WO2022077937A1 - 用于矿用卡车的交通控制系统及其方法 - Google Patents

用于矿用卡车的交通控制系统及其方法 Download PDF

Info

Publication number
WO2022077937A1
WO2022077937A1 PCT/CN2021/099541 CN2021099541W WO2022077937A1 WO 2022077937 A1 WO2022077937 A1 WO 2022077937A1 CN 2021099541 W CN2021099541 W CN 2021099541W WO 2022077937 A1 WO2022077937 A1 WO 2022077937A1
Authority
WO
WIPO (PCT)
Prior art keywords
lane
mining truck
mining
auxiliary
truck
Prior art date
Application number
PCT/CN2021/099541
Other languages
English (en)
French (fr)
Inventor
唐建林
高警卫
周长成
Original Assignee
江苏徐工工程机械研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏徐工工程机械研究院有限公司 filed Critical 江苏徐工工程机械研究院有限公司
Priority to AU2021362864A priority Critical patent/AU2021362864A1/en
Publication of WO2022077937A1 publication Critical patent/WO2022077937A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle

Definitions

  • the present disclosure relates to the field of traffic control in open-pit mines, and in particular, to a traffic control system and method for mining trucks.
  • open-pit mines are located in remote areas and the environment is harsh.
  • the aging trend of the drivers of transport vehicles in mining areas is obvious, and safety accidents caused by the negligence of transport drivers are frequent.
  • the economic burden of mining areas in terms of production safety and personnel investment will increase day by day.
  • the unmanned transportation solution for open-pit mines has gradually developed under the impetus of the urgent needs of the mining area and the development of modern science and technology.
  • the particularity and complexity of operation management in open-pit mines lead to many technical challenges in the realization of unmanned transportation systems in open-pit mines.
  • the actual mine transportation road has many curves and continuous narrow sections. If two lanes are planned, the lane line is close to the edge of the road, and there is not enough safety distance to ensure safe high-speed driving of vehicles, and even some road sections cannot be planned for standard two-lane width. , the vehicle will be inefficient, and it will also affect the average speed of the vehicle on the road, resulting in low system transportation efficiency.
  • a traffic control system for a mining truck comprising: a map management server configured to draw a mine road into a mine map, the mine map including a plurality of lanes and connecting the A plurality of road nodes of a plurality of lanes, the plurality of lanes including a dual carriageway and a single carriageway, the dual carriageway comprising an arterial lane and auxiliary lanes on both sides of the arterial lane, wherein the arterial lane and all The one-way lane connection; the path planning server is configured to obtain the mine map from the map management server, plan the road node route according to the mine map, and plan the transition route when the mining truck switches lanes during the meeting process; and a traffic control server configured to store the lane states of the plurality of lanes in the mine map, arbitrate and approve the mining truck's driving permission request according to the lane state the mining truck is about to drive into The driving permit request of the mining truck that meets the driving conditions, and the lane state is dynamically updated according to
  • the map management server is configured to, for the first road section where the width of the mine road satisfies the meeting condition of two mining trucks, use a map drawing tool to draw the centerline area of the mine road as all the road sections.
  • the main lane and the first auxiliary lane and the second auxiliary lane are respectively drawn on both sides of the main lane, and for the second road section where the width of the mine road does not meet the conditions for two mining trucks to meet, the first auxiliary lane and the second auxiliary lane are drawn respectively.
  • the second road segment is set as the one-way lane.
  • the route planning server is configured to use the mine map to create a map based on the current location of the first mining truck and the current location of the second mining truck traveling in the opposite direction of the first mining truck.
  • the first mining truck plans a first driving trajectory and a second driving trajectory is planned for the second mining truck, the first driving trajectory is sent to the first mining truck, and the second driving trajectory is sent to the first mining truck.
  • the traffic control server is configured to The lane status of the next lane to enter and the first distance between the first mining truck and the second mining truck determine whether to approve the entry from the first mining truck into the next a drive permission request for a lane, and if the lane status of the next lane is idle, or if the lane status of the next lane is occupied and the first distance is greater than a safety threshold, grant all The driving permission request for the first mining truck to enter the next lane, in the case that the lane status of the next lane is occupied and the first distance is less than or equal to the safety threshold, the first mining truck is rejected.
  • a driving permission request for a mining truck to enter the next lane, and a slowdown command or a stop command is sent to the first mining truck and the second mining truck.
  • the traffic control server is further configured to, after receiving the request for permission to drive into the auxiliary lane of the first road segment from the first mining truck, according to the first road segment
  • the lane state of the auxiliary lane of the first road section determines whether to approve the request for the driving permission of the first mining truck to enter the auxiliary lane of the first road section, in the case that the lane state of the auxiliary lane of the first road section is the occupied state rejecting the first mining truck's request for permission to drive into the auxiliary lane of the first road section, and instructing the first mining truck to stop and wait, and the lane status of the auxiliary lane in the first road section is idle In the case of the state, the driving permission request of the first mining truck to enter the auxiliary lane of the first road section is approved.
  • the path planning server is further configured to, if the traffic control server approves a request for a permission to drive of the first mining truck into an auxiliary lane of the first road segment, for all planning the first transition route from the main lane of the first road section to the first auxiliary lane for the first mining truck, and planning the second mining truck from the main lane of the first road section to the first auxiliary lane the second transition route of the second auxiliary lane, and after the first mining truck and the second mining truck meet each other, planning for the first mining truck from the first auxiliary lane to the a third transition route of the main lane, and a fourth transition route from the second auxiliary lane to the main lane is planned for the second mining truck.
  • the traffic control server is further configured to drive the first mining truck from the main lane into the first auxiliary lane according to the first transition route and the second mining truck After the truck drives from the main lane into the second auxiliary lane according to the second transition route, if there is a third mining truck driving opposite to the second mining truck and the third mining truck
  • the second distance between the second mining trucks is less than or equal to the safety threshold, sending a command to stop and waiting on the second auxiliary lane to the second mining truck, and approving the third a request for permission to drive into the first auxiliary lane from a mining truck
  • the path planning server is further configured to plan a route from the main lane to the first auxiliary lane for the third mining truck Fifth transition route, after the third mining truck meets the second mining truck, plan a sixth transition from the first auxiliary lane to the main lane for the third mining truck route.
  • the traffic control server is further configured to, if a first mining truck is traveling on a first arterial lane adjacent to the one-way lane, if there are no other mining trucks on the one-way lane If the truck is running, the request for permission to drive into the one-way lane sent by the first mining truck is approved.
  • the traffic control server is further configured to deny a second mining truck if the second mining truck is traveling on the one-way lane and the second mining truck is traveling in the opposite direction of the first mining truck a request for permission to drive into the one-way lane sent by the first mining truck, and in the case that the second mining truck drives to the first trunk lane, the second mining truck is approved to drive into the one-way lane A request for permission to travel in a second auxiliary lane, and approval of travel from the first mining truck into the one-way lane after the second mining truck leaves the second auxiliary lane and travels to the main lane a permission request; the path planning server is further configured to plan for the first mining truck after the traffic control server rejects the request for permission to drive into the one-way lane from the first mining truck
  • a traffic control method for a mining truck comprising: drawing a mine road into a mine map, the mine map including a plurality of lanes and a plurality of lanes connecting the plurality of lanes a road node, the plurality of lanes include a dual carriageway and a single carriageway, the dual carriageway includes an arterial lane and auxiliary lanes on both sides of the arterial lane, wherein the arterial lane is connected with the single carriageway; according to The mine map plans the road node route, and plans the transition route when the mining truck switches lanes during the meeting; Arbitration, approving the driving permission request of the mining trucks that meet the driving conditions, and dynamically updating the lane state according to the arbitration result, wherein the lane state includes an occupied state and an idle state.
  • the step of drawing a mine road into a mine map includes: for a first road section where the width of the mine road satisfies the condition for two mining trucks to meet, using a map drawing tool to draw a center line area of the mine road Draw the main lane and draw the first auxiliary lane and the second auxiliary lane on both sides of the main lane, and for the second section of the mine road where the width of the mine road does not meet the conditions for two mining trucks to meet, the The second road section is set as the one-way lane.
  • the traffic control method further comprises: according to the lane state of the next lane that the first mining truck will drive into and the first mining truck and the second mining truck between the first mining truck The distance determines whether to approve a request for permission to drive into the next lane from the first mining truck, wherein the second mining truck is traveling in the opposite direction of the first mining truck in the lane In the case where the state is the idle state or in the case that the state of the lane is the occupied state and the first distance is greater than the safety threshold, approve the driving permission request of the first mining truck to enter the next lane, and in the case of When the lane status of the next lane is the occupied state and the first distance is less than or equal to the safety threshold, the first mining truck's request for permission to drive into the next lane is rejected, and the sending a deceleration command or a stop command to the first mining truck and the second mining truck; and utilizing the mine according to the current location of the first mining truck and the current location of the second mining truck
  • the traffic control method further includes: after receiving a request for permission to drive into the auxiliary lane of the first road section from the first mining truck, according to the first road section
  • the lane state of the auxiliary lane determines whether to approve the request for the driving permission of the first mining truck to enter the auxiliary lane of the first road section; reject if the lane state of the auxiliary lane of the first road section is the occupied state
  • the lane status of the auxiliary lane in the first road section is an idle state Approve the driving permission request of the first mining truck to enter the auxiliary lane of the first road section, and plan the first mining truck from the main lane of the first road section to the first road section a first transition route of the auxiliary lane, and planning a second transition route from the main lane of the first road section to the second auxiliary lane for the second mining truck, and planning the transition between the first
  • a third transition route from the first auxiliary lane to the main lane is planned for the first mining truck, and a transition route from the first auxiliary lane to the main lane is planned for the second mining truck.
  • the traffic control method further comprises: driving the first mining truck from the main lane into the first auxiliary lane according to the first transition route and the second mining truck is After entering the second auxiliary lane from the main lane according to the second transition route, if there is a third mining truck driving opposite to the second mining truck and the third mining truck and the If the second distance between the second mining trucks is less than or equal to the safety threshold, a command to stop and wait on the second auxiliary lane is sent to the second mining truck, and the third mining truck is approved Use a request for permission to drive into the first auxiliary lane from a truck, and plan a fifth transition route from the main lane to the first auxiliary lane for the third mining truck, and plan a fifth transition route from the main lane to the first auxiliary lane for the third mining truck. After the third mining truck meets the second mining truck, a sixth transition route from the first auxiliary lane to the main lane is planned for the third mining truck.
  • the traffic control method further comprises: if the first mining truck is traveling on a first arterial lane adjacent to the one-way lane, if there are no other mining trucks on the one-way lane driving, the request for permission to drive into the one-way lane sent by the first mining truck is approved.
  • the traffic control method further includes rejecting the second mining truck if the second mining truck is traveling on the one-way lane and the second mining truck is traveling in the opposite direction of the first mining truck A request for driving permission sent by the first mining truck to enter the one-way lane, planning a seventh transition route from the first main lane to the first auxiliary lane for the first mining truck; in the first mining truck When the second mining truck drives to the first main lane, approve the request for the driving permission of the second mining truck to drive into the second auxiliary lane, and plan for the second mining truck to drive from the first an eighth transition route from the main lane to the second auxiliary lane; and granting entry from the first mining truck after the second mining truck leaves the second auxiliary lane and travels to the main lane The one-way lane request for permission to travel.
  • a traffic control system for a mining truck comprising: a memory; and a processor coupled to the memory, the processor configured to be based on storage in the memory
  • the instruction executes the method as previously described.
  • a non-transitory computer-readable storage medium having computer program instructions stored thereon which, when executed by a processor, implement the aforementioned method.
  • FIG. 1 is a schematic structural diagram illustrating a traffic control system for a mining truck according to some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram illustrating a dual carriageway in accordance with some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram illustrating a one-way lane in accordance with some embodiments of the present disclosure
  • FIG. 4 is a schematic diagram illustrating a mining truck traveling on a mine road according to some embodiments of the present disclosure
  • FIG. 5 is a schematic diagram illustrating a mining truck driving on a mine road according to other embodiments of the present disclosure
  • FIG. 6 is a schematic diagram illustrating a mining truck driving on a mine road according to other embodiments of the present disclosure
  • FIG. 7 is a schematic diagram illustrating a mining truck driving on a mine road according to other embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram illustrating a mining truck driving on a mine road according to other embodiments of the present disclosure
  • FIG. 9 is a flowchart illustrating a traffic control method for a mining truck according to some embodiments of the present disclosure.
  • FIG. 10 is a schematic structural diagram illustrating a traffic control system for a mining truck according to other embodiments of the present disclosure
  • FIG. 11 is a schematic structural diagram illustrating a traffic control system for a mining truck according to other embodiments of the present disclosure.
  • the present disclosure provides a traffic control system or method for mining trucks to improve the meeting efficiency of mining trucks on mine roads.
  • FIG. 1 is a schematic structural diagram illustrating a traffic control system for a mining truck according to some embodiments of the present disclosure.
  • 2 is a schematic diagram illustrating a dual carriageway in accordance with some embodiments of the present disclosure.
  • 3 is a schematic diagram illustrating a one-way lane in accordance with some embodiments of the present disclosure.
  • the traffic control system 100 includes a map management server 110 , a route planning server 120 and a traffic control server 130 .
  • the map management server 110, the route planning server 120, and the traffic control server 130 are electrically connected to each other.
  • these servers may be communicatively connected by means of a wired connection.
  • the map management server 110, the route planning server 120, and the traffic control server 130 may all be installed in a fixed computer room.
  • a mining truck 140 is also shown in FIG. 1 .
  • Each of the above servers can communicate with the mining truck through a communication network.
  • the communication network may adopt one or more of WIFI, 4G, and 5G.
  • Each of the above servers can be communicated and connected with the mining truck through a wireless connection.
  • the map management server 110, the route planning server 120, and the traffic control server 130 may be integrated together.
  • the map management server 110 is configured to draw mine roads into a mine map.
  • the mine map includes a plurality of lanes and a plurality of road nodes (eg, road nodes 400 shown in FIG. 2 ) connecting the plurality of lanes.
  • the plurality of lanes includes a dual carriageway 200 (shown in FIG. 2 ) and a single carriageway 300 (shown in FIG. 3 ).
  • the dual carriageway 200 includes an arterial lane 210 and auxiliary lanes 220 on both sides of the arterial lane 210 .
  • the main lane 210 is connected with the one-way lane 300 .
  • a two-lane lane refers to a lane that can satisfy two vehicles traveling in parallel (for example, meeting vehicles) (for example, the centerline area of a multiplexed road can be used as the main lane), and a single-lane lane refers to a lane that can only satisfy one vehicle. Separate driveway.
  • auxiliary lanes can be set on both sides of the main lane of the road section where vehicles can pass (for example, the road width is greater than or equal to 3 times the vehicle width), and the distance between the two auxiliary lane lines can be several meters (eg, 3 meters) larger than the vehicle width.
  • the distance between the auxiliary lane line and the road boundary is greater than or equal to 0.5 times the vehicle width.
  • the main lane 210 and the auxiliary lane 220 shown in FIG. 2 are both belt-shaped.
  • a strip of arterial lane 210 may partially overlap with a strip of auxiliary lane 220 , ie, a portion of arterial lane 210 overlaps a portion of auxiliary lane 220 .
  • the center distance of the two auxiliary lanes needs to meet the requirement of two-vehicle meeting, and the distance between the auxiliary lane and the road boundary 230 on the same side meets the safety distance requirement for vehicles.
  • the main road section of the road section where vehicles cannot pass (for example, the road width is less than 3 times the vehicle width) is set as a one-way lane.
  • One-way lanes do not have transition routes.
  • the map management server 110 may be configured to, for the first road section (for example, the two-way road section shown in FIG. 2 ) whose width of the mine road satisfies the meeting condition of two mining trucks, map the mine through a map drawing tool.
  • the center line area of the road is drawn as the main lane, and the first auxiliary lane and the second auxiliary lane are drawn on both sides of the main lane, and the width of the mine road does not meet the conditions for two mining trucks.
  • one-way segment shown set the second segment as a one-way lane.
  • central line area refers to a strip-shaped area extending to both sides with a predetermined width, taking the central line of the mine road as the central line of the area.
  • the map management server 110 may also be configured to draw a transition route at the junction of a one-way lane and a two-way lane, the transition route being a route connecting an auxiliary lane with a main lane.
  • the route planning server 120 is configured to obtain the mine map from the map management server 110, plan the route of the road nodes according to the mine map, and plan the transition route when the mining truck switches lanes during the meeting process.
  • the path planning server 120 is configured to utilize the mine map for the first mining truck based on the current location of the first mining truck and the current location of the second mining truck traveling opposite the first mining truck Planning the first driving trajectory and planning the second driving trajectory for the second mining truck, sending the first driving trajectory to the first mining truck, and sending the second driving trajectory to the second mining truck, so that the first mining truck The truck will meet with the second mining truck. That is, the first mining truck travels according to the first driving trajectory, and the second mining truck travels according to the second driving trajectory, thus realizing the meeting of the mining trucks.
  • the travel trajectories (the first travel trajectories and the second travel trajectories) described herein may include a transition route from an arterial lane to an auxiliary lane or a transition route from an auxiliary lane to an arterial lane.
  • the path planning server 120 may plan the main road trajectory from the current location of the mining truck to the destination for the mining truck, and then plan the required road for the mining truck when it meets other vehicles during the driving process of the mining truck Change lanes and transition routes to meet the needs of meeting vehicles.
  • the traffic control server 130 is configured to store the lane status of a plurality of lanes in the mine map, arbitrate the driving permission request of the mining truck according to the lane status that the mining truck will drive into the lane, and approve the driving of the mining truck that meets the driving conditions Permit requests, and dynamically update lane status based on arbitration results.
  • the corresponding lane is the one that the mining truck will enter
  • the lane state includes an occupied state and an idle state.
  • the idle state means that there is no vehicle running on the lane
  • the occupied state means that there is a vehicle running on the lane.
  • the traffic control server sets the status of the trunk lane to the occupied state, and marks the lane occupant as the first mining truck; otherwise, it is set to idle state. If the first mining truck drives on the road section shown in FIG. 3 , the first arterial lane 211 , the one-way lane 300 , the second arterial lane 212 and the transition route in the same direction can all be set to the occupied state.
  • the first main lane 211 is set to the occupied state, and the second mining truck driving in the opposite direction of the first mining truck is not in the first main lane 211. Permission to travel on arterial lane 211.
  • the second mining truck travels from another auxiliary lane (described in detail later).
  • the traffic control server 130 is configured according to the lane status of the next lane that the first mining truck is about to drive into (ie, the next lane of the lane the first mining truck is currently in) and the first mining truck
  • the first distance between the truck and the second mining truck determines whether to approve the request for permission to drive into the next lane from the first mining truck, and if the lane status of the next lane is idle or in the next In the case where the lane status of one lane is occupied and the first distance is greater than the safety threshold, the driving permission request for the first mining truck to enter the next lane is approved, where the lane status of the next lane is occupied and the first When the distance is less than or equal to the safety threshold, the first mining truck's request for permission to move into the next lane is rejected, and a speed reduction command or a stop command is sent to the first mining truck and the second mining truck.
  • the safety threshold can be determined according to the actual situation or actual needs.
  • the safety threshold may range from 10 meters to 200 meters.
  • the range of the safety threshold is only exemplary, and the scope of the present disclosure is not limited to the range of the safety threshold described herein.
  • the safety threshold may also be less than 10 meters or greater than 200 meters.
  • the traffic control server 130 after receiving the request for permission to drive into a certain lane (or referred to as a request for permission to drive) from the first mining truck, the traffic control server 130, if the lane state of the lane is the idle state , or although the lane status of the lane is occupied but the first distance is greater than the safety threshold, the driving permit request of the first mining truck is approved, that is, the first mining truck is allowed to drive into the lane; if the lane status of the lane is In the occupied state (that is, the lane has been occupied by another mining truck) and the first distance is less than or equal to the safety threshold, the driving permission request of the first mining truck is rejected, that is, the first mining truck is not allowed to enter the lane. This increases the safety of mining trucks driving on this lane.
  • the traffic control server 130 may set safety thresholds for the two trucks traveling in the same direction and in the opposite direction.
  • the rear vehicle slows down or stops when the distance between the two vehicles is less than the safety threshold.
  • the two trucks can stop or reduce their speed and go through the meeting process.
  • the traffic control system includes: a map management server configured to draw a mine road into a mine map, the mine map comprising a plurality of lanes and a plurality of road nodes connecting the plurality of lanes, the plurality of lanes including a dual carriageway and a single carriageway, a dual carriageway
  • the travel lane includes a main lane and auxiliary lanes on both sides of the main lane, wherein the main lane is connected with the one-way lane;
  • the route planning server is configured to obtain the mine map from the map management server, and plan the route of the road nodes according to the mine map, and Planning the transition route when the mining truck switches lanes during the meeting;
  • the traffic control server which is configured to store the lane status of multiple lanes in the mine map, and adjust the mining truck's status according to the lane status of the mining truck about to enter the lane.
  • the driving permission request is arbitrated, and the driving permission request of the mining trucks that meet the driving conditions is approved, and the lane state is dynamically updated according to the arbitration result, wherein the lane state includes the occupied state and the idle state.
  • the system can improve the meeting efficiency of mining trucks on the mine road, thereby increasing the average speed of vehicles on the road, thereby improving the transportation efficiency of the system.
  • the traffic control system includes the map management server, the route planning server, and the traffic control server and does not include the mining truck 140 .
  • the scope of the present disclosure is not limited thereto.
  • the traffic control system may also include a mining truck 140 .
  • the mining truck 140 described above is an unmanned mining truck.
  • the mining truck may include a positioning device and an autonomous driving system.
  • the positioning device and the autonomous driving system are installed on the mining truck.
  • the positioning device is configured to obtain its own position information and send the position information to the traffic control server 130 and the route planning server 120 .
  • the positioning device can also send the traveling direction and traveling speed information of the mining truck to the traffic control server 130 and the route planning server 120 .
  • the autonomous driving system is configured to receive a deceleration command or a stop command from the traffic control server 130 and automatically perform a deceleration or stop operation, and a driving trajectory from the route planning server 120 and automatically follow the driving trajectory (eg, a transition route) drive.
  • the autonomous driving system can also send a traffic control server a driving permission request message to enter a lane.
  • FIG. 4 is a schematic diagram illustrating a mining truck traveling on a mine road according to some embodiments of the present disclosure.
  • FIG. 4 shows a schematic diagram of the normal driving of a mining truck on a road section of a mine where it is possible to drive.
  • the arrows in the truck shown in FIG. 4 indicate the direction of travel of the truck, and the following is similar.
  • the first mining truck 141 when there is only the first mining truck on the main road of a certain road, the first mining truck 141 normally drives on the main road of the road.
  • the traffic control server For example, every time the first mining truck 141 travels to the middle of a lane, it requests the traffic control server whether the next lane can be driven, and the traffic control server will determine whether to approve the first mining truck 141 to drive in according to the lane status of the next lane. Request for permission to travel in the next lane. If the state of the next lane is the idle state, the traffic control server approves the driving permission request of the first mining truck 141, and the first mining truck 141 continues to drive. If the state of the next lane is the occupied state, that is, there is a second mining truck (described in detail below in conjunction with FIG. 5 ) traveling in the opposite direction, the traffic control server will reject the request of the first mining truck 141 , and the first mining truck 141 is rejecting the request. After a request for permission to drive in the next lane, you can drive at a reduced speed.
  • FIG. 5 is a schematic diagram illustrating a mining truck traveling on a mine road according to other embodiments of the present disclosure.
  • FIG. 5 shows a schematic diagram of the process of two mining trucks meeting on a possible road section.
  • the traffic control server 130 will send a speed reduction command to the two trucks or a stop command (as shown in panel a in Figure 5).
  • the first mining truck 141 sends a request for permission to drive into an auxiliary lane (eg, the first auxiliary lane 221 ) to the traffic control server, and the traffic control server determines whether to approve the request for permission to drive according to whether the corresponding auxiliary lane is free. If the auxiliary lane is in the occupied state, the traffic control server rejects the request of the first mining truck 141, the first mining truck 141 stops and waits, and continuously sends the request for the driving permission of the auxiliary lane.
  • an auxiliary lane eg, the first auxiliary lane 221
  • the traffic control server approves the request of the first mining truck 141 , and the route planning server plans the first transition from the main lane to the auxiliary lane (eg, the first auxiliary lane 221 ) for the first mining truck 141 .
  • Route 421 and send to the first mining truck 141.
  • the first mining truck 141 drives into the auxiliary lane according to the first transition route 421 .
  • the second mining truck 142 traveling in the opposite direction executes the same command as the above-described command for the first mining truck 141 . After both vehicles reach the auxiliary lane, drive slowly along the auxiliary lane until the end of the meeting.
  • the two trucks then apply to the traffic control server for a request from the auxiliary lane to the main lane.
  • the path planning server will plan the transition route from the auxiliary lane to the main lane for the two trucks (as shown in Figure 5 in Figure d). Show).
  • the two trucks drive at high speed from the auxiliary lane into the main lane according to the transition route (as shown in the e in Figure 5).
  • the traffic control server 130 may be further configured to, after receiving the request for permission to drive into the auxiliary lane of the first road section from the first mining truck 141, according to the The lane state determines whether to approve the driving permission request of the first mining truck 141 to drive into the auxiliary lane of the first road section, and reject the driving of the first mining truck 141 when the lane status of the auxiliary lane of the first road section is the occupied state
  • the first mining truck 141 is ordered to stop and wait, and the first mining truck 141 is approved to drive into the first road section when the lane status of the auxiliary lane in the first road section is idle.
  • the route planning server 120 may also be configured to plan the first mining truck 141 from the first road segment if the traffic control server 130 approves the first mining truck 141's request for permission to travel into the auxiliary lane of the first road segment.
  • the first transition route 421 from the main lane 210 to the first auxiliary lane 221 is planned, and the second transition route 422 from the main lane 210 to the second auxiliary lane 222 in the first section is planned for the second mining truck 142.
  • a fourth transition route 424 from the second auxiliary lane 222 to the arterial lane 210 is planned.
  • the meeting operation of the first mining truck and the second mining truck on the dual carriageway is realized, so that the meeting efficiency of the two trucks can be improved.
  • FIG. 6 is a schematic diagram illustrating a mining truck traveling on a mine road according to other embodiments of the present disclosure.
  • FIG. 6 is a schematic diagram showing a process of multiple trucks meeting on a possible road segment.
  • the path planning server will plan a fifth transition route 425 from the main lane 210 to the first auxiliary lane 221 for the third mining truck 143 , and the third mining truck 143 drives from the main lane to the auxiliary lane according to the fifth transition route 425 .
  • the second mining truck 142 and the third mining truck 143 drive slowly along the auxiliary lane (as shown in d in FIG. 6 ) until the end of the meeting, the second mining truck 142 and the third mining truck 143
  • the truck 143 then applies to the traffic control server for a request for permission to travel from the auxiliary lane to the main lane.
  • the path planning server will plan the route from the auxiliary lane to the main lane for the second mining truck 142 and the third mining truck 143 .
  • Transition route (shown in e in Figure 6).
  • the second mining truck 142 and the third mining truck 143 drive from the auxiliary lane into the main lane according to the transition route and travel at high speed (as shown in the f diagram in FIG. 6 ).
  • the traffic control server 130 may also be configured to drive the first mining truck 141 from the main lane 210 into the first auxiliary lane 221 according to the first transition route 421 and the second mining truck 142 according to the second After the transition route 422 enters the second auxiliary lane 222 from the main lane 210, if there is a third mining truck 143 driving opposite the second mining truck 142 and there is a gap between the third mining truck 143 and the second mining truck 142 The second distance is less than or equal to the safety threshold D 0 , the second mining truck 142 is sent to the second mining truck 142 to stop and wait on the second auxiliary lane 222 , and the third mining truck 143 is approved to enter the first auxiliary lane. 221 for driving permission requests. At this time, the first mining truck 141 leaves the first auxiliary lane 221 .
  • the path planning server 120 may also be configured to plan a fifth transition route 425 from the main lane 210 to the first auxiliary lane 221 for the third mining truck 143 , where the third mining truck 143 meets the second mining truck 142 Afterwards, a sixth transition route 426 from the first auxiliary lane 221 to the main lane 210 is planned for the third mining truck 143 .
  • the meeting operation of a plurality of mining trucks on the dual carriageway is realized, so that the meeting efficiency of the two trucks can be improved.
  • FIG. 7 is a schematic diagram illustrating a mining truck traveling on a mine road according to other embodiments of the present disclosure.
  • Fig. 7 is a schematic diagram showing a normal driving of a mining truck on a one-way road section of a mine.
  • the first mining truck 141 if it encounters a one-way lane 300 while driving at high speed on the first arterial lane 211 , it needs to apply to the traffic control server for a driving permission request in advance. Only the first arterial lane 211 , the one-way lane 300 and the The request will only be granted when there is no traffic on the second arterial lane 212 . After the request of the first mining truck 141 is approved, the first mining truck 141 can continue to decelerate along the trunk lane, and when it is about to reach the second trunk lane 212, the first mining truck 141 sends to drive into the second trunk lane. Lane 212 is a request for permission to travel, as shown in panels c and d in FIG. 7 . After the request is approved, the first mining truck 141 continues to decelerate along the trunk lane, and after leaving the second trunk lane 212, it drives normally at a high speed.
  • the traffic control server 130 may also be configured to, in the case where the first mining truck 141 travels on the first arterial lane 211 adjacent to the one-way lane 300, if there is no other mine on the one-way lane 300 When driving by truck, the request for permission to drive into the one-way lane 300 from the first mining truck 141 is approved.
  • FIG. 8 is a schematic diagram illustrating a mining truck traveling on a mine road according to other embodiments of the present disclosure.
  • FIG. 8 shows a schematic diagram of the process of two mining trucks meeting on a one-way lane.
  • the first mining truck 141 encounters the one-way lane 300 when driving at high speed on the first main lane 211 , if there is already a second mining truck 142 on the opposite side driving on the second main lane 212 , and the second mine If the truck 142 first obtains the driving permission of the one-way lane 300, the state of the one-way lane is the occupied state, and the request for the driving permission applied by the first mining truck 141 will be rejected.
  • the first mining truck 141 can drive into the first auxiliary lane 141 through the seventh transition route 427 connecting the main lane and stop and wait (as shown in the b diagram in FIG. 8 ), and continuously request whether there is a driving permission for the one-way section, At the same time, the first trunk lane 211 corresponding to the auxiliary lane where the first mining truck 141 is located will be set to the occupied state.
  • the second mining truck 142 When the second mining truck 142 is about to arrive at the first arterial lane 211, a request is made to the traffic control server whether there is a driving permission for the first arterial lane 211, which will be rejected at this time.
  • the second mining truck 142 again requests the traffic control server whether the second auxiliary lane 222 corresponding to the first main lane 211 has a driving permission.
  • the second mining truck 142 drives into the second auxiliary lane 222 and stops after entering the second auxiliary lane 222 (as shown in figures c and d in FIG.
  • the server requests whether there is a driving permission for the main road, and if approved, the second mining truck 142 drives to the main road through the second auxiliary lane and drives at high speed (as shown in e and f in FIG. 8 ). After the second mining truck 142 leaves the one-way road section, the driving permit for the one-way road section is released, and the state of the one-way road section returns to idle.
  • the request for permission to travel from the first auxiliary lane to the one-way lane applied by the first mining truck 141 is approved by the traffic control server, and the first mining truck 141 enters the one-way lane 300 through the first auxiliary lane 141 and continues to drive (as shown in figure f in Figure 8).
  • the traffic control server 130 may also be configured to reject the first mining truck 141 if the second mining truck 142 is traveling on the one-way lane 300 and the second mining truck 142 is traveling in the opposite direction of the first mining truck 141
  • the request for permission to drive into the one-lane lane from the mining truck 141 in the case that the second mining truck 142 drives to the first main lane, the driving permission for the second mining truck 142 to enter the second auxiliary lane 222 is approved request, and approval of the first mining truck 141 request for permission to travel into the one-way lane 300 after the second mining truck leaves the second auxiliary lane and travels to the main lane.
  • the route planning server 120 may also be configured to plan the first mining truck 141 from the first arterial lane 211 to The seventh transition route 427 of the first auxiliary lane 221 is planned for the second mining truck 142 from the first main lane after the traffic control server 130 approves the request for permission to drive the second mining truck 142 into the second auxiliary lane 222 211 to the eighth transition route 428 of the second auxiliary lane 222 .
  • the path planning server 120 may also be configured to plan for the first mining truck 141 from the first auxiliary lane 221 after the traffic control server 130 approves the first mining truck 141's request for permission to travel from the first auxiliary lane to the one-way lane Ninth transition route 429 to one-way lane 300 .
  • the process of two mining trucks meeting on a one-way lane is realized, so that the meeting efficiency of the two trucks can be improved.
  • FIG. 9 is a flowchart illustrating a traffic control method for a mining truck according to some embodiments of the present disclosure. As shown in FIG. 9, the method includes steps S902 to S906.
  • a mine road is drawn into a mine map, the mine map includes multiple lanes and multiple road nodes connecting the multiple lanes, the multiple lanes include a double carriageway and a single carriageway, and the double carriageway includes the main lane and the main lane. Auxiliary lanes on both sides, among which, the main lane is connected with the one-way lane.
  • the step S902 includes: for the first road section where the width of the mine road satisfies the condition for two mining trucks to meet, using a map drawing tool to draw the centerline area of the mine road as the main lane and on both sides of the main lane Draw the first auxiliary lane and the second auxiliary lane respectively, and draw the transition route for connecting the auxiliary lane with the main lane, and the second road section for which the width of the mine road does not meet the conditions for two mining trucks to meet, Set the second road segment as a one-way lane.
  • the map management server draws the entire mine road network topology map and other necessary map information to form a complete mine map, which is stored in the database.
  • the road network includes the information of each lane and the road nodes connecting each lane.
  • the center line of the mine road can be drawn into a lane that mining trucks can drive on, as the main road for mining trucks to drive autonomously.
  • the section where the width of the mine road cannot allow two vehicles to meet, set the section as a one-way lane. And draw four transition lanes to connect the auxiliary lanes on both sides with the main road.
  • the drawn lane map data is saved to the map management server, and the map management server sends the lane data of the mine map to the traffic control server and the route planning server.
  • step S904 the road node route is planned according to the mine map, and the transition route when the mining truck switches lanes during the meeting process is planned.
  • step S906 arbitrate the driving permission request of the mining truck according to the lane state of the mining truck about to drive into the lane, approve the driving permission request of the mining truck that meets the driving conditions, and dynamically update the lane state according to the arbitration result, wherein,
  • the lane state includes an occupied state and an idle state.
  • the method can improve the meeting efficiency of mining trucks on the mine road, so as to improve the average speed of the vehicles on the road, thereby improving the transportation efficiency of the system.
  • the above traffic control method may further include: determining whether to Approve the request for permission to drive into the next lane from the first mining truck, where the second mining truck is driving in the opposite direction of the first mining truck, if the lane status of the next lane is free or in the next lane In the case where the lane status of the lane is occupied and the first distance is greater than the safety threshold, the driving permission request for the first mining truck to enter the next lane is approved, and the lane status of the next lane is occupied and the first distance is less than If it is equal to or equal to the safety threshold, the first mining truck's request for permission to move into the next lane is denied, and a deceleration command or a stop command is sent to the first mining truck and the second mining truck.
  • the above traffic control method may further include: planning a first driving trajectory for the first mining truck by using a mine map and planning a first driving trajectory for the first mining truck according to the current position of the first mining truck and the current position of the second mining truck The second mining truck plans the second driving trajectory, sends the first driving trajectory to the first mining truck, and sends the second driving trajectory to the second mining truck, so that the first mining truck and the second mining truck can execute will car.
  • the above traffic control method may further include: after receiving a request for permission to drive into the auxiliary lane of the first road section from the first mining truck, determining according to the lane state of the auxiliary lane of the first road section Whether to approve the driving permission request of the first mining truck to enter the auxiliary lane of the first road section; reject the first mining truck's request to enter the first road section when the lane status of the auxiliary lane of the first road section is occupied Request for the driving permission of the auxiliary lane, and order the first mining truck to stop and wait; in the case that the lane status of the auxiliary lane of the first road section is an idle state, the driving of the first mining truck into the auxiliary lane of the first road section is approved.
  • Permit request plan a first transition route from the main lane of the first road section to the first auxiliary lane for the first mining truck, and plan the first transition route from the main lane of the first road section to the second auxiliary lane for the second mining truck
  • the second transition route and after the first mining truck and the second mining truck meet, plan a third transition route from the first auxiliary lane to the main lane for the first mining truck, and plan the third transition route for the second mining truck from the first auxiliary lane to the main lane.
  • the above traffic control method may further include: driving the first mining truck from the main lane into the first auxiliary lane according to the first transition route and the second mining truck from the main lane according to the second transition route After the second auxiliary lane, if there is a third mining truck driving opposite the second mining truck and the second distance between the third mining truck and the second mining truck is less than or equal to the safety threshold
  • the mining truck sends the order to stop and wait in the second auxiliary lane, and approves the driving permission request from the third mining truck to enter the first auxiliary lane, and plans for the third mining truck to go from the main lane to the first auxiliary lane.
  • the above traffic control method may further include: in the case that the first mining truck is driving on the first arterial lane adjacent to the one-way lane, if there are no other mining trucks driving on the one-way lane, approving A request for permission to drive into a one-way lane from the first mining truck.
  • the above traffic control method may further include: if the second mining truck is driving on a one-way lane and the second mining truck is driving in the opposite direction of the first mining truck, rejecting the traffic sent by the first mining truck A request for permission to drive into a single-lane lane, planning a seventh transition route for the first mining truck from the first main lane to the first auxiliary lane; in the event that the second mining truck travels to the first main lane, approve the first Request for permission to drive the second mining truck into the second auxiliary lane, and plan an eighth transition route from the first main lane to the second auxiliary lane for the second mining truck; and when the second mining truck leaves the second auxiliary lane After driving into the main lane, approve the request for permission to drive into the one-way lane from the first mining truck.
  • traffic control can be carried out in two situations: (1) The width of the road section allows two vehicles to meet at a low speed, then both vehicles will drive to the right side road; the road from the center line to the side road is planned by the path It can be calculated in real time; (2) If the width of the meeting road is not enough for two vehicles to meet, the road section will be set as a traffic control section, and both vehicles will drive to the right side road, and the vehicle with lower priority will stop on the side road. , wait for the opposite vehicle with higher priority to pass the traffic control section, then drive towards the road center line and continue to drive along the road center line at high speed.
  • the above methods can achieve the following effects: (1) mining trucks can travel at high speed as safely as possible on mine roads; (2) minimize the length of one-way roads and reduce parking waiting time; (3) meet vehicles safely.
  • FIG. 10 is a schematic structural diagram illustrating a traffic control system for a mining truck according to other embodiments of the present disclosure.
  • the traffic control system includes a memory 1010 and a processor 1020 . in:
  • the memory 1010 may be a magnetic disk, flash memory, or any other non-volatile storage medium.
  • the memory is used to store the instructions in the embodiment corresponding to FIG. 9 .
  • the processor 1020 is coupled to the memory 1010 and may be implemented as one or more integrated circuits, such as a microprocessor or microcontroller.
  • the processor 1020 is configured to execute the instructions stored in the memory, which can improve the meeting efficiency of mining trucks on the mine road, thereby increasing the average speed of the vehicles on the road, thereby improving the transportation efficiency of the system.
  • the traffic control system 1100 includes a memory 1110 and a processor 1120 .
  • Processor 1120 is coupled to memory 510 through BUS 1130 .
  • the traffic control system 1100 can also be connected to the external storage device 1150 through the storage interface 1140 to call external data, and can also be connected to the network or another computer system (not shown) through the network interface 1160, which will not be described in detail here.
  • the data instructions are stored in the memory and the above instructions are processed by the processor, which can improve the meeting efficiency of mining trucks on the mine road, thereby improving the average speed of the vehicles on the road, thereby improving the transportation of the system. efficiency.
  • the present disclosure further provides a computer-readable storage medium having computer program instructions stored thereon, and when the instructions are executed by a processor, implement the steps of the method in the embodiment corresponding to FIG. 9 .
  • embodiments of the present disclosure may be provided as a method, apparatus, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein .
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种用于矿用卡车的交通控制系统及其方法。该交通控制系统(100)包括:地图管理服务器(110),被配置为将矿山道路绘制成矿山地图;路径规划服务器(120),被配置为根据矿山地图规划道路节点路线,并且规划会车过程中矿用卡车(140)切换车道时的过渡路线;以及交通管制服务器(130),被配置为存储矿山地图中多个车道的车道状态,根据矿用卡车(140)将要驶入车道的车道状态对矿用卡车(140)的行驶许可请求进行仲裁,批准符合行驶条件的矿用卡车(140)的行驶许可请求,并根据仲裁结果动态更新车道状态,其中,车道状态包括占用状态和空闲状态。该交通控制系统(100)及其方法提高了矿用卡车(140)在矿山道路上的会车效率。

Description

用于矿用卡车的交通控制系统及其方法
相关申请的交叉引用
本申请是以CN申请号为202110608718.9,申请日为2021年6月1日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及露天矿山的交通控制领域,特别涉及一种用于矿用卡车的交通控制系统及其方法。
背景技术
通常,露天矿山地处偏远,环境恶劣,矿区运输车辆作业司机的老龄化趋势明显,由运输司机疏忽导致的安全事故频出。未来矿区在生产安全、人员投入等方面的经济负担将日益增加。露天矿山无人化运输解决方案在矿区迫切需求和现代科技发展的推动下逐渐发展。然而,露天矿山的作业管理特殊性和复杂性导致露天矿山无人化运输系统的实现面临诸多技术挑战。
实际矿山运输道路弯道多,有连续较窄路段,如果规划双车道,车道线距离道路的边缘较近,没有足够安全距离,无法保证车辆安全的高速行驶,甚至部分路段宽度无法规划标准双车道,车辆会车效率低,而且还会影响车辆在道路上行驶的平均速度,从而导致系统运输效率较低。
发明内容
根据本公开的一个方面,提供了一种用于矿用卡车的交通控制系统,包括:地图管理服务器,被配置为将矿山道路绘制成矿山地图,所述矿山地图包含多个车道和连接所述多个车道的多个道路节点,所述多个车道包括双行车道和单行车道,所述双行车道包括主干车道和在所述主干车道两侧的辅助车道,其中,所述主干车道与所述单行车道连接;路径规划服务器,被配置为从所述地图管理服务器获得所述矿山地图,根据所述矿山地图规划道路节点路线,并且规划会车过程中矿用卡车切换车道时的过渡路线;以及交通管制服务器,被配置为存储所述矿山地图中所述多个车道的车道状态,根据所述矿用卡车将要驶入车道的车道状态对所述矿用卡车的行驶许可请求进行 仲裁,批准符合行驶条件的矿用卡车的行驶许可请求,并根据仲裁结果动态更新所述车道状态,其中,所述车道状态包括占用状态和空闲状态。
在一些实施例中,所述地图管理服务器被配置为对于所述矿山道路的宽度满足两辆矿用卡车会车条件的第一路段,通过地图绘制工具将所述矿山道路的中线区域绘制成所述主干车道以及在所述主干车道两侧分别绘制第一辅助车道和第二辅助车道,以及对于所述矿山道路的宽度不满足两辆矿用卡车会车条件的第二路段,将所述第二路段设置为所述单行车道。
在一些实施例中,所述路径规划服务器被配置为根据第一矿用卡车的当前位置和与所述第一矿用卡车相向行驶的第二矿用卡车的当前位置,利用所述矿山地图为所述第一矿用卡车规划第一行驶轨迹并为所述第二矿用卡车规划第二行驶轨迹,将所述第一行驶轨迹发送给所述第一矿用卡车,将所述第二行驶轨迹发送给所述第二矿用卡车,以使得所述第一矿用卡车与所述第二矿用卡车执行会车;以及所述交通管制服务器被配置为根据所述第一矿用卡车将要驶入的下一个车道的车道状态和所述第一矿用卡车与所述第二矿用卡车之间的第一距离确定是否批准所述第一矿用卡车发来的驶入所述下一个车道的行驶许可请求,并在所述下一个车道的车道状态为空闲状态的情况下或者在所述下一个车道的车道状态为占用状态且所述第一距离大于安全阈值的情况下,批准所述第一矿用卡车的驶入下一个车道的行驶许可请求,在所述下一个车道的车道状态为占用状态且所述第一距离小于或等于所述安全阈值的情况下,拒绝所述第一矿用卡车的驶入下一个车道的行驶许可请求,并向所述第一矿用卡车与所述第二矿用卡车发送降速命令或停车命令。
在一些实施例中,所述交通管制服务器还被配置为在接收到所述第一矿用卡车发来的驶入所述第一路段的辅助车道的行驶许可请求后,根据所述第一路段的辅助车道的车道状态确定是否批准所述第一矿用卡车的驶入所述第一路段的辅助车道的行驶许可请求,在所述第一路段的辅助车道的车道状态为占用状态的情况下拒绝所述第一矿用卡车的驶入所述第一路段的辅助车道的行驶许可请求,并命令所述第一矿用卡车停车等待,在所述第一路段的辅助车道的车道状态为空闲状态的情况下批准所述第一矿用卡车的驶入所述第一路段的辅助车道的行驶许可请求。
在一些实施例中,所述路径规划服务器还被配置为在所述交通管制服务器批准所述第一矿用卡车的驶入所述第一路段的辅助车道的行驶许可请求的情况下,为所述第一矿用卡车规划从所述第一路段的主干车道到所述第一辅助车道的第一过渡路线,并 为所述第二矿用卡车规划从所述第一路段的主干车道到所述第二辅助车道的第二过渡路线,以及在所述第一矿用卡车与所述第二矿用卡车执行会车后,为所述第一矿用卡车规划从所述第一辅助车道到所述主干车道的第三过渡路线,并为所述第二矿用卡车规划从所述第二辅助车道到所述主干车道的第四过渡路线。
在一些实施例中,所述交通管制服务器还被配置为在所述第一矿用卡车根据所述第一过渡路线从所述主干车道驶入所述第一辅助车道且所述第二矿用卡车根据所述第二过渡路线从所述主干车道驶入所述第二辅助车道之后,如果存在与所述第二矿用卡车相向行驶的第三矿用卡车且所述第三矿用卡车与所述第二矿用卡车之间的第二距离小于或等于所述安全阈值,则向所述第二矿用卡车发送在所述第二辅助车道上停车等待的命令,并批准所述第三矿用卡车发来的驶入所述第一辅助车道的行驶许可请求;所述路径规划服务器还被配置为为所述第三矿用卡车规划从所述主干车道到所述第一辅助车道的第五过渡路线,在所述第三矿用卡车与所述第二矿用卡车会车后,为所述第三矿用卡车规划从所述第一辅助车道到所述主干车道的第六过渡路线。
在一些实施例中,所述交通管制服务器还被配置为在第一矿用卡车行驶在与所述单行车道相邻的第一主干车道上的情况下,如果所述单行车道上没有其他矿用卡车行驶,则批准所述第一矿用卡车发来的驶入所述单行车道的行驶许可请求。
在一些实施例中,所述交通管制服务器还被配置为如果第二矿用卡车行驶在所述单行车道上且所述第二矿用卡车与所述第一矿用卡车相向行驶,则拒绝所述第一矿用卡车发来的驶入所述单行车道的行驶许可请求,在所述第二矿用卡车行驶到所述第一主干车道的情况下,批准所述第二矿用卡车驶入第二辅助车道的行驶许可请求,以及在所述第二矿用卡车离开所述第二辅助车道并行驶到主干车道后批准所述第一矿用卡车发来的驶入所述单行车道的行驶许可请求;所述路径规划服务器还被配置为在所述交通管制服务器拒绝所述第一矿用卡车发来的驶入所述单行车道的行驶许可请求后,为所述第一矿用卡车规划从所述第一主干车道到第一辅助车道的第七过渡路线,在所述交通管制服务器批准所述第二矿用卡车驶入第二辅助车道的行驶许可请求后,为所述第二矿用卡车规划从所述第一主干车道到所述第二辅助车道的第八过渡路线。
根据本公开的另一个方面,提供了一种用于矿用卡车的交通控制方法,包括:将矿山道路绘制成矿山地图,所述矿山地图包含多个车道和连接所述多个车道的多个道路节点,所述多个车道包括双行车道和单行车道,所述双行车道包括主干车道和在所述主干车道两侧的辅助车道,其中,所述主干车道与所述单行车道连接;根据所述矿 山地图规划道路节点路线,并且规划会车过程中矿用卡车切换车道时的过渡路线;以及根据所述矿用卡车将要驶入车道的车道状态对所述矿用卡车的行驶许可请求进行仲裁,批准符合行驶条件的矿用卡车的行驶许可请求,并根据仲裁结果动态更新所述车道状态,其中,所述车道状态包括占用状态和空闲状态。
在一些实施例中,将矿山道路绘制成矿山地图的步骤包括:对于所述矿山道路的宽度满足两辆矿用卡车会车条件的第一路段,通过地图绘制工具将所述矿山道路的中线区域绘制成所述主干车道以及在所述主干车道两侧分别绘制第一辅助车道和第二辅助车道,以及对于所述矿山道路的宽度不满足两辆矿用卡车会车条件的第二路段,将所述第二路段设置为所述单行车道。
在一些实施例中,所述的交通控制方法还包括:根据第一矿用卡车将要驶入的下一个车道的车道状态以及所述第一矿用卡车与第二矿用卡车之间的第一距离确定是否批准所述第一矿用卡车发来的驶入所述下一个车道的行驶许可请求,其中,所述第二矿用卡车与所述第一矿用卡车相向行驶,在所述车道状态为空闲状态的情况下或者在所述车道状态为占用状态且所述第一距离大于安全阈值的情况下,批准所述第一矿用卡车的驶入下一个车道的行驶许可请求,以及在所述下一个车道的车道状态为占用状态且所述第一距离小于或等于所述安全阈值的情况下,拒绝所述第一矿用卡车的驶入下一个车道的行驶许可请求,并向所述第一矿用卡车与所述第二矿用卡车发送降速命令或停车命令;以及根据所述第一矿用卡车的当前位置和所述第二矿用卡车的当前位置,利用所述矿山地图为所述第一矿用卡车规划第一行驶轨迹并为所述第二矿用卡车规划第二行驶轨迹,将所述第一行驶轨迹发送给所述第一矿用卡车,将所述第二行驶轨迹发送给所述第二矿用卡车,以使得所述第一矿用卡车与所述第二矿用卡车执行会车。
在一些实施例中,所述交通控制方法还包括:在接收到所述第一矿用卡车发来的驶入所述第一路段的辅助车道的行驶许可请求后,根据所述第一路段的辅助车道的车道状态确定是否批准所述第一矿用卡车的驶入所述第一路段的辅助车道的行驶许可请求;在所述第一路段的辅助车道的车道状态为占用状态的情况下拒绝所述第一矿用卡车的驶入所述第一路段的辅助车道的行驶许可请求,并命令所述第一矿用卡车停车等待;在所述第一路段的辅助车道的车道状态为空闲状态的情况下批准所述第一矿用卡车的驶入所述第一路段的辅助车道的行驶许可请求,为所述第一矿用卡车规划从所述第一路段的主干车道到所述第一辅助车道的第一过渡路线,并为所述第二矿用卡车 规划从所述第一路段的主干车道到所述第二辅助车道的第二过渡路线,以及在所述第一矿用卡车与所述第二矿用卡车执行会车后,为所述第一矿用卡车规划从所述第一辅助车道到所述主干车道的第三过渡路线,并为所述第二矿用卡车规划从所述第二辅助车道到所述主干车道的第四过渡路线。
在一些实施例中,所述交通控制方法还包括:在所述第一矿用卡车根据所述第一过渡路线从所述主干车道驶入所述第一辅助车道且所述第二矿用卡车根据所述第二过渡路线从所述主干车道驶入所述第二辅助车道之后,如果存在与所述第二矿用卡车相向行驶的第三矿用卡车且所述第三矿用卡车与所述第二矿用卡车之间的第二距离小于或等于所述安全阈值,则向所述第二矿用卡车发送在所述第二辅助车道上停车等待的命令,并批准所述第三矿用卡车发来的驶入所述第一辅助车道的行驶许可请求,并为所述第三矿用卡车规划从所述主干车道到所述第一辅助车道的第五过渡路线,在所述第三矿用卡车与所述第二矿用卡车会车后,为所述第三矿用卡车规划从所述第一辅助车道到所述主干车道的第六过渡路线。
在一些实施例中,所述交通控制方法还包括:在第一矿用卡车行驶在与所述单行车道相邻的第一主干车道上的情况下,如果所述单行车道上没有其他矿用卡车行驶,则批准所述第一矿用卡车发来的驶入所述单行车道的行驶许可请求。
在一些实施例中,所述交通控制方法还包括:如果第二矿用卡车行驶在所述单行车道上且所述第二矿用卡车与所述第一矿用卡车相向行驶,则拒绝所述第一矿用卡车发来的驶入所述单行车道的行驶许可请求,为所述第一矿用卡车规划从所述第一主干车道到第一辅助车道的第七过渡路线;在所述第二矿用卡车行驶到所述第一主干车道的情况下,批准所述第二矿用卡车驶入第二辅助车道的行驶许可请求,并为所述第二矿用卡车规划从所述第一主干车道到所述第二辅助车道的第八过渡路线;以及在所述第二矿用卡车离开所述第二辅助车道并行驶到主干车道后批准所述第一矿用卡车发来的驶入所述单行车道的行驶许可请求。
根据本公开的另一个方面,提供了一种用于矿用卡车的交通控制系统,包括:存储器;以及耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器的指令执行如前所述的方法。
根据本公开的另一个方面,提供了一种非瞬时性计算机可读存储介质,其上存储有计算机程序指令,该计算机程序指令被处理器执行时实现如前所述的方法。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其 优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1是示出根据本公开一些实施例的用于矿用卡车的交通控制系统的结构示意图;
图2是示出根据本公开一些实施例的双行车道的示意图;
图3是示出根据本公开一些实施例的单行车道的示意图;
图4是示出根据本公开一些实施例的矿用卡车的在矿山道路上行驶的示意图;
图5是示出根据本公开另一些实施例的矿用卡车的在矿山道路上行驶的示意图;
图6是示出根据本公开另一些实施例的矿用卡车的在矿山道路上行驶的示意图;
图7是示出根据本公开另一些实施例的矿用卡车的在矿山道路上行驶的示意图;
图8是示出根据本公开另一些实施例的矿用卡车的在矿山道路上行驶的示意图;
图9是示出根据本公开一些实施例的用于矿用卡车的交通控制方法的流程图;
图10是示出根据本公开另一些实施例的用于矿用卡车的交通控制系统的结构示意图;
图11是示出根据本公开另一些实施例的用于矿用卡车的交通控制系统的结构示意图。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本公开提供一种用于矿用卡车的交通控制系统或方法,以提高矿用卡车在矿山道路上的会车效率。
图1是示出根据本公开一些实施例的用于矿用卡车的交通控制系统的结构示意图。图2是示出根据本公开一些实施例的双行车道的示意图。图3是示出根据本公开一些实施例的单行车道的示意图。
如图1所示,交通控制系统100包括地图管理服务器110、路径规划服务器120和交通管制服务器130。地图管理服务器110、路径规划服务器120和交通管制服务器130互相电连接。例如,这些服务器可以通过有线连接的方式通信连接。例如,地图管理服务器110、路径规划服务器120、交通管制服务器130可以均安装在固定机房内。另外,图1中还示出了矿用卡车140。上述各个服务器可以与矿用卡车通过通信网络进行通信。该通信网络可以采用WIFI、4G、5G中的一种或多种。上述各个服务器可以与矿用卡车通过无线连接的方式通信连接。在另一些实施例中,地图管理服务器110、路径规划服务器120、交通管制服务器130可以集成在一起。
地图管理服务器110被配置为将矿山道路绘制成矿山地图。该矿山地图包含多个车道和连接该多个车道的多个道路节点(例如图2所示的道路节点400)。该多个车道包括双行车道200(如图2所示)和单行车道300(如图3所示)。如图2所示,该双行车道200包括主干车道210和在该主干车道210两侧的辅助车道220。主干车道210与单行车道300连接。这里,双行车道是指能够满足两辆车并行行驶(例如会车)的车道(例如,可以去向和回向复用道路的中线区域作为主干车道),单行车道是指只能满足一辆车单独通过的车道。
例如,可以在能够会车(例如,道路宽度大于或等于车宽的3倍)的路段的主干车道两边设置辅助车道,两条辅助车道线的间距可以比车宽大若干米(例如3米)。又例如,辅助车道线与道路边界的间距大于或等于车宽的0.5倍。
需要说明的是,图2中所示的主干车道210和辅助车道220均为带状。例如,主干车道210的带状区域可以与辅助车道220的带状区域部分地交叠,即,主干车道210的一部分与辅助车道220的一部分交叠。如图2所示,主干车道210的两侧分别各有 一个辅助车道220。
在一些实施例中,对于双行车道,需要使得两条辅助车道的中心距离满足双车会车的要求,而且辅助车道与位于相同侧的道路边界230的距离满足车辆行驶的安全距离要求。
如图3所示,在单行路段,存在单行车道300以及与单行车道300分别连接的第一主干车道211和第二主干车道212。在第一主干车道211的两侧分别存在辅助车道,在第二主干车道212的两侧也分别存在辅助车道。图3中还示出了从辅助车道到主干车道或从主干车道到辅助车道的过渡路线420。
例如,在不能会车(例如,道路宽度小于车宽的3倍)的路段的主干路段设置为单行车道。单行车道不设置过渡路线。
在一些实施例中,地图管理服务器110可以被配置为对于矿山道路的宽度满足两辆矿用卡车会车条件的第一路段(例如图2所示的双行路段),通过地图绘制工具将矿山道路的中线区域绘制成主干车道以及在主干车道两侧分别绘制第一辅助车道和第二辅助车道,以及对于矿山道路的宽度不满足两辆矿用卡车会车条件的第二路段(例如图3所示的单行路段),将第二路段设置为单行车道。
这里需要说明的是,上面所述的中线区域是指以矿山道路的中线为区域中线,向两侧延伸预定宽度的带状区域。
在一些实施例中,地图管理服务器110还可以被配置为绘制位于单行车道和双行车道的交接处的过渡路线,该过渡路线为将辅助车道与主干车道连接的路线。
路径规划服务器120被配置为从地图管理服务器110获得矿山地图,根据矿山地图规划道路节点路线,并且规划会车过程中矿用卡车切换车道时的过渡路线。
在一些实施例中,路径规划服务器120被配置为根据第一矿用卡车的当前位置和与第一矿用卡车相向行驶的第二矿用卡车的当前位置,利用矿山地图为第一矿用卡车规划第一行驶轨迹并为第二矿用卡车规划第二行驶轨迹,将第一行驶轨迹发送给第一矿用卡车,将第二行驶轨迹发送给第二矿用卡车,以使得第一矿用卡车与第二矿用卡车执行会车。即,第一矿用卡车按照第一行驶轨迹行驶,第二矿用卡车按照第二行驶轨迹行驶,这样实现了这辆车矿用卡车的会车。例如,这里所述的行驶轨迹(第一行驶轨迹和第二行驶轨迹)可以包括从主干车道到辅助车道的过渡路线或者从辅助车道到主干车道的过渡路线。
该路径规划服务器120可以为矿用卡车规划从矿用卡车的当前位置到目的地的主 干道轨迹,然后在矿用卡车的行驶过程中当与其他车辆会车时为该矿用卡车规划所需要的换道过渡路线以满足会车需求。
交通管制服务器130被配置为存储矿山地图中多个车道的车道状态,根据矿用卡车将要驶入车道的车道状态对矿用卡车的行驶许可请求进行仲裁,批准符合行驶条件的矿用卡车的行驶许可请求,并根据仲裁结果动态更新车道状态。这里,相应车道是指矿用卡车将要进入的
该车道状态包括占用状态和空闲状态。这里,空闲状态是指在车道上没有车辆行驶,占用状态是指在车道上存在车辆行驶。例如,第一矿用卡车在可会车路段的某一段主干车道上行驶,交通管制服务器将该段主干车道状态设置为占用状态,并标记车道占用者为第一矿用卡车;否则设置为空闲状态。如果第一矿用卡车在图3所示的路段上行驶,则第一主干车道211、单行车道300、第二主干车道212以及同向的过渡路线均可以被设置为占用状态。当第一矿用卡车在第一主干车道211对应的辅助车道上停车等待时,第一主干车道211被设置为占用状态,与第一矿用卡车相向行驶的第二矿用卡车没有在第一主干车道211上的行驶许可。第二矿用卡车从另一条辅助车道行驶(后面将详细描述)。
在一些实施例中,交通管制服务器130被配置为根据第一矿用卡车将要驶入的下一个车道(即第一矿用卡车当前所处车道的下一个车道)的车道状态和第一矿用卡车与第二矿用卡车之间的第一距离确定是否批准第一矿用卡车发来的驶入该下一个车道的行驶许可请求,并在下一个车道的车道状态为空闲状态的情况下或者在下一个车道的车道状态为占用状态且第一距离大于安全阈值的情况下,批准第一矿用卡车的驶入下一个车道的行驶许可请求,在该下一个车道的车道状态为占用状态且第一距离小于或等于安全阈值的情况下,拒绝第一矿用卡车的驶入下一个车道的行驶许可请求,并向第一矿用卡车与第二矿用卡车发送降速命令或停车命令。
上述安全阈值可以根据实际情况或实际需要来确定。例如,该安全阈值的范围可以为10米至200米。当然,本领域技术人员能够理解,该安全阈值的范围仅是示例性的,本公开的范围并不仅限于这里所描述的安全阈值的范围。例如,该安全阈值也可以小于10米或大于200米。
在上述实施例中,交通管制服务器130在接收到第一矿用卡车发来的驶入某个车道的行驶许可请求(或者称为行驶许可请求消息)后,如果该车道的车道状态为空闲状态,或者虽然该车道的车道状态为占用状态但是第一距离大于安全阈值,则批准第 一矿用卡车的行驶许可请求,即允许该第一矿用卡车驶入该车道;如果该车道的车道状态为占用状态(即该车道已经被另一辆矿用卡车占用)且第一距离小于或等于安全阈值,则拒绝第一矿用卡车的行驶许可请求,即不允许该第一矿用卡车驶入该车道。这样可以提高矿用卡车在该车道上行驶的安全性。
在一些实施例中,交通管制服务器130可以设置两辆卡车同向行驶和相向行驶的安全阈值,在两辆卡车同向行驶时,两车的距离小于安全阈值时后方车辆降速或停车。在两辆卡车相向行驶时,两车的距离小于安全阈值时两车可以停车或降速,并进行会车流程。
至此,提供了根据本公开一些实施例的用于矿用卡车的交通控制系统。该交通控制系统包括:地图管理服务器,被配置为将矿山道路绘制成矿山地图,矿山地图包含多个车道和连接多个车道的多个道路节点,多个车道包括双行车道和单行车道,双行车道包括主干车道和在主干车道两侧的辅助车道,其中,主干车道与所述单行车道连接;路径规划服务器,被配置为从地图管理服务器获得矿山地图,根据矿山地图规划道路节点路线,并且规划会车过程中矿用卡车切换车道时的过渡路线;以及交通管制服务器,被配置为存储矿山地图中多个车道的车道状态,根据矿用卡车将要驶入车道的车道状态对矿用卡车的行驶许可请求进行仲裁,批准符合行驶条件的矿用卡车的行驶许可请求,并根据仲裁结果动态更新车道状态,其中,车道状态包括占用状态和空闲状态。该系统可以提高矿用卡车在矿山道路上的会车效率,从而提高车辆在道路上行驶的平均速度,进而提高系统的运输效率。
在上面的描述中,交通控制系统包括地图管理服务器、路径规划服务器和交通管制服务器而不包括矿用卡车140。但是,本公开的范围并不仅限于此。例如,该交通控制系统也可以包括矿用卡车140。
在一些实施例中,上面所述的矿用卡车140为无人驾驶的矿用卡车。例如,该矿用卡车可以包括定位装置和自主驾驶系统。该定位装置和该自主驾驶系统安装在矿用卡车上。该定位装置被配置为获得自身的位置信息,并将该位置信息发送给交通管制服务器130和路径规划服务器120。另外,该定位装置还可以将矿用卡车的行驶方向和行驶速度信息发送给交通管制服务器130和路径规划服务器120。该自主驾驶系统被配置为从交通管制服务器130接收降速命令或停车命令并自动进行降速或停车操作,以及从路径规划服务器120接收行驶轨迹,并按照该行驶轨迹(例如过渡路线)进行自动行驶。该自主驾驶系统还可以向交通管制服务器发送驶入某个车道的行驶许可请 求消息。
下面结合图4至图8分别描述在不同情境下的矿用卡车的行驶情况。
图4是示出根据本公开一些实施例的矿用卡车的在矿山道路上行驶的示意图。图4示出了矿用卡车在可会车的矿山道路段正常行驶的示意图。图4中所示的卡车中的箭头表示卡车的行驶方向,以下类似。
如图4所示,在某段道路的主干道上只有第一矿用卡车时,该第一矿用卡车141在该段道路的主干道上正常行驶。
例如,第一矿用卡车141每行驶到一段车道中间时,向交通管制服务器请求下一段车道是否可以行驶,交通管制服务器会根据下一段车道的车道状态确定是否批准第一矿用卡车141驶入下一个车道的行驶许可请求。如果下一个车道的状态为空闲状态,则交通管制服务器批准第一矿用卡车141的行驶许可请求,第一矿用卡车141继续行驶。如果下一个车道的状态为占用状态,即存在第二矿用卡车(下面结合图5详细描述)相向行驶,交通管制服务器将拒绝第一矿用卡车141的请求,第一矿用卡车141在拒绝下一个车道的行驶许可请求后,可以降速行驶。
图5是示出根据本公开另一些实施例的矿用卡车的在矿山道路上行驶的示意图。图5示出了两辆矿用卡车在可会车路段会车过程的示意图。
如图5所示,第一矿用卡车141与第二矿用卡车142会车时,两辆卡车141和142在到达安全阈值D 0时,交通管制服务器130会向两辆卡车发送降速命令或停车命令(如图5中的a图所示)。
第一矿用卡车141向交通管制服务器发送驶入辅助车道(例如第一辅助车道221)的行驶许可请求,交通管制服务器根据相应辅助车道是否为空闲状态确定是否批准该行驶许可请求。如果辅助车道是占用状态,交通管制服务器拒绝第一矿用卡车141的请求,第一矿用卡车141停车等待,并不断发送辅助车道的行驶许可请求。如果相应辅助车道是空闲状态,交通管制服务器批准第一矿用卡车141的请求,路径规划服务器为第一矿用卡车141规划从主干车道到辅助车道(例如第一辅助车道221)的第一过渡路线421,并发给第一矿用卡车141。第一矿用卡车141按照第一过渡路线421驶入辅助车道。相向行驶的第二矿用卡车142执行与第一矿用卡车141的上述指令相同的指令。两台车都到达辅助车道后,沿着辅助车道缓慢行驶,直到会车结束。
两辆卡车再向交通管制服务器申请从辅助车道到主干车道的请求,请求得到批准后,路径规划服务器会为两辆卡车规划从辅助车道到主干车道的过渡路线(如图5中 的d图所示)。两辆卡车根据过渡路线从辅助车道驶入主干车道高速行驶(如图5中的e图所示)。
在上面的实施例中,交通管制服务器130还可以被配置为在接收到第一矿用卡车141发来的驶入第一路段的辅助车道的行驶许可请求后,根据第一路段的辅助车道的车道状态确定是否批准第一矿用卡车141的驶入第一路段的辅助车道的行驶许可请求,在第一路段的辅助车道的车道状态为占用状态的情况下拒绝第一矿用卡车141的驶入第一路段的辅助车道的行驶许可请求,并命令第一矿用卡车141停车等待,在第一路段的辅助车道的车道状态为空闲状态的情况下批准第一矿用卡车141的驶入第一路段的辅助车道的行驶许可请求。
路径规划服务器120还可以被配置为在交通管制服务器130批准第一矿用卡车141的驶入第一路段的辅助车道的行驶许可请求的情况下,为第一矿用卡车141规划从第一路段的主干车道210到第一辅助车道221的第一过渡路线421,并为第二矿用卡车142规划从第一路段的主干车道210到第二辅助车道222的第二过渡路线422,以及在第一矿用卡车141与第二矿用卡车142执行会车后,为第一矿用卡车141规划从第一辅助车道221到主干车道210的第三过渡路线423,并为第二矿用卡车142规划从第二辅助车道222到主干车道210的第四过渡路线424。
在该实施例中,实现了第一矿用卡车与第二矿用卡车在双行车道上的会车操作,从而可以提高两辆卡车的会车效率。
图6是示出根据本公开另一些实施例的矿用卡车的在矿山道路上行驶的示意图。图6示出了多辆卡车在可会车路段会车过程的示意图。
如图6所示,第一矿用卡车141与第二矿用卡车142从主干车道驶入辅助车道(如图6中的a图和b图所示)之后,如果主干车道有第三矿用卡车143也需要与第二矿用卡车142会车,则第二矿用卡车142停车,第三矿用卡车143向交通管制服务器申请从主干车道210切换到辅助车道的行驶许可请求,请求得到批准后,路径规划服务器会为第三矿用卡车143规划从主干车道210到第一辅助车道221的第五过渡路线425,第三矿用卡车143根据第五过渡路线425从主干车道驶入辅助车道。此时,第二矿用卡车142和第三矿用卡车143沿着辅助车道缓慢行驶(如图6中的d图所示),直到会车结束,第二矿用卡车142和第三矿用卡车143再向交通管制服务器申请从辅助车道到主干车道的行驶许可请求,请求得到批准后,路径规划服务器会为第二矿用卡车142和第三矿用卡车143规划从辅助车道到主干车道的过渡路线(如图6中的e图所 示)。第二矿用卡车142和第三矿用卡车143根据过渡路线从辅助车道驶入主干车道并高速行驶(如图6中的f图所示)。
在上面的实施例中,交通管制服务器130还可以被配置为在第一矿用卡车141根据第一过渡路线421从主干车道210驶入第一辅助车道221且第二矿用卡车142根据第二过渡路线422从主干车道210驶入第二辅助车道222之后,如果存在与第二矿用卡车142相向行驶的第三矿用卡车143且第三矿用卡车143与第二矿用卡车142之间的第二距离小于或等于安全阈值D 0,则向第二矿用卡车142发送在第二辅助车道222上停车等待的命令,并批准第三矿用卡车143发来的驶入第一辅助车道221的行驶许可请求。此时,第一矿用卡车141离开第一辅助车道221。
路径规划服务器120还可以被配置为为第三矿用卡车143规划从主干车道210到第一辅助车道221的第五过渡路线425,在第三矿用卡车143与第二矿用卡车142会车后,为第三矿用卡车143规划从第一辅助车道221到主干车道210的第六过渡路线426。
在该实施例中,实现了多辆矿用卡车在双行车道上的会车操作,从而可以提高两辆卡车的会车效率。
图7是示出根据本公开另一些实施例的矿用卡车的在矿山道路上行驶的示意图。图7示出了矿用卡车在矿山单行道路段正常行驶的示意图。
如图7所示,第一矿用卡车141在第一主干车道211高速行驶时如果遇到单行车道300,需要提前向交通管制服务器申请行驶许可请求,只有第一主干车道211、单行车道300和第二主干车道212上没有车辆行驶时,请求才会被批准。第一矿用卡车141的请求得到批准后,该第一矿用卡车141可以继续沿着主干车道减速行驶,当即将达到第二主干车道212时,第一矿用卡车141发出驶入第二主干车道212是的行驶许可请求,如图7中c图和d图所示。该请求得到批准后,第一矿用卡车141继续沿着主干车道减速行驶,当离开第二主干车道212以后,正常高速行驶。
在上面的实施例中,交通管制服务器130还可以被配置为在第一矿用卡车141行驶在与单行车道300相邻的第一主干车道211上的情况下,如果单行车道300上没有其他矿用卡车行驶,则批准第一矿用卡车141发来的驶入单行车道300的行驶许可请求。
在该实施例中,实现了矿用卡车在单行车道上的行驶操作。
图8是示出根据本公开另一些实施例的矿用卡车的在矿山道路上行驶的示意图。 图8示出了两辆矿用卡车在单行车道上会车的过程的示意图。
如图8所示,第一矿用卡车141在第一主干车道211高速行驶时遇到单行车道300,如果对面已经有第二矿用卡车142在第二主干车道212上行驶,且第二矿用卡车142先得到了单行车道300的行驶许可,则单行车道的状态为占用状态,第一矿用卡车141申请的行驶许可请求将被拒绝。第一矿用卡车141可以通过连接主干车道的第七过渡路线427驶入第一辅助车道141并停车等待(如图8中的b图所示),并不断请求是否有单行路段的行驶许可,同时会将第一矿用卡车141所在辅助车道对应的第一主干车道211设置为占用状态。
在第二矿用卡车142即将到达第一主干车道211时,向交通管制服务器请求是否有第一主干车道211的行驶许可,此时将被拒绝。第二矿用卡车142再次向交通管制服务器请求是否有第一主干车道211对应的第二辅助车道222是否有行驶许可。请求被批准后,第二矿用卡车142驶入第二辅助车道222,并在驶入第二辅助车道222后停车(如图8中的c图和d图所示),并不断向交通管制服务器请求是否有主干道路的行驶许可,如果被批准,第二矿用卡车142通过第二辅助车道行驶到主干路并高速行驶(如图8中的e图和f图所示)。第二矿用卡车142离开单行路段之后,会释放对单行路段的行驶许可,单行路段状态恢复空闲。
此时,第一矿用卡车141申请的从第一辅助车道到单行车道的行驶许可的请求被交通管制服务器批准,第一矿用卡车141通过第一辅助车道141驶入单行车道300并继续行驶(如图8中的f图所示)。
在上面的实施例中,交通管制服务器130还可以被配置为如果第二矿用卡车142行驶在单行车道300上且第二矿用卡车142与第一矿用卡车141相向行驶,则拒绝第一矿用卡车141发来的驶入单行车道的行驶许可请求,在第二矿用卡车142行驶到第一主干车道的情况下,批准第二矿用卡车142驶入第二辅助车道222的行驶许可请求,以及在第二矿用卡车离开第二辅助车道并行驶到主干车道后批准第一矿用卡车141发来的驶入单行车道300的行驶许可请求。
路径规划服务器120还可以被配置为在交通管制服务器130拒绝第一矿用卡车141发来的驶入单行车道300的行驶许可请求后,为第一矿用卡车141规划从第一主干车道211到第一辅助车道221的第七过渡路线427,在交通管制服务器130批准第二矿用卡车142驶入第二辅助车道222的行驶许可请求后,为第二矿用卡车142规划从第一主干车道211到第二辅助车道222的第八过渡路线428。
路径规划服务器120还可以被配置为在交通管制服务器130批准第一矿用卡车141的从第一辅助车道到单行车道的行驶许可请求后,为第一矿用卡车141规划从第一辅助车道221到单行车道300的第九过渡路线429。
在该实施例中,实现了两辆矿用卡车在单行车道上会车的过程,从而可以提高两辆卡车的会车效率。
通过以上步骤场景规则,可以尽可能地解决矿山道路较窄、大部分路段不能高速行驶并且双车会车效率低以及行驶不安全的问题,实现了矿用卡车在较窄道路可以安全高速行驶,最大可能的减少单行路的长度,降低停车等待的时间,并且可以安全会车。
图9是示出根据本公开一些实施例的用于矿用卡车的交通控制方法的流程图。如图9所示,该方法包括步骤S902至S906。
在步骤S902,将矿山道路绘制成矿山地图,矿山地图包含多个车道和连接多个车道的多个道路节点,多个车道包括双行车道和单行车道,双行车道包括主干车道和在主干车道两侧的辅助车道,其中,主干车道与单行车道连接。
在一些实施例中,该步骤S902包括:对于矿山道路的宽度满足两辆矿用卡车会车条件的第一路段,通过地图绘制工具将矿山道路的中线区域绘制成主干车道以及在主干车道两侧分别绘制第一辅助车道和第二辅助车道,并且绘制用于将辅助车道与所述主干车道连接的过渡路线,以及对于矿山道路的宽度不满足两辆矿用卡车会车条件的第二路段,将第二路段设置为单行车道。
例如,地图管理服务器绘制整个矿山路网拓扑地图以及其他必要地图信息,形成完整的矿山地图,存入数据库中,路网包含各个车道信息以及连接各个车道的道路节点。可以将矿山道路中线绘制成矿用卡车可行驶的车道,作为矿用卡车自主行驶的主干道。对于矿山道路的宽度足够允许双车会车的路段,通过地图绘制工具在主干车道两边绘制辅助车道。保证两条辅助车道的中心距离满足双车会车要求,并辅助车道距离道路边界的距离达到车辆行驶的安全距离要求。对于矿山道路的宽度不能够允许双车会车的路段,将该路段设置为单行车道。并且绘制四条过渡车道将两边的辅助车道与主干道连接。将绘制的车道地图数据保存至地图管理服务器,并且地图管理服务器将矿山地图的车道数据发送给交通管制服务器和路径规划服务器。
在步骤S904,根据矿山地图规划道路节点路线,并且规划会车过程中矿用卡车切换车道时的过渡路线。
在步骤S906,根据矿用卡车将要驶入车道的车道状态对矿用卡车的行驶许可请求进行仲裁,批准符合行驶条件的矿用卡车的行驶许可请求,并根据仲裁结果动态更新车道状态,其中,车道状态包括占用状态和空闲状态。
至此,提供了根据本公开一些实施例的用于矿用卡车的交通控制方法。该方法可以提高矿用卡车在矿山道路上的会车效率,从而提高车辆在道路上行驶的平均速度,进而提高系统的运输效率。
在一些实施例中,上述交通控制方法还可以包括:根据第一矿用卡车将要驶入的下一个车道的车道状态以及第一矿用卡车与第二矿用卡车之间的第一距离确定是否批准第一矿用卡车发来的驶入下一个车道的行驶许可请求,其中,第二矿用卡车与第一矿用卡车相向行驶,在下一个车道的车道状态为空闲状态的情况下或者在下一个车道的车道状态为占用状态且第一距离大于安全阈值的情况下,批准第一矿用卡车的驶入下一个车道的行驶许可请求,以及在下一个车道的车道状态为占用状态且第一距离小于或等于安全阈值的情况下,拒绝第一矿用卡车的驶入下一个车道的行驶许可请求,并向第一矿用卡车与第二矿用卡车发送降速命令或停车命令。
在一些实施例中,上述交通控制方法还可以包括:根据第一矿用卡车的当前位置和第二矿用卡车的当前位置,利用矿山地图为第一矿用卡车规划第一行驶轨迹并为第二矿用卡车规划第二行驶轨迹,将第一行驶轨迹发送给第一矿用卡车,将第二行驶轨迹发送给第二矿用卡车,以使得第一矿用卡车与第二矿用卡车执行会车。
在一些实施例中,上述交通控制方法还可以包括:在接收到第一矿用卡车发来的驶入第一路段的辅助车道的行驶许可请求后,根据第一路段的辅助车道的车道状态确定是否批准第一矿用卡车的驶入第一路段的辅助车道的行驶许可请求;在第一路段的辅助车道的车道状态为占用状态的情况下拒绝第一矿用卡车的驶入第一路段的辅助车道的行驶许可请求,并命令第一矿用卡车停车等待;在第一路段的辅助车道的车道状态为空闲状态的情况下批准第一矿用卡车的驶入第一路段的辅助车道的行驶许可请求,为第一矿用卡车规划从第一路段的主干车道到第一辅助车道的第一过渡路线,并为第二矿用卡车规划从第一路段的主干车道到第二辅助车道的第二过渡路线,以及在第一矿用卡车与第二矿用卡车执行会车后,为第一矿用卡车规划从第一辅助车道到主干车道的第三过渡路线,并为第二矿用卡车规划从第二辅助车道到主干车道的第四过渡路线。
在一些实施例中,上述交通控制方法还可以包括:在第一矿用卡车根据第一过渡 路线从主干车道驶入第一辅助车道且第二矿用卡车根据第二过渡路线从主干车道驶入第二辅助车道之后,如果存在与第二矿用卡车相向行驶的第三矿用卡车且第三矿用卡车与第二矿用卡车之间的第二距离小于或等于安全阈值,则向第二矿用卡车发送在第二辅助车道上停车等待的命令,并批准第三矿用卡车发来的驶入第一辅助车道的行驶许可请求,并为第三矿用卡车规划从主干车道到第一辅助车道的第五过渡路线,在第三矿用卡车与第二矿用卡车会车后,为第三矿用卡车规划从第一辅助车道到主干车道的第六过渡路线。
在一些实施例中,上述交通控制方法还可以包括:在第一矿用卡车行驶在与单行车道相邻的第一主干车道上的情况下,如果单行车道上没有其他矿用卡车行驶,则批准第一矿用卡车发来的驶入单行车道的行驶许可请求。
在一些实施例中,上述交通控制方法还可以包括:如果第二矿用卡车行驶在单行车道上且第二矿用卡车与第一矿用卡车相向行驶,则拒绝第一矿用卡车发来的驶入单行车道的行驶许可请求,为第一矿用卡车规划从第一主干车道到第一辅助车道的第七过渡路线;在第二矿用卡车行驶到第一主干车道的情况下,批准第二矿用卡车驶入第二辅助车道的行驶许可请求,并为第二矿用卡车规划从第一主干车道到第二辅助车道的第八过渡路线;以及在第二矿用卡车离开第二辅助车道并行驶到主干车道后批准第一矿用卡车发来的驶入单行车道的行驶许可请求。
在上述方法中,通过路权管理及局部路径规划解决了在矿山道路宽度不足以绘制标准双车道的情况下矿用卡车无法高速安全的自主行走的问题。每辆车在道路正常行走时均沿着道路中线高速行驶,车辆距离道路两边的边缘有足够宽的安全距离,即使车辆行驶轨迹与道路中线发生偏移,车辆控制系统也有足够的空间做出处理,不至于发生安全事故。在双车会车时可分两种情况进行交通管制:(1)会车路段宽度可允许双车能够低速会车,则双车均向右侧辅路行驶;中线至辅路的行驶道路由路径规划实时计算得出;(2)如果会车道路宽度不足以双车会车,该路段会被设置为交通管制路段,则双车均向右侧辅路行驶,优先级较低的车辆在辅路上停车,等待对面优先级较高的车辆通过该交通管制路段后,再向道路中线行驶,继续沿着道路中线高速行驶。以上方法可以实现以下效果:(1)矿用卡车在矿山道路上可以尽可能地安全高速行驶;(2)最大可能的减少单行路长度,降低停车等待的时间;(3)安全会车。
图10是示出根据本公开另一些实施例的用于矿用卡车的交通控制系统的结构示意图。交通控制系统包括存储器1010和处理器1020。其中:
存储器1010可以是磁盘、闪存或其它任何非易失性存储介质。存储器用于存储图9所对应实施例中的指令。
处理器1020耦接至存储器1010,可以作为一个或多个集成电路来实施,例如微处理器或微控制器。该处理器1020用于执行存储器中存储的指令,可以提高矿用卡车在矿山道路上的会车效率,从而提高车辆在道路上行驶的平均速度,进而提高系统的运输效率。
在一些实施例中,还可以如图11所示,交通控制系统1100包括存储器1110和处理器1120。处理器1120通过BUS总线1130耦合至存储器510。交通控制系统1100还可以通过存储接口1140连接至外部存储装置1150以便调用外部数据,还可以通过网络接口1160连接至网络或者另外一台计算机系统(未标出),此处不再进行详细介绍。
在该实施例中,通过存储器存储数据指令,再通过处理器处理上述指令,可以提高矿用卡车在矿山道路上的会车效率,从而提高车辆在道路上行驶的平均速度,进而提高系统的运输效率。
在另一个实施例中,本公开还提供了一种计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现图9所对应实施例中的方法的步骤。本领域内的技术人员应明白,本公开的实施例可提供为方法、装置、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包 括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
至此,已经详细描述了本公开。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改。本公开的范围由所附权利要求来限定。

Claims (17)

  1. 一种用于矿用卡车的交通控制系统,包括:
    地图管理服务器,被配置为将矿山道路绘制成矿山地图,所述矿山地图包含多个车道和连接所述多个车道的多个道路节点,所述多个车道包括双行车道和单行车道,所述双行车道包括主干车道和在所述主干车道两侧的辅助车道,其中,所述主干车道与所述单行车道连接;
    路径规划服务器,被配置为从所述地图管理服务器获得所述矿山地图,根据所述矿山地图规划道路节点路线,并且规划会车过程中矿用卡车切换车道时的过渡路线;以及
    交通管制服务器,被配置为存储所述矿山地图中所述多个车道的车道状态,根据所述矿用卡车将要驶入车道的车道状态对所述矿用卡车的行驶许可请求进行仲裁,批准符合行驶条件的矿用卡车的行驶许可请求,并根据仲裁结果动态更新所述车道状态,其中,所述车道状态包括占用状态和空闲状态。
  2. 根据权利要求1所述的交通控制系统,其中,
    所述地图管理服务器被配置为对于所述矿山道路的宽度满足两辆矿用卡车会车条件的第一路段,通过地图绘制工具将所述矿山道路的中线区域绘制成所述主干车道以及在所述主干车道两侧分别绘制第一辅助车道和第二辅助车道,以及对于所述矿山道路的宽度不满足两辆矿用卡车会车条件的第二路段,将所述第二路段设置为所述单行车道。
  3. 根据权利要求2所述的交通控制系统,其中,
    所述路径规划服务器被配置为根据第一矿用卡车的当前位置和与所述第一矿用卡车相向行驶的第二矿用卡车的当前位置,利用所述矿山地图为所述第一矿用卡车规划第一行驶轨迹并为所述第二矿用卡车规划第二行驶轨迹,将所述第一行驶轨迹发送给所述第一矿用卡车,将所述第二行驶轨迹发送给所述第二矿用卡车,以使得所述第一矿用卡车与所述第二矿用卡车执行会车;以及
    所述交通管制服务器被配置为根据所述第一矿用卡车将要驶入的下一个车道的车道状态和所述第一矿用卡车与所述第二矿用卡车之间的第一距离确定是否批准所 述第一矿用卡车发来的驶入所述下一个车道的行驶许可请求,并在所述下一个车道的车道状态为空闲状态的情况下或者在所述下一个车道的车道状态为占用状态且所述第一距离大于安全阈值的情况下,批准所述第一矿用卡车的驶入下一个车道的行驶许可请求,在所述下一个车道的车道状态为占用状态且所述第一距离小于或等于所述安全阈值的情况下,拒绝所述第一矿用卡车的驶入下一个车道的行驶许可请求,并向所述第一矿用卡车与所述第二矿用卡车发送降速命令或停车命令。
  4. 根据权利要求3所述的交通控制系统,其中,
    所述交通管制服务器还被配置为在接收到所述第一矿用卡车发来的驶入所述第一路段的辅助车道的行驶许可请求后,根据所述第一路段的辅助车道的车道状态确定是否批准所述第一矿用卡车的驶入所述第一路段的辅助车道的行驶许可请求,在所述第一路段的辅助车道的车道状态为占用状态的情况下拒绝所述第一矿用卡车的驶入所述第一路段的辅助车道的行驶许可请求,并命令所述第一矿用卡车停车等待,在所述第一路段的辅助车道的车道状态为空闲状态的情况下批准所述第一矿用卡车的驶入所述第一路段的辅助车道的行驶许可请求。
  5. 根据权利要求4所述的交通控制系统,其中,
    所述路径规划服务器还被配置为在所述交通管制服务器批准所述第一矿用卡车的驶入所述第一路段的辅助车道的行驶许可请求的情况下,为所述第一矿用卡车规划从所述第一路段的主干车道到所述第一辅助车道的第一过渡路线,并为所述第二矿用卡车规划从所述第一路段的主干车道到所述第二辅助车道的第二过渡路线,以及在所述第一矿用卡车与所述第二矿用卡车执行会车后,为所述第一矿用卡车规划从所述第一辅助车道到所述主干车道的第三过渡路线,并为所述第二矿用卡车规划从所述第二辅助车道到所述主干车道的第四过渡路线。
  6. 根据权利要求5所述的交通控制系统,其中,
    所述交通管制服务器还被配置为在所述第一矿用卡车根据所述第一过渡路线从所述主干车道驶入所述第一辅助车道且所述第二矿用卡车根据所述第二过渡路线从所述主干车道驶入所述第二辅助车道之后,如果存在与所述第二矿用卡车相向行驶的第三矿用卡车且所述第三矿用卡车与所述第二矿用卡车之间的第二距离小于或等于 所述安全阈值,则向所述第二矿用卡车发送在所述第二辅助车道上停车等待的命令,并批准所述第三矿用卡车发来的驶入所述第一辅助车道的行驶许可请求;
    所述路径规划服务器还被配置为为所述第三矿用卡车规划从所述主干车道到所述第一辅助车道的第五过渡路线,在所述第三矿用卡车与所述第二矿用卡车会车后,为所述第三矿用卡车规划从所述第一辅助车道到所述主干车道的第六过渡路线。
  7. 根据权利要求2所述的交通控制系统,其中,
    所述交通管制服务器还被配置为在第一矿用卡车行驶在与所述单行车道相邻的第一主干车道上的情况下,如果所述单行车道上没有其他矿用卡车行驶,则批准所述第一矿用卡车发来的驶入所述单行车道的行驶许可请求。
  8. 根据权利要求7所述的交通控制系统,其中,
    所述交通管制服务器还被配置为如果第二矿用卡车行驶在所述单行车道上且所述第二矿用卡车与所述第一矿用卡车相向行驶,则拒绝所述第一矿用卡车发来的驶入所述单行车道的行驶许可请求,在所述第二矿用卡车行驶到所述第一主干车道的情况下,批准所述第二矿用卡车驶入第二辅助车道的行驶许可请求,以及在所述第二矿用卡车离开所述第二辅助车道并行驶到主干车道后批准所述第一矿用卡车发来的驶入所述单行车道的行驶许可请求;
    所述路径规划服务器还被配置为在所述交通管制服务器拒绝所述第一矿用卡车发来的驶入所述单行车道的行驶许可请求后,为所述第一矿用卡车规划从所述第一主干车道到第一辅助车道的第七过渡路线,在所述交通管制服务器批准所述第二矿用卡车驶入第二辅助车道的行驶许可请求后,为所述第二矿用卡车规划从所述第一主干车道到所述第二辅助车道的第八过渡路线。
  9. 一种用于矿用卡车的交通控制方法,包括:
    将矿山道路绘制成矿山地图,所述矿山地图包含多个车道和连接所述多个车道的多个道路节点,所述多个车道包括双行车道和单行车道,所述双行车道包括主干车道和在所述主干车道两侧的辅助车道,其中,所述主干车道与所述单行车道连接;
    根据所述矿山地图规划道路节点路线,并且规划会车过程中矿用卡车切换车道时的过渡路线;以及
    根据所述矿用卡车将要驶入车道的车道状态对所述矿用卡车的行驶许可请求进行仲裁,批准符合行驶条件的矿用卡车的行驶许可请求,并根据仲裁结果动态更新所述车道状态,其中,所述车道状态包括占用状态和空闲状态。
  10. 根据权利要求9所述的交通控制方法,其中,将矿山道路绘制成矿山地图的步骤包括:
    对于所述矿山道路的宽度满足两辆矿用卡车会车条件的第一路段,通过地图绘制工具将所述矿山道路的中线区域绘制成所述主干车道以及在所述主干车道两侧分别绘制第一辅助车道和第二辅助车道,以及对于所述矿山道路的宽度不满足两辆矿用卡车会车条件的第二路段,将所述第二路段设置为所述单行车道。
  11. 根据权利要求10所述的交通控制方法,还包括:
    根据第一矿用卡车将要驶入的下一个车道的车道状态以及所述第一矿用卡车与第二矿用卡车之间的第一距离确定是否批准所述第一矿用卡车发来的驶入所述下一个车道的行驶许可请求,其中,所述第二矿用卡车与所述第一矿用卡车相向行驶,在所述下一个车道的车道状态为空闲状态的情况下或者在所述下一个车道的车道状态为占用状态且所述第一距离大于安全阈值的情况下,批准所述第一矿用卡车的驶入下一个车道的行驶许可请求,以及在所述下一个车道的车道状态为占用状态且所述第一距离小于或等于所述安全阈值的情况下,拒绝所述第一矿用卡车的驶入下一个车道的行驶许可请求,并向所述第一矿用卡车与所述第二矿用卡车发送降速命令或停车命令;以及
    根据所述第一矿用卡车的当前位置和所述第二矿用卡车的当前位置,利用所述矿山地图为所述第一矿用卡车规划第一行驶轨迹并为所述第二矿用卡车规划第二行驶轨迹,将所述第一行驶轨迹发送给所述第一矿用卡车,将所述第二行驶轨迹发送给所述第二矿用卡车,以使得所述第一矿用卡车与所述第二矿用卡车执行会车。
  12. 根据权利要求11所述的交通控制方法,还包括:
    在接收到所述第一矿用卡车发来的驶入所述第一路段的辅助车道的行驶许可请求后,根据所述第一路段的辅助车道的车道状态确定是否批准所述第一矿用卡车的驶入所述第一路段的辅助车道的行驶许可请求;
    在所述第一路段的辅助车道的车道状态为占用状态的情况下拒绝所述第一矿用卡车的驶入所述第一路段的辅助车道的行驶许可请求,并命令所述第一矿用卡车停车等待;
    在所述第一路段的辅助车道的车道状态为空闲状态的情况下批准所述第一矿用卡车的驶入所述第一路段的辅助车道的行驶许可请求,为所述第一矿用卡车规划从所述第一路段的主干车道到所述第一辅助车道的第一过渡路线,并为所述第二矿用卡车规划从所述第一路段的主干车道到所述第二辅助车道的第二过渡路线,以及在所述第一矿用卡车与所述第二矿用卡车执行会车后,为所述第一矿用卡车规划从所述第一辅助车道到所述主干车道的第三过渡路线,并为所述第二矿用卡车规划从所述第二辅助车道到所述主干车道的第四过渡路线。
  13. 根据权利要求12所述的交通控制方法,还包括:
    在所述第一矿用卡车根据所述第一过渡路线从所述主干车道驶入所述第一辅助车道且所述第二矿用卡车根据所述第二过渡路线从所述主干车道驶入所述第二辅助车道之后,如果存在与所述第二矿用卡车相向行驶的第三矿用卡车且所述第三矿用卡车与所述第二矿用卡车之间的第二距离小于或等于所述安全阈值,则向所述第二矿用卡车发送在所述第二辅助车道上停车等待的命令,并批准所述第三矿用卡车发来的驶入所述第一辅助车道的行驶许可请求,并为所述第三矿用卡车规划从所述主干车道到所述第一辅助车道的第五过渡路线,在所述第三矿用卡车与所述第二矿用卡车会车后,为所述第三矿用卡车规划从所述第一辅助车道到所述主干车道的第六过渡路线。
  14. 根据权利要求10所述的交通控制方法,还包括:
    在第一矿用卡车行驶在与所述单行车道相邻的第一主干车道上的情况下,如果所述单行车道上没有其他矿用卡车行驶,则批准所述第一矿用卡车发来的驶入所述单行车道的行驶许可请求。
  15. 根据权利要求14所述的交通控制方法,还包括:
    如果第二矿用卡车行驶在所述单行车道上且所述第二矿用卡车与所述第一矿用卡车相向行驶,则拒绝所述第一矿用卡车发来的驶入所述单行车道的行驶许可请求,为所述第一矿用卡车规划从所述第一主干车道到第一辅助车道的第七过渡路线;
    在所述第二矿用卡车行驶到所述第一主干车道的情况下,批准所述第二矿用卡车驶入第二辅助车道的行驶许可请求,并为所述第二矿用卡车规划从所述第一主干车道到所述第二辅助车道的第八过渡路线;以及
    在所述第二矿用卡车离开所述第二辅助车道并行驶到主干车道后批准所述第一矿用卡车发来的驶入所述单行车道的行驶许可请求。
  16. 一种用于矿用卡车的交通控制系统,包括:
    存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器的指令执行如权利要求1至8任意一项所述的方法。
  17. 一种非瞬时性计算机可读存储介质,其上存储有计算机程序指令,该计算机程序指令被处理器执行时实现如权利要求1至8任意一项所述的方法。
PCT/CN2021/099541 2021-06-01 2021-06-11 用于矿用卡车的交通控制系统及其方法 WO2022077937A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021362864A AU2021362864A1 (en) 2021-06-01 2021-06-11 Traffic control system for mining trucks and method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110608718.9 2021-06-01
CN202110608718.9A CN113341969B (zh) 2021-06-01 2021-06-01 用于矿用卡车的交通控制系统及其方法

Publications (1)

Publication Number Publication Date
WO2022077937A1 true WO2022077937A1 (zh) 2022-04-21

Family

ID=77474113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099541 WO2022077937A1 (zh) 2021-06-01 2021-06-11 用于矿用卡车的交通控制系统及其方法

Country Status (3)

Country Link
CN (1) CN113341969B (zh)
AU (1) AU2021362864A1 (zh)
WO (1) WO2022077937A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116432969A (zh) * 2023-04-19 2023-07-14 中国建筑材料工业地质勘查中心四川总队 一种基于大数据可视化的矿山综合管控平台

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113781816B (zh) * 2021-09-24 2022-11-08 神华准格尔能源有限责任公司 矿用车辆控制方法、存储介质及电子设备
CN116205388A (zh) * 2023-02-07 2023-06-02 上海伯镭智能科技有限公司 一种针对矿车集群的路径分配方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170011768A (ko) * 2015-07-24 2017-02-02 부경대학교 산학협력단 노천 및 지하광산 트럭-로더 운반시스템의 최적화를 위한 시뮬레이션방법
CN107251081A (zh) * 2015-09-08 2017-10-13 日立建机株式会社 矿山机械的日志记录系统、车载终端装置、以及矿山机械的日志记录方法
CN111426330A (zh) * 2020-03-24 2020-07-17 江苏徐工工程机械研究院有限公司 路径生成方法和设备、无人化运输系统和存储介质
CN111683851A (zh) * 2018-12-26 2020-09-18 百度时代网络技术(北京)有限公司 用于自动驾驶的自反向车道的相互避开算法
CN111785039A (zh) * 2020-07-02 2020-10-16 北京易控智驾科技有限公司 双向单车道智能驾驶车辆的管制方法、装置、设备及介质
CN112258877A (zh) * 2020-10-21 2021-01-22 江苏徐工工程机械研究院有限公司 用于矿山运输车辆的交通控制方法、平台及其系统
CN112530182A (zh) * 2020-12-15 2021-03-19 长沙矿山研究院有限责任公司 一种矿井斜坡道车载交通指挥系统的信息管控装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5135321B2 (ja) * 2009-11-13 2013-02-06 株式会社日立製作所 自律走行装置
US8914181B2 (en) * 2010-12-29 2014-12-16 Siemens S.A.S. System and method for active lane-changing assistance for a motor vehicle
JP5868218B2 (ja) * 2012-02-28 2016-02-24 株式会社日本自動車部品総合研究所 車両制御装置
CN102800202A (zh) * 2012-08-02 2012-11-28 浙江亚太机电股份有限公司 山区狭窄弯道交通控制系统和控制方法
CA2959474C (en) * 2015-03-03 2018-12-11 Hitachi Construction Machinery Co., Ltd. Traffic control server and system
CN106097776A (zh) * 2016-08-03 2016-11-09 安徽工程大学 一种弯道防碰撞预警系统及其控制方法
CN107963086B (zh) * 2017-11-21 2019-12-24 中车长江车辆有限公司 一种行车控制方法及管道运输系统
CN107731010B (zh) * 2017-11-30 2021-07-06 重庆邮电大学 车联网环境下前车智能避让推荐方法及系统
US10145241B1 (en) * 2018-02-15 2018-12-04 Electricwaze LLC Roadway conduit systems and methods
CN108875998A (zh) * 2018-04-20 2018-11-23 北京智行者科技有限公司 一种自动驾驶车辆规划方法和系统
US11402842B2 (en) * 2019-01-18 2022-08-02 Baidu Usa Llc Method to define safe drivable area for automated driving system
CN110415559B (zh) * 2019-06-03 2022-07-22 腾讯科技(深圳)有限公司 一种驾驶预警方法、服务器、终端、系统及存储介质
CN111429741B (zh) * 2020-03-24 2022-04-01 江苏徐工工程机械研究院有限公司 交通管理方法、装置和系统、服务器和存储介质
CN111897321B (zh) * 2020-06-19 2023-08-11 中国煤炭科工集团太原研究院有限公司 一种井下特种车辆的无人驾驶系统
CN114923476A (zh) * 2022-04-29 2022-08-19 江苏徐工工程机械研究院有限公司 矿山无人运输的交通管制系统和方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170011768A (ko) * 2015-07-24 2017-02-02 부경대학교 산학협력단 노천 및 지하광산 트럭-로더 운반시스템의 최적화를 위한 시뮬레이션방법
CN107251081A (zh) * 2015-09-08 2017-10-13 日立建机株式会社 矿山机械的日志记录系统、车载终端装置、以及矿山机械的日志记录方法
CN111683851A (zh) * 2018-12-26 2020-09-18 百度时代网络技术(北京)有限公司 用于自动驾驶的自反向车道的相互避开算法
CN111426330A (zh) * 2020-03-24 2020-07-17 江苏徐工工程机械研究院有限公司 路径生成方法和设备、无人化运输系统和存储介质
CN111785039A (zh) * 2020-07-02 2020-10-16 北京易控智驾科技有限公司 双向单车道智能驾驶车辆的管制方法、装置、设备及介质
CN112258877A (zh) * 2020-10-21 2021-01-22 江苏徐工工程机械研究院有限公司 用于矿山运输车辆的交通控制方法、平台及其系统
CN112530182A (zh) * 2020-12-15 2021-03-19 长沙矿山研究院有限责任公司 一种矿井斜坡道车载交通指挥系统的信息管控装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116432969A (zh) * 2023-04-19 2023-07-14 中国建筑材料工业地质勘查中心四川总队 一种基于大数据可视化的矿山综合管控平台
CN116432969B (zh) * 2023-04-19 2024-03-26 中国建筑材料工业地质勘查中心四川总队 一种基于大数据可视化的矿山综合管控平台

Also Published As

Publication number Publication date
AU2021362864A1 (en) 2024-01-18
CN113341969B (zh) 2023-12-08
CN113341969A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
WO2022077937A1 (zh) 用于矿用卡车的交通控制系统及其方法
CN107045343B (zh) 一种agv交通管制方法和系统
CN109774747B (zh) 线路资源的控制方法、智能车载控制器和对象控制器
KR102053552B1 (ko) 운전 계획 장치, 주행 지원 장치, 운전 계획 방법
KR102092484B1 (ko) 씬 평가 장치, 주행 지원 장치, 씬 평가 방법
WO2022082851A1 (zh) 用于矿山运输车辆的交通控制方法、平台及其系统
KR20190112866A (ko) 씬 평가 장치, 주행 지원 장치, 씬 평가 방법
CN112606881B (zh) 一种基于车车通信的道岔自动触发方法及装置
CN112634644A (zh) 自动驾驶车辆左转优化控制方法及系统
CN113821039A (zh) 基于时间窗的路径规划方法、装置、设备及存储介质
CN113053167A (zh) 一种混合交通环境下互联车辆十字路口无碰撞管理方法
CN109598927A (zh) 基于v2x技术的路权分配方法、系统、设备及存储介质
CN112735184A (zh) 一种实现高等级自动驾驶及高效运输的智能交通系统
US20220284809A1 (en) Traffic flow control system, traffic flow control program, traffic flow control method, and traveling controller
Hodgkiss et al. An advanced coordination protocol for safer and more efficient lane change for connected and autonomous vehicles
JPH11143538A (ja) 無人搬送車システム
Shen et al. Coordination of connected autonomous and human-operated vehicles at the intersection
Xiao et al. Conditions for improving the computational efficiency of decentralized optimal merging controllers for connected and automated vehicles
Rupp et al. Decentralized cooperative merging using sliding mode control
Shiomi et al. A lane-change maneuver of automated vehicles for improving traffic flow on highways with multiple lanes
AU2019239509A1 (en) Method for planning or controlling the movements of a plurality of vehicles over a network of routes
Choi et al. Reservation-based autonomous intersection management considering vehicle failures in the intersection
CN115743182A (zh) 自动驾驶车辆的绕行方法、控制方法及车载设备
JP7405708B2 (ja) 交通流制御システム、および、交通流制御方法
Zhou et al. Unsignalized intersection management strategy for mixed autonomy traffic streams

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21878988

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021362864

Country of ref document: AU

Ref document number: AU2021362864

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021362864

Country of ref document: AU

Date of ref document: 20210611

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21878988

Country of ref document: EP

Kind code of ref document: A1