WO2022082851A1 - 用于矿山运输车辆的交通控制方法、平台及其系统 - Google Patents

用于矿山运输车辆的交通控制方法、平台及其系统 Download PDF

Info

Publication number
WO2022082851A1
WO2022082851A1 PCT/CN2020/125854 CN2020125854W WO2022082851A1 WO 2022082851 A1 WO2022082851 A1 WO 2022082851A1 CN 2020125854 W CN2020125854 W CN 2020125854W WO 2022082851 A1 WO2022082851 A1 WO 2022082851A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane
driving
terminal device
control
Prior art date
Application number
PCT/CN2020/125854
Other languages
English (en)
French (fr)
Inventor
周长成
唐建林
杨超
Original Assignee
江苏徐工工程机械研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏徐工工程机械研究院有限公司 filed Critical 江苏徐工工程机械研究院有限公司
Publication of WO2022082851A1 publication Critical patent/WO2022082851A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096833Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route

Definitions

  • the present disclosure relates to the field of mine transportation, and in particular, to a traffic control method, platform and system for mine transportation vehicles.
  • open-pit mines are usually located in remote areas with harsh environments, and the ageing trend of operators of transport vehicles in mining areas is obvious. Safety accidents caused by operator negligence frequently occur. In the future, the economic burden of the mining area in terms of production safety and personnel investment will increase day by day. The unmanned transportation system of open-pit mines will gradually develop under the impetus of the urgent needs of the mining area and the development of modern science and technology.
  • a traffic control method for a mine transportation vehicle comprising: receiving a right-of-way request message sent by a vehicle terminal device and weight, type and driving data of the vehicle, wherein the driving data Including: the position, driving speed and driving direction of the vehicle; after receiving the right of way request message, determining the driving state of the vehicle according to the driving data of the vehicle, and the driving state includes the same direction
  • the driving state or the opposite driving state, the lane into which the vehicle will enter is determined according to the position and the driving direction of the vehicle, and the conflicting lane and the lane type of the lane are obtained by retrieving the lane mutex table;
  • the weight and type, the driving state in which the vehicle is located, the conflicting lane and lane type of the lane, and the vehicle driving rule send control instructions to the vehicle terminal device, wherein the vehicle terminal device executes the control instructions according to the control instructions Corresponding operation processing.
  • the step of sending a control instruction to the vehicle terminal device includes: when the lane is not a ramp, calculating a travel weight value of the vehicle according to the weight and type of the vehicle; and according to The driving weight value of the vehicle, the driving state in which the vehicle is located, the conflicting lane and the lane type of the lane, and the vehicle driving rule send the control command to the vehicle terminal device.
  • the vehicle is a current vehicle; according to the driving weight value of the vehicle, the driving state of the vehicle, the conflict lane and the lane type of the lane, and the driving rule of the vehicle to the vehicle
  • the step of sending the control command by the vehicle terminal device includes: when the driving state is an opposite driving state and the current vehicle and the adjacent vehicles adjacent to the current vehicle are both unmanned vehicles, if The travel weight value of the current vehicle is equal to the travel weight value of the adjacent vehicle, and a control command for deceleration processing is sent to both the vehicle terminal device of the current vehicle and the vehicle terminal device of the adjacent vehicle.
  • a control command for deceleration processing is sent to the vehicle terminal device of the current vehicle. If the driving weight value of the current vehicle is greater than that of the adjacent vehicle If the driving weight value is , the control command for deceleration processing is sent to the vehicle terminal device of the adjacent vehicle.
  • the vehicle is a current vehicle; according to the driving weight value of the vehicle, the driving state of the vehicle, the conflict lane and the lane type of the lane, and the driving rule of the vehicle to the vehicle
  • the step of sending the control command by the vehicle terminal device includes: when the driving state is an opposite driving state, the current vehicle is an unmanned vehicle, and an adjacent vehicle adjacent to the current vehicle is a manned vehicle. Then, if the driving weight value of the manned vehicle is smaller than the driving weight value of the unmanned vehicle, send a control command for deceleration processing to the vehicle terminal device of the manned vehicle, otherwise, send the unmanned vehicle to the vehicle terminal device.
  • the vehicle terminal device sends a control command for parking processing.
  • the step of sending a control instruction to the vehicle terminal device includes: in the case that the lane is a ramp, sending the control instruction to the vehicle terminal device according to whether the vehicle is in an uphill lane or in a downhill lane Sending a control command, in which a control command for parking processing is sent to the vehicle terminal device when the vehicle is in an uphill lane, and a control command for parking processing is sent to the vehicle terminal device when the vehicle is in a downhill lane Control command for deceleration processing.
  • the vehicle is a current vehicle; the step of sending a control instruction to the vehicle terminal device includes: when the current vehicle is an unmanned vehicle and the driving state is a same-direction driving state, Calculate a first distance between the current vehicle and an adjacent vehicle traveling in the same direction as the current vehicle; when the first distance is less than or equal to a first threshold and the current vehicle is behind the adjacent vehicle sending a control command for deceleration processing to the vehicle terminal device of the current vehicle; and when the first distance is greater than the first threshold or the current vehicle is in front of the adjacent vehicle, send a control command to the The vehicle terminal device of the adjacent vehicle sends the control command of the safety warning.
  • the vehicle is a current vehicle; the step of sending a control instruction to the vehicle terminal device includes: when the current vehicle is an unmanned vehicle and the driving state is an opposite driving state, Calculate a second distance between the current vehicle and an adjacent vehicle traveling opposite to the current vehicle; when the second distance is less than or equal to a second threshold, send a message to the vehicle terminal device of the current vehicle sending a control command for parking processing; and when the second distance is greater than the second threshold value, sending a control command for deceleration processing to the vehicle terminal device of the current vehicle.
  • the step of executing the corresponding operation processing by the vehicle terminal device according to the control instruction includes: when the vehicle is unmanned In the case of a vehicle, the vehicle terminal device performs parking or deceleration processing on the unmanned vehicle according to the control instruction; and in the case of the vehicle being a manned vehicle, the vehicle terminal device receives all After the control instruction is executed, the warning information is displayed on the display screen of the vehicle terminal device.
  • the traffic control method further includes: before receiving the right-of-way request message, receiving the collected original map boundary data, creating a road network and operation area in an open-pit mine that meet the requirements for vehicle operation and driving, and calibrating the open-pit mine.
  • the mine's infrastructure for unmanned vehicles divides the unsafe road sections in the open-pit mine road network, generates an automatic driving path in each section of the road after the division and adds to the lanes mutually exclusive in the table.
  • a traffic control platform for a mine transportation vehicle comprising: a receiving unit configured to receive a right-of-way request message and weight, type and travel data of the vehicle sent by a vehicle terminal device , wherein the driving data includes: the position, driving speed and driving direction of the vehicle; an analysis unit is configured to determine the vehicle according to the driving data of the vehicle after receiving the request message for the right of way
  • the terminal device sends a control instruction, wherein the vehicle terminal device performs corresponding operation
  • control unit includes: a calculation module configured to calculate a travel weight value of the vehicle according to the weight and type of the vehicle when the lane is not a ramp; and a transmission module is configured to send the control instruction to the vehicle terminal device according to the driving weight value of the vehicle, the driving state in which the vehicle is located, the conflict lane and the lane type of the lane, and the vehicle driving rule.
  • a traffic control platform for a mine transportation vehicle comprising: a memory; and a processor coupled to the memory, the processor configured to be based on storage in the memory
  • the instruction executes the method as previously described.
  • a traffic control platform for a mine transportation vehicle comprising: a control center device configured to receive a right-of-way request message sent by a vehicle terminal device and the weight, type, and travel of the vehicle
  • the driving data includes: the position, driving speed and driving direction of the vehicle, and receiving a driving control strategy, encapsulating the driving control strategy into a control command and sending the control command to the vehicle terminal device, wherein the vehicle terminal device performs corresponding operation processing according to the control instruction; and a traffic management service device is configured to receive the right-of-way request message and the weight, Type and driving data, the driving state of the vehicle is determined according to the driving data of the vehicle, and the driving state includes the same-direction driving state or the opposite driving state, and the vehicle is determined according to the position and driving direction of the vehicle.
  • the lane to be entered, the conflict lane and lane type of the lane are obtained by retrieving the lane mutual exclusion table, and the conflict lane and lane of the lane according to the weight and type of the vehicle, the driving state of the vehicle, and the lane
  • the driving control strategy is obtained from the type, and the driving rule of the vehicle, and the driving control strategy is sent to the control center device.
  • the traffic management service device is configured to calculate a travel weight value of the vehicle according to the weight and type of the vehicle when the lane is not a ramp, and to obtain a travel weight value of the vehicle according to the weight and type of the vehicle
  • the driving control strategy is obtained from the driving weight value, the driving state in which the vehicle is located, the conflicting lane and the lane type of the lane, and the vehicle driving rule.
  • the traffic control platform further includes: a map management device, configured to receive the collected raw map boundary data, create a road network and operation area of the open-pit mine that meet the requirements of vehicle operation and travel, and calibrate the use of the open-pit mine for use.
  • a map management device configured to receive the collected raw map boundary data, create a road network and operation area of the open-pit mine that meet the requirements of vehicle operation and travel, and calibrate the use of the open-pit mine for use.
  • the infrastructure of unmanned vehicles, the unsafe road sections in the open-pit mine road network are divided into sections, the automatic driving paths in each section of the road after division and division are generated and added to the lane mutual exclusion table, and the said The lane mutex list is sent to the traffic management service device.
  • the traffic control platform further includes: a map collection device configured to collect original map boundary data and send the original map boundary data to the map management device.
  • a traffic control system for a mine transportation vehicle comprising: the aforementioned traffic control platform.
  • the traffic control system further includes a vehicle terminal device disposed on the vehicle and configured to issue a right-of-way request message and weight, type, and travel data of the vehicle.
  • the vehicle terminal device is further configured to, under the condition that the control instruction is to stop or decelerate the vehicle, if the vehicle is an unmanned vehicle, execute the control instruction according to the control instruction. stop or decelerate the unmanned vehicle, and if the vehicle is a manned vehicle, after receiving the control command, display warning information on the display screen of the vehicle terminal device.
  • a non-transitory computer-readable storage medium having computer program instructions stored thereon which, when executed by a processor, implement the aforementioned method.
  • FIG. 1 is a flowchart illustrating a traffic control method for a mine transportation vehicle according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram illustrating the division of a driving area road segment according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram illustrating a lane mutual exclusion table according to one embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram illustrating a traffic control platform for a mine transportation vehicle according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram illustrating a traffic control platform for a mine transportation vehicle according to another embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram illustrating a traffic control platform for a mine transportation vehicle according to another embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram illustrating a traffic control platform for a mine transportation vehicle according to another embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram illustrating a traffic control platform for a mine transportation vehicle according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram illustrating a traffic control platform for a mine transportation vehicle according to another embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram illustrating a traffic control system for a mine transportation vehicle according to an embodiment of the present disclosure
  • FIG. 11 is a flowchart illustrating a traffic control method for a mine transportation vehicle according to another embodiment of the present disclosure
  • FIG. 12 is a flowchart illustrating a traffic control method for a mine transportation vehicle according to another embodiment of the present disclosure.
  • a technical problem solved by the present disclosure is that the particularity and complexity of the operation management of the open-pit mine leads to a relatively low management and control efficiency of the open-pit mine vehicle.
  • the present disclosure provides a traffic control method for mine transportation vehicles, so as to improve the traffic control efficiency of mine vehicles.
  • the traffic control method for a mine transportation vehicle according to some embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings.
  • FIG. 1 is a flowchart illustrating a traffic control method for a mine transportation vehicle according to one embodiment of the present disclosure. As shown in FIG. 1, the method may include steps S102 to S106.
  • a right-of-way request message and vehicle weight, type and travel data sent by the vehicle terminal device are received.
  • the travel data may include: the vehicle's position, travel speed, and travel direction.
  • the right-of-way request message refers to a request message for the vehicle to apply for normal driving in the lane to be entered.
  • the types of vehicles may include large vehicles, small vehicles, and the like.
  • large cars and small cars can be relative terms.
  • a vehicle that is relatively smaller than it may be referred to as a large car
  • a relatively larger vehicle may be referred to as a small car.
  • the types of vehicles may also include unmanned vehicles and manned vehicles.
  • step S104 after receiving the request message for the right of way, the driving state of the vehicle is determined according to the driving data of the vehicle. It is a meeting state), according to the position and driving direction of the vehicle to determine the lane that the vehicle will enter, and obtain the conflict lane and lane type of the lane by retrieving the lane mutual exclusion table.
  • the same-direction driving state refers to a state in which two vehicles are traveling in the same direction, for example, one of the two vehicles is in front of the other vehicle.
  • the opposite traveling state refers to a state in which the traveling directions of the two vehicles are opposite to each other, that is, a state in which the two vehicles are about to approach each other.
  • the positions and driving directions of the two vehicles can be obtained according to the driving data, so that it can be known that the two vehicles are driving in the same direction The state is still in the opposite driving state.
  • the lane to be entered refers to the next section lane in the vehicle traveling direction adjacent to the current section lane.
  • the driving area is divided into 3 road segments according to the curve and road width, which are named as road segment #1, road segment #2 and road segment #3 respectively.
  • Section #1 satisfies the standard road width of a two-way two-way road in an open-pit mine.
  • the two lanes L1#1 and L2#1 can allow two unmanned vehicles to drive side by side at the same time, so the two lanes L1#1 and L2#1 do not need to be Mutually exclusive associations.
  • Section #2 is a curve with a small turning radius, which cannot meet the simultaneous turning of two unmanned vehicles, so there are two lanes L1#2 and L1#3 and two lanes L2#2 and L2#3 in this section.
  • Driving conflicts require mutually exclusive associations.
  • Road section #3 is a two-way two-way road section that does not meet the standard width. There is a driving conflict between the two lanes L1#4 and L2#4, and a mutually exclusive association needs to be performed.
  • the lane mutual exclusion table shown in Figure 3 can be formed.
  • the lane mutual exclusion table is a lane relationship table that associates a selected lane with a segment or segments of adjacent opposite-traveling lanes in a special road segment and has a driving conflict. The table also maintains the driving lanes of the regular road segments without conflicting relationship.
  • the lanes in which the vehicles are in conflict are called conflict lanes (or mutually exclusive lanes).
  • the conflicting lanes of lane L1#2 are lanes L2#2 and L2#3, and so on.
  • the lane types can include: uphill, downhill, and road, etc.
  • the road section requires temporary traffic control, or the lane is blocked by falling rocks, potholes or vehicles breaking down, the lane needs to be locked. Locked lanes are impassable.
  • all road sections with driving conflicts and danger of collision may be divided as special road sections.
  • Regular road sections are segmented or not segmented as needed.
  • step S106 a control command is sent to the vehicle terminal device according to the weight and type of the vehicle, the running state the vehicle is in, the conflicting lanes of the lanes and the lane type, and the vehicle driving rules.
  • the vehicle terminal device performs corresponding operation processing according to the control instruction.
  • the step S106 may include: when the lane is not a ramp, calculating the driving weight value of the vehicle according to the weight and type of the vehicle, and obtaining the driving weight value of the vehicle according to the driving weight value of the vehicle, the driving state of the vehicle, The conflicting lane and lane type of the lane, and the vehicle driving rule send the control command to the vehicle terminal device.
  • the weight of the vehicle with a relatively large total weight (which can be called a heavy vehicle) is 1, and the weight of a vehicle with a relatively small total weight (which can be called a heavy vehicle) can be pre-specified.
  • 0 for light vehicles 1 for large vehicles
  • 0 for small vehicles 1 for unmanned vehicles
  • 0 for manned vehicles etc. .
  • the travel weight value of the vehicle may be calculated according to a predetermined weight corresponding to the weight and type of the vehicle. For example, in a certain turning lane where a large car and a small car are about to enter into opposite directions, the lane type of the turning lane is flat road, the total mass of the large car is 10 tons, and the total weight of the small car is 3 tons, the weight sum of large cars is 2, and the weight sum of small cars is 0.
  • the vehicle driving rule may include: a vehicle with a relatively small driving weight value gives way to a vehicle with a relatively large driving weight value. Then the small car in this example needs to give way to the large car. In this way, the control command of the parking process can be sent to the vehicle terminal device on the small car to park the small car.
  • the vehicle is the current vehicle.
  • the step of sending a control command to the vehicle terminal device according to the driving weight value of the vehicle, the driving state of the vehicle, the conflicting lanes and lane types of the lanes, and the driving rules of the vehicle includes: when the driving state is the opposite driving state and the current vehicle and the In the case where the adjacent adjacent vehicles of the current vehicle are all unmanned vehicles, if the driving weight value of the current vehicle is equal to the driving weight value of the adjacent vehicle, the vehicle terminal device of the current vehicle and the vehicle terminal of the adjacent vehicle are sent to the The device sends a control command for deceleration processing.
  • the control command for deceleration processing is sent to the vehicle terminal device of the current vehicle. If the driving weight value of the current vehicle is greater than that of the adjacent vehicle If the travel weight value of the vehicle is determined, a control command for deceleration processing is sent to the vehicle terminal device of the adjacent vehicle.
  • the two unmanned vehicles when two unmanned vehicles are driving in opposite directions, if the driving weights of the two unmanned vehicles are equal, the two unmanned vehicles are controlled to decelerate at the same time. If the driving weight values of the vehicles are not equal, the vehicle with the smaller driving weight value is controlled to decelerate, while the vehicle with the larger driving weight value may not decelerate. In this way, the driving control of the two unmanned vehicles in the opposite driving state is realized.
  • the vehicle is the current vehicle.
  • the step of sending a control command to the vehicle terminal device according to the driving weight value of the vehicle, the driving state of the vehicle, the conflicting lane and the lane type of the lane, and the driving rule of the vehicle include: when the driving state is the opposite driving state, and the current vehicle is no In the case of a manned vehicle and the adjacent vehicle adjacent to the current vehicle is a manned vehicle, if the driving weight value of the manned vehicle is less than the driving weight value of the unmanned vehicle, the vehicle terminal device of the manned vehicle will send a deceleration The control command for processing, otherwise, the control command for parking processing is sent to the vehicle terminal device of the unmanned vehicle.
  • the driving control of the unmanned vehicle and the manned vehicle is realized in the case where the unmanned vehicle and the manned vehicle are traveling in opposite directions.
  • the step S106 may include: when the lane is a ramp, sending a control instruction to the vehicle terminal device according to whether the vehicle is in the uphill lane or in the downhill lane, wherein when the vehicle is in the uphill lane In this case, a control command for parking processing is sent to the vehicle terminal device, and when the vehicle is in a downhill lane, a control command for deceleration processing is sent to the vehicle terminal device.
  • the ramp may not be weighted with other traffic meeting rules, and the vehicle may only be driven accordingly according to the uphill and downhill attributes.
  • the vehicle is the current vehicle.
  • the step S106 may include: when the current vehicle is an unmanned vehicle and the driving state is the same-direction driving state, calculating a first distance between the current vehicle and an adjacent vehicle traveling in the same direction as the current vehicle ; when the first distance is less than or equal to a first threshold (also referred to as a first safety distance) and the current vehicle is behind an adjacent vehicle, send a control instruction for deceleration processing to the vehicle terminal device of the current vehicle; and When the first distance is greater than the first threshold or when the current vehicle is in front of the adjacent vehicle, a control instruction of safety warning is sent to the vehicle terminal device of the adjacent vehicle.
  • the driving control of the current vehicle and the adjacent vehicles is realized when the current vehicle is in the same direction driving state and the current vehicle is an unmanned vehicle.
  • the vehicle is the current vehicle.
  • This step S106 may include: in the case that the current vehicle is an unmanned vehicle and the driving state is an opposite driving state, calculating a second distance between the current vehicle and an adjacent vehicle driving opposite to the current vehicle ; when the second distance is less than or equal to a second threshold (also referred to as a second safety distance), send a control instruction for parking processing to the vehicle terminal device of the current vehicle; and when the second distance is greater than the second threshold Next, a control command for deceleration processing is sent to the vehicle terminal device of the current vehicle.
  • the driving control of the current vehicle is realized when the current vehicle is in an opposite driving state and the current vehicle is an unmanned vehicle.
  • the step of performing the corresponding operation processing by the vehicle terminal device according to the control instruction includes: in the case that the vehicle is an unmanned vehicle , the vehicle terminal device performs parking or deceleration processing on the unmanned vehicle according to the control instruction; and when the vehicle is a manned vehicle, after receiving the control instruction, the vehicle terminal device displays on the display screen of the vehicle terminal device Warning information.
  • the warning information can serve the purpose of warning the driver. In this way, the running control of the vehicle is realized.
  • the traffic control method includes: receiving a right-of-way request message and vehicle weight, type and driving data sent by a vehicle terminal device, wherein the driving data includes: the position, driving speed and driving direction of the vehicle; After the message is sent, the driving state of the vehicle is determined according to the driving data of the vehicle.
  • the driving state includes the same-direction driving state or the opposite driving state.
  • the exclusion table obtains the conflicting lane and the lane type of the lane; and sends a control command to the vehicle terminal device according to the weight and type of the vehicle, the driving state of the vehicle, the conflicting lane and lane type of the lane, and the vehicle driving rules.
  • the vehicle terminal device performs corresponding operation processing according to the control instruction.
  • the method improves the traffic control efficiency of mine vehicles, so that mine vehicles can be dynamically and efficiently controlled.
  • the traffic control method may further include: before receiving the right-of-way request message, receiving the collected original map boundary data, creating a road network and an operation area of an open-pit mine that meet the driving requirements of the vehicle operation, and calibrating the open-pit mine
  • the infrastructure for unmanned vehicles is to divide the unsafe road sections in the open-pit mine road network, generate automatic driving paths in each road section after division and add them to the lane mutual exclusion table.
  • the collection of the mine map and the acquisition of the lane mutual exclusion table are realized, which facilitates the subsequent driving control of the vehicle.
  • FIG. 4 is a schematic structural diagram illustrating a traffic control platform for a mine transportation vehicle according to an embodiment of the present disclosure.
  • the traffic control platform may include a receiving unit 410 , an analyzing unit 420 and a control unit 430 .
  • the receiving unit 410 is configured to receive a right-of-way request message and weight, type, and travel data of the vehicle sent by the vehicle terminal device.
  • the driving data includes: the vehicle's position, driving speed, and driving direction.
  • the analyzing unit 420 is configured to, after receiving the right-of-way request message, determine the driving state in which the vehicle is located according to the driving data of the vehicle, the driving state includes the same-direction driving state or the opposite driving state, according to the position and the driving state of the vehicle.
  • the driving direction determines the lane that the vehicle will enter, and the conflict lane and lane type of the lane are obtained by retrieving the lane mutex table.
  • the control unit 430 is configured to send a control instruction to the vehicle terminal device according to the weight and type of the vehicle, the driving state in which the vehicle is located, the conflict lane of the lane and the lane type, and the vehicle driving rule.
  • the vehicle terminal device performs corresponding operation processing according to the control instruction.
  • the receiving unit receives the right-of-way request message sent by the vehicle terminal device and the weight, type and driving data of the vehicle; the analysis unit determines the driving state of the vehicle according to the driving data of the vehicle, and according to the position of the vehicle and the driving direction to determine the lane that the vehicle will enter, and obtain the conflicting lane and lane type of the lane by retrieving the lane mutex table; the control unit is based on the weight and type of the vehicle, the driving state of the vehicle, the conflicting lane and the lane of the lane.
  • the type and vehicle driving rules send control commands to the vehicle terminal device.
  • the vehicle terminal device performs corresponding operation processing according to the control instruction. This can achieve the purpose of dynamic and efficient control of mine vehicles.
  • FIG. 5 is a schematic structural diagram illustrating a traffic control platform for a mine transportation vehicle according to another embodiment of the present disclosure.
  • the traffic control platform may include a receiving unit 410 , an analyzing unit 420 and a control unit 430 .
  • the control unit 430 includes a calculation module 432 and a transmission module 434 .
  • the calculation module 432 is configured to calculate the travel weight value of the vehicle according to the weight and type of the vehicle when the lane is not a ramp.
  • the sending module 434 is configured to send a control instruction to the vehicle terminal device according to the driving weight value of the vehicle, the driving state of the vehicle, the conflicting lane and the lane type of the lane, and the driving rule of the vehicle.
  • vehicle driving rules may be pre-stored in the traffic control platform.
  • the vehicle is the current vehicle.
  • the sending module 434 is configured to, when the driving state is the opposite driving state and the current vehicle and the adjacent vehicles adjacent to the current vehicle are both unmanned vehicles, if the driving weight value of the current vehicle is the same as the driving of the adjacent vehicle. If the weight values are equal, the control command for deceleration processing is sent to both the vehicle terminal device of the current vehicle and the vehicle terminal device of the adjacent vehicle.
  • the vehicle The terminal device sends a control command for deceleration processing, and if the travel weight value of the current vehicle is greater than the travel weight value of an adjacent vehicle, it sends a control command for deceleration processing to the vehicle terminal device of the adjacent vehicle.
  • the vehicle is the current vehicle.
  • the sending module 434 is configured to, when the driving state is the opposite driving state, the current vehicle is an unmanned vehicle, and the adjacent vehicle adjacent to the current vehicle is a manned vehicle, if the driving weight value of the manned vehicle is less than None If the driving weight value of the manned vehicle is used, a control command for deceleration processing is sent to the vehicle terminal device of the manned vehicle, otherwise, a control command for parking processing is sent to the vehicle terminal device of the unmanned vehicle.
  • the sending module 434 is configured to send a control command to the vehicle terminal device according to whether the vehicle is in an uphill lane or in a downhill lane if the lane is a ramp.
  • the sending module 434 is configured to send a control command of parking processing to the vehicle terminal device when the vehicle is in an uphill lane, and send a control command of deceleration processing to the vehicle terminal device when the vehicle is in a downhill lane.
  • the vehicle is the current vehicle.
  • the calculation module 432 is configured to calculate a first distance between the current vehicle and an adjacent vehicle traveling in the same direction as the current vehicle when the current vehicle is an unmanned vehicle and the driving state is the same-direction driving state.
  • the sending module 434 is configured to send a control instruction for deceleration processing to the vehicle terminal device of the current vehicle when the first distance is less than or equal to the first threshold and the current vehicle is behind the adjacent vehicle, and when the first distance is greater than the first When the threshold value or the current vehicle is in front of the adjacent vehicle, the control command of the safety warning is sent to the vehicle terminal device of the adjacent vehicle.
  • the vehicle is the current vehicle.
  • the calculation module 432 is configured to calculate a second distance between the current vehicle and an adjacent vehicle traveling opposite to the current vehicle when the current vehicle is an unmanned vehicle and the driving state is an opposite driving state.
  • the sending module 434 is configured to send a control instruction of parking processing to the vehicle terminal device of the current vehicle when the second distance is less than or equal to the second threshold, and send a control instruction to the current vehicle when the second distance is greater than the second threshold
  • the vehicle terminal device sends a control command for deceleration processing.
  • the receiving unit 410 is further configured to receive the collected raw map boundary data.
  • the traffic control platform may further include a route generation unit (not shown in the figure).
  • the path generation unit is configured to create a road network and operation area of an open-pit mine that meets the requirements of vehicle operation, demarcate the infrastructure of the open-pit mine for unmanned vehicles, and divide the unsafe road sections in the open-pit mine road network. Generate an automatic driving path in each segment of road after segmentation and add it to the lane mutual exclusion table.
  • FIG. 6 is a schematic structural diagram illustrating a traffic control platform for a mine transportation vehicle according to another embodiment of the present disclosure.
  • the traffic control platform includes a memory 610 and a processor 620 . in:
  • Memory 610 may be a magnetic disk, flash memory, or any other non-volatile storage medium. The memory is used to store the instructions in the embodiment corresponding to FIG. 1 .
  • the processor 620 is coupled to the memory 610 and may be implemented as one or more integrated circuits, such as a microprocessor or microcontroller.
  • the processor 620 is used to execute the instructions stored in the memory, and can dynamically and efficiently manage and control the mine running vehicle.
  • the traffic control platform 700 includes a memory 710 and a processor 720 .
  • Processor 720 is coupled to memory 710 through BUS bus 730 .
  • the traffic control platform 700 can also be connected to an external storage device 750 through a storage interface 740 to call external data, and can also be connected to a network or another computer system (not shown) through a network interface 760, which will not be described in detail here. .
  • the data instructions are stored in the memory and the above instructions are processed by the processor, so that the mine vehicles can be dynamically and efficiently controlled.
  • FIG. 8 is a schematic structural diagram illustrating a traffic control platform for a mine transportation vehicle according to another embodiment of the present disclosure.
  • the traffic control platform may include a control center device 810 and a traffic management service device 820 .
  • the control center device 810 is connected in communication with the traffic management service device 820 .
  • the control center device 810 is configured to receive the right-of-way request message sent by the vehicle terminal device (not shown in FIG. 8 ) and the weight, type and driving data of the vehicle, wherein the driving data includes: the position, the driving speed and the driving data of the vehicle. driving direction, and receiving the driving control strategy, encapsulating the driving control strategy into a control command and sending the control command to the vehicle terminal device.
  • the vehicle terminal device performs corresponding operation processing according to the control instruction.
  • control center device 810 is the control center monitoring service platform of the open-pit mine unmanned system.
  • the control center device 810 monitors the working status of the vehicle in real time, receives data such as status, requests, alarms, and faults sent from the vehicle and terminal equipment, and issues control instructions, reply messages, and upgrade data.
  • the control center device 810 mainly forwards the right-of-way request and real-time status data sent by the vehicle to the traffic management service device 820, receives the driving control strategy (or called arbitration result) returned by the traffic management service device 820, and feeds it back to the vehicle terminal device ; And through the integrated traffic management function interface, the traffic yield rules, safety distance, lane mutual exclusion table and lane attributes can be edited and updated.
  • the traffic management service device 820 is configured to receive the right-of-way request message and the weight, type and driving data of the vehicle from the control center device 810, and determine the driving state in which the vehicle is located according to the driving data of the vehicle, the driving state including the same-direction driving state Or in the opposite driving state, determine the lane that the vehicle will enter according to the position and driving direction of the vehicle, obtain the conflicting lane and lane type of the lane by retrieving the lane mutual exclusion table, and according to the weight and type of the vehicle, the driving position of the vehicle.
  • the state, the conflicting lane and the lane type of the lane, and the vehicle driving rule obtain a driving control strategy, which is sent to the control center device 810 .
  • the traffic control platform includes a control center device and a traffic management service device. Through the information processing and control of the control center device and the traffic management service device, the traffic control efficiency of the mine vehicles can be improved, so that the mine vehicles can be dynamically and efficiently controlled.
  • the traffic management service device 820 is configured to calculate and obtain the travel weight value of the vehicle according to the weight and type of the vehicle when the lane is not a ramp, and to obtain the travel weight value of the vehicle according to the travel weight value of the vehicle and the driving position of the vehicle.
  • the state, the conflicting lanes and lane types of the lanes, and the vehicle driving rules obtain the driving control strategy.
  • the vehicle is the current vehicle.
  • the traffic management service device 810 is configured to, when the driving state is the opposite driving state and the current vehicle and the adjacent vehicles adjacent to the current vehicle are both unmanned vehicles, if the driving weight value of the current vehicle is the same as that of the adjacent vehicles If the driving weight value of the current vehicle is equal to that of the adjacent vehicle, a driving control strategy is obtained that causes both the current vehicle and the adjacent vehicle to be decelerated. If the driving weight value of the current vehicle is smaller than the driving weight value of the adjacent vehicle, then The driving control strategy for decelerating the current vehicle, if the driving weight value of the current vehicle is greater than the driving weight value of the adjacent vehicle, the driving control strategy for decelerating the adjacent vehicle is obtained.
  • the vehicle is the current vehicle.
  • the traffic management service device 820 is configured to, when the driving state is the opposite driving state, the current vehicle is an unmanned vehicle, and the adjacent vehicle adjacent to the current vehicle is a manned vehicle, if the driving weight value of the manned vehicle is If the value is less than the driving weight value of the unmanned vehicle, a driving control strategy for decelerating the manned vehicle is obtained; otherwise, a driving control strategy for stopping the unmanned vehicle is obtained.
  • the traffic management service 820 is configured to obtain a driving control strategy based on whether the vehicle is in an uphill lane or in a downhill lane if the lane is a ramp.
  • the traffic management service device 820 is configured to obtain a driving control strategy that causes the vehicle to be parked when the vehicle is in an uphill lane, and obtains a driving control strategy that causes the vehicle to be decelerated when the vehicle is in a downhill lane Processed driving control strategy.
  • the vehicle is the current vehicle.
  • the traffic management service device 820 is configured to calculate a first distance between the current vehicle and an adjacent vehicle traveling in the same direction as the current vehicle when the current vehicle is an unmanned vehicle and the driving state is the same-direction driving state , when the first distance is less than or equal to the first threshold and the current vehicle is behind the adjacent vehicle, obtain a driving control strategy that causes the current vehicle to be decelerated, and when the first distance is greater than the first threshold or the current vehicle is in In the case of the front of the adjacent vehicle, a driving control strategy is obtained so that the adjacent vehicle is safely alerted.
  • the vehicle is the current vehicle.
  • the traffic management service device 820 is configured to calculate a second distance between the current vehicle and an adjacent vehicle traveling opposite to the current vehicle when the current vehicle is an unmanned vehicle and the driving state is an opposite driving state , when the second distance is less than or equal to the second threshold, obtain a driving control strategy that causes the current vehicle to be parked, and when the second distance is greater than the second threshold, obtain the current vehicle to be decelerated Processed driving control strategy.
  • the traffic management service device 820 is the traffic arbitration management service platform of the unmanned transportation system of the open-pit mine. Based on the lane mutual exclusion table, the right-of-way arbitration is performed on the driving vehicles on special road sections, and the safety distance control is performed on regular road sections; based on the traffic yield rules and weights, the regular road sections are subjected to passing-vehicle arbitration. Special road sections are road sections, intersections, temporarily controlled sections, etc. A regular road segment is a road segment that can simultaneously travel in both directions.
  • the traffic management service device 820 receives the right-of-way request message from the control center device 810, obtains all conflicting lanes and lane attributes of the lane where the right-of-way is applied for by retrieving the lane mutual exclusion table in the map database, and arbitrates the right-of-way application; Receive the real-time status of the vehicle forwarded from the control center device 810, and perform yield control and safe distance control on the relevant vehicles according to the real-time position, load, heading, and lane attributes of the vehicle.
  • FIG. 9 is a schematic structural diagram illustrating a traffic control platform for a mine transportation vehicle according to another embodiment of the present disclosure.
  • the traffic control platform may include a control center device 810 and a traffic management service device 820 .
  • the traffic control platform may further include a map management device 930 .
  • the map management device 930 is configured to receive the collected raw map boundary data, create a road network and operation area of the open-pit mine that meet the requirements of vehicle operation and travel, demarcate the infrastructure of the open-pit mine for unmanned vehicles, and integrate the road network of the open-pit mine.
  • the non-safe road sections in the road are divided into sections, an automatic driving route in each section of the road after division and division is generated and added to the lane mutual exclusion table, and the lane mutual exclusion table is sent to the traffic management service device 820 . In this way, the lane mutual exclusion table is obtained, which is convenient for subsequent control of the vehicle form.
  • the traffic control platform may further include a map acquisition device 940 .
  • the map collecting device 940 is configured to collect raw map boundary data and send the raw map boundary data to the map management device 930 . In this way, the collection of the original map data is realized.
  • a traffic control system for a mine transport vehicle includes a traffic control platform as previously described (eg, as described in any one of FIGS. 4 to 9 ).
  • the traffic control system may also include a vehicle terminal device.
  • the vehicle terminal device is installed on the vehicle.
  • the vehicle end device is configured to issue a right-of-way request message along with weight, type and travel data of the vehicle.
  • the vehicle terminal system device may be an unmanned vehicle or a manned vehicle in the unmanned operation area of an open-pit mine, a terminal system device with a positioning device that performs information exchange, data recording and statistics.
  • the vehicle terminal device may be further configured to stop the unmanned vehicle according to the control instruction if the vehicle is an unmanned vehicle when the control instruction is to stop or decelerate the vehicle. Or deceleration processing, and if the vehicle is a manned vehicle, after receiving the control command, display warning information on the display screen of the vehicle terminal device.
  • FIG. 10 is a schematic structural diagram illustrating a traffic control system for a mine transportation vehicle according to an embodiment of the present disclosure.
  • the traffic control system may include: a control center device 810 , a traffic management service device 820 , a map management device 930 , a map collection device 940 and a vehicle terminal device 1010 .
  • the original map file 952 and the map database 954 are also shown in FIG. 10 .
  • the traffic control system may further include: a positioning base station 1020 and a wireless communication device 1030 .
  • control center device 810, the traffic management service device 820, and the map management device 930 can be deployed on the server side of the control center computer room; the vehicle terminal device 1010 can be deployed on the vehicle-side industrial computer of an unmanned vehicle or a manned vehicle.
  • the server device is a professional blade server, the unmanned vehicle can be an unmanned mining truck, and the vehicle terminal device is a fanless industrial computer.
  • the unmanned vehicle sends requests such as right-of-way application and right-of-way release to the control center device 810 through the wireless communication device 1030 in real time, and controls the vehicle to decelerate, stop or detour according to the feedback results of the received requests.
  • Manned vehicles and unmanned vehicles send information such as position, speed, heading, and load to the control center device 810 in real time through the wireless communication device 1030 to provide relevant judgment data for traffic control.
  • a traffic management method for an unmanned transportation system in an open-pit mine may include the following steps (1) to (4).
  • the map collecting device 940 collects the original map data through the positioning base station 1020 and saves it to an external file.
  • Map editors log in to the map management device 930, import original map data, and create and calibrate the mine road network structure, work area, and other infrastructure.
  • the driving area is divided into sections. For example, if the next section of a two-way two-way road becomes a two-way one-way road, it is necessary to divide the two-way two-way road and two-way one-way road into two adjacent driving areas, and start traffic control at the end of the two-way two-way road to control the traffic entering the two-way one-way road section. vehicle.
  • a lane node is added in each driving area to generate two opposite driving path trajectories, which are automatically added to the lane mutual exclusion table and given default attribute values.
  • the lane type defaults to a common road segment, and other lane types can be special road segments or exclusive road segments; the slope defaults to a flat road, and other slopes can be uphill or downhill; the default lane status is unlocked, and the locked The lane is impassable.
  • the two opposite lanes of a special road section have driving conflicts and need to be associated in a mutual exclusion table.
  • map data and lane mutex tables, etc. may be stored in map database 954 .
  • mutually exclusive lanes can be added or removed, setting the weight and status of that lane. For example, after the original lane is widened to a two-vehicle lane, the lane does not need to be controlled by traffic, and the mutually exclusive lane of this lane can be deleted; otherwise, the mutually exclusive lane of this lane can be added; or a certain lane of temporary traffic control, If the vehicle breaks down in the lane, the original two-lane lane needs to be modified into a one-lane lane, and the lane can be controlled by traffic at this time.
  • mutually exclusive lanes are special road sections or continuous special road sections where two vehicles (eg, unmanned vehicles) cannot run in the opposite direction at the same time.
  • a special road section can be a two-way one-way road section, a road section with the danger of a safe collision, a road section that cannot satisfy two vehicles traveling in the opposite direction at the same time, a curve with a small turning radius, etc.
  • the traffic management service device 820 returns the stop, deceleration or unchanged driving control strategy (ie, the arbitration result) to the control center device 810 according to the passing-vehicle rule, and the control center device 810 sends relevant control commands to the vehicle according to the feedback driving control strategy Terminal device 1010.
  • the default vehicle driving rules can be: downhill vehicles give way to uphill vehicles; light vehicles give way to heavy vehicles; small vehicles give way to large vehicles; manned vehicles give way to unmanned vehicles.
  • the priority setting of the vehicle driving rule may be performed.
  • the priority of the rule for downhill vehicles to give way to uphill vehicles may be set to the first level (ie, the highest level), and the rule for light vehicles to give way to heavy vehicles.
  • the priority is the second level lower than the first level (that is, the second level), the priority of the rule that the small car lets the big car is the third level lower than the second level, the manned car lets the unmanned car.
  • the priority of the rule is the fourth level (ie the lowest level), which is one level lower than the third level.
  • the traffic management service device 820 acquires the state of the vehicle and the attribute of the lane, etc., and performs the summation calculation of the weight value as one of the conditions for the traffic arbitration.
  • the ramp does not sum up the weights with other traffic rules. It only compares the weights based on the uphill and downhill attributes, and then controls the vehicles accordingly. For example, vehicles with smaller weights are parked. For another example, for vehicles on other road sections, vehicles with smaller weights can be decelerated or stopped, while vehicles with larger weights can drive normally; vehicles with the same weights can be decelerated at the same time.
  • the vehicle terminal device 1010 installed on it continuously reports the state of the vehicle, and when the vehicle is about to enter the next road section, it sends a message to the control center device 810 through the wireless communication system device. Right-of-way request message.
  • the control center device 810 receives the right-of-way request message and the real-time status of the vehicle, and invokes the yield arbitration interface of the traffic management service device 820 to perform real-time traffic control.
  • the traffic management service device 820 judges the heading of the surrounding vehicles and whether they are in the same lane according to the real-time position, heading angle, and attribute information of the lane of the vehicle.
  • the traffic management service device 820 can also obtain all relevant lanes by retrieving the lane mutual exclusion table, and judge whether the relevant lanes have been occupied through the right-of-way management table maintained by itself. Then, the traffic management service device 820 returns the travel control strategy to the control center device 810 .
  • the control center device 810 encapsulates the driving control strategy into a control command, and returns the control command to the vehicle terminal device 1010 . If the control instruction indicates that the vehicle has obtained the right of way, the vehicle runs normally; otherwise, the vehicle decelerates or stops.
  • the above method can carry out traffic control for the hybrid vehicles of the unmanned transportation system of the open-pit mine, and conduct real-time control of the following and meeting vehicles according to the real-time position, heading, load and attributes of the driving road and other information of the vehicle; according to the attributes of the driving road, State and lane mutual exclusion table, real-time dynamic arbitration of vehicle right of way. This improves the driving safety of mixed fleets of manned and unmanned vehicles and the operational efficiency of open-pit mine haulage vehicles.
  • the distinction can be made according to the road width standard of the two-way two-way road in the open-pit mine, the minimum turning radius of the unmanned truck, and the intersection, that is, the driving conflict road section where two unmanned trucks traveling in the opposite direction cannot be satisfied at the same time, There is a danger of collision and dynamic right-of-way control is required.
  • vehicle right-of-way control may be performed on a special road segment based on the lane mutual exclusion table.
  • the application for the right-of-way of the driverless vehicle obtain the data of the lane where the vehicle is located, retrieve the mutually exclusive lanes associated with it from the lane mutual exclusion table of the map database according to the lane data, and use the right-of-way occupation list maintained in the memory to compare the corresponding lanes. It is judged whether there are already occupied lanes in all the associated lanes. If there is, the request for the right of way will be rejected; otherwise, the right of way will be granted.
  • dynamic following control may be performed on vehicles traveling in the same lane and in the same direction on a regular road section based on a safe following distance.
  • the driverless vehicle is controlled for emergency stop according to the opposite safety distance in the same lane.
  • retrieve the predefined safety distance from the database calculate whether the vehicle is in the same lane according to the speed, heading, position information reported by the vehicle and the lane data in the map database, and calculate the current distance and the expected next change in distance.
  • the vehicle performs deceleration or stop control.
  • FIG. 11 is a flowchart illustrating a traffic control method for a mine transportation vehicle according to another embodiment of the present disclosure. As shown in FIG. 11 , the method may include steps S1101 to S1115.
  • step S1101 the vehicle terminal device reports the real-time state of the vehicle.
  • step S1102 the vehicle terminal device sends a request message for applying for the right of way (ie, a request message for the right of way).
  • step S1103 the control center device forwards the request message for applying for the right of way to the traffic management service device.
  • step S1104 the traffic management service device receives a request message for applying for the right of way.
  • step S1105 the traffic management service device acquires the requested lane data.
  • step S1106 the traffic management service apparatus acquires mutually exclusive lane data.
  • step S1107 the traffic management service device determines whether the right-of-way of the lane is occupied. If so, the process proceeds to step S1108, otherwise the process proceeds to step S1109.
  • step S1108 the applied right of way is rejected.
  • step S1109 the right of way is granted to the application.
  • step S1110 the traffic management service device returns the travel control strategy to the control center device.
  • step S1111 the traffic management service device updates the vehicle right-of-way list.
  • the vehicle right-of-way list includes the occupancy of each lane.
  • step S1112 the control center device forwards the driving control strategy to the vehicle terminal device.
  • step S1113 the vehicle terminal device determines whether to acquire the right of way according to the driving control strategy. If so, the process proceeds to step S1114, otherwise the process proceeds to step S1115.
  • step S1114 the vehicle continues to travel.
  • step S1115 the vehicle stops and waits.
  • the method can solve the traffic management problem of the unmanned transportation system of the open-pit mine, realize the dynamic real-time traffic control of the vehicle, reduce the driving and waiting time of the transportation vehicle, and improve the safety of the vehicle in the open-pit mine and the operation of the transportation vehicle. efficiency.
  • FIG. 12 is a flowchart illustrating a traffic control method for a mine transportation vehicle according to another embodiment of the present disclosure. As shown in FIG. 12 , the method may include steps S1201 to S1230.
  • step S1201 the vehicle terminal device sends a right-of-way request message and reports the real-time state of the vehicle.
  • step S1202 the control center device obtains the right-of-way request message and the real-time status of the vehicle.
  • step S1203 the control center device forwards the right-of-way request message and the real-time state of the vehicle to the traffic management service device.
  • step S1204 the traffic management service device obtains the real-time state of surrounding vehicles in addition to the request message of the current vehicle's right of way and the real-time state.
  • step S1205 the traffic management service device acquires the data of the passing lane.
  • step S1206 it is determined whether the two vehicles are in the same direction and the same lane. If so, the process proceeds to step S1222; otherwise, the process proceeds to step S1207.
  • step S1207 it is determined whether the two vehicles are in the same lane in the opposite direction. If so, the process proceeds to step S1208; otherwise, the process proceeds to step S1209.
  • step S1208 the speed and the second distance are calculated.
  • step S1209 it is determined whether the lane is a slope. If yes, the process proceeds to step S1210; otherwise, the process proceeds to step S1211.
  • step S1210 the vehicle in the uphill lane stops, and the vehicle in the downhill lane decelerates.
  • step S1211 the travel weight value of the vehicle is calculated.
  • step S1212 it is determined whether both vehicles are unmanned vehicles. If so, the process proceeds to step S1213; otherwise, the process proceeds to step S1214.
  • step S1213 it is judged whether the weights of the two vehicles are the same. If so, the process proceeds to step S1215; otherwise, the process proceeds to step S1216.
  • step S1214 it is determined whether the weight of the manned vehicle is smaller than the weight of the unmanned vehicle. If so, the process proceeds to step S1217; otherwise, the process proceeds to step S1218.
  • step S1215 both vehicles are decelerated.
  • step S1216 the vehicle with the smaller weight is decelerated.
  • step S1217 the manned vehicle is decelerated.
  • step S1218 the unmanned vehicle parking process is performed.
  • step S1219 it is determined whether the second distance is less than or equal to the second threshold. If so, the process proceeds to step S1220; otherwise, the process proceeds to step S1221.
  • step S1220 the unmanned vehicle parking process is performed.
  • step S1221 the unmanned vehicle is decelerated.
  • step S1222 the speed and the first distance are calculated.
  • step S1223 it is determined whether the first distance is less than or equal to the first threshold. If so, the process proceeds to step S1224; otherwise, the process proceeds to step S1225.
  • step S1224 a deceleration process is performed on the vehicle behind.
  • step S1225 a safety warning is performed for vehicles behind.
  • step S1226 the traffic management service device returns to the travel control strategy.
  • step S1227 the control center device acquires the travel control strategy.
  • step S1228 the control center device encapsulates the driving control strategy into a control command and issues the control command.
  • step S1229 the vehicle terminal device acquires a control command.
  • step S1230 the vehicle terminal device performs a process of running, decelerating or stopping the vehicle according to the control instruction.
  • the method performs traffic control for the hybrid vehicles of the unmanned transportation system in open-pit mines, and performs real-time control of following and meeting vehicles according to the real-time position, heading, load, and attributes of the driving road of the vehicle. And the lane mutual exclusion table, the real-time dynamic arbitration of the vehicle's right of way.
  • the method reduces the driving and waiting time of the transport vehicle in the open-pit mine, and improves the driving safety and operation efficiency of the transport vehicle.
  • the present disclosure also provides a non-transitory computer-readable storage medium having computer program instructions stored thereon that, when executed by a processor, implement at least one of FIGS. 1 , 11 and 12 The steps of the method in the corresponding embodiment.
  • embodiments of the present disclosure may be provided as a method, apparatus, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects.
  • the present disclosure may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein .
  • computer-usable non-transitory storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种用于矿山运输车辆的交通控制方法、平台及其系统,交通控制方法包括:接收车辆终端装置发送的行驶路权请求消息以及车辆的重量、类型和行驶数据(S102),其中,行驶数据包括:车辆的位置、行驶速度和行驶方向;根据车辆的行驶数据确定车辆所处的行驶状态,行驶状态包括同向行驶状态或对向行驶状态,根据车辆的位置和行驶方向确定车辆将要驶入的车道,通过检索车道互斥表获得该车道的冲突车道和车道类型(S104);以及根据车辆的重量和类型、车辆所处的行驶状态、车道的冲突车道和车道类型、以及车辆行驶规则向车辆终端装置发送控制指令(S106),其中,车辆终端装置根据控制指令执行相应的操作处理。

Description

用于矿山运输车辆的交通控制方法、平台及其系统
相关申请的交叉引用
本申请是以CN申请号为202011133351.1,申请日为2020年10月21日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及矿山运输领域,特别涉及一种用于矿山运输车辆的交通控制方法、平台及其系统。
背景技术
目前,露天矿山通常属于偏远地区,环境恶劣,而且矿区运输车辆的作业司机老龄化趋势明显。由作业司机疏忽导致的安全事故频繁出现。未来矿区在生产安全、人员投入等方面的经济负担将日益增加,露天矿山无人化运输系统在矿区迫切需求和现代科技发展的推动下,逐渐得到发展。
发明内容
根据本公开的一个方面,提供了一种用于矿山运输车辆的交通控制方法,包括:接收车辆终端装置发送的行驶路权请求消息以及车辆的重量、类型和行驶数据,其中,所述行驶数据包括:所述车辆的位置、行驶速度和行驶方向;在接收到所述行驶路权请求消息后,根据所述车辆的行驶数据确定所述车辆所处的行驶状态,所述行驶状态包括同向行驶状态或对向行驶状态,根据所述车辆的位置和行驶方向确定所述车辆将要驶入的车道,通过检索车道互斥表获得所述车道的冲突车道和车道类型;以及根据所述车辆的重量和类型、所述车辆所处的行驶状态、所述车道的冲突车道和车道类型、以及车辆行驶规则向所述车辆终端装置发送控制指令,其中,所述车辆终端装置根据所述控制指令执行相应的操作处理。
在一些实施例中,向所述车辆终端装置发送控制指令的步骤包括:在所述车道不是坡道的情况下,根据所述车辆的重量和类型计算得到所述车辆的行驶权重值;以及根据所述车辆的行驶权重值、所述车辆所处的行驶状态、所述车道的冲突车道和车道类型、以及所述车辆行驶规则向所述车辆终端装置发送所述控制指令。
在一些实施例中,所述车辆为当前车辆;根据所述车辆的行驶权重值、所述车辆所处的行驶状态、所述车道的冲突车道和车道类型、以及所述车辆行驶规则向所述车辆终端装置发送所述控制指令的步骤包括:在所述行驶状态为对向行驶状态且所述当前车辆和与所述当前车辆相邻的相邻车辆均为无人驾驶车辆的情况下,若所述当前车辆的行驶权重值与所述相邻车辆的行驶权重值相等,则向所述当前车辆的车辆终端装置和所述相邻车辆的车辆终端装置均发送减速处理的控制指令,若所述当前车辆的行驶权重值小于所述相邻车辆的行驶权重值,则向所述当前车辆的车辆终端装置发送减速处理的控制指令,若所述当前车辆的行驶权重值大于所述相邻车辆的行驶权重值,则向所述相邻车辆的车辆终端装置发送减速处理的控制指令。
在一些实施例中,所述车辆为当前车辆;根据所述车辆的行驶权重值、所述车辆所处的行驶状态、所述车道的冲突车道和车道类型、以及所述车辆行驶规则向所述车辆终端装置发送所述控制指令的步骤包括:在所述行驶状态为对向行驶状态、所述当前车辆为无人驾驶车辆且与所述当前车辆相邻的相邻车辆为有人驾驶车辆的情况下,若所述有人驾驶车辆的行驶权重值小于所述无人驾驶车辆的行驶权重值,则向所述有人驾驶车辆的车辆终端装置发送减速处理的控制指令,否则向所述无人驾驶车辆的车辆终端装置发送停车处理的控制指令。
在一些实施例中,向所述车辆终端装置发送控制指令的步骤包括:在所述车道为坡道的情况下,根据所述车辆是处于上坡车道还是处于下坡车道向所述车辆终端装置发送控制指令,其中,在所述车辆处于上坡车道的情况下,向所述车辆终端装置发送停车处理的控制指令,在所述车辆处于下坡车道的情况下,向所述车辆终端装置发送减速处理的控制指令。
在一些实施例中,所述车辆为当前车辆;向所述车辆终端装置发送控制指令的步骤包括:在所述当前车辆为无人驾驶车辆且所述行驶状态为同向行驶状态的情况下,计算所述当前车辆和与所述当前车辆同向行驶的相邻车辆之间的第一距离;在所述第一距离小于或等于第一阈值且所述当前车辆在所述相邻车辆后方的情况下,向所述当前车辆的车辆终端装置发送减速处理的控制指令;以及在所述第一距离大于所述第一阈值或者所述当前车辆在所述相邻车辆前方的情况下,向所述相邻车辆的车辆终端装置发送安全预警的控制指令。
在一些实施例中,所述车辆为当前车辆;向所述车辆终端装置发送控制指令的步骤包括:在所述当前车辆为无人驾驶车辆且所述行驶状态为对向行驶状态的情况下, 计算所述当前车辆和与所述当前车辆对向行驶的相邻车辆之间的第二距离;在所述第二距离小于或等于第二阈值的情况下,向所述当前车辆的车辆终端装置发送停车处理的控制指令;以及在所述第二距离大于所述第二阈值的情况下,向所述当前车辆的车辆终端装置发送减速处理的控制指令。
在一些实施例中,在所述控制指令为对车辆进行停车或减速处理的情况下,所述车辆终端装置根据所述控制指令执行相应的操作处理的步骤包括:在所述车辆为无人驾驶车辆的情况下,所述车辆终端装置根据所述控制指令对所述无人驾驶车辆进行停车或减速处理;以及在所述车辆为有人驾驶车辆的情况下,所述车辆终端装置在接收到所述控制指令后,在所述车辆终端装置的显示屏上显示告警信息。
在一些实施例中,所述交通控制方法还包括:在接收所述行驶路权请求消息之前,接收采集的原始地图边界数据,创建符合车辆作业行驶要求的露天矿山路网和作业区域,标定露天矿山的用于无人驾驶车辆的基础设施,将所述露天矿山路网中的非安全路段进行分割划分,生成在分割划分后的每段道路中的自动行驶路径并添加到所述车道互斥表中。
根据本公开的另一个方面,提供了一种用于矿山运输车辆的交通控制平台,包括:接收单元,被配置为接收车辆终端装置发送的行驶路权请求消息以及车辆的重量、类型和行驶数据,其中,所述行驶数据包括:所述车辆的位置、行驶速度和行驶方向;分析单元,被配置为在接收到所述行驶路权请求消息后,根据所述车辆的行驶数据确定所述车辆所处的行驶状态,所述行驶状态包括同向行驶状态或对向行驶状态,根据所述车辆的位置和行驶方向确定所述车辆将要驶入的车道,通过检索车道互斥表获得所述车道的冲突车道和车道类型;以及控制单元,被配置为根据所述车辆的重量和类型、所述车辆所处的行驶状态、所述车道的冲突车道和车道类型、以及车辆行驶规则向所述车辆终端装置发送控制指令,其中,所述车辆终端装置根据所述控制指令执行相应的操作处理。
在一些实施例中,所述控制单元包括:计算模块,被配置为在所述车道不是坡道的情况下,根据所述车辆的重量和类型计算得到所述车辆的行驶权重值;以及发送模块,被配置为根据所述车辆的行驶权重值、所述车辆所处的行驶状态、所述车道的冲突车道和车道类型、以及所述车辆行驶规则向所述车辆终端装置发送所述控制指令。
根据本公开的另一个方面,提供了一种用于矿山运输车辆的交通控制平台,包括:存储器;以及耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储 器的指令执行如前所述的方法。
根据本公开的另一个方面,提供了一种用于矿山运输车辆的交通控制平台,包括:控制中心装置,被配置为接收车辆终端装置发送的行驶路权请求消息以及车辆的重量、类型和行驶数据,其中,所述行驶数据包括:所述车辆的位置、行驶速度和行驶方向,以及接收行驶控制策略,将所述行驶控制策略封装成控制指令并将所述控制指令发送至所述车辆终端装置,其中,所述车辆终端装置根据所述控制指令执行相应的操作处理;以及交通管理服务装置,被配置为从所述控制中心装置接收所述行驶路权请求消息和所述车辆的重量、类型和行驶数据,根据所述车辆的行驶数据确定所述车辆所处的行驶状态,所述行驶状态包括同向行驶状态或对向行驶状态,根据所述车辆的位置和行驶方向确定所述车辆将要驶入的车道,通过检索车道互斥表获得所述车道的冲突车道和车道类型,以及根据所述车辆的重量和类型、所述车辆所处的行驶状态、所述车道的冲突车道和车道类型、以及车辆行驶规则获得所述行驶控制策略,将所述行驶控制策略发送至所述控制中心装置。
在一些实施例中,所述交通管理服务装置被配置为在所述车道不是坡道的情况下,根据所述车辆的重量和类型计算得到所述车辆的行驶权重值,以及根据所述车辆的行驶权重值、所述车辆所处的行驶状态、所述车道的冲突车道和车道类型、以及所述车辆行驶规则获得所述行驶控制策略。
在一些实施例中,所述交通控制平台还包括:地图管理装置,被配置为接收采集的原始地图边界数据,创建符合车辆作业行驶要求的露天矿山路网和作业区域,标定露天矿山的用于无人驾驶车辆的基础设施,将所述露天矿山路网中的非安全路段进行分割划分,生成在分割划分后的每段道路中的自动行驶路径并添加到车道互斥表中,将所述车道互斥表发送到所述交通管理服务装置。
在一些实施例中,所述交通控制平台还包括:地图采集装置,被配置为采集原始地图边界数据,并将所述原始地图边界数据发送至所述地图管理装置。
根据本公开的另一个方面,提供了一种用于矿山运输车辆的交通控制系统,包括:如前所述的交通控制平台。
在一些实施例中,所述交通控制系统还包括:车辆终端装置,设置在车辆上,被配置为发出行驶路权请求消息以及所述车辆的重量、类型和行驶数据。
在一些实施例中,所述车辆终端装置还被配置为在所述控制指令为对车辆进行停车或减速处理的情况下,若所述车辆为无人驾驶车辆,则根据所述控制指令对所述无 人驾驶车辆进行停车或减速处理,以及若所述车辆为有人驾驶车辆,则在接收到所述控制指令后,在所述车辆终端装置的显示屏上显示告警信息。
根据本公开的另一个方面,提供了一种非瞬时性计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现如前所述的方法。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1是示出根据本公开一个实施例的用于矿山运输车辆的交通控制方法的流程图;
图2是示出根据本公开一个实施例的行驶区路段的划分示意图;
图3是示出根据本公开一个实施例的车道互斥表的示意图;
图4是示出根据本公开一个实施例的用于矿山运输车辆的交通控制平台的结构示意图;
图5是示出根据本公开另一个实施例的用于矿山运输车辆的交通控制平台的结构示意图;
图6是示出根据本公开另一个实施例的用于矿山运输车辆的交通控制平台的结构示意图;
图7是示出根据本公开另一个实施例的用于矿山运输车辆的交通控制平台的结构示意图;
图8是示出根据本公开另一个实施例的用于矿山运输车辆的交通控制平台的结构示意图;
图9是示出根据本公开另一个实施例的用于矿山运输车辆的交通控制平台的结构示意图;
图10是示出根据本公开一个实施例的用于矿山运输车辆的交通控制系统的结构示意图;
图11是示出根据本公开另一个实施例的用于矿山运输车辆的交通控制方法的流程图;
图12是示出根据本公开另一个实施例的用于矿山运输车辆的交通控制方法的流程图。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本公开解决的一个技术问题是:露天矿山作业管理的特殊性和复杂性导致露天矿山车辆的管控效率比较低。
鉴于此,本公开提供了一种用于矿山运输车辆的交通控制方法,以提高矿山行驶车辆的交通管控效率。下面结合附图详细描述根据本公开一些实施例的用于矿山运输车辆的交通控制方法。
图1是示出根据本公开一个实施例的用于矿山运输车辆的交通控制方法的流程图。如图1所示,该方法可以包括步骤S102至S106。
在步骤S102,接收车辆终端装置发送的行驶路权请求消息以及车辆的重量、类型和行驶数据。该行驶数据可以包括:车辆的位置、行驶速度和行驶方向。该行驶路权请求消息是指车辆在即将驶入的车道申请正常行驶的请求消息。
在一些实施例中,车辆的类型可以包括大型车和小型车等。这里,大型车和小型车可以是相对而言的。例如,某辆车相对比其小的车辆可以称为大型车,相对比其大的车辆可以称为小型车。在另一些实施例中,车辆的类型还可以包括无人驾驶车辆和 有人驾驶车辆。
在步骤S104,在接收到行驶路权请求消息后,根据车辆的行驶数据确定车辆所处的行驶状态,行驶状态包括同向行驶状态(或者称为跟车状态)或对向行驶状态(或者称为会车状态),根据车辆的位置和行驶方向确定车辆将要驶入的车道,通过检索车道互斥表获得该车道的冲突车道和车道类型。
这里,同向行驶状态是指两辆车的行驶方向相同的状态,例如,这两辆车中一辆车在另一辆车的前方。另外,对向行驶状态是指两辆车的行驶方向相对的状态,即这两辆车即将会车的状态。在一些实施例中,在接收到两辆车的车辆终端装置分别发送的行驶数据后,可以根据该行驶数据获得两辆车的位置和行驶方向,从而可以获知这两辆车是处于同向行驶状态还是处于对向行驶状态。
这里,将要驶入的车道是指与当前路段车道相邻的沿着车辆行驶方向上的下一个路段车道。
例如,如图2所示,该行驶区域根据弯道和路宽分成3个路段,分别命名为路段#1、路段#2和路段#3。路段#1满足露天矿山双向双行路的标准路宽,两条车道L1#1和L2#1可以允许两辆无人驾驶车辆同时并列行驶,则这两条车道L1#1和L2#1不需要互斥关联。路段#2是转弯半径较小的弯道,无法满足两辆无人驾驶车辆的同时转弯,则该路段中两个车道L1#2、L1#3与两个车道L2#2、L2#3存在行驶冲突,需要进行互斥关联。路段#3是不符合标准宽度的双向双行路段,两个车道L1#4和L2#4存在行驶冲突,需要进行互斥关联。
通过分析图2所示的车道,可以形成如图3所示的车道互斥表。这里,车道互斥表是在特殊路段将被选中的车道与相邻的对向行驶的一段或几段车道进行关联的存在行驶冲突的车道关系表。该表中同样维护着没有冲突关系的常规路段的行驶车道。在车道互斥表中,存在车辆行驶冲突的车道称为冲突车道(或互斥车道)。例如,如图3所示,车道L1#2的冲突车道为车道L2#2和L2#3,等等。如图3所示,设置每条车道的车道类型以及锁定状态。这里,车道类型可以包括:上坡、下坡和平路等。当该路段需要临时交通管制,或者车道因落石、坑洼或车辆抛锚阻碍正常车辆通行时,需要将车道进行锁定。锁定的车道无法通行。
在一些实施例中,可以将所有存在行驶冲突有碰撞危险的路段作为特殊路段需要划分出来。常规路段则根据需要进行分段处理或不分段。
在步骤S106,根据车辆的重量和类型、车辆所处的行驶状态、车道的冲突车道和 车道类型、以及车辆行驶规则向车辆终端装置发送控制指令。该车辆终端装置根据控制指令执行相应的操作处理。
在一些实施例中,该步骤S106可以包括:在车道不是坡道的情况下,根据车辆的重量和类型计算得到车辆的行驶权重值,以及根据车辆的行驶权重值、车辆所处的行驶状态、车道的冲突车道和车道类型、以及车辆行驶规则向车辆终端装置发送所述控制指令。
例如,可以预先规定,在对向或同向行驶的两辆车中,车辆的总重量比较大的车辆(可以称为重车)的权重为1,车辆的总重量比较小的车辆(可以称为轻车)的权重为0,车辆的类型为大型车的权重为1,车辆的类型为小型车的权重为0,无人驾驶车辆的权重为1,有人驾驶车辆的权重为0,等等。
在本公开的实施例中,可以根据预先规定的与车辆的重量和类型相对应的权重计算车辆的行驶权重值。例如,在某个大型车和某个小型车即将对向驶入的某个转弯车道,该转弯车道的车道类型为平路,该大型车的总质量为10吨,该小型车的总重量为3吨,则大型车的权重和为2,小型车的权重和为0。可以规定,车辆行驶规则可以包括:行驶权重值比较小的车辆给行驶权重值比较大的车辆让行。则该示例中的小型车需要给大型车让行。这样,可以将停车处理的控制指令发送给小型车上的车辆终端装置从而使得小型车停车。
在一些实施例中,车辆为当前车辆。根据车辆的行驶权重值、车辆所处的行驶状态、车道的冲突车道和车道类型、以及车辆行驶规则向车辆终端装置发送控制指令的步骤包括:在行驶状态为对向行驶状态且当前车辆和与当前车辆相邻的相邻车辆均为无人驾驶车辆的情况下,若当前车辆的行驶权重值与相邻车辆的行驶权重值相等,则向当前车辆的车辆终端装置和相邻车辆的车辆终端装置均发送减速处理的控制指令,若当前车辆的行驶权重值小于相邻车辆的行驶权重值,则向当前车辆的车辆终端装置发送减速处理的控制指令,若当前车辆的行驶权重值大于相邻车辆的行驶权重值,则向相邻车辆的车辆终端装置发送减速处理的控制指令。
在该实施例中,在两辆无人驾驶车辆对向行驶的情况下,若两个无人驾驶车辆的行驶权重值相等,则控制两个无人驾驶车辆同时减速,若两个无人驾驶车辆的行驶权重值不相等,则控制行驶权重值比较小的车辆减速,而行驶权重值比较大的车辆可以不减速,行驶权重值比较大的车辆具有优先行驶的路权。这样实现了对两个无人驾驶车辆在对向行驶状态下的行驶控制。
在一些实施例中,车辆为当前车辆。根据车辆的行驶权重值、车辆所处的行驶状态、车道的冲突车道和车道类型、以及车辆行驶规则向车辆终端装置发送控制指令的步骤包括:在行驶状态为对向行驶状态、当前车辆为无人驾驶车辆且与当前车辆相邻的相邻车辆为有人驾驶车辆的情况下,若有人驾驶车辆的行驶权重值小于无人驾驶车辆的行驶权重值,则向有人驾驶车辆的车辆终端装置发送减速处理的控制指令,否则向无人驾驶车辆的车辆终端装置发送停车处理的控制指令。在该实施例中,实现了在在无人驾驶车辆和有人驾驶车辆对向行驶的情况下对无人驾驶车辆和有人驾驶车辆的行驶控制。
在一些实施例中,该步骤S106可以包括:在车道为坡道的情况下,根据车辆是处于上坡车道还是处于下坡车道向车辆终端装置发送控制指令,其中,在车辆处于上坡车道的情况下,向车辆终端装置发送停车处理的控制指令,在车辆处于下坡车道的情况下,向车辆终端装置发送减速处理的控制指令。在该实施例中,坡道作为特殊路段,可以不与其它会车规则进行权重求和,只根据上坡和下坡属性对车辆进行相应的行驶控制。
在一些实施例中,所述车辆为当前车辆。该步骤S106可以包括:在当前车辆为无人驾驶车辆且行驶状态为同向行驶状态的情况下,计算该当前车辆和与该当前车辆同向行驶的的相邻车辆的之间的第一距离;在第一距离小于或等于第一阈值(也可以称为第一安全距离)且该当前车辆在相邻车辆后方的情况下,向当前车辆的车辆终端装置发送减速处理的控制指令;以及在第一距离大于第一阈值或者当前车辆在相邻车辆前方的情况下,向相邻车辆的车辆终端装置发送安全预警的控制指令。在该实施例中,实现了在当前车辆处于同向行驶状态且当前车辆为无人驾驶车辆的情况下对当前车辆和相邻车辆的行驶控制。
在一些实施例中,所述车辆为当前车辆。该步骤S106可以包括:在当前车辆为无人驾驶车辆且行驶状态为对向行驶状态的情况下,计算所述当前车辆和与所述当前车辆对向行驶的相邻车辆之间的第二距离;在第二距离小于或等于第二阈值(也可以称为第二安全距离)的情况下,向当前车辆的车辆终端装置发送停车处理的控制指令;以及在第二距离大于第二阈值的情况下,向当前车辆的车辆终端装置发送减速处理的控制指令。在该实施例中,实现了在当前车辆处于对向行驶状态且当前车辆为无人驾驶车辆的情况下对当前车辆的行驶控制。
在一些实施例中,在所述控制指令为对车辆进行停车或减速处理的情况下,车辆 终端装置根据控制指令执行相应的操作处理的步骤包括:在所述车辆为无人驾驶车辆的情况下,车辆终端装置根据控制指令对无人驾驶车辆进行停车或减速处理;以及在所述车辆为有人驾驶车辆的情况下,车辆终端装置在接收到控制指令后,在车辆终端装置的显示屏上显示告警信息。该告警信息可以起到对驾驶员告警的目的。这样实现了对车辆的行驶控制。
至此,提供了根据本公开一些实施例的用于矿山运输车辆的交通控制方法。该交通控制方法包括:接收车辆终端装置发送的行驶路权请求消息以及车辆的重量、类型和行驶数据,其中,行驶数据包括:车辆的位置、行驶速度和行驶方向;在接收到行驶路权请求消息后,根据车辆的行驶数据确定车辆所处的行驶状态,该行驶状态包括同向行驶状态或对向行驶状态,根据车辆的位置和行驶方向确定该车辆将要驶入的车道,通过检索车道互斥表获得该车道的冲突车道和车道类型;以及根据车辆的重量和类型、车辆所处的行驶状态、车道的冲突车道和车道类型、以及车辆行驶规则向车辆终端装置发送控制指令。该车辆终端装置根据控制指令执行相应的操作处理。该方法提高了矿山行驶车辆的交通管控效率,从而可以动态高效地管控矿山行驶车辆。
在一些实施例中,所述交通控制方法还可以包括:在接收行驶路权请求消息之前,接收采集的原始地图边界数据,创建符合车辆作业行驶要求的露天矿山路网和作业区域,标定露天矿山的用于无人驾驶车辆的基础设施,将露天矿山路网中的非安全路段进行分割划分,生成在分割划分后的每段道路中的自动行驶路径并添加到车道互斥表中。在该实施例中,实现了对矿山地图的采集以及对车道互斥表的获取,方便后续对车辆的行驶控制。
图4是示出根据本公开一个实施例的用于矿山运输车辆的交通控制平台的结构示意图。如图4所示,该交通控制平台可以包括接收单元410、分析单元420和控制单元430。
接收单元410被配置为接收车辆终端装置发送的行驶路权请求消息以及车辆的重量、类型和行驶数据。行驶数据包括:车辆的位置、行驶速度和行驶方向。
分析单元420被配置为在接收到行驶路权请求消息后,根据车辆的行驶数据确定该车辆所处的行驶状态,该行驶状态包括同向行驶状态或对向行驶状态,根据该车辆的位置和行驶方向确定该车辆将要驶入的车道,通过检索车道互斥表获得该车道的冲突车道和车道类型。
控制单元430被配置为根据车辆的重量和类型、车辆所处的行驶状态、车道的冲 突车道和车道类型、以及车辆行驶规则向车辆终端装置发送控制指令。该车辆终端装置根据控制指令执行相应的操作处理。
至此,提供了根据本公开一些实施例的交通控制平台。在交通控制平台中,接收单元接收车辆终端装置发送的行驶路权请求消息以及车辆的重量、类型和行驶数据;分析单元根据车辆的行驶数据确定该车辆所处的行驶状态,根据该车辆的位置和行驶方向确定该车辆将要驶入的车道,通过检索车道互斥表获得该车道的冲突车道和车道类型;控制单元根据车辆的重量和类型、车辆所处的行驶状态、车道的冲突车道和车道类型、以及车辆行驶规则向车辆终端装置发送控制指令。该车辆终端装置根据控制指令执行相应的操作处理。这可以实现动态高效的管控矿山行驶车辆的目的。
图5是示出根据本公开另一个实施例的用于矿山运输车辆的交通控制平台的结构示意图。如图5所示,该交通控制平台可以包括接收单元410、分析单元420和控制单元430。
在一些实施例中,控制单元430包括计算模块432和发送模块434。计算模块432被配置为在车道不是坡道的情况下,根据车辆的重量和类型计算得到车辆的行驶权重值。发送模块434被配置为根据车辆的行驶权重值、车辆所处的行驶状态、车道的冲突车道和车道类型、以及车辆行驶规则向车辆终端装置发送控制指令。例如,车辆行驶规则可以预先存储在交通控制平台中。
在一些实施例中,所述车辆为当前车辆。发送模块434被配置为在行驶状态为对向行驶状态且当前车辆和与当前车辆相邻的相邻车辆均为无人驾驶车辆的情况下,若当前车辆的行驶权重值与相邻车辆的行驶权重值相等,则向当前车辆的车辆终端装置和相邻车辆的车辆终端装置均发送减速处理的控制指令,若当前车辆的行驶权重值小于相邻车辆的行驶权重值,则向当前车辆的车辆终端装置发送减速处理的控制指令,若当前车辆的行驶权重值大于相邻车辆的行驶权重值,则向相邻车辆的车辆终端装置发送减速处理的控制指令。
在一些实施例中,所述车辆为当前车辆。发送模块434被配置为在行驶状态为对向行驶状态、当前车辆为无人驾驶车辆且与当前车辆相邻的相邻车辆为有人驾驶车辆的情况下,若有人驾驶车辆的行驶权重值小于无人驾驶车辆的行驶权重值,则向有人驾驶车辆的车辆终端装置发送减速处理的控制指令,否则向无人驾驶车辆的车辆终端装置发送停车处理的控制指令。
在一些实施例中,发送模块434被配置为在车道为坡道的情况下,根据车辆是处 于上坡车道还是处于下坡车道向车辆终端装置发送控制指令。发送模块434被配置为在车辆处于上坡车道的情况下,向车辆终端装置发送停车处理的控制指令,在车辆处于下坡车道的情况下,向车辆终端装置发送减速处理的控制指令。
在一些实施例中,所述车辆为当前车辆。计算模块432被配置为在当前车辆为无人驾驶车辆且行驶状态为同向行驶状态的情况下,计算所述当前车辆和与所述当前车辆同向行驶的相邻车辆的第一距离。发送模块434被配置为在第一距离小于或等于第一阈值且当前车辆在相邻车辆后方的情况下,向当前车辆的车辆终端装置发送减速处理的控制指令,以及在第一距离大于第一阈值或者当前车辆在相邻车辆前方的情况下,向相邻车辆的车辆终端装置发送安全预警的控制指令。
在一些实施例中,所述车辆为当前车辆。计算模块432被配置为在当前车辆为无人驾驶车辆且行驶状态为对向行驶状态的情况下,计算所述当前车辆和与所述当前车辆对向行驶的相邻车辆的第二距离。发送模块434被配置为在第二距离小于或等于第二阈值的情况下,向当前车辆的车辆终端装置发送停车处理的控制指令,以及在第二距离大于第二阈值的情况下,向当前车辆的车辆终端装置发送减速处理的控制指令。
在一些实施例中,接收单元410还被配置为接收采集的原始地图边界数据。所述交通控制平台还可以包括路径生成单元(图中未示出)。该路径生成单元被配置为创建符合车辆作业行驶要求的露天矿山路网和作业区域,标定露天矿山的用于无人驾驶车辆的基础设施,将露天矿山路网中的非安全路段进行分割划分,生成在分割划分后的每段道路中的自动行驶路径并添加到车道互斥表中。
图6是示出根据本公开另一个实施例的用于矿山运输车辆的交通控制平台的结构示意图。该交通控制平台包括存储器610和处理器620。其中:
存储器610可以是磁盘、闪存或其它任何非易失性存储介质。存储器用于存储图1所对应实施例中的指令。
处理器620耦接至存储器610,可以作为一个或多个集成电路来实施,例如微处理器或微控制器。该处理器620用于执行存储器中存储的指令,可以动态高效地管控矿山行驶车辆。
在一些实施例中,还可以如图7所示,该交通控制平台700包括存储器710和处理器720。处理器720通过BUS总线730耦合至存储器710。该交通控制平台700还可以通过存储接口740连接至外部存储装置750以便调用外部数据,还可以通过网络接口760连接至网络或者另外一台计算机系统(未标出),此处不再进行详细介绍。
在该实施例中,通过存储器存储数据指令,再通过处理器处理上述指令,可以动态高效地管控矿山行驶车辆。
图8是示出根据本公开另一个实施例的用于矿山运输车辆的交通控制平台的结构示意图。如图8所示,该交通控制平台可以包括控制中心装置810和交通管理服务装置820。控制中心装置810与交通管理服务装置820通信连接。
控制中心装置810被配置为接收车辆终端装置(图8中未示出)发送的行驶路权请求消息以及车辆的重量、类型和行驶数据,其中,行驶数据包括:该车辆的位置、行驶速度和行驶方向,以及接收行驶控制策略,将该行驶控制策略封装成控制指令并将该控制指令发送至车辆终端装置。车辆终端装置根据控制指令执行相应的操作处理。
这里,控制中心装置810为露天矿山无人化系统的控制中心监控服务平台。在一些实施例中,控制中心装置810实时监控车辆工作运行状态,接收来自车辆和终端设备发送的状态、请求、告警、故障等数据,下发控制指令、回复报文、升级数据等。这里,控制中心装置810主要将车辆发送的路权请求、实时状态数据转发给交通管理服务装置820,接收交通管理服务装置820返回的行驶控制策略(或者称为仲裁结果)并反馈给车辆终端装置;并且通过集成的交通管理功能界面,对交通让行规则、安全距离、车道互斥表和车道属性进行编辑更新。
交通管理服务装置820被配置为从控制中心装置810接收行驶路权请求消息和车辆的重量、类型和行驶数据,根据车辆的行驶数据确定车辆所处的行驶状态,该行驶状态包括同向行驶状态或对向行驶状态,根据车辆的位置和行驶方向确定车辆将要驶入的车道,通过检索车道互斥表获得该车道的冲突车道和车道类型,以及根据车辆的重量和类型、车辆所处的行驶状态、车道的冲突车道和车道类型、以及车辆行驶规则获得行驶控制策略,将该行驶控制策略发送至控制中心装置810。
至此,提供了根据本公开另一些实施例的用于矿山运输车辆的交通控制平台。该交通控制平台包括控制中心装置和交通管理服务装置。通过控制中心装置和交通管理服务装置的信息处理和控制,可以提高矿山行驶车辆的交通管控效率,从而可以动态高效地管控矿山行驶车辆。
在一些实施例中,交通管理服务装置820被配置为在车道不是坡道的情况下,根据车辆的重量和类型计算得到车辆的行驶权重值,以及根据车辆的行驶权重值、车辆所处的行驶状态、车道的冲突车道和车道类型、以及车辆行驶规则获得行驶控制策略。
在一些实施例中,所述车辆为当前车辆。交通管理服务装置810被配置为在行驶 状态为对向行驶状态且当前车辆和与当前车辆相邻的相邻车辆均为无人驾驶车辆的情况下,若当前车辆的行驶权重值与相邻车辆的行驶权重值相等,则获得使得所述当前车辆和所述相邻车辆均被减速处理的行驶控制策略,若所述当前车辆的行驶权重值小于所述相邻车辆的行驶权重值,则获得使得所述当前车辆被减速处理的行驶控制策略,若所述当前车辆的行驶权重值大于所述相邻车辆的行驶权重值,则获得使得所述相邻车辆被减速处理的行驶控制策略。
在一些实施例中,所述车辆为当前车辆。交通管理服务装置820被配置为在行驶状态为对向行驶状态、当前车辆为无人驾驶车辆且与当前车辆相邻的相邻车辆为有人驾驶车辆的情况下,若有人驾驶车辆的行驶权重值小于无人驾驶车辆的行驶权重值,则获得使得所述有人驾驶车辆被减速处理的行驶控制策略,否则获得使得所述无人驾驶车辆被停车处理的行驶控制策略。
在一些实施例中,交通管理服务装置820被配置为在车道为坡道的情况下,根据车辆是处于上坡车道还是处于下坡车道获得行驶控制策略。交通管理服务装置820被配置为在车辆处于上坡车道的情况下,获得使得所述车辆被停车处理的行驶控制策略,在所述车辆处于下坡车道的情况下,获得使得所述车辆被减速处理的行驶控制策略。
在一些实施例中,所述车辆为当前车辆。交通管理服务装置820被配置为在当前车辆为无人驾驶车辆且行驶状态为同向行驶状态的情况下,计算该当前车辆和与该当前车辆同向行驶的相邻车辆之间的第一距离,在第一距离小于或等于第一阈值且当前车辆在相邻车辆后方的情况下,获得使得所述当前车辆被减速处理的行驶控制策略,以及在第一距离大于第一阈值或者当前车辆在相邻车辆前方的情况下,获得使得相邻车辆被安全告警的行驶控制策略。
在一些实施例中,所述车辆为当前车辆。交通管理服务装置820被配置为在当前车辆为无人驾驶车辆且行驶状态为对向行驶状态的情况下,计算该当前车辆和与该当前车辆对向行驶的相邻车辆之间的第二距离,在第二距离小于或等于第二阈值的情况下,获得使得所述当前车辆被停车处理的行驶控制策略,以及在第二距离大于第二阈值的情况下,获得使得所述当前车辆被减速处理的行驶控制策略。
在上述实施例中,交通管理服务装置820是露天矿山无人化运输系统的交通仲裁管理服务平台。基于车道互斥表,在特殊路段对行驶车辆进行路权仲裁,在常规路段进行安全距离控制;基于交通让行规则和权重,对常规路段进行会车让行仲裁。特殊路段是无法满足车辆同时进行双向行驶的路段、交叉路口、临时管制路段等。常规路 段是能够同时进行车辆双向行驶的路段。交通管理服务装置820接收来自控制中心装置810的行驶路权请求消息,通过检索地图数据库中的车道互斥表获取申请路权所在的车道的所有冲突车道和车道属性,对路权申请进行仲裁;接收来自控制中心装置810转发的车辆实时状态,根据车辆实时位置、载重、航向和所在车道属性等数据,对相关车辆进行会车让行控制和安全距离控制。
图9是示出根据本公开另一个实施例的用于矿山运输车辆的交通控制平台的结构示意图。如图9所示,该交通控制平台可以包括控制中心装置810和交通管理服务装置820。
在一些实施例中,该如图9所示,该交通控制平台还可以包括地图管理装置930。该地图管理装置930被配置为接收采集的原始地图边界数据,创建符合车辆作业行驶要求的露天矿山路网和作业区域,标定露天矿山的用于无人驾驶车辆的基础设施,将露天矿山路网中的非安全路段进行分割划分,生成在分割划分后的每段道路中的自动行驶路径并添加到车道互斥表中,将车道互斥表发送到交通管理服务装置820。这样获得了车道互斥表,方便后续对车辆形式的控制。
在一些实施例中,该如图9所示,该交通控制平台还可以包括地图采集装置940。地图采集装置940被配置为采集原始地图边界数据,并将该原始地图边界数据发送至地图管理装置930。这样实现了对原始地图数据的采集。
在本公开的一些实施例中,还提供了一种用于矿山运输车辆的交通控制系统。该交通控制系统包括如前所述的交通控制平台(例如,如图4至图9任意一个所述的交通控制平台)。
在一些实施例中,该交通控制系统还可以包括车辆终端装置。该车辆终端装置设置在车辆上。该车辆终端装置被配置为发出行驶路权请求消息以及所述车辆的重量、类型和行驶数据。例如,车辆终端系统装置可以是在露天矿山无人化作业区内无人驾驶车辆或有人驾驶车辆进行信息交互、数据记录统计的带有定位装置的终端系统装置。
在一些实施例中,车辆终端装置还可以被配置为在控制指令为对车辆进行停车或减速处理的情况下,若车辆为无人驾驶车辆,则根据控制指令对所述无人驾驶车辆进行停车或减速处理,以及若车辆为有人驾驶车辆,则在接收到控制指令后,在车辆终端装置的显示屏上显示告警信息。
图10是示出根据本公开一个实施例的用于矿山运输车辆的交通控制系统的结构示意图。如图10所示,该交通控制系统可以包括:控制中心装置810、交通管理服务 装置820、地图管理装置930、地图采集装置940和车辆终端装置1010。另外,图10中还示出了原始地图文件952和地图数据库954。在一些实施例中,该交通控制系统还可以包括:定位基站1020和无线通信装置1030。
例如,可以将控制中心装置810、交通管理服务装置820、地图管理装置930部署在控制中心机房服务器端;将车辆终端装置1010部署在无人驾驶车辆或有人驾驶车辆的车辆端工控机。例如,服务器装置为专业刀片服务器,无人驾驶车辆可以为无人驾驶矿用卡车,车辆终端装置为无风扇工控机。
无人驾驶车辆通过无线通信装置1030向控制中心装置810实时发送路权申请和路权释放等请求,并根据接收的请求反馈结果对车辆进行减速、停止或绕行等控制。有人驾驶车辆和无人驾驶车辆通过无线通信装置1030向控制中心装置810实时发送位置、速度、航向、载重等信息,为交通管控提供相关判断数据。
在本公开的一些实施例中,用于露天矿山无人化运输系统的交通管理方法可以包括如下步骤(1)至(4)。
(1)执行地图创建编辑。例如,地图采集装置940通过定位基站1020采集原始地图数据并保存到外部文件。地图编辑人员登录地图管理装置930,导入原始地图数据,创建和标定矿山路网结构、作业区域以及其它基础设施。根据矿山行驶区域地理特征以及交通控制的需要,对行驶区域进行路段分割划分。例如:双向双行道下一段变成双向单行道,则需要将双向双行道和双向单行道分割成相邻的两段行驶区域,在双向双行道结束位置开始进行交通管控,控制进入双向单行路段的车辆。
然后结合路径规划算法,在每段行驶区域添加车道节点并生成两条对向的行驶路径轨迹,自动添加到车道互斥表中并赋予默认属性值。例如,车道类别默认为普通路段,其它车道类型可以为特殊路段或独占路段;坡道默认为平路,其它坡道可以为上坡或下坡;车道状态默认为非锁定状态,处于锁定状态的车道无法通行。特殊路段的两条对向车道存在行驶冲突,需要在互斥表中进行关联。例如,地图数据和车道互斥表等可以存储在地图数据库954中。
(2)执行车道互斥表编辑。例如,操作员登录系统后,进入交通管理服务页面的道路互斥表管理页面,在车道列表中选中需要编辑的车道,并通过矿山地图高亮显示该选中车道以及与之关联的互斥车道。
在一些情况下,可以添加或删除与之互斥的车道,设置该车道的权重和状态。例如,原来的车道被拓宽为双车通行车道后,该车道不需要被交通控制,可以删除该车 道的互斥车道;反之,则添加该车道的互斥车道;或者某一段车道临时交通管制,车辆在车道上抛锚,导致原来的双行车道需要修改成单行车道,则这时的该车道可以被交通管制。
这里,互斥车道是在无法同时对向行驶两辆车辆(例如无人驾驶车辆)的特殊路段或连续特殊路段。当车辆进入该车道时,与之互斥的其它车道的路权将被锁定不允许任何车辆进入,直到车辆驶离该车道。特殊路段可以是双向单行路段、有安全碰撞危险的路段、无法满足两车同时对向行驶的路段、转弯半径较小的弯道等路段。
(3)执行交通规则创建编辑。操作员登录系统后,进入交通管理服务页面的交通规则编辑页面进行相关属性设置和规则编辑。设置权重分级,同车道的跟车距离,同车道对向安全距离等属性。添加预定义规则主体,包括但不限于:上坡、下坡;轻车、重车;大车、小车;有人车、无人车。根据预定义的主体创建编辑车辆会车让行的交通规则。交通管理服务装置820根据会车让行规则,返回停车、减速或不变的行驶控制策略(即仲裁结果)到控制中心装置810,控制中心装置810根据反馈的行驶控制策略发送相关控制指令到车辆终端装置1010。
例如,默认的车辆行驶规则可以为:下坡车让上坡车;轻车让重车;小车让大车;有人车让无人车。在一些实施例中,可以对该车辆行驶规则进行优先级设置,例如,可以设置下坡车让上坡车的规则的优先级为第一级(即最高级),轻车让重车的规则的优先级为比第一级低一级的第二级(即次高级),小车让大车的规则的优先级为比第二级低一级的第三级,有人车让无人车的规则的优先级为比第三级低一级的第四级(即最低级)。
交通管理服务装置820获取车辆的状态和车道的属性等进行权重值求和计算,作为交通仲裁的条件之一。坡道作为特殊路段,不与其它会车规则进行权重求和,只根据上坡、下坡属性进行权重比较,然后对车辆进行相应控制,例如权重较小的车辆被进行停车处理。又例如,对其它路段的车辆,权重较小的车辆可以进行减速或停车处理,权重较大的车辆可以正常行驶;权重相同的车辆可以同时进行减速处理。
(4)执行动态交通管控。例如,在露天矿山无人驾驶卡车自动行驶过程中,设置在其上的车辆终端装置1010不断上报车辆的状态,在该车辆即将进入下一路段时,通过无线通信系统装置向控制中心装置810发送行驶路权请求消息。
控制中心装置810接收到车辆的行驶路权请求消息和实时状态并调用交通管理服务装置820的让行仲裁接口进行实时交通管控。交通管理服务装置820根据车辆的实 时位置、航向角、所在车道的属性信息,判断周围车辆的航向以及是否处于同一车道。交通管理服务装置820还可以通过检索车道互斥表获取所有相关车道,并通过自身维护的路权管理表判断相关车道是否已经被占用。然后,交通管理服务装置820向控制中心装置810返回行驶控制策略。
控制中心装置810将行驶控制策略封装后成控制指令,并将控制指令返回给车辆终端装置1010。如果该控制指令表明车辆获得行驶路权,则该车辆正常行驶;反之,则该车辆进行减速或停车处理。
上述方法可以针对露天矿山无人化运输系统的混合车辆进行交通管控,根据车辆的实时位置、航向、载重以及行驶道路的属性等信息进行跟车、会车的实时管控;根据行驶道路的属性、状态和车道互斥表,对车辆行驶路权进行实时动态的仲裁。这提高了有人驾驶车辆和无人驾驶车辆的混合车队的行驶安全性和露天矿山运输车辆的作业效率。
在一些实施例中,可以根据露天矿双向双行路的路宽标准、无人驾驶卡车的最小转弯半径、交叉路口进行区分,即无法同时满足两辆无人驾驶卡车对向行驶的行驶冲突路段,存在碰撞危险,需要进行动态路权管控。
在一些实施例中,可以基于车道互斥表对特殊路段进行车辆行驶路权控制。根据无人驾驶车辆的路权申请,获取该车辆所在车道数据,根据该车道数据从地图数据库车道互斥表中检索出与之关联的互斥车道,并通过内存中维护的路权占用列表对所有关联车道中是否有已经被占用的车道进行判断。如果有,则拒绝路权请求;反之,则赋予行驶路权。
在一些实施例中,可以基于安全跟车距离在常规路段对同车道同向行驶车辆进行动态跟车控制。在有人驾驶车辆不按照车道方向行驶时,根据同车道对向安全距离,对无人驾驶车辆进行急停控制。从数据库中检索预定义的安全距离,根据车辆上报的速度、航向、位置信息和地图数据库中的车道数据,计算车辆是否处于同一车道,并计算出当前的距离以及预计接下来的距离变化,对车辆进行减速或停车控制。
图11是示出根据本公开另一个实施例的用于矿山运输车辆的交通控制方法的流程图。如图11所示,该方法可以包括步骤S1101至S1115。
在步骤S1101,车辆终端装置上报车辆的实时状态。
在步骤S1102,车辆终端装置发送申请路权的请求消息(即行驶路权请求消息)。
在步骤S1103,控制中心装置将申请路权的请求消息转发给交通管理服务装置。
在步骤S1104,交通管理服务装置接收到申请路权的请求消息。
在步骤S1105,交通管理服务装置获取申请的车道数据。
在步骤S1106,交通管理服务装置获取互斥车道数据。
在步骤S1107,交通管理服务装置判断车道的路权是否被占用。如果是,则过程进入步骤S1108,否则过程进入步骤S1109。
在步骤S1108,拒绝申请的路权。
在步骤S1109,赋予申请的路权。
在步骤S1110,交通管理服务装置向控制中心装置返回行驶控制策略。
在步骤S1111,交通管理服务装置更新车道路权列表。例如,车道路权列表包括每个车道被占用的情况。
在步骤S1112,控制中心装置将行驶控制策略转发给车辆终端装置。
在步骤S1113,车辆终端装置根据行驶控制策略判断是否获取路权。如果是,则过程进入步骤S1114,否则过程进入步骤S1115。
在步骤S1114,车辆继续行驶。
在步骤S1115,车辆停车等待。
至此,提供了根据本公开另一些实施例的用于矿山运输车辆的交通控制方法。该方法可以解决露天矿山无人化运输系统的交通管理问题,实现了对车辆动态实时的交通管控,减少了运输车辆的行驶和等待时间,提高了露天矿山车辆行驶的安全性和运输车辆的作业效率。
图12是示出根据本公开另一个实施例的用于矿山运输车辆的交通控制方法的流程图。如图12所示,该方法可以包括步骤S1201至S1230。
在步骤S1201,车辆终端装置发送行驶路权请求消息并上报车辆的实时状态。
在步骤S1202,控制中心装置获得行驶路权请求消息和车辆的实时状态。
在步骤S1203,控制中心装置将行驶路权请求消息和车辆的实时状态转发给交通管理服务装置。
在步骤S1204,交通管理服务装置除了获得当前车辆的驶路权请求消息和实时状态,还获取周围车辆的实时状态。
在步骤S1205,交通管理服务装置获取会车车道数据。
在步骤S1206,判断两辆车是否处于同向同车道。如果是,则过程进入步骤S1222;否则,过程进入步骤S1207。
在步骤S1207,判断两辆车是否处于逆向同车道。如果是,则过程进入步骤S1208;否则过程进入步骤S1209。
在步骤S1208,计算速度和第二距离。
在步骤S1209,判断车道是否为坡道。如果是,则过程进入步骤S1210;否则,过程进入步骤S1211。
在步骤S1210,处于上坡车道的车辆停车,处于下坡车道的车辆减速行驶。
在步骤S1211,计算车辆的行驶权重值。
在步骤S1212,判断两辆车是否均为无人驾驶车。如果是,则过程进入步骤S1213;否则过程进入步骤S1214。
在步骤S1213,判断两辆车的权重是否相同。如果是,则过程进入步骤S1215;否则,过程进入步骤S1216。
在步骤S1214,判断有人驾驶车辆的权重是否小于无人驾驶车辆的权重。如果是,则过程进入步骤S1217;否则,过程进入步骤S1218。
在步骤S1215,对两辆车均减速处理。
在步骤S1216,对权重较小的车辆减速处理。
在步骤S1217,对有人驾驶车辆减速处理。
在步骤S1218,对无人驾驶车辆停车处理。
在步骤S1219,判断第二距离是否小于或等于第二阈值。如果是,则过程进入步骤S1220;否则,过程进入步骤S1221。
在步骤S1220,对无人驾驶车辆停车处理。
在步骤S1221,对无人驾驶车辆减速处理。
在步骤S1222,计算速度和第一距离。
在步骤S1223,判断第一距离是否小于或等于第一阈值。如果是,则过程进入步骤S1224;否则,过程进入步骤S1225。
在步骤S1224,对处于后方的车辆减速处理。
在步骤S1225,对处于后方的车辆进行安全预警。
在步骤S1226,交通管理服务装置返回行驶控制策略。
在步骤S1227,控制中心装置获取行驶控制策略。
在步骤S1228,控制中心装置将行驶控制策略封装成控制指令并下发控制指令。
在步骤S1229,车辆终端装置获取控制指令。
在步骤S1230,车辆终端装置根据控制指令对车辆进行行驶、减速或停车处理。
至此,提供了根据本公开另一些实施例的用于矿山运输车辆的交通控制方法。该方法针对露天矿山无人化运输系统的混合车辆进行交通管控,根据车辆的实时位置、航向、载重以及行驶道路的属性等信息进行跟车、会车的实时管控;根据行驶道路的属性、状态和车道互斥表,对车辆行驶路权进行实时动态的仲裁。该方法减少了露天矿山运输车辆的行驶和等待时间,提高了运输车辆的行驶安全性和作业效率。
在一些实施例中,本公开还提供了一种非瞬时性计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现图1、图11和图12中的至少一个所对应实施例中的方法的步骤。本领域内的技术人员应明白,本公开的实施例可提供为方法、装置、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
至此,已经详细描述了本公开。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方 案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改。本公开的范围由所附权利要求来限定。

Claims (20)

  1. 一种用于矿山运输车辆的交通控制方法,包括:
    接收车辆终端装置发送的行驶路权请求消息以及车辆的重量、类型和行驶数据,其中,所述行驶数据包括:所述车辆的位置、行驶速度和行驶方向;
    在接收到所述行驶路权请求消息后,根据所述车辆的行驶数据确定所述车辆所处的行驶状态,所述行驶状态包括同向行驶状态或对向行驶状态,根据所述车辆的位置和行驶方向确定所述车辆将要驶入的车道,通过检索车道互斥表获得所述车道的冲突车道和车道类型;以及
    根据所述车辆的重量和类型、所述车辆所处的行驶状态、所述车道的冲突车道和车道类型、以及车辆行驶规则向所述车辆终端装置发送控制指令,其中,所述车辆终端装置根据所述控制指令执行相应的操作处理。
  2. 根据权利要求1所述的交通控制方法,其中,向所述车辆终端装置发送控制指令的步骤包括:
    在所述车道不是坡道的情况下,根据所述车辆的重量和类型计算得到所述车辆的行驶权重值;以及
    根据所述车辆的行驶权重值、所述车辆所处的行驶状态、所述车道的冲突车道和车道类型、以及所述车辆行驶规则向所述车辆终端装置发送所述控制指令。
  3. 根据权利要求2所述的交通控制方法,其中,所述车辆为当前车辆;
    根据所述车辆的行驶权重值、所述车辆所处的行驶状态、所述车道的冲突车道和车道类型、以及所述车辆行驶规则向所述车辆终端装置发送所述控制指令的步骤包括:
    在所述行驶状态为对向行驶状态且所述当前车辆和与所述当前车辆相邻的相邻车辆均为无人驾驶车辆的情况下,若所述当前车辆的行驶权重值与所述相邻车辆的行驶权重值相等,则向所述当前车辆的车辆终端装置和所述相邻车辆的车辆终端装置均发送减速处理的控制指令,若所述当前车辆的行驶权重值小于所述相邻车辆的行驶权重值,则向所述当前车辆的车辆终端装置发送减速处理的控制指令,若所述当前车辆的行驶权重值大于所述相邻车辆的行驶权重值,则向所述相邻车辆的车辆终端装置发送减速处理的控制指令。
  4. 根据权利要求2所述的交通控制方法,其中,所述车辆为当前车辆;
    根据所述车辆的行驶权重值、所述车辆所处的行驶状态、所述车道的冲突车道和车道类型、以及所述车辆行驶规则向所述车辆终端装置发送所述控制指令的步骤包括:
    在所述行驶状态为对向行驶状态、所述当前车辆为无人驾驶车辆且与所述当前车辆相邻的相邻车辆为有人驾驶车辆的情况下,若所述有人驾驶车辆的行驶权重值小于所述无人驾驶车辆的行驶权重值,则向所述有人驾驶车辆的车辆终端装置发送减速处理的控制指令,否则向所述无人驾驶车辆的车辆终端装置发送停车处理的控制指令。
  5. 根据权利要求1所述的交通控制方法,其中,向所述车辆终端装置发送控制指令的步骤包括:
    在所述车道为坡道的情况下,根据所述车辆是处于上坡车道还是处于下坡车道向所述车辆终端装置发送控制指令,
    其中,在所述车辆处于上坡车道的情况下,向所述车辆终端装置发送停车处理的控制指令,在所述车辆处于下坡车道的情况下,向所述车辆终端装置发送减速处理的控制指令。
  6. 根据权利要求1所述的交通控制方法,其中,所述车辆为当前车辆;向所述车辆终端装置发送控制指令的步骤包括:
    在所述当前车辆为无人驾驶车辆且所述行驶状态为同向行驶状态的情况下,计算所述当前车辆和与所述当前车辆同向行驶的相邻车辆之间的第一距离;
    在所述第一距离小于或等于第一阈值且所述当前车辆在所述相邻车辆后方的情况下,向所述当前车辆的车辆终端装置发送减速处理的控制指令;以及
    在所述第一距离大于所述第一阈值或者所述当前车辆在所述相邻车辆前方的情况下,向所述相邻车辆的车辆终端装置发送安全预警的控制指令。
  7. 根据权利要求1所述的交通控制方法,其中,所述车辆为当前车辆;向所述车辆终端装置发送控制指令的步骤包括:
    在所述当前车辆为无人驾驶车辆且所述行驶状态为对向行驶状态的情况下,计算所述当前车辆和与所述当前车辆对向行驶的相邻车辆之间的第二距离;
    在所述第二距离小于或等于第二阈值的情况下,向所述当前车辆的车辆终端装置 发送停车处理的控制指令;以及
    在所述第二距离大于所述第二阈值的情况下,向所述当前车辆的车辆终端装置发送减速处理的控制指令。
  8. 根据权利要求1所述的交通控制方法,其中,在所述控制指令为对车辆进行停车或减速处理的情况下,所述车辆终端装置根据所述控制指令执行相应的操作处理的步骤包括:
    在所述车辆为无人驾驶车辆的情况下,所述车辆终端装置根据所述控制指令对所述无人驾驶车辆进行停车或减速处理;以及
    在所述车辆为有人驾驶车辆的情况下,所述车辆终端装置在接收到所述控制指令后,在所述车辆终端装置的显示屏上显示告警信息。
  9. 根据权利要求1所述的交通控制方法,还包括:
    在接收所述行驶路权请求消息之前,接收采集的原始地图边界数据,创建符合车辆作业行驶要求的露天矿山路网和作业区域,标定露天矿山的用于无人驾驶车辆的基础设施,将所述露天矿山路网中的非安全路段进行分割划分,生成在分割划分后的每段道路中的自动行驶路径并添加到所述车道互斥表中。
  10. 一种用于矿山运输车辆的交通控制平台,包括:
    接收单元,被配置为接收车辆终端装置发送的行驶路权请求消息以及车辆的重量、类型和行驶数据,其中,所述行驶数据包括:所述车辆的位置、行驶速度和行驶方向;
    分析单元,被配置为在接收到所述行驶路权请求消息后,根据所述车辆的行驶数据确定所述车辆所处的行驶状态,所述行驶状态包括同向行驶状态或对向行驶状态,根据所述车辆的位置和行驶方向确定所述车辆将要驶入的车道,通过检索车道互斥表获得所述车道的冲突车道和车道类型;以及
    控制单元,被配置为根据所述车辆的重量和类型、所述车辆所处的行驶状态、所述车道的冲突车道和车道类型、以及车辆行驶规则向所述车辆终端装置发送控制指令,其中,所述车辆终端装置根据所述控制指令执行相应的操作处理。
  11. 根据权利要求10所述的交通控制平台,其中,所述控制单元包括:
    计算模块,被配置为在所述车道不是坡道的情况下,根据所述车辆的重量和类型计算得到所述车辆的行驶权重值;以及
    发送模块,被配置为根据所述车辆的行驶权重值、所述车辆所处的行驶状态、所述车道的冲突车道和车道类型、以及所述车辆行驶规则向所述车辆终端装置发送所述控制指令。
  12. 一种用于矿山运输车辆的交通控制平台,包括:
    存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器的指令执行如权利要求1至9任意一项所述的方法。
  13. 一种用于矿山运输车辆的交通控制平台,包括:
    控制中心装置,被配置为接收车辆终端装置发送的行驶路权请求消息以及车辆的重量、类型和行驶数据,其中,所述行驶数据包括:所述车辆的位置、行驶速度和行驶方向,以及接收行驶控制策略,将所述行驶控制策略封装成控制指令并将所述控制指令发送至所述车辆终端装置,其中,所述车辆终端装置根据所述控制指令执行相应的操作处理;以及
    交通管理服务装置,被配置为从所述控制中心装置接收所述行驶路权请求消息和所述车辆的重量、类型和行驶数据,根据所述车辆的行驶数据确定所述车辆所处的行驶状态,所述行驶状态包括同向行驶状态或对向行驶状态,根据所述车辆的位置和行驶方向确定所述车辆将要驶入的车道,通过检索车道互斥表获得所述车道的冲突车道和车道类型,以及根据所述车辆的重量和类型、所述车辆所处的行驶状态、所述车道的冲突车道和车道类型、以及车辆行驶规则获得所述行驶控制策略,将所述行驶控制策略发送至所述控制中心装置。
  14. 根据权利要求13所述的交通控制平台,其中,
    所述交通管理服务装置被配置为在所述车道不是坡道的情况下,根据所述车辆的重量和类型计算得到所述车辆的行驶权重值,以及根据所述车辆的行驶权重值、所述车辆所处的行驶状态、所述车道的冲突车道和车道类型、以及所述车辆行驶规则获得所述行驶控制策略。
  15. 根据权利要求13所述的交通控制平台,还包括:
    地图管理装置,被配置为接收采集的原始地图边界数据,创建符合车辆作业行驶要求的露天矿山路网和作业区域,标定露天矿山的用于无人驾驶车辆的基础设施,将所述露天矿山路网中的非安全路段进行分割划分,生成在分割划分后的每段道路中的自动行驶路径并添加到车道互斥表中,将所述车道互斥表发送到所述交通管理服务装置。
  16. 根据权利要求15所述的交通控制平台,还包括:
    地图采集装置,被配置为采集原始地图边界数据,并将所述原始地图边界数据发送至所述地图管理装置。
  17. 一种用于矿山运输车辆的交通控制系统,包括:如权利要求10至16任意一项所述的交通控制平台。
  18. 根据权利要求17所述的交通控制系统,还包括:
    车辆终端装置,设置在车辆上,被配置为发出行驶路权请求消息以及所述车辆的重量、类型和行驶数据。
  19. 根据权利要求18所述的交通控制系统,其中,
    所述车辆终端装置还被配置为在所述控制指令为对车辆进行停车或减速处理的情况下,若所述车辆为无人驾驶车辆,则根据所述控制指令对所述无人驾驶车辆进行停车或减速处理,以及若所述车辆为有人驾驶车辆,则在接收到所述控制指令后,在所述车辆终端装置的显示屏上显示告警信息。
  20. 一种非瞬时性计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现如权利要求1至9任意一项所述的方法。
PCT/CN2020/125854 2020-10-21 2020-11-02 用于矿山运输车辆的交通控制方法、平台及其系统 WO2022082851A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011133351.1A CN112258877A (zh) 2020-10-21 2020-10-21 用于矿山运输车辆的交通控制方法、平台及其系统
CN202011133351.1 2020-10-21

Publications (1)

Publication Number Publication Date
WO2022082851A1 true WO2022082851A1 (zh) 2022-04-28

Family

ID=74263232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125854 WO2022082851A1 (zh) 2020-10-21 2020-11-02 用于矿山运输车辆的交通控制方法、平台及其系统

Country Status (2)

Country Link
CN (1) CN112258877A (zh)
WO (1) WO2022082851A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114841558A (zh) * 2022-04-29 2022-08-02 武汉理工大学 一种基于时间分片矿区路权分配系统的路权分配方法
CN115294772A (zh) * 2022-09-29 2022-11-04 长沙迪迈数码科技股份有限公司 一种地下矿山双向单车道车辆调度优化方法和装置
CN117560473A (zh) * 2024-01-12 2024-02-13 北京瞭望神州科技有限公司 基于自然资源矿山监管场景视频数据处理方法及装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113086054B (zh) * 2021-03-17 2022-03-22 北京易控智驾科技有限公司 用于矿山无人驾驶的待装车辆等待位生成方法和装置
CN113341969B (zh) * 2021-06-01 2023-12-08 江苏徐工工程机械研究院有限公司 用于矿用卡车的交通控制系统及其方法
CN113931631A (zh) * 2021-09-15 2022-01-14 江苏徐工工程机械研究院有限公司 一种矿区有人辅助车辆作业系统及其装置
CN113781811B (zh) * 2021-09-16 2022-12-02 武汉理工大学 一种矿区路口车辆通行决策系统及方法
CN114115259B (zh) * 2021-11-18 2024-04-16 青晨(广州)电子商务科技有限公司 一种agv实时路径规及防撞方法及系统
CN115662151B (zh) * 2022-12-13 2023-05-12 宜宾职业技术学院 一种重载车辆定位控制方法、装置及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180182248A1 (en) * 2015-06-17 2018-06-28 Hitachi Construction Machinery Co., Ltd. Traffic control system, traffic control device, and on-board terminal device
CN108919803A (zh) * 2018-07-04 2018-11-30 北京踏歌智行科技有限公司 一种矿用无人驾驶车辆的协同控制方法及装置
CN111429741A (zh) * 2020-03-24 2020-07-17 江苏徐工工程机械研究院有限公司 交通管理方法、装置和系统、服务器和存储介质
CN111547054A (zh) * 2020-05-15 2020-08-18 北京踏歌智行科技有限公司 一种基于露天矿山的无人驾驶系统的路权分配及管控方法
CN111624999A (zh) * 2020-05-27 2020-09-04 北京易控智驾科技有限公司 碰撞消除方法、装置、电子设备及可读存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019040024A2 (en) * 2017-04-27 2019-02-28 Metli Emrah SYSTEM AND METHOD FOR DIFFUSION BY ROUTING AND PROCESSING TRAFFIC WARNING INFORMATION TO ADVISE A DRIVER
CN108062863A (zh) * 2017-11-06 2018-05-22 华为技术有限公司 一种快速车道的规划方法及单元
KR102659054B1 (ko) * 2018-12-07 2024-04-22 현대자동차주식회사 차량의 주행 제어 장치 및 그 방법
WO2020258277A1 (zh) * 2019-06-28 2020-12-30 驭势科技(北京)有限公司 一种智能驾驶车辆让行方法、装置及车载设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180182248A1 (en) * 2015-06-17 2018-06-28 Hitachi Construction Machinery Co., Ltd. Traffic control system, traffic control device, and on-board terminal device
CN108919803A (zh) * 2018-07-04 2018-11-30 北京踏歌智行科技有限公司 一种矿用无人驾驶车辆的协同控制方法及装置
CN111429741A (zh) * 2020-03-24 2020-07-17 江苏徐工工程机械研究院有限公司 交通管理方法、装置和系统、服务器和存储介质
CN111547054A (zh) * 2020-05-15 2020-08-18 北京踏歌智行科技有限公司 一种基于露天矿山的无人驾驶系统的路权分配及管控方法
CN111624999A (zh) * 2020-05-27 2020-09-04 北京易控智驾科技有限公司 碰撞消除方法、装置、电子设备及可读存储介质

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114841558A (zh) * 2022-04-29 2022-08-02 武汉理工大学 一种基于时间分片矿区路权分配系统的路权分配方法
CN114841558B (zh) * 2022-04-29 2024-05-14 武汉理工大学 一种基于时间分片矿区路权分配系统的路权分配方法
CN115294772A (zh) * 2022-09-29 2022-11-04 长沙迪迈数码科技股份有限公司 一种地下矿山双向单车道车辆调度优化方法和装置
CN115294772B (zh) * 2022-09-29 2023-01-17 长沙迪迈数码科技股份有限公司 一种地下矿山双向单车道车辆调度优化方法和装置
CN117560473A (zh) * 2024-01-12 2024-02-13 北京瞭望神州科技有限公司 基于自然资源矿山监管场景视频数据处理方法及装置
CN117560473B (zh) * 2024-01-12 2024-03-19 北京瞭望神州科技有限公司 基于自然资源矿山监管场景视频数据处理方法及装置

Also Published As

Publication number Publication date
CN112258877A (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2022082851A1 (zh) 用于矿山运输车辆的交通控制方法、平台及其系统
CN111429741B (zh) 交通管理方法、装置和系统、服务器和存储介质
KR102053552B1 (ko) 운전 계획 장치, 주행 지원 장치, 운전 계획 방법
JP5369339B2 (ja) 車両の走行制御装置および方法
JP2021176100A (ja) 車両運転支援システム
CN104678832B (zh) 车辆行驶辅助装置及其车辆行驶辅助功能的自动激活方法
CN112820125B (zh) 车辆混行情况的智能网联车辆的通行引导方法及引导系统
CN110979315B (zh) 一种露天矿山无人化运输系统的车辆保护圈安全控制方法及系统
WO2017126250A1 (ja) 運転支援方法及び装置
KR20190112866A (ko) 씬 평가 장치, 주행 지원 장치, 씬 평가 방법
CN111506084B (zh) 无人驾驶车辆的障碍物避让方法、装置、设备及存储介质
CN109677408A (zh) 车辆控制器
CN114555448A (zh) 自主载具的泊车行为
CN113341969B (zh) 用于矿用卡车的交通控制系统及其方法
CN115273503B (zh) 一种无信号灯的园区自动驾驶车辆交通控制方法
DE102018129029A1 (de) Verfahren und vorrichtung zur navigation unter berücksichtigung von bahnübergängen
DE112020001619T5 (de) Vorrichtung und verfahren zum transportmanagement und transportsystem
DE112020001667T5 (de) Vorrichtung und Verfahren zum Transportmanagement
DE112020001612T5 (de) Vorrichtung und verfahren zum transportmanagement
JP7023806B2 (ja) 車両管制システム
DE102021106278A1 (de) Infrastruktursystem
CN116166029A (zh) 一种兼容局部避障功能的多agv导航方法及系统
CN112660171B (zh) 安全防护系统及方法
CN117451073A (zh) 一种基于高精地图的匝道路径规划方法、系统及汽车
CN115250284A (zh) 一种基于物联网云服务的高速作业区安全管控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958431

Country of ref document: EP

Kind code of ref document: A1