,尚还可以,但一旦达到兆瓦级以上,再采用简单的塔式吊装方式,就十分困难了,需要多台塔吊协同配合才能完成吊装任务;如果拆散进行吊装,就需要在塔顶进行组装,这样将给施工带来许多不便,因此现有技术仍然没有解决塔式太阳能光热发电集热器在吊装过程中,如何解决集热器过重,如何进行整体吊装的一些实际存在的问题,导致在实际应用中仍出现许多意想不到的问题和故障,因此仍很有必要对此做进一步的研究。
技术解决方案
本发明的目的在于针对现有兆瓦级塔式光热发电集热器安装方法存在的不足,提出一种新的兆瓦级塔式光热发电集热器安装方法及安装系统装置,该种兆瓦级塔式光热发电集热器安装方法及安装系统装置通过先在地面上将兆瓦级塔式光热发电集热器组装好,在整体从吸热塔内部吊装到塔顶,能有效缩短工期,减少大量高空作业,使得安全施工得到很大保证。
为了达到这一目的,本发明提供了一种兆瓦级塔式光热发电集热器安装方法,先在塔式光热发电集热器安装的位置地面上建立吸热塔,并按照塔式光热发电集热器的大小,在吸热塔内部留出供塔式光热发电集热器吊装的内部空间;然后在地面将塔式光热发电集热器整体组装好;再将组装好的塔式光热发电集热器,整体从组装场地利用滑移装置通过滑移通道滑移到吸热塔内中心;最后利用吸热塔塔顶采用门架和液压起重机,将兆瓦级塔式光热发电集热器整体从吸热塔底部吊装到吸热塔顶部,并利用支撑架进行整体安装。
进一步地,所述的在地面上将塔式光热发电集热器组装好是在吸热塔周边的安全区域内设置塔式光热发电集热器组装区域,在塔式光热发电集热器组装区域制作集热器支撑环,集热器支撑环由多个支腿和一个环形钢结构组成,集热器支撑环通过支腿支撑在塔式光热发电集热器组装区域的硬化地面上;再在集热器支撑环上按照塔式光热发电集热器组装要求,进 行塔式光热发电集热器地面组装,将塔式光热发电集热器所有零部件安装好。
进一步地,所述的进行塔式光热发电集热器地面组装是在支撑环上组合塔式光热发电集热器各个部件,组装完毕后地面检查验收合格,使得塔式光热发电集热器满足滑移和起吊的要求。
进一步地,所述的在地面建设从组装场地到吸热塔内中心的滑移通道是在塔式光热发电集热器组装区域处到吸热塔内部中心设置一条主通道,作为滑移移动通道,并在滑移移动通道上敷设滑移轨道;在滑移轨道安装4套滑移装置,集热器支撑环安装在滑移装置上;当集热器各个部件在支撑环上组合完成后,通过滑移装置将安装有塔式光热发电集热器的支撑环整体滑移到吸热塔内部中心。
进一步地,所述的通过滑移装置将安装有塔式光热发电集热器支撑环整体滑移到吸热塔内部中心是通过设置在集热器支撑环下面的多个滑移装置同步分段滑移,将安装有塔式光热发电集热器的支撑环整体滑移到吸热塔内部中心;所述的滑移装置包括设有浮动板的滑移靴,整个滑移系统共有4套滑移装置,每个滑移装置设有两个滑移靴,两个滑移靴支撑一个浮动装置,浮动装置与滑移靴为浮动连接,形成可调节水平面的浮动滑移装置;滑移靴底部为不锈钢材质,滑移靴不锈钢材质部分安装在滑移轨道内,并在滑移轨道上设有聚四氟乙烯或高密度聚乙烯垫块,形成小摩擦阻力的滑移靴;浮动装置上装有主油顶,通过调整滑移装置的位置,使主油顶法兰正对支撑环梁底,并通过浮动装置的浮动,使得主油顶上方法兰紧贴集热器支撑环梁下表面法兰,对齐后通过紧固件将主油顶上方法兰与集热器支撑环梁下表面法兰紧固在一起;滑移靴后面与液压爬行器连接,通过液压爬行器推动滑移装置进行滑移;滑移时先通过主油顶顶起集热器支撑环,使得集热器支撑环的支腿离开地面,再通过液压爬行器推动滑移装置进行滑移;每次滑移距离为500-700mm,滑移过程中利用计算机控制系统监视每台滑移装置的行程、负荷是否一致,滑移装置在一个行程内载荷基本要保持一致,偏差不得大于5%;每完成一次行程的滑移,通过计算机控制系统调整推移装置的载荷及行程,确保四台滑移装置同步动作,重复上述操作直到集热器滑移至塔内就位位置正下方。
进一步地,所述的组装区域和滑移移动通道地基需要按照塔式光热发电集热器的重量进 行计算和设计,以满足超大超重组件的承载,并将组装区域和滑移移动通道作为集热器组合和滑移的主要区域。
进一步地,所述的从吸热塔塔顶采用门架和液压起重机将塔式光热发电集热器整体从吸热塔底部吊装到吸热塔顶部是在吸热塔顶部围绕吸热塔顶部圆周布置多台门架,在门架上安装有液压起重机,每套液压起重机从塔内放下钢绞线,将每套液压起重机的钢绞线分别利用锚及销轴连接集热器底部钢梁吊耳,通过圆周布置多台门架上的液压起重机同步运行,将塔式光热发电集热器整体从吸热塔底部吊装到吸热塔顶部是在吸热塔顶部,然后采用支撑架进行就位进行固定。
进一步地,所述的液压起重机同步运行是多台液压起重机通过液压钢绞线千斤顶的增量来提升或移动结构重物,每次的增量相当于液压钢绞线千斤顶的行程;所述的多个门架在吸热塔顶部顶部通过工字钢通过紧固件连接为一个整体,防止在吊装过程中门架受风力影响摆动;液压钢绞线千斤顶通过千斤顶活塞按顺序的伸出或缩回进行提升或拉动操作实现塔式光热发电集热器整体提升;液压钢绞线千斤顶设有楔形夹紧机构,楔形夹紧机构自动锁定钢绞线,活塞伸出时钢绞线通过千斤顶,然后在活塞缩回,复位时将其锁定在新位置。
进一步地,所述的液压钢绞线的下端连接吊耳,吊耳与塔式光热发电集热器通过集热器底部支撑横梁连接;集热器底部支撑横梁一方面通过紧固件连接在塔式光热发电集热器的底部,对塔式光热发电集热器起支撑作用;另一方面,在集热器底部支撑横梁的外端部向上部突出一个与集热器底部支撑横梁连接为一体的吊装块,吊装块上有与吊耳相配的插销;吊装时吊耳落入吊装块内,通过吊装块上的插销插入吊耳中,与吊耳形成连接;为避免吊装时因发生碰撞造成集热器设备损坏,在集热器底部支撑横梁的外端部设置有防碰撞块,防碰撞块用螺栓进行固定在集热器底部支撑横梁的外端部,此防碰撞块是防止集热器碰撞混泥土塔身内壁;防碰撞块由连接钢板、橡胶块组成,用螺栓固定在集热器底部支撑横梁外端部上;所述的整体安装定位是在集热器底部支撑横梁的下面连接有固定锚,固定锚在塔式光热发电集热器吊装到顶部后,通过移动装置移动到设置在吸热塔顶部的筒壁凹槽内,锁紧固定。
一种兆瓦级塔式光热发电集热器安装系统装置,包括塔式光热发电集热器滑移系统和塔 式光热发电集热器吊装系统;其中,塔式光热发电集热器滑移系统包括集热器支撑环、滑移装置、滑移轨道;滑移装置安装在滑移轨道上,滑移轨道从集热器支撑环安装塔式光热发电集热器的塔式光热发电集热器组装区域延伸到吸热塔中心内部,集热器支撑环在滑移时安放在滑移装置上,由多台滑移装置同步滑移进入吸热塔中心内部;塔式光热发电集热器吊装系统包括吸热塔、多个门架、液压起重机和吊耳;门架安装在吸热塔顶部,液压起重机安装在门架上,液压起重机带有液压钢绞线千斤顶,液压钢绞线千斤顶与吊耳通过钢绞线连接;由多台安装有液压起重机的门架组合形成塔式光热发电集热器吊装系统,通过液压起重机的液压钢绞线千斤顶将塔式光热发电集热器整体吊装到吸热塔塔顶。
进一步地,所述的滑移装置包括设有浮动板的滑移靴,整个滑移系统共有4套滑移装置,每个滑移装置设有两个滑移靴,两个滑移靴支撑一个浮动装置,浮动装置与滑移靴为浮动连接,形成可调节水平面的浮动滑移装置;滑移靴底部为不锈钢材质,滑移靴不锈钢材质部分安装在滑移轨道内,并在滑移轨道上设有聚四氟乙烯或高密度聚乙烯垫块,形成小摩擦阻力的滑移靴;浮动装置上装有主油顶,通过调整滑移装置的位置,使主油顶法兰正对支撑环梁底,并通过浮动装置的浮动,使得主油顶上方法兰紧贴集热器支撑环梁下表面法兰,对齐后通过紧固件将主油顶上方法兰与集热器支撑环梁下表面法兰紧固在一起;滑移靴后面与液压爬行器连接,通过液压爬行器推动滑移装置进行滑移。
进一步地,所述的多台安装有液压起重机的门架组合形成塔式光热发电集热器吊装系统包括围绕吸热塔塔顶环形设置的多个门架,多个门架在吸热塔顶部顶部通过工字钢通过紧固件连接为一个整体,防止在吊装过程中门架受风力影响摆动;每一个门架上设置液压起重机,液压钢绞线穿过液压起重机;所述的液压钢绞线千斤顶通过千斤顶活塞按顺序的伸出或缩回进行提升或拉动操作;液压钢绞线千斤顶设有楔形夹紧机构,楔形夹紧机构自动锁定钢绞线,活塞伸出时钢绞线通过千斤顶,然后在活塞缩回,复位时将其锁定在新位置;液压钢绞线的下端连接吊耳,吊耳与塔式光热发电集热器通过集热器底部支撑横梁连接;集热器底部支撑横梁一方面通过紧固件连接在塔式光热发电集热器的底部,对塔式光热发电集热器通过集热器起支撑作用;另一方面,在集热器底部支撑横梁的外端部向上部突出一个固定锚,通过固 定锚与吊耳相配的插销插入吊耳中,与吊耳连接;为避免吊装时因发生碰撞造成集热器设备损坏,在集热器底部固定锚的后端部设置防碰撞块,防碰撞块用螺栓进行固定在固定锚的后端,此防碰撞块是防止集热器碰撞混泥土塔身内壁;防碰撞块由连接钢板、橡胶块组成,用螺栓固定在集热器底部支撑横梁上。
有益效果
本发明通过在地面进行塔式光热发电集热器整体安装后,再滑移到吸热塔内中心,利用吸热塔中心内部空间整体吊装塔式光热发电集热器,这样既可以节约安装时间,还可以提高安装质量;主要有以下一些优点:
1、本发明通过多套滑移装置同步将塔式光热发电集热器整体滑移至吸热塔内,并通过塔内门架液压整体吊装,解决了100MW塔式光热的集热器组合后组件重量和高度都异常高大,整体滑移和吊装困难的问题;
2、整体滑移才用了浮动式滑移装置支撑集热器滑移支撑环梁,并对滑移前地基需要重新设计、处理,提供了超大组件平稳滑移的先决条件;
3、整体滑移时,优化了滑移方法,统一协调指挥,解决了滑移过程中,要组件受外力和操作不当导致组件偏斜,甚至倾覆的风险;
4、通过围绕吸热塔塔顶环形布置多个门架进行协调同步吊装,解决了集热器从塔内提升上去,操作过程均匀受力,避免单个提升装置因过载,提高了安全稳定性;
5、通过设置防碰撞装置,在连续的提升过程中,避免因外部环境昼夜温差、面阳背阴温差等变化,使塔体有一定的变形,集热器与塔内壁碰撞问题;
6、通过嵌入式支架的支撑方式,保证了集热器吊装到顶部后的安装问题,并通过统一协调指挥的吊装方法,解决了长时间吊装,重量卸载等技术问题,提高了设备吊装的安全性;
7、本发明提出一种吊装操作标准表,为后续类似吊装提供了可供借鉴的经验。
附图说明
图1为本发明的系统原理结构示意图;
图2为本发明一个实施例的滑移部分支撑环梁示意图;
图3为本发明一个实施例滑移系统的滑移装置总体结构图;
图4为本实施例滑移装置的滑移靴结构示意图;
图5为本实施例滑移装置的浮动装置结构示意图;
图6为本发明一个实施例的吊装系统结构示意图;
图7为本发明一个实施例吊装门架系统结构示意图;
图8为本发明一个实施例的固定锚和防撞装结构示意图。
本发明最佳实施方式
如附图1所示,一种100MW兆瓦级塔式光热发电集热器安装系统装置,整个安装系统装置1由两部分组成;一部分为塔式光热发电集热器整体滑移部分2,另一部分为塔式光热发电集热器吊装部分3。整个塔式光热发电集热器安装包括集热器滑移轨道安装、滑移装置安装及调试、集热器滑移、集热器吊装临时平台安装、集热器吊装门架、液压提升装置、钢绞线安装及调试、集热器吊装、集热器吊装临时措施拆除。总体安装方法是先在塔式光热发电集热器安装的位置地面上建立吸热塔,并按照塔式光热发电集热器的大小,在吸热塔内部留出供塔式光热发电集热器吊装的内部空间;然后在地面将塔式光热发电集热器整体组装好;再将组装好的塔式光热发电集热器,整体从组装场地利用滑移装置通过滑移通道滑移到吸热塔内中心;最后利用吸热塔塔顶采用门架和液压起重机,将兆瓦级塔式光热发电集热器整体从吸热塔底部吊装到吸热塔顶部,并利用支撑架进行整体安装。
其中,塔式光热发电集热器滑移部分2包括集热器支撑环梁4、滑移装置5、滑移轨道6;滑移装置5安装在滑移轨道6上,滑移轨道6从安装塔式光热发电集热器的塔式光热发电集热器组装区域延伸到吸热塔中心内部,集热器支撑环梁4在滑移时安放在滑移装置5上,由4台滑移装置同步将安装有塔式光热发电集热器7的集热器支撑环梁滑移进入吸热塔中心内部;
所述的集热器支撑环梁4由12个支腿401和一个多段模块组合形成的环形钢结构环形梁402组合形成,如附图2所示;环形梁402结构为多个锥台形状的模块403通过紧固件组合在一起,构成一个环形的钢梁;在环形钢梁内设置有结构拉杆404,通过结构拉杆增强环形 梁的整体刚性。
所述的滑移装置5,见附图3和4,包括设有浮动板的滑移靴501,整个滑移系统共有4套滑移装置,每个滑移装置设有两个滑移靴,两个滑移靴支撑一个浮动装置502,浮动装置502与滑移靴501为浮动连接,形成可调节水平面的浮动滑移装置;滑移靴501底部为不锈钢材质制作的滑块503,见附图4,;滑块503安装在滑移轨道6内,并在滑移轨道6上设有聚四氟乙烯或高密度聚乙烯垫块,形成小摩擦阻力的滑移靴结构;浮动装置502上装有主油顶504,浮动装置502下面设有浮动块506,浮动块506与滑移靴5上表面的浮动球面507贴合在一起,并在周围设有弹性阻尼材料508,见附图5,使得浮动装置502可以在一范围内360度进行浮动调整;通过调整滑移装置的位置,使主油顶504的法兰正对支撑环梁底,并通过浮动装置502的浮动,使得主油顶504上方法兰紧贴集热器支撑环梁下表面法兰,对齐后通过紧固件将主油顶上方法兰与集热器支撑环梁下表面法兰紧固在一起;滑移靴501后面与液压爬行器连接505,通过液压爬行器505推动滑移装置进行滑移。滑移时先通过主油顶504顶起集热器支撑环梁,使得集热器支撑环梁的支腿离开地面,再通过液压爬行器505推动滑移靴501进行滑移;每次滑移距离为500-700mm,滑移过程中利用计算机控制系统监视每台滑移装置的行程、负荷是否一致,滑移装置在一个行程内载荷基本要保持一致,偏差不得大于5%;每完成一次行程的滑移,通过计算机控制系统调整推移装置的载荷及行程,确保四台滑移装置同步动作,重复上述操作直到集热器滑移至塔内就位位置正下方。
整个滑移过程如下:
1、组装区域选择及地基处理
在吸热塔周边选择一个安全区域设立塔式光热发电集热器组装区域,并建立塔式光热发电集热器组装区域到吸热塔中心取一条主通道,作为滑移移动通道。该通道在不影响吸热塔其他施工进度的情况下,应避免塔顶高空落物等安全风险;对塔式光热发电集热器组装区域和滑移通道需要进行基础处理。地基处理按照设计要求进行处理,地基垫层混凝土为C10,其余为C30,钢筋未GRB-400.混凝土基础高出原地面150mm,连接梁纵筋伸入轨道梁600mm,轨道梁伸入塔体500mm。
在塔式光热发电集热器组装区域和滑移移动通道地基处理完毕后,在塔式光热发电集热器组装区域和滑移移动通道地基上敷设滑移轨道,再在轨道上设置4套滑移装置,每一套滑移装置有2个滑移靴。
2、支撑环梁安装
在塔式光热发电集热器组装区域组装支撑环梁,支撑环梁由12个支腿和一个环形钢结构组成,支撑环梁采用多边形钢组合结构;有多边形组合形成环形的支撑环梁。
3、塔式光热发电集热器组合
在支撑环梁上根据厂家技术规范和安装技术方案的要求,逐步安装塔式光热发电集热器所有部件;塔式光热发电集热器组合时,支撑环梁的支腿支撑在地面上。
4、滑移前准备条件
塔式光热发电集热器钢结构、设备以及管道地面组合验收完成后,开始进行滑移前的准备工作,包括支撑环梁整体提升,集热器整体滑移至集热塔内部就位位置正下方。滑移设备及系统包括支撑环梁、4台滑移装置、1套计算机控制系统,每套滑移装置包含浮动装置、2个滑移靴、1台主千斤顶等连接附件。浮动装置底部与滑移靴浮动连接,滑移靴底部与滑移轨道接触部分为不锈钢材质制作的,不锈钢材质部分安装在滑轨内,并在滑轨上设有聚四氟乙烯或高密度聚乙烯垫块。在浮动装置主体上安装一个中心主千斤顶SWL=600吨,通过主千斤顶将支撑环梁顶起。
在滑移靴底部后面设置有推进系统,推进系统与滑移靴通过铰接连接;推进系统配有动力装置,动力装置提供足够的压力和流量以达到设计滑行速度,每个推进系统都安装有制动器。每个推拉装置都配有一个控制箱(其中包含液压阀、连接件等),能够收集以下数据:主缸压力负荷、主缸行程、推/拉缸压力(负载);推/拉缸行程、侧移系统。所有这些数据都发送到计算机系统,以便控制和监测每个滑移系统装置的的负荷、垂直和水平位移、实际的重心情况、推进行程等。
5、滑移轨道安装
轨道组成:集热器滑移轨道由两条平行的滑轨组成,每条线路的滑轨数量为19根,每 根长度为5.4m,单条轨道总长度为102.9m。
轨道安装方式:轨道直接利用塔吊直接敷设在混凝土基础表面,找正验收后,每根轨道利用四个卡块及螺栓固定在基础上。
6、滑移靴安装
滑移装置的滑移靴安装在浮动装置的底部,在浮动装置下面设置有浮动板,浮动板安装在滑移靴的上面,形成浮动连接,以便调整浮动装置的平整度,以保证浮动装置的主油顶上方法兰紧贴集热器环形梁下表面法兰,调整滑移装置,使油顶法兰正对支撑环梁的梁底板法兰,利用螺栓连接,终紧。滑移靴安装在滑移轨道内,滑移靴与滑移轨道接触的底部采用不锈钢材料制作,并在滑移轨道与滑移靴接触部分铺设聚四氟乙烯或高密度聚乙烯垫块,以减少滑移过程中的摩擦阻尼。
7、顶升集热器
一旦将推拉装置放置在支撑环梁下方,与滑移靴连接,即可顶升设置在浮动装置上的主油顶,直到接触到要用螺栓固定的支撑环梁法兰。连接螺栓后将集热器组成的整体式机组顶升起来。
8、微调整试滑移
由于支撑环梁的位置不一定是施工方案中所述的位置,因此,有可能支撑环梁的尾部支架不在尾部滑靴中心的范围内,因此需要进行300-350mm的微调整试滑移;通过推进系统将安装有塔式光热发电集热器的支撑环梁推行300-350mm。
9、正式滑移
若微调整试滑移无问题,启动滑移装置,通过推进系统,每次推行600mm的滑移距离;移过程中利用计算机控制系统监视每台滑移装置的行程、负荷是否一致,滑移装置在一个行程内载荷基本要保持一致,偏差不得大于5%;每完成一次行程的滑移,通过计算机控制系统调整推移装置的载荷及行程,确保四台滑移装置同步动作,重复上述操作直到集热器滑移至塔内就位位置正下方。
所述的塔式光热发电集热器吊装部分3如附图6所示,包括吸热塔8、多个门架9、液压 起重机10和吊耳11;门架安装在吸热塔顶部,液压起重机安装在门架上,液压起重机带有液压钢绞线千斤顶,液压钢绞线千斤顶与吊耳通过钢绞线连接;由多台安装有液压起重机10的多个门架9组合形成塔式光热发电集热器吊装系统,通过液压起重机的液压钢绞线千斤顶将塔式光热发电集热器整体吊装到吸热塔塔顶。
所述的多台安装有液压起重机的门架,组合形成塔式光热发电集热器吊装系统,包括围绕吸热塔塔顶环形设置的多个门架9,多个门架9在吸热塔顶部顶部通过工字钢通过紧固件连接为一个整体,防止在吊装过程中门架受风力影响摆动;每一个门架上设置液压起重机10,液压钢绞线穿过液压起重机;所述的液压钢绞线千斤顶通过千斤顶活塞按顺序的伸出或缩回进行提升或拉动操作;液压钢绞线千斤顶设有楔形夹紧机构,楔形夹紧机构自动锁定钢绞线,活塞伸出时钢绞线通过千斤顶,然后在活塞缩回,复位时将其锁定在新位置;液压钢绞线的下端连接吊耳11,吊耳11与塔式光热发电集热器通过集热器底部支撑横梁12连接;集热器底部支撑横12梁一方面通过紧固件连接在塔式光热发电集热器的底部13,见附图7,对塔式光热发电集热器起支撑作用;另一方面,在集热器底部支撑横梁12的外端部向上部突出一个吊装块14,通过吊装块14与吊耳相配的插销插入吊耳中,与吊耳11连接;为避免吊装时因发生碰撞造成集热器设备损坏,在集热器底部支撑横梁12外端部设置防碰撞块15,防碰撞块15用螺栓进行固定在集热器底部支撑横梁12外端部,此防碰撞,15是防止集热器碰撞混泥土塔身内壁;防碰撞块15由连接钢板、橡胶块组成,用螺栓固定在集热器底部支撑横梁上。
在集热器底部支撑横梁12设有移动式的固定锚块16,见附图8;固定锚块16由两根横梁组成,分别为上固定锚块17和下固定锚块18;中间用螺杆19连接为一个整体,上固定锚块和下固定锚块的上下间距为2450mm。固定锚块16通过托架20吊挂在集热器底部支撑横梁12下面的轨道上,并由推拉油缸21带动移动。
集热器整体吊装方法:在吸热塔顶部装设16台门架和液压起重机,作为集热器提升的主要机械。每套液压装置从塔内放下12根钢绞线,将16组钢绞线分别利用锚及销轴连接集热器底部钢梁吊耳。松掉集热器和环梁之间的螺栓,将集热器提升5米高。拆卸滑移装置和支撑环梁;安装支撑梁滑动装置;将支撑梁连接到滑动装置上;将集热器提升至嵌入高度;顶 推支撑梁至筒壁凹槽内;集热器就位;验收合格,浇筑灌浆料。
集热器整体吊装装置步骤如下:
1)集热塔顶部临时操作平台安装
该平台安装在集热塔的顶部,标高为219.6m,共分为五种类型。平台1用于存储电气设备,平台2用于行人通道,平台2A和2B用于访问施工升降机,平台3作为休息区。平台1、平台3下方布置小平台用于平台安装人员站位。
2)提升门架安装
先在吸热塔顶部安装16台提升用的门架。集热塔顶部提升门架由16个单独吊装门架组成,单个门架主要包括:法兰底座、支撑构架、液压起重机布置和操作平台、导绳管。施工顺序为:门架地面组合、底部支撑法兰就位、门架吊装就位及调整。
液压提升系统包括以下几部分:
1.钢绞线千斤顶装置:钢绞线千斤顶装置通过液压千斤顶的增量来提升或移动结构重物,每次的增量相当于千斤顶的行程。钢绞线千斤顶装置通过千斤顶活塞按顺序的伸出或缩回进行提升或拉动操作。
楔形夹紧机构自动锁定在绞线,活塞伸出时钢绞线通过千斤顶,然后在活塞缩回以及复位时将其锁定在新位置。下降的过程稍微复杂一些,需要在夹持机构中加入二级液压系统来覆盖它们的自动操作。这使得千斤顶在复位过程中不需要提升就可以打开,并且在实际放下时允许钢绞线穿过下部手柄。所有千斤顶共有的一个特殊功能是其故障保护机制,可确保在发生任何液压故障或电源故障时,将负载自动锁定在千斤顶的底部锚固件中。该相同特征还提供了一种用于在千斤顶行程的任何部分停止吊装操作并将负载从液压系统转移到底部锚固件的机械装置上的设施,从而无需将负载长时间保持在液压系统上。作为一项附加功能,如果需要的话千斤顶活塞和千斤顶下方的主锚都可以在千斤顶系统悬挂的情况下进行维修。升降绞线的远端使用锚固块固定,该锚固块具有与千斤顶中使用的相同的制动机制。
2.钢绞线千斤顶的液压装置:吊装系统将由安装在塔架顶部的4台电动液压装置系统操作。液压装置的电机速度可以通过控制软件进行更改,以确保所有单元均以相同的速度运 行。不管千斤顶的相对负载如何,这都能使千斤顶的运行速度同步。除主液压系统外,液压装置还配备了用于操作控制千斤顶夹紧机构的辅助液压系统。
液压装置可以直接操作已设定的过程,也可以通过遥控器进行实际的钢绞线张紧操作。远程控制计算机的监控系统可检测液压装置运行功率、各个千斤顶及系统压力,还可显示各个千斤顶行程数据及图形格式、夹紧机构的状态以及安全操作所需的所有信息。
液压装置从千斤顶电子设备接收信息,并且可以部分地在内置控制面板上直接显示此信息。同时将信息发送到控制计算机。一根信号电缆将电源组连接到控制计算机。
3.中央控制系统:吊装通过电缆直接连接的一个远程控制系统控制。该系统在主从总线上工作。整个系统的正常操作模式将通过远程控制进行,即操作员将仅监视操作,并且来自千斤顶的所有数据都将显示在计算机显示屏上。如果需要,可以在任何时候(即在设备安装和调试过程中)覆盖自动功能,以进行单独的负载调整。控制系统允许相对于其余千斤顶中的负载增加或减少任何千斤顶中的负载。紧急停止按钮安装在系统中的所有主要组件上。这些按钮是串联连接的,因此,如果激活了任何按钮,系统将关闭,仅诊断和替代功能可手动重启。控制系统使用计算机化技术来控制和监视吊装系统的性能。
为了使显示的信息易于现场使用,将在每个屏幕上显示的最大千斤顶数限制为20个,但是在本项目只显示16个。详细记录千斤顶上的负载、16个提升系统的总负载之和、每各提升系统的总负载之和、千斤顶的行程、计算行程总数之和以得出近似移动值等。为便于控制吊装的正常运行和监视功能,控制系统还可以进行编程,以根据特定的提升装置要求,确定各个千斤顶和油泵之间的所有互动方式。
此外,还将有备用计算机,这些计算机装有完整的操作系统,在计算机发生意外情况的情况下,可用作备用主机或备用计算机
钢绞线支撑系统:在提升过程中从千斤顶出来的钢绞线通过安装在门架上方的支撑盒导管进行引导,然后通过龙门吊架支腿中的提升机架的偏斜管穿过工作平台上的预留开口,从而使钢绞线沿着外侧塔壁悬挂。
固定锚壳系统:集热器和起重系统之间的连接是通过固定锚外壳完成的。与集热器的连 接将通过与现有16个吊耳匹配的插销完成。
钢绞线利用安装在千斤顶内的卡爪机械制动,在停电或者提升装置出现故障时,卡爪自由制动,防止集热器向下滑落。
3)液压提升系统安装
集热器液压提升系统由16套液压提升装置及四台控制系统组成,每套液压装置包含1台液压提升装置,12根钢绞线,每套控制系统由计算机及监视系统组成,用于控制和监视提升系统性能,每套控制系统控制4台液压提升装置;
液压提升装置在地面空旷区域装配液压千斤顶和钢绞线,钢绞线穿装前根据质量检查清单逐项检查,确认无误后开始钢绞线穿装。钢绞线穿装方法为:钢绞线滚筒引出端插入钢绞线千斤顶,利用叉车移动钢绞线滚筒,直至钢绞线长度达到230m,然后切断钢绞线,每个千斤顶钢绞线穿装方法一致,穿入绞线孔前对钢绞线表面灰尘、油渍进行清理,并检查钢绞线完好情况,并做好检查记录。12根绞线穿装完成后,利用千斤顶内部的卡爪固定,利用一台汽车吊、两台叉车将装配好的千斤顶及钢绞线转运至塔筒内部,塔顶门架安装验收后利用建筑吊由塔内提升至就位位置后,利用连接螺栓将液压装置固定在门架梁上,操作系统固定在临时操作平台上方。
4)集热器吊装防碰撞装置安装
为防止其集热器吊装过程中撞击混凝土塔。在支撑横梁的外断面上安装防碰撞装置。具体样式见附图8。
防碰撞装置结构是一个钢底板,带有一个由Nylatron 703 XL材质制成的缓冲器。采用螺栓为M24 10.9级,用于将尼龙件固定在底板上,螺栓M30 10.9级用于将整个防碰撞装置固定在集热器起吊臂上。
本发明的实施方式
除了上述最佳实施方式以外,还可以根据具体吊装的情况做响应的调整,形成行的吊装方式;上述所列最佳实施方式,只是结合附图对本发明的技术方案进行清楚、完整的描述;显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例,而且本说明书 中所引用的如“上”、“下”、“前”、“后”、“中间”等用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。同时,说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容所能涵盖的范围内。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
工业实用性
本发明通过在地面进行塔式光热发电集热器整体安装后,再滑移到吸热塔内中心,利用吸热塔中心内部空间整体吊装塔式光热发电集热器,这样既可以节约安装时间,还可以提高安装质量;主要有以下一些优点:
1、本发明通过多套滑移装置同步将塔式光热发电集热器整体滑移至吸热塔内,并通过塔内门架液压整体吊装,解决了100MW塔式光热的集热器组合后组件重量和高度都异常高大,整体滑移和吊装困难的问题;
2、整体滑移才用了浮动式滑移装置支撑集热器滑移支撑环梁,并对滑移前地基需要重新设计、处理,提供了超大组件平稳滑移的先决条件;
3、整体滑移时,优化了滑移方法,统一协调指挥,解决了滑移过程中,要组件受外力和操作不当导致组件偏斜,甚至倾覆的风险;
4、通过围绕吸热塔塔顶环形布置多个门架进行协调同步吊装,解决了集热器从塔内提升上去,操作过程均匀受力,避免单个提升装置因过载,提高了安全稳定性;
5、通过设置防碰撞装置,在连续的提升过程中,避免因外部环境昼夜温差、面阳背阴温差等变化,使塔体有一定的变形,集热器与塔内壁碰撞问题;
6、通过嵌入式支架的支撑方式,保证了集热器吊装到顶部后的安装问题,并通过统一协调指挥的吊装方法,解决了长时间吊装,重量卸载等技术问题,提高了设备吊装的安全性;
7、本发明提出一种吊装操作标准表,为后续类似吊装提供了可供借鉴的经验。

Claims (10)

  1. 一种兆瓦级塔式光热发电集热器安装方法,其特征在于:先在塔式光热发电集热器安装的位置地面上建立吸热塔,并按照塔式光热发电集热器的大小,在吸热塔内部留出供塔式光热发电集热器吊装的内部空间;然后在地面将塔式光热发电集热器整体组装好;再将组装好的塔式光热发电集热器,整体从组装场地利用滑移装置通过滑移通道滑移到吸热塔内中心;最后利用吸热塔塔顶采用门架和液压起重机,将兆瓦级塔式光热发电集热器整体从吸热塔底部吊装到吸热塔顶部,并利用支撑架进行整体安装。
  2. 如权利要求1所述的兆瓦级塔式光热发电集热器安装方法,其特征在于:所述的塔式光热发电集热器组装是在吸热塔周边的安全区域内设置塔式光热发电集热器组装区域,在塔式光热发电集热器组装区域制作集热器支撑环,集热器支撑环由多个支腿和一个环形钢结构组成,集热器支撑环通过支腿支撑在塔式光热发电集热器组装区域的硬化地面上;再在集热器支撑环上按照塔式光热发电集热器组装要求,进行塔式光热发电集热器地面组装,将塔式光热发电集热器所有零部件安装好。
  3. 如权利要求1所述的兆瓦级塔式光热发电集热器安装方法,其特征在于:所述的在地面建设从组装场地到吸热塔内中心的滑移通道是在塔式光热发电集热器组装区域处到吸热塔内部中心设置一条主通道,作为滑移移动通道,并在滑移移动通道上敷设滑移轨道;在滑移轨道安装4套滑移装置,集热器支撑环安装在滑移装置上;当集热器各个部件在支撑环上组合完成后,通过滑移装置同步操作,将安装有塔式光热发电集热器的支撑环整体滑移到吸热塔内部中心。
  4. 如权利要求3所述的兆瓦级塔式光热发电集热器安装方法,其特征在于:所述的通过滑移装置将安装有塔式光热发电集热器支撑环整体滑移到吸热塔内部中心是通过设置在集热器支撑环下面的多个滑移装置同步分段滑移,将安装有塔式光热发电集热器的支撑环整体滑移到吸热塔内部中心;所述的滑移装置包括设有浮动板的滑移靴,整个滑移系统共有4套滑移装置,每个滑移装置设有两个滑移靴,两个滑移靴支撑一个浮动装置,浮动装置与滑移靴为浮动连接,形成可调节水平面的浮动滑移装置;滑移靴底部为不锈钢材质,滑移靴不锈钢材质部分安装在滑移轨道内,并在滑移轨道上设有聚四氟乙烯或高密度聚乙烯垫块,形成小摩擦 阻力的滑移靴;浮动装置上装有主油顶,通过调整滑移装置的位置,使主油顶法兰正对支撑环梁底,并通过浮动装置的浮动,使得主油顶上方法兰紧贴集热器支撑环梁下表面法兰,对齐后通过紧固件将主油顶上方法兰与集热器支撑环梁下表面法兰紧固在一起;滑移靴后面与液压爬行器连接,通过液压爬行器推动滑移装置进行滑移;滑移时先通过主油顶顶起集热器支撑环,使得集热器支撑环的支腿离开地面,再通过液压爬行器推动滑移装置进行滑移;每次滑移距离为500-700mm,滑移过程中利用控制系统监视每台滑移装置的行程、负荷是否一致,保证滑移装置在一个行程内载荷基本要保持一致,偏差不得大于5%;每完成一次行程的滑移,通过控制系统调整推移装置的载荷及行程,确保四台滑移装置同步动作,重复上述操作直到塔式光热发电集热器滑移至塔内中心就位位置正下方;所述的组装区域和滑移移动通道地基需要按照塔式光热发电集热器的重量进行计算和设计,以满足超大超重组件的承载,并将组装区域和滑移移动通道作为集热器组合和滑移的主要区域。
  5. 如权利要求1所述的兆瓦级塔式光热发电集热器安装方法,其特征在于:所述的从吸热塔塔顶采用门架和液压起重机将塔式光热发电集热器整体从吸热塔底部吊装到吸热塔顶部是在吸热塔顶部围绕吸热塔顶部圆周布置多台门架,在门架上安装有液压起重机,每套液压起重机从塔内放下钢绞线,将每套液压起重机的钢绞线分别利用锚及销轴连接集热器底部钢梁吊耳,通过圆周布置多台门架上的液压起重机同步运行,将塔式光热发电集热器整体从吸热塔底部吊装到吸热塔顶部是在吸热塔顶部,然后采用支撑架进行就位进行固定。
  6. 如权利要求5所述的兆瓦级塔式光热发电集热器安装方法,其特征在于:所述的液压起重机同步运行是多台液压起重机通过液压钢绞线千斤顶的增量来提升或移动结构重物,每次的增量相当于液压钢绞线千斤顶的行程;所述的多个门架在吸热塔顶部顶部通过工字钢通过紧固件连接为一个整体,防止在吊装过程中门架受风力影响摆动;液压钢绞线千斤顶通过千斤顶活塞按顺序的伸出或缩回进行提升或拉动操作实现塔式光热发电集热器整体提升;液压钢绞线千斤顶设有楔形夹紧机构,楔形夹紧机构自动锁定钢绞线,活塞伸出时钢绞线通过千斤顶,然后在活塞缩回,复位时将其锁定在新位置;
  7. 如权利要求6所述的兆瓦级塔式光热发电集热器安装方法,其特征在于:所述的液压钢绞 线的下端连接吊耳,吊耳与塔式光热发电集热器通过集热器底部支撑横梁连接;集热器底部支撑横梁一方面通过紧固件连接在塔式光热发电集热器的底部,对塔式光热发电集热器起支撑作用;另一方面,在集热器底部支撑横梁的外端部向上部突出一个与集热器底部支撑横梁连接为一体的吊装块,吊装块上有与吊耳相配的插销;吊装时吊耳落入吊装块内,通过吊装块上的插销插入吊耳中,与吊耳形成连接;为避免吊装时因发生碰撞造成集热器设备损坏,在集热器底部支撑横梁的外端部设置有防碰撞块,防碰撞块用螺栓进行固定在集热器底部支撑横梁的外端部,此防碰撞块是防止集热器碰撞混泥土塔身内壁;防碰撞块由连接钢板、橡胶块组成,用螺栓固定在集热器底部支撑横梁外端部上;所述的整体安装定位是在集热器底部支撑横梁的下面连接有固定锚,固定锚在塔式光热发电集热器吊装到顶部后,通过移动装置移动到设置在吸热塔顶部的筒壁凹槽内,锁紧固定。
  8. 一种兆瓦级塔式光热发电集热器安装系统,包括塔式光热发电集热器滑移系统和塔式光热发电集热器吊装系统;其中,塔式光热发电集热器滑移系统包括集热器支撑环、滑移装置、滑移轨道;滑移装置安装在滑移轨道上,滑移轨道从集热器支撑环安装塔式光热发电集热器的塔式光热发电集热器组装区域延伸到吸热塔中心内部,集热器支撑环在滑移时安放在滑移装置上,由多台滑移装置同步滑移进入吸热塔中心内部;塔式光热发电集热器吊装系统包括吸热塔、多个门架、液压起重机和吊耳;门架安装在吸热塔顶部,液压起重机安装在门架上,液压起重机带有液压钢绞线千斤顶,液压钢绞线千斤顶与吊耳通过钢绞线连接;由多台安装有液压起重机的门架组合形成塔式光热发电集热器吊装系统,通过液压起重机的液压钢绞线千斤顶与吊耳配合将塔式光热发电集热器整体吊装到吸热塔塔顶。
  9. 如权利要求8所述的兆瓦级塔式光热发电集热器安装方法,其特征在于:所述的滑移装置包括设有浮动板的滑移靴,整个滑移系统共有4套滑移装置,每个滑移装置设有两个滑移靴,两个滑移靴支撑一个浮动装置,浮动装置与滑移靴为浮动连接,形成可调节水平面的浮动滑移装置;滑移靴底部为不锈钢材质,滑移靴不锈钢材质部分安装在滑移轨道内,并在滑移轨道上设有聚四氟乙烯或高密度聚乙烯垫块,形成小摩擦阻力的滑移靴;浮动装置上装有主油顶,通过调整滑移装置的位置,使主油顶法兰正对支撑环梁底,并通过浮动装置的浮动,使 得主油顶上方法兰紧贴集热器支撑环梁下表面法兰,对齐后通过紧固件将主油顶上方法兰与集热器支撑环梁下表面法兰紧固在一起;滑移靴后面与液压爬行器连接,通过液压爬行器推动滑移装置进行滑移。
  10. 如权利要求8所述的兆瓦级塔式光热发电集热器安装方法,其特征在于:所述的多个门架在吸热塔顶部顶部通过工字钢通过紧固件连接为一个整体,防止在吊装过程中门架受风力影响摆动;所述的液压钢绞线千斤顶通过千斤顶活塞按顺序的伸出或缩回进行提升或拉动操作;液压钢绞线千斤顶设有楔形夹紧机构,楔形夹紧机构自动锁定钢绞线,活塞伸出时钢绞线通过千斤顶,然后在活塞缩回,复位时将其锁定在新位置;液压钢绞线的下端连接吊耳,吊耳与塔式光热发电集热器通过集热器底部支撑横梁连接;集热器底部支撑横梁一方面通过紧固件连接在塔式光热发电集热器的底部,对塔式光热发电集热器通过集热器起支撑作用;另一方面,在集热器底部支撑横梁的外端部向上部突出一个与集热器底部支撑横梁连接为一体的吊装块,吊装块上有与吊耳相配的插销;吊装时吊耳落入吊装块内,通过吊装块上的插销插入吊耳中,与吊耳形成连接;为避免吊装时因发生碰撞造成集热器设备损坏,在集热器底部支撑横梁的外端部设置有防碰撞块,防碰撞块用螺栓进行固定在集热器底部支撑横梁的外端部,此防碰撞块是防止集热器碰撞混泥土塔身内壁;防碰撞块由连接钢板、橡胶块组成,用螺栓固定在集热器底部支撑横梁外端部上;所述的整体安装定位是在集热器底部支撑横梁的下面连接有固定锚,固定锚在塔式光热发电集热器吊装到顶部后,通过移动装置移动到设置在吸热塔顶部的筒壁凹槽内,锁紧固定。
PCT/CN2021/111827 2020-10-16 2021-08-10 一种兆瓦级塔式光热发电集热器安装方法及安装系统装置 WO2022078035A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011110830.1 2020-10-16
CN202011110830.1A CN112429666B (zh) 2020-10-16 2020-10-16 一种兆瓦级塔式光热发电集热器安装方法及安装系统装置

Publications (1)

Publication Number Publication Date
WO2022078035A1 true WO2022078035A1 (zh) 2022-04-21

Family

ID=74694772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111827 WO2022078035A1 (zh) 2020-10-16 2021-08-10 一种兆瓦级塔式光热发电集热器安装方法及安装系统装置

Country Status (2)

Country Link
CN (1) CN112429666B (zh)
WO (1) WO2022078035A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115180554A (zh) * 2022-06-30 2022-10-14 上海宝冶冶金工程有限公司 一种高炉炉体顶升滑移设备及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112429666B (zh) * 2020-10-16 2022-07-08 中国能源建设集团湖南火电建设有限公司 一种兆瓦级塔式光热发电集热器安装方法及安装系统装置
CN113756589A (zh) * 2021-10-11 2021-12-07 上海电气集团股份有限公司 塔式太阳能集热器和塔内平台模块化安装方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1081647A (zh) * 1992-07-31 1994-02-09 首钢总公司 大型物体整体滑移安装推移设备
CA2431877A1 (en) * 2000-12-15 2002-06-20 Halliburton Energy Services, Inc. Self-erecting rig
CN101708812A (zh) * 2009-11-09 2010-05-19 江苏盛裕风电设备有限公司 自升式吊装及其使用方法
CN101868676A (zh) * 2008-10-24 2010-10-20 巴布科克和威尔科克斯能量产生集团公司 可由销售店组装的太阳能吸收器热交换器
CN102016202A (zh) * 2008-05-07 2011-04-13 巴布科克和威尔科克斯能量产生集团公司 太阳能接收器和支承塔的竖立方法
CN103669956A (zh) * 2012-09-19 2014-03-26 阿尔斯通技术有限公司 集中式太阳能塔组件和方法
EP3208405B1 (de) * 2016-02-18 2020-05-20 Technische Hochschule Mittelhessen Vorrichtung und verfahren zur errichtung von turmartigen bauwerken aus fertigteilelementen
CN112429666A (zh) * 2020-10-16 2021-03-02 中国能源建设集团湖南火电建设有限公司 一种兆瓦级塔式光热发电集热器安装方法及安装系统装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB572343A (en) * 1942-10-31 1945-10-03 British Thomson Houston Co Ltd Improvements in and relating to hydraulic jack arrangements for vertical generators and the like
EP1039242A1 (de) * 1999-03-19 2000-09-27 Scaldaline Limited Wärmetauschsystem
EP1757873A3 (de) * 2005-08-19 2007-11-28 Hans Mathieu Schutzvorrichtung vor extremen Wettereinflüssen, insbes. für Solarkollektoren, Dachfenster, Glas-u.Kunststoffdächer, Gewächshäuser u. andere gefährdete Gegenstände
CN100560471C (zh) * 2007-09-18 2009-11-18 天津二十冶建设有限公司 采用液压提升技术吊装时塔架的滑移方法
US8544237B2 (en) * 2009-01-07 2013-10-01 Aerojet Rocketdyne Of De, Inc. Lifting system for solar power tower components
CN102431937A (zh) * 2011-08-19 2012-05-02 中广核太阳能开发有限公司 一种槽式太阳能集热器安装车及其使用方法
JP2014047952A (ja) * 2012-08-30 2014-03-17 Babcock-Hitachi Co Ltd 太陽熱集熱システムおよびその運用方法、太陽熱集熱システムを備えた発電プラント
CN103774856B (zh) * 2014-01-24 2017-05-31 江苏沪武建设集团有限公司 一种大跨度异状重型钢梁在超高层屋面上的滑移施工方法
CN103979442B (zh) * 2014-05-23 2016-06-29 中化二建集团有限公司 6400吨液压复式起重机吊装费托反应器的方法
CN205991628U (zh) * 2016-07-27 2017-03-01 佛山市开信光电有限公司 一种新型碟式太阳能光热系统
CN111559702B (zh) * 2020-04-30 2020-12-15 中广核(北京)新能源科技有限公司 一种槽式太阳能集热器吊装定位方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1081647A (zh) * 1992-07-31 1994-02-09 首钢总公司 大型物体整体滑移安装推移设备
CA2431877A1 (en) * 2000-12-15 2002-06-20 Halliburton Energy Services, Inc. Self-erecting rig
CN102016202A (zh) * 2008-05-07 2011-04-13 巴布科克和威尔科克斯能量产生集团公司 太阳能接收器和支承塔的竖立方法
CN101868676A (zh) * 2008-10-24 2010-10-20 巴布科克和威尔科克斯能量产生集团公司 可由销售店组装的太阳能吸收器热交换器
CN101708812A (zh) * 2009-11-09 2010-05-19 江苏盛裕风电设备有限公司 自升式吊装及其使用方法
CN103669956A (zh) * 2012-09-19 2014-03-26 阿尔斯通技术有限公司 集中式太阳能塔组件和方法
EP3208405B1 (de) * 2016-02-18 2020-05-20 Technische Hochschule Mittelhessen Vorrichtung und verfahren zur errichtung von turmartigen bauwerken aus fertigteilelementen
CN112429666A (zh) * 2020-10-16 2021-03-02 中国能源建设集团湖南火电建设有限公司 一种兆瓦级塔式光热发电集热器安装方法及安装系统装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115180554A (zh) * 2022-06-30 2022-10-14 上海宝冶冶金工程有限公司 一种高炉炉体顶升滑移设备及方法

Also Published As

Publication number Publication date
CN112429666A (zh) 2021-03-02
CN112429666B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2022078035A1 (zh) 一种兆瓦级塔式光热发电集热器安装方法及安装系统装置
CN101590982A (zh) 风力发电爬升吊装起重机
CN112141918B (zh) 利用吊装门架吊装兆瓦级塔式集热器的方法及吊装装置
CN103601079A (zh) 吊装式风电维修起重平台
CN215176107U (zh) 塔式光热发电集热器吊装防撞及顶部安装定位装置
CN214270035U (zh) 兆瓦级塔式集热器吊装系统装置及吊装装置
CN112320603B (zh) 塔式光热发电集热器吊装防撞及顶部安装定位方法及装置
CN112229080B (zh) 一种兆瓦级塔式光热发电集热器滑移方法及滑移装置
CN201485202U (zh) 风力发电爬升吊装起重机
CN112456348B (zh) 一种吸热器吊装方法
CN214030574U (zh) 一种吸热器滑移装置
CN104909280A (zh) 风力发电塔自顶升平移吊吊装系统
CN109678054B (zh) 一种定日镜的吊装装置
CN115231470B (zh) 一种二次反射塔的标准节安装用顶升装置及顶升方法
CN114104998A (zh) 一种附筒自爬升机构及其爬升方法
CN204281116U (zh) 风力发电塔跨越自爬式平移吊机
CN112320630A (zh) 一种吸热器吊装的支撑横梁
CN110863956B (zh) 大型风电机组的新型超高塔架结构、安装结构及安装方法
CN217578155U (zh) 一种二次反射塔的标准节安装用顶升装置
CN201619965U (zh) 爬升式吊装
CN218136221U (zh) 一种风电偏航系统轴承自动装配装置
CN112456333B (zh) 一种吸热器吊装控制系统
CN214003866U (zh) 一种吸热器吊装的支撑横梁
CN112456347A (zh) 一种吸热器液压提升方法
CN218988630U (zh) 太阳能光伏电池板安装装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879082

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21879082

Country of ref document: EP

Kind code of ref document: A1