WO2022075120A1 - ビフェニル骨格を有するテトラキスフェノール化合物の製造方法 - Google Patents

ビフェニル骨格を有するテトラキスフェノール化合物の製造方法 Download PDF

Info

Publication number
WO2022075120A1
WO2022075120A1 PCT/JP2021/035560 JP2021035560W WO2022075120A1 WO 2022075120 A1 WO2022075120 A1 WO 2022075120A1 JP 2021035560 W JP2021035560 W JP 2021035560W WO 2022075120 A1 WO2022075120 A1 WO 2022075120A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
represented
formula
carbon atoms
above formula
Prior art date
Application number
PCT/JP2021/035560
Other languages
English (en)
French (fr)
Inventor
僚 木村
健太郎 山根
Original Assignee
本州化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本州化学工業株式会社 filed Critical 本州化学工業株式会社
Priority to KR1020237009779A priority Critical patent/KR20230074728A/ko
Priority to CN202180063308.9A priority patent/CN116234791A/zh
Priority to JP2022555381A priority patent/JPWO2022075120A1/ja
Publication of WO2022075120A1 publication Critical patent/WO2022075120A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol

Definitions

  • the present invention relates to a novel production method for producing a tetrakisphenol compound by reacting phenols with 4,4'-diacylbiphenyls.
  • Tetrakissphenol compounds are raw materials for epoxy resins used in integrated circuit encapsulation materials, laminated materials, electrical insulation materials, etc., curing agents for epoxy resins, color developeres and antifading agents used for heat sensitive recording, electronic materials and photosensitive materials. It is usefully used as a raw material for sex materials, and is also widely and usefully used as an additive such as an antioxidant, a bactericide, an antibacterial and antifungal agent, and an inclusion compound.
  • Patent Document 1 describes a reaction between phenols and 4,4'-diacylbiphenyls as a co-catalyst in the presence of hydrogen chloride gas. A method for dehydration condensation using 3-mercaptopropionic acid is specifically described.
  • Patent Document 1 hydrochloric acid, sulfuric acid, p-toluenesulfonic acid, oxalic acid, boron trifluoride, anhydrous aluminum chloride, zinc chloride and the like are preferable as the acidic catalyst, and p-toluenesulfonic acid, sulfuric acid and hydrochloric acid are particularly preferable. It is also described that such as is preferable.
  • the acidic catalyst such as hydrogen chloride gas used in the conventional manufacturing method has the following problems.
  • the use of hydrogen chloride gas requires the introduction of dedicated equipment and is difficult to handle.
  • (Concentrated) hydrochloric acid is relatively easier to handle than hydrogen chloride gas, but it is not industrially suitable because it has a lower floor area ratio and requires equipment to recover hydrochloric acid.
  • sulfuric acid has a strong dehydrating action, a large amount of by-products are produced, and the selectivity of the target compound decreases.
  • the present invention has been made against the background of the above-mentioned circumstances, and provides a novel production method having an excellent reaction selectivity of a tetrakisphenol compound in the reaction between phenols and 4,4'-diacylbiphenyls.
  • the task is to do.
  • the present invention is as follows. 1.
  • N independently indicate 0 or an integer of 1 to 4, respectively.
  • 4,4'-diacylbiphenyls represented by the following formula (2) (In the formula, R 1 and R 2 each independently represent a chain or branched chain-shaped alkyl group having 1 to 6 carbon atoms, and m independently represents 0, 1 or 2, respectively.)
  • a method for producing a tetrakisphenol compound represented by the following formula (3) which comprises reacting in the presence of an alkane sulfonic acid having 1 to 4 carbon atoms. (In the equation, R, R 1 , R 2 , m, n are the same as the definitions of the equations (1) and (2).) 2.
  • the reaction is characterized in the presence of a thiol compound.
  • the manufacturing method described in. 3. The reaction is carried out while adding the solution containing 4,4'-diacylbiphenyls represented by the formula (2) to the solution containing the phenols represented by the formula (1). .. Or 2.
  • the manufacturing method described in. 3. The reaction is carried out while adding the solution containing 4,4'-diacylbiphenyls represented by the formula (2) to the solution containing the phenols represented by the formula (1). .. Or 2.
  • the reaction between phenols and 4,4'-diacylbiphenyls according to the present invention is a tetrakisphenol compound which is a target product as compared with the case of using a conventional acidic catalyst such as hydrogen chloride gas or p-toluenesulfonic acid. Since the reaction selectivity of the above is extremely excellent, a tetrakisphenol compound can be efficiently obtained, which is very useful as an industrial production method.
  • FIG. 3 is an enlarged graph of a part of FIG. 3, showing changes in the residual rate (%) of 4,4'-diacetylbiphenyl of Examples 2 and Comparative Examples 3 and 5. It is a graph which shows the change of the reaction selectivity (%) of the target compound represented by the following formula (4) of Example 2 and Comparative Examples 3-5.
  • the production method of the present invention comprises 4 equivalents of phenols represented by the formula (1) and 1 equivalent of 4,4'-diacylbiphenyls represented by the formula (2), as shown by the following reaction formula.
  • This is a production method in which 1 equivalent of the tetrakisphenol compound represented by the formula (3) and 2 equivalents of water are produced by the dehydration condensation reaction.
  • R, R 1 , R 2 , m, n are the same as the definitions of the equations (1) and (2).
  • R in the above formulas (1) and (3) is an independently chained or branched alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 5 to 6 carbon atoms, or 6 carbon atoms. Shows up to 12 aryl groups.
  • R is a chain or branched alkyl group having 1 to 6 carbon atoms
  • a chain or branched alkyl group having 1 to 4 carbon atoms is preferable, and an alkyl group having 1 carbon atom, that is, methyl. Groups are particularly preferred.
  • R is a cyclic alkyl group having 5 to 6 carbon atoms
  • a cyclic alkyl group having 6 carbon atoms, that is, a cyclohexyl group is particularly preferable.
  • R is an aryl group having 6 to 12 carbon atoms
  • an aryl group having 6 or 8 carbon atoms is preferable
  • an aryl group having 6 carbon atoms, that is, a phenyl group is particularly preferable.
  • the position where R is bonded to the benzene ring is preferably the ortho position with respect to the hydroxy group.
  • N in the above formulas (1) and (3) is preferably 0 or an integer of 1 to 3, more preferably 0, 1 or 2, and particularly preferably 0 or 1.
  • R 1 and R 2 in the above formulas (2) and (3) independently represent chain-shaped or branched-chain-shaped alkyl groups having 1 to 6 carbon atoms.
  • R 1 and R 2 are preferably a chain or branched alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 2 carbon atoms, and particularly preferably an alkyl group having 1 carbon atom, that is, a methyl group. preferable.
  • m is preferably 0 or 1, and 0 is particularly preferable.
  • Preferable examples of the tetrakisphenol compound represented by the above formula (3) obtained by the production method of the present invention include the following compounds (4) and (5).
  • the production method of the present invention uses an alkane sulfonic acid having 1 to 4 carbon atoms as an acidic catalyst.
  • alkane sulfonic acid having 1 to 4 carbon atoms include methanesulfonic acid, ethanesulfonic acid, n-propanesulfonic acid, isopropanesulfonic acid, n-butanesulfonic acid, isobutanesulfonic acid, and sec-butanesulfonic acid. Examples include acid, tert-butane sulfonic acid.
  • alkane sulfonic acid having 1 or 2 carbon atoms that is, methanesulfonic acid and ethanesulfonic acid are preferable, and methanesulfonic acid is particularly preferable.
  • the amount of the alkane sulfonic acid used is preferably in the range of 0.1 to 5.0 mol, preferably 0.5 to 5.0 mol, based on 1 mol of the 4,4'-diacylbiphenyls represented by the above formula (2). A range of 2.0 mol is more preferred.
  • a thiol compound may be used as a co-catalyst in combination with an acidic catalyst composed of a specific alkane sulfonic acid.
  • the thiol compound of the present invention is a compound having a mercapto group, and is not particularly limited as long as it does not adversely affect the reaction selectivity and the like.
  • Examples of such compounds include carboxylic acids having a mercapto group such as 3-mercaptopropionic acid and thioglycolic acid, and carbons such as methyl mercaptan, 1-octanethiol (octyl mercaptan) and 1-dodecanethiol (lauryl mercaptan).
  • Examples thereof include alkyl mercaptans of numbers 1 to 12, mercaptoalcohols such as mercaptoethanol and mercaptobutanol. Among them, alkyl mercaptans having 1 to 12 carbon atoms such as 1-octanethiol are preferable.
  • the thiol compound When a thiol compound is used, the thiol compound may be prepared as a sodium salt in advance and used as an aqueous solution.
  • the amount to be used is preferably in the range of 1 to 10% by weight with respect to the 4,4'-diacylbiphenyls represented by the above formula (2). If it is less than 1% by weight, the function as a co-catalyst cannot be sufficiently exerted, and if it exceeds 10% by weight, the function as a co-catalyst cannot be further exerted, and the selectivity is almost the same.
  • the reaction conditions in the production method of the present invention will be described below.
  • the amount of the phenols represented by the above formula (1) is preferably in the range of 4 to 20 mol with respect to 1 mol of the 4,4'-diacylbiphenyls represented by the above formula (2), but 5 The range of ⁇ 15 mol is more preferred, and the range of 8-12 mol is particularly preferred.
  • the amount of the phenol represented by the above formula (1) is less than 4 mol, the reaction is slow and the phenols are further substituted in addition to the target tetrakisphenol compound represented by the above formula (3). It is not preferable because the amount of by-products such as trinuclear bodies increases.
  • the reaction temperature is preferably in the range of 0 to 80 ° C, more preferably in the range of 30 to 60 ° C.
  • the reaction pressure is usually carried out under normal pressure, but depending on the boiling point of the organic solvent that may be used, the reaction pressure may be carried out under pressure or reduced pressure so that the reaction temperature is within the above range.
  • the reaction time depends on the amount of catalyst and the reaction temperature, but is usually in the range of 1 to 20 hours, but it is preferably completed in the range of 1 to 10 hours.
  • the method of adding the raw materials and the like is not particularly limited, but for a part of the phenols represented by the above formula (1), alcan sulfonic acid which is an acidic catalyst, and if necessary, a solution in which a co-catalyst is present.
  • alcan sulfonic acid which is an acidic catalyst
  • a solution in which a co-catalyst is present.
  • a method of mixing a mixed solution of 4,4'-diacetylbiphenyls represented by the above formula (2) and the remaining amount of phenols represented by the above formula (1) is preferable.
  • the mixing time is in the range of 0.5 to 5 hours. The reaction is carried out so that the liquid after mixing is the amount of the above-mentioned raw materials used.
  • reaction solvent used is not particularly limited as long as it does not distill off from the reaction vessel at the reaction temperature and is inert to the reaction.
  • aromatic hydrocarbons such as toluene, xylene and benzene, halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene, aliphatic hydrocarbons such as pentane, n-hexane, cyclohexane and heptane, methanol and n-.
  • Aliphatic alcohols such as butanol, t-butanol and cyclohexanol
  • aliphatic or cyclic ethers such as diethyl ether, diisopropyl ether, methyl-t-butyl ether, diphenyl ether, tetrahydrofuran and dioxane
  • aromatic hydrocarbons and halogenated aromatic hydrocarbons are preferable, and aromatic hydrocarbons are more preferable.
  • the amount used is not particularly limited, but from the viewpoint of economy, it is usually in the range of 0.1 to 10 times by weight, preferably 0.1 to 10 times the weight of the phenol represented by the above formula (1).
  • the range is 2 times by weight, more preferably 0.1 to 1 time by weight.
  • water is produced by a dehydration condensation reaction between the phenols represented by the above formula (1) and the 4,4'-diacylbiphenyls represented by the above formula (2).
  • the reaction proceeds faster than in the case of no dehydration, the production of by-products is suppressed, and the yield is higher. It is preferable because the target product can be obtained at a rate.
  • the dehydration method is not particularly limited, and examples thereof include dehydration by adding a dehydrating agent, dehydration by reduced pressure, dehydration by normal pressure or under reduced pressure, and azeotropic boiling with a solvent.
  • the dehydrating agent that can be added as needed is not particularly limited, but is not particularly limited. , 1,1,1-Trimethoxyoctane and other organic dehydrating agents with orthoester skeleton, molecular sieves (3A), molecular sieves (4A) and other zeolites, calcium chloride (anhydrous), calcium sulfate (anhydrous), chloride Molecules such as magnesium (anhydrous), magnesium sulfate (anhydrous), potassium carbonate (anhydrous), potassium sulfide (anhydrous), potassium sulfite (anhydrous), sodium sulfate (anhydrous), sodium sulfite (anhydrous), copper sulfate (anhydrous) Examples thereof include inorganic anhydrous salts capable of containing crystalline water.
  • the post-treatment method in the production method of the present invention will be described below.
  • the end point of the reaction can be confirmed by liquid chromatography or gas chromatography analysis.
  • a known method can be appropriately used to purify the desired product from the obtained reaction-terminated mixture. For example, alkaline water such as an aqueous sodium hydroxide solution is added to the reaction-terminated mixture to neutralize the mixture.
  • the aqueous layer containing the neutralizing salt is separated and removed. If necessary, a solvent separable from water such as toluene and xylene may be added. Then, by precipitating crystallization or precipitation and filtering, a tetrakisphenol compound represented by the above formula (3), which is a target product as a crystalline or non-crystalline (amorphous), can be obtained. Before the operation of precipitating crystallization or precipitation, if necessary, wash the obtained oil layer with water, distill off the solvent and phenols represented by the above formula (1), and perform appropriate crystallization. You may add a solvent or the like.
  • the obtained reaction mixture is distilled or the like to remove the phenols represented by the above formula (1), which are raw materials. By doing so, the desired product can be obtained, and a high-purity product can also be obtained by a column separation method or the like.
  • the tetrakisphenol compound represented by the above formula (3) obtained by the production method of the present invention has high purity, it is a photosensitive resist material, a photosensitive polyimide material, a photosensitive transparent resin insulating film material, a phenol resin, and an epoxy.
  • it can also be expected to be used as additives such as antioxidants, bactericides, antibacterial and antifungal agents, and inclusion compounds.
  • the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples and Comparative Examples.
  • the residual ratio of 4,4'-diacylbiphenyls represented by the above formula (2), the purity of the tetrakisphenol compound represented by the above formula (3), and the selectivity are as follows. It was measured by the method.
  • the area percentage of each component was calculated with respect to the total area of all the components detected by the above analysis method.
  • the values calculated by the following formulas (I) and (II) are the residual rates of 4,4'-diacylbiphenyls represented by the above formula (2), respectively (hereinafter, "" It may be referred to as “residual rate"), and it is defined as the reaction selectivity of the tetrakisphenol compound represented by the above formula (3) (hereinafter, may be referred to as "reaction selectivity").
  • (A) to (D) in the formula (I) and the formula (II) mean the following.
  • Example 1 which is a specific example of the present invention in which the reaction is carried out in the presence of methanesulfonic acid has a high reaction selectivity of the target compound represented by the above formula (4).
  • Examples 2 to 4 and Comparative Examples 3 to 5 in which a co-catalyst (mercaptoacetic acid) was used in combination were carried out.
  • Phenol (4.0 g, 42.5 mmol), methanesulfonic acid (1.5 g, 15.6 mmol) and mercaptoacetic acid (0.15 g, 1.63 mmol) were added to a 100 mL test tube, and the mixture was heated and stirred at 50 ° C.
  • 4,4'-Diacetylbiphenyl 1.0 g, 4.20 mmol was added, and the mixture was stirred for 24 hours.
  • the reaction selectivity of the target compound represented by the above formula (4) after stirring was 72%.
  • Example 2 In Example 2 and Comparative Examples 3 to 5 in which the above-mentioned methanesulfonic acid and the co-catalyst are used in combination, the residual ratio (%) of 4,4'-diacetylbiphenyl and the above-mentioned formula (4) from the start of the reaction to 24 hours later are used.
  • the changes in the reaction selectivity (%) of the represented target compound are shown in FIGS. 3 to 5, respectively. As shown in FIGS.
  • Example 3 From the results of Example 3, even when the amount of methanesulfonic acid used for 4,4'-diacylbiphenyl is reduced to about 50% of Example 2, the reaction of the target compound represented by the above formula (4) It was confirmed that the selectivity (%) showed a high selectivity exceeding 70% as in Example 2. Further, from the results of Example 4, the reaction selectivity (%) of the target compound represented by the above formula (4) is improved by dividing 4,4'-diacylbiphenyl and intermittently adding it to the reaction system. It became clear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

フェノール類と4,4'-ジアシルビフェニル類との反応において、テトラキスフェノール化合物の反応選択率に優れた、新規な製造方法の提供を課題とする。解決手段として、上記式(1)で表されるフェノール類と、上記式(2)で表される4,4'-ジアシルビフェニル類を、特定のアルカンスルホン酸の存在下に反応させることを特徴とする、上記式(3)で表されるテトラキスフェノール化合物の製造方法を提供する。

Description

ビフェニル骨格を有するテトラキスフェノール化合物の製造方法
 本発明は、フェノール類と4,4’-ジアシルビフェニル類とを反応させてテトラキスフェノール化合物を製造する、新規な製造方法に関する。
 テトラキスフェノール化合物は、集積回路の封止材料、積層材料、電気絶縁材料等に用いられるエポキシ樹脂の原料、エポキシ樹脂の硬化剤、感熱記録に用いられる顕色剤や退色防止剤、電子材料や感光性材料の原料等として有用に用いられており、また、酸化防止剤、殺菌剤、防菌防黴剤等の添加剤、包接化合物としても広く有用に用いられている。
 本発明にかかるビフェニル骨格を有するテトラキスフェノール化合物の製造方法としては、例えば、特許文献1には、フェノール類と4,4’-ジアシルビフェニル類との反応を、塩化水素ガス存在下、助触媒として3-メルカプトプロピオン酸を用いて脱水縮合させる方法が具体的に説明されている。
 この特許文献1には、酸性触媒として、塩酸、硫酸、p-トルエンスルホン酸、シュウ酸、三弗化ホウ素、無水塩化アルミニウム、塩化亜鉛などが好ましく、特に、p-トルエンスルホン酸、硫酸、塩酸などが好ましいことも記載されている。
 従来の製造方法において使用する、塩化水素ガスなどの酸性触媒には次のような問題がある。塩化水素ガスの使用は専用の設備の導入が必要であり、取り扱いが困難である。(濃)塩酸は、塩化水素ガスよりは取り扱いが比較的容易であるが、容積率が低下するほか、塩酸を回収する設備が必要なため工業的には不向きである。また、硫酸は脱水作用が強いため副生成物が多く生成され、目的化合物の選択率が低下する。
 さらに、本発明者らが確認した結果、後述する比較例に示すように、フェノール類と4,4’-ジアシルビフェニル類との反応において、酸性触媒として塩化水素ガスやp-トルエンスルホン酸を使用すると、反応選択率が低いことが明らかとなった。
特開平08-027052号公報
 本発明は、上述した事情を背景としてなされたものであって、フェノール類と4,4’-ジアシルビフェニル類との反応において、テトラキスフェノール化合物の反応選択率に優れた、新規な製造方法を提供することを課題とする。
 本発明者らは、フェノール類と4,4’-ジアシルビフェニル類との反応を検討した結果、特定のアルカンスルホン酸の存在下で行うことにより、テトラキスフェノール化合物の反応選択率が極めて優れることを見出し、本発明を完成した。
 本発明は以下の通りである。
1.下記式(1)で表されるフェノール類と、
Figure JPOXMLDOC01-appb-C000004
(式中、Rは各々独立して、鎖状又は分岐鎖状の炭素原子数1~6のアルキル基、環状の炭素原子数5~6のアルキル基又は炭素数6~12のアリール基を示し、nはそれぞれ独立して0又は1~4の整数を示す。)
 下記式(2)で表される4,4’-ジアシルビフェニル類を、
Figure JPOXMLDOC01-appb-C000005
(式中、R及びRは、各々独立して鎖状又は分岐鎖状の炭素原子数1~6のアルキル基を示し、mはそれぞれ独立して0、1又は2を示す。)
 炭素原子数1~4のアルカンスルホン酸の存在下に反応させることを特徴とする、下記式(3)で表されるテトラキスフェノール化合物の製造方法。
Figure JPOXMLDOC01-appb-C000006
(式中、R、R、R、m、nは、式(1)、(2)の定義と同じである。)
2.さらに、チオール化合物の存在下で反応させることを特徴とする、1.に記載の製造方法。
3.前記式(1)で表されるフェノール類を含む溶液に、前記式(2)で表される4,4’-ジアシルビフェニル類を含む溶液を添加しながら反応を行うことを特徴とする、1.又は2.に記載の製造方法。
 本発明によるフェノール類と4,4’-ジアシルビフェニル類との反応は、従来の塩化水素ガスやp-トルエンスルホン酸などの酸性触媒を使用する場合に比べて、目的生成物であるテトラキスフェノール化合物の反応選択率が極めて優れているため、効率よくテトラキスフェノール化合物を得ることができ、工業的製造方法として非常に有用である。
実施例1、比較例1、2の4,4’-ジアセチルビフェニルの残存率(%)の変化を示すグラフである。 実施例1、比較例1、2の下記式(4)で表される目的化合物の反応選択率(%)の変化を示すグラフである。 実施例2、比較例3~5の4,4’-ジアセチルビフェニルの残存率(%)の変化を示すグラフである。 実施例2、比較例3、5の4,4’-ジアセチルビフェニルの残存率(%)の変化を示す、図3の一部を拡大したグラフである。 実施例2、比較例3~5の下記式(4)で表される目的化合物の反応選択率(%)の変化を示すグラフである。
 以下、本発明を詳細に説明する。
 本発明の製造方法は、下記反応式で示すとおり、4当量の式(1)で表されるフェノール類と、1当量の式(2)で表される4,4’-ジアシルビフェニル類との脱水縮合反応により、1当量の式(3)で表されるテトラキスフェノール化合物と2当量の水が生成される製造方法である。
Figure JPOXMLDOC01-appb-C000007
(式中、R、R、R、m、nは、式(1)、(2)の定義と同じである。)
 上記式(1)、(3)中のRは、各々独立して鎖状又は分岐鎖状の炭素原子数1~6のアルキル基、環状の炭素原子数5~6のアルキル基又は炭素数6~12のアリール基を示す。Rが鎖状又は分岐鎖状の炭素原子数1~6のアルキル基である場合、鎖状又は分岐鎖状の炭素原子数1~4のアルキル基が好ましく、炭素原子数1のアルキル基すなわちメチル基が特に好ましい。Rが環状の炭素原子数5~6のアルキル基である場合、環状の炭素原子数6のアルキル基すなわちシクロヘキシル基が特に好ましい。Rが炭素数6~12のアリール基である場合、炭素原子数6又は8のアリール基が好ましく、炭素原子数6のアリール基すなわちフェニル基が特に好ましい。Rがベンゼン環に結合する位置としては、ヒドロキシ基に対してオルソ位であることが好ましい。
 上記式(1)、(3)中のnは、0又は1から3の整数であることが好ましく、0、1又は2がより好ましく、0又は1が特に好ましい。
 上記式(2)、(3)中のR、Rは、各々独立して鎖状又は分岐鎖状の炭素原子数1~6のアルキル基を示す。R、Rは鎖状又は分岐鎖状の炭素原子数1~4のアルキル基が好ましく、炭素原子数1~2のアルキル基がより好ましく、炭素原子数1のアルキル基すなわちメチル基が特に好ましい。
 上記式(2)、(3)中のmは、0又は1であることが好ましく、0が特に好ましい。
 本発明の製造方法により得られる、上記式(3)で表されるテトラキスフェノール化合物の好適例として、例えば、下記化合物(4)と化合物(5)が挙げられる。
Figure JPOXMLDOC01-appb-C000008
<アルカンスルホン酸>
 本発明の製造方法は、酸性触媒として炭素原子数1~4のアルカンスルホン酸を使用するものである。炭素原子数1~4のアルカンスルホン酸として、具体的には、メタンスルホン酸、エタンスルホン酸、n-プロパンスルホン酸、イソプロパンスルホン酸、n-ブタンスルホン酸、イソブタンスルホン酸、sec-ブタンスルホン酸、tert-ブタンスルホン酸が挙げられる。この中でも、炭素原子数1又は2のアルカンスルホン酸、すなわち、メタンスルホン酸及びエタンスルホン酸が好ましく、メタンスルホン酸が特に好ましい。このアルカンスルホン酸の使用量としては、上記式(2)で表される4,4’-ジアシルビフェニル類1モルに対して、0.1~5.0モルの範囲が好ましく、0.5~2.0モルの範囲がより好ましい。
<チオール化合物>
 本発明の製造方法は、特定のアルカンスルホン酸からなる酸性触媒と併用して、チオール化合物を助触媒として使用しても良い。本発明のチオール化合物としては、メルカプト基を有する化合物であり、反応選択率などに悪影響を与えなければ特に限定されない。そのような化合物としては、例えば、3-メルカプトプロピオン酸、チオグリコール酸などのメルカプト基を有するカルボン酸類、メチルメルカプタン、1-オクタンチオール(オクチルメルカプタン)、1-ドデカンチオール(ラウリルメルカプタン)などの炭素数1~12のアルキルメルカプタン類、メルカプトエタノール、メルカプトブタノールなどのメルカプトアルコール類が挙げられる。中でも、1-オクタンチオールなどの炭素数1~12のアルキルメルカプタン類が好適である。また、チオール化合物を使用する場合には、予め該チオール化合物をナトリウム塩とし、水溶液とした状態で使用してもよい。
 このようなチオール化合物を使用する場合の使用量としては、上記式(2)で表される4,4’-ジアシルビフェニル類に対して、1~10重量%の範囲が好適である。1重量%未満であると助触媒として機能を十分に発揮することができず、10重量%を超えても、それ以上に助触媒として機能を発揮できず、選択率はほとんど同じである。
<反応条件>
 本発明の製造方法における、反応条件について以下説明する。
 上記式(1)で表されるフェノール類の使用量は、上記式(2)で表される4,4’-ジアシルビフェニル類1モルに対して、4~20モルの範囲が好ましいが、5~15モルの範囲がより好ましく、8~12モルの範囲が特に好ましい。上記式(1)で表されるフェノール類の使用量が4モル未満だと、反応が遅い上に目的とする上記式(3)で表されるテトラキスフェノール化合物の他に、フェノール類がさらに置換した3核体などの副生成物が多くなり好ましくない。また、20モルを超えて使用すると反応速度は向上するが、未反応のフェノール類の回収量が増大し、生産性が低下するので実用的ではない。
 反応温度は0~80℃の範囲が好ましく、30~60℃の範囲がより好ましい。
 反応圧力は、通常、常圧下で行われるが、用いてもよい有機溶媒の沸点によっては、反応温度が前記範囲内になるように、加圧または減圧下で行ってもよい。
 反応時間は触媒量、反応温度にもよるが、通常は1~20時間の範囲となるが、1~10時間の範囲で完結することが好ましい。
 反応に際し、原料等の添加方法は特に限定されないが、上記式(1)で表されるフェノール類の一部と酸性触媒であるアルカンスルホン酸、必要に応じて助触媒が存在する溶液に対して、上記式(2)で表される4,4’-ジアセチルビフェニル類と上記式(1)で表されるフェノール類の残量の混合液を混合する方法が、反応選択率の観点から好ましい。混合する方法の場合、混合の所要時間が0.5~5時間となる範囲で行う。混合後の液が上述した原料の使用量になるようにして、反応を行う。
 本発明の製造方法の実施において、反応溶媒は操作性に問題がなければ使用する必要はない。しかしながら、工業的生産時の操作性や反応速度の向上などの理由で使用してもよい。使用する反応溶媒は、反応温度において反応容器から留出せず、反応に不活性である溶媒であれば特に制限はない。例えば、トルエン、キシレン、ベンゼンなどの芳香族炭化水素類、クロロベンゼン、ジクロロベンゼンなどのハロゲン化芳香族炭化水素類、ペンタン、n-ヘキサン、シクロヘキサン、ヘプタンなどの脂肪族炭化水素類、メタノール、n-ブタノール、t-ブタノール、シクロヘキサノールなどの脂肪族アルコール類、ジエチルエーテル、ジイソプロピルエーテル、メチル-t-ブチルエーテル、ジフェニルエーテル、テトラヒドロフラン、ジオキサンなどの脂肪族または環状エーテル類などが挙げられる。反応溶媒の中でも、芳香族炭化水素類、ハロゲン化芳香族炭化水素類が好ましく、芳香族炭化水素類がより好ましい。その使用量は特に限定されるものではないが経済性の点から、通常、上記式(1)で表されるフェノール類に対して0.1~10重量倍の範囲、好ましくは0.1~2重量倍の範囲、より好ましくは0.1~1重量倍の範囲である。
 本発明の製造方法は、上記式(1)で表されるフェノール類と上記式(2)で表される4,4’-ジアシルビフェニル類との脱水縮合反応により水が生成する。この反応生成水や触媒含有水など、反応系内の水分を除去する脱水条件下で反応を行うことにより、脱水しない場合より反応が早く進行し、副生成物の生成が抑制され、より高収率で目的物を得ることができるため好ましい。脱水方法としては、特に限定されるものではないが、例えば、脱水剤の添加による脱水、減圧による脱水、常圧または減圧下、溶媒との共沸による脱水などが挙げられる。必要に応じて添加できる脱水剤としては、特に限定されるものではないが、オルソ蟻酸メチル、オルソ蟻酸エチル、オルソ酢酸メチル、オルソプロピオン酸エチル、オルソ-n-酪酸メチル、オルソ-i-酪酸メチル、1,1,1-トリメトキシオクタンなどオルソエステル骨格を有する有機系脱水剤、モレキュラーシーブ(3A)、モレキュラーシーブ(4A)などのゼオライト類、塩化カルシウム(無水)、硫酸カルシウム(無水)、塩化マグネシウム(無水)、硫酸マグネシウム(無水)、炭酸カリウム(無水)、硫化カリウム(無水)、亜硫化カリウム(無水)、硫酸ナトリウム(無水)、亜硫酸ナトリウム(無水)、硫酸銅(無水)などの分子内に結晶水を含有することが可能な無機無水塩類などが挙げられる。
<後処理>
 本発明の製造方法における、後処理方法について以下説明する。
 反応の終点は、液体クロマトグラフィーまたはガスクロマトグラフィー分析にて確認することができる。未反応の上記式(2)で表される4,4’-ジアシルビフェニル類が消失するか、目的物である上記式(3)で表されるテトラキスフェノール化合物の増加が認められなくなった時点を、反応の終点とするのが好ましい。
 得られた反応終了混合物から目的物を精製するには、公知の方法を適宜用いることができる。例えば、反応終了混合物に水酸化ナトリウム水溶液等のアルカリ水を加え、中和する。中和後、中和塩を含む水層を分離除去する。必要に応じて、トルエン、キシレン等の水と分離可能な溶媒を加えてもよい。
 その後、晶析又は沈殿を析出させ、ろ過することによって、結晶体、又は非結晶体(アモルファス体)として目的物である上記式(3)で表されるテトラキスフェノール化合物を得ることができる。晶析又は沈殿を析出させる操作の前に、必要に応じて、その得られた油層を水洗すること、溶媒や上記式(1)で表されるフェノール類を留去して、適宜の晶析溶媒を添加すること等を行ってもよい。
 得られた目的生成物が結晶体又は固体状(非結晶体)として得られない場合は、得られた反応混合物を、蒸留等で原料である上記式(1)で表されるフェノール類を除去することで目的物を得ることができ、カラム分離法等でも高純度品を得ることができる。
 本発明の製造方法により得られた上記式(3)で表されるテトラキスフェノール化合物は高純度であるため、感光性レジスト材料、感光性ポリイミド材料、感光性透明樹脂絶縁膜材料、フェノール樹脂、エポキシ樹脂の原料や硬化剤等として有用であるほか、酸化防止剤、殺菌剤、防菌防黴剤等の添加剤、包接化合物としての利用も期待できる。
 以下、本発明を実施例と比較例により具体的に説明するが、本発明はこれら実施例や比較例により限定されるものではない。
 なお、実施例と比較例における、上記式(2)で表される4,4’-ジアシルビフェニル類の残存率、上記式(3)で表されるテトラキスフェノール化合物の純度、選択率は以下の方法により測定した。
[分析方法]
 装置:株式会社島津製作所製 ProminenceUFLC(液体クロマトグラフィー)
 ポンプ:LC-20AD
 カラムオーブン:CTO-20A
 検出器:SPD-20A
 カラム:HALO C18(内径3mm、長さ75mm)
 オーブン温度:50℃
 流量:0.7mL/min
 移動相:(A)0.2体積%酢酸水溶液、(B)メタノール
 グラジエント条件:(B)体積%(分析開始からの時間)
 50%(0min)→100%(7.5min)→100%(15min)
 試料注入量:5μL
 検出波長:280nm
 上記分析方法により検出される全成分の総面積に対する、各成分の面積百分率を算出した。算出した数値を用いて、下記式(I)、式(II)で算出される値を、それぞれ、上記式(2)で表される4,4’-ジアシルビフェニル類の残存率(以下、「残存率」という場合がある。)、上記式(3)で表されるテトラキスフェノール化合物の反応選択率(以下、「反応選択率」という場合がある。)と定義した。
 式(I)、式(II)中の(A)~(D)は、下記を意味する。
 (A):上記式(2)で表される4,4’-ジアシルビフェニル類の面積百分率
 (B):上記式(1)で表されるフェノール類の面積百分率
 (C):反応に使用したトルエンなどの溶媒の面積百分率
 (D):上記式(3)で表されるテトラキスフェノール化合物の面積百分率
<式(I)>
 「残存率%」=(A)÷(100-(B)-(C))×100
<式(II)>
 「反応選択率%」=(D)÷(100-(B)-(C))×100
<化合物(4)の合成>
Figure JPOXMLDOC01-appb-C000009
<実施例1>
 100mL試験管へフェノール(4.0g、42.5mmol)、メタンスルホン酸(1.5g、15.6mmol)を加え、50℃で加熱撹拌した。4,4’-ジアセチルビフェニル(1.0g、4.20mmol)を加え、26時間撹拌した。撹拌後の上記式(4)で表される目的化合物の反応選択率は75%であった。
<比較例1>
 100mL試験管へフェノール(4.0g、42.5mmol)、p-トルエンスルホン酸(2.9g、16.8mmol)を加え、50℃で加熱撹拌した。4,4’-ジアセチルビフェニル(1.0g、4.20mmol)を加え、26時間撹拌した。撹拌後の上記式(4)で表される目的化合物の反応選択率は36%であった。
<比較例2>
 100mL四つ口フラスコへフェノール(12.0g、127.1mmol)、メタノール(5.0g)を加え、系内を塩酸ガスで置換した。50℃まで昇温後、4,4’-ジアセチルビフェニル(3.0g、12.6mmol)を加え、26時間撹拌した。撹拌後の上記式(4)で表される目的化合物の反応選択率は39%であった。
 上記実施例1、比較例1、2における、反応開始から24時間後までの、4,4’-ジアセチルビフェニルの残存率(%)と上記式(4)で表される目的化合物の反応選択率(%)の変化を、それぞれ図1、2に示した。
 図1に示すとおり、メタンスルホン酸の存在下に反応を行う本発明の具体例である実施例1は、原料の1つである4,4’-ジアセチルビフェニルが速く消費される。詳しくは、反応開始から1時間で残存率が30%程度まで消費され、4時間で7%程度、10時間で1%程度であり、p-トルエンスルホン酸や塩酸ガスの存在下に反応を行う比較例1、2に比べて、反応の進行が極めて速いことが確認された。
 図2に示すとおり、メタンスルホン酸の存在下に反応を行う本発明の具体例である実施例1は、上記式(4)で表される目的物化合物の反応選択率が高い。詳しくは、反応開始から4時間で反応選択率が40%を超えているのに対して、p-トルエンスルホン酸や塩酸ガスの存在下に反応を行う比較例1、2は、反応開始から26時間経過後でも反応選択率が40%を超えておらず、本発明の製造方法は、上記式(4)で表される目的物化合物の反応選択率が極めて高いことが確認された。
 次いで、助触媒(メルカプト酢酸)を併用する実施例2~4、比較例3~5を実施した。
<実施例2>
 100mL試験管へフェノール(4.0g、42.5mmol)、メタンスルホン酸(1.5g、15.6mmol)、メルカプト酢酸(0.15g、1.63mmol)を加え、50℃で加熱撹拌した。4,4’-ジアセチルビフェニル(1.0g、4.20mmol)を加え、24時間撹拌した。撹拌後の上記式(4)で表される目的化合物の反応選択率は72%であった。
<実施例3>
 100mL試験管へフェノール(7.9g、83.9mmol)、メタンスルホン酸(1.5g、15.6mmol)、メルカプト酢酸(0.16g、1.74mmol)を加え、50℃で加熱撹拌した。4,4’-ジアセチルビフェニル(2.0g、8.93mmol)を加え、24時間撹拌した。撹拌後の上記式(4)で表される目的化合物の反応選択率は77%であった。
<実施例4>
 100mL試験管へフェノール(11.9g、126.4mmol)、メタンスルホン酸(4.4g、45.8mmol)、メルカプト酢酸(0.47g、5.10mmol)を加え、50℃で加熱撹拌した。4,4’-ジアセチルビフェニル(3.0g、12.6mmol)を10分割して3.5時間かけて間歇添加し、24時間撹拌した。撹拌後の上記式(4)で表される目的化合物の反応選択率は85%であった。
<比較例3>
 100mL試験管へフェノール(4.0g、42.5mmol)、p-トルエンスルホン酸(2.9g、16.8mmol)、メルカプト酢酸(0.16g、1.74mmol)を加え、50℃で加熱撹拌した。4,4’-ジアセチルビフェニル(1.0g、4.20mmol)を加え、24時間撹拌した。撹拌後の上記式(4)で表される目的化合物の反応選択率は65%であった。
<比較例4>
 100mL試験管へフェノール(4.1g、43.6mmol)、37%塩酸水溶液(1.5g)、メルカプト酢酸(0.16g、1.74mmol)を加え、50℃で加熱撹拌した。4,4’-ジアセチルビフェニル(1.0g、4.20mmol)を加え、24時間撹拌した。撹拌後の上記式(4)で表される目的化合物の反応選択率は7%であった。
<比較例5>
 100mL四つ口フラスコへフェノール(12.0g、127.1mmol)、メタノール(5.0g)、メルカプト酢酸(0.5g、5.43mmol)を加え、系内を塩酸ガスで置換した。50℃まで昇温後、4,4’-ジアセチルビフェニル(3.0g、12.6mmol)を加え、24時間撹拌した。撹拌後の上記式(4)で表される目的化合物の反応選択率は34%であった。
 上記メタンスルホン酸と助触媒を併用する実施例2、比較例3~5における、反応開始から24時間後までの、4,4’-ジアセチルビフェニルの残存率(%)と上記式(4)で表される目的化合物の反応選択率(%)の変化を、それぞれ図3~5に示した。
 図3~5に示すとおり、本発明にかかるメタンスルホン酸を酸性触媒として使用した場合は、反応開始からすぐに4,4’-ジアセチルビフェニルの残存率(%)が0%となり、上記式(4)で表される目的化合物の反応選択率(%)は、反応開始から1時間で50%を超え、反応開始から4時間と短時間で70%を超える高い選択率を示すことが確認された。
 一方、酸性触媒がp-トルエンスルホン酸(比較例3)では、4,4’-ジアセチルビフェニルは速く消費されるものの、上記式(4)で表される目的化合物の反応選択率(%)の上昇は緩やかであり、反応開始から24時間後の反応選択率(%)は65%であった。また、37%塩酸水水溶液(比較例4)や塩化水素ガス(比較例5)では、4,4’-ジアセチルビフェニルの消費は遅く、上記式(4)で表される目的化合物の反応選択率(%)は、それぞれ7%、34%と極めて低いことが確認された。
 実施例3の結果より、4,4’-ジアシルビフェニルに対するメタンスルホン酸の使用量を、実施例2の50%程度に減らした場合においても、上記式(4)で表される目的化合物の反応選択率(%)は、実施例2と同様に70%を超える高い選択率を示すことが確認された。
 また、実施例4の結果より、4,4’-ジアシルビフェニルを分割して反応系に間歇添加することにより、上記式(4)で表される目的化合物の反応選択率(%)が向上することが明らかとなった。

Claims (3)

  1.  下記式(1)で表されるフェノール類と、
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは各々独立して、鎖状又は分岐鎖状の炭素原子数1~6のアルキル基、環状の炭素原子数5~6のアルキル基又は炭素数6~12のアリール基を示し、nはそれぞれ独立して0又は1~4の整数を示す。)
     下記式(2)で表される4,4’-ジアシルビフェニル類を、
    Figure JPOXMLDOC01-appb-C000002
    (式中、R及びRは、各々独立して鎖状又は分岐鎖状の炭素原子数1~6のアルキル基を示し、mはそれぞれ独立して0、1又は2を示す。)
     炭素原子数1~4のアルカンスルホン酸の存在下に反応させることを特徴とする、下記式(3)で表されるテトラキスフェノール化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R、R、R、m、nは、式(1)、(2)の定義と同じである。)
  2.  さらに、チオール化合物の存在下で反応させることを特徴とする、請求項1に記載の製造方法。
  3.  前記式(1)で表されるフェノール類を含む溶液に、前記式(2)で表される4,4’-ジアシルビフェニル類を含む溶液を添加しながら反応を行うことを特徴とする、請求項1又は2に記載の製造方法。
PCT/JP2021/035560 2020-10-07 2021-09-28 ビフェニル骨格を有するテトラキスフェノール化合物の製造方法 WO2022075120A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237009779A KR20230074728A (ko) 2020-10-07 2021-09-28 비페닐 골격을 갖는 테트라키스페놀 화합물의 제조방법
CN202180063308.9A CN116234791A (zh) 2020-10-07 2021-09-28 具有联苯骨架的四酚化合物的制造方法
JP2022555381A JPWO2022075120A1 (ja) 2020-10-07 2021-09-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-170020 2020-10-07
JP2020170020 2020-10-07

Publications (1)

Publication Number Publication Date
WO2022075120A1 true WO2022075120A1 (ja) 2022-04-14

Family

ID=81126771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035560 WO2022075120A1 (ja) 2020-10-07 2021-09-28 ビフェニル骨格を有するテトラキスフェノール化合物の製造方法

Country Status (5)

Country Link
JP (1) JPWO2022075120A1 (ja)
KR (1) KR20230074728A (ja)
CN (1) CN116234791A (ja)
TW (1) TW202227385A (ja)
WO (1) WO2022075120A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234158A1 (ja) * 2022-05-31 2023-12-07 本州化学工業株式会社 4,4'-ビス(1,1-ビス(4-ヒドロキシ-3-メチルフェニル)エチル)ビフェニルの結晶及び、その製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150236A (ja) * 1986-12-12 1988-06-22 Idemitsu Kosan Co Ltd 4,4′−ジヒドロキシテトラフエニルメタン類の製造方法
JPH06135875A (ja) * 1992-10-27 1994-05-17 Honsyu Kagaku Kogyo Kk 新規なフッ素化ビスフェノール類及びその製造方法
JPH0827052A (ja) * 1994-07-12 1996-01-30 Nippon Kayaku Co Ltd ポリフェノール類、エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JPH1149714A (ja) * 1997-08-07 1999-02-23 Mitsui Chem Inc 4,4’−(1−フェニルエチリデン)ビスフェノールの製造方法
JP2018203654A (ja) * 2017-06-01 2018-12-27 三菱ケミカル株式会社 ビスフェノール化合物の製造方法、およびポリカーボネート樹脂の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150236A (ja) * 1986-12-12 1988-06-22 Idemitsu Kosan Co Ltd 4,4′−ジヒドロキシテトラフエニルメタン類の製造方法
JPH06135875A (ja) * 1992-10-27 1994-05-17 Honsyu Kagaku Kogyo Kk 新規なフッ素化ビスフェノール類及びその製造方法
JPH0827052A (ja) * 1994-07-12 1996-01-30 Nippon Kayaku Co Ltd ポリフェノール類、エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JPH1149714A (ja) * 1997-08-07 1999-02-23 Mitsui Chem Inc 4,4’−(1−フェニルエチリデン)ビスフェノールの製造方法
JP2018203654A (ja) * 2017-06-01 2018-12-27 三菱ケミカル株式会社 ビスフェノール化合物の製造方法、およびポリカーボネート樹脂の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234158A1 (ja) * 2022-05-31 2023-12-07 本州化学工業株式会社 4,4'-ビス(1,1-ビス(4-ヒドロキシ-3-メチルフェニル)エチル)ビフェニルの結晶及び、その製造方法

Also Published As

Publication number Publication date
TW202227385A (zh) 2022-07-16
KR20230074728A (ko) 2023-05-31
JPWO2022075120A1 (ja) 2022-04-14
CN116234791A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
KR20140131511A (ko) 9,9-비스(4-(2-히드록시에톡시)페닐)플루오렌의 제조방법, 그의 결정체 및 그의 결정체의 제조방법
JP2003221352A (ja) ビスフェノールフルオレン類の製造方法
CN110461807B (zh) 具有芴骨架的醇类的制造方法
JP2018145176A (ja) ビスフェノールの製造方法及びポリカーボネート樹脂の製造方法
US20220340520A1 (en) Rreparation method of 3-mercaptopropionic acid
WO2022075120A1 (ja) ビフェニル骨格を有するテトラキスフェノール化合物の製造方法
KR102300816B1 (ko) 플루오레닐리덴디알릴페놀류의 제조 방법 및 플루오레닐리덴디알릴페놀류
WO2019039520A1 (ja) 芳香族アルコールスルホン酸塩を含有するビスフェノール組成物及びその製造方法、ポリカーボネート樹脂及びその製造方法、並びに、ビスフェノールの製造方法
TWI545109B (zh) 4-醯基芳烷基苯酚及其衍生物
US20080071113A1 (en) Process for producing n-(bicyclo[2.2.1]hept-5-en-2-ylmethyl)-1,1,1-trifluoromethanesulfonamide
JP6016303B2 (ja) フルオレン骨格を有するキサンテン化合物の製造方法
JP6830051B2 (ja) 高純度トリフルオロメチル基置換芳香族ケトンの製造方法
JP6068204B2 (ja) 新規なトリスフェノール化合物
US9783476B2 (en) Method of producing 2′-trifluoromethyl group-substituted aromatic ketone
JP5062856B2 (ja) 9,9−ビスクレゾールフルオレンの製造法
KR20150040283A (ko) 불포화 카르복실산아미드 화합물을 포함하는 결정 및 그의 제조 방법
JP6829135B2 (ja) フルオレン誘導体の製造方法
JP2009107991A (ja) 新規なヒドロキシメチル置換又はアルコキシメチル置換ビスフェノール化合物
WO2020004207A1 (ja) 9,9-ビス(4-ヒドロキシフェニル)-2,3-ベンゾフルオレンの結晶体
JP2014208635A (ja) トリスフェノール化合物
JP2005200527A (ja) 結晶性エポキシ化合物の製造方法
JP2016199488A (ja) テトラキスフェノールエタン類の製造方法
JP2011079766A (ja) 4−ハロフェニルアルキルスルホンの製造方法
JP2022104623A (ja) フルオレン誘導体の製造方法およびその原料
JPH1149714A (ja) 4,4’−(1−フェニルエチリデン)ビスフェノールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877421

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555381

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877421

Country of ref document: EP

Kind code of ref document: A1