WO2022074745A1 - データ生成方法、造形受託方法、データ生成装置、表示装置、造形方法、コンピュータプログラム及び記録媒体 - Google Patents
データ生成方法、造形受託方法、データ生成装置、表示装置、造形方法、コンピュータプログラム及び記録媒体 Download PDFInfo
- Publication number
- WO2022074745A1 WO2022074745A1 PCT/JP2020/037905 JP2020037905W WO2022074745A1 WO 2022074745 A1 WO2022074745 A1 WO 2022074745A1 JP 2020037905 W JP2020037905 W JP 2020037905W WO 2022074745 A1 WO2022074745 A1 WO 2022074745A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parameter
- value
- pipe
- shape
- user
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 186
- 238000004590 computer program Methods 0.000 title claims description 39
- 238000000465 moulding Methods 0.000 title 2
- 230000008859 change Effects 0.000 claims description 145
- 230000004044 response Effects 0.000 claims description 30
- 238000003466 welding Methods 0.000 claims description 4
- 238000001465 metallisation Methods 0.000 claims description 2
- 238000004891 communication Methods 0.000 description 51
- 239000000463 material Substances 0.000 description 48
- 238000012545 processing Methods 0.000 description 45
- 238000003860 storage Methods 0.000 description 33
- 239000007789 gas Substances 0.000 description 23
- 238000012986 modification Methods 0.000 description 22
- 230000004048 modification Effects 0.000 description 22
- 238000005192 partition Methods 0.000 description 21
- 238000005520 cutting process Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000010926 purge Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000007787 solid Substances 0.000 description 6
- 238000003754 machining Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000011960 computer-aided design Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000012905 input function Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000004372 laser cladding Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000012260 resinous material Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
- B29C64/393—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/80—Data acquisition or data processing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0484—Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
- G06F3/0486—Drag-and-drop
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/12—Geometric CAD characterised by design entry means specially adapted for CAD, e.g. graphical user interfaces [GUI] specially adapted for CAD
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/25—Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/10—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/10—Additive manufacturing, e.g. 3D printing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/14—Pipes
Definitions
- the present invention relates to, for example, technical fields of a data generation method for generating model data representing a three-dimensional model of an object, a modeling contract method, a data generation device, a display device, a modeling method, a computer program, and a recording medium.
- it is a data generation method for generating model data representing a three-dimensional model of a pipe which is an object additionally shaped by a modeling device, using an input screen displayed on the display device.
- the value of the parameter that defines the position separated by the first distance from the position of the end of the pipe, which is different from the value of the parameter that defines the shape of the pipe specified by the user, is the position of the middle part of the pipe.
- the 3D model is automatically set as the value of the specified parameter on the output screen of the display device based on the value of the parameter specified by the user using the input screen and the value of the automatically set parameter.
- a data generation method comprising providing and generating the model data based on the value of the parameter specified by the user using the input screen and the value of the automatically set parameter is provided.
- the second aspect is a data generation method for generating model data representing a three-dimensional model of a pipe which is an object additionally shaped by a modeling device, using an input screen displayed on the display device.
- the three-dimensional model includes the first axis, the second axis, and the third axis, which includes changing the value of the parameter defining the shape of the pipe in response to the change operation to the output screen by the user.
- the user can perform the change operation for changing the value of the parameter related to the first axis and the value of the parameter related to the first axis.
- the value of the parameter displayed on the input screen is changed to the value of the parameter that defines the shape of the three-dimensional model changed by the change operation, and is displayed on the input screen.
- a data generation method for generating the model data is provided based on the values of the parameters.
- it is a data generation method for generating model data representing a three-dimensional model of a pipe which is an object additionally shaped by a modeling device, using an input screen displayed on the display device.
- the value of the parameter defining the shape of the pipe is changed, and the value of the parameter specified using the input screen and the output screen are used.
- the output screen includes changing the value of the parameter that defines the shape of the pipe by the changing operation in the three-dimensional model, including generating the model data based on the changed parameter value.
- a data generation method is provided in which the possible parts are displayed.
- it is a data generation method for generating model data representing a three-dimensional model of a pipe which is an object additionally shaped by a modeling device, using an input screen displayed on the display device. Generating the model data based on the outer diameter of the pipe and the length between the outer and inner surfaces of the pipe specified by the user as the value of a parameter that defines the shape of the pipe. When the user respecifies the outer diameter using the input screen, the length between the outer surface and the inner surface of the pipe is reset so that the inner diameter of the pipe is kept constant.
- a data generation method including that is provided.
- it is a data generation method for generating model data representing a three-dimensional model of a pipe which is an object additionally shaped by a modeling device, using an input screen displayed on the display device.
- the user generates the model data based on the length between the outer surface and the inner surface of the pipe specified by the user as the value of a parameter that defines the shape of the pipe, and uses the input screen to generate the model data.
- Data generation including resetting the outer diameter of the pipe so that the inner diameter of the pipe remains constant when the length between the outer surface and the inner surface is respecified. The method is supplied.
- it is a data generation method for generating model data representing a three-dimensional model of a pipe which is an object additionally shaped by a modeling device, using an input screen displayed on the display device.
- the input is the value of one of the outer diameter of the pipe and the length between the outer surface and the inner surface of the pipe, which is set by the user as the value of the parameter defining the shape of the pipe.
- the value of the other parameter is automatically set, and the model data is based on the value of the parameter set by the user and the value of the automatically set parameter.
- Data generation methods are provided, including the generation of.
- the seventh aspect it is a data generation method for generating model data representing a three-dimensional model of an object additionally modeled by a modeling device, and is designated by a user using an input screen displayed on the display device.
- the model data is generated based on the value of the parameter that defines the shape of the object, and the value of the parameter that defines the position separated by the first distance from the position of the first part of the object is set.
- a data generation method including that is provided.
- it is a data generation method for generating model data representing a three-dimensional model of an object additionally modeled by a modeling device, and is designated by a user using an input screen displayed on the display device.
- the user provides a three-dimensional model based on the value of the parameter defining the shape of the object to the output screen of the display device, and changes the shape of the three-dimensional model displayed on the output screen.
- the value of the parameter that defines the shape of the object is changed, the value of the parameter specified by using the input screen, and the parameter changed by using the output screen.
- a data generation method including generating the model data based on the value of is provided.
- it is a data generation method for generating model data representing a three-dimensional model of an object additionally modeled by a modeling device, and is designated by a user using an input screen displayed on the display device.
- the user provides a three-dimensional model based on the value of the parameter defining the shape of the object to the output screen of the display device, and changes the shape of the three-dimensional model displayed on the output screen.
- the value of the parameter displayed on the input screen is changed to a value that defines the shape of the three-dimensional model changed by the change operation, and the input screen.
- a data generation method including the generation of the model data is provided based on the values of the parameters displayed in.
- it is a data generation method for generating model data representing a three-dimensional model of an object additionally modeled by a modeling device, and is designated by a user using an input screen displayed on the display device.
- the user for providing a three-dimensional model based on the value of a parameter defining the shape of the object to the output screen of the display device and changing the shape of the three-dimensional model displayed on the output screen.
- the value of the parameter that defines the shape of the object is changed, and the value of the parameter specified by using the input screen and the value of the parameter specified by using the output screen are changed.
- the output screen includes the generation of the model data based on the value of the parameter, and the part of the three-dimensional model in which the value of the parameter that defines the shape of the object can be changed by the change operation. Is displayed
- the data generation method is supplied.
- it is a data generation method for generating model data representing a three-dimensional model of an object additionally modeled by a modeling device, and is designated by a user using an input screen displayed on the display device.
- the model data is generated based on the first parameter, which is a parameter that defines the shape of the object, and the second parameter, which is a parameter that defines the shape of the object, and the user uses the input screen.
- a data generation method comprising resetting the second parameter specified by the user so that the third parameter relating to the shape of the object is maintained when the first parameter is reset. ..
- it is a modeling consignment method for entrusting additional modeling of a pipe, in which the user is provided with display contents related to an input screen and is designated by the user using the input screen displayed on the display device.
- Providing the content of the parameter value that defines the shape of the pipe to the input screen is different from the value of the parameter that defines the shape of the pipe specified by the user using the input screen.
- the value of the parameter that defines the position separated by the first distance from the position of the end portion of the pipe is automatically set as the value of the parameter that defines the position of the middle portion of the pipe, and the input screen is displayed by the user.
- a data modeling consignment method is provided that includes providing a three-dimensional model to the output screen of the display device based on the parameter values specified using and the automatically set parameter values.
- it is a modeling consignment method for entrusting additional modeling of a pipe, in which the user is provided with display contents related to an input screen, and the user designates the input screen using the input screen displayed on the display device.
- To provide the content of the parameter value that defines the shape of the pipe to the input screen and to provide a three-dimensional model based on the parameter value specified by the user to the output screen of the display device.
- the value of the parameter defining the shape of the pipe is changed.
- the three-dimensional model is a three-dimensional model represented in a three-dimensional coordinate system in which the first axis, the second axis, and the third axis are orthogonal to each other, and the output screen is viewed from the third axis.
- the user can display the values of the parameters related to the first axis and the first. It is possible to perform the change operation for changing the value of the parameter related to the axis, and in response to the change operation, the value of the parameter displayed on the input screen is three-dimensionally changed by the change operation.
- a modeling contract method is provided that changes the shape of the model to the value of the parameter that defines it.
- the fourteenth aspect is a modeling consignment method for entrusting additional modeling of a pipe, in which the user is provided with display contents related to an input screen and is designated by the user using the input screen displayed on the display device.
- To provide the content of the parameter value that defines the shape of the pipe to the input screen and to provide a three-dimensional model based on the parameter value specified by the user to the output screen of the display device.
- the value of the parameter defining the shape of the pipe is changed.
- the output screen is supplied with a modeling contract method in which a portion of the three-dimensional model in which the value of the parameter defining the shape of the pipe can be changed by the change operation is displayed.
- it is a modeling consignment method for entrusting additional modeling of a pipe, in which the user is provided with display contents related to an input screen, and the user uses the input screen displayed on the display device.
- the modeling contract method including is supplied.
- it is a modeling consignment method that entrusts additional modeling of a pipe, and is designated as a value of a parameter that defines the shape of the pipe by a user using the input screen displayed on the display device.
- the content of the length between the outer surface and the inner surface of the pipe is provided to the input screen, and the user uses the input screen to provide the length between the outer surface and the inner surface.
- a modeling contract method including resetting the outer diameter of the pipe so that the inner diameter of the pipe is kept constant when redesignated is provided.
- it is a modeling consignment method for entrusting additional modeling of pipes, in which display contents related to an input screen are provided to the user, and the user designates the input screen using the input screen displayed on the display device.
- the content of the value of the parameter that defines the shape of the pipe is provided to the input screen, and the pipe is set as the value of the parameter that defines the shape of the pipe by the user using the input screen. If the value of one of the outer diameters and the length between the outer and inner surfaces of the pipe is reset by the user using the input screen, the value of the other parameter.
- a modeling contract method including automatic setting of is provided.
- the eighteenth aspect is a modeling consignment method for entrusting additional modeling of an object, in which the user is provided with display contents related to an input screen, and the user designates the input screen by using the input screen displayed on the display device.
- the content of the parameter value that defines the shape of the object is provided to the input screen, and the value of the parameter that defines the position separated by the first distance from the position of the first portion of the object is set.
- it is a modeling consignment method for entrusting additional modeling of an object, in which the user is provided with display contents related to an input screen, and the user specifies the input screen displayed on the display device.
- the modeling contract method is supplied.
- it is a modeling consignment method for entrusting additional modeling of an object, in which the user is provided with display contents related to an input screen, and the user specifies the input screen displayed on the display device.
- To provide the content of the parameter value that defines the shape of the object to the input screen and to provide a three-dimensional model based on the parameter value specified by the user to the output screen of the display device.
- the value of the parameter displayed on the input screen is changed to the change operation.
- a modeling contract method is provided, including changing the shape of the 3D model modified by the above to a specified value.
- the 21st aspect it is a modeling consignment method for entrusting additional modeling of an object, in which the user is provided with display contents related to an input screen, and the user specifies the input screen displayed on the display device.
- To provide the content of the parameter value that defines the shape of the object to the input screen and to provide a three-dimensional model based on the parameter value specified by the user to the output screen of the display device.
- the value of the parameter defining the shape of the object is changed.
- the output screen is supplied with a modeling contract method in which a portion of the three-dimensional model in which the value of a parameter defining the shape of the object can be changed by the change operation is displayed.
- a data generation device for generating model data representing a three-dimensional model of a pipe which is an object additionally modeled by the modeling device, and uses an input screen displayed on the display device.
- the value of the parameter that defines the position separated by the first distance from the position of the end of the pipe, which is different from the value of the parameter that defines the shape of the pipe specified by the user, is the position of the middle part of the pipe. It is automatically set as a value of a specified parameter, and a three-dimensional model is provided on the output screen of the display device based on the value of the parameter specified by the user using the input screen and the value of the automatically set parameter.
- a data generator is supplied.
- it is a data generation device for generating model data representing a three-dimensional model of a pipe which is an object additionally modeled by the modeling device, and uses an input screen displayed on the display device.
- the three-dimensional model based on the value of the parameter defining the shape of the pipe specified by the user is provided on the output screen of the display device, and the shape of the three-dimensional model displayed on the output screen is changed.
- the value of the parameter that defines the shape of the pipe is changed, and the three-dimensional model has three dimensions in which the first axis, the second axis, and the third axis are orthogonal to each other.
- the output screen can display the three-dimensional model when viewed from the third axis, and the three-dimensional model when viewed from the third axis.
- the user can perform the change operation for changing the value of the parameter related to the first axis and the value of the parameter related to the first axis, and the change operation can be performed.
- the value of the parameter displayed on the input screen is changed to the value of the parameter that defines the shape of the three-dimensional model changed by the change operation, and is changed to the value of the parameter displayed on the input screen.
- a data generator that generates the model data is supplied.
- a data generation device for generating model data representing a three-dimensional model of a pipe which is an object additionally modeled by the modeling device, using an input screen displayed on the display device.
- the three-dimensional model based on the value of the parameter defining the shape of the pipe specified by the user is provided on the output screen of the display device, and the shape of the three-dimensional model displayed on the output screen is changed.
- the value of the parameter that defines the shape of the pipe is changed according to the change operation to the output screen by the user, and the shape of the pipe is specified on the output screen by the change operation of the three-dimensional model.
- the part where the parameter value can be changed is displayed, and the data generation that generates the model data based on the parameter value specified by using the input screen and the parameter value changed by using the output screen.
- the device is supplied.
- a data generation device for generating model data representing a three-dimensional model of a pipe which is an object additionally modeled by the modeling device, using an input screen displayed on the display device.
- the model data is generated based on the outer diameter of the pipe and the length between the outer surface and the inner surface of the pipe specified by the user as the value of a parameter that defines the shape of the pipe, and the input screen.
- Data generation that resets the length between the outer and inner surfaces of the pipe so that the inner diameter of the pipe is kept constant when the user respecifies the outer diameter using The device is supplied.
- a data generation device for generating model data representing a three-dimensional model of a pipe which is an object additionally modeled by the modeling device, using an input screen displayed on the display device.
- the model data is generated based on the length between the outer surface and the inner surface of the pipe specified by the user as the value of a parameter that defines the shape of the pipe, and the user uses the input screen to describe the pipe.
- a data generator is provided that resets the outer diameter of the pipe so that the inner diameter of the pipe is kept constant when the length between the outer side surface and the inner side surface is redesignated.
- a data generation device for generating model data representing a three-dimensional model of a pipe which is an object additionally modeled by the modeling device, using an input screen displayed on the display device.
- the input is the value of one of the outer diameter of the pipe and the length between the outer surface and the inner surface of the pipe, which is set by the user as the value of the parameter defining the shape of the pipe.
- the value of the other parameter is automatically set, and the model data is generated based on the value of the parameter set by the user and the value of the automatically set parameter.
- a data generator is provided that includes a data generator.
- it is a data generation device for generating model data representing a three-dimensional model of an object additionally modeled by the modeling device, and is designated by the user using an input screen displayed on the display device.
- a 3D model based on the value of a parameter that defines the shape of the object is provided on the output screen of the display device, and the output by the user for changing the shape of the 3D model displayed on the output screen.
- the value of the parameter displayed on the input screen is changed to a value that defines the shape of the three-dimensional model changed by the change operation, and is displayed on the input screen.
- a data generator that generates the model data is supplied based on the values of the parameters.
- the 32nd aspect is a data generation device for generating model data representing a three-dimensional model of an object additionally modeled by the modeling device, and is designated by the user using an input screen displayed on the display device.
- the user provides a three-dimensional model based on the value of a parameter that defines the shape of the object to the output screen of the display device, and changes the shape of the three-dimensional model displayed on the output screen.
- the value of the parameter that defines the shape of the object is changed to the value of the parameter specified by using the input screen and the value of the parameter changed by using the output screen.
- the model data is generated, and the output screen displays a portion of the three-dimensional model in which the value of the parameter defining the shape of the object can be changed by the change operation. Be supplied.
- a data generation device for generating model data representing a three-dimensional model of an object additionally modeled by the modeling device, and is designated by a user using an input screen displayed on the display device.
- the model data is generated based on the first parameter which is a parameter defining the shape of the object and the second parameter which is a parameter defining the shape of the object, and the user can use the input screen to generate the model data.
- a data generation device for resetting the second parameter specified by the user is supplied so that the third parameter relating to the shape of the object is maintained when one parameter is redesignated.
- an acquisition unit for acquiring information about the input screen from the data generation device provided by any one of the 26th to 29th aspects and the 33rd aspect described above, and the above-mentioned.
- a display device including a display unit for displaying the input screen based on the information acquired by the acquisition unit is provided.
- a display device including an acquisition unit for acquiring information and a display unit for displaying the input screen and the output screen based on the information acquired by the acquisition unit is provided.
- the model data is generated by using the modeling method for modeling an object and the data generation method provided by any one of the first to eleventh aspects described above.
- a modeling method is provided, which comprises controlling the modeling device so as to model the object based on the model data.
- the model data is generated by using the data generation device provided by any one of the 22nd to 32nd aspects described above, which is a modeling method for modeling an object.
- a modeling method is provided, which comprises controlling the modeling device so as to model the object based on the model data.
- a computer program for causing a computer to execute the modeling contract method provided by any one of the 12th to 22nd aspects described above is provided.
- a computer program for causing a computer to execute the modeling method provided by the 36th aspect or the 37th aspect described above is provided.
- a recording medium on which the computer program provided by any one of the 38th aspect to the 40th aspect is recorded is provided.
- FIG. 1 is a block diagram showing a configuration of a modeling system of the present embodiment.
- FIG. 2 is a cross-sectional view showing the structure of the modeling apparatus of this embodiment.
- FIG. 3 is a system configuration diagram showing a system configuration of the modeling apparatus of the present embodiment.
- FIG. 4 is a block diagram showing the configuration of the data generation server of the present embodiment.
- FIG. 5 is a block diagram showing the configuration of the terminal device of the present embodiment.
- FIG. 6 is a flowchart showing the flow of the modeling operation performed by the modeling system.
- FIG. 7 is a plan view showing an example of the setting GUI.
- FIG. 8 is a plan view showing an example of an input screen for setting shape information regarding the shape of the pipe.
- FIG. 9 is a plan view showing a wire frame model of a pipe.
- FIG. 10 is a plan view showing a surface model of a pipe in which a plurality of points through which the pipe passes are associated.
- FIG. 11 is a plan view showing an example of an input screen for setting shape information regarding the shape of the plate.
- FIG. 12 is a plan view showing a solid model of the plate.
- FIG. 13 is a plan view showing a wire frame model of the plate.
- FIG. 14 is a schematic diagram showing a plurality of points through which a pipe passes.
- FIG. 15 is a cross-sectional view showing the start end portion of the pipe.
- FIG. 16 is a plan view showing an input screen in the first modification.
- FIG. 17 is a plan view showing a three-dimensional model displayed on the output screen.
- FIG. 11 is a plan view showing an example of an input screen for setting shape information regarding the shape of the plate.
- FIG. 12 is a plan view showing a solid model of the plate.
- FIG. 13 is a plan view showing a wire frame model of the plate
- FIG. 18 is a plan view showing a three-dimensional model displayed on the output screen.
- FIG. 19 is a cross-sectional view showing a cross section of the pipe.
- FIG. 20 is a plan view showing an example of a setting GUI including object information.
- FIG. 21 is a plan view showing another example of the input screen for setting the shape information regarding the shape of the pipe.
- FIG. 22 is a plan view showing an example of an output screen included in the setting GUI.
- FIG. 1 is a block diagram showing the overall configuration of the modeling system SYS.
- the modeling system SYS includes a modeling device 1 and a data generation server 2.
- the modeling device 1 and the data generation server 2 can communicate with each other via a communication network 4 including at least one of a wired communication network and a wireless communication network.
- the data generation server 2 can communicate with the terminal device 3 via a communication network 5 including at least one of a wired communication network and a wireless communication network.
- the communication networks 4 and 5 may be separate communication networks or the same communication network.
- the terminal device 3 may be a device that constitutes a part of the modeling system SYS. That is, the modeling system SYS may include the terminal device 3. Alternatively, the modeling system SYS may not include the terminal device 3. In this case, an arbitrary device capable of communicating with the data generation server 3 included in the modeling system SYS (for example, an information processing device such as a computer provided by a terminal user described later) may be used as the terminal device 3.
- the modeling device 1 is a device capable of modeling a three-dimensional structure (that is, a three-dimensional object having a size in any direction in the three-dimensional direction).
- the modeling apparatus 1 forms a three-dimensional structure by performing additional processing. That is, the modeling apparatus 1 additionally forms a three-dimensional structure.
- the data generation server 2 is a device capable of generating 3D model data representing a 3D model of a 3D structure additionally modeled by the modeling device 1.
- the data generation server 2 may be referred to as a data generation device.
- the data generation server 2 transmits the generated three-dimensional model data to the modeling apparatus 1 via the communication network 4.
- the modeling device 1 models a three-dimensional structure based on the three-dimensional model data transmitted from the data generation server 2.
- the terminal device 3 is a device that can be operated by the user in order to set (that is, specify) the feature information regarding the features of the three-dimensional structure additionally modeled by the modeling device 1.
- a user who can operate the terminal device 3 will be referred to as a terminal user.
- the terminal user may typically be a person who wishes to model a three-dimensional structure using the modeling device 1.
- the terminal device 3 will be described as an example in which the terminal user can operate to set the shape information regarding the shape of the three-dimensional structure additionally modeled by the modeling device 1. do.
- the terminal device 3 transmits the shape information set by the terminal user to the data generation server 2 via the communication network 5.
- the data generation server 2 generates three-dimensional model data based on the shape information transmitted from the terminal device 3. That is, the data generation server 2 generates 3D model data representing a 3D model of a 3D structure having a shape defined by the shape information set by the terminal user.
- the modeling device 1 models a three-dimensional structure having a shape defined by the shape information set by the terminal user.
- the terminal device 3 may display a setting GUI (Graphical User Interface) 9 (see FIG. 7 and the like) including an input screen 22 that can be operated by a user to set shape information.
- the data generation server 2 transmits GUI information regarding the setting GUI 9 to the terminal device 3 via the communication network 5.
- the terminal device 3 displays the setting GUI 9 based on the GUI information.
- the terminal user sets the shape information using the setting GUI 9 displayed by the terminal device 3.
- the terminal user may be the same as or different from the user who can operate the data generation server 2 (hereinafter referred to as “server user”).
- the terminal user may be the same as or different from the user who can operate the modeling device 1 (hereinafter referred to as “modeling user”).
- modeling user When the terminal user and the modeling user are different, the modeling system SYS becomes a consignor in which the terminal user entrusts the modeling of the three-dimensional structure to the modeling user, and the modeling user performs modeling from the terminal user. It may be regarded as equivalent to the modeling consignment system that is the consignee who entrusts the modeling of the consigned 3D structure. That is, the following modeling process may be regarded as equivalent to the modeling contract processing (modeling contract method).
- FIG. 2 is a cross-sectional view showing an example of the structure of the modeling apparatus 1 of the present embodiment.
- FIG. 3 is a system configuration diagram showing an example of the system configuration of the modeling apparatus 1 of the present embodiment.
- each of the X-axis direction and the Y-axis direction is a horizontal direction (that is, a predetermined direction in the horizontal plane), and the Z-axis direction is a vertical direction (that is, a direction orthogonal to the horizontal plane). Yes, it is assumed that it is substantially in the vertical direction or the gravity direction).
- the modeling device 1 can perform a modeling operation for forming a three-dimensional structure.
- the modeling device 1 can form a three-dimensional structure on a work W that is a basic member for forming the three-dimensional structure.
- the modeling apparatus 1 can form a three-dimensional structure on the stage 131.
- the work W is an existing structure mounted on the stage 131 (or mounted on the stage 131)
- the modeling apparatus 1 can form a three-dimensional structure on the existing structure. It may be.
- the modeling apparatus 1 may form a three-dimensional structure integrated with the existing structure.
- the operation of forming a three-dimensional structure integrated with an existing structure can be regarded as equivalent to the operation of adding a new structure to the existing structure.
- the modeling device 1 is an device capable of modeling a three-dimensional structure by performing additional processing (additional modeling) based on the laser overlay welding method.
- the modeling apparatus 1 is a 3D printer that forms an object by using the laminated modeling technique.
- the laminated modeling technique may also be referred to as rapid prototyping, rapid manufacturing, or additive manufacturing.
- Laser overlay welding includes direct metal deposition, direct energy deposition, laser cladding, laser engineered net shaping, direct light fabrication, laser consolidation, and shaping.
- Deposition Manufacturing, Wire-Feed Laser Deposition, Gas Through Wire, Laser Powder Fusion, Laser Metal Forming, Selective Laser Powder Remelting, Laser Direct Casting It may also be referred to as laser powder deposition, laser additive manufacturing, or laser rapid forming.
- the modeling device 1 includes a material supply source 11, a processing device 12, a stage device 13, a light source 14, and a gas supply device 15, as shown in FIGS. 2 and 3. ,
- the material supply source 11 supplies the modeling material M to the processing apparatus 12.
- the material supply source 11 is a desired amount of modeling material according to the required amount so that the amount of modeling material M required per unit time for forming the three-dimensional structure is supplied to the processing apparatus 12. Supply M.
- the processing apparatus 12 processes the modeling material M supplied from the material supply source 11 to form a three-dimensional structure.
- the processing apparatus 12 includes a processing head 121 and a head drive system 122.
- the processing head 121 includes an irradiation optical system 1211 capable of injecting processing light EL, and a material nozzle 1212 capable of supplying the modeling material M.
- the processing head 121 and the head drive system 122 are housed in the chamber space 163IN. However, at least a part of the processing head 121 and the head drive system 122 may be arranged in the external space 164OUT, which is the space outside the housing 16.
- the external space 164OUT may be a space accessible to the modeling user.
- the modeling material M supplied from the material nozzle 1212 is irradiated with the processing light EL emitted by the irradiation optical system 1211. As a result, the modeling material M melts. That is, a molten pool containing the molten modeling material M is formed.
- the processing light EL is no longer irradiated to the molten pool due to the movement of the processing head 121, the molten molding material M solidifies in the molten pool. That is, a model corresponding to the deposit of the solidified model material M is formed.
- the modeling apparatus 1 performs a series of modeling processes including the formation of a molten pool and the solidification of the molten modeling material M by irradiation with the processing light EL, by moving the processing head 121 to at least one of the X-axis direction and the Y-axis direction. Repeat while moving along. As a result, a structural layer corresponding to an aggregate of shaped objects formed in a pattern corresponding to the movement locus of the molten pool is formed.
- the modeling apparatus 1 sequentially forms a plurality of structural layers so that the plurality of structural layers are laminated. As a result, a three-dimensional structure corresponding to an aggregate of a plurality of structural layers is formed.
- the stage device 13 includes a stage 131.
- the stage 131 is housed in the chamber space 163IN.
- the work W can be placed on the stage 131.
- the stage 131 may be able to hold the work W placed on the stage 131.
- the stage 131 may include at least one of a mechanical chuck, an electrostatic chuck, a vacuum suction chuck, and the like in order to hold the work W.
- the stage 131 may not be able to hold the work W placed on the stage 131.
- the work W may be mounted on the stage 131 without a clamp.
- the stage drive system 132 moves the stage 131.
- the stage drive system 132 moves the stage 131 along at least one of the X-axis, the Y-axis, the Z-axis, the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction, for example.
- the stage drive system 132 moves the stage 131, the relative position between the processing head 121 and the stage 131 (furthermore, the work W mounted on the stage 131) changes.
- the light source 14 emits, for example, at least one of infrared light, visible light, and ultraviolet light as processed light EL.
- the processed light EL may include a plurality of pulsed lights (that is, a plurality of pulse beams).
- the processed light EL may include continuous light (CW: Continuous Wave).
- the processed light EL may be a laser beam.
- the light source 14 may include a semiconductor laser such as a laser light source (for example, a laser diode (LD)).
- the laser light source may be a fiber laser, a CO 2 laser, a YAG laser, an excima laser, or the like. At least one of them may be included.
- the processed light EL does not have to be a laser light.
- the light source 14 is at least one of any light sources (for example, LED (Light Emitting Diode), discharge lamp, and the like.
- the irradiation optical system 1211 is optically connected to the light source 14 via an optical transmission member 141 including at least one such as an optical fiber and a light pipe. Injects processed light EL propagating from the light source 14 via the optical transmission member 141.
- the gas supply device 15 is a supply source of purge gas for purging the chamber space 163IN.
- the purge gas contains an inert gas.
- the inert gas at least one of nitrogen gas and argon gas can be mentioned.
- the gas supply device 15 is connected to the chamber space 163IN via a supply port 162 formed in the partition member 161 of the housing 16 and a supply pipe 151 connecting the gas supply device 15 and the supply port 162.
- the gas supply device 15 supplies purge gas to the chamber space 163IN via the supply pipe 151 and the supply port 162. As a result, the chamber space 163IN becomes a space purged by the purge gas.
- the purge gas supplied to the chamber space 163IN may be discharged from a discharge port (not shown) formed in the partition wall member 161.
- the gas supply device 15 may be a cylinder in which the inert gas is stored.
- the gas supply device 15 may be a nitrogen gas generator that generates nitrogen gas from the atmosphere as a raw material.
- the gas supply device 15 may supply purge gas to the mixing device 112 to which the modeling material M from the material supply source 11 is supplied in addition to the chamber space 163IN.
- the gas supply device 15 may be connected to the mixing device 112 via a supply pipe 152 connecting the gas supply device 15 and the mixing device 112.
- the gas supply device 15 supplies the purge gas to the mixing device 112 via the supply pipe 152.
- the modeling material M from the material supply source 11 is supplied (specifically,) toward the material nozzle 1212 through the supply pipe 111 by the purge gas supplied from the gas supply device 15 via the supply pipe 152. , Pumped).
- the material nozzle 1212 supplies the modeling material M together with the purge gas for pumping the modeling material M from the material supply port.
- the housing 16 is a housing device that accommodates at least a part of each of the processing device 12 and the stage device 13 in the chamber space 163IN, which is the internal space of the housing 16.
- the housing 16 includes a partition member 161 that defines the chamber space 163IN.
- the partition wall member 161 is a member that separates the chamber space 163IN and the external space 164OUT of the housing 16. In this case, the space surrounded by the partition member 161 becomes the chamber space 163IN.
- the partition wall member 161 may be provided with a door that can be opened and closed. This door may be opened when the work W is placed on the stage 131. The door may be opened when the work W and / or the three-dimensional structure is taken out from the stage 131. The door may be closed during the period during which the modeling operation is taking place.
- An observation window (not shown) for visually recognizing the chamber space 163IN from the external space 164OUT of the housing 16 may be formed on the partition wall member 161.
- the computer program executed by the arithmetic unit may be recorded in a storage device (that is, a recording medium) included in the control device 17, or may be stored in any storage device built in the control device 17 or externally attached to the control device 17. It may be recorded on a medium (for example, a hard disk or a semiconductor memory). Alternatively, the arithmetic unit 21 may download the computer program to be executed from an external device of the control device 17 via the communication device 18.
- a storage device that is, a recording medium
- the arithmetic unit 21 may download the computer program to be executed from an external device of the control device 17 via the communication device 18.
- the control device 17 does not have to be provided inside the modeling device 1.
- the control device 17 may be provided as a server or the like outside the modeling device 1.
- the control device 17 may be integrated with the data generation server 2.
- the control device 17 and the modeling device 1 may be connected by a wired and / or wireless network (for example, a communication network 4 or a data bus and / or a communication line).
- a wired network for example, a network using a serial bus type interface represented by at least one of IEEE1394, RS-232x, RS-422, RS-423, RS-485 and USB may be used.
- a network using a parallel bus interface may be used.
- a network using an Ethernet (registered trademark) compliant interface represented by at least one of 10BASE-T, 100BASE-TX and 1000BASE-T may be used.
- a network using radio waves may be used.
- An example of a network using radio waves is a network compliant with IEEE802.1x (for example, at least one of wireless LAN and Bluetooth®).
- a network using infrared rays may be used.
- a network using optical communication may be used.
- the control device 17 and the modeling device 1 may be configured so that various types of information can be transmitted and received via the communication network 4 and the like.
- control device 17 may be able to transmit information such as commands and control parameters to the modeling device 1 via the communication network 4 or the like.
- the communication device 18 included in the modeling device 1 may function as a receiving device that receives information such as commands and control parameters from the control device 17 via the communication network 4 and the like.
- the communication device 18 included in the modeling device 1 may function as a transmission device that transmits information such as commands and control parameters to the control device 17 via the communication network 4 and the like.
- the first control device that performs a part of the processing performed by the control device 17 is provided inside the modeling device 1, the second control device that performs the other part of the processing performed by the control device 17 is performed.
- the control device may be provided outside the modeling device 1.
- a part of the processing performed by the control device 17 may be performed by the data generation server 2.
- the recording medium for recording the computer program executed by the control device 17 includes CD-ROM, CD-R, CD-RW, flexible disk, MO, DVD-ROM, DVD-RAM, DVD-R, DVD + R, and DVD. -Used by at least one of optical disks such as RW, DVD + RW and Blu-ray (registered trademark), magnetic media such as magnetic tape, magneto-optical disk, semiconductor memory such as USB memory, and any other medium capable of storing a program. May be done.
- the recording medium may include a device capable of recording a computer program (for example, a general-purpose device or a dedicated device in which the computer program is implemented in at least one form such as software and firmware).
- each process or function included in the computer program may be realized by a logical processing block realized in the control device 17 by the control device 17 (that is, the computer) executing the computer program. It may be realized by hardware such as a predetermined gate array (FPGA, ASIC) included in the control device 17, or a mixture of a logical processing block and a partial hardware module that realizes a part of the hardware. It may be realized in the form of.
- FPGA predetermined gate array
- the communication device 18 can communicate with the data generation server 2 via the communication network 4.
- the communication device 18 can receive the three-dimensional model data generated by the data generation server 2 from the data generation server 2.
- FIG. 4 is a block diagram showing the configuration of the data generation server 2.
- the data generation server 2 includes an arithmetic unit 21, a storage device 22, and a communication device 23. Further, the data generation server 2 may include an input device 24 and an output device 25. However, the data generation server 2 does not have to include at least one of the input device 24 and the output device 25.
- the arithmetic unit 21, the storage device 22, the communication device 23, the input device 24, and the output device 25 may be connected via the data bus 26.
- the arithmetic unit 21 includes, for example, at least one of a CPU and a GPU.
- the arithmetic unit 21 reads a computer program.
- the arithmetic unit 21 may read the computer program stored in the storage device 22.
- the arithmetic unit 21 may read a computer program stored in a recording medium that is readable by a computer and is not temporary by using a recording medium reading device (not shown).
- the arithmetic unit 21 may acquire a computer program from a device (not shown) arranged outside the data generation server 2 via the communication device 23 (that is, it may be downloaded or read).
- the arithmetic unit 21 executes the read computer program.
- a logical functional block for executing an operation to be performed by the data generation server 2 (for example, an operation for generating three-dimensional model data) is realized in the arithmetic unit 21. That is, the arithmetic unit 21 can function as a controller for realizing a logical functional block for executing an operation to be performed by the data generation server 2.
- FIG. 4 shows an example of a logical functional block realized in the arithmetic unit 21 for generating 3D model data.
- a display control unit 211 generates GUI information for displaying the setting GUI 9.
- the information acquisition unit 212 acquires the shape information set by the terminal user from the terminal device 3 using the setting GUI 9 via the communication device 33.
- the data generation unit 213 generates 3D model data representing a 3D model of a 3D structure having a shape defined by the shape information set by the terminal user, based on the shape information acquired by the information acquisition unit 212. ..
- the communication device 23 can communicate with the modeling device 1 via the communication network 4.
- the communication device 23 can transmit the three-dimensional model data generated by the data generation unit 213 to the modeling device 1.
- the communication device 23 can communicate with the terminal device 3 via the communication network 5.
- the communication device 23 transmits the GUI information related to the setting GUI 9 generated by the display control unit 211 to the terminal device 3, and receives the shape information set by the terminal user using the setting GUI 9 from the terminal device 3. It is possible.
- the input device 24 is a device that receives information input to the data generation server 2 from the outside of the data generation server 2.
- the input device 24 may include an operating device that can be operated by the server user (for example, at least one of a keyboard, a mouse, and a touch panel).
- the input device 24 may include a reading device that can read information recorded as data on a recording medium that can be externally attached to the data generation server 2.
- the output device 25 is a device that outputs information to the outside of the data generation server 2.
- the output device 25 may output the information as an image.
- the output device 25 may include a display device (so-called display) capable of displaying an image indicating the information to be output.
- the output device 25 may output the information as voice.
- the output device 25 may include a sound device (so-called speaker) capable of outputting sound.
- the output device 25 may output information on paper. That is, the output device 25 may include a printing device (so-called printer) capable of printing desired information on the paper surface.
- FIG. 5 is a block diagram showing the configuration of the terminal device 3.
- the terminal device 3 includes an arithmetic unit 31, a storage device 32, a communication device 33, an input device 34, and a display device 35.
- the arithmetic unit 31, the storage device 32, the communication device 33, the input device 34, and the display device 35 may be connected via the data bus 36.
- the terminal device 3 does not have to include the storage device 32.
- the storage device 22 included in the data generation server 2 may be used as the storage device 32 of the terminal device 3.
- the arithmetic unit 31 includes, for example, at least one of a CPU and a GPU.
- the arithmetic unit 31 reads a computer program.
- the arithmetic unit 31 may read the computer program stored in the storage device 32.
- the arithmetic unit 31 may read a computer program stored in a recording medium that is readable by a computer and is not temporary by using a recording medium reading device (not shown).
- the arithmetic unit 31 may acquire a computer program from a device (not shown) arranged outside the terminal device 3 via the communication device 33 (that is, it may be downloaded or read).
- the arithmetic unit 31 executes the read computer program.
- a logical functional block for executing the operation to be performed by the terminal device 3 is realized in the arithmetic unit 31. That is, the arithmetic unit 31 can function as a controller for realizing a logical functional block for executing an operation to be performed by the terminal device 3.
- FIG. 5 shows an example of a logical functional block realized in the arithmetic unit 31.
- a display control unit 311 and an information acquisition unit 312 are realized in the arithmetic unit 31.
- the display control unit 311 controls the display device 35 to display the setting GUI 9 based on the GUI information transmitted from the data generation server 2.
- the information acquisition unit 312 acquires the shape information set by the terminal user using the setting GUI 9.
- the storage device 32 can store desired data.
- the storage device 32 may temporarily store the computer program executed by the arithmetic unit 31.
- the storage device 32 may temporarily store data temporarily used by the arithmetic unit 31 while the arithmetic unit 31 is executing a computer program.
- the storage device 32 may store data stored in the terminal device 3 for a long period of time.
- the storage device 32 may include at least one of a RAM, a ROM, a hard disk device, a magneto-optical disk device, an SSD, and a disk array device. That is, the storage device 32 may include a recording medium that is not temporary.
- the communication device 33 can communicate with the data generation server 2 via the communication network 5.
- the communication device 33 receives (that is, acquires) the GUI information related to the setting GUI 9 from the data generation server 2, and the shape information set by the terminal user using the setting GUI 9 (that is, the information acquisition unit 312). (Shape information acquired by) can be transmitted to the data generation server 2.
- the input device 34 is a device that receives input of information to the terminal device 3 from the outside of the terminal device 3.
- the input device 34 may include an operation device (for example, at least one of a keyboard, a mouse, and a touch panel) that can be operated by the terminal user.
- the input device 34 may include a reading device capable of reading information recorded as data on a recording medium that can be externally attached to the terminal device 3.
- the display device 35 is a device capable of outputting information as an image. That is, the display device 35 is a device capable of displaying an image showing information to be output. In the present embodiment, the display device 35 displays the setting GUI 9.
- the terminal user sets the shape information using the setting GUI 9 displayed by the display device 35. That is, the terminal user sets the shape information by performing an operation for setting the shape information using the input device 34 via the setting GUI 9 displayed by the display device 35.
- the display device 35 When the display device 35 can function as an input device (for example, the display device 35 includes a touch panel), the display device 35 may be referred to as an input device. In this case, the terminal device 3 does not have to include the input device 34.
- the terminal user may operate the display device 35 as the input device 34.
- the terminal user may operate the input device 34 while operating the display device 35. That is, the terminal user may use both the information input function using the display device 35 and the information input function using the input device 34.
- FIG. 6 is a flowchart showing the flow of processing performed by the modeling system SYS.
- the data generation server 2 performs an authentication operation for authenticating the terminal device 3 (step S11).
- the data generation server 2 may perform an authentication operation using a desired authentication method.
- the data generation server 2 may perform an authentication operation using an authentication method based on ID information and password information.
- the terminal user may use the input device 34 of the terminal device 3 to input the ID information for identifying the terminal user and the password unique to the terminal user.
- the communication device 33 of the terminal device 3 may transmit the ID information and the password input by the terminal user to the data generation server 2 via the communication network 5.
- the data generation server 2 may perform an authentication operation for authenticating the terminal device 3 by using the ID information and the password transmitted from the terminal device 3. Alternatively, for example, the data generation server 2 may perform an authentication operation using another authentication method different from the authentication method based on the ID information and the password information. As an example of other authentication methods, at least one of an authentication method using a token and an authentication method using biometric information of a terminal user can be mentioned.
- the display control unit 211 of the data generation server 2 is set.
- the GUI information (display information) for displaying the GUI 9 on the display device 35 of the terminal device 3 is generated (step S12). That is, the display control unit 211 provides the terminal user with the setting GUI 9 (display content related to the setting GUI 9). After that, the display control unit 211 transmits the generated GUI information to the terminal device 3 using the communication device 23.
- the display device 35 of the terminal device 3 displays the setting GUI 9 based on the GUI information transmitted from the data generation server 2 (step S12).
- the display control unit 211 may generate GUI information including information (for example, pixel information) related to the display screen constituting the setting GUI 9.
- the arithmetic unit 31 of the terminal device 3 may control the display device 35 so as to display the setting GUI 9 configured by the display screen indicated by the GUI information.
- the display control unit 211 may generate GUI information including information for controlling the display device 35 of the terminal device 3 so as to display the setting GUI 9.
- the display device 35 of the terminal device 3 may display the setting GUI 9 indicated by the GUI information under the control of the data generation server 2 regardless of the control by the arithmetic unit 31.
- the display control unit 211 may control the display device 35 so as to display the setting GUI 9.
- the setting GUI 9 may include an input screen 91 and an output screen 92. That is, the setting GUI 9 may constitute a display screen including the input screen 91 and the output screen 92.
- the input screen 91 is a screen (in other words, an input unit) including a GUI that can be operated by the terminal user to set (specify, the same applies hereinafter) shape information regarding the shape of the three-dimensional structure.
- the terminal user may operate the input screen 91 by using the input device 34. That is, the terminal user may perform an operation for setting the shape information on the input screen 91 by using the input device 34.
- the information acquisition unit 312 of the terminal device 3 acquires the shape information set by the terminal user using the setting GUI 9 (step S13 in FIG. 6).
- the information acquisition unit 312 uses the communication device 33 of the terminal device 3 to transmit the shape information set by the terminal user to the data generation server 2 via the communication network 5.
- the communication device 23 of the data generation server 2 receives (that is, acquires) the shape information transmitted from the terminal device 3 (step S13 in FIG. 6).
- the terminal user may set (designate, the same applies hereinafter) the value of the parameter that defines the shape of the three-dimensional structure using the input screen 91.
- the input screen 91 may include a parameter setting GUI 911 that can be operated by the terminal user to set the parameter value.
- the information acquisition unit 312 may acquire parameter information regarding the parameters set by using the parameter setting GUI 911 as at least a part of the shape information.
- the parameters may include numerical parameters that quantitatively define the shape of the three-dimensional structure.
- the shape of the three-dimensional structure may be set to the second shape corresponding to the flag value of 2.
- the parameter setting GUI911 sets a flag parameter from a label displaying the flag parameter setting item name and a text box (or a plurality of candidate values) in which the flag parameter setting value (flag value) can be specified. It may include combo boxes, drop-down lists, radio buttons, etc. with specifiable values).
- the parameters may include parameters that define the position of at least a part of the three-dimensional structure.
- the parameters may include parameters that define the size of at least a portion of the three-dimensional structure.
- the parameters may include parameters that define the shape of at least a part of the three-dimensional structure.
- the parameters may include parameters that define the direction of at least a part of the three-dimensional structure.
- the parameter setting GUI 911 may display the setting value of the parameter set by the terminal user (that is, the value of the set parameter). That is, the input screen 91 including the parameter setting GUI 911 may be able to display the value of the set parameter.
- the input screen 91 may be provided with the values of the parameters that have been set.
- Parameter setting The parameter setting value displayed on the GUI 911 may be updated every time the terminal user resets the parameter.
- Parameter setting The parameter setting value displayed on the GUI 911 may be updated periodically or at a random cycle.
- the parameter setting value displayed in the parameter setting GUI 911 is based on the instruction of the terminal user (for example, triggered by the terminal user pressing a button for updating the parameter setting value included in the setting GUI 9). It may be updated.
- the parameter setting values displayed on the parameter setting GUI 911 may be updated under the control of the display control unit 211 of the data generation server 2.
- the display control unit 211 may generate GUI information so as to update the parameter setting values displayed on the parameter setting GUI 911 based on the shape information acquired from the terminal device 3.
- the parameter setting values displayed on the parameter setting GUI 911 may be updated under the control of the display control unit 311 of the terminal device 3.
- the display control unit 311 may update the parameter setting values displayed on the parameter setting GUI 911 based on the shape information acquired by the information acquisition unit 312 of the terminal device 3.
- the terminal user may select an icon that defines the shape of the three-dimensional structure in addition to or instead of setting the parameter value using the input screen 91.
- the icon is associated with a particular shape that can be set as the shape of the 3D structure.
- the input screen 91 may include an icon selection GUI 912 including a plurality (or at least one) icons that can be selected by the terminal user in order to set the shape of the three-dimensional structure to a specific shape. Icon selection Each of the plurality of icons included in the GUI 912 can be selected by the terminal user.
- the terminal user sets the shape information by selecting one icon associated with the shape of the three-dimensional structure that the terminal user wants to model from among the plurality of icons included in the icon selection GUI 912. You may.
- the information acquisition unit 312 may acquire icon information regarding the icon selected by using the icon selection GUI 912 (that is, information regarding the shape associated with the selected icon) as at least a part of the shape information.
- the icon selected by the terminal user may be displayed in the icon setting GUI 912 in a display mode different from the icon not selected by the terminal user.
- FIG. 7 shows an example in which the icon selected by the terminal user is superimposed on the hatched area, while the icon not selected by the terminal user is not superimposed on the hatched area.
- the state in which the display mode of the icon selected by the terminal user and the display mode of the icon not selected by the terminal user are different is not limited to the state shown in FIG. 7.
- an icon selected by the terminal user may be grayed out, while an icon not selected by the terminal user may not be grayed out.
- the terminal user can recognize the icon selected by the terminal user himself (that is, the shape of the three-dimensional structure set by the terminal user himself).
- the terminal user draws the shape of the three-dimensional structure on the setting GUI 9 (for example, on the input screen 91).
- Information may be set.
- the setting GUI 9 may include a drawing GUI that allows the terminal user to draw the shape of the three-dimensional structure.
- the input screen 91 may include a feature setting GUI 913 that can be operated by the terminal user in order to set feature information regarding an arbitrary feature of the three-dimensional structure different from the shape of the three-dimensional structure.
- the feature setting GUI 913 may include a GUI that can be operated by the terminal user to set the surface roughness of the three-dimensional structure.
- the feature setting GUI 913 may include a GUI that can be operated by the terminal user to set the type of material for modeling the three-dimensional structure.
- the feature setting GUI 913 may include a GUI that can be operated by the terminal user to set the mixing ratio of the plurality of types of materials. ..
- the feature information set by using the feature setting GUI 913 may be transmitted from the terminal device 3 to the data generation server 2 in the same manner as the shape information.
- the data generation server 2 uses the feature information transmitted from the terminal device 3 to generate modeling control information for controlling the modeling device 1 so that a three-dimensional model having the features defined by the feature information is modeled. You may. That is, the modeling apparatus 1 may model a three-dimensional modeled object having the features defined by the feature information based on the feature information set by using the feature setting GUI 913.
- the shape information set using the parameter setting GUI 911 may be set using the icon selection GUI 912.
- the shape information set using the icon selection GUI 912 may be set using the parameter setting GUI 911.
- the method for setting the shape information is not limited. The same applies to feature information.
- the output screen 92 is a screen (in other words, an output unit) capable of displaying a three-dimensional model (that is, model information) based on the shape information set by the terminal user using the input screen 91.
- the output screen 92 has a shape defined by a three-dimensional model (that is, the value of the parameter set by the terminal user) based on the value of the parameter set by the terminal user using the parameter setting GUI911 included in the input screen 91. It may be possible to display a three-dimensional model of a dimensional structure).
- the GUI information generated by the display control unit 211 is transmitted to the terminal device 3 using the communication device 23.
- the display device 35 of the terminal device 3 displays the setting GUI 9 based on the GUI information transmitted from the data generation server 2. That is, the display device 35 uses the output screen 92 to display a three-dimensional model based on the shape information set by the terminal user. That is, the display device 35 displays the three-dimensional model based on the shape information set by the terminal user on the output screen 92.
- the terminal user can relatively easily recognize the shape of the three-dimensional model based on the shape information set by the terminal user himself / herself.
- the 3D model displayed on the output screen 92 may be a 3D model of any format.
- the output screen 92 may display a three-dimensional model (see FIG. 7) corresponding to a solid model or a surface model.
- the output screen 92 may display a three-dimensional model (see FIG. 9 described later) corresponding to the wire frame model.
- the display control unit 211 includes GUI information regarding the setting GUI 9 including an output screen 92 in which a three-dimensional model based on the newly acquired shape information is displayed each time the information acquisition unit 212 newly acquires shape information from the terminal device 3. May be generated.
- the display control unit 211 displays a three-dimensional model based on the shape information newly set by the terminal user each time the terminal user newly sets (for example, changes or updates) the shape information using the setting GUI 9.
- GUI information about the setting GUI 9 including the screen 92 may be generated.
- the display control unit 211 may update the three-dimensional model displayed on the output screen 92 each time the terminal user newly sets (for example, changes or updates) the shape information using the setting GUI 9.
- the three-dimensional model in which the shape information set using the input screen 91 is reflected in real time is displayed on the output screen 92.
- the terminal user can relatively easily recognize the shape of the three-dimensional model based on the latest shape information set by the terminal user himself / herself.
- the display control unit 211 periodically or randomly performs GUI information regarding the setting GUI 9 including the output screen 92 in which the three-dimensional model reflecting the shape information set by using the input screen 91 is displayed. May be generated.
- the output screen 92 updates the three-dimensional model displayed on the output screen 92 periodically or at a random cycle.
- the display control unit 211 triggers the terminal user to press a button for updating the three-dimensional model displayed on the output screen 92 included in the setting GUI 9 based on the instruction of the terminal user (for example, the terminal user presses the button.
- GUI information regarding the setting GUI 9 including the output screen 92 in which the three-dimensional model reflecting the shape information set by using the input screen 91 may be generated may be generated.
- the output screen 92 updates the three-dimensional model displayed on the output screen 92 at the timing desired by the terminal user.
- the display control unit 211 includes an input screen 91 according to the type of the three-dimensional structure so that the terminal user can set appropriate shape information according to the type of the three-dimensional structure additionally modeled by the modeling device 1.
- the setting GUI 9 may be generated. That is, the display control unit 211 may control the display device 35 so as to display the setting GUI 9 including the input screen 91 according to the type of the three-dimensional structure.
- the modeling apparatus 1 has a pipe corresponding to a member having a hollow structure (the pipe may be referred to as a tube) and a size in the direction orthogonal to the thickness direction as compared with a size in the thickness direction.
- FIG. 8 shows an example of an input screen 91 (hereinafter referred to as “input screen 91pi”) for setting shape information regarding the shape of the pipe.
- the input screen 91pi may include a parameter setting GUI911pi (hereinafter referred to as “parameter setting GUI911pi # 1”) for setting the value of a parameter that defines the position of at least a part of the pipe.
- the parameters that define the shape of the pipe may include parameters that define the position of at least a portion of the pipe.
- the positions of a plurality of points P through which the pipe passes are used. .. Specifically, as shown in FIG.
- the input screen 91pi is as shown in FIG. ,
- the parameter setting GUI911pi # 1 capable of setting the values of the parameters defining the positions of the start point Po, the intermediate points P1 and P2, and the end point Pe may be included.
- the number of points P is not limited to the four shown in FIG. That is, the terminal user may set the positions of a desired number of points P.
- the terminal user may add a new point P at a desired position or delete an existing point P by using the input screen 91pi. For example, in the example shown in FIG.
- the terminal user in addition to the start point Po, the intermediate points P1 and P2, and the end point Pe, another point P (for example, a point P located between the start point Po and the intermediate point P1). May be added and the position of the added other point P may be set.
- another point P for example, a point P located between the start point Po and the intermediate point P1.
- the terminal user does not have to set the position of at least one of the start point Po, the intermediate points P1 and P2, and the end point Pe.
- Information about the point P for which the terminal user does not set the position may not be displayed on the input screen 91.
- the terminal user can relatively easily recognize how the shape of the three-dimensional model changes by setting the positions of the plurality of points P and the like.
- the input screen 91pi is a parameter for setting the value of a parameter that defines the direction of at least a part of the pipe (that is, the direction in which at least a part of the pipe extends (prolongs)).
- the setting GUI911pi (hereinafter referred to as "parameter setting GUI911pi # 2") may be included. That is, the parameters that define the shape of the pipe may include parameters that define the direction of at least a portion of the pipe.
- the direction in which the pipe extends at the positions of the plurality of points P through which the pipe passes (for example, starting from the point P and the center line C of the pipe at the point P).
- Direction to extend) is used.
- the input screen 91pi is in the direction in which the pipe extends at the starting point Po, in the middle.
- the input screen 91pi shows the strength of the curvature of the pipe at the starting point Po.
- the parameter setting GUI911pi # 3 that can set the value of the parameter that defines the strength of the curvature of the pipe at the midpoint P1, the strength of the curvature of the pipe at the midpoint P2, and the strength of the curvature of the pipe at the end point Pe. You may.
- each of the parameter that defines the position of at least a part of the pipe, the parameter that defines the direction of at least a part of the pipe, and the parameter that defines the strength of the curvature of at least a part of the pipe is a trajectory that defines the extension trajectory of the pipe. It may be referred to as a parameter.
- the input screen 91pi is the size of the pipe at the starting point Po and the intermediate point. It may include the parameter setting GUI911pi # 4 which can set the value of the parameter which defines the size of the pipe at P1, the size of the pipe at the intermediate point P2, and the size of the pipe at the end point Pe.
- the parameter setting GUI 911pi # 4 may be a GUI for setting the value of the parameter that defines the size of the cross section of at least a part of the pipe.
- the parameter setting GUI911pi # 4 determines the size of the cross section of the pipe at the start point Po, the size of the cross section of the pipe at the midpoint P1, the size of the cross section of the pipe at the midpoint P2, and the size of the pipe at the end point Pe. It may be a GUI that can set the value of the parameter that defines the size of the cross section.
- the cross section of at least a part of the pipe may mean a cross section that intersects (typically, is orthogonal to) the direction in which the pipe extends.
- the size of the cross section of at least a part of the pipe may include the size of the cross section in the first direction along the cross section (in other words, the first direction intersecting the center line C of the pipe).
- the parameter setting GUI911pi # 4 is the size in the first direction (vertical direction in the example shown in FIG. 8) of the cross section of the pipe at the start point Po, and the first of the cross sections of the pipe at the intermediate point P1.
- Includes parameter setting GUI911pi # 41 that can set parameter values that define the size in one direction, the size in one direction of the cross section of the pipe at the midpoint P2 and the size in one direction of the cross section of the pipe at the end point Pe. You may.
- the size of the cross section of at least a portion of the pipe may include the size of the cross section in the second direction that is along the cross section and intersects (typically orthogonal) in the first direction.
- the parameter setting GUI911pi # 4 has a size in the second direction (horizontal direction in the example shown in FIG. 8) of the cross section of the pipe at the start point Po, and a second cross section of the pipe at the intermediate point P1.
- Parameter setting GUI911pi # 42 that can set the value of the parameter that defines the size in two directions, the size in the second direction of the cross section of the pipe at the midpoint P2, and the size in the second direction of the cross section of the pipe at the end point Pe. It may be included.
- the size of the cross section of at least a part of the pipe may include the thickness of the partition wall (in other words, the pipe wall) of the pipe along the cross section.
- the parameter setting GUI911pi # 4 has the thickness of the partition wall of the pipe at the start point Po, the thickness of the partition wall of the pipe at the intermediate point P1, the thickness of the partition wall of the pipe at the intermediate point P2, and the thickness of the pipe at the end point Pe.
- the parameter setting GUI911pi # 43 that can set the value of the parameter that defines the thickness of the partition wall may be included.
- the thickness of the partition wall of the pipe is the inner surface of the pipe (that is, the side surface of the pipe facing the center line C side and the inner wall) and the outer surface of the pipe (that is, the pipe facing the side opposite to the center line C). It is a side surface of the wall, and may mean a distance (length) from the outer wall).
- the inner diameter of the pipe ie, the inner surface of the pipe
- the diameter of the pipe or the distance (length) between the two inner surfaces facing each other and the outer diameter of the pipe that is, the diameter of the outer surface of the pipe
- the value of the parameter that defines the size of the cross section of at least a part of the pipe in the first direction, the value of the parameter that defines the size of the cross section of at least a part of the pipe in the second direction, and the partition wall of at least a part of the pipe are determined.
- the input screen 91pi provides a parameter setting GUI911pi (hereinafter referred to as “parameter setting GUI911pi # 5”) for setting a parameter value that defines an angle (rotation angle) of at least a part of the pipe. It may be included. That is, the parameters that define the shape of the pipe may include parameters that define the angle of at least a portion of the pipe. In the present embodiment, the rotation angle of the pipe at the positions of the plurality of points P through which the pipe passes is used as a parameter that defines the rotation angle of at least a part of the pipe.
- the rotation angle of the pipe at the position of the point P is the rotation angle of the cross section of the pipe at the point P around the axis along the center line C of the pipe at the position of the point P (specifically, with respect to the reference posture). It may mean the rotation angle).
- the input screen 91pi is the rotation angle of the cross section of the pipe at the starting point Po.
- the parameter setting GUI911pi # 5 that can set the value of the parameter that defines the rotation angle of the cross section of the pipe at the intermediate point P1, the rotation angle of the cross section of the pipe at the intermediate point P2, and the rotation angle of the cross section of the pipe at the end point Pe. You may.
- the parameter setting GUI911pi # 5 may be displayed in a display mode in which the terminal user cannot set (cannot input) the parameter setting value. ..
- the part of the parameter setting GUI911pi # 5 may be grayed out.
- each of the parameter that defines the size of at least a part of the pipe and the parameter that defines the rotation angle of at least a part of the pipe may be referred to as a cross-sectional parameter (section parameter) relating to the cross section of at least a part of the pipe.
- the input screen 91pi includes a parameter setting GUI911pi (hereinafter referred to as “parameter setting GUI911pi # 6”) for setting the value of a parameter that defines the presence or absence of branching of at least a part of the pipe.
- the parameter that defines the shape of the pipe may include a parameter that defines the presence or absence of branching of at least a part of the pipe.
- a parameter that defines the presence or absence of branching of at least a part of the pipe a parameter that defines the presence or absence of branching of the pipe at the positions of a plurality of points P through which the pipe passes is used. Specifically, as shown in FIG.
- the input screen 91pi shows the presence or absence of branching of the pipe at the starting point Po. It may include the parameter setting GUI911pi # 6 which can set the value of the parameter which defines the presence / absence of the branch of the pipe at the intermediate point P1, the presence / absence of the branch of the pipe at the intermediate point P2, and the presence / absence of the branch of the pipe at the end point Pe. That is, on the input screen 91pi, whether or not the pipe branches at the start point Po, whether or not the pipe branches at the intermediate point P1, whether or not the pipe branches at the intermediate point P2, and whether or not the pipe branches at the end point Pe.
- the input screen 91pi is a parameter setting GUI911pi (hereinafter, hereafter) for setting a value of a parameter that defines the presence or absence of merging of at least a part of pipes (that is, merging of a plurality of branching pipelines).
- GUI911pi # 7 "Parameter setting GUI911pi # 7"
- the parameter defining the shape of the pipe may include a parameter defining the presence or absence of merging of at least a part of the pipe.
- a parameter that defines the presence or absence of merging of at least a part of the pipe a parameter that defines the presence or absence of merging of the pipes at the positions of a plurality of points P through which the pipe passes is used.
- the input screen 91pi shows the presence or absence of the merging of the pipes at the starting point Po. It may include a parameter setting GUI911pi # 7 capable of setting a value of a parameter that defines the presence / absence of merging of pipes at the intermediate point P1, the presence / absence of merging of pipes at the intermediate point P2, and the presence / absence of merging of pipes at the end point Pe.
- the input screen 91pi may include a parameter setting GUI911pi # 7 capable of setting parameters that specify whether or not the pipelines merge at the intermediate point P2 and whether or not a plurality of branched pipelines merge at the end point Pe.
- GUI911pi # 7 when the setting value of the parameter that defines the presence or absence of merging is set to a value indicating that there is merging of pipes, the cross-section parameter, locus parameter, and end parameter related to the merging pipe are set.
- An input screen used by the terminal user to set at least one may be displayed. At this time, even if the input screen for setting the end parameter displays one of the screen for setting the end parameter for the start end and the screen for setting the end parameter for the end portion. good.
- the input screen 91pi provides a parameter setting GUI911pi (hereinafter referred to as “parameter setting GUI911pi # 8”) for setting the value of the parameter defining the multiplex structure of the pipeline of at least a part of the pipe.
- the parameters that define the shape of the pipe may include parameters that define the multiplex structure of at least a portion of the pipe.
- a parameter that defines the multiple structure of at least a part of the pipe a parameter that defines the multiple structure of the pipe at the positions of the plurality of points P through which the pipe passes is used. Specifically, as shown in FIG.
- the input screen 91pi is between the starting point Po and the intermediate point P1.
- Parameter setting that can set the value of the parameter that defines the multiple structure of the pipe between the intermediate point P1 and the intermediate point P2, and the multiple structure of the pipe between the intermediate point P2 and the end point Pe.
- GUI911pi # 8 may be included. That is, the input screen 91pi is a parameter value that defines whether the pipe is a multiple pipe (for example, a double pipe) or a single pipe between the start point Po and the intermediate point P1, the intermediate point P1 and the intermediate point.
- the value of the parameter that defines whether the pipe is a multiple pipe or a single pipe between P2, and whether the pipe is a multiple pipe or a single pipe between the intermediate point P2 and the end point Pe may include the parameter setting GUI911pi # 7 which can set the value of the parameter which defines.
- the presence / absence of branching of at least a part of the pipe, the presence / absence of merging, and the multiple structure are all related to the structure of the pipe. Therefore, each of the parameters that specify the presence or absence of branching of at least a part of the pipe, the presence or absence of merging of at least a part of the pipe, and the parameters that specify the multiple structure of at least a part of the pipe relate to the structure of at least a part of the pipe. It may be referred to as a structural parameter.
- the input screen 91pi has a shape of a cross section of at least a part of the pipe (that is, the shape of an opening and the shape of the pipe in a plane intersecting in the extending direction of the pipe) of a specific kind. It may include an icon selection GUI 912pi (hereinafter referred to as "icon selection GUI 912pi # 1") including a plurality of icons that can be selected in order to set to.
- FIG. 8 shows an icon 9121 # 11 that can be selected by the icon selection GUI 912pi # 1 to set the shape of the cross section of at least a part of the pipe to a rectangular shape, and an elliptical shape of the cross section of at least a part of the pipe.
- an icon 9121 # 12 that can be selected to set the shape to a circular shape
- an icon 9121 # 13 that can be selected to set the shape of the cross section of at least a part of the pipe to a triangular shape, and a cross section of at least a part of the pipe.
- the icon selection GUI 912pi # 1 includes a plurality of icons relating to a plurality of cross sections of a pipe (that is, a plurality of icons relating to the shape of a plurality of different cross sections).
- the terminal user can set the shape of the cross section of at least a part of the pipe to a specific type of shape corresponding to the selected icon. .. That is, the terminal user can use the icon selection GUI 912pi # 1 to select an icon for a plurality of cross sections of a pipe (that is, select a desired icon from a plurality of icons for the shapes of a plurality of different cross sections).
- each of the parameters that define the size of at least a portion of the pipe, the parameters that define the rotation angle of at least a portion of the pipe, and the type of shape of the cross section of at least a portion of the pipe are cross-section parameters for the cross-section of at least a portion of the pipe. It may be referred to as a section parameter).
- the terminal user may set the shape information using at least one of the parameter setting GUI 911 and the icon selection GUI 912 so that the shapes of the cross sections of the pipes at the plurality of points P through which the pipe passes are all the same type. ..
- the "type of shape” referred to here may mean, for example, the type of cross-sectional shape that can be selected by using the icon selection GUI 912pi # 1. Therefore, in the state where the shapes of the cross sections of the pipes at the plurality of points P are all the same type, the shapes of the cross sections of the pipes at the plurality of points P become one type of shape associated with one icon. It may mean the set state.
- the terminal user may use at least one of the parameter setting GUI 911 and the icon selection GUI 912 so that the shape of the cross section of the pipe at at least two of the plurality of points P through which the pipe passes has a different kind of shape.
- Information may be set.
- the shape of the cross section of the pipe at the first point P is the first type associated with the first icon. While set to a shape, it may mean that the shape of the cross section of the pipe at the second point P is set to a second type of shape associated with the second icon. ..
- the terminal user can see the shape of the cross section of the pipe at the first point P (for example, any one of the start point Po, the intermediate point P1, the intermediate point P2, and the end point Pe) among the plurality of points P through which the pipe passes.
- any one of the second point P for example, the start point Po, the intermediate point P1, the intermediate point P2, and the end point Pe
- the shape of the cross section of the pipe in the other one may be set to a second shape (for example, a circular shape) different from the first shape.
- the output screen 92 also displays a three-dimensional model of the pipe whose cross-sectional shape changes from the first shape to the second shape between the first point P and the second point P. May be good. For example, after the shape information is set so that the shape of the cross section of the pipe at the first point P becomes the first shape, the shape of the cross section of the pipe at the second point P becomes the second shape. When the information is set, the model portion between the first point P and the second point P in the three-dimensional model displayed on the output screen 92 may be updated.
- the shape of the cross section of the pipe at the second point P is the second shape after the parameter values are set so that the shape of the cross section of the pipe at the first is the first shape.
- the parameter value is set so as to be
- the first of the three-dimensional models displayed on the output screen 92 is set according to the parameter value setting that defines the shape of the pipe at the second point P.
- the model portion (particularly, the shape of the model portion) between the point P and the second point P may be updated. For example, after the icon is selected so that the shape of the cross section of the pipe in the first shape becomes the first shape, the icon is selected and set so that the shape of the cross section of the pipe at the second point P becomes the second shape.
- the first point P and the second point P of the three-dimensional model displayed on the output screen 92 are selected according to the selection of the icon for setting the shape of the pipe at the second point P.
- the model portion between and (particularly, the shape of the model portion) may be updated.
- the shape of the cross section of the pipe at at least two of the plurality of points P is not limited to a different type of shape, so that the shape of the cross section of the pipe at the first point P is the first shape.
- the shape information is set so that the shape of the cross section of the pipe at the second point P becomes the second shape after the shape information is set, among the three-dimensional models displayed on the output screen 92.
- the model portion between the first point P and the second point P may be updated.
- the icon selection GUI 912pi # 1 has an icon that can be selected in order to collectively set the shape of both the inner and outer cross sections of at least a part of the pipe into a specific type of shape. Contains multiple. However, the icon selection GUI 912pi # 1 identifies a plurality of icons that can be selected to set the shape of the cross section of the inner surface of at least a part of the pipe to a specific shape, and the shape of the cross section of the outer surface of at least a part of the pipe. It may contain multiple icons that can be selected to set the shape of.
- the terminal user may separately set the shape of the cross section of the inner surface of at least a part of the pipe and the shape of the cross section of the outer surface of at least a part of the pipe.
- the terminal user may select the icon so that the shape of the cross section of the inner surface of at least a portion of the pipe is different from the shape of the cross section of the outer surface of at least a portion of the pipe.
- the input screen 91pi includes an icon selection GUI 912pi (hereinafter, “icon selection GUI 912pi # 2”) including a plurality of icons that can be selected to set the shape of the end portion of the pipe to a specific type of shape. ) May be included.
- the shape of the end of the pipe may be referred to as an end parameter with respect to the end of the pipe.
- the end of the pipe may include, for example, at least one of the beginning of the pipe and the end of the pipe.
- the start end portion of the pipe may include a part of the pipe located between the start point Po and a position separated from the start point Po by a predetermined distance along the direction in which the pipe extends.
- the end of the pipe may include a portion of the pipe located between the end point Pe and a position a predetermined distance from the end point Pe along the direction in which the pipe extends.
- the icon selection GUI912pi # 2 gradually decreases the shape of the end of the pipe as the inner diameter of the pipe between the end and a position separated from the end by a predetermined distance becomes closer to the end.
- the icon 9121 # 21 which can be selected to set the first shape whose end is the closed end, and the shape of the end of the pipe, between the end and a position separated from the end by a predetermined distance.
- the inner diameter of the pipe in the pipe gradually decreases as it approaches the end, the inner diameter becomes constant in the vicinity of the end, and the icon 9121 can be selected to set the second shape in which the end is an open end.
- the shape of the end of the pipe is gradually reduced as the inner diameter of the pipe between # 22 and the position separated from the end by a predetermined distance becomes closer to the end, and the end becomes a closed end.
- Icon 9121 # 23 selectable to set to a third shape with threaded protrusions (ie, male threads or corresponding parts) formed at the ends, and predetermined from the ends.
- the inner diameter of the pipe to and from a position at a distance gradually decreases as it approaches the end, the inner diameter becomes constant in the vicinity of the end, the end becomes an open end, and the pipe in the vicinity of the end
- the terminal user can set the shape of the end of the pipe to a specific shape corresponding to the selected icon.
- FIG. 11 shows an example of an input screen 91 (hereinafter referred to as “input screen 91pl”) for setting shape information regarding the shape of the plate.
- the plate has at least one hole (that is, a hole formed in the plate so as to extend along the thickness direction of the plate).
- a tubular portion CM for forming H Surrounded by a tubular portion CM for forming H, a rib-shaped rib portion (extended portion) R extending from the hole H (that is, the tubular portion CM) along the surface of the plate, and a rib portion R.
- the input screen 91pl used when composed of the base portion B formed in the region will be described. More specifically, as shown in FIG.
- FIG. 13 showing the solid model plate shown in FIG. 12 and the simplified wire frame model, the tubular portions CM1 to CM24 in which the plates form holes H1 to H24, respectively.
- the input screen 91pl used when the base portion B1 to B8 is configured will be described.
- the number of holes H, the number of rib portions R, and the number of base portions B are not limited to the examples shown in FIGS. 12 and 13.
- the terminal user may add a new hole H (new tubular portion CM) or delete an existing hole H (existing tubular portion CM) using the input screen 91pl.
- the terminal user may add a new rib portion R or delete an existing rib portion R by using the input screen 91pl.
- the terminal user may add a new base portion B or delete an existing base portion B by using the input screen 91pl.
- each of the three-dimensional model of the plate corresponding to the solid model shown in FIG. 12 and the three-dimensional model of the plate corresponding to the wire frame model shown in FIG. 13 is set. It may be displayed on the output screen 92.
- the input screen 91pl is a parameter for setting the value of the parameter defining the hole H (more specifically, the tubular portion CM forming the hole H) corresponding to at least a part of the plate.
- the setting GUI911pl (hereinafter referred to as "parameter setting GUI911pl # 1") may be included.
- the terminal user can use the parameter setting GUI911pl # 1 to set a plurality of parameters that define a plurality of holes H formed at a plurality of locations on the plate. That is, the terminal user can set the parameter value for a plurality of places on the plate by using the parameter setting GUI911pl # 1.
- the hole H is formed at a certain point on the plate. Therefore, the parameter defining the hole H may be referred to as a point parameter.
- the parameter setting GUI911pl # 1 may include the parameter setting GUI911pl # 11 for setting the value of the parameter that defines the position of the hole H (that is, the position of the tubular portion CM).
- the parameter setting GUI911pl # 1 is a parameter setting that can set the value of the parameter that defines the respective positions of the holes H1 to H24 (that is, the respective positions of the tubular portions CM1 to CM24).
- GUI911pl # 11 may be included.
- Parameter setting GUI911pl # 1 is a parameter that defines the depth of the hole H (that is, the size of the hole H along the thickness direction of the plate, which is equivalent to the height of the tubular portion CM along the thickness direction of the plate).
- Parameter setting GUI911pl # 12 for setting the value may be included.
- the parameter setting GUI911pl # 12 sets the value of the parameter that defines the depth of each of the holes H1 to H24 (that is, the height of each of the tubular portions CM1 to 24) to the hole H. It may include the parameter setting GUI911pl # 12 which can be set as the value of the parameter which defines the shape of the above.
- the parameter setting GUI911pl # 1 may include the parameter setting GUI911pl # 13 for setting the value of the parameter that defines the type of the shape of the inner surface of the hole H (that is, the inner surface of the tubular portion CM).
- the parameter setting GUI911pl # 1 can set the type of each shape of the inner surface of the holes H1 to H24 as the value of the parameter defining the shape of the hole H. May include.
- the terminal user may set the type of the shape of the inner surface of the hole H to either the tap shape or the hole shape by using the parameter setting GUI911pl # 13.
- Parameter setting GUI911pl # 1 is a parameter that defines the diameter of the hole H (that is, the size of the hole H in the direction along the surface of the plate, which is equivalent to the size of the tubular portion CM in the direction along the surface of the plate).
- Parameter setting GUI911pl # 14 for setting the value of may be included.
- the respective diameters of the holes H1 to H24 that is, the respective sizes of the tubular portions CM1 to CM24
- the parameter setting GUI911pl # 14 which can be set as.
- the input screen 91pl provides a parameter setting GUI911pl (hereinafter referred to as “parameter setting GUI911pl # 2”) for setting the value of the parameter defining the rib portion R corresponding to at least a part of the plate. It may be included.
- the terminal user can use the parameter setting GUI911pl # 2 to set the values of a plurality of parameters that define the plurality of rib portions R formed at the plurality of locations on the plate. That is, the terminal user can set the parameter value for a plurality of places on the plate by using the parameter setting GUI911pl # 2.
- the parameter defining the rib portion R may be referred to as a rib parameter.
- the parameter setting GUI911pl # 2 may include the parameter setting GUI911pl # 21 for setting the value of the parameter that defines the position of the rib portion R.
- the parameter setting GUI911pl # 2 may include the parameter setting GUI911pl # 11 that can set the value of the parameter that defines the respective positions of the rib portions R1 to R24.
- the rib portion R extends from one hole H to another hole H (that is, extends from one tubular portion CM to another tubular portion CM). ..
- the parameter defining the hole H located at the start point of the rib portion R and the parameter defining the hole H located at the end point of the rib portion R are used as the parameters defining the position of the rib portion R. May be done. That is, even if the parameter setting GUI911pl # 2 includes the parameter setting GUI911pl # 21 capable of setting the value of the parameter defining the hole H located at the start point and the hole H located at the end point of each of the rib portions R1 to R24. good.
- Parameter setting GUI911pl # 2 is for setting the value of the parameter that defines the width of the rib portion R (that is, the size of the rib portion R along the surface of the plate and intersecting the direction in which the rib portion R extends).
- Parameter setting GUI911pl # 22 of may be included.
- the parameter value that defines the width of each of the rib portions R1 to R24 can be set as the parameter value that defines the shape of the rib portion R.
- GUI911pl # 22 may be included.
- the parameter setting GUI911pl # 2 may include the parameter setting GUI911pl # 23 for setting the value of the parameter that defines the height of the rib portion R (that is, the size of the rib portion R in the thickness direction of the plate).
- the parameter setting GUI911pl # 2 is a parameter in which the value of the parameter defining the height of each of the rib portions R1 to R24 can be set as the value of the parameter defining the shape of the rib portion R.
- the setting GUI911pl # 23 may be included.
- the input screen 91pl contains a plurality of icons that can be selected to set the structure (that is, the shape) of the base portion B corresponding to at least a part of the plate to a specific type of structure. It may contain GUI 912pl.
- the base portion B is formed in the region surrounded by the plurality of rib portions R.
- the base portion B may be regarded as a portion for filling the region surrounded by the plurality of rib portions R. Therefore, the structure of the base portion B may mean a structure for filling the region surrounded by the plurality of rib portions R. For example, in FIG.
- the icon selection GUI912pl fills the structure of the base portion B with a plurality of basic structures BS having a triangular cross-sectional shape along the surface of the plate along the surface of the plate.
- the icon 9121 # 31 which can be selected to set the structure of, and the structure of the base portion B, a plurality of basic structures BS having a quadrangular cross-sectional shape along the surface of the plate are formed along the surface of the plate.
- the plate is composed of an icon 9121 # 32 that can be selected to set the second structure to be filled, and a plurality of basic structures BS having a hexagonal cross-sectional shape along the surface of the plate for the structure of the base portion B.
- the terminal user can set the type of the structure of the base portion B to a specific structure corresponding to the selected icon.
- rib-shaped portions extending along the surface of the plate are each side of the basic structure BS (specifically, each side of the cross section of the basic structure BS along the surface of the plate). It is a structure that constitutes.
- the plate may be composed of a plurality of base portions B (see FIG. 13).
- the terminal user may set the respective structures of the base portions B1 to B8 by using the icon selection GUI 912pl. That is, the terminal user may select icons for a plurality of plates.
- the input screen 91pl is referred to as a parameter setting GUI911pl (hereinafter referred to as “parameter setting GUI911pl # 3”) for setting a parameter value that defines the size of the base portion B corresponding to at least a part of the plate. ) May be included.
- the terminal user can use the parameter setting GUI911pl # 3 to set the values of a plurality of parameters that define the shapes of the plurality of base portions B formed at the plurality of locations on the plate.
- the parameter that defines the size of the base portion B may be referred to as a base parameter.
- the type of structure (shape) of the base portion B set by the icon selection GUI 912pl may also be referred to as a base parameter.
- the parameter setting GUI911pl # 3 may include the parameter setting GUI911pl # 31 for setting the value of the parameter that defines the pitch of the basic structure BS constituting the base portion B.
- the parameter setting GUI911pl # 3 includes the parameter setting GUI911pl # 31 that can set the value of the parameter that defines the pitch of the basic structure BS constituting each of the base portions B1 to B8. You may.
- the pitch of the basic structure BS may be equivalent to the arrangement interval of the basic structure BS. Once the pitch of the basic structure BS is determined, the size of one side of the basic structure BS (for example, the size of one side of a triangle, a quadrangle, or a hexagon) is determined.
- setting the pitch of the basic structure BS may be regarded as equivalent to setting the size of one side of the basic structure BS.
- the distance between the opposite vertices of the basic structure BS may be used as the pitch of the basic structure BS.
- the spacing between the opposite sides of the basic structure BS may be used as the pitch of the basic structure BS.
- the parameter setting GUI911pl # 3 is the width of the basic structure BS constituting the base portion B (that is, the size of the basic structure BS in the direction along the surface of the plate, specifically, along the surface of the plate. Even if the parameter setting GUI911pl # 32 for setting the value of the parameter that defines the size of the rib-shaped portion in the direction in which the rib-shaped portion constituting the basic structure BS intersects in the extending direction is included. good.
- the parameter setting GUI911pl # 3 includes the parameter setting GUI911pl # 32 capable of setting the value of the parameter defining the width of the basic structure BS constituting each of the base portions B1 to B8. You may.
- the parameter setting GUI911pl # 3 is a parameter setting GUI911pl # 3 for setting the value of the parameter that defines the height of the basic structure BS constituting the base portion B (that is, the size of the basic structure BS in the thickness direction of the plate). 33 may be included.
- the parameter setting GUI911pl # 33 includes the parameter setting GUI911pl # 33 that can set the value of the parameter that defines the height of the basic structure BS constituting each of the base portions B1 to B8. You may be.
- step S15 if it is determined that the operation of setting the shape information using the setting GUI 9 has not been completed (step S15: No), the operation of setting the shape information using the setting GUI 9 continues. Will be done. That is, the modeling system SYS continues the operation from step S13 to step S14.
- step S15 when it is determined that the operation of setting the shape information using the setting GUI 9 is completed (step S15: Yes), the data generation unit 213 has the latest shape acquired by the information acquisition unit 212 in step S13. Based on the information, 3D model data representing a 3D model of a 3D structure having a shape defined by the shape information set by the terminal user is generated (step S16).
- the data generation unit 213 may store the generated three-dimensional model data in the storage device 22.
- the data generation unit 213 uses the shape information (that is, shape information such as parameters set by the terminal user) used for generating the 3D model data in addition to or in place of the generated 3D model data. It may be stored in the storage device 22.
- the data generation unit 213 may generate three-dimensional model data based on the shape information stored in the storage device 22.
- the data generation unit 213 may regenerate (that is, restore) the generated three-dimensional model data based on the shape information stored in the storage device 22.
- the data generation unit 213 may store the set shape information in the storage device 22 after it is determined that the operation of setting the shape information using the setting GUI 9 is completed. Further, the data generation unit 213 stores the shape information (shape information in the middle of setting) set up to that point in the storage device 22 before it is determined that the operation of setting the shape information using the setting GUI 9 is completed. You may let me. For example, when the operation of setting the shape information using the setting GUI 9 is not completed in the data generation unit 213, but the terminal user desires to temporarily suspend the operation, the shape set up to that point. Information (shape information in the middle of setting) may be stored in the storage device 22. In this case, when the terminal user resumes the setting of the shape information, the display control unit 211 displays the setting GUI 9 used by the terminal user to continuously set the shape information based on the shape information in the middle of setting. It may be displayed on the device 35.
- the data generation unit 213 uses the communication device 23 to transmit the three-dimensional model data generated in step S16 to the modeling device 1.
- the data generation unit 213 may transmit the three-dimensional model data to the modeling apparatus 1 based on the instruction of the server user (or the terminal user or the modeling user). Alternatively, the data generation unit 213 may automatically transmit the three-dimensional model data to the modeling apparatus 1 without waiting for the instruction of the server user (or the terminal user or the modeling user).
- the control device 17 of the modeling device 1 receives (acquires) the three-dimensional model data transmitted from the data generation server 2 by using the communication device 18. After that, the control device 17 generates modeling control information that defines the operation content of the modeling device 1 based on the three-dimensional model data (step S18).
- the control device 17 is a three-dimensional structure represented by the three-dimensional model data based on the three-dimensional model data (that is, a three-dimensional structure having a shape defined by the shape information set by the terminal user). Generates modeling control information that defines the operation content of the modeling device 1 for modeling. That is, the control device 17 generates modeling control information that operates the modeling device 1 so as to model the three-dimensional structure represented by the three-dimensional model data based on the three-dimensional model data.
- the modeling control information may include path information indicating the relative movement locus of the machining head 121 with respect to the stage 131.
- path information may be regarded as indicating the relative movement trajectories of the irradiation position of the processed light EL and the supply position of the modeling material M with respect to the stage 131.
- control device 17 controls the operation of the modeling device 1 so as to model a three-dimensional structure (that is, a three-dimensional structure having a shape set by the terminal user) based on the modeling control information (step S18). ). As a result, a three-dimensional structure having a shape set by the terminal user is formed.
- a control information generation device different from the control device 17 included in the modeling device 1 may generate modeling control information.
- the data generation unit 213 may transmit the three-dimensional model data generated in step S16 to the control information generation device.
- the control information generation device 17 may receive (acquire) the three-dimensional model data transmitted from the data generation server 2. After that, the control information generation device may generate modeling control information based on the three-dimensional model data. After that, the control information generation device may transmit the generated modeling control information to the modeling device 1 (control device 17). After that, the control device 17 may control the operation of the modeling device 1 based on the modeling control information generated by the control information generating device.
- the terminal user sets the value of the parameter that defines the shape of the three-dimensional structure and / or selects the icon.
- 3D model data can be generated. That is, the terminal user can generate 3D model data model data without using software that requires a high degree of expertise, such as 3D CAD (Computer Aided Design) software. That is, the data generation server 2 can appropriately support the user to generate the three-dimensional model data by providing the setting GUI 9 to the terminal user.
- 3D CAD Computer Aided Design
- the data generation server 2 provides a setting GUI 9 according to the type of the three-dimensional structure so that the terminal user can set appropriate shape information according to the type of the three-dimensional structure additionally shaped by the modeling apparatus 1.
- the terminal user can generate the three-dimensional model data regardless of the type of the three-dimensional structure.
- the terminal user can generate 3D model data representing a 3D model of a 3D structure including at least one of a pipe and a plate.
- the terminal user can intuitively generate the 3D model data. ..
- the terminal user sets the value of the parameter that defines the position of at least a part of the three-dimensional structure by using the input screen 91.
- the data generation unit 213 of the data generation server 2 may set the value of the parameter that defines the position of at least a part of the three-dimensional structure. Specifically, the data generation unit 213 defines the position of the one part even if the terminal user does not set the value of the parameter that defines the position of the one part of the three-dimensional structure. Parameter values may be set automatically.
- the data generation unit 213 automatically sets the value of the parameter that defines the position of the one part. good. In this case, the data generation unit 213 generates three-dimensional model data based on the parameter values set by the terminal user using the setting GUI 9 and the parameter values automatically set by the data generation unit 213.
- the terminal user uses the input screen 91pi to set the value of the parameter that defines the positions of the plurality of points P through which the pipe passes.
- the data generation unit 213 may set the value of the parameter that defines the position of one point P that has not been set by the terminal user.
- the data generation unit 213 automatically sets the value of the parameter that defines the position of one point P even if the terminal user has not set the value of the parameter that defines the position of one point P. May be good. For example, under the situation where the terminal user has already set the value of the parameter that defines the positions of the start point Po and the end point, but has not set the value of the parameter that defines the positions of the intermediate points P1 and P2.
- the data generation unit 213 may automatically set the value of the parameter that defines the position of at least one of the intermediate point P1 and the intermediate point P2. For example, as described above, under the condition that the terminal user has already set the values of the parameters defining the positions of the start point Po, the intermediate point P1, the intermediate point P2, and the end point, the data generation unit 213 may use the start point Po. , The value of the parameter different from the intermediate point P1, the intermediate point P2 and the end point Pe and defining the position of the new point P through which the pipe passes may be automatically set.
- the terminal user uses the input screen 91pl to set the value of the parameter that defines the position of the tubular portion CM constituting the plate (that is, the position of the hole H).
- the data generation unit 213 may set the value of the parameter that defines the position of the one tubular portion CM that is not set by the terminal user.
- the data generation unit 213 automatically sets the value of the parameter that defines the position of the one tubular portion CM even if the terminal user has not set the value of the parameter that defines the position of the one tubular portion CM. It may be set with.
- the data generation unit 213 has the tubular portion.
- the value of the parameter that defines the position of the tubular portion CM of one of CM1 to CM24 may be automatically set.
- the data generation unit 213 may refer to the tubular portions CM1 to CM24. You may automatically set the value of the parameter that defines the position of the new tubular portion CM that is different and forms the hole H formed in the plate.
- the terminal user uses the input screen 91pl to set the value of the parameter that defines the position of the rib member R constituting the plate.
- the data generation unit 213 may set the value of the parameter that defines the position of one rib portion R that has not been set by the terminal user.
- the data generation unit 213 automatically sets the value of the parameter that defines the position of the one rib portion R even when the terminal user has not set the value of the parameter that defines the position of the one rib portion R. You may.
- the data generation unit 213 has the rib portion R of one of the rib portions R1 to R24.
- the value of the parameter that defines the position of may be set automatically. For example, in the situation where the terminal user has already set the values of the parameters defining the respective positions of the rib portions R1 to R24 as described above, the data generation unit 213 is different from the rib portions R1 to R24 and The value of the parameter that defines the position of the new rib portion R constituting the plate may be automatically set.
- the data generation unit 213 does not set a position separated by a predetermined distance (first distance) D from the first portion of the three-dimensional structure having the shape defined by the shape information set by the terminal user. It may be set to the value of the parameter that defines the position of the second part of the three-dimensional structure. Specifically, the data generation unit 213 sets a position separated from the first part of the three-dimensional structure by a predetermined distance D after the terminal user sets the value of the parameter that defines the position of the first part of the object. The value of the parameter that defines the position of the second part of the three-dimensional structure may be automatically set.
- the terminal user uses the input screen 91pi (particularly, the parameter setting GUI911pi # 1) to set a parameter that defines the position of the starting point Po through which the starting end portion of the pipe passes.
- FIG. 14 which is a schematic diagram showing a plurality of points P through which the pipe passes, a part of the pipe of the data generation unit 213 passes through a position separated by a predetermined distance D from the position of the start point Po.
- You may set the value of the parameter which defines the position of the new point P (hereinafter, this point P is referred to as "intermediate point Po'").
- a position separated from the position of the starting point Po by a predetermined distance D may mean a position separated from the position of the starting point Po by a predetermined distance D along the center line C of the pipe.
- the data generation unit 213 newly adds the intermediate point Po'not added by the terminal user, and sets the value of the parameter that defines the position of the newly added intermediate point Po'.
- Setting the value of the parameter that defines the position of the intermediate point Po' is the middle of the pipe between the start end and the end of the pipe (that is, a part of the pipe separated by a predetermined distance D from the start end of the pipe (that is, the end). It may be regarded as equivalent to setting the value of the parameter that defines the position of the part).
- the position of the start point Po in the second axis of the Y-axis direction and the Z-axis direction is the same as the position of the intermediate point Po'in the second axis, and the X-axis direction, the Y-axis direction, and the Z-axis
- the position of the start point Po in the Z-axis direction is different from the position of the intermediate point Po'in the Z-axis direction
- the position of the start point Po in the X-axis direction is the position of the intermediate point Po'in the X-axis direction
- the position of the start point Po in the Y-axis direction is the same as the position of the intermediate point Po'in the Y-axis direction.
- the line portion of the intermediate line C of the pipe connecting the start point Po and the intermediate point Po' is a straight line along the first axis (in the example shown in FIG. 14, a straight line along the Z axis). You may.
- the terminal user uses the input screen 91pi (particularly, the parameter setting GUI911pi # 1) to set the value of the parameter that defines the position of the end point Pe through which the end portion of the pipe passes. ing.
- the data generation unit 213 sets a new point P through which a part of the pipe passes at a position separated by a predetermined distance D from the position of the end point Pe (hereinafter, this point P is referred to as “intermediate”. It may be set to the value of the parameter that defines the position of the point Pe'”).
- a position separated by a predetermined distance D from the position of the end point Pe may mean a position separated by a predetermined distance along the center line C of the pipe from the position of the end point Pe.
- the data generation unit 213 newly adds the intermediate point Pe'not added by the terminal user, and sets the value of the parameter that defines the position of the newly added intermediate point Pe'.
- setting a parameter that defines the position of the intermediate point Pe' is a part of the pipe separated from the end portion of the pipe by a predetermined distance D (that is, the intermediate portion of the pipe between the start end portion and the end portion). It may be considered equivalent to setting a parameter that defines the position of.
- the condition that the positions in the above are the same may be satisfied. That is, in the data generation unit 213, the position of the end point Pe on the fourth axis in the X-axis direction, the Y-axis direction, and the Z-axis direction is different from the position of the intermediate point Pe'in the fourth axis, and is in the X-axis direction.
- the position of the end point Pe in the fifth axis of the Y-axis direction and the Z-axis direction is the same as the position of the intermediate point Pe'in the fifth axis, and the X-axis direction, the Y-axis direction, and the Z-axis
- the value of the parameter that defines the position of the midpoint Pe'so that the position of the end point Pe on the sixth axis of the direction is the same as the position of the midpoint Pe'on the sixth axis. It may be set. In the example shown in FIG.
- At least the values of other parameters related to the midpoint Pe' may be the same as the value of other parameters related to the end point Pe.
- the position of the end point Pe on the fifth axis may be different from the position of the intermediate point Pe'on the fifth axis, or the position of the end point Pe on the sixth axis.
- the shape of the end of the pipe is set to a specific type of shape using the icon selection GUI 912pi.
- the predetermined distance D used by the data generation unit 213 to set the value of the parameter that defines the respective positions of the intermediate points Po'and Pe' depends on the shape (that is, the structure) of the end portion of the pipe. It may be defined.
- FIG. 15 which is a cross-sectional view showing the start end portion of the pipe, the shape of the end portion of the pipe has a shape in which the inner diameter of the pipe gradually decreases as the inner diameter approaches the end portion.
- the data generation unit 213 has a parameter value that defines the position of the intermediate point Po'set by the data generation unit 213, a parameter value that defines the position of the start point Po set by the terminal user, and an icon selection GUI 912pi. You may set the value of the parameter that defines the shape of the pipe between the start point Po and the midpoint Po'based on the icon selected using (ie, the type of shape of the start end of the pipe). ..
- the data generation unit 213 describes the start point Po and the intermediate point Po so that the shape of the pipe between the start point Po and the intermediate point Po'is a specific type of shape associated with the selected icon.
- the value of the parameter that defines the shape of the pipe to and from Po' may be automatically set. That is, the data generation unit 213 arranges that the shape of the pipe between the start end of the pipe and the middle portion of the pipe corresponding to the midpoint Po'becomes a specific type of shape associated with the selected icon.
- the value of the parameter that defines the shape of the portion between the starting end portion of the pipe and the intermediate portion corresponding to the intermediate point Po' may be automatically set.
- the data generation unit 213 sets the value of the parameter that defines the shape of the pipe between the start point Po and the intermediate point Po', as in the case of setting the value of the parameter that defines the shape of the pipe, the end point Pe and the intermediate point Pe. You may set the value of the parameter that defines the shape of the pipe between and. That is, the terms start point Po, intermediate point Po', and start end portion in the description of this paragraph may be replaced with the terms end point Pe, intermediate point Pe', and end portion, respectively.
- the input screen 91pi may be configured so that the terminal user cannot add a new point P through which the pipe passes between the intermediate point Po'and the starting point Po'.
- the position between the midpoint Po'and the start point Po' is a new point P through which the pipe passes (ie, a point P that the user has not added, which is different from, for example, the midpoint Po'or the midpoint Po'.
- the input screen 91pi may be configured so that the terminal user cannot specify it as the value of the parameter that defines the position of the point P).
- the terminal user may specify the position between the midpoint Po'and the start point Po'as the value of a parameter that defines the position of the existing point P through which the pipe passes (ie, the point P that the user has already added).
- the input screen 91pi may be configured so as not to be possible.
- the input screen 91pi may be configured so that the terminal user cannot add a new point P through which the pipe passes between the intermediate point Pe'and the end point Pe.
- the input screen 91pi is configured so that the terminal user cannot specify the position between the intermediate point Pe'and the end point Pe'as the value of the parameter that defines the position of the new point P through which the pipe passes. May be good.
- the input screen 91pi is configured so that the terminal user cannot specify the position between the intermediate point Pe'and the end point Pe as the value of the parameter that defines the position of the existing point P through which the pipe passes. May be good.
- the input screen 91 may display the values of the parameters set by the data generation unit 213.
- FIG. 16 shows an example of an input screen 91pi displayed when the data generation unit 213 inputs the values of the parameters defining the respective positions of the intermediate points Po'and Pe' through which the pipe passes.
- the input screen 91pi may display the value of the parameter that defines the respective positions of the intermediate points Po'and Pe'.
- the input screen 91pi may display the value of any parameter (for example, at least one of the cross-section parameter and the locus parameter) for each of the midpoints Po'and Pe'.
- the display mode of the parameter value set by the data generation unit 213 may be different from the display mode of the parameter value set by the terminal user.
- the value of the parameter set by the data generation unit 213 may be displayed in a display mode that cannot be set by the terminal user.
- the value of the parameter set by the data generation unit 213 may be grayed out to indicate that the terminal user cannot set it.
- the output screen 92 may display a three-dimensional model based on the parameter values set by the data generation unit 213.
- the data generation server 2 sets a part of the shape information that the terminal user has not set. Therefore, the data generation server 2 can appropriately support the user to generate the three-dimensional model data.
- the terminal user sets the value of the parameter that defines the position of the start point Po through which the start end portion of the pipe passes, and the data generation unit 213 sets the intermediate point Po'based on the position of the start point Po.
- the value of the parameter that defines the position is set.
- the terminal user sets the value of the parameter that defines the position of the intermediate point Po'
- the data generation unit 213 sets the value of the parameter that defines the position of the starting point Po'based on the position of the intermediate point Po'. You may.
- the terminal user sets the value of the parameter that defines the position of the intermediate point Pe'
- the data generation unit 213 sets the value of the parameter that defines the position of the end point Pe based on the position of the intermediate point Pe'. You may.
- the terminal user sets the shape information regarding the shape of the object using the input screen 91, and the output screen 92 is set by the terminal user using the input screen 91.
- a 3D model based on shape information is displayed.
- the terminal user may set the shape information by performing a change operation for changing the shape of the three-dimensional model displayed on the output screen 92. That is, in the second modification, the terminal user may set the shape information regarding the shape of the object by using the output screen 92.
- the terminal user may perform an operation for setting the shape information using the output screen 92.
- the terminal user may input information for setting the shape information to the terminal device 3 using the output screen 92.
- FIG. 17 which shows a three-dimensional model displayed on the output screen 92
- the terminal user uses an input device 34 such as a mouse or a touch panel to display the three-dimensional model on the output screen 92.
- an input device 34 such as a mouse or a touch panel to display the three-dimensional model on the output screen 92.
- the output screen 92 displays the three-dimensional model whose shape has been changed by the change operation.
- the change operation for changing the shape of the 3D model may include an operation for moving at least a part of the 3D model.
- FIG. 17 shows that the mouse pointer displayed on the output screen 92 is used to move one of the plurality of points P through which the pipe passes (point P2 in the example shown in FIG. 17).
- An example in which a change operation for changing the shape of a three-dimensional model is performed is shown. That is, in FIG. 17, a change operation is performed to change the shape of the three-dimensional model by moving a part of the pipe corresponding to the point P using the mouse pointer displayed on the output screen 92.
- a change operation is performed to change the shape of the three-dimensional model by moving a part of the pipe corresponding to the point P using the mouse pointer displayed on the output screen 92.
- the operation of moving at least a part of the 3D model may be an operation for changing the position of at least a part of the 3D model.
- the operation of moving one of the plurality of points P through which the pipe passes is an operation for changing the position of a part corresponding to the point P of one of the pipes.
- the operation of moving one of the plurality of points P through which the pipe passes is an operation for changing the value of the parameter that defines the position of a part corresponding to the point P of one of the pipes. There may be.
- the operation of moving at least a part of the 3D model may be an operation for changing the size of at least a part of the 3D model.
- the operation of moving a part of the outer surface of the pipe may be an operation for changing the outer diameter (that is, the size) of the pipe. That is, the operation of moving a part of the outer surface of the pipe may be an operation of changing a parameter for defining the outer diameter (that is, the size) of the pipe.
- the change operation for changing the shape of the three-dimensional model may include an operation of dragging and dropping the icon included in the icon selection GUI 912 of the input screen 91 onto the output screen 92.
- the operation of dragging and dropping the icon onto the output screen 92 may be an operation of designating the value of the parameter defining the position of the icon on the output screen 92.
- the operation of dragging and dropping an icon onto the output screen 92 associates at least a part of the shape of the 3D model displayed at the position where the icon is dragged and dropped in the output screen 92 with the dragged and dropped icon. It may be an operation of setting to a specific shape.
- the three-dimensional model displayed on the output screen 92 is a three-dimensional model represented in the display coordinate system, which is a three-dimensional coordinate system in which the X-axis, the Y-axis, and the Z-axis are orthogonal to each other.
- the display coordinate system may be the same as the modeling coordinate system used to explain the positional relationship of various components constituting the modeling device 1.
- the display coordinate system may be a coordinate system associated with the modeling coordinate system.
- the display coordinate system may be a coordinate system unrelated to the modeling coordinate system. In this case, the terminal user moves a part of the three-dimensional model along the X-axis to obtain shape information about the X-axis of a part of the three-dimensional model (for example, a position along the X-axis).
- the terminal user By moving a part of the 3D model along the Y axis, the terminal user has shape information about a part of the 3D model about the Y axis (for example, a parameter that defines a position along the Y axis). ) May be changed.
- the terminal user By moving a part of the 3D model along the Z axis, the terminal user has shape information about the Z axis of a part of the 3D model (for example, a parameter that defines a position along the Z axis). ) May be changed.
- the display control unit 211 of the data generation server 2 displays a three-dimensional model when viewed from any one of the X-axis, the Y-axis, and the Z-axis on the output screen 92, and in the output screen 92.
- X-axis, Y-axis, and Z-axis may generate GUI information so that the display device 35 displays the setting GUI 9 that allows a change operation to change the shape information regarding the remaining two.
- the terminal user confirms that the operation of moving a part of the 3D model in the 2D display screen 92 in a desired direction is surely moving a part of the 3D model in a desired direction. You can do it while grasping it intuitively.
- the terminal user may perform a change operation in the output screen 92 to change each of the shape information related to the Y axis and the shape information related to the Z axis.
- the terminal user can change each of the operation of moving a part of the three-dimensional model along the Y axis and the operation of moving a part of the three-dimensional model along the Z axis in the output screen 92 as change operations. You may go.
- the terminal user may perform an operation of moving a part of the three-dimensional model in the direction along the YZ plane in the output screen 92 as a change operation.
- the terminal user does not have to perform a change operation for changing the shape information regarding the X-axis in the output screen 92. That is, the terminal user does not have to perform the operation of moving a part of the three-dimensional model along the X axis in the output screen 92 as a change operation.
- the change operation for changing the shape information regarding the X-axis may be prohibited in the output screen 92.
- the three-dimensional model when viewed from the Y axis may be displayed on the output screen 92. That is, the three-dimensional model observed from the viewpoint orthogonal to the ZX plane may be displayed on the output screen 92.
- the terminal user may perform a change operation in the output screen 92 to change each of the shape information related to the X-axis and the shape information related to the Z-axis.
- the terminal user can change each of the operation of moving a part of the three-dimensional model along the X axis and the operation of moving a part of the three-dimensional model along the Z axis in the output screen 92 as change operations. You may go.
- the terminal user may perform an operation of moving a part of the three-dimensional model in the direction along the ZX plane in the output screen 92 as a change operation.
- the terminal user does not have to perform a change operation for changing the shape information regarding the Y axis in the output screen 92. That is, the terminal user does not have to perform the operation of moving a part of the three-dimensional model along the Y axis in the output screen 92 as a change operation.
- the change operation for changing the shape information regarding the Y axis may be prohibited in the output screen 92.
- the three-dimensional model when viewed from the Z axis may be displayed on the output screen 92. That is, the three-dimensional model observed from the viewpoint orthogonal to the XY plane may be displayed on the output screen 92.
- the terminal user may perform a change operation in the output screen 92 to change each of the shape information related to the X-axis and the shape information related to the Y-axis.
- the terminal user can change each of the operation of moving a part of the three-dimensional model along the X axis and the operation of moving a part of the three-dimensional model along the Y axis in the output screen 92 as change operations. You may go.
- the terminal user may perform an operation of moving a part of the three-dimensional model in the direction along the XY plane in the output screen 92 as a change operation.
- the terminal user does not have to perform a change operation for changing the shape information regarding the Z axis in the output screen 92. That is, the terminal user does not have to perform the operation of moving a part of the three-dimensional model along the Z axis in the output screen 92 as a change operation.
- the change operation for changing the shape information regarding the Z axis may be prohibited in the output screen 92.
- the 3D model viewed from the X axis is displayed on the output screen 92
- the 3D model viewed from the Y axis is displayed on the output screen 92
- the Z axis Only when the three-dimensional model of the above is displayed on the output screen 92, a change operation for changing the shape of the three-dimensional model displayed on the output screen 92 may be permitted. That is, the three-dimensional model displayed on the output screen 92 may be any of a three-dimensional model when viewed from the X-axis, a three-dimensional model when viewed from the Y-axis, and a three-dimensional model when viewed from the Z-axis. If not, the change operation for changing the shape information may be prohibited in the output screen 92.
- the terminal user can change the shape of a part of the 3D model
- the terminal user changes the shape information regarding the shape of another part of the three-dimensional structure.
- the first model portion of the three-dimensional model whose shape can be changed may be displayed in the output screen 92. That is, in the output screen 92, the first model portion of the three-dimensional model representing the portion of the three-dimensional structure whose shape information can be changed may be displayed.
- a display object indicating the first model portion (for example, the display object 922 surrounding the first model portion shown in FIG. 17) may be displayed in the output screen 92.
- the terminal user can grasp the first model portion whose shape can be changed in the three-dimensional model, and performs a change operation for changing the shape of at least a part of the first model portion. be able to.
- the second model portion of the three-dimensional model whose shape cannot be changed may also be displayed. That is, in the output screen 92, the second model portion of the three-dimensional model representing the portion of the three-dimensional structure whose shape information cannot be changed may be displayed. However, the second model portion may be displayed so that the display mode of the second model portion is different from the display mode of the first model portion.
- the terminal user can grasp the first model portion of the three-dimensional model whose shape can be changed and the second model portion of the three-dimensional model whose shape cannot be changed. .. Therefore, the terminal user can perform a change operation for changing the shape of at least a part of the first model portion.
- the terminal user does not mistakenly perform a change operation for changing the shape of at least a part of the second model portion.
- the second model portion of the three-dimensional model whose shape cannot be changed may not be displayed in the output screen 92.
- the terminal user does not mistakenly perform a change operation for changing the shape of at least a part of the second model portion.
- the operation information indicating the content of the change operation is transmitted from the terminal device 3 to the data generation server 2.
- the data generation unit 213 of the data generation server 2 specifies the shape of the three-dimensional model whose shape has been changed by the change operation based on the operation information transmitted from the terminal device 3.
- the data generation unit 213 sets the shape information based on the shape of the three-dimensional model whose shape has been changed by the change operation.
- the data generation unit 213 is based on the shape of the three-dimensional model whose shape has been changed by the change operation, and the shape information already set (that is, the three-dimensional model before the shape is changed by the change operation).
- shape information regarding the shape of may be changed (in other words, updated).
- the value of the parameter that defines the shape of the three-dimensional model may be changed from the set value to a value corresponding to the shape of the three-dimensional model whose shape has been changed by the change operation.
- the change in the shape information may be reflected on the input screen 91 displayed on the display device 35 of the terminal device 3.
- the display control unit 211 of the data generation server 2 may generate GUI information related to the setting GUI 9 including the input screen 91 in which the shape information changed according to the change operation is displayed.
- the display control unit 211 may generate GUI information regarding the setting GUI 9 including the parameter setting GUI 911 in which the value of the parameter changed according to the change operation is displayed.
- the display device 35 displays the input screen 91 on which the shape information changed according to the change operation is displayed. That is, as shown in the lower part of FIG. 17, the input screen 91 displayed by the display device 35 is changed according to the change operation from the input screen 91 in which the shape information before being changed according to the change operation is displayed. The screen is changed to the input screen 91 in which the formed shape information is displayed.
- the terminal user can set the shape information by performing a change operation that directly changes the shape of at least a part of the three-dimensional model. Therefore, the terminal user can intuitively set the shape information.
- the terminal user sets the value of the parameter that defines the shape of at least a part of the three-dimensional structure by using the input screen 91.
- the value of the first parameter meter that defines the shape of the first type of at least a part of the three-dimensional structure and the second type that defines the shape of the second type of at least a part of the three-dimensional structure are changed (that is, reset) by the terminal user.
- the data generation unit 213 of the data generation server 2 sets at least one of the values of the first and second parameters. You may set it automatically.
- the data generation unit 213 obtains a third type of shape of at least a part of the three-dimensional structure even when at least one of the values of the first and second parameters is changed by the terminal user. At least one of the values of the first and second parameters may be automatically set so that the value of the specified third parameter is maintained. In this case, the data generation unit 213 generates three-dimensional model data based on the parameter values set by the terminal user using the setting GUI 9 and the parameter values automatically set by the data generation unit 213.
- the terminal user can see the size of the cross section of the pipe (eg, the vertical and horizontal sizes, which is substantially equivalent to the outer diameter of the pipe).
- the value of the parameter that defines the thickness of the partition wall of the pipe and the value of the parameter that defines the thickness of the partition wall of the pipe may be set.
- the data generation unit 213 when the value of the parameter defining the outer diameter of the pipe (hereinafter referred to as “outer diameter parameter”) is reset by the terminal user, the data generation unit 213 will perform the data generation unit 213.
- a parameter that defines the thickness of the partition wall of the pipe (hereinafter referred to as "thickness parameter") so that the value of the parameter that defines the inner diameter of the pipe (hereinafter referred to as “inner diameter parameter”) is maintained (that is, does not change). ) May be set automatically.
- the data generation unit 213 may automatically set the value of the outer diameter parameter so that the value of the inner diameter parameter is maintained. ..
- the terminal user has a three-dimensional structure while relatively easily satisfying the shape constraint condition that a certain type of shape (for example, the inner diameter of the pipe in the example shown in FIG. 19) is maintained.
- Shape information regarding the shape of an object can be set. Therefore, the terminal user can easily set the shape information satisfying the shape constraint condition as compared with the case where the terminal user needs to set the shape information in order to satisfy the shape constraint condition.
- the data generation unit 213 in order to generate the modeling time information, the data generation unit 213 generates the above-mentioned modeling control information based on the three-dimensional model data, and is required for additional modeling of the three-dimensional structure based on the generated modeling control information. You may calculate the time. Alternatively, the data generation unit 213 may acquire the modeling control information generated by the control device 17 from the control device 17 of the modeling device 1 that has transmitted the three-dimensional model data. In this case, the data generation unit 213 may calculate the time required for additional modeling of the three-dimensional structure based on the modeling control information acquired from the control device 17.
- the object information generated by the data generation unit 213 may be provided to the terminal user via the setting GUI 9. That is, the setting GUI 9 including the object information may be displayed on the display device 35 of the terminal device 3. Therefore, the display control unit 211 may generate GUI information regarding the setting GUI 9 including the object information based on the object information generated by the data generation unit 213.
- FIG. 20 An example of the setting GUI9 including the object information is shown in FIG. As shown in FIG. 20, the setting GUI 9 indicating the weight information regarding the weight of the three-dimensional structure by a text message (or other display object) may be displayed.
- the setting GUI 9 indicating the strength information regarding the strength of the three-dimensional structure by a text message (or other display object) may be displayed.
- the setting GUI 9 indicating the modeling time information regarding the time required for the additional modeling of the three-dimensional structure by a text message (or other display object) may be displayed.
- the terminal user can grasp the object information regarding the three-dimensional structure additionally modeled by the modeling device 1. Therefore, the terminal user can set the shape information regarding the shape of the three-dimensional structure while referring to the object information. For example, the terminal user can set the shape information so that the weight of the three-dimensional structure becomes a desired weight while referring to the weight information included in the object information. For example, the terminal user can set the shape information so that the strength of the three-dimensional structure becomes a desired strength while referring to the strength information included in the object information. For example, the terminal user can set the shape information so that the time required for modeling the three-dimensional structure becomes a desired time while referring to the modeling time information included in the object information.
- the display GUI 914 has a display object showing the state of the cross section of the pipe at the start point Po, a display object showing the state of the cross section of the pipe at the intermediate point P1, and a cross section of the pipe at the intermediate point P2. It may include a display object showing the state of the above and a display object showing the state of the cross section of the pipe at the end point Pe.
- the state of the cross section of the pipe displayed on the display GUI 914 may be updated each time the shape information is updated using at least one of the input screen 91pi and the output screen 92.
- the parameter setting GUI911pi # 8 (see FIG. 8) is used to set the parameter that defines the multiple structure of the pipeline of at least a part of the pipe.
- FIG. 21 which shows another example of the input screen 91pi for setting the shape information regarding the shape of the pipe
- the multiplex structure of the pipeline of at least a part of the pipe is set by using the icon selection GUI 912. You may.
- the icon selection GUI 912pi # 1 includes an icon 9121 # 16 that can be selected to set the shape of the cross section of at least a part of the pipe to a shape corresponding to a multiple pipe (for example, a double pipe). You may go out.
- the icon selection GUI 912pi # 1 has icons 9121 # 14 and 9121 that can be selected to set the shape of the cross section of at least a part of the pipe to the shape in which the pipeline is divided into a plurality of sections by the partition wall. Includes # 15.
- the terminal user may set the number of divisions of the pipeline (that is, the number of sections formed in the pipeline) using the input screen 91pi. good.
- the input screen 91pi may include a parameter setting GUI911 for setting a parameter that defines the number of divisions of the pipeline (that is, the number of sections formed in the pipeline).
- the terminal user can add a new point through which the pipe passes by using the input screen 91pi.
- both the existing point P and the new point P are passed.
- the shape of the pipe can be unnatural, unrealizable or unmodelable.
- the existing first point P, the new point P, and the new point P added to define the shape of the pipe passing through the existing second point P are the existing first and second points.
- the shape of the pipe passing through both the existing first and second points P and the new point P is unnatural, unrealizable or unmodelable. It can be shaped.
- the data generation server 2 (for example, the data generation unit 213) automatically adds another point P so that the shape of the pipe becomes a natural, feasible or formable shape. You may. That is, in the data generation server 2 (for example, the data generation unit 213), the shape of the pipe passing through the new point P added by the terminal user after the terminal user sets the parameter defining the position of the new point P. You may automatically add yet another point P through which the pipe passes so that it has a natural, feasible or formable shape.
- the data generation server 2 (for example, the data generation unit 213) has a shape of a pipe passing through the new point P added by the terminal user after the terminal user sets a parameter that defines the position of the new point P.
- a proposal for modifying the position of the new point P added by the terminal user may be presented to the terminal user using the setting GUI 9 so as to have a natural, feasible or formable shape.
- the data generation server 2 (for example, the data generation unit 213) has a shape of a pipe passing through the new point P added by the terminal user after the terminal user sets a parameter that defines the position of the new point P.
- the value of the parameter defining the position of the new point P added by the terminal user may be corrected so as to have a natural, feasible or formable shape.
- a cutting process for separating the three-dimensional structure from the work W may be performed.
- the data generation unit 213 of the data generation server 2 corresponds to a portion connecting the three-dimensional structure and the work W and a margin portion removed when the cutting process is performed.
- the three-dimensional model data may be generated so that the three-dimensional structure to which the cutting margin portion is added is formed. That is, the data generation unit 213 is a three-dimensional structure having a cutting margin even when the three-dimensional structure having the shape defined by the shape information set by the user does not have the cutting margin portion. You may generate 3D model data representing the 3D model.
- the data generation unit 213 when generating 3D model data representing a 3D model of a 3D structure having a cutting margin portion, the data generation unit 213 includes a marker for distinguishing the cutting margin portion from the 3D structure.
- 3D model data representing a 3D model of a 3D structure may be generated.
- the data generation unit 213 may generate 3D model data representing a 3D model of a 3D structure including a line (for example, a groove) indicating a boundary between a cutting margin portion and the 3D structure.
- the output screen 92 is a terminal user using the input screen 91.
- the display object WO corresponding to the work W may be displayed.
- the display control unit 211 may acquire information regarding the shape of the work W and generate a display object WO based on the acquired information regarding the shape of the work W.
- the information regarding the shape of the work W may include, for example, the measurement result of a measuring device (for example, a 3D scanner) capable of measuring the shape of the work W.
- the display control unit 211 may acquire information regarding the shape of the work W from the measuring device.
- the terminal user can recognize the three-dimensional model of the three-dimensional structure together with the work W on which the three-dimensional structure is actually formed. Therefore, the terminal user can intuitively generate the three-dimensional model data.
- the data generation server 2 transmits the generated three-dimensional model data to the modeling device 1, but does not transmit it to the terminal device 3. However, the data generation server 2 may transmit the generated three-dimensional model data to the terminal device 3. That is, the data generation server 2 may provide the generated three-dimensional model data to the terminal user of the terminal device 3.
- the data generation server 2 may unconditionally provide the generated 3D model data to the terminal user.
- the data generation server 2 may provide the generated three-dimensional model data to a terminal user who satisfies certain conditions.
- the data generation server 2 may provide the 3D model data to the terminal user who actually entrusts the modeling user with the modeling of the 3D structure based on the 3D model data.
- the data generation server 2 does not have to provide the 3D model data to the terminal user who did not actually outsource the modeling of the 3D structure based on the 3D model data to the modeling user. ..
- the data generation server 2 provides the three-dimensional model data of the first format to the terminal user satisfying certain conditions, and provides the three-dimensional model data of the second format different from the first format to a certain value. It may be provided to a terminal user who does not meet the conditions.
- the data generation server 2 has a format (for example, an STL file) that is relatively convenient for the terminal user to the terminal user who actually entrusts the modeling user with the modeling of the three-dimensional structure based on the three-dimensional model data. Format) 3D model data may be provided.
- the data generation server 2 is a format that is relatively less convenient for the terminal user than the terminal user who did not actually outsource the modeling of the three-dimensional structure based on the three-dimensional model data to the modeling user.
- 3D model data eg, a format representing a solid model
- the modeling device 1 may include a display device capable of displaying the setting GUI 9 (that is, a device capable of functioning as the display device 35 of the terminal device 3).
- the modeling device 1 may include an input device (that is, a device that can function as the input device 34 of the terminal device 3) used by the modeling user to operate the setting GUI 9. That is, the modeling device 1 may include at least a part of the terminal device 3.
- the modeling user may set the shape information using the setting GUI 9.
- the control device 17 of the modeling device 1 may generate three-dimensional model data based on the shape information set by the modeling user. That is, the control device 17 may include at least a part of the data generation server 2.
- the display device 35 of the terminal device 3 displays the setting GUI 9 including both the input screen 91 and the output screen 92.
- the display device 35 displays either the input screen 91 or the output screen 92, it is not necessary to display either the input screen 91 or the output screen 92. That is, even if the display mode of the display device 35 is switched between a mode in which both the input screen 91 and the output screen 92 are displayed and a mode in which either the input screen 91 or the output screen 92 is displayed. good. In this case, the display mode of the display device 35 may be switched based on the instruction of the terminal user.
- the modeling apparatus 1 melts the modeling material M by irradiating the modeling material M with the processing light EL.
- the modeling apparatus 1 may melt the modeling material M by irradiating the modeling material M with an arbitrary energy beam.
- an arbitrary energy beam at least one such as a charged particle beam and an electromagnetic wave can be mentioned.
- the charged particle beam at least one such as an electron beam and an ion beam can be mentioned.
- the modeling apparatus 1 forms a three-dimensional structure by performing additional processing based on the laser overlay welding method.
- the modeling apparatus 1 may model the three-dimensional structure by performing additional processing according to another method capable of forming the three-dimensional structure.
- the modeling apparatus 1 may model a three-dimensional structure by performing a removal process in addition to or instead of performing an additional process.
- the modeling apparatus 1 may model a three-dimensional structure by performing machining in addition to or instead of performing at least one of addition processing and removal processing.
- the present invention is not limited to the above-described embodiment, and can be appropriately modified within the scope of claims and within the scope not contrary to the gist or idea of the invention that can be read from the entire specification, and a data generation method accompanied by such a modification.
- Modeling contract method, data generation device, display device, modeling method, computer program and recording medium are also included in the technical scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Geometry (AREA)
- Theoretical Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Computational Mathematics (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Mathematical Analysis (AREA)
- Architecture (AREA)
- Processing Or Creating Images (AREA)
Abstract
データ生成方法は、ユーザにより入力画面を用いて指定されたパイプの形状を規定するパラメータの値に基づいて、パイプの3次元モデルを表すモデルデータを生成することと、パイプの中間部の位置を規定するパラメータの値として、パイプの端部の位置から第1距離だけ離れた位置を規定するパラメータの値を設定することとを含む。
Description
本発明は、例えば、物体の3次元モデルを表すモデルデータを生成するためのデータ生成方法、造形受託方法、データ生成装置、表示装置、造形方法、コンピュータプログラム及び記録媒体の技術分野に関する。
特許文献1には、3次元オブジェクトのデジタル情報を受信することと、受信したデジタル情報に基づいて3次元オブジェクトを構築することとを含む3次元オブジェクトの製造方法が記載されている。特許文献1に記載の製造方法は、顧客から3次元オブジェクトのデジタル情報を受信する必要がある。このため、特許文献1に記載の製造方法は、3次元オブジェクトのデジタル情報を顧客が容易に生成することを支援することができないという技術的問題を有している。
第1の態様によれば、造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、表示装置に表示された入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値とは異なる、前記パイプの端部の位置から第1距離だけ離れた位置を規定するパラメータの値を、前記パイプの中間部の位置を規定するパラメータの値として自動設定することと、前記ユーザにより前記入力画面を用いて指定されたパラメータの値及び前記自動設定されたパラメータの値に基づいて3次元モデルを前記表示装置の出力画面に提供することと、前記ユーザにより前記入力画面を用いて指定されたパラメータの値及び前記自動設定されたパラメータの値に基づいて前記モデルデータを生成することとを含むデータ生成方法が供給される。
第2の態様によれば、造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、表示装置に表示された入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供することと、前記出力画面に表示された前記3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記パイプの形状を規定するパラメータの値を変更することとを含み、前記3次元モデルは、第1軸、第2軸及び第3軸が互いに直交する3次元座標系内に表される3次元モデルであり、前記出力画面は、前記第3軸から見た場合の前記3次元モデルを表示可能であり、前記第3軸から見た場合の前記3次元モデルが表示される前記出力画面において、前記ユーザは、前記第1軸に関するパラメータの値及び前記第1軸に関するパラメータの値を変更するための前記変更操作を行うことが可能であり、前記変更操作に応じて、前記入力画面に表示されているパラメータの値を、前記変更操作によって変更された3次元モデルの形状を規定するパラメータの値に変更し、前記入力画面に表示されているパラメータの値に基づいて、前記モデルデータを生成するデータ生成方法が供給される。
第3の態様によれば、造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、表示装置に表示された入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供することと、前記出力画面に表示された前記3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記パイプの形状を規定するパラメータの値を変更することと、前記入力画面を用いて指定されたパラメータの値及び前記出力画面を用いて変更されたパラメータの値に基づいて、前記モデルデータを生成することとを含み、前記出力画面には、前記3次元モデルのうち前記変更操作によって前記パイプの形状を規定するパラメータの値の変更が可能な部分が表示されるデータ生成方法が供給される。
第4の態様によれば、造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、表示装置に表示された入力画面を用いてユーザにより前記パイプの形状を規定するパラメータの値として指定された前記パイプの外径及び前記パイプの外側面と内側面との間の長さとに基づいて、前記モデルデータを生成することと、前記入力画面を用いて前記ユーザが前記外径を指定し直した場合に、前記パイプの内径が一定に維持されるように、前記パイプの外側面と内側面との間の長さを設定し直すこととを含むデータ生成方法が供給される。
第5の態様によれば、造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、表示装置に表示された入力画面を用いてユーザにより前記パイプの形状を規定するパラメータの値として指定された前記パイプの外側面と内側面との間の長さに基づいて前記モデルデータを生成することと、前記入力画面を用いて前記ユーザが前記外側面と前記内側面との間の長さを指定し直した場合に、前記パイプの内径が一定に維持されるように、前記パイプの外径を設定し直すこととを含むデータ生成方法が供給される。
第6の態様によれば、造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、表示装置に表示された入力画面を用いてユーザにより前記パイプの形状を規定するパラメータの値として設定された、前記パイプの外径、及び前記パイプの外側面と内側面との間の長さのうちの一方のパラメータの値が、前記入力画面を用いて前記ユーザにより再設定された場合に、他方のパラメータの値を自動設定することと、前記ユーザにより設定されたパラメータの値及び前記自動設定されたパラメータの値に基づいて前記モデルデータを生成することとを含むデータ生成方法が提供される。
第7の態様によれば、造形装置により付加造形される物体の3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、表示装置に表示された入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値に基づいて、前記モデルデータを生成することと、前記物体の第1部分の位置から第1距離だけ離れた位置を規定するパラメータの値を設定することとを含むデータ生成方法が供給される。
第8の態様によれば、造形装置により付加造形される物体の3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、表示装置に表示された入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供することと、前記出力画面に表示された3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記物体の形状を規定するパラメータの値を変更することと、前記入力画面を用いて指定されたパラメータの値及び前記出力画面を用いて変更されたパラメータの値に基づいて、前記モデルデータを生成することとを含むデータ生成方法が供給される。
第9の態様によれば、造形装置により付加造形される物体の3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、表示装置に表示された入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供することと、前記出力画面に表示された3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記入力画面に表示されている前記パラメータの値を、前記変更操作によって変更された3次元モデルの形状を規定する値に変更することと、前記入力画面に表示されているパラメータの値に基づいて、前記モデルデータを生成することとを含むデータ生成方法が供給される。
第10の態様によれば、造形装置により付加造形される物体の3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、表示装置に表示された入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供することと、前記出力画面に表示された前記3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記物体の形状を規定するパラメータの値を変更することと、前記入力画面を用いて指定されたパラメータの値及び前記出力画面を用いて変更されたパラメータの値に基づいて、前記モデルデータを生成することとを含み、前記出力画面には、前記3次元モデルのうち前記変更操作によって前記物体の形状を規定するパラメータの値の変更が可能な部分が表示されるデータ生成方法が供給される。
第11の態様によれば、造形装置により付加造形される物体の3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、表示装置に表示された入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータである第1パラメータおよび前記物体の形状を規定するパラメータである第2パラメータに基づいて、前記モデルデータを生成することと、前記入力画面を用いて前記ユーザが第1パラメータを指定し直した場合に、前記物体の形状に関する第3パラメータが維持されるように、前記ユーザが指定した第2パラメータを設定し直すこととを含むデータ生成方法が供給される。
第12の態様によれば、パイプの付加造形を受託する造形受託方法であって、ユーザに入力画面に関する表示内容を提供することと、表示装置に表示された前記入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値の内容を、前記入力画面に提供することと、前記入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値とは異なる、前記パイプの端部の位置から第1距離だけ離れた位置を規定するパラメータの値を、前記パイプの中間部の位置を規定するパラメータの値として自動設定することと、前記ユーザにより前記入力画面を用いて指定されたパラメータの値及び前記自動設定されたパラメータの値に基づいて3次元モデルを前記表示装置の出力画面に提供することとを含むデータ造形受託方法が供給される。
第13の態様によれば、パイプの付加造形を受託する造形受託方法であって、ユーザに入力画面に関する表示内容を提供することと、表示装置に表示された前記入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値の内容を、前記入力画面に提供することと、前記ユーザにより指定されたパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供することと、前記出力画面に表示された前記3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記パイプの形状を規定するパラメータの値を変更することとを含み、前記3次元モデルは、第1軸、第2軸及び第3軸が互いに直交する3次元座標系内に表される3次元モデルであり、前記出力画面は、前記第3軸から見た場合の前記3次元モデルを表示可能であり、前記第3軸から見た場合の前記3次元モデルが表示される前記出力画面において、前記ユーザは、前記第1軸に関するパラメータの値及び前記第1軸に関するパラメータの値を変更するための前記変更操作を行うことが可能であり、前記変更操作に応じて、前記入力画面に表示されているパラメータの値を、前記変更操作によって変更された3次元モデルの形状を規定するパラメータの値に変更する造形受託方法が供給される。
第14の態様によれば、パイプの付加造形を受託する造形受託方法であって、ユーザに入力画面に関する表示内容を提供することと、表示装置に表示された前記入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値の内容を、前記入力画面に提供することと、前記ユーザにより指定されたパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供することと、前記出力画面に表示された前記3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記パイプの形状を規定するパラメータの値を変更することとを含み、前記出力画面には、前記3次元モデルのうち前記変更操作によって前記パイプの形状を規定するパラメータの値の変更が可能な部分が表示される造形受託方法が供給される。
第15の態様によれば、パイプの付加造形を受託する造形受託方法であって、ユーザに入力画面に関する表示内容を提供することと、表示装置に表示された前記入力画面を用いてユーザにより前記パイプの形状を規定するパラメータの値として指定された前記パイプの外径及び前記パイプの外側面と内側面との間の長さの内容を、前記入力画面に提供することと、前記入力画面を用いて前記ユーザが前記外径を指定し直した場合に、前記パイプの内径が一定に維持されるように、前記パイプの外側面と内側面との間の長さを設定し直すこととを含む造形受託方法が供給される。
第16の態様によれば、パイプの付加造形を受託する造形受託方法であって、表示装置に表示された前記入力画面を用いてユーザにより前記パイプの形状を規定するパラメータの値として指定された前記パイプの外側面と内側面との間の長さの内容を、前記入力画面に提供することと、前記入力画面を用いて前記ユーザが前記外側面と前記内側面との間の長さを指定し直した場合に、前記パイプの内径が一定に維持されるように、前記パイプの外径を設定し直すこととを含む造形受託方法が供給される。
第17の態様によれば、パイプの付加造形を受託する造形受託方法であって、ユーザに入力画面に関する表示内容を提供することと、表示装置に表示された前記入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値の内容を、前記入力画面に提供することと、前記入力画面を用いてユーザにより前記パイプの形状を規定するパラメータの値として設定された、前記パイプの外径、及び前記パイプの外側面と内側面との間の長さのうちの一方のパラメータの値が、前記入力画面を用いて前記ユーザにより再設定された場合に、他方のパラメータの値を自動設定することとを含む造形受託方法が提供される。
第18の態様によれば、物体の付加造形を受託する造形受託方法であって、ユーザに入力画面に関する表示内容を提供することと、表示装置に表示された前記入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値の内容を、前記入力画面に提供することと、前記物体の第1部分の位置から第1距離だけ離れた位置を規定するパラメータの値を設定することとを含む造形受託方法が供給される。
第19の態様によれば、物体の付加造形を受託する造形受託方法であって、ユーザに入力画面に関する表示内容を提供することと、表示装置に表示された前記入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値の内容を、前記入力画面に提供することと、前記ユーザにより指定されたパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供することと、前記出力画面に表示された3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記物体の形状を規定するパラメータの値を変更することとを含む造形受託方法が供給される。
第20の態様によれば、物体の付加造形を受託する造形受託方法であって、ユーザに入力画面に関する表示内容を提供することと、表示装置に表示された前記入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値の内容を、前記入力画面に提供することと、前記ユーザにより指定されたパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供することと、前記出力画面に表示された3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記入力画面に表示されている前記パラメータの値を、前記変更操作によって変更された3次元モデルの形状を規定する値に変更することとを含む造形受託方法が供給される。
第21の態様によれば、物体の付加造形を受託する造形受託方法であって、ユーザに入力画面に関する表示内容を提供することと、表示装置に表示された前記入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値の内容を、前記入力画面に提供することと、前記ユーザにより指定されたパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供することと、前記出力画面に表示された前記3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記物体の形状を規定するパラメータの値を変更することとを含み、前記出力画面には、前記3次元モデルのうち前記変更操作によって前記物体の形状を規定するパラメータの値の変更が可能な部分が表示される造形受託方法が供給される。
第22の態様によれば、物体の付加造形を受託する造形受託方法であって、ユーザに入力画面に関する表示内容を提供することと、表示装置に表示された前記入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータである第1パラメータおよび前記物体の形状を規定するパラメータである第2パラメータの値の内容を、前記入力画面に提供することと、前記入力画面を用いて前記ユーザが第1パラメータを指定し直した場合に、前記物体の形状に関する第3パラメータが維持されるように、前記ユーザが指定した第2パラメータを設定し直すこととを含む造形受託方法が供給される。
第23の態様によれば、造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、表示装置に表示された入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値とは異なる、前記パイプの端部の位置から第1距離だけ離れた位置を規定するパラメータの値を、前記パイプの中間部の位置を規定するパラメータの値として自動設定し、前記ユーザにより前記入力画面を用いて指定されたパラメータの値及び前記自動設定されたパラメータの値に基づいて3次元モデルを前記表示装置の出力画面に提供するデータ生成装置が供給される。
第24の態様によれば、造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、表示装置に表示された入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供し、前記出力画面に表示された前記3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記パイプの形状を規定するパラメータの値を変更し、前記3次元モデルは、第1軸、第2軸及び第3軸が互いに直交する3次元座標系内に表される3次元モデルであり、前記出力画面は、前記第3軸から見た場合の前記3次元モデルを表示可能であり、前記第3軸から見た場合の前記3次元モデルが表示される前記出力画面において、前記ユーザは、前記第1軸に関するパラメータの値及び前記第1軸に関するパラメータの値を変更するための前記変更操作を行うことが可能であり、前記変更操作に応じて、前記入力画面に表示されているパラメータの値を、前記変更操作によって変更された3次元モデルの形状を規定するパラメータの値に変更し、前記入力画面に表示されているパラメータの値に基づいて、前記モデルデータを生成するデータ生成装置が供給される。
第25の態様によれば、造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、表示装置に表示された入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供し、前記出力画面に表示された前記3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記パイプの形状を規定するパラメータの値を変更し、前記出力画面には、前記3次元モデルのうち前記変更操作によって前記パイプの形状を規定するパラメータの値の変更が可能な部分が表示され、前記入力画面を用いて指定されたパラメータの値及び前記出力画面を用いて変更されたパラメータの値に基づいて、前記モデルデータを生成するデータ生成装置が供給される。
第26の態様によれば、造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、表示装置に表示された入力画面を用いてユーザにより前記パイプの形状を規定するパラメータの値として指定された前記パイプの外径及び前記パイプの外側面と内側面との間の長さとに基づいて、前記モデルデータを生成し、前記入力画面を用いて前記ユーザが前記外径を指定し直した場合に、前記パイプの内径が一定に維持されるように、前記パイプの外側面と内側面との間の長さを設定し直すデータ生成装置が供給される。
第27の態様によれば、造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、表示装置に表示された入力画面を用いてユーザにより前記パイプの形状を規定するパラメータの値として指定された前記パイプの外側面と内側面との間の長さに基づいて前記モデルデータを生成し、前記入力画面を用いて前記ユーザが前記外側面と前記内側面との間の長さを指定し直した場合に、前記パイプの内径が一定に維持されるように、前記パイプの外径を設定し直すデータ生成装置が供給される。
第28の態様によれば、造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、表示装置に表示された入力画面を用いてユーザにより前記パイプの形状を規定するパラメータの値として設定された、前記パイプの外径、及び前記パイプの外側面と内側面との間の長さのうちの一方のパラメータの値が、前記入力画面を用いて前記ユーザにより再設定された場合に、他方のパラメータの値を自動設定し、前記ユーザにより設定されたパラメータの値及び前記自動設定されたパラメータの値に基づいて前記モデルデータを生成するを含むデータ生成装置が提供される。
第29の態様によれば、造形装置により付加造形される物体の3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、表示装置に表示された入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値に基づいて、前記モデルデータを生成し、前記物体の第1部分の位置から第1距離だけ離れた位置を規定するパラメータの値を設定するデータ生成装置が供給される。
第30の態様によれば、造形装置により付加造形される物体の3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、表示装置に表示された入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供し、前記出力画面に表示された3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記物体の形状を規定するパラメータの値を変更し、前記入力画面を用いて指定されたパラメータの値及び前記出力画面を用いて変更されたパラメータの値に基づいて、前記モデルデータを生成するデータ生成装置が供給される。
第31の態様によれば、造形装置により付加造形される物体の3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、表示装置に表示された入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供し、前記出力画面に表示された3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記入力画面に表示されている前記パラメータの値を、前記変更操作によって変更された3次元モデルの形状を規定する値に変更し、前記入力画面に表示されているパラメータの値に基づいて、前記モデルデータを生成する
するデータ生成装置が供給される。
するデータ生成装置が供給される。
第32の態様によれば、造形装置により付加造形される物体の3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、表示装置に表示された入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供し、前記出力画面に表示された前記3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記物体の形状を規定するパラメータの値を変更し、前記入力画面を用いて指定されたパラメータの値及び前記出力画面を用いて変更されたパラメータの値に基づいて、前記モデルデータを生成し、前記出力画面には、前記3次元モデルのうち前記変更操作によって前記物体の形状を規定するパラメータの値の変更が可能な部分が表示されるデータ生成装置が供給される。
第33の態様によれば、造形装置により付加造形される物体の3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、表示装置に表示された入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータである第1パラメータおよび前記物体の形状を規定するパラメータである第2パラメータに基づいて、前記モデルデータを生成し、前記入力画面を用いて前記ユーザが第1パラメータを指定し直した場合に、前記物体の形状に関する第3パラメータが維持されるように、前記ユーザが指定した第2パラメータを設定し直すデータ生成装置が供給される。
第34の態様によれば、上述した第26の態様から第29の態様及び第33の態様のいずれか一つによって提供されるデータ生成装置から前記入力画面に関する情報を取得する取得部と、前記取得部が取得した情報に基づいて、前記入力画面を表示する表示部とを備える表示装置が提供される。
第35の態様によれば、上述した第23の態様から第25の態様及び第30の態様から第32の態様のいずれか一つによって提供されるデータ生成装置から前記入力画面及び前記出力画面に関する情報を取得する取得部と、前記取得部が取得した情報に基づいて、前記入力画面及び前記出力画面を表示する表示部とを備える表示装置が提供される。
第36の態様によれば、物体を造形する造形方法であって、上述した第1の態様から第11の態様のいずれか一つによって提供されるデータ生成方法を用いて、前記モデルデータを生成することと、前記モデルデータに基づいて、前記物体を造形するように造形装置を制御することとを含む造形方法が提供される。
第37の態様によれば、物体を造形する造形方法であって、上述した第22の態様から第32の態様のいずれか一つによって提供されるデータ生成装置を用いて、前記モデルデータを生成することと、前記モデルデータに基づいて、前記物体を造形するように造形装置を制御することとを含む造形方法が提供される。
第38の態様によれば、上述した第1の態様から第11の態様のいずれか一つによって提供されるデータ生成方法をコンピュータに実行させるコンピュータプログラムが提供される。
第39の態様によれば、上述した第12の態様から第22の態様のいずれか一つによって提供される造形受託方法をコンピュータに実行させるコンピュータプログラムが提供される。
第40の態様によれば、上述した第36の態様又は第37の態様によって提供される造形方法をコンピュータに実行させるコンピュータプログラムが提供される。
第41の態様によれば、第38の態様から第40の態様のいずれか一つによって提供されるコンピュータプログラムが記録された記録媒体が提供される。
本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。
以下、図面を参照しながら、データ生成方法、造形受託方法、データ生成装置、表示装置、造形方法、コンピュータプログラム及び記録媒体の実施形態について説明する。以下では、造形システムSYSを用いて、データ生成方法、造形受託方法、データ生成装置、表示装置、造形方法、コンピュータプログラム及び記録媒体の実施形態の実施形態について説明する。
(1)造形システムSYSの構成
はじめに、造形システムSYSの構成について説明する。
はじめに、造形システムSYSの構成について説明する。
(1-1)造形システムSYSの全体構成
はじめに、図1を参照しながら、造形システムSYSの全体構成の一例について説明する。図1は、造形システムSYSの全体構成を示すブロック図である。
はじめに、図1を参照しながら、造形システムSYSの全体構成の一例について説明する。図1は、造形システムSYSの全体構成を示すブロック図である。
造形システムSYSは、造形装置1と、データ生成サーバ2とを備えている。造形装置1とデータ生成サーバ2とは、有線の通信ネットワーク及び無線の通信ネットワークの少なくとも一つを含む通信ネットワーク4を介して通信可能である。データ生成サーバ2は、有線の通信ネットワーク及び無線の通信ネットワークの少なくとも一つを含む通信ネットワーク5を介して、端末装置3と通信可能である。尚、通信ネットワーク4及び5は、別々の通信ネットワークであってもよいし、同一の通信ネットワークであってもよい。端末装置3は、造形システムSYSの一部を構成する装置であってもよい。つまり、造形システムSYSが端末装置3を備えていてもよい。或いは、造形システムSYSが端末装置3を備えていなくてもよい。この場合、造形システムSYSが備えるデータ生成サーバ3と通信可能な任意の装置(例えば、後述する端末ユーザが備えるコンピュータ等の情報処理装置)が、端末装置3として用いられてもよい。
造形装置1は、3次元構造物(つまり、3次元方向のいずれの方向においても大きさ(サイズ)を持つ3次元の物体)を造形可能な装置である。特に、本実施形態では、造形装置1は、付加加工を行うことで、3次元構造物を造形する。つまり、造形装置1は、3次元構造物を付加造形する。
データ生成サーバ2は、造形装置1により付加造形される3次元構造物の3次元モデルを表す3次元モデルデータを生成可能な装置である。尚、データ生成サーバ2は、データ生成装置と称されてもよい。データ生成サーバ2は、生成した3次元モデルデータを、通信ネットワーク4を介して、造形装置1に送信する。造形装置1は、データ生成サーバ2から送信された3次元モデルデータに基づいて、3次元構造物を造形する。
端末装置3は、造形装置1により付加造形される3次元構造物の特徴に関する特徴情報を設定する(つまり、指定する)ために、ユーザが操作可能な装置である。以降、端末装置3を操作可能なユーザを、端末ユーザと称する。端末ユーザは、典型的には、造形装置1を用いて3次元構造物を造形することを希望する人物であってもよい。本実施形態では、端末装置3が、特徴情報の一例として、造形装置1により付加造形される3次元構造物の形状に関する形状情報を設定するために端末ユーザが操作可能な装置である例について説明する。
端末装置3は、端末ユーザが設定した形状情報を、通信ネットワーク5を介して、データ生成サーバ2に送信する。データ生成サーバ2は、端末装置3から送信された形状情報に基づいて、3次元モデルデータを生成する。つまり、データ生成サーバ2は、端末ユーザが設定した形状情報によって規定される形状を有する3次元構造物の3次元モデルを表す3次元モデルデータを生成する。その結果、造形装置1は、端末ユーザが設定した形状情報によって規定される形状を有する3次元構造物を造形する。
端末装置3は、後に詳述するように、形状情報を設定するためにユーザが操作可能な入力画面22を含む設定GUI(Graphical User Interface)9(図7等参照)を表示してもよい。この場合、データ生成サーバ2は、通信ネットワーク5を介して、設定GUI9に関するGUI情報を端末装置3に送信する。端末装置3は、GUI情報に基づいて、設定GUI9を表示する。端末ユーザは、端末装置3が表示した設定GUI9を用いて、形状情報を設定する。
端末ユーザは、データ生成サーバ2を操作可能なユーザ(以降、“サーバユーザ”と称する)と同一であってもよいし、異なっていてもよい。端末ユーザは、造形装置1を操作可能なユーザ(以降、“造形ユーザ”と称する)と同一であってもよいし、異なっていてもよい。端末ユーザと造形ユーザとが異なる場合には、造形システムSYSは、端末ユーザが、3次元構造物の造形を造形ユーザに対して委託する委託者となり、且つ、造形ユーザが、端末ユーザから造形を委託された3次元構造物の造形を受託する受託者となる造形受託システムと等価であるとみなしてもよい。つまり、以下の造形処理は、造形受託処理(造形受託方法)と等価であるとみなしてもよい。
(1-2)造形装置1の構成
続いて、図2及び図3を参照しながら、造形装置1の構成について説明する。初めに、図2及び図3を参照しながら、本実施形態の造形装置1の構造について説明する。図2は、本実施形態の造形装置1の構造の一例を示す断面図である。図3は、本実施形態の造形装置1のシステム構成の一例を示すシステム構成図である。
続いて、図2及び図3を参照しながら、造形装置1の構成について説明する。初めに、図2及び図3を参照しながら、本実施形態の造形装置1の構造について説明する。図2は、本実施形態の造形装置1の構造の一例を示す断面図である。図3は、本実施形態の造形装置1のシステム構成の一例を示すシステム構成図である。
以下の説明では、互いに直交するX軸、Y軸及びZ軸から定義されるXYZ直交座標系に相当する造形座標系を用いて、造形装置1を構成する各種構成要素の位置関係について説明する。尚、以下の説明では、説明の便宜上、X軸方向及びY軸方向のそれぞれが水平方向(つまり、水平面内の所定方向)であり、Z軸方向が鉛直方向(つまり、水平面に直交する方向であり、実質的には上下方向或いは重力方向)であるものとする。また、X軸、Y軸及びZ軸周りの回転方向(言い換えれば、傾斜方向)を、それぞれ、θX方向、θY方向及びθZ方向と称する。ここで、Z軸方向を重力方向としてもよい。また、XY平面を水平方向としてもよい。
造形装置1は、3次元構造物を形成するための造形動作を行うことが可能である。造形装置1は、3次元構造物を形成するための基礎の部材となるワークW上に、3次元構造物を形成可能である。ワークWが後述するステージ131である場合には、造形装置1は、ステージ131上に、3次元構造物を形成可能である。ワークWがステージ131に載置されている(或いは、ステージ131に載置されている)既存構造物である場合には、造形装置1は、既存構造物上に、3次元構造物を形成可能であってもよい。この場合、造形装置1は、既存構造物と一体化された3次元構造物を形成してもよい。既存構造物と一体化された3次元構造物を形成する動作は、既存構造物に新たな構造物を付加する動作と等価とみなせる。尚、既存構造物は例えば欠損箇所がある要修理品であってもよい。造形装置1は、要修理品の欠損箇所を埋めるように、要修理品に3次元構造物を形成してもよい。或いは、造形装置1は、既存構造物と分離可能な3次元構造物を形成してもよい。尚、図2は、ワークWが、ステージ131によって保持されている既存構造物である例を示している。また、以下でも、ワークWがステージ131によって保持されている既存構造物である例を用いて説明を進める。
本実施形態では、造形装置1が、レーザ肉盛溶接法に準拠した付加加工(付加造形)を行うことで3次元構造物を造形可能な装置である例について説明する。この場合、造形装置1は、積層造形技術を用いて物体を形成する3Dプリンタであるとも言える。尚、積層造形技術は、ラピッドプロトタイピング(Rapid Prototyping)、ラピッドマニュファクチャリング(Rapid Manufacturing)、又は、アディティブマニュファクチャリング(Additive Manufacturing)とも称されてもよい。レーザ肉盛溶接法(LMD)は、ダイレクト・メタル・デポジション、ダイレクト・エナジー・デポジション、レーザクラッディング、レーザ・エンジニアード・ネット・シェイピング、ダイレクト・ライト・ファブリケーション、レーザ・コンソリデーション、シェイプ・デポジション・マニュファクチャリング、ワイヤ-フィード・レーザ・デポジション、ガス・スルー・ワイヤ、レーザ・パウダー・フージョン、レーザ・メタル・フォーミング、セレクティブ・レーザ・パウダー・リメルティング、レーザ・ダイレクト・キャスティング、レーザ・パウダー・デポジション、レーザ・アディティブ・マニュファクチャリング、レーザ・ラピッド・フォーミングと称されてもよい。
造形装置1は、造形材料Mを加工光ELで加工して3次元構造物を形成する。造形材料Mは、所定強度以上の加工光ELの照射によって溶融可能な材料である。このような造形材料Mとして、例えば、金属性の材料及び樹脂性の材料の少なくとも一方が使用可能である。但し、造形材料Mとして、金属性の材料及び樹脂性の材料とは異なるその他の材料が用いられてもよい。造形材料Mは、粉状の又は粒状の材料である。つまり、造形材料Mは、粉粒体である。但し、造形材料Mは、粉粒体でなくてもよい。例えば、造形材料Mとして、ワイヤ状の造形材料及びガス状の造形材料の少なくとも一方が用いられてもよい。
3次元構造物を造形するために、造形装置1は、図2及び図3に示すように、材料供給源11と、加工装置12と、ステージ装置13と、光源14と、気体供給装置15と、筐体16と、制御装置17と、通信装置18とを備える。加工装置12とステージ装置13とのそれぞれの少なくとも一部は、筐体16の内部のチャンバ空間163IN内に収容されている。
材料供給源11は、加工装置12に造形材料Mを供給する。材料供給源11は、3次元構造物を形成するために単位時間あたりに必要とする分量の造形材料Mが加工装置12に供給されるように、当該必要な分量に応じた所望量の造形材料Mを供給する。
加工装置12は、材料供給源11から供給される造形材料Mを加工して3次元構造物を形成する。3次元構造物を形成するために、加工装置12は、加工ヘッド121と、ヘッド駆動系122とを備える。更に、加工ヘッド121は、加工光ELを射出可能な照射光学系1211と、造形材料Mを供給可能な材料ノズル1212とを備えている。加工ヘッド121と、ヘッド駆動系122とは、チャンバ空間163IN内に収容されている。但し、加工ヘッド121及びヘッド駆動系122の少なくとも一部が、筐体16の外部の空間である外部空間164OUTに配置されていてもよい。尚、外部空間164OUTは、造形ユーザが立ち入り可能な空間であってもよい。
ヘッド駆動系122は、加工ヘッド121を移動させる(つまり、動かす)。ヘッド駆動系122は、例えば、X軸、Y軸、Z軸、θX方向、θY方向及びθZ方向の少なくとも一つに沿って加工ヘッド121を移動させる。ヘッド駆動系122が加工ヘッド121を移動させると、加工ヘッド121とステージ131(更には、ステージ131に載置されたワークW)との相対位置が変わる。
材料ノズル1212から供給された造形材料Mには、照射光学系1211が射出した加工光ELが照射される。その結果、造形材料Mが溶融する。つまり、溶融した造形材料Mを含む溶融池が形成される。加工ヘッド121の移動に伴って溶融池に加工光ELが照射されなくなると、溶融池において溶融した造形材料Mが固化する。つまり、固化した造形材料Mの堆積物に相当する造形物が形成される。造形装置1は、このような加工光ELの照射による溶融池の形成及び溶融した造形材料Mの固化を含む一連の造形処理を、加工ヘッド121を、X軸方向及びY軸方向の少なくとも一方に沿って移動させながら繰り返す。その結果、溶融池の移動軌跡に応じたパターンで形成された造形物の集合体に相当する構造層が形成される。造形装置1は、複数の構造層が積層されるように複数の構造層を順に形成する。その結果、複数の構造層の集合体に相当する3次元構造物が造形される。
ステージ装置13は、ステージ131を備えている。ステージ131は、チャンバ空間163INに収容される。ステージ131には、ワークWが載置可能である。ステージ131は、ステージ131に載置されたワークWを保持可能であってもよい。この場合、ステージ131は、ワークWを保持するために、機械的なチャック、静電チャック及び真空吸着チャック等の少なくとも一つを備えていてもよい。或いは、ステージ131は、ステージ131に載置されたワークWを保持可能でなくてもよい。この場合、ワークWは、クランプレスでステージ131に載置されていてもよい。
ステージ駆動系132は、ステージ131を移動させる。ステージ駆動系132は、例えば、X軸、Y軸、Z軸、θX方向、θY方向及びθZ方向の少なくとも一つに沿ってステージ131を移動させる。ステージ駆動系132がステージ131を移動させると、加工ヘッド121とステージ131(更には、ステージ131に載置されたワークW)との相対位置が変わる。
光源14は、例えば、赤外光、可視光及び紫外光のうちの少なくとも一つを、加工光ELとして射出する。但し、加工光ELとして、その他の種類の光が用いられてもよい。加工光ELは、複数のパルス光(つまり、複数のパルスビーム)を含んでいてもよい。加工光ELは、連続光(CW:Continuous Wave)を含んでいてもよい。加工光ELは、レーザ光であってもよい。この場合、光源14は、レーザ光源(例えば、レーザダイオード(LD:Laser Diode)等の半導体レーザを含んでいてもよい。レーザ光源は、ファイバ・レーザ、CO2レーザ、YAGレーザ及びエキシマレーザ等のうちの少なくとも一つを含んでいてもよい。但し、加工光ELは、レーザ光でなくてもよい。光源14は、任意の光源(例えば、LED(Light Emitting Diode)及び放電ランプ等の少なくとも一つ)を含んでいてもよい。照射光学系1211は、光源14と、光ファイバ及びライトパイプ等の少なくとも一つを含む光伝送部材141を介して光学的に接続されている。照射光学系1211は、光伝送部材141を介して光源14から伝搬してくる加工光ELを射出する。
気体供給装置15は、チャンバ空間163INをパージするためのパージガスの供給源である。パージガスは、不活性ガスを含む。不活性ガスの一例として、窒素ガス及びアルゴンガスの少なくとも一方があげられる。気体供給装置15は、筐体16の隔壁部材161に形成された供給口162及び気体供給装置15と供給口162とを接続する供給管151を介して、チャンバ空間163INに接続されている。気体供給装置15は、供給管151及び供給口162を介して、チャンバ空間163INにパージガスを供給する。その結果、チャンバ空間163INは、パージガスによってパージされた空間となる。チャンバ空間163INに供給されたパージガスは、隔壁部材161に形成された不図示の排出口から排出されてもよい。尚、気体供給装置15は、不活性ガスが格納されたボンベであってもよい。不活性ガスが窒素ガスである場合には、気体供給装置15は、大気を原料として窒素ガスを発生する窒素ガス発生装置であってもよい。
気体供給装置15は、チャンバ空間163INに加えて材料供給源11からの造形材料Mが供給される混合装置112にパージガスを供給してもよい。具体的には、気体供給装置15は、気体供給装置15と混合装置112とを接続する供給管152を介して混合装置112と接続されていてもよい。その結果、気体供給装置15は、供給管152を介して、混合装置112にパージガスを供給する。この場合、材料供給源11からの造形材料Mは、供給管152を介して気体供給装置15から供給されたパージガスによって、供給管111内を通って材料ノズル1212に向けて供給(具体的には、圧送)されてもよい。この場合、材料ノズル1212は、材料供給口から、造形材料Mを圧送するためのパージガスと共に造形材料Mを供給することになる。
筐体16は、筐体16の内部空間であるチャンバ空間163INに少なくとも加工装置12及びステージ装置13のそれぞれの少なくとも一部を収容する収容装置である。筐体16は、チャンバ空間163INを規定する隔壁部材161を含む。隔壁部材161は、チャンバ空間163INと、筐体16の外部空間164OUTとを隔てる部材である。この場合、隔壁部材161によって囲まれた空間が、チャンバ空間163INとなる。尚、隔壁部材161には、開閉可能な扉が設けられていてもよい。この扉は、ワークWをステージ131に載置する際に開かれてもよい。扉は、ステージ131からワークW及び/又は3次元構造物を取り出す際に開かれてもよい。扉は、造形動作が行われている期間中には閉じられていてもよい。なお、筐体16の外部空間164OUTからチャンバ空間163INを視認するための観察窓(不図示)が、隔壁部材161に形成されていてもよい。
制御装置17は、造形装置1の動作を制御する。制御装置17は、例えば、演算装置と、記憶装置とを備えていてもよい。演算装置は、例えば、CPU(Central Processing Unit)及びGPU(Graphics Processing Unit)の少なくとも一方を含んでいてもよい。記憶装置は、例えば、メモリを含んでいてもよい。制御装置17は、演算装置がコンピュータプログラムを実行することで、造形装置1の動作を制御する装置として機能する。このコンピュータプログラムは、制御装置17が行うべき後述する動作を演算装置に行わせる(つまり、実行させる)ためのコンピュータプログラムである。つまり、このコンピュータプログラムは、造形装置1に後述する動作を行わせるように制御装置17を機能させるためのコンピュータプログラムである。演算装置が実行するコンピュータプログラムは、制御装置17が備える記憶装置(つまり、記録媒体)に記録されていてもよいし、制御装置17に内蔵された又は制御装置17に外付け可能な任意の記憶媒体(例えば、ハードディスクや半導体メモリ)に記録されていてもよい。或いは、演算装置21は、実行するべきコンピュータプログラムを、通信装置18を介して、制御装置17の外部の装置からダウンロードしてもよい。
制御装置17は、データ生成サーバ2から送信された3次元モデルデータに基づいて、3次元構造物(つまり、端末ユーザが設定した形状を有する3次元構造物)を造形するように造形装置1の動作を制御してもよい。例えば、制御装置17は、3次元モデルデータに基づいて、造形装置1の動作内容を規定する造形制御情報を生成してもよい。具体的には、制御装置17は、3次元モデルデータに基づいて、3次元モデルデータが表す3次元構造物(つまり、端末ユーザが設定した形状情報によって規定される形状を有する3次元構造物)を造形するための造形装置1の動作内容を規定する造形制御情報を生成してもよい。その後、制御装置17は、造形制御情報に基づいて、3次元構造物(つまり、端末ユーザが設定した形状を有する3次元構造物)を造形するように造形装置1の動作を制御してもよい。
制御装置17は、造形装置1の内部に設けられていなくてもよい。例えば、制御装置17は、造形装置1外にサーバ等として設けられていてもよい。例えば、制御装置17は、データ生成サーバ2と一体化されていてもよい。この場合、制御装置17と造形装置1とは、有線及び/又は無線のネットワーク(例えば、通信ネットワーク4、或いは、データバス及び/又は通信回線)で接続されていてもよい。有線のネットワークとして、例えばIEEE1394、RS-232x、RS-422、RS-423、RS-485及びUSBの少なくとも一つに代表されるシリアルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、パラレルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、10BASE-T、100BASE-TX及び1000BASE-Tの少なくとも一つに代表されるイーサネット(登録商標)に準拠したインタフェースを用いるネットワークが用いられてもよい。無線のネットワークとして、電波を用いたネットワークが用いられてもよい。電波を用いたネットワークの一例として、IEEE802.1xに準拠したネットワーク(例えば、無線LAN及びBluetooth(登録商標)の少なくとも一方)があげられる。無線のネットワークとして、赤外線を用いたネットワークが用いられてもよい。無線のネットワークとして、光通信を用いたネットワークが用いられてもよい。この場合、制御装置17と造形装置1とは通信ネットワーク4等を介して各種の情報の送受信が可能となるように構成されていてもよい。また、制御装置17は、通信ネットワーク4等を介して造形装置1にコマンドや制御パラメータ等の情報を送信可能であってもよい。造形装置1が備える通信装置18は、制御装置17からのコマンドや制御パラメータ等の情報を、通信ネットワーク4等を介して受信する受信装置として機能してもよい。造形装置1が備える通信装置18は、制御装置17に対してコマンドや制御パラメータ等の情報を、通信ネットワーク4等を介して送信する送信装置として機能してもよい。或いは、制御装置17が行う処理のうちの一部を行う第1制御装置が造形装置1の内部に設けられている一方で、制御装置17が行う処理のうちの他の一部を行う第2制御装置が造形装置1の外部に設けられていてもよい。例えば、制御装置17が行う処理のうちの一部が、データ生成サーバ2によって行われてもよい。
尚、制御装置17が実行するコンピュータプログラムを記録する記録媒体としては、CD-ROM、CD-R、CD-RWやフレキシブルディスク、MO、DVD-ROM、DVD-RAM、DVD-R、DVD+R、DVD-RW、DVD+RW及びBlu-ray(登録商標)等の光ディスク、磁気テープ等の磁気媒体、光磁気ディスク、USBメモリ等の半導体メモリ、及び、その他プログラムを格納可能な任意の媒体の少なくとも一つが用いられてもよい。記録媒体には、コンピュータプログラムを記録可能な機器(例えば、コンピュータプログラムがソフトウェア及びファームウェア等の少なくとも一方の形態で実行可能な状態に実装された汎用機器又は専用機器)が含まれていてもよい。更に、コンピュータプログラムに含まれる各処理や機能は、制御装置17(つまり、コンピュータ)がコンピュータプログラムを実行することで制御装置17内に実現される論理的な処理ブロックによって実現されてもよいし、制御装置17が備える所定のゲートアレイ(FPGA、ASIC)等のハードウェアによって実現されてもよいし、論理的な処理ブロックとハードウェアの一部の要素を実現する部分的ハードウェアモジュールとが混在する形式で実現してもよい。
通信装置18は、通信ネットワーク4を介して、データ生成サーバ2と通信可能である。本実施形態では、通信装置18は、データ生成サーバ2が生成した3次元モデルデータをデータ生成サーバ2から受信可能である。
(1-3)データ生成サーバ2の構成
続いて、図4を参照しながら、データ生成サーバ2の構成について説明する。図4は、データ生成サーバ2の構成を示すブロック図である。
続いて、図4を参照しながら、データ生成サーバ2の構成について説明する。図4は、データ生成サーバ2の構成を示すブロック図である。
図4に示すように、データ生成サーバ2は、演算装置21と、記憶装置22と、通信装置23とを備えている。更に、データ生成サーバ2は、入力装置24と、出力装置25とを備えていてもよい。但し、データ生成サーバ2は、入力装置24及び出力装置25の少なくとも一つを備えていなくてもよい。演算装置21と、記憶装置22と、通信装置23と、入力装置24と、出力装置25とは、データバス26を介して接続されていてもよい。
尚、データ生成サーバ2と端末装置3とは、一体的な装置(或いは、一体的なシステム)であってもよい。造形装置1、データ生成サーバ2及び端末装置3の少なくとも二つは、一体的な装置(或いは、一体的なシステム)であってもよい。ここで、「装置Xと装置Yとが一体的な装置となる」状態は、「装置Xと装置Yとが同一の筐体に収容された状態で、一体的な装置を構成する」状態を含んでいてもよい。「装置Xと装置Yとが一体的な装置となる」状態は、「装置Xと装置Yとがそれぞれ別々の筐体に収容された状態で、一体的な装置を構成する」状態を含んでいてもよい。
演算装置21は、例えば、CPU及びGPUの少なくとも一方を含む。演算装置21は、コンピュータプログラムを読み込む。例えば、演算装置21は、記憶装置22が記憶しているコンピュータプログラムを読み込んでもよい。例えば、演算装置21は、コンピュータで読み取り可能であって且つ一時的でない記録媒体が記憶しているコンピュータプログラムを、図示しない記録媒体読み取り装置を用いて読み込んでもよい。演算装置21は、通信装置23を介して、データ生成サーバ2の外部に配置される不図示の装置からコンピュータプログラムを取得してもよい(つまり、ダウンロードしてもよい又は読み込んでもよい)。演算装置21は、読み込んだコンピュータプログラムを実行する。その結果、演算装置21内には、データ生成サーバ2が行うべき動作(例えば、3次元モデルデータを生成する動作)を実行するための論理的な機能ブロックが実現される。つまり、演算装置21は、データ生成サーバ2が行うべき動作を実行するための論理的な機能ブロックを実現するためのコントローラとして機能可能である。
図4には、3次元モデルデータを生成するために演算装置21内に実現される論理的な機能ブロックの一例が示されている。図4に示すように、演算装置21内には、表示制御部211と、情報取得部212と、データ生成部213とが実現される。表示制御部211は、設定GUI9を表示するためのGUI情報を生成する。情報取得部212は、通信装置33を介して、設定GUI9を用いて端末ユーザが設定した形状情報を端末装置3から取得する。データ生成部213は、情報取得部212が取得した形状情報に基づいて、端末ユーザが設定した形状情報によって規定される形状を有する3次元構造物の3次元モデルを表す3次元モデルデータを生成する。
記憶装置22は、所望のデータを記憶可能である。例えば、記憶装置22は、演算装置21が実行するコンピュータプログラムを一時的に記憶していてもよい。記憶装置22は、演算装置21がコンピュータプログラムを実行している際に演算装置21が一時的に使用するデータを一時的に記憶してもよい。記憶装置22は、データ生成サーバ2が長期的に保存するデータを記憶してもよい。尚、記憶装置22は、RAM(Random Access Memory)、ROM(Read Only Memory)、ハードディスク装置、光磁気ディスク装置、SSD(Solid State Drive)及びディスクアレイ装置のうちの少なくとも一つを含んでいてもよい。つまり、記憶装置22は、一時的でない記録媒体を含んでいてもよい。
通信装置23は、通信ネットワーク4を介して、造形装置1と通信可能である。本実施形態では、通信装置23は、データ生成部213が生成した3次元モデルデータを造形装置1に送信可能である。更に、通信装置23は、通信ネットワーク5を介して、端末装置3と通信可能である。本実施形態では、通信装置23は、表示制御部211が生成した設定GUI9に関するGUI情報を端末装置3に送信し、且つ、設定GUI9を用いて端末ユーザが設定した形状情報を端末装置3から受信可能である。
入力装置24は、データ生成サーバ2の外部からのデータ生成サーバ2に対する情報の入力を受け付ける装置である。例えば、入力装置24は、サーバユーザが操作可能な操作装置(例えば、キーボード、マウス及びタッチパネルのうちの少なくとも一つ)を含んでいてもよい。例えば、入力装置24は、データ生成サーバ2に対して外付け可能な記録媒体にデータとして記録されている情報を読み取り可能な読取装置を含んでいてもよい。
出力装置25は、データ生成サーバ2の外部に対して情報を出力する装置である。例えば、出力装置25は、情報を画像として出力してもよい。つまり、出力装置25は、出力したい情報を示す画像を表示可能な表示装置(いわゆる、ディスプレイ)を含んでいてもよい。例えば、出力装置25は、情報を音声として出力してもよい。つまり、出力装置25は、音声を出力可能な音声装置(いわゆる、スピーカ)を含んでいてもよい。例えば、出力装置25は、紙面に情報を出力してもよい。つまり、出力装置25は、紙面に所望の情報を印刷可能な印刷装置(いわゆる、プリンタ)を含んでいてもよい。
(1-4)端末装置3の構成
続いて、図5を参照しながら、端末装置3の構成について説明する。図5は、端末装置3の構成を示すブロック図である。
続いて、図5を参照しながら、端末装置3の構成について説明する。図5は、端末装置3の構成を示すブロック図である。
図5に示すように、端末装置3は、演算装置31と、記憶装置32と、通信装置33と、入力装置34と、表示装置35とを備えている。演算装置31と、記憶装置32と、通信装置33と、入力装置34と、表示装置35とは、データバス36を介して接続されていてもよい。尚、端末装置3は、記憶装置32を備えていなくてもよい。この場合、データ生成サーバ2が備える記憶装置22が、端末装置3の記憶装置32として用いられてもよい。
演算装置31は、例えば、CPU及びGPUの少なくとも一方を含む。演算装置31は、コンピュータプログラムを読み込む。例えば、演算装置31は、記憶装置32が記憶しているコンピュータプログラムを読み込んでもよい。例えば、演算装置31は、コンピュータで読み取り可能であって且つ一時的でない記録媒体が記憶しているコンピュータプログラムを、図示しない記録媒体読み取り装置を用いて読み込んでもよい。演算装置31は、通信装置33を介して、端末装置3の外部に配置される不図示の装置からコンピュータプログラムを取得してもよい(つまり、ダウンロードしてもよい又は読み込んでもよい)。演算装置31は、読み込んだコンピュータプログラムを実行する。その結果、演算装置31内には、端末装置3が行うべき動作を実行するための論理的な機能ブロックが実現される。つまり、演算装置31は、端末装置3が行うべき動作を実行するための論理的な機能ブロックを実現するためのコントローラとして機能可能である。
図5には、演算装置31内に実現される論理的な機能ブロックの一例が示されている。図5に示すように、演算装置31内には、表示制御部311と、情報取得部312とが実現される。表示制御部311は、データ生成サーバ2から送信されるGUI情報に基づいて、設定GUI9を表示するように表示装置35を制御する。情報取得部312は、設定GUI9を用いて端末ユーザが設定した形状情報を取得する。
記憶装置32は、所望のデータを記憶可能である。例えば、記憶装置32は、演算装置31が実行するコンピュータプログラムを一時的に記憶していてもよい。記憶装置32は、演算装置31がコンピュータプログラムを実行している際に演算装置31が一時的に使用するデータを一時的に記憶してもよい。記憶装置32は、端末装置3が長期的に保存するデータを記憶してもよい。尚、記憶装置32は、RAM、ROM、ハードディスク装置、光磁気ディスク装置、SSD及びディスクアレイ装置のうちの少なくとも一つを含んでいてもよい。つまり、記憶装置32は、一時的でない記録媒体を含んでいてもよい。
通信装置33は、通信ネットワーク5を介して、データ生成サーバ2と通信可能である。本実施形態では、通信装置33は、設定GUI9に関するGUI情報をデータ生成サーバ2から受信(つまり、取得)し、且つ、設定GUI9を用いて端末ユーザが設定した形状情報(つまり、情報取得部312が取得した形状情報)をデータ生成サーバ2に送信可能である。
入力装置34は、端末装置3の外部からの端末装置3に対する情報の入力を受け付ける装置である。例えば、入力装置34は、端末ユーザが操作可能な操作装置(例えば、キーボード、マウス及びタッチパネルのうちの少なくとも一つ)を含んでいてもよい。例えば、入力装置34は、端末装置3に対して外付け可能な記録媒体にデータとして記録されている情報を読み取り可能な読取装置を含んでいてもよい。
表示装置35は、情報を画像として出力可能な装置である。つまり、表示装置35は、出力したい情報を示す画像を表示可能な装置である。本実施形態では、表示装置35は、設定GUI9を表示する。端末ユーザは、表示装置35が表示した設定GUI9を用いて、形状情報を設定する。つまり、端末ユーザは、表示装置35が表示した設定GUI9を介して、入力装置34を用いて形状情報を設定するための操作を行うことで、形状情報を設定する。
尚、表示装置35が入力装置として機能可能である(例えば、表示装置35がタッチパネルを備えている)場合には、表示装置35は、入力装置と称されてもよい。この場合、端末装置3は、入力装置34を備えていなくてもよい。端末ユーザは、表示装置35を入力装置34として操作してもよい。端末ユーザは、表示装置35を操作しつつ、入力装置34を操作してもよい。つまり、端末ユーザは、表示装置35を用いた情報の入力機能と、入力装置34を用いた情報の入力機能とを併用してもよい。
(2)造形システムSYSで行われる処理
続いて、図6を参照しながら、造形システムSYSで行われる処理(つまり、3次元構造物が造形される処理であり、例えば、造形受託処理)について説明する。図6は、造形システムSYSで行われる処理の流れを示すフローチャートである。
続いて、図6を参照しながら、造形システムSYSで行われる処理(つまり、3次元構造物が造形される処理であり、例えば、造形受託処理)について説明する。図6は、造形システムSYSで行われる処理の流れを示すフローチャートである。
図6に示すように、造形システムSYSで処理(例えば、造形受託処理)が開始されると、データ生成サーバ2は、端末装置3を認証するための認証動作を行う(ステップS11)。データ生成サーバ2は、所望の認証方法を用いて認証動作を行ってもよい。例えば、データ生成サーバ2は、ID情報とパスワード情報とに基づく認証方法を用いて認証動作を行ってもよい。この場合、例えば、端末ユーザは、端末装置3の入力装置34を用いて、端末ユーザを識別するためのID情報と、端末ユーザに固有のパスワードとを入力してもよい。端末装置3の通信装置33は、端末ユーザが入力したID情報及びパスワードを、通信ネットワーク5を介してデータ生成サーバ2に送信してもよい。データ生成サーバ2は、端末装置3から送信されたID情報及びパスワードを用いて、端末装置3を認証するための認証動作を行ってもよい。或いは、例えば、データ生成サーバ2は、ID情報とパスワード情報とに基づく認証方法とは異なるその他の認証方法を用いて認証動作を行ってもよい。その他の認証方法の一例として、トークンを用いる認証方法及び端末ユーザの生体情報を用いる認証方法の少なくとも一つがあげられる。
認証動作が完了した後(つまり、端末装置3がデータ生成サーバ2にアクセスする権限を有していることをデータ生成サーバ2が確認した後)、データ生成サーバ2の表示制御部211は、設定GUI9を端末装置3の表示装置35に表示させるためのGUI情報(表示情報)を生成する(ステップS12)。つまり、表示制御部211は、端末ユーザに対して、設定GUI9(設定GUI9に関する表示内容)を提供する。その後、表示制御部211は、生成したGUI情報を、通信装置23を用いて端末装置3に送信する。端末装置3の表示装置35は、データ生成サーバ2から送信されたGUI情報に基づいて、設定GUI9を表示する(ステップS12)。
表示制御部211は、設定GUI9を構成する表示画面に関する情報(例えば、画素情報)を含むGUI情報を生成しいてもよい。この場合、端末装置3の演算装置31は、GUI情報が示す表示画面によって構成される設定GUI9を表示するように、表示装置35を制御してもよい。或いは、表示制御部211は、設定GUI9を表示するように端末装置3の表示装置35を制御するための情報を含むGUI情報を生成してもよい。この場合、端末装置3の表示装置35は、演算装置31による制御とは無関係に、データ生成サーバ2の制御下で、GUI情報が示す設定GUI9を表示してもよい。表示制御部211は、設定GUI9を表示するように表示装置35を制御してもよい。
設定GUI9の一例が図7に示されている。図7に示すように、設定GUI9は、入力画面91と、出力画面92とを含んでいてもよい。つまり、設定GUI9は、入力画面91と出力画面92とを含む表示画面を構成していてもよい。
入力画面91は、3次元構造物の形状に関する形状情報を設定する(指定する、以下同じ)ために端末ユーザが操作可能なGUIを含む画面(言い換えれば、入力部)である。端末ユーザは、入力装置34を用いて、入力画面91を操作してもよい。つまり、端末ユーザは、入力装置34を用いて、入力画面91上で形状情報を設定するための操作を行ってもよい。その結果、端末装置3の情報取得部312は、設定GUI9を用いて端末ユーザが設定した形状情報を取得する(図6のステップS13)。その後、情報取得部312は、端末装置3の通信装置33を用いて、端末ユーザが設定した形状情報を、通信ネットワーク5を介してデータ生成サーバ2に送信する。その結果、データ生成サーバ2の通信装置23は、端末装置3から送信される形状情報を受信(つまり、取得)する(図6のステップS13)。
形状情報を設定するために、端末ユーザは、入力画面91を用いて、3次元構造物の形状を規定するパラメータの値を設定(指定、以下同じ)してもよい。この場合、入力画面91は、パラメータの値を設定するために端末ユーザが操作可能なパラメータ設定GUI911を含んでいてもよい。情報取得部312は、パラメータ設定GUI911を用いて設定されたパラメータに関するパラメータ情報を、形状情報の少なくとも一部として取得してもよい。パラメータは、3次元構造物の形状を定量的に規定する数値パラメータを含んでいてもよい。この場合、パラメータ設定GUI911は、数値パラメータの設定項目名が表示されたラベルと、数値パラメータの設定値を入力可能なテキストボックス(或いは、複数の候補値の中から数値パラメータの設定値を指定可能なコンボボックス、ドロップダウンリスト又はラジオボタン等)とを含んでいてもよい。或いは、パラメータは、3次元構造物の形状を設定するフラグパラメータを含んでいてもよい。フラグパラメータは、3次元構造物の形状を、フラグパラメータの値に対応する一の形状に設定するために用いられる。例えば、フラグパラメータのフラグ値が1というフラグ値に設定された場合には、3次元構造物の形状は、1というフラグ値に対応する第1の形状に設定され、フラグパラメータのフラグ値が2というフラグ値に設定された場合には、3次元構造物の形状は、2というフラグ値に対応する第2の形状に設定されてもよい。この場合、パラメータ設定GUI911は、フラグパラメータの設定項目名が表示されたラベルと、フラグパラメータの設定値(フラグ値)を指定可能なテキストボックス(或いは、複数の候補値の中からフラグパラメータの設定値を指定可能なコンボボックス、ドロップダウンリスト又はラジオボタン等)とを含んでいてもよい。
例えば、3次元構造物の少なくとも一部分の位置が変わると、3次元構造物の形状が変わる。このため、パラメータは、3次元構造物の少なくとも一部分の位置を規定するパラメータを含んでいてもよい。例えば、3次元構造物の少なくとも一部分のサイズが変わると、3次元構造物の形状が変わる。このため、パラメータは、3次元構造物の少なくとも一部分のサイズを規定するパラメータを含んでいてもよい。例えば、3次元構造物の少なくとも一部分の形状が変わると、3次元構造物の形状が変わる。このため、パラメータは、3次元構造物の少なくとも一部分の形状を規定するパラメータを含んでいてもよい。例えば、3次元構造物の少なくとも一部分の方向(例えば、3次元構造物の少なくとも一部分が向いている又は延びている方向)が変わると、3次元構造物の形状が変わる。このため、パラメータは、3次元構造物の少なくとも一部分の方向を規定するパラメータを含んでいてもよい。
パラメータ設定GUI911には、端末ユーザが設定したパラメータの設定値(つまり、設定済みのパラメータの値)が表示されていてもよい。つまり、パラメータ設定GUI911を含む入力画面91は、設定済みのパラメータの値を表示可能であってもよい。入力画面91には、設定済みのパラメータの値が提供されてもよい。パラメータ設定GUI911に表示されるパラメータの設定値は、端末ユーザがパラメータを設定し直すたびに更新されてもよい。パラメータ設定GUI911に表示されるパラメータの設定値は、周期的に又はランダムな周期で更新されてもよい。パラメータ設定GUI911に表示されるパラメータの設定値は、端末ユーザの指示に基づいて(例えば、設定GUI9に含まれる、パラメータの設定値を更新するためのボタンを端末ユーザが押下することをトリガに)更新されてもよい。その結果、端末ユーザは、端末ユーザ自身が設定しているパラメータの最新の設定値を認識することができる。尚、パラメータ設定GUI911に表示されるパラメータの設定値の更新は、データ生成サーバ2の表示制御部211の制御下で行われてもよい。この場合、表示制御部211は、端末装置3から取得した形状情報に基づいて、パラメータ設定GUI911に表示されるパラメータの設定値を更新するようにGUI情報を生成してもよい。或いは、パラメータ設定GUI911に表示されるパラメータの設定値の更新は、端末装置3の表示制御部311の制御下で行われてもよい。この場合、表示制御部311は、端末装置3の情報取得部312が取得した形状情報に基づいて、パラメータ設定GUI911に表示されるパラメータの設定値を更新してもよい。
形状情報を設定するために、端末ユーザは、入力画面91を用いて、パラメータの値を設定することに加えて又は代えて、3次元構造物の形状を規定するアイコンを選択してもよい。アイコンは、3次元構造物の形状として設定可能な特定の形状に関連付けられている。この場合、入力画面91は、3次元構造物の形状を特定の形状に設定するために端末ユーザが選択可能なアイコンを複数(或いは、少なくとも一つ)含むアイコン選択GUI912を含んでいてもよい。アイコン選択GUI912に含まれる複数のアイコンのそれぞれは、端末ユーザが選択可能である。端末ユーザは、アイコン選択GUI912に含まれる複数のアイコンの中から、端末ユーザが造形することを希望する3次元構造物の形状に関連付けられている一のアイコンを選択することで、形状情報を設定してもよい。情報取得部312は、アイコン選択GUI912を用いて選択されたアイコンに関するアイコン情報(つまり、選択されたアイコンに関連付けられている形状に関する情報)を、形状情報の少なくとも一部として取得してもよい。
アイコン設定GUI912には、端末ユーザが選択したアイコンが、端末ユーザが選択していないアイコンとは異なる表示態様で表示されていてもよい。図7は、端末ユーザが選択したアイコンがハッチングされた領域に重ねて表示される一方で、端末ユーザが選択していないアイコンがハッチングされた領域に重ねて表示されてない例を示している。但し、端末ユーザが選択したアイコンの表示態様と端末ユーザが選択していないアイコンの表示態様とが異なる状態は、図7に示す状態に限定されることはない。例えば、端末ユーザが選択したアイコンがグレーアウト表示される一方で、端末ユーザが選択していないアイコンがグレーアウト表示されなくてもよい。その結果、端末ユーザは、端末ユーザ自身が選択しているアイコン(つまり、端末ユーザ自身が設定している3次元構造物の形状)を認識することができる。
尚、端末ユーザは、複数のアイコンから一のアイコンを選択することに加えて又は代えて、設定GUI9上で(例えば、入力画面91上で)3次元構造物の形状を描画することで、形状情報を設定してもよい。この場合、設定GUI9は、端末ユーザが3次元構造物の形状を描画可能な描画GUIを含んでいてもよい。
入力画面91は、3次元構造物の形状とは異なる3次元構造物の任意の特徴に関する特徴情報を設定するために端末ユーザが操作可能な特徴設定GUI913を含んでいてもよい。例えば、図7に示すように、特徴設定GUI913は、3次元構造物の表面粗さを設定するために端末ユーザが操作可能なGUIを含んでいてもよい。特徴設定GUI913は、3次元構造物を造形するための材料の種類を設定するために端末ユーザが操作可能なGUIを含んでいてもよい。3次元構造物を造形するために複数種類の材料が用いられる場合には、特徴設定GUI913は、複数種類の材料の混合率を設定するために端末ユーザが操作可能なGUIを含んでいてもよい。特徴設定GUI913を用いて設定された特徴情報は、形状情報と同様に、端末装置3からデータ生成サーバ2に送信されてもよい。データ生成サーバ2は、端末装置3から送信された特徴情報を用いて、特徴情報が規定する特徴を有する3次元造形物が造形されるように造形装置1を制御するための造形制御情報を生成してもよい。つまり、造形装置1は、特徴設定GUI913を用いて設定された特徴情報に基づいて、特徴情報が規定する特徴を有する3次元造形物を造形してもよい。
特徴設定GUI913には、端末ユーザが設定した特徴情報の設定値が表示されていてもよい。特徴設定GUI913に表示される特徴情報の設定値は、端末ユーザが特徴情報を設定し直すたびに更新されてもよい。特徴設定GUI913に表示される特徴情報の設定値は、周期的に又はランダムな周期で更新されてもよい。特徴設定GUI913に表示される特徴情報の設定値は、端末ユーザの指示に基づいて(例えば、設定GUI9に含まれる、特徴情報の設定値を更新するためのボタンを端末ユーザが押下することをトリガに)更新されてもよい。その結果、端末ユーザは、端末ユーザ自身が設定している特徴情報の最新の設定値を認識することができる。尚、特徴情報の設定値の表示方法については、上述したパラメータの設定値の表示方法と同一であってもよいため、その詳細な説明を省略する。
尚、パラメータ設定GUI911を用いて設定される形状情報は、アイコン選択GUI912を用いて設定されてもよい。同様に、アイコン選択GUI912を用いて設定される形状情報は、パラメータ設定GUI911を用いて設定されてもよい。要は、入力画面91を用いて形状情報が設定される限りは、形状情報を設定する方法が限定されることはない。特徴情報についても同様である。
出力画面92は、入力画面91を用いて端末ユーザが設定した形状情報に基づく3次元モデル(つまり、モデル情報)を表示可能な画面(言い換えれば、出力部)である。例えば、出力画面92は、入力画面91に含まれるパラメータ設定GUI911を用いて端末ユーザが設定したパラメータの値に基づく3次元モデル(つまり、端末ユーザが設定したパラメータの値が規定する形状を有する3次元構造物の3次元モデル)を表示可能であってもよい。例えば、出力画面92は、入力画面91に含まれるアイコン選択GUI912を用いて端末ユーザが選択したアイコンに基づく3次元モデル(つまり、端末ユーザが選択したアイコンに関連付けられている特定の形状を有する3次元構造物の3次元モデル)を表示可能であってもよい。例えば、出力画面92は、入力画面91に含まれる特徴設定GUI913を用いて端末ユーザが設定した特徴情報に基づく3次元モデル(つまり、端末ユーザが設定した特徴情報が規定する特徴を有する3次元構造物の3次元モデル)を表示可能であってもよい。
データ生成サーバ2は、入力画面91を用いて端末ユーザが設定した形状情報に基づく3次元モデルを、端末装置3の表示装置35が表示する出力画面92に提供する。具体的には、出力画面92を含む設定GUI9に関するGUI情報を生成するために、データ生成サーバ2のデータ生成部213は、情報取得部212が端末装置3から取得した形状情報(更には、必要に応じてその他の特徴情報)に基づいて、端末ユーザが設定した形状情報に基づく3次元モデルを表す3次元モデルデータを生成する。その後、表示制御部211は、データ生成部213が生成した3次元モデルデータが表す3次元モデルが表示される出力画面92を含む設定GUI9に関するGUI情報を生成する。その後、表示制御部211によって生成されたGUI情報は、通信装置23を用いて端末装置3に送信される。端末装置3の表示装置35は、データ生成サーバ2から送信されたGUI情報に基づいて、設定GUI9を表示する。つまり、表示装置35は、出力画面92を用いて、端末ユーザが設定した形状情報に基づく3次元モデルを表示する。そつまり、表示装置35は、出力画面92に、端末ユーザが設定した形状情報に基づく3次元モデルを表示する。その結果、端末ユーザは、端末ユーザ自身が設定した形状情報に基づく3次元モデルの形状等を比較的容易に認識することができる。
出力画面92に表示される3次元モデルは、どのようなフォーマットの3次元モデルであってもよい。例えば、出力画面92には、ソリッドモデル又はサーフェスモデルに相当する3次元モデル(図7参照)が表示されてもよい。例えば、出力画面92には、ワイヤフレームモデルに相当する3次元モデル(後述の図9参照)が表示されてもよい。
表示制御部211は、情報取得部212が端末装置3から形状情報を新たに取得する都度、新たに取得された形状情報に基づく3次元モデルが表示される出力画面92を含む設定GUI9に関するGUI情報を生成してもよい。表示制御部211は、設定GUI9を用いて端末ユーザが形状情報を新たに設定する(例えば、変更又は更新する)都度、端末ユーザが新たに設定した形状情報に基づく3次元モデルが表示される出力画面92を含む設定GUI9に関するGUI情報を生成してもよい。表示制御部211は、設定GUI9を用いて端末ユーザが形状情報を新たに設定する(例えば、変更又は更新する)都度、出力画面92に表示される3次元モデルを更新してもよい。この場合、入力画面91を用いて設定された形状情報がリアルタイムに反映された3次元モデルが、出力画面92に表示される。その結果、端末ユーザは、端末ユーザ自身が設定した最新の形状情報に基づく3次元モデルの形状等を比較的容易に認識することができる。或いは、表示制御部211は、入力画面91を用いて設定された形状情報が反映された3次元モデルが表示される出力画面92を含む設定GUI9に関するGUI情報を、周期的に又はランダムな周期で生成してもよい。この場合、出力画面92は、出力画面92に表示されている3次元モデルを、周期的に又はランダムな周期で更新する。或いは、表示制御部211は、端末ユーザの指示に基づいて(例えば、設定GUI9に含まれる、出力画面92に表示されている3次元モデルを更新するためのボタンを端末ユーザが押下することをトリガに)、入力画面91を用いて設定された形状情報が反映された3次元モデルが表示される出力画面92を含む設定GUI9に関するGUI情報を生成してもよい。この場合、出力画面92は、端末ユーザが望むタイミングで、出力画面92に表示されている3次元モデルを更新する。
表示制御部211は、造形装置1により付加造形される3次元構造物の種類に応じた適切な形状情報を端末ユーザが設定できるように、3次元構造物の種類に応じた入力画面91を含む設定GUI9を生成してもよい。つまり、表示制御部211は、3次元構造物の種類に応じた入力画面91を含む設定GUI9を表示するように、表示装置35を制御してもよい。本実施形態では、造形装置1が、中空構造を有する部材に相当するパイプ(尚、パイプは、チューブと称されてもよい)及び厚み方向のサイズに比べて厚み方向に直交する方向のサイズが大きくなるように広がっている板状の部材であるプレートの少なくとも一方を含む3次元構造物を造形する例について説明する。このため、以下では、3次元構造物がパイプを含む場合に表示される入力画面91と、3次元構造物がプレートを含む場合に表示される入力画面91とについて順に説明する。つまり、パイプの形状に関する形状情報を設定するための入力画面91と、プレートの形状に関する形状情報を設定するための入力画面91とについて順に説明する。
図8は、パイプの形状に関する形状情報を設定するための入力画面91(以降、“入力画面91pi”と称する)の一例を示す。
図8に示すように、入力画面91piは、パイプの少なくとも一部分の位置を規定するパラメータの値を設定するためのパラメータ設定GUI911pi(以降、“パラメータ設定GUI911pi#1”と称する)を含んでいてもよい。つまり、パイプの形状を規定するパラメータは、パイプの少なくとも一部分の位置を規定するパラメータを含んでいてもよい。本実施形態では、パイプの少なくとも一部分の位置を規定するパラメータとして、パイプが通過する複数の点Pの位置(例えば、造形座標系と同じ又は異なる表示座標系での位置、以下同じ)が用いられる。具体的には、図9に示すようにパイプの中心線Cが始点Poから中間点P1及びP2を順に通過して終点Peに到達する場合には、入力画面91piは、図8に示すように、始点Po、中間点P1及びP2並びに終点Peの位置を規定するパラメータの値を設定可能なパラメータ設定GUI911pi#1を含んでいてもよい。尚、点Pの数が図9に示す四つに限定されることはない。つまり、端末ユーザは、所望数の点Pの位置を設定してもよい。端末ユーザは、入力画面91piを用いて、新たな点Pを所望位置に追加してもよいし、既存の点Pを削除してもよい。例えば、図9に示す例では、端末ユーザは、始点Po、中間点P1及びP2並びに終点Peに加えて、他の点P(例えば、始点Poと中間点P1との間に位置する点P)を追加し、且つ当該追加した他の点Pの位置を設定してもよい。例えば、図9に示す例では、端末ユーザは、始点Po、中間点P1及びP2並びに終点Peのうちの少なくとも一つの位置を設定しなくてもよい。端末ユーザが位置を設定しない点Pに関する情報は、入力画面91に表示されなくてもよい。
パイプが通過する複数の点Pを用いて形状情報が設定される場合には、出力画面92には、図10に示すように、複数の点Pが関連付けられた3次元モデルが表示されてもよい。この場合、端末ユーザは、複数の点Pの位置等を設定することで3次元モデルの形状がどのように変わるかを比較的容易に認識することができる。
再び図8において、図8に示すように、入力画面91piは、パイプの少なくとも一部分の方向(つまり、パイプの少なくとも一部分が延びる(進展する)方向)を規定するパラメータの値を設定するためのパラメータ設定GUI911pi(以降、“パラメータ設定GUI911pi#2”と称する)を含んでいてもよい。つまり、パイプの形状を規定するパラメータは、パイプの少なくとも一部分の方向を規定するパラメータを含んでいてもよい。本実施形態では、パイプの少なくとも一部分の方向を規定するパラメータとして、パイプが通過する複数の点Pの位置においてパイプが延びる方向(例えば、点Pを起点に、点Pでのパイプの中心線Cが延びる方向)が用いられる。具体的には、図9に示すように、パイプが始点Poから中間点P1及びP2を順に通過して終点Peに到達する場合には、入力画面91piは、始点Poにおいてパイプが延びる方向、中間点P1においてパイプが延びる方向、中間点P2においてパイプが延びる方向及び終点Peにおいてパイプが延びる方向を規定するパラメータの値を設定可能なパラメータ設定GUI911pi#2を含んでいてもよい。
図8に示すように、入力画面91piは、パイプの少なくとも一部分の曲率の大きさ(強さ)を規定するパラメータの値を設定するためのパラメータ設定GUI911pi(以降、“パラメータ設定GUI911pi#3”と称する)を含んでいてもよい。つまり、パイプの形状を規定するパラメータは、パイプの少なくとも一部分の曲率の強さを規定するパラメータを含んでいてもよい。本実施形態では、パイプの少なくとも一部分の曲率の強さを規定するパラメータとして、パイプが通過する複数の点Pの位置におけるパイプの曲率の強さが用いられる。具体的には、図9に示すように、パイプが始点Poから中間点P1及びP2を順に通過して終点Peに到達する場合には、入力画面91piは、始点Poにおけるパイプの曲率の強さ、中間点P1におけるパイプの曲率の強さ、中間点P2におけるパイプの曲率の強さ及び終点Peにおけるパイプの曲率の強さを規定するパラメータの値を設定可能なパラメータ設定GUI911pi#3を含んでいてもよい。
尚、パイプの少なくとも一部分の位置、方向及び曲率の強さのそれぞれが変わると、パイプが延びる軌跡が変わる。このため、パイプの少なくとも一部分の位置を規定するパラメータ、パイプの少なくとも一部分の方向を規定するパラメータ及びパイプの少なくとも一部分の曲率の強さを規定するパラメータのそれぞれは、パイプの延びる軌跡を規定する軌跡パラメータと称されてもよい。
図8に示すように、入力画面91piは、パイプの少なくとも一部分のサイズを規定するパラメータの値を設定するためのパラメータ設定GUI911pi(以降、“パラメータ設定GUI911pi#4”と称する)を含んでいてもよい。つまり、パイプの形状を規定するパラメータは、パイプの少なくとも一部分のサイズを規定するパラメータを含んでいてもよい。本実施形態では、パイプの少なくとも一部分のサイズを規定するパラメータとして、パイプが通過する複数の点Pの位置におけるパイプのサイズが用いられる。具体的には、図9に示すように、パイプが始点Poから中間点P1及びP2を順に通過して終点Peに到達する場合には、入力画面91piは、始点Poにおけるパイプのサイズ、中間点P1におけるパイプのサイズ、中間点P2におけるパイプのサイズ及び終点Peにおけるパイプのサイズを規定するパラメータの値を設定可能なパラメータ設定GUI911pi#4を含んでいてもよい。
本実施形態では、パラメータ設定GUI911pi#4は、パイプの少なくとも一部分の断面のサイズを規定するパラメータの値を設定するためのGUIであってもよい。例えば、図8に示すように、パラメータ設定GUI911pi#4は、始点Poにおけるパイプの断面のサイズ、中間点P1におけるパイプの断面のサイズ、中間点P2におけるパイプの断面のサイズ及び終点Peにおけるパイプの断面のサイズを規定するパラメータの値を設定可能なGUIであってもよい。尚、パイプの少なくとも一部分の断面は、パイプが延びる方向と交差する(典型的には、直交する)断面を意味していてもよい。
パイプの少なくとも一部分の断面のサイズは、断面に沿った第1の方向(言い換えれば、パイプの中心線Cに交差する第1の方向)における断面のサイズを含んでいてもよい。例えば、図8に示すように、パラメータ設定GUI911pi#4は、始点Poにおけるパイプの断面の第1の方向(図8に示す例では、縦方向)におけるサイズ、中間点P1におけるパイプの断面の第1の方向におけるサイズ、中間点P2におけるパイプの断面の1の方向におけるサイズ及び終点Peにおけるパイプの断面の1の方向におけるサイズを規定するパラメータの値を設定可能なパラメータ設定GUI911pi#41を含んでいてもよい。
パイプの少なくとも一部分の断面のサイズは、断面に沿っており且つ第1の方向に交差する(典型的には、直交する)第2の方向における断面のサイズを含んでいてもよい。例えば、図8に示すように、パラメータ設定GUI911pi#4は、始点Poにおけるパイプの断面の第2の方向(図8に示す例では、横方向)におけるサイズ、中間点P1におけるパイプの断面の第2の方向におけるサイズ、中間点P2におけるパイプの断面の第2の方向におけるサイズ及び終点Peにおけるパイプの断面の第2の方向におけるサイズを規定するパラメータの値を設定可能なパラメータ設定GUI911pi#42を含んでいてもよい。
尚、パイプの断面の形状が矩形形状である場合には、パイプの断面の第1の方向におけるサイズは、第1の方向に沿って互いに対向するパイプの二つの外側面(パイプの外壁)の間の距離(長さ)を意味し、パイプの断面の第2の方向におけるサイズは、第2の方向に沿って互いに対向するパイプの二つの外側面(パイプの外壁)の間の距離(長さ)を意味していてもよい。パイプの断面の形状が円形形状である場合には、パイプの断面の第1及び第2の方向のそれぞれにおけるサイズは、パイプの外側面の径を意味していてもよい。いずれの場合においても、パイプの断面の第1及び第2の方向のそれぞれにおけるサイズは、パイプの外径と称されてもよい。
パイプの少なくとも一部分の断面のサイズは、断面に沿ったパイプの隔壁(言い換えれば、管壁)の厚みを含んでいてもよい。例えば、図8に示すように、パラメータ設定GUI911pi#4は、始点Poにおけるパイプの隔壁の厚み、中間点P1におけるパイプの隔壁の厚み、中間点P2におけるパイプの隔壁の厚み及び終点Peにおけるパイプの隔壁の厚みを規定するパラメータの値を設定可能なパラメータ設定GUI911pi#43を含んでいてもよい。尚、パイプの隔壁の厚みは、パイプの内側面(つまり、中心線C側を向いたパイプの側面であり、内壁)とパイプの外側面(つまり、中心線Cとは反対側を向いたパイプの側面であり、外壁)との間の距離(長さ)を意味していてもよい。
パイプの少なくとも一部分の断面の第1の方向におけるサイズ、パイプの少なくとも一部分の断面の第2の方向におけるサイズ及びパイプの少なくとも一部分の隔壁の厚みが決まると、パイプの内径(つまり、パイプの内側面の径又は互いに対向する二つの内側面の間の距離(長さ))及びパイプの外径(つまり、パイプの外側面の径)のそれぞれが決まる。このため、パイプの少なくとも一部分の断面の第1の方向におけるサイズを規定するパラメータの値、パイプの少なくとも一部分の断面の第2の方向におけるサイズを規定するパラメータの値及びパイプの少なくとも一部分の隔壁の厚みを規定するパラメータの値を設定することは、パイプの内径を規定するパラメータの値及びパイプの外径を規定するパラメータの値を設定することと等価であるとみなしてもよい。或いは、パラメータ設定GUI911pi#4は、パイプの少なくとも一部分の内径を規定するパラメータの値を直接設定するためのパラメータ設定GUI911を含んでいてもよい。パラメータ設定GUI911pi#4は、パイプの少なくとも一部分の外径を規定するパラメータの値を直接設定するためのパラメータ設定GUI911を含んでいてもよい。
図8に示すように、入力画面91piは、パイプの少なくとも一部分の角度(回転角度)を規定するパラメータの値を設定するためのパラメータ設定GUI911pi(以降、“パラメータ設定GUI911pi#5”と称する)を含んでいてもよい。つまり、パイプの形状を規定するパラメータは、パイプの少なくとも一部分の角度を規定するパラメータを含んでいてもよい。本実施形態では、パイプの少なくとも一部分の回転角度を規定するパラメータとして、パイプが通過する複数の点Pの位置におけるパイプの回転角度が用いられる。ここで、点Pの位置におけるパイプの回転角度は、点Pの位置でのパイプの中心線Cに沿った軸廻りにおける点Pでのパイプの断面の回転角度(具体的には、基準姿勢に対する回転角度)を意味していてもよい。具体的には、図9に示すように、パイプが始点Poから中間点P1及びP2を順に通過して終点Peに到達する場合には、入力画面91piは、始点Poにおけるパイプの断面の回転角度、中間点P1におけるパイプの断面の回転角度、中間点P2におけるパイプの断面の回転角度及び終点Peにおけるパイプの断面の回転角度を規定するパラメータの値を設定可能なパラメータ設定GUI911pi#5を含んでいてもよい。尚、パイプの断面が真円等の無限回回転対称な断面である場合、パラメータ設定GUI911pi#5は、端末ユーザがパラメータの設定値を設定できない(入力できない)表示態様で表示されていてもよい。例えば、パラメータ設定GUI911pi#5の部分がグレーアウトされていてもよい。
尚、上述した例では、パイプの少なくとも一部分のサイズ及びパイプの少なくとも一部分の回転角度のそれぞれが変わると、パイプの少なくとも一部分の断面の形状が変わる。このため、パイプの少なくとも一部分のサイズを規定するパラメータ及びパイプの少なくとも一部分の回転角度を規定するパラメータのそれぞれは、パイプの少なくとも一部分の断面に関する断面パラメータ(セクションパラメータ)と称されてもよい。
図8に示すように、入力画面91piは、パイプの少なくとも一部分の分岐の有無を規定するパラメータの値を設定するためのパラメータ設定GUI911pi(以降、“パラメータ設定GUI911pi#6”と称する)を含んでいてもよい。つまり、パイプの形状を規定するパラメータは、パイプの少なくとも一部分の分岐の有無を規定するパラメータを含んでいてもよい。本実施形態では、パイプの少なくとも一部分の分岐の有無を規定するパラメータとして、パイプが通過する複数の点Pの位置におけるパイプの分岐の有無を規定するパラメータが用いられる。具体的には、図9に示すように、パイプが始点Poから中間点P1及びP2を順に通過して終点Peに到達する場合には、入力画面91piは、始点Poにおけるパイプの分岐の有無、中間点P1におけるパイプの分岐の有無、中間点P2におけるパイプの分岐の有無及び終点Peにおけるパイプの分岐の有無を規定するパラメータの値を設定可能なパラメータ設定GUI911pi#6を含んでいてもよい。つまり、入力画面91piは、始点Poにおいてパイプが分岐するか否か、中間点P1においてパイプが分岐するか否か、中間点P2においてパイプが分岐するか否か及び終点Peにおいてパイプが分岐するか否かを規定するパラメータを設定可能なパラメータ設定GUI911pi#6を含んでいてもよい。尚、パラメータ設定GU911pi#6において、分岐の有無を規定するパラメータの設定値が、パイプの分岐が有ることを示す値に設定された場合、分岐されたパイプに関する断面パラメータ、軌跡パラメータ及び端部パラメータの少なくとも一つを端末ユーザが設定するために用いられる入力画面が表示されてもよい。このとき、端部パラメータを設定するための入力画面は、始端部に関する端部パラメータを設定するための画面及び終端部に関する端部パラメータを設定するための画面のうちの一方を表示していてもよい。
図8に示すように、入力画面91piは、パイプの少なくとも一部分の合流(つまり、分岐している複数の管路の合流)の有無を規定するパラメータの値を設定するためのパラメータ設定GUI911pi(以降、“パラメータ設定GUI911pi#7”と称する)を含んでいてもよい。つまり、パイプの形状を規定するパラメータは、パイプの少なくとも一部分の合流の有無を規定するパラメータを含んでいてもよい。本実施形態では、パイプの少なくとも一部分の合流の有無を規定するパラメータとして、パイプが通過する複数の点Pの位置におけるパイプの合流の有無を規定するパラメータが用いられる。具体的には、図9に示すように、パイプが始点Poから中間点P1及びP2を順に通過して終点Peに到達する場合には、入力画面91piは、始点Poにおけるパイプの合流の有無、中間点P1におけるパイプの合流の有無、中間点P2におけるパイプの合流の有無及び終点Peにおけるパイプの合流の有無を規定するパラメータの値を設定可能なパラメータ設定GUI911pi#7を含んでいてもよい。つまり、入力画面91piは、分岐していた複数の管路が始点Poにおいて合流するか否か、分岐していた複数の管路が中間点P1において合流するか否か、分岐していた複数の管路が中間点P2において合流するか否か及び分岐していた複数の管路が終点Peにおいて合流するか否かを規定するパラメータを設定可能なパラメータ設定GUI911pi#7を含んでいてもよい。尚、パラメータ設定GU911pi#7において、合流の有無を規定するパラメータの設定値が、パイプの合流が有ることを示す値に設定された場合、合流したパイプに関する断面パラメータ、軌跡パラメータ及び端部パラメータの少なくとも一つを端末ユーザが設定するために用いられる入力画面が表示されてもよい。このとき、端部パラメータを設定するための入力画面は、始端部に関する端部パラメータを設定するための画面及び終端部に関する端部パラメータを設定するための画面のうちの一方を表示していてもよい。
図8に示すように、入力画面91piは、パイプの少なくとも一部分の管路の多重構造を規定するパラメータの値を設定するためのパラメータ設定GUI911pi(以降、“パラメータ設定GUI911pi#8”と称する)を含んでいてもよい。つまり、パイプの形状を規定するパラメータは、パイプの少なくとも一部分の多重構造を規定するパラメータを含んでいてもよい。本実施形態では、パイプの少なくとも一部分の多重構造を規定するパラメータとして、パイプが通過する複数の点Pの位置におけるパイプの多重構造を規定するパラメータが用いられる。具体的には、図9に示すように、パイプが始点Poから中間点P1及びP2を順に通過して終点Peに到達する場合には、入力画面91piは、始点Poと中間点P1との間におけるパイプの多重構造、中間点P1と中間点P2との間におけるパイプの多重構造、及び、中間点P2と終点Peとの間におけるパイプの多重構造を規定するパラメータの値を設定可能なパラメータ設定GUI911pi#8を含んでいてもよい。つまり、入力画面91piは、始点Poと中間点P1との間においてパイプが多重管(例えば、二重管)であるか又は一重管であるかを規定するパラメータの値、中間点P1と中間点P2との間においてパイプが多重管であるか又は一重管であるかを規定するパラメータの値、及び、中間点P2と終点Peとの間においてパイプが多重管であるか又は一重管であるかを規定するパラメータの値を設定可能なパラメータ設定GUI911pi#7を含んでいてもよい。
尚、上述した例では、パイプの少なくとも一部分の分岐の有無、合流の有無及び多重構造は、いずれも、パイプの構造に関連する。このため、パイプの少なくとも一部分の分岐の有無を規定する、パイプの少なくとも一部分の合流の有無を規定するパラメータ及びパイプの少なくとも一部分の多重構造を規定するパラメータのそれぞれは、パイプの少なくとも一部分の構造に関する構造パラメータと称されてもよい。
図8に示すように、入力画面91piは、パイプの少なくとも一部分の断面の形状(つまり、開口の形状であり、パイプの延びる方向に交差する面内でのパイプの形状)を特定の種類の形状に設定するために選択可能なアイコンを複数含むアイコン選択GUI912pi(以降、“アイコン選択GUI912pi#1”と称する)を含んでいてもよい。例えば、図8は、アイコン選択GUI912pi#1が、パイプの少なくとも一部分の断面の形状を矩形形状に設定するために選択可能なアイコン9121#11と、パイプの少なくとも一部分の断面の形状を楕円形状(或いは、円形状)に設定するために選択可能なアイコン9121#12と、パイプの少なくとも一部分の断面の形状を三角形形状に設定するために選択可能なアイコン9121#13と、パイプの少なくとも一部分の断面の形状を、区画壁によって管路が複数の区画に区分された矩形形状に設定するために選択可能なアイコン9121#14と、パイプの少なくとも一部分の断面の形状を、区画壁によって管路が複数の区画に区分された楕円形状(或いは、円形状)に設定するために選択可能なアイコン9121#15とを含む例を示している。つまり、図8は、アイコン選択GUI912pi#1が、パイプの複数の断面に関する複数のアイコン(つまり、複数の異なる断面の形状に関する複数のアイコン)を含む例を示している。端末ユーザは、アイコン9121#11から9121#15のいずれか一つを選択することで、パイプの少なくとも一部分の断面の形状を、選択したアイコンに対応する特定の種類の形状に設定することができる。つまり、端末ユーザは、アイコン選択GUI912pi#1を用いて、パイプの複数の断面に関するアイコンを選択する(つまり、複数の異なる断面の形状に関する複数のアイコンから所望のアイコンを選択する)ことで、パイプの少なくとも一部分の断面の形状に関する形状情報を設定する。
本実施形態では、パイプの少なくとも一部分の断面の形状として、パイプが通過する複数の点Pの位置におけるパイプの断面の形状が用いられる。具体的には、図9に示すように、パイプが始点Poから中間点P1及びP2を順に通過して終点Peに到達する場合には、端末ユーザは、アイコン選択GUI912pi#1を用いて、始点Poにおけるパイプの断面の形状、中間点P1におけるパイプの断面の形状、中間点P2におけるパイプの断面の形状及び終点Peにおけるパイプの断面の形状を設定してもよい。つまり、端末ユーザは、アイコン選択GUI912pi#1を用いて、パイプの複数個所の断面のそれぞれを指定するアイコンを選択してもよい。
尚、上述した例では、パイプの少なくとも一部分のサイズ、パイプの少なくとも一部分の回転角度及びパイプの少なくとも一部分の断面の形状の種類のそれぞれが変わると、パイプの少なくとも一部分の断面の形状が変わる。このため、パイプの少なくとも一部分のサイズを規定するパラメータ、パイプの少なくとも一部分の回転角度を規定するパラメータ及びパイプの少なくとも一部分の断面の形状の種類のそれぞれは、パイプの少なくとも一部分の断面に関する断面パラメータ(セクションパラメータ)と称されてもよい。
端末ユーザは、パイプが通過する複数の点Pにおけるパイプの断面の形状が全て同一種類の形状となるように、パラメータ設定GUI911及びアイコン選択GUI912の少なくとも一方を用いて形状情報を設定してもよい。尚、ここで言う「形状の種類」は、例えば、アイコン選択GUI912pi#1を用いて選択可能な断面の形状の種類を意味していてもよい。このため、複数の点Pにおけるパイプの断面の形状が全て同一種類の形状となる状態は、複数の点Pにおけるパイプの断面の形状が、一つのアイコンに関連付けられている一の種類の形状に設定されている状態を意味していてもよい。
或いは、端末ユーザは、パイプが通過する複数の点Pのうちの少なくとも二つにおけるパイプの断面の形状が異なる種類の形状となるように、パラメータ設定GUI911及びアイコン選択GUI912の少なくとも一方を用いて形状情報を設定してもよい。尚、少なくとも二つの点Pにおけるパイプの断面の形状が異なる種類の形状となる状態は、第1の点Pにおけるパイプの断面の形状が、第1のアイコンに関連付けられている第1の種類の形状に設定されている一方で、第2の点Pにおけるパイプの断面の形状が、第2のアイコンに関連付けられている第2の種類の形状に設定されている状態を意味していてもよい。例えば、端末ユーザは、パイプが通過する複数の点Pのうちの第1の点P(例えば、始点Po、中間点P1、中間点P2及び終点Peのいずれか一つ)におけるパイプの断面の形状を第1の形状(例えば、矩形形状)に設定し、パイプが通過する複数の点Pのうちの第2の点P(例えば、始点Po、中間点P1、中間点P2及び終点Peのいずれか他の一つ)におけるパイプの断面の形状を、第1の形状とは異なる第2の形状(例えば、円形状)に設定してもよい。この場合、パイプの断面の形状は、第1の点Pから第2の点Pとの間において、第1の形状から第2の形状へと変化する。このため、出力画面92もまた、第1の点Pと第2の点Pとの間において断面の形状が第1の形状から第2の形状へと変化するパイプの3次元モデルを表示してもよい。例えば、第1の点Pにおけるパイプの断面の形状が第1の形状となるように形状情報が設定された後に第2の点Pにおけるパイプの断面の形状が第2の形状となるように形状情報が設定された場合には、出力画面92に表示されている3次元モデルのうち第1の点Pと第2の点Pとの間におけるモデル部分が更新されてもよい。より具体的には、例えば、第1におけるパイプの断面の形状が第1の形状となるようにパラメータの値が設定された後に第2の点Pにおけるパイプの断面の形状が第2の形状となるようにパラメータの値が設定された場合には、第2の点Pにおけるパイプの形状を規定するパラメータの値の設定に合わせて、出力画面92に表示されている3次元モデルのうち第1の点Pと第2の点Pとの間におけるモデル部分(特に、当該モデル部分の形状)が更新されてもよい。例えば、第1におけるパイプの断面の形状が第1の形状となるようにアイコンが選択された後に第2の点Pにおけるパイプの断面の形状が第2の形状となるようにアイコンが選択設定された場合には、第2の点Pにおけるパイプの形状を設定するためのアイコンの選択に合わせて、出力画面92に表示されている3次元モデルのうち第1の点Pと第2の点Pとの間におけるモデル部分(特に、当該モデル部分の形状)が更新されてもよい。但し、複数の点Pのうちの少なくとも二つにおけるパイプの断面の形状が異なる種類の形状となる場合に限らず、第1の点Pにおけるパイプの断面の形状が第1の形状となるように形状情報が設定された後に第2の点Pにおけるパイプの断面の形状が第2の形状となるように形状情報が設定された場合には、出力画面92に表示されている3次元モデルのうち第1の点Pと第2の点Pとの間におけるモデル部分が更新されてもよい。
尚、図8に示す例では、アイコン選択GUI912pi#1は、パイプの少なくとも一部分の内側面及び外側面の双方の断面の形状をまとめて特定の種類の形状に設定するために選択可能なアイコンを複数含んでいる。しかしながら、アイコン選択GUI912pi#1は、パイプの少なくとも一部分の内側面の断面の形状を特定の形状に設定するために選択可能な複数のアイコンと、パイプの少なくとも一部分の外側面の断面の形状を特定の形状に設定するために選択可能な複数のアイコンとを別個に含んでいてもよい。この場合、端末ユーザは、パイプの少なくとも一部分の内側面の断面の形状と、パイプの少なくとも一部分の外側面の断面の形状とを別個に設定してもよい。端末ユーザは、パイプの少なくとも一部分の内側面の断面の形状と、パイプの少なくとも一部分の外側面の断面の形状とが異なるものとなるように、アイコンを選択してもよい。
図8に示すように、入力画面91piは、パイプの端部の形状を特定の種類の形状に設定するために選択可能なアイコンを複数含むアイコン選択GUI912pi(以降、“アイコン選択GUI912pi#2”と称する)を含んでいてもよい。尚、パイプの端部の形状は、パイプの端部に関する端部パラメータと称されてもよい。パイプの端部は、例えば、パイプの始端部及びパイプの終端部の少なくとも一つを含んでいてもよい。パイプの始端部は、始点Poとパイプが延びる方向に沿って始点Poから所定距離離れた位置との間に位置するパイプの一部分を含んでいてもよい。パイプの終端部は、終点Peとパイプが延びる方向に沿って終点Peから所定距離離れた位置との間に位置するパイプの一部分を含んでいてもよい。例えば、図8は、アイコン選択GUI912pi#2が、パイプの端部の形状を、端部と端部から所定距離離れた位置との間におけるパイプの内径が、端部に近づくにつれて徐々に小さくなり、且つ、端部が閉鎖端となる第1の形状に設定するために選択可能なアイコン9121#21と、パイプの端部の形状を、端部と端部から所定距離離れた位置との間におけるパイプの内径が、端部に近づくにつれて徐々に小さくなり、端部の近傍において内径が一定になり、且つ、端部が開放端となる第2の形状に設定するために選択可能なアイコン9121#22と、パイプの端部の形状を、端部と端部から所定距離離れた位置との間におけるパイプの内径が、端部に近づくにつれて徐々に小さくなり、端部が閉鎖端となり、且つ、端部にねじ切りされた突起部分(つまり、オスネジ又はネジ部に相当する部分)が形成された第3の形状に設定するために選択可能なアイコン9121#23と、端部と端部から所定距離離れた位置との間におけるパイプの内径が、端部に近づくにつれて徐々に小さくなり、端部の近傍において内径が一定になり、端部が開放端となり、且つ、端部の近傍におけるパイプの内側面がねじ切りされた(つまり、端部がメスネジ又はネジ穴部となる)第4の形状に設定するために選択可能なアイコン9121#24とを含む例を示している。端末ユーザは、アイコン9121#21から9121#24のいずれか一つを選択することで、パイプの端部の形状を、選択したアイコンに対応する特定の形状に設定することができる。
続いて、図11は、プレートの形状に関する形状情報を設定するための入力画面91(以降、“入力画面91pl”と称する)の一例を示す。尚、本実施形態では、プレートの一例を示す斜視図である図12に示すように、プレートが、少なくとも一つの穴(つまり、プレートの厚み方向に沿って延びるようにプレートに形成される穴)Hを形成するための筒状部分CMと、プレートの表面に沿って穴Hから(つまり、筒状部分CM)から延びるリブ形状のリブ部分(延伸部分)Rと、リブ部分Rによって囲まれた領域に形成されるベース部分Bとから構成されている場合に用いられる入力画面91plについて説明する。より具体的には、図12に示すソリッドモデルのプレートを、簡略化したワイヤフレームモデルで示す図13に示すように、プレートが、穴H1からH24を夫々形成する筒状部分CM1からCM24と、穴H1からH24のうちの一つから穴H1からH24のうちの他の一つに向かって延びるリブ部分R1からR24と、リブ部分R1からR24のうちの少なくとも四つに囲まれた領域に形成されるベース部分B1からB8から構成されている場合に用いられる入力画面91plについて説明する。尚、穴Hの数、リブ部分Rの数及びベース部分Bの数が図12及び図13に示す例に限定されることはない。端末ユーザは、入力画面91plを用いて、新たな穴H(新たな筒状部分CM)を追加してもよいし、既存の穴H(既存の筒状部分CM)を削除してもよい。端末ユーザは、入力画面91plを用いて、新たなリブ部分Rを追加してもよいし、既存のリブ部分Rを削除してもよい。端末ユーザは、入力画面91plを用いて、新たなベース部分Bを追加してもよいし、既存のベース部分Bを削除してもよい。また、プレートの形状に関する形状情報が設定される場合には、図12に示すソリッドモデルに相当するプレートの3次元モデル及び図13に示すワイヤフレームモデルに相当するプレートの3次元モデルのそれぞれは、出力画面92に表示されてもよい。
図11に示すように、入力画面91plは、プレートの少なくとも一部分に相当する穴H(より具体的には、穴Hを形成する筒状部分CM)を規定するパラメータの値を設定するためのパラメータ設定GUI911pl(以降、“パラメータ設定GUI911pl#1”と称する)を含んでいてもよい。この場合、端末ユーザは、パラメータ設定GUI911pl#1を用いて、プレートの複数個所にそれぞれ形成される複数の穴Hを規定する複数のパラメータを設定可能である。つまり、端末ユーザは、パラメータ設定GUI911pl#1を用いて、プレートの複数個所に対して、パラメータの値を設定可能である。尚、穴Hは、プレート上のある一点に形成される。このため、穴Hを規定するパラメータは、ポイントパラメータと称されてもよい。
パラメータ設定GUI911pl#1は、穴Hの位置(つまり、筒状部分CMの位置)を規定するパラメータの値を設定するためのパラメータ設定GUI911pl#11を含んでいてもよい。例えば、図11に示すように、パラメータ設定GUI911pl#1は、穴H1からH24のそれぞれの位置(つまり、筒状部分CM1からCM24のそれぞれの位置)を規定するパラメータの値を設定可能なパラメータ設定GUI911pl#11を含んでいてもよい。
パラメータ設定GUI911pl#1は、穴Hの深さ(つまり、プレートの厚み方向に沿った穴Hのサイズであり、プレートの厚み方向に沿った筒状部分CMの高さと等価)を規定するパラメータの値を設定するためのパラメータ設定GUI911pl#12を含んでいてもよい。例えば、図11に示すように、パラメータ設定GUI911pl#12は、穴H1からH24のそれぞれの深さ(つまり、筒状部分CM1から24のそれぞれの高さ)を規定するパラメータの値を、穴Hの形状を規定するパラメータの値として設定可能なパラメータ設定GUI911pl#12を含んでいてもよい。
パラメータ設定GUI911pl#1は、穴Hの内側面(つまり、筒状部分CMの内側面)の形状の種類を規定するパラメータの値を設定するためのパラメータ設定GUI911pl#13を含んでいてもよい。例えば、図11に示すように、パラメータ設定GUI911pl#1は、穴H1からH24の内側面のそれぞれの形状の種類を、穴Hの形状を規定するパラメータの値として設定可能なパラメータ設定GUI911pl#13を含んでいてもよい。尚、穴Hの内側面の形状の種類の一例として、例えば、内側面がねじ切りされているタップ形状及び内側面がねじ切りされていない穴形状のそれぞれがあげられる。このため、端末ユーザは、パラメータ設定GUI911pl#13を用いて、穴Hの内側面の形状の種類を、タップ形状及び穴形状のいずれかに設定してもよい。
パラメータ設定GUI911pl#1は、穴Hの径(つまり、プレートの表面に沿った方向における穴Hのサイズであり、プレートの表面に沿った方向における筒状部分CMのサイズと等価)を規定するパラメータの値を設定するためのパラメータ設定GUI911pl#14を含んでいてもよい。例えば、図11に示すように、パラメータ設定GUI911pl#1は、穴H1からH24のそれぞれの径(つまり、筒状部分CM1からCM24のそれぞれのサイズ)を、穴Hの形状を規定するパラメータの値として設定可能なパラメータ設定GUI911pl#14を含んでいてもよい。
図11に示すように、入力画面91plは、プレートの少なくとも一部分に相当するリブ部分Rを規定するパラメータの値を設定するためのパラメータ設定GUI911pl(以降、“パラメータ設定GUI911pl#2”と称する)を含んでいてもよい。この場合、端末ユーザは、パラメータ設定GUI911pl#2を用いて、プレートの複数個所にそれぞれ形成される複数のリブ部分Rを規定する複数のパラメータの値を設定可能である。つまり、端末ユーザは、パラメータ設定GUI911pl#2を用いて、プレートの複数個所に対して、パラメータの値を設定可能である。尚、リブ部分Rを規定するパラメータは、リブパラメータと称されてもよい。
パラメータ設定GUI911pl#2は、リブ部分Rの位置を規定するパラメータの値を設定するためのパラメータ設定GUI911pl#21を含んでいてもよい。例えば、図11に示すように、パラメータ設定GUI911pl#2は、リブ部分R1からR24のそれぞれの位置を規定するパラメータの値を設定可能なパラメータ設定GUI911pl#11を含んでいてもよい。より具体的には、本実施形態では、リブ部分Rは、一の穴Hから他の穴Hに延びている(つまり、一の筒状部分CMから他の筒状部分CMに延びている)。このため、本実施形態では、リブ部分Rの始点に位置する穴Hを規定するパラメータ及びリブ部分Rの終点に位置する穴Hを規定するパラメータが、リブ部分Rの位置を規定するパラメータとして用いられてもよい。つまり、パラメータ設定GUI911pl#2は、リブ部分R1からR24のそれぞれの始点に位置する穴H及び終点に位置する穴Hを規定するパラメータの値を設定可能なパラメータ設定GUI911pl#21を含んでいてもよい。
パラメータ設定GUI911pl#2は、リブ部分Rの幅(つまり、プレートの表面に沿っており且つリブ部分Rが延びる方向に交差する方向におけるリブ部分Rのサイズ)を規定するパラメータの値を設定するためのパラメータ設定GUI911pl#22を含んでいてもよい。例えば、図11に示すように、パラメータ設定GUI911pl#2は、リブ部分R1からR24のそれぞれの幅を規定するパラメータの値を、リブ部分Rの形状を規定するパラメータの値として設定可能なパラメータ設定GUI911pl#22を含んでいてもよい。
パラメータ設定GUI911pl#2は、リブ部分Rの高さ(つまり、プレートの厚み方向におけるリブ部分Rのサイズ)を規定するパラメータの値を設定するためのパラメータ設定GUI911pl#23を含んでいてもよい。例えば、図11に示すように、パラメータ設定GUI911pl#2は、リブ部分R1からR24のそれぞれの高さを規定するパラメータの値を、リブ部分Rの形状を規定するパラメータの値として設定可能なパラメータ設定GUI911pl#23を含んでいてもよい。
図11に示すように、入力画面91plは、プレートの少なくとも一部分に相当するベース部分Bの構造(つまり、形状)を、特定の種類の構造に設定するために選択可能なアイコンを複数含むアイコン選択GUI912plを含んでいてもよい。ベース部分Bは、上述したように、複数のリブ部分Rによって囲まれた領域に形成される。この場合、ベース部分Bは、複数のリブ部分Rによって囲まれた領域を充填するための部分であるとみなしてもよい。このため、ベース部分Bの構造は、複数のリブ部分Rによって囲まれた領域を充填するための構造を意味していてもよい。例えば、図11は、アイコン選択GUI912plが、ベース部分Bの構造を、プレートの表面に沿った断面の形状が三角形となる複数の基本構造体BSがプレートの表面に沿って複数充填される第1の構造に設定するために選択可能なアイコン9121#31と、ベース部分Bの構造を、プレートの表面に沿った断面の形状が四角形となる複数の基本構造体BSがプレートの表面に沿って複数充填される第2の構造に設定するために選択可能なアイコン9121#32と、ベース部分Bの構造を、プレートの表面に沿った断面の形状が六角形となる複数の基本構造体BSがプレートの表面に沿って複数充填される第3の構造に設定するために選択可能なアイコン9121#33とを含む例を示している。端末ユーザは、アイコン9121#31から9121#33のいずれか一つを選択することで、ベース部分Bの構造の種類を、選択したアイコンに対応する特定の構造に設定することができる。尚、基本構造体BSは、プレートの表面に沿って延びるリブ形状の部分が、基本構造体BSの各辺(具体的には、プレートの表面に沿った基本構造体BSの断面の各辺)を構成する構造体である。
上述したように、プレートは複数のベース部分Bから構成される場合がある(図13参照)。この場合、端末ユーザは、アイコン選択GUI912plを用いて、ベース部分B1からB8のそれぞれの構造を設定してもよい。つまり、端末ユーザは、プレートの複数個所に対してアイコンを選択してもよい。
図11に示すように、入力画面91plは、プレートの少なくとも一部分に相当するベース部分Bのサイズを規定するパラメータの値を設定するためのパラメータ設定GUI911pl(以降、“パラメータ設定GUI911pl#3”と称する)を含んでいてもよい。この場合、端末ユーザは、パラメータ設定GUI911pl#3を用いて、プレートの複数個所にそれぞれ形成される複数のベース部分Bの形状を規定する複数のパラメータの値を設定可能である。尚、ベース部分Bのサイズを規定するパラメータは、ベースパラメータと称されてもよい。同様に、アイコン選択GUI912plによって設定されるベース部分Bの構造(形状)の種類もまた、ベースパラメータと称されてもよい。
パラメータ設定GUI911pl#3は、ベース部分Bを構成する基本構造体BSのピッチを規定するパラメータの値を設定するためのパラメータ設定GUI911pl#31を含んでいてもよい。例えば、図11に示すように、パラメータ設定GUI911pl#3は、ベース部分B1からB8のそれぞれを構成する基本構造体BSのピッチを規定するパラメータの値を設定可能なパラメータ設定GUI911pl#31を含んでいてもよい。尚、基本構造体BSのピッチは、基本構造体BSの配列間隔と等価であってもよい。基本構造体BSのピッチが決まると、基本構造体BSの一辺のサイズ(例えば、三角形、四角形又は六角形の一辺のサイズ)が決まる。このため、基本構造体BSのピッチを設定することは、基本構造体BSの一辺のサイズを設定することと等価であるとみなしてもよい。尚、基本構造体BSの向かい合う頂点の間の間隔が、基本構造体BSのピッチとして用いられてもよい。基本構造体BSの向かい合う辺の間の間隔が、基本構造体BSのピッチとして用いられてもよい。
パラメータ設定GUI911pl#3は、ベース部分Bを構成する基本構造体BSの幅(つまり、プレートの表面に沿った方向における基本構造体BSのサイズであり、具体的には、プレートの表面に沿っており且つ基本構造体BSを構成するリブ状の部分が延びる方向に交差する方向における当該リブ状の部分のサイズ)を規定するパラメータの値を設定するためのパラメータ設定GUI911pl#32を含んでいてもよい。例えば、図11に示すように、パラメータ設定GUI911pl#3は、ベース部分B1からB8のそれぞれを構成する基本構造体BSの幅を規定するパラメータの値を設定可能なパラメータ設定GUI911pl#32を含んでいてもよい。
パラメータ設定GUI911pl#3は、ベース部分Bを構成する基本構造体BSの高さ(つまり、プレートの厚み方向における基本構造体BSのサイズ)を規定するパラメータの値を設定するためのパラメータ設定GUI911pl#33を含んでいてもよい。例えば、図11に示すように、パラメータ設定GUI911pl#33は、ベース部分B1からB8のそれぞれを構成する基本構造体BSの高さを規定するパラメータの値を設定可能なパラメータ設定GUI911pl#33を含んでいてもよい。
再び図6において、データ生成サーバ2のデータ生成部213は、設定GUI9を用いて形状情報を設定する動作が終了したか否かを判定する(ステップS15)。例えば、データ生成部213は、形状情報を設定する動作を終了することを端末装置3の入力装置34を用いて端末ユーザが指示した場合に、設定GUI9を用いて形状情報を設定する動作が終了したと判定してもよい。
ステップS15における判定の結果、設定GUI9を用いて形状情報を設定する動作が終了していないと判定される場合には(ステップS15:No)、設定GUI9を用いて形状情報を設定する動作が継続される。つまり、造形システムSYSは、ステップS13からステップS14までの動作を継続する。
他方で、設定GUI9を用いて形状情報を設定する動作が終了したと判定される場合には(ステップS15:Yes)、データ生成部213は、ステップS13において情報取得部212が取得した最新の形状情報に基づいて、端末ユーザが設定した形状情報によって規定される形状を有する3次元構造物の3次元モデルを表す3次元モデルデータを生成する(ステップS16)。
3次元モデルデータのフォーマットは、どのようなフォーマットであってもよい。例えば、データ生成部213は、STL(Standard Triangulated Language)ファイルフォーマットに準拠した3次元モデルデータを生成してもよい。例えば、データ生成部213は、STEP(Standard for Exchange of Product Model Data)ファイルフォーマットに準拠した3次元モデルデータを生成してもよい。例えば、データ生成部213は、IGES(Initial Graphics Exchange Specification)ファイルフォーマットに準拠した3次元モデルデータを生成してもよい。例えば、データ生成部213は、DWGファイルフォーマットに準拠した3次元モデルデータを生成してもよい。例えば、データ生成部213は、DXF(Drawing Exchange Format)ファイルフォーマットに準拠した3次元モデルデータを生成してもよい。例えば、データ生成部213は、VRML(Virtual Reality Modeling Language)ファイルフォーマットに準拠した3次元モデルデータを生成してもよい。例えば、データ生成部213は、ISO10303ファイルフォーマットに準拠した3次元モデルデータを生成してもよい。
データ生成部213は、生成した3次元モデルデータを、記憶装置22に記憶させてもよい。或いは、データ生成部213は、生成した3次元モデルデータに加えて又は代えてを、3次元モデルデータを生成するために用いた形状情報(つまり、端末ユーザが設定したパラメータ等の形状情報)を記憶装置22に記憶させてもよい。記憶装置22が形状情報を記憶する場合、データ生成部213は、記憶装置22が記憶している形状情報に基づいて、3次元モデルデータを生成してもよい。データ生成部213は、記憶装置22が記憶している形状情報に基づいて、生成済みの3次元モデルデータを再度生成(つまり、復元)してもよい。データ生成部213は、復元した3次元モデルデータに基づいて、復元した3次元モデルデータが表す3次元構造物に対して新たな部分(例えば、ネジ部分等)を追加することで得られる新たな3次元構造物を表す新たな3次元モデルデータを生成してもよい。つまり、データ生成部213は、復元した3次元モデルデータを改変してもよい。
また、データ生成部213は、設定GUI9を用いて形状情報を設定する動作が終了したと判定された後に、設定された形状情報を記憶装置22に記憶させてもよい。また、データ生成部213は、設定GUI9を用いて形状情報を設定する動作が終了したと判定される前に、それまでに設定された形状情報(設定途中の形状情報)を記憶装置22に記憶させてもよい。例えば、データ生成部213は、設定GUI9を用いて形状情報を設定する動作が終了していないものの、当該動作を一時的に中断したいと端末ユーザが希望する場合に、それまでに設定された形状情報(設定途中の形状情報)を記憶装置22に記憶させてもよい。ここの場合、端末ユーザが形状情報の設定を再開する際には、表示制御部211は、設定途中の形状情報に基づいて、続きから形状情報を設定するために端末ユーザが用いる設定GUI9を表示装置35に表示させてもよい。
その後、データ生成部213は、通信装置23を用いて、ステップS16で生成した3次元モデルデータを造形装置1に送信する。尚、データ生成部213は、サーバユーザ(或いは、端末ユーザ又は造形ユーザ)の指示に基づいて、3次元モデルデータを造形装置1に送信してもよい。或いは、データ生成部213は、サーバユーザ(或いは、端末ユーザ又は造形ユーザ)の指示を待つことなく、3次元モデルデータを自動的に造形装置1に送信してもよい。造形装置1の制御装置17は、通信装置18を用いて、データ生成サーバ2から送信された3次元モデルデータを受信(取得)する。その後、制御装置17は、3次元モデルデータに基づいて、造形装置1の動作内容を規定する造形制御情報を生成する(ステップS18)。具体的には、制御装置17は、3次元モデルデータに基づいて、3次元モデルデータが表す3次元構造物(つまり、端末ユーザが設定した形状情報によって規定される形状を有する3次元構造物)を造形するための造形装置1の動作内容を規定する造形制御情報を生成する。つまり、制御装置17は、3次元モデルデータに基づいて、3次元モデルデータが表す3次元構造物を造形するように造形装置1を動作させる造形制御情報を生成する。
造形制御情報は、ステージ131に対する加工ヘッド121の相対的な移動軌跡を示すパス情報を含んでいてもよい。加工ヘッド121の移動に伴って照射光学系1211からの加工光ELの照射位置及び材料ノズル1212からの造形材料Mの供給位置もまだ移動する。このため、パス情報は、ステージ131に対する加工光ELの照射位置及び造形材料Mの供給位置のそれぞれの相対的な移動軌跡を示しているとみなしてもよい。
その後、制御装置17は、造形制御情報に基づいて、3次元構造物(つまり、端末ユーザが設定した形状を有する3次元構造物)を造形するように造形装置1の動作を制御する(ステップS18)。その結果、端末ユーザが設定した形状を有する3次元構造物が造形される。
尚、造形装置1が備える制御装置17とは異なる制御情報生成装置が、造形制御情報を生成してもよい。この場合、データ生成部213は、ステップS16で生成した3次元モデルデータを制御情報生成装置に送信してもよい。制御情報生成装置17は、データ生成サーバ2から送信された3次元モデルデータを受信(取得)してもよい。その後、制御情報生成装置は、3次元モデルデータに基づいて造形制御情報を生成してもよい。その後、制御情報生成装置は、生成した造形制御情報を造形装置1(制御装置17)に送信してもよい。その後、制御装置17は、制御情報生成装置が生成した造形制御情報に基づいて、造形装置1の動作を制御してもよい。
(3)造形システムSYSの効果
以上説明したように、本実施形態の造形システムSYSでは、端末ユーザは、3次元構造物の形状を規定するパラメータの値を設定する及び/又はアイコンを選択することで、3次元モデルデータを生成することができる。つまり、端末ユーザは、3次元CAD(Computer Aided Design)ソフト等の高度な専門知識を必要とするソフトウェアを用いることなく、3次元モデルデータモデルデータを生成することができる。つまり、データ生成サーバ2は、設定GUI9を端末ユーザに提供することで、ユーザが3次元モデルデータを生成することを適切に支援することができる。
以上説明したように、本実施形態の造形システムSYSでは、端末ユーザは、3次元構造物の形状を規定するパラメータの値を設定する及び/又はアイコンを選択することで、3次元モデルデータを生成することができる。つまり、端末ユーザは、3次元CAD(Computer Aided Design)ソフト等の高度な専門知識を必要とするソフトウェアを用いることなく、3次元モデルデータモデルデータを生成することができる。つまり、データ生成サーバ2は、設定GUI9を端末ユーザに提供することで、ユーザが3次元モデルデータを生成することを適切に支援することができる。
特に、データ生成サーバ2は、造形装置1により付加造形される3次元構造物の種類に応じた適切な形状情報を端末ユーザが設定できるように、3次元構造物の種類に応じた設定GUI9を端末ユーザに提供する。このため、端末ユーザは、3次元構造物の種類に関わらず、3次元モデルデータを生成することができる。例えば、端末ユーザは、パイプ及びプレートの少なくとも一つを含む3次元構造物の3次元モデルを表す3次元モデルデータを生成することができる。
また、設定GUI9に含まれる出力画面92、現時点で端末ユーザが設定している形状情報に基づく3次元モデルが表示されるため、端末ユーザは、直感的に3次元モデルデータを生成することができる。
(4)変形例
(4-1)第1変形例
上述した説明では、端末ユーザは、入力画面91を用いて、3次元構造物の少なくとも一部分の位置を規定するパラメータの値を設定している。一方で、第1変形例では、データ生成サーバ2のデータ生成部213が、3次元構造物の少なくとも一部分の位置を規定するパラメータの値を設定してもよい。具体的には、データ生成部213は、端末ユーザが3次元構造物の一の部分の位置を規定するパラメータの値を設定していない場合であっても、当該一の部分の位置を規定するパラメータの値を自動で設定してもよい。データ生成部213は、端末ユーザが3次元構造物の一の部分の位置を規定するパラメータの値を設定することなく、当該一の部分の位置を規定するパラメータの値を自動で設定してもよい。この場合、データ生成部213は、設定GUI9を用いて端末ユーザが設定したパラメータの値と、データ生成部213が自動で設定したパラメータの値とに基づいて、3次元モデルデータを生成する。
(4-1)第1変形例
上述した説明では、端末ユーザは、入力画面91を用いて、3次元構造物の少なくとも一部分の位置を規定するパラメータの値を設定している。一方で、第1変形例では、データ生成サーバ2のデータ生成部213が、3次元構造物の少なくとも一部分の位置を規定するパラメータの値を設定してもよい。具体的には、データ生成部213は、端末ユーザが3次元構造物の一の部分の位置を規定するパラメータの値を設定していない場合であっても、当該一の部分の位置を規定するパラメータの値を自動で設定してもよい。データ生成部213は、端末ユーザが3次元構造物の一の部分の位置を規定するパラメータの値を設定することなく、当該一の部分の位置を規定するパラメータの値を自動で設定してもよい。この場合、データ生成部213は、設定GUI9を用いて端末ユーザが設定したパラメータの値と、データ生成部213が自動で設定したパラメータの値とに基づいて、3次元モデルデータを生成する。
例えば、上述したように、端末ユーザは、入力画面91piを用いて、パイプが通過する複数の点Pの位置を規定するパラメータの値を設定している。第1変形例では、データ生成部213は、端末ユーザが設定していない一の点Pの位置を規定するパラメータの値を設定してもよい。データ生成部213は、端末ユーザが一の点Pの位置を規定するパラメータの値を設定していない場合であっても、一の点Pの位置を規定するパラメータの値を自動で設定してもよい。例えば、端末ユーザが始点Po及び終点のそれぞれの位置を規定するパラメータの値を設定済みである一方で中間点P1及び中間点P2のそれぞれの位置を規定するパラメータの値を設定していない状況下で、データ生成部213は、中間点P1及び中間点P2のうちの少なくとも一方の位置を規定するパラメータの値を自動で設定してもよい。例えば、上述したように端末ユーザが始点Po、中間点P1、中間点P2及び終点のそれぞれの位置を規定しているパラメータの値を設定済みである状況下で、データ生成部213は、始点Po、中間点P1、中間点P2及び終点Peとは異なり且つパイプが通過する新たな点Pの位置を規定するパラメータの値を自動で設定してもよい。
例えば、上述したように、端末ユーザは、入力画面91plを用いて、プレートを構成する筒状部分CMの位置(つまり、穴Hの位置)を規定するパラメータの値を設定している。第1変形例では、データ生成部213は、端末ユーザが設定していない一の筒状部分CMの位置を規定するパラメータの値を設定してもよい。データ生成部213は、端末ユーザが一の筒状部分CMの位置を規定するパラメータの値を設定していない場合であっても、一の筒状部分CMの位置を規定するパラメータの値を自動で設定してもよい。例えば、上述したように端末ユーザが筒状部分CM1からCM24のうちの一の筒状部分CMの位置を規定するパラメータの値を設定していない状況下で、データ生成部213は、筒状部分CM1からCM24のうちの一の筒状部分CMの位置を規定するパラメータの値を自動で設定してもよい。例えば、上述したように端末ユーザが筒状部分CM1からCM24のそれぞれの位置を規定しているパラメータの値を設定済みである状況下で、データ生成部213は、筒状部分CM1からCM24とは異なり且つプレートに形成される穴Hを形成する新たな筒状部分CMの位置を規定するパラメータの値を自動で設定してもよい。
例えば、上述したように、端末ユーザは、入力画面91plを用いて、プレートを構成するリブ部材Rの位置を規定するパラメータの値を設定している。第1変形例では、データ生成部213は、端末ユーザが設定していない一のリブ部分Rの位置を規定するパラメータの値を設定してもよい。データ生成部213は、端末ユーザが一のリブ部分Rの位置を規定するパラメータの値を設定していない場合であっても、一のリブ部分Rの位置を規定するパラメータの値を自動で設定してもよい。例えば、上述したように端末ユーザがリブ部分R1からR24のうちの一のリブ部分Rを設定していない状況下で、データ生成部213は、リブ部分R1からR24のうちの一のリブ部分Rの位置を規定するパラメータの値を自動で設定してもよい。例えば、上述したように端末ユーザがリブ部分R1からR24のそれぞれの位置を規定しているパラメータの値を設定済みである状況下で、データ生成部213は、リブ部分R1からR24とは異なり且つプレートを構成する新たなリブ部分Rの位置を規定するパラメータの値を自動で設定してもよい。
データ生成部213は、端末ユーザが設定した形状情報によって規定される形状を有する3次元構造物の第1部分から所定距離(第1距離)Dだけ離れた位置を、端末ユーザが設定していない3次元構造物の第2部分の位置を規定するパラメータの値に設定してもよい。具体的には、データ生成部213は、端末ユーザが物体の第1部分の位置を規定するパラメータの値を設定した後に、3次元構造物の第1部分から所定距離Dだけ離れた位置を、3次元構造物の第2部分の位置を規定するパラメータの値に自動で設定してもよい。この場合、データ生成部213は、端末装置3から取得した形状情報(特に、第1部分の位置を規定するパラメータの値)に基づいて、端末ユーザが設定した3次元構造物の第1部分の位置を特定してもよい。その後、データ生成部213は、特定した3次元構造物の第1部分の位置から所定距離Dだけ離れた位置を、3次元構造物の第2部分の位置を規定するパラメータの値に設定してもよい。つまり、データ生成部213は、3次元構造物の第1部分の位置を規定するパラメータの値に基づいて、3次元構造物の第2部分の位置を規定するパラメータの値を設定してもよい。データ生成部213は、3次元構造物の第1部分の位置を規定するパラメータの値に基づいて定まる位置を、3次元構造物の第2部分の位置を規定するパラメータの値に設定してもよい。
一例として、上述したように、端末ユーザは、入力画面91pi(特に、パラメータ設定GUI911pi#1)を用いて、パイプの始端部が通過する始点Poの位置を規定するパラメータを設定している。この場合、パイプが通過する複数の点Pを示す模式図である図14に示すように、データ生成部213は、始点Poの位置から所定距離Dだけ離れた位置を、パイプの一部分が通過する新たな点P(以降、この点Pを、“中間点Po’”と称する)の位置を規定するパラメータの値に設定してもよい。始点Poの位置から所定距離Dだけ離れた位置は、始点Poの位置からパイプの中心線Cに沿って所定距離Dだけ離れた位置を意味していてもよい。この場合、データ生成部213は、端末ユーザが追加していない中間点Po’を新たに追加し、且つ、新たに追加した中間点Po’の位置を規定するパラメータの値を設定していると言える。尚、中間点Po’の位置を規定するパラメータの値を設定することは、パイプの始端部から所定距離Dだけ離れたパイプの一部(つまり、始端部と終端部との間におけるパイプの中間部)の位置を規定するパラメータの値を設定することと等価であるとみなしてもよい。
始点Poと中間点Po’とは、X軸方向、Y軸方向及びZ軸方向のいずれか一つにおける位置が互いに異なり、且つ、X軸方向、Y軸方向及びZ軸方向の残りの二つにおける位置が同一になるという条件を満たしていてもよい。つまり、データ生成部213は、X軸方向、Y軸方向及びZ軸方向のうちの第1の軸における始点Poの位置が、第1の軸における中間点Po’の位置と異なり、X軸方向、Y軸方向及びZ軸方向のうちの第2の軸における始点Poの位置が、第2の軸における中間点Po’の位置と同じになり、且つ、X軸方向、Y軸方向及びZ軸方向のうちの第3の軸における始点Poの位置が、第3の軸における中間点Po’の位置と同じになるという条件を満たすように、中間点Po’の位置を規定するパラメータの値を設定してもよい。図14に示す例では、Z軸方向における始点Poの位置が、Z軸方向における中間点Po’の位置と異なり、X軸方向における始点Poの位置が、X軸方向における中間点Po’の位置と同一になり、且つ、Y軸方向における始点Poの位置が、Y軸方向における中間点Po’の位置と同一になっている。この場合、パイプの中間線Cのうち始点Poと中間点Po’とを結ぶ線部分は、第1の軸に沿った直線(図14に示す例では、Z軸に沿った直線)となっていてもよい。また、中間点Po’に関するその他のパラメータの値(例えば、厚みを規定するパラメータの値、角度を規定するパラメータの値、方向を規定するパラメータの値及び曲率の強さを表すパラメータの値の少なくとも一つ)は、始点Poに関するその他のパラメータの値と同一であってもよい。但し、必要なマージンが確保できる限りは、第2の軸における始点Poの位置が、第2の軸における中間点Po’の位置と異なっていてもよいし、第3の軸における始点Poの位置が、第3の軸における中間点Po’の位置と異なっていてもよいし、中間点Po’に関するその他のパラメータの値が、始点Poに関するその他のパラメータの値と異なっていてもよい。
他の一例として、上述したように、端末ユーザは、入力画面91pi(特に、パラメータ設定GUI911pi#1)を用いて、パイプの終端部が通過する終点Peの位置を規定するパラメータの値を設定している。この場合、図14に示すように、データ生成部213は、終点Peの位置から所定距離Dだけ離れた位置を、パイプの一部分が通過する新たな点P(以降、この点Pを、“中間点Pe’”と称する)の位置を規定するパラメータの値に設定してもよい。終点Peの位置から所定距離Dだけ離れた位置は、終点Peの位置からパイプの中心線Cに沿って所定距離だけ離れた位置を意味していてもよい。この場合、データ生成部213は、端末ユーザが追加していない中間点Pe’を新たに追加し、且つ、新たに追加した中間点Pe’の位置を規定するパラメータの値を設定していると言える。尚、中間点Pe’の位置を規定するパラメータを設定することは、パイプの終端部から所定距離Dだけ離れたパイプの一部(つまり、始端部と終端部との間におけるパイプの中間部)の位置を規定するパラメータを設定することと等価であるとみなしてもよい。
終点Peと中間点Pe’とは、X軸方向、Y軸方向及びZ軸方向のいずれか一つにおける位置が互いに異なり、且つ、X軸方向、Y軸方向及びZ軸方向の残りの二つにおける位置が同一になるという条件を満たしていてもよい。つまり、データ生成部213は、X軸方向、Y軸方向及びZ軸方向のうちの第4の軸における終点Peの位置が、第4の軸における中間点Pe’の位置と異なり、X軸方向、Y軸方向及びZ軸方向のうちの第5の軸における終点Peの位置が、第5の軸における中間点Pe’の位置と同じになり、且つ、X軸方向、Y軸方向及びZ軸方向のうちの第6の軸における終点Peの位置が、第6の軸における中間点Pe’の位置と同じになるという条件を満たすように、中間点Pe’の位置を規定するパラメータの値を設定してもよい。図14に示す例では、Z軸方向における終点Peの位置が、Z軸方向における中間点Pe’の位置と異なり、X軸方向における終点Peの位置が、X軸方向における中間点Pe’の位置と同一になり、且つ、Y軸方向における終点Peの位置が、Y軸方向における中間点Pe’の位置と同一になっている。この場合、パイプの中間線Cのうち終点Peと中間点Pe’とを結ぶ線部分は、第4の軸に沿った直線(図14に示す例では、X軸に沿った直線)となっていてもよい。また、中間点Pe’に関するその他のパラメータの値(例えば、厚みを規定するパラメータの値、角度を規定するパラメータの値、方向を規定するパラメータの値及び曲率の強さを表すパラメータの値の少なくとも一つ)は、終点Peに関するその他のパラメータの値と同一であってもよい。但し、必要なマージンが確保できる限りは、第5の軸における終点Peの位置が、第5の軸における中間点Pe’の位置と異なっていてもよいし、第6の軸における終点Peの位置が、第6の軸における中間点Pe’の位置と異なっていてもよいし、中間点Pe’に関するその他のパラメータの値が、終点Peに関するその他のパラメータの値と異なっていてもよい。
上述したように、パイプの端部の形状は、アイコン選択GUI912piを用いて特定の種類の形状に設定される。この場合、中間点Po’及びPe’のそれぞれの位置を規定するパラメータの値を設定するためにデータ生成部213が用いる所定距離Dは、パイプの端部の形状(つまり、構造)に応じて定められていてもよい。具体的には、パイプの始端部を示す断面図である図15に示すように、パイプの端部の形状は、パイプの内径が端部に近づくにつれて徐々に小さくなるという形状を有する。この場合、所定距離Dは、中間点Po’及びPe’のそれぞれの位置において内径が小さくなり始めるパイプを実現可能な値に設定されていてもよい。つまり、所定距離Dは、中間点Po’及びPe’のそれぞれの位置と、パイプの内径が小さくなり始める位置とが一致する状態を実現可能な値に設定されていてもよい。
中間点Po’の位置とパイプの内径が小さくなり始める位置とが一致する場合には、中間点Po’と始点Poとの間におけるパイプの形状は、アイコン選択GUI912piを用いて設定された特定の種類の形状となる。つまり、パイプの始端部の位置からの距離が所定距離D未満となる範囲内には、アイコン選択GUI912piを用いて設定された特定の種類の形状を有する部分を設けるための領域が含まれる。より具体的には、パイプの始端部の位置からの距離が所定距離D未満となる範囲内には、アイコン選択GUI912piを用いて設定された特定の種類の形状を有する部分を設けるための領域を含み、且つ、中心線Cに沿った方向に進展するパイプの一部が含まれる。尚、特定の種類の形状を有する部分の一例として、上述した説明では、オスネジ(ネジ部)又はメスネジ(ネジ穴部)が形成された部分があげられている。この場合、データ生成部213は、データ生成部213が設定した中間点Po’の位置を規定するパラメータの値と、端末ユーザが設定した始点Poの位置を規定するパラメータの値と、アイコン選択GUI912piを用いて選択されたアイコン(つまり、パイプの始端部の形状の種類)とに基づいて、始点Poと中間点Po’との間におけるパイプの形状を規定するパラメータの値を設定してもよい。具体的には、データ生成部213は、始点Poと中間点Po’との間におけるパイプの形状が、選択されたアイコンに関連付けられた特定の種類の形状となるように、始点Poと中間点Po’との間におけるパイプの形状を規定するパラメータの値を自動で設定してもよい。つまり、データ生成部213は、パイプの始端部と中間点Po’に対応するパイプの中間部との間におけるパイプの形状が、選択されたアイコンに関連付けられた特定の種類の形状となるように、パイプのうちの始端部と中間点Po’に対応する中間部との間の部分の形状を規定するパラメータの値を自動で設定してもよい。また、詳細な説明は省略するが、データ生成部213は、始点Poと中間点Po’との間におけるパイプの形状を規定するパラメータの値を設定する場合と同様に、終点Peと中間点Pe’との間におけるパイプの形状を規定するパラメータの値を設定してもよい。つまり、この段落の説明における始点Po、中間点Po’及び始端部という文言は、それぞれ、終点Pe、中間点Pe’及び終端部という文言に置き換えられてもよい。
中間点Po’と始点Poとの間におけるパイプの形状が、アイコン選択GUI912piを用いて設定された特定の種類の形状となるがゆえに、中間点Po’と始点Poとの間には、パイプが通過する新たな点Pが追加されなくてもよい。このため、中間点Po’と始点Poとの間に、パイプが通過する新たな点Pを端末ユーザが追加することができないように、入力画面91piが構成されていてもよい。中間点Po’と始点Poとの間における位置を、パイプが通過する新たな点P(つまり、ユーザが追加していない点Pであり、例えば、中間点Po’又は中間点Po’とは異なる点P)の位置を規定するパラメータの値として端末ユーザが指定することができないように、入力画面91piが構成されていてもよい。中間点Po’と始点Poとの間における位置を、パイプが通過する既存の点P(つまり、ユーザが既に追加済みの点P)の位置を規定するパラメータの値として端末ユーザが指定することができないように、入力画面91piが構成されていてもよい。同様の理由から、中間点Pe’と終点Peとの間にパイプが通過する新たな点Pを端末ユーザが追加することができないように、入力画面91piが構成されていてもよい。中間点Pe’と終点Peとの間における位置を、パイプが通過する新たな点Pの位置を規定するパラメータの値として端末ユーザが指定することができないように、入力画面91piが構成されていてもよい。中間点Pe’と終点Peとの間における位置を、パイプが通過する既存の点Pの位置を規定するパラメータの値として端末ユーザが指定することができないように、入力画面91piが構成されていてもよい。
入力画面91には、データ生成部213が設定したパラメータの値が表示されてもよい。例えば、図16は、パイプが通過する中間点Po’及びPe’のそれぞれの位置を規定するパラメータの値をデータ生成部213が入力する場合に表示される入力画面91piの一例を示している。図16に示すように、入力画面91piは、中間点Po’及びPe’のそれぞれの位置を規定するパラメータの値を表示してもよい。更に、図16に示すように、入力画面91piは、中間点Po’及びPe’のそれぞれに関する任意のパラメータ(例えば、断面パラメータ及び軌跡パラメータの少なくとも一つ)の値を表示してもよい。この際、データ生成部213が設定したパラメータの値の表示態様と、端末ユーザが設定したパラメータの値の表示態様とが異なっていてもよい。データ生成部213が設定したパラメータの値は、端末ユーザが設定できない表示態様で表示されてもよい。例えば、データ生成部213が設定したパラメータの値は、端末ユーザが設定できないことを示すようにグレーアウト表示されてもよい。その結果、データ生成部213が設定したパラメータの値を端末ユーザが誤って変更してしまうことがなくなる。尚、出力画面92には
データ生成部213が設定したパラメータの値に基づく3次元モデルが表示されてもよい。
データ生成部213が設定したパラメータの値に基づく3次元モデルが表示されてもよい。
このような第1変形例では、端末ユーザが形状情報の一部を設定しない場合であっても、データ生成サーバ2が、端末ユーザが設定していない形状情報の一部を設定する。このため、データ生成サーバ2は、ユーザが3次元モデルデータを生成することを適切に支援することができる。
尚、上述した説明では、端末ユーザは、パイプの始端部が通過する始点Poの位置を規定するパラメータの値を設定し、データ生成部213は、始点Poの位置に基づいて中間点Po’の位置を規定するパラメータの値を設定している。しかしながら、端末ユーザは、中間点Po’の位置を規定するパラメータの値を設定し、データ生成部213は、中間点Po’の位置に基づいて始点Poの位置を規定するパラメータの値を設定してもよい。同様に、端末ユーザは、中間点Pe’の位置を規定するパラメータの値を設定し、データ生成部213は、中間点Pe’の位置に基づいて終点Peの位置を規定するパラメータの値を設定してもよい。
(4-2)第2変形例
上述した説明では、端末ユーザは、入力画面91を用いて物体の形状に関する形状情報を設定し、出力画面92は、入力画面91を用いて端末ユーザが設定した形状情報に基づく3次元モデルを表示している。一方で、第2変形例では、端末ユーザは、出力画面92に表示された3次元モデルの形状を変更する変更操作を行うことで、形状情報を設定してもよい。つまり、第2変形例では、端末ユーザは、出力画面92を用いて物体の形状に関する形状情報を設定してもよい。端末ユーザは、出力画面92を用いて形状情報を設定するための操作を行ってもよい。端末ユーザは、出力画面92を用いて形状情報を設定するための情報を端末装置3に入力してもよい。
上述した説明では、端末ユーザは、入力画面91を用いて物体の形状に関する形状情報を設定し、出力画面92は、入力画面91を用いて端末ユーザが設定した形状情報に基づく3次元モデルを表示している。一方で、第2変形例では、端末ユーザは、出力画面92に表示された3次元モデルの形状を変更する変更操作を行うことで、形状情報を設定してもよい。つまり、第2変形例では、端末ユーザは、出力画面92を用いて物体の形状に関する形状情報を設定してもよい。端末ユーザは、出力画面92を用いて形状情報を設定するための操作を行ってもよい。端末ユーザは、出力画面92を用いて形状情報を設定するための情報を端末装置3に入力してもよい。
具体的には、出力画面92に表示された3次元モデルを示す図17に示すように、端末ユーザは、マウス又はタッチパネル等の入力装置34を用いて、出力画面92に表示された3次元モデルの形状を変更する変更操作を行う。その結果、出力画面92には、変更操作によって形状が変更された3次元モデルが表示される。
3次元モデルの形状を変更する変更操作は、3次元モデルの少なくとも一部を移動させる操作を含んでいてもよい。例えば、図17は、出力画面92に表示されるマウスポインタを用いて、パイプが通過する複数の点Pのうちの一の点P(図17に示す例では、点P2)を移動させることで3次元モデルの形状を変更する変更操作が行われている例を示している。つまり、図17は、出力画面92に表示されるマウスポインタを用いて、パイプのうちの一の点Pに対応する一部分を移動させることで3次元モデルの形状を変更する変更操作が行われている例を示している。
3次元モデルの少なくとも一部を移動させる操作(つまり、3次元モデルの形状を変更する変更操作)は、3次元モデルの少なくとも一部の位置を変更するための操作であってもよい。例えば、図17に示すようにパイプが通過する複数の点Pのうちの一の点Pを移動させる操作は、パイプのうちの一の点Pに対応する一部分の位置を変更するための操作であってもよい。つまり、パイプが通過する複数の点Pのうちの一の点Pを移動させる操作は、パイプのうちの一の点Pに対応する一部分の位置を規定するパラメータの値を変更するための操作であってもよい。
3次元モデルの少なくとも一部を移動させる操作(つまり、3次元モデルの形状を変更する変更操作)は、3次元モデルの少なくとも一部のサイズを変更するための操作であってもよい。例えば、パイプの外側面の一部を移動させる操作は、パイプの外径(つまり、サイズ)を変更するための操作であってもよい。つまり、パイプの外側面の一部を移動させる操作は、パイプの外径(つまり、サイズ)を規定するためのパラメータを変更するための操作であってもよい。
3次元モデルの形状を変更する変更操作は、入力画面91のアイコン選択GUI912に含まれるアイコンを、出力画面92にドラッグアンドドロップする操作を含んでいてもよい。アイコンを出力画面92にドラッグアンドドロップする操作は、アイコンの位置を規定するパラメータの値を出力画面92において指定する操作であってもよい。アイコンを出力画面92にドラッグアンドドロップする操作は、出力画面92内においてアイコンがドラッグアンドドロップされた位置に表示されている3次元モデルの少なくとも一部の形状を、ドラッグアンドドロップされたアイコンに関連付けられた特定の形状に設定する操作であってもよい。
出力画面92に表示される3次元モデルは、X軸、Y軸及びZ軸が互いに直交する3次元座標系である表示座標系内で表される3次元モデルである。尚、表示座標系は、造形装置1を構成する各種構成要素の位置関係を説明するために用いられる造形座標系と同一であってもよい。表示座標系は、造形座標系に関連付けられた座標系であってもよい。表示座標系は、造形座標系とは無関係の座標系であってもよい。この場合、端末ユーザは、3次元モデルのうちの一部をX軸に沿って移動させることで、3次元モデルのうちの一部のX軸に関する形状情報(例えば、X軸に沿った位置を規定するパラメータ)を変更するための変更操作を行ってもよい。端末ユーザは、3次元モデルのうちの一部をY軸に沿って移動させることで、3次元モデルのうちの一部のY軸に関する形状情報(例えば、Y軸に沿った位置を規定するパラメータ)を変更するための変更操作を行ってもよい。端末ユーザは、3次元モデルのうちの一部をZ軸に沿って移動させることで、3次元モデルのうちの一部のZ軸に関する形状情報(例えば、Z軸に沿った位置を規定するパラメータ)を変更するための変更操作を行ってもよい。
但し、3次元モデルを表示する出力画面92が2次元の表示画面であるがゆえに、2次元の表示画面92内における3次元モデルの移動態様が、端末ユーザにとって直感的に分かりづらい可能性がある。そこで、データ生成サーバ2の表示制御部211は、出力画面92に、X軸、Y軸及びZ軸のいずれか一つから見た場合の3次元モデルが表示され、且つ、出力画面92内において、X軸、Y軸及びZ軸の残りの2つに関する形状情報を変更する変更操作が許容される設定GUI9が表示装置35に表示されるように、GUI情報を生成してもよい。この場合、端末ユーザは、2次元の表示画面92内における3次元モデルの一部を所望の方向に移動させる操作を、3次元モデルの一部が所望の方向に確かに移動していることを直感的に把握しながら行うことができる。
例えば、出力画面92に表示された3次元モデルを示す図18に示すように、X軸から見た場合の3次元モデルが出力画面92に表示されてもよい。つまり、YZ平面に直交する視点から観察される3次元モデルが出力画面92に表示されてもよい。この場合、端末ユーザは、出力画面92内において、Y軸に関する形状情報及びZ軸に関する形状情報のそれぞれを変更する変更操作を行ってもよい。例えば、端末ユーザは、出力画面92内において、3次元モデルの一部をY軸に沿って移動させる操作及び3次元モデルの一部をZ軸に沿って移動させる操作のそれぞれを、変更操作として行ってもよい。つまり、端末ユーザは、出力画面92内において、3次元モデルの一部をYZ平面に沿った方向に移動させる操作を、変更操作として行ってもよい。他方で、端末ユーザは、出力画面92内において、X軸に関する形状情報を変更する変更操作を行わなくてもよい。つまり、端末ユーザは、出力画面92内において、3次元モデルの一部をX軸に沿って移動させる操作を、変更操作として行わなくてもよい。或いは、出力画面92内において、X軸に関する形状情報を変更する変更操作が禁止されていてもよい。
例えば、Y軸から見た場合の3次元モデルが出力画面92に表示されてもよい。つまり、ZX平面に直交する視点から観察される3次元モデルが出力画面92に表示されてもよい。この場合、端末ユーザは、出力画面92内において、X軸に関する形状情報及びZ軸に関する形状情報のそれぞれを変更する変更操作を行ってもよい。例えば、端末ユーザは、出力画面92内において、3次元モデルの一部をX軸に沿って移動させる操作及び3次元モデルの一部をZ軸に沿って移動させる操作のそれぞれを、変更操作として行ってもよい。つまり、端末ユーザは、出力画面92内において、3次元モデルの一部をZX平面に沿った方向に移動させる操作を、変更操作として行ってもよい。他方で、端末ユーザは、出力画面92内において、Y軸に関する形状情報を変更する変更操作を行わなくてもよい。つまり、端末ユーザは、出力画面92内において、3次元モデルの一部をY軸に沿って移動させる操作を、変更操作として行わなくてもよい。或いは、出力画面92内において、Y軸に関する形状情報を変更する変更操作が禁止されていてもよい。
例えば、Z軸から見た場合の3次元モデルが出力画面92に表示されてもよい。つまり、XY平面に直交する視点から観察される3次元モデルが出力画面92に表示されてもよい。この場合、端末ユーザは、出力画面92内において、X軸に関する形状情報及びY軸に関する形状情報のそれぞれを変更する変更操作を行ってもよい。例えば、端末ユーザは、出力画面92内において、3次元モデルの一部をX軸に沿って移動させる操作及び3次元モデルの一部をY軸に沿って移動させる操作のそれぞれを、変更操作として行ってもよい。つまり、端末ユーザは、出力画面92内において、3次元モデルの一部をXY平面に沿った方向に移動させる操作を、変更操作として行ってもよい。他方で、端末ユーザは、出力画面92内において、Z軸に関する形状情報を変更する変更操作を行わなくてもよい。つまり、端末ユーザは、出力画面92内において、3次元モデルの一部をZ軸に沿って移動させる操作を、変更操作として行わなくてもよい。或いは、出力画面92内において、Z軸に関する形状情報を変更する変更操作が禁止されていてもよい。
尚、X軸から見た場合の3次元モデルが出力画面92に表示されている場合、Y軸から見た場合の3次元モデルが出力画面92に表示されている場合及びZ軸から見た場合の3次元モデルが出力画面92に表示されている場合のそれぞれに限って、出力画面92に表示された3次元モデルの形状を変更する変更操作が許容されていてもよい。つまり、出力画面92に表示されている3次元モデルが、X軸から見た場合の3次元モデル、Y軸から見た場合の3次元モデル及びZ軸から見た場合の3次元モデルのいずれでもない場合には、出力画面92内において形状情報を変更する変更操作が禁止されていてもよい。
3次元モデルのうちの一部の形状を端末ユーザが変更することが可能である一方で、3次元モデルのうちの他の一部の形状を端末ユーザが変更することができないという制約が設けられる場合がある。つまり、3次元構造物の一部の形状に関する形状情報を端末ユーザが変更することが可能である一方で、3次元構造物のうちの他の一部の形状に関する形状情報を端末ユーザが変更することができないという制約が設けられる場合がある。この場合には、出力画面92内において、3次元モデルのうち形状を変更することが可能な第1モデル部分が表示されてもよい。つまり、出力画面92内において、3次元構造物のうち形状情報を変更可能な部分を表す3次元モデルの第1モデル部分が表示されてもよい。例えば、出力画面92内において、第1モデル部分を示す表示オブジェクト(例えば、図17に示す、第1モデル部分を取り囲む表示オブジェクト922)が表示されてもよい。その結果、端末ユーザは、3次元モデルのうち形状を変更することが可能な第1モデル部分を把握することができ、第1モデル部分の少なくとも一部の形状を変更するための変更操作を行うことができる。
一方で、出力画面92内において、3次元モデルのうち形状を変更することが可能でない第2モデル部分もまた表示されてもよい。つまり、出力画面92内において、3次元構造物のうち形状情報を変更可能でない部分を表す3次元モデルの第2モデル部分が表示されてもよい。但し、第2モデル部分は、第2モデル部分の表示態様が第1モデル部分の表示態様と異なるものとなるように、表示されてもよい。その結果、端末ユーザは、3次元モデルのうち形状を変更することが可能な第1モデル部分と、3次元モデルのうち形状を変更することが可能でない第2モデル部分とを把握することができる。このため、端末ユーザは、第1モデル部分の少なくとも一部の形状を変更するための変更操作を行うことができる。端末ユーザは、第2モデル部分の少なくとも一部の形状を変更するための変更操作を誤って行ってしまうことがなくなる。或いは、出力画面92内において、3次元モデルのうち形状を変更することが可能でない第2モデル部分が表示されなくてもよい。この場合も、端末ユーザは、第2モデル部分の少なくとも一部の形状を変更するための変更操作を誤って行ってしまうことがなくなる。
変更操作の内容を示す操作情報は、端末装置3からデータ生成サーバ2に送信される。データ生成サーバ2のデータ生成部213は、端末装置3から送信された操作情報に基づいて、変更操作によって形状が変更された3次元モデルの形状を特定する。その後、データ生成部213は、変更操作によって形状が変更された3次元モデルの形状に基づいて、形状情報を設定する。具体的には、データ生成部213は、変更操作によって形状が変更された3次元モデルの形状に基づいて、既に設定済みの形状情報(つまり、変更操作によって形状が変更される前の3次元モデルの形状に関する形状情報)を変更(言い換えれば、更新)してもよい。一例として、3次元モデルの形状を規定するパラメータの値を、設定済の値から、変更操作によって形状が変更された3次元モデルの形状に応じた値に変更してもよい。
形状情報の変更は、端末装置3の表示装置35に表示されている入力画面91に反映されてもよい。具体的には、データ生成サーバ2の表示制御部211は、変更操作に応じて変更された形状情報が表示された入力画面91を含む設定GUI9に関するGUI情報を生成してもよい。例えば、表示制御部211は、変更操作に応じて変更されたパラメータの値が表示されたパラメータ設定GUI911を含む設定GUI9に関するGUI情報を生成してもよい。その結果、表示装置35は、変更操作に応じて変更された形状情報が表示された入力画面91を表示する。つまり、図17の下部に示すように、表示装置35が表示する入力画面91は、変更操作に応じて変更される前の形状情報が表示されている入力画面91から、変更操作に応じて変更された形状情報が表示されている入力画面91へと変更される。
このような第2変形例では、端末ユーザは、3次元モデルの少なくとも一部の形状を直接的に変更する変更操作を行うことで、形状情報を設定することができる。このため、端末ユーザは、直感的に形状情報を設定することができる。
(4-3)第3変形例
上述した説明では、端末ユーザは、入力画面91を用いて、3次元構造物の少なくとも一部分の形状を規定するパラメータの値を設定している。第3変形例では、3次元構造物の少なくとも一部分の第1の種類の形状を規定する第1のパラメータメータの値及び3次元構造物の少なくとも一部分の第2の種類の形状を規定する第2のパラメータの値の少なくとも一方が端末ユーザによって変更された(つまり、設定し直された)場合に、データ生成サーバ2のデータ生成部213は、第1及び第2のパラメータの値の少なくとも一方を自動的に設定し直してもよい。具体的には、データ生成部213は、第1及び第2のパラメータの値の少なくとも一方が端末ユーザによって変更された場合であっても3次元構造物の少なくとも一部分の第3の種類の形状を規定する第3のパラメータの値が維持されるように、第1及び第2のパラメータの値の少なくとも一方を自動的に設定してもよい。この場合、データ生成部213は、設定GUI9を用いて端末ユーザが設定したパラメータの値と、データ生成部213が自動で設定したパラメータの値とに基づいて、3次元モデルデータを生成する。
上述した説明では、端末ユーザは、入力画面91を用いて、3次元構造物の少なくとも一部分の形状を規定するパラメータの値を設定している。第3変形例では、3次元構造物の少なくとも一部分の第1の種類の形状を規定する第1のパラメータメータの値及び3次元構造物の少なくとも一部分の第2の種類の形状を規定する第2のパラメータの値の少なくとも一方が端末ユーザによって変更された(つまり、設定し直された)場合に、データ生成サーバ2のデータ生成部213は、第1及び第2のパラメータの値の少なくとも一方を自動的に設定し直してもよい。具体的には、データ生成部213は、第1及び第2のパラメータの値の少なくとも一方が端末ユーザによって変更された場合であっても3次元構造物の少なくとも一部分の第3の種類の形状を規定する第3のパラメータの値が維持されるように、第1及び第2のパラメータの値の少なくとも一方を自動的に設定してもよい。この場合、データ生成部213は、設定GUI9を用いて端末ユーザが設定したパラメータの値と、データ生成部213が自動で設定したパラメータの値とに基づいて、3次元モデルデータを生成する。
一例として、例えば3次元構造物がパイプである場合には、端末ユーザは、パイプの断面のサイズ(例えば、縦方向及び横方向のサイズであり、実質的には、パイプの外径と等価)を規定するパラメータの値と、パイプの隔壁の厚みを規定するパラメータの値とを設定してもよいことは上述したとおりである。この場合、図19に示すように、パイプの外径を規定するパラメータ(以降、“外径パラメータ”と称する)の値が端末ユーザによって設定し直された場合には、データ生成部213は、パイプの内径を規定するパラメータ(以降、“内径パラメータ”と称する)の値が維持される(つまり、変わらない)ように、パイプの隔壁の厚みを規定するパラメータ(以降、“厚みパラメータ”と称する)の値を自動的に設定してもよい。或いは、厚みパラメータの値が端末ユーザによって設定し直された場合には、データ生成部213は、内径パラメータの値が維持されるように、外径パラメータの値を自動的に設定してもよい。
このような第3変形例では、端末ユーザは、ある種類の形状(例えば、図19に示す例では、パイプの内径)が維持されるという形状制約条件を比較的容易に満たしながら、3次元構造物の形状に関する形状情報を設定することができる。このため、端末ユーザは、形状制約条件を満たすために端末ユーザが形状情報を設定する必要がある場合と比較して、形状制約条件を満たす形状情報を容易に設定することができる。
(4-4)第4変形例
第4変形例では、データ生成部213は、生成した3次元モデルデータに基づいて、造形装置1によって付加造形される3次元構造物に関する物体情報を生成してもよい。例えば、データ生成部213は、3次元モデルデータに基づいて、3次元構造物の重量に関する重量情報を、物体情報として生成してもよい。例えば、データ生成部213は、3次元モデルデータに基づいて、3次元構造物の強度に関する強度情報を、物体情報として生成してもよい。例えば、データ生成部213は、3次元モデルデータに基づいて、3次元構造物の付加造形に要する時間に関する造形時間情報を、物体情報として生成してもよい。
第4変形例では、データ生成部213は、生成した3次元モデルデータに基づいて、造形装置1によって付加造形される3次元構造物に関する物体情報を生成してもよい。例えば、データ生成部213は、3次元モデルデータに基づいて、3次元構造物の重量に関する重量情報を、物体情報として生成してもよい。例えば、データ生成部213は、3次元モデルデータに基づいて、3次元構造物の強度に関する強度情報を、物体情報として生成してもよい。例えば、データ生成部213は、3次元モデルデータに基づいて、3次元構造物の付加造形に要する時間に関する造形時間情報を、物体情報として生成してもよい。
尚、造形時間情報を生成するために、データ生成部213は、3次元モデルデータに基づいて上述した造形制御情報を生成し、生成した造形制御情報に基づいて3次元構造物の付加造形に要する時間を算出してもよい。或いは、データ生成部213は、3次元モデルデータを送信した造形装置1の制御装置17から、制御装置17が生成した造形制御情報を取得してもよい。この場合、データ生成部213は、制御装置17から取得した造形制御情報に基づいて、3次元構造物の付加造形に要する時間を算出してもよい。
データ生成部213が生成した物体情報は、設定GUI9を介して端末ユーザに提供されてもよい。つまり、物体情報を含む設定GUI9が、端末装置3の表示装置35に表示されてもよい。このため、表示制御部211は、データ生成部213が生成した物体情報に基づいて、物体情報を含む設定GUI9に関するGUI情報を生成してもよい。
物体情報を含む設定GUI9の一例が図20に示されている。図20に示すように、3次元構造物の重量に関する重量情報をテキストメッセージ(或いは、その他の表示オブジェクト)で示す設定GUI9が表示されてもい。3次元構造物の強度に関する強度情報をテキストメッセージ(或いは、その他の表示オブジェクト)で示す設定GUI9が表示されてもよい。3次元構造物の付加造形に要する時間に関する造形時間情報をテキストメッセージ(或いは、その他の表示オブジェクト)で示す設定GUI9が表示されてもよい。
このような第4変形例では、端末ユーザは、造形装置1によって付加造形される3次元構造物に関する物体情報を把握することができる。このため、端末ユーザは、物体情報を参照しながら、3次元構造物の形状に関する形状情報を設定することができる。例えば、端末ユーザは、物体情報に含まれる重量情報を参照しながら、3次元構造物の重量が所望の重量となるように、形状情報を設定することができる。例えば、端末ユーザは、物体情報に含まれる強度情報を参照しながら、3次元構造物の強度が所望の強度となるように、形状情報を設定することができる。例えば、端末ユーザは、物体情報に含まれる造形時間情報を参照しながら、3次元構造物の造形に要する時間が所望の時間となるように、形状情報を設定することができる。
(4-5)設定GUI9のその他の変形例
パイプの形状に関する形状情報を設定するための入力画面91piの他の例を示す図21に示すように、入力画面91piは、パイプの少なくとも一部分の断面の様子(例えば、サイズ、形状及び角度等の少なくとも一つ)を模式的に表示するための表示GUI914を含んでいてもよい。例えば、本実施形態では、上述したように、入力画面91piを用いて、パイプが通過する複数の点Pの位置におけるパイプの断面の形状を規定するパラメータが設定される。この場合、図21に示すように、表示GUI914は、始点Poにおけるパイプの断面の様子を示す表示オブジェクトと、中間点P1におけるパイプの断面の様子を示す表示オブジェクトと、中間点P2におけるパイプの断面の様子を示す表示オブジェクト、及び、終点Peにおけるパイプの断面の様子を示す表示オブジェクトを含んでいてもよい。表示GUI914に表示されるパイプの断面の様子は、入力画面91pi及び出力画面92の少なくとも一方を用いて形状情報が更新される都度、更新されてもよい。
パイプの形状に関する形状情報を設定するための入力画面91piの他の例を示す図21に示すように、入力画面91piは、パイプの少なくとも一部分の断面の様子(例えば、サイズ、形状及び角度等の少なくとも一つ)を模式的に表示するための表示GUI914を含んでいてもよい。例えば、本実施形態では、上述したように、入力画面91piを用いて、パイプが通過する複数の点Pの位置におけるパイプの断面の形状を規定するパラメータが設定される。この場合、図21に示すように、表示GUI914は、始点Poにおけるパイプの断面の様子を示す表示オブジェクトと、中間点P1におけるパイプの断面の様子を示す表示オブジェクトと、中間点P2におけるパイプの断面の様子を示す表示オブジェクト、及び、終点Peにおけるパイプの断面の様子を示す表示オブジェクトを含んでいてもよい。表示GUI914に表示されるパイプの断面の様子は、入力画面91pi及び出力画面92の少なくとも一方を用いて形状情報が更新される都度、更新されてもよい。
上述した説明では、パラメータ設定GUI911pi#8(図8参照)を用いて、パイプの少なくとも一部分の管路の多重構造を規定するパラメータが設定されている。一方で、パイプの形状に関する形状情報を設定するための入力画面91piの他の例を示す図21に示すように、アイコン選択GUI912を用いて、パイプの少なくとも一部分の管路の多重構造が設定されてもよい。図21に示す例では、アイコン選択GUI912pi#1は、パイプの少なくとも一部分の断面の形状を多重管(例えば、二重管)に相当する形状に設定するために選択可能なアイコン9121#16を含んでいてもよい。
上述した説明では、アイコン選択GUI912pi#1は、パイプの少なくとも一部分の断面の形状を、区画壁によって管路が複数の区画に区分された形状に設定するために選択可能なアイコン9121#14及び9121#15を含んでいる。アイコン9121#14又は9121#15が選択された場合には、端末ユーザは、入力画面91piを用いて、管路の分割数(つまり、管路に形成される区画の数)を設定してもよい。例えば、入力画面91piは、管路の分割数(つまり、管路に形成される区画の数)を規定するパラメータを設定するためのパラメータ設定GUI911を含んでいてもよい。
上述した説明では、端末ユーザは、入力画面91piを用いて、パイプが通過する新たな点を追加可能である。一方で、端末ユーザ又はデータ生成サーバ2が設定済みの既存の点Pと端末ユーザが追加した新たな点Pとの位置関係によっては、既存の点Pと新たな点Pとの双方を通過するパイプの形状が、不自然な、実現不可能な又は造形不可能な形状になる可能性がある。例えば、既存の第1の点P、新たな点P及び既存の第2の点Pを通過するパイプの形状を規定するために追加された新たな点Pが、既存の第1及び第2の点Pから大きく離れている場合には、既存の第1及び第2の点Pと新たな点Pとの双方を通過するパイプの形状が、不自然な、実現不可能な又は造形不可能な形状になる可能性がある。この場合、データ生成サーバ2(例えば、データ生成部213)は、パイプの形状が、自然な、実現可能な又は造形可能な形状になるように、更に別の点Pを自動で新たに追加してもよい。つまり、データ生成サーバ2(例えば、データ生成部213)は、端末ユーザが新たな点Pの位置を規定するパラメータを設定した後に、端末ユーザが追加した新たな点Pを通過するパイプの形状が、自然な、実現可能な又は造形可能な形状になるように、パイプが通過する更に別の点Pを自動で新たに追加してもよい。或いは、データ生成サーバ2(例えば、データ生成部213)は、端末ユーザが新たな点Pの位置を規定するパラメータを設定した後に、端末ユーザが追加した新たな点Pを通過するパイプの形状が、自然な、実現可能な又は造形可能な形状になるように、端末ユーザが追加した新たな点Pの位置の修正案を、設定GUI9を用いて端末ユーザに対して提示してもよい。或いは、データ生成サーバ2(例えば、データ生成部213)は、端末ユーザが新たな点Pの位置を規定するパラメータを設定した後に、端末ユーザが追加した新たな点Pを通過するパイプの形状が、自然な、実現可能な又は造形可能な形状になるように、端末ユーザが追加した新たな点Pの位置を規定するパラメータの値を補正してもよい。
上述したようにワークW上に3次元構造物が形成される場合、3次元構造物をワークWから分離するための切断処理が行われてもよい。切断処理が行われる場合には、データ生成サーバ2のデータ生成部213は、3次元構造物とワークWとを接続する部分であって且つ切断処理が行われる場合に除去されるマージン部分に相当する切りしろ部分が付加された3次元構造物が形成されるように、3次元モデルデータを生成してもよい。つまり、データ生成部213は、ユーザが設定した形状情報によって規定される形状を有する3次元構造物が切りしろ部分を有していない場合であっても、切りしろ部分を有する3次元構造物の3次元モデルを表す3次元モデルデータを生成してもよい。この場合、造形装置1が造形した3次元構造物が切りしろ部分を有するゆえに、切断処理によってワークWから分離された3次元構造物の形状が、本来想定していた形状とは異なる形状になる可能性が低くなる。また、切りしろ部分を有する3次元構造物の3次元モデルを表す3次元モデルデータを生成する場合には、データ生成部213は、切りしろ部分を3次元構造物と区別するためのマーカを含む3次元構造物の3次元モデルを表す3次元モデルデータを生成してもよい。例えば、データ生成部213は、切りしろ部分と3次元構造物との境界を示すライン(例えば、溝)を含む3次元構造物の3次元モデルを表す3次元モデルデータを生成してもよい。
上述したようにワークW上に3次元構造物が形成される場合、設定GUI9に含まれる出力画面92の一例を示す図22に示すように、出力画面92は、入力画面91を用いて端末ユーザが設定した形状情報に基づく3次元モデルに加えて、ワークWに相当する表示オブジェクトWOを表示してもよい。例えば、表示制御部211は、ワークWの形状に関する情報を取得し、取得したワークWの形状に関する情報に基づいて、表示オブジェクトWOを生成してもよい。ワークWの形状に関する情報は、例えば、ワークWの形状を計測可能な計測装置(例えば、3Dスキャナ)の計測結果を含んでいてもよい。この場合、表示制御部211は、計測装置から、ワークWの形状に関する情報を取得してもよい。このように表示オブジェクトWOが表示されると、端末ユーザは、実際に3次元構造物が形成されるワークWと共に3次元構造物の3次元モデルを認識することができる。このため、端末ユーザは、直感的に3次元モデルデータを生成することができる。
(4-6)データ生成サーバ2の変形例
上述した説明では、データ生成サーバ2は、生成した3次元モデルデータを造形装置1に送信する一方で、端末装置3に送信していない。しかしながら、データ生成サーバ2は、生成した3次元モデルデータを端末装置3に送信してもよい。つまり、データ生成サーバ2は、生成した3次元モデルデータを、端末装置3の端末ユーザに提供してもよい。
上述した説明では、データ生成サーバ2は、生成した3次元モデルデータを造形装置1に送信する一方で、端末装置3に送信していない。しかしながら、データ生成サーバ2は、生成した3次元モデルデータを端末装置3に送信してもよい。つまり、データ生成サーバ2は、生成した3次元モデルデータを、端末装置3の端末ユーザに提供してもよい。
データ生成サーバ2は、無条件で、生成した3次元モデルデータを端末ユーザに提供してもよい。或いは、データ生成サーバ2は、生成した3次元モデルデータを、一定の条件を満たす端末ユーザに提供してもよい。例えば、データ生成サーバ2は、3次元モデルデータに基づく3次元構造物の造形を造形ユーザに実際に委託した端末ユーザに対して、3次元モデルデータを提供してもよい。一方で、例えば、データ生成サーバ2は、3次元モデルデータに基づく3次元構造物の造形を造形ユーザに実際に委託しなかった端末ユーザに対して、3次元モデルデータを提供しなくてもよい。或いは、データ生成サーバ2は、第1のフォーマットの3次元モデルデータを、一定の条件を満たす端末ユーザに提供し、第1のフォーマットとは異なる第2のフォーマットの3次元モデルデータを、一定の条件を満たさない端末ユーザに提供してもよい。例えば、データ生成サーバ2は、3次元モデルデータに基づく3次元構造物の造形を造形ユーザに実際に委託した端末ユーザに対して、端末ユーザにとって利便性が相対的に高いフォーマット(例えば、STLファイルフォーマット)の3次元モデルデータを提供してもよい。一方で、例えば、データ生成サーバ2は、3次元モデルデータに基づく3次元構造物の造形を造形ユーザに実際に委託しなかった端末ユーザに対して、端末ユーザにとって利便性が相対的に低いフォーマット(例えば、ソリッドモデルを表すフォーマット)の3次元モデルデータを提供してもよい。
(4-7)その他の変形例
造形装置1は、設定GUI9を表示可能な表示装置(つまり、端末装置3の表示装置35として機能可能な装置)を備えていてもよい。造形装置1は、設定GUI9を操作するために造形ユーザが用いる入力装置(つまり、端末装置3の入力装置34として機能可能な装置)を備えていてもよい。つまり、造形装置1は、端末装置3のうちの少なくとも一部を備えていてもよい。この場合、造形ユーザは、設定GUI9を用いて、形状情報を設定してもよい。更に、この場合には、造形装置1の制御装置17は、造形ユーザが設定した形状情報に基づいて、3次元モデルデータを生成してもよい。つまり、制御装置17は、データ生成サーバ2のうちの少なくとも一部を備えていてもよい。
造形装置1は、設定GUI9を表示可能な表示装置(つまり、端末装置3の表示装置35として機能可能な装置)を備えていてもよい。造形装置1は、設定GUI9を操作するために造形ユーザが用いる入力装置(つまり、端末装置3の入力装置34として機能可能な装置)を備えていてもよい。つまり、造形装置1は、端末装置3のうちの少なくとも一部を備えていてもよい。この場合、造形ユーザは、設定GUI9を用いて、形状情報を設定してもよい。更に、この場合には、造形装置1の制御装置17は、造形ユーザが設定した形状情報に基づいて、3次元モデルデータを生成してもよい。つまり、制御装置17は、データ生成サーバ2のうちの少なくとも一部を備えていてもよい。
上述した説明では、端末装置3の表示装置35は、入力画面91及び出力画面92の双方を含む設定GUI9を表示している。しかしながら、表示装置35は、入力画面91及び出力画面92のいずれか一方を表示する一方で、入力画面91及び出力画面92のいずれか他方を表示しなくてもよい。つまり、表示装置35の表示モードは、入力画面91及び出力画面92の双方が表示されるモードと、入力画面91及び出力画面92のいずれか一方が表示されるモードとの間で切り替えられてもよい。この場合、表示装置35の表示モードは、端末ユーザの指示に基づいて切り替えられてもよい。
上述した説明では、造形装置1は、造形材料Mに加工光ELを照射することで、造形材料Mを溶融させている。しかしながら、造形装置1は、任意のエネルギービームを造形材料Mに照射することで、造形材料Mを溶融させてもよい。任意のエネルギービームの一例として、荷電粒子ビーム及び電磁波等の少なくとも一つがあげられる。荷電粒子ビームの一例として、電子ビーム及びイオンビーム等の少なくとも一つがあげられる。
上述した説明では、造形装置1は、レーザ肉盛溶接法に基づく付加加工を行うことで、3次元構造物を造形している。しかしながら、造形装置1は、3次元構造物を形成可能なその他の方式に準拠した付加加工を行うことで、3次元構造物を造形してもよい。或いは、造形装置1は、付加加工を行うことに加えて又は代えて、除去加工を行うことで、3次元構造物を造形してもよい。造形装置1は、付加加工及び除去加工の少なくとも一つを行うことに加えて又は代えて、機械加工を行うことで、3次元構造物を造形してもよい。
上述の各実施形態の構成要件の少なくとも一部は、上述の各実施形態の構成要件の少なくとも他の一部と適宜組み合わせることができる。上述の各実施形態の構成要件のうちの一部が用いられなくてもよい。また、法令で許容される限りにおいて、上述の各実施形態で引用した全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。
本発明は、上述した実施例に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴うデータ生成方法、造形受託方法、データ生成装置、表示装置、造形方法、コンピュータプログラム及び記録媒体もまた本発明の技術的範囲に含まれるものである。
SYS 造形システム
1 造形装置
2 データ生成サーバ
21 演算装置
211 表示制御部
212 情報取得部
213 データ生成部
3 端末装置
311 表示制御部
312 情報取得部
9 設定GUI
91 入力画面
911 パラメータ設定GUI
912 アイコン選択GUI
92 出力画面
1 造形装置
2 データ生成サーバ
21 演算装置
211 表示制御部
212 情報取得部
213 データ生成部
3 端末装置
311 表示制御部
312 情報取得部
9 設定GUI
91 入力画面
911 パラメータ設定GUI
912 アイコン選択GUI
92 出力画面
Claims (81)
- 造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、
表示装置に表示された入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値とは異なる、前記パイプの端部の位置から第1距離だけ離れた位置を規定するパラメータの値を、前記パイプの中間部の位置を規定するパラメータの値として自動設定することと、
前記ユーザにより前記入力画面を用いて指定されたパラメータの値及び前記自動設定されたパラメータの値に基づいて3次元モデルを前記表示装置の出力画面に提供することと、
前記ユーザにより前記入力画面を用いて指定されたパラメータの値及び前記自動設定されたパラメータの値に基づいて前記モデルデータを生成することと
を含むデータ生成方法。 - 前記ユーザによって指定された前記パイプの端部の位置を規定するパラメータの値を取得することを更に含む
請求項1に記載のデータ生成方法。 - 前記ユーザが前記パイプの端部の位置を規定するパラメータの値を指定した後に、前記ユーザによる指定が無い場合であっても、前記パイプの前記中間部の位置を規定するパラメータの値に、前記パイプの端部の位置から前記第1距離だけ離れた位置を自動で設定する
請求項1又は2に記載のデータ生成方法。 - 前記ユーザは、前記パイプの端部からの距離が前記第1距離未満となる範囲内の位置を、前記パイプの前記中間部の位置を規定するパラメータの値として指定できない
請求項1から3のいずれか一項に記載のデータ生成方法。 - 前記パイプの端部からの距離が前記第1距離未満となる第1範囲内には、ネジ部又はネジ穴部を設けるための領域が含まれる
請求項1から4のいずれか一項に記載のデータ生成方法。 - 前記パイプの端部からの距離が前記第1距離未満となる第1範囲内には、第一軸方向に進展する柱部分が含まれ、
前記柱部分は、ネジ部又はネジ穴部を設けるための領域を含む
請求項1から5のいずれか一項に記載のデータ生成方法。 - 造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、
表示装置に表示された入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供することと、
前記出力画面に表示された前記3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記パイプの形状を規定するパラメータの値を変更することと
を含み、
前記3次元モデルは、第1軸、第2軸及び第3軸が互いに直交する3次元座標系内に表される3次元モデルであり、
前記出力画面は、前記第3軸から見た場合の前記3次元モデルを表示可能であり、
前記第3軸から見た場合の前記3次元モデルが表示される前記出力画面において、前記ユーザは、前記第1軸に関するパラメータの値及び前記第1軸に関するパラメータの値を変更するための前記変更操作を行うことが可能であり、
前記変更操作に応じて、前記入力画面に表示されているパラメータの値を、前記変更操作によって変更された3次元モデルの形状を規定するパラメータの値に変更し、
前記入力画面に表示されているパラメータの値に基づいて、前記モデルデータを生成する
データ生成方法。 - 前記出力画面は、更に、前記第1軸から見た場合の前記3次元モデルを表示可能であり、
前記第1軸から見た場合の前記3次元モデルが表示される前記出力画面において、前記ユーザは、前記第2軸に関するパラメータの値及び前記第3軸に関するパラメータの値を変更するための前記変更操作を行うことが可能である
請求項7に記載のデータ生成方法。 - 前記出力画面は、更に、前記第2軸から見た場合の前記3次元モデルを表示可能であり、
前記第2軸から見た場合の前記3次元モデルが表示される前記出力画面において、前記ユーザは、前記第3軸に関するパラメータの値及び前記第1軸に関するパラメータの値を変更するための前記変更操作を行うことが可能である
請求項8に記載のデータ生成方法。 - 前記第1軸から見た場合の前記3次元モデルが前記出力画面に表示されている場合、前記第2軸から見た場合の前記3次元モデルが前記出力画面に表示されている場合、及び、前記第3軸から見た場合の前記3次元モデルが表示されている場合のみ、前記ユーザによる変更操作に応じたパラメータの値の変更が可能である
請求項7から10のいずれか一項に記載のデータ生成方法。 - 造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、
表示装置に表示された入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供することと、
前記出力画面に表示された前記3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記パイプの形状を規定するパラメータの値を変更することと、
前記入力画面を用いて指定されたパラメータの値及び前記出力画面を用いて変更されたパラメータの値に基づいて、前記モデルデータを生成することと
を含み、
前記出力画面には、前記3次元モデルのうち前記変更操作によって前記パイプの形状を規定するパラメータの値の変更が可能な部分が表示される
データ生成方法。 - 造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、
表示装置に表示された入力画面を用いてユーザにより前記パイプの形状を規定するパラメータの値として指定された前記パイプの外径及び前記パイプの外側面と内側面との間の長さとに基づいて、前記モデルデータを生成することと、
前記入力画面を用いて前記ユーザが前記外径を指定し直した場合に、前記パイプの内径が一定に維持されるように、前記パイプの外側面と内側面との間の長さを設定し直すことと
を含むデータ生成方法。 - 造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、
表示装置に表示された入力画面を用いてユーザにより前記パイプの形状を規定するパラメータの値として指定された前記パイプの外側面と内側面との間の長さに基づいて前記モデルデータを生成することと、
前記入力画面を用いて前記ユーザが前記外側面と前記内側面との間の長さを指定し直した場合に、前記パイプの内径が一定に維持されるように、前記パイプの外径を設定し直すことと
を含むデータ生成方法。
を含むデータ生成方法。 - 造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、
表示装置に表示された入力画面を用いてユーザにより前記パイプの形状を規定するパラメータの値として設定された、前記パイプの外径、及び前記パイプの外側面と内側面との間の長さのうちの一方のパラメータの値が、前記入力画面を用いて前記ユーザにより再設定された場合に、他方のパラメータの値を自動設定することと、
前記ユーザにより設定されたパラメータの値及び前記自動設定されたパラメータの値に基づいて前記モデルデータを生成することと
を含むデータ生成方法。 - 前記他方のパラメータの値を自動設定することは、前記パイプの内径が維持されるように前記他方のパラメータの値が自動設定することを含む
請求項14に記載のデータ生成方法。 - 造形装置により付加造形される物体の3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、
表示装置に表示された入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値に基づいて、前記モデルデータを生成することと、
前記物体の第1部分の位置から第1距離だけ離れた位置を規定するパラメータの値を設定することと
を含むデータ生成方法。 - 前記ユーザが前記物体の第1部分の位置を規定する第1パラメータの値を指定した後に、前記ユーザによる指定が無い場合であっても、前記物体の第2部分の位置を規定する第2パラメータの値に、前記物体の第1部分から前記第1距離だけ離れた位置を自動で設定する
請求項16に記載のデータ生成方法。 - 前記ユーザは、前記物体の第1部分の位置からの距離が前記第1距離未満となる範囲内の位置を、前記物体の一部分の位置を規定するパラメータの値として指定できない
請求項16又は17に記載のデータ生成方法。 - 前記物体の第1部分の位置からの距離が前記第1距離未満となる第1範囲内には、所定の形状を設けるための領域が含まれる
請求項16から18のいずれか一項に記載のデータ生成方法。 - 前記物体の第1部分の位置からの距離が前記第1距離未満となる第1範囲内には、第一軸方向に進展する柱部分が含まれ、
前記柱部分は、所定の形状を設けるための領域を含む
請求項16から19のいずれか一項に記載のデータ生成方法。 - 前記第2パラメータの値を設定することは、前記第1パラメータの値に基づいて、前記第2パラメータの値を設定することを含む
請求項17に記載のデータ生成方法。 - 前記第2パラメータの値を設定することは、前記入力画面を用いて前記ユーザが前記第1パラメータの値を指定した場合に、前記ユーザが前記第2パラメータの値を指定することなしに、前記第2パラメータの値を設定することを含み
前記第1部分と前記第2部分との間における前記物体の第3部分の形状を規定する第3パラメータの値を設定することを更に含む
請求項17又は21のいずれか一項に記載のデータ生成方法。 - 前記第2パラメータの値を設定することは、前記第1パラメータに基づいて定まる位置を、前記第2パラメータの値に設定することを含む
請求項17、21又は22に記載のデータ生成方法。 - 前記第3パラメータの値を設定することは、前記第3部分の形状が所定形状となるように、前記第3パラメータの値を設定することを含む
請求項22に記載のデータ生成方法。 - 前記物体は、パイプであり、
前記第1部分は、前記パイプの端部を含み、
前記第2部分は、前記端部から所定距離だけ離れた前記物体の一部を含む
請求項17及び21から24のいずれか一項に記載のデータ生成方法。 - 造形装置により付加造形される物体の3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、
表示装置に表示された入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供することと、
前記出力画面に表示された3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記物体の形状を規定するパラメータの値を変更することと、
前記入力画面を用いて指定されたパラメータの値及び前記出力画面を用いて変更されたパラメータの値に基づいて、前記モデルデータを生成することと
を含むデータ生成方法。 - 造形装置により付加造形される物体の3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、
表示装置に表示された入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供することと、
前記出力画面に表示された3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記入力画面に表示されている前記パラメータの値を、前記変更操作によって変更された3次元モデルの形状を規定する値に変更することと、
前記入力画面に表示されているパラメータの値に基づいて、前記モデルデータを生成することと
を含むデータ生成方法。 - 造形装置により付加造形される物体の3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、
表示装置に表示された入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供することと、
前記出力画面に表示された前記3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記物体の形状を規定するパラメータの値を変更することと、
前記入力画面を用いて指定されたパラメータの値及び前記出力画面を用いて変更されたパラメータの値に基づいて、前記モデルデータを生成することと
を含み、
前記出力画面には、前記3次元モデルのうち前記変更操作によって前記物体の形状を規定するパラメータの値の変更が可能な部分が表示される
データ生成方法。 - 前記変更操作は、前記出力画面内において前記3次元モデルの一部を移動させることが可能な操作を含む
請求項26から28のいずれか一項に記載のデータ生成方法。 - 前記変更操作は、前記3次元モデルの一部である第1部分を3次元座標系内における第1軸方向に移動させることなく、前記第1軸方向と直交する第2軸方向、並びに、前記第1軸方向及び第2軸方向と直交する第3軸方向に前記第1部分を移動させることが可能な操作を含む
請求項26から29のいずれか一項に記載のデータ生成方法。 - 前記変更操作は、前記出力画面内において、前記3次元モデルの一部を、所定平面に沿った方向に移動させることが可能な操作を含む
請求項26から30のいずれか一項に記載のデータ生成方法。 - 前記出力画面は、前記所定平面に交差する視点から観察される前記3次元モデルを表示する
請求項31に記載のデータ生成方法。 - 前記3次元モデルは、第1軸、第2軸及び第3軸が互いに直交する3次元座標系内に表される3次元モデルであり、
前記出力画面は、前記第3軸から見た場合の前記3次元モデルを表示可能であり、
前記ユーザは、前記第3軸から見た場合の前記3次元モデルが表示される場合の前記出力画面においては、前記物体の一部に対して前記第1軸に関するパラメータ及び前記第2軸に関するパラメータを変更するための前記変更操作を行うことが可能である
請求項26から32のいずれか一項に記載のデータ生成方法。 - 前記出力画面は、更に、前記第1軸から見た場合の前記3次元モデルを表示可能であり、
前記第1軸から見た場合の前記3次元モデルが表示される前記出力画面において、前記ユーザは、前記第2軸に関するパラメータの値及び前記第3軸に関するパラメータの値を変更するための前記変更操作を行うことが可能である
請求項33に記載のデータ生成方法。 - 前記出力画面は、更に、前記第2軸から見た場合の前記3次元モデルを表示可能であり、
前記第2軸から見た場合の前記3次元モデルが表示される前記出力画面において、前記ユーザは前記第3軸に関するパラメータの値及び前記第1軸に関するパラメータの値を変更するための前記変更操作を行うことが可能である
請求項34に記載のデータ生成方法。 - 前記第1軸から見た場合の前記3次元モデルが前記出力画面に表示されている場合、前記第2軸から見た場合の前記3次元モデルが前記出力画面に表示されている場合、及び、前記第3軸から見た場合の前記3次元モデルが表示されている場合のみ、前記ユーザによる変更操作に応じた前記物体の形状を規定するパラメータの値の変更が可能である
請求項33から35のいずれか一項に記載のデータ生成方法。 - 前記変更操作は、前記物体の位置に関するパラメータの値及び前記物体のサイズに関するパラメータの値の少なくとも一方を変更するための操作を含む
請求項26から36のいずれか一項に記載のデータ生成方法。 - 前記出力画面は、前記3次元モデルのうち前記変更操作によって前記物体の形状を規定するパラメータの値の変更が可能な部分を表示する
請求項26から37のいずれか一項に記載のデータ生成方法。 - 前記入力画面は前記物体の形状を規定するアイコンを表示可能であり、
前記ユーザにより前記アイコンを前記出力画面にドラッグアンドドロップすることにより、前記アイコンの位置を規定するパラメータの値を前記出力画面において指定可能である
請求項26から38のいずれか一項に記載のデータ生成方法。 - 前記入力画面は、設定済みの前記パラメータの値を表示可能であり、
前記変更操作に応じて、前記入力画面に表示されている前記パラメータの値を、前記変更操作によって変更された前記3次元モデルの形状を規定する値に変更する
請求項26又は28に記載のデータ生成方法。 - 造形装置により付加造形される物体の3次元モデルを表すモデルデータを生成するためのデータ生成方法であって、
表示装置に表示された入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータである第1パラメータおよび前記物体の形状を規定するパラメータである第2パラメータに基づいて、前記モデルデータを生成することと、
前記入力画面を用いて前記ユーザが第1パラメータを指定し直した場合に、前記物体の形状に関する第3パラメータが維持されるように、前記ユーザが指定した第2パラメータを設定し直すことと
を含むデータ生成方法。 - 前記第1パラメータは、前記物体の第1の種類のサイズに関するパラメータを含み、
前記第2パラメータは、前記物体の前記第1の種類のサイズとは異なる第2の種類のサイズに関するパラメータを含み、
前記第3パラメータは、前記物体の前記第1及び第2の種類のサイズとは異なる第3の種類のサイズに関するパラメータを含み、
請求項41に記載のデータ生成方法。 - 前記物体は、パイプであり、
前記第1パラメータは、前記パイプの外径、内径及び管壁の厚みのうちのいずれか一つに関するパラメータを含み、
前記第2パラメータは、前記外径、前記内径及び前記厚みのうちのいずれか他の一つに関するパラメータを含み、
前記第3パラメータは、前記外径、前記内径及び前記厚みのうちの残りの一つに関するパラメータを含む
請求項41又は42に記載のデータ生成方法。 - 前記モデルデータに基づいて前記造形装置によって付加造形される前記物体に関する情報を提供することを更に含む
請求項1から43のいずれか一項に記載のデータ生成方法。 - 前記物体に関する情報は、前記物体の重量に関する情報、前記物体の付加造形に要する時間に関する情報、及び、前記物体の強度に関する情報の少なくとも一つを含む
請求項44に記載のデータ生成方法。 - 前記パラメータは、前記物体の少なくとも一部分のサイズに関するパラメータを含む
請求項1から45のいずれか一項に記載のデータ生成方法。 - 前記パラメータは、前記物体の少なくとも一部分の位置に関するパラメータを含む
請求項1から46のいずれか一項に記載のデータ生成方法。 - 前記モデルデータに基づいて前記造形装置によって付加造形される前記物体に関する情報を提供することを更に含む
請求項1から47のいずれか一項に記載のデータ生成方法。 - 前記物体に関する情報は、前記物体の重量に関する情報、前記物体の付加造形に要する時間に関する情報、及び、前記物体の強度に関する情報の少なくとも一つを含む
請求項48に記載のデータ生成方法。 - 前記造形装置は、レーザ肉盛溶接法(LMD:Laser Metal Deposition)に準拠した付加造形を行う
請求項1から49のいずれか一項に記載のデータ生成方法。 - パイプの付加造形を受託する造形受託方法であって、
ユーザに入力画面に関する表示内容を提供することと、
表示装置に表示された前記入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値の内容を、前記入力画面に提供することと、
前記入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値とは異なる、前記パイプの端部の位置から第1距離だけ離れた位置を規定するパラメータの値を、前記パイプの中間部の位置を規定するパラメータの値として自動設定することと、
前記ユーザにより前記入力画面を用いて指定されたパラメータの値及び前記自動設定されたパラメータの値に基づいて3次元モデルを前記表示装置の出力画面に提供することと
を含む造形受託方法。 - パイプの付加造形を受託する造形受託方法であって、
ユーザに入力画面に関する表示内容を提供することと、
表示装置に表示された前記入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値の内容を、前記入力画面に提供することと、
前記ユーザにより指定されたパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供することと、
前記出力画面に表示された前記3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記パイプの形状を規定するパラメータの値を変更することと
を含み、
前記3次元モデルは、第1軸、第2軸及び第3軸が互いに直交する3次元座標系内に表される3次元モデルであり、
前記出力画面は、前記第3軸から見た場合の前記3次元モデルを表示可能であり、
前記第3軸から見た場合の前記3次元モデルが表示される前記出力画面において、前記ユーザは、前記第1軸に関するパラメータの値及び前記第1軸に関するパラメータの値を変更するための前記変更操作を行うことが可能であり、
前記変更操作に応じて、前記入力画面に表示されているパラメータの値を、前記変更操作によって変更された3次元モデルの形状を規定するパラメータの値に変更する
造形受託方法。 - パイプの付加造形を受託する造形受託方法であって、
ユーザに入力画面に関する表示内容を提供することと、
表示装置に表示された前記入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値の内容を、前記入力画面に提供することと、
前記ユーザにより指定されたパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供することと、
前記出力画面に表示された前記3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記パイプの形状を規定するパラメータの値を変更することと
を含み、
前記出力画面には、前記3次元モデルのうち前記変更操作によって前記パイプの形状を規定するパラメータの値の変更が可能な部分が表示される
造形受託方法。 - パイプの付加造形を受託する造形受託方法であって、
ユーザに入力画面に関する表示内容を提供することと、
表示装置に表示された前記入力画面を用いてユーザにより前記パイプの形状を規定するパラメータの値として指定された前記パイプの外径及び前記パイプの外側面と内側面との間の長さの内容を、前記入力画面に提供することと、
前記入力画面を用いて前記ユーザが前記外径を指定し直した場合に、前記パイプの内径が一定に維持されるように、前記パイプの外側面と内側面との間の長さを設定し直すことと
を含む造形受託方法。 - パイプの付加造形を受託する造形受託方法であって、
ユーザに入力画面に関する表示内容を提供することと、
表示装置に表示された前記入力画面を用いてユーザによりを用いて前記パイプの形状を規定するパラメータの値として指定された前記パイプの外側面と内側面との間の長さの内容を、前記入力画面に提供することと、
前記入力画面を用いて前記ユーザが前記外側面と前記内側面との間の長さを指定し直した場合に、前記パイプの内径が一定に維持されるように、前記パイプの外径を設定し直すことと
を含む造形受託方法。 - パイプの付加造形を受託する造形受託方法であって、
ユーザに入力画面に関する表示内容を提供することと、
表示装置に表示された前記入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値の内容を、前記入力画面に提供することと、
前記入力画面を用いてユーザにより前記パイプの形状を規定するパラメータの値として設定された、前記パイプの外径、及び前記パイプの外側面と内側面との間の長さのうちの一方のパラメータの値が、前記入力画面を用いて前記ユーザにより再設定された場合に、他方のパラメータの値を自動設定することと
を含む造形受託方法。 - 物体の付加造形を受託する造形受託方法であって、
ユーザに入力画面に関する表示内容を提供することと、
表示装置に表示された前記入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値の内容を、前記入力画面に提供することと、
前記物体の第1部分の位置から第1距離だけ離れた位置を規定するパラメータの値を設定することと
を含む造形受託方法。 - 物体の付加造形を受託する造形受託方法であって、
ユーザに入力画面に関する表示内容を提供することと、
表示装置に表示された前記入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値の内容を、前記入力画面に提供することと、
前記ユーザにより指定されたパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供することと、
前記出力画面に表示された3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記物体の形状を規定するパラメータの値を変更することと
を含む造形受託方法。 - 物体の付加造形を受託する造形受託方法であって、
ユーザに入力画面に関する表示内容を提供することと、
表示装置に表示された前記入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値の内容を、前記入力画面に提供することと、
前記ユーザにより指定されたパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供することと、
前記出力画面に表示された3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記入力画面に表示されている前記パラメータの値を、前記変更操作によって変更された3次元モデルの形状を規定する値に変更することと
を含む造形受託方法。 - 物体の付加造形を受託する造形受託方法であって、
ユーザに入力画面に関する表示内容を提供することと、
表示装置に表示された前記入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値の内容を、前記入力画面に提供することと、
前記ユーザにより指定されたパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供することと、
前記出力画面に表示された前記3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記物体の形状を規定するパラメータの値を変更することと
を含み、
前記出力画面には、前記3次元モデルのうち前記変更操作によって前記物体の形状を規定するパラメータの値の変更が可能な部分が表示される
造形受託方法。 - 物体の付加造形を受託する造形受託方法であって、
ユーザに入力画面に関する表示内容を提供することと、
表示装置に表示された前記入力画面を用いてユーザにより前記物体の形状を規定するパラメータである第1パラメータおよび前記物体の形状を規定するパラメータである第2パラメータの値の内容を、前記入力画面に提供することと、
前記入力画面を用いて前記ユーザが第1パラメータを指定し直した場合に、前記物体の形状に関する第3パラメータが維持されるように、前記ユーザが指定した第2パラメータを設定し直すことと
を含む造形受託方法。 - 造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、
表示装置に表示された入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値とは異なる、前記パイプの端部の位置から第1距離だけ離れた位置を規定するパラメータの値を、前記パイプの中間部の位置を規定するパラメータの値として自動設定し、
前記ユーザにより前記入力画面を用いて指定されたパラメータの値及び前記自動設定されたパラメータの値に基づいて3次元モデルを前記表示装置の出力画面に提供する
データ生成装置。 - 造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、
表示装置に表示された入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供し、
前記出力画面に表示された前記3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記パイプの形状を規定するパラメータの値を変更し、
前記3次元モデルは、第1軸、第2軸及び第3軸が互いに直交する3次元座標系内に表される3次元モデルであり、
前記出力画面は、前記第3軸から見た場合の前記3次元モデルを表示可能であり、
前記第3軸から見た場合の前記3次元モデルが表示される前記出力画面において、前記ユーザは、前記第1軸に関するパラメータの値及び前記第1軸に関するパラメータの値を変更するための前記変更操作を行うことが可能であり、
前記変更操作に応じて、前記入力画面に表示されているパラメータの値を、前記変更操作によって変更された3次元モデルの形状を規定するパラメータの値に変更し、
前記入力画面に表示されているパラメータの値に基づいて、前記モデルデータを生成する
データ生成装置。 - 造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、
表示装置に表示された入力画面を用いてユーザにより指定された前記パイプの形状を規定するパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供し、
前記出力画面に表示された前記3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記パイプの形状を規定するパラメータの値を変更し、
前記出力画面には、前記3次元モデルのうち前記変更操作によって前記パイプの形状を規定するパラメータの値の変更が可能な部分が表示され、
前記入力画面を用いて指定されたパラメータの値及び前記出力画面を用いて変更されたパラメータの値に基づいて、前記モデルデータを生成する
データ生成装置。 - 造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、
表示装置に表示された入力画面を用いてユーザにより前記パイプの形状を規定するパラメータの値として指定された前記パイプの外径及び前記パイプの外側面と内側面との間の長さとに基づいて、前記モデルデータを生成し、
前記入力画面を用いて前記ユーザが前記外径を指定し直した場合に、前記パイプの内径が一定に維持されるように、前記パイプの外側面と内側面との間の長さを設定し直す
データ生成装置。 - 造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、
表示装置に表示された入力画面を用いてユーザにより前記パイプの形状を規定するパラメータの値として指定された前記パイプの外側面と内側面との間の長さに基づいて前記モデルデータを生成し、
前記入力画面を用いて前記ユーザが前記外側面と前記内側面との間の長さを指定し直した場合に、前記パイプの内径が一定に維持されるように、前記パイプの外径を設定し直す
データ生成装置。 - 造形装置により付加造形される物体であるパイプの3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、
表示装置に表示された入力画面を用いてユーザにより前記パイプの形状を規定するパラメータの値として設定された、前記パイプの外径、及び前記パイプの外側面と内側面との間の長さのうちの一方のパラメータの値が、前記入力画面を用いて前記ユーザにより再設定された場合に、他方のパラメータの値を自動設定し、
前記ユーザにより設定されたパラメータの値及び前記自動設定されたパラメータの値に基づいて前記モデルデータを生成する
を含むデータ生成装置。 - 造形装置により付加造形される物体の3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、
表示装置に表示された入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値に基づいて、前記モデルデータを生成し、
前記物体の第1部分の位置から第1距離だけ離れた位置を規定するパラメータの値を設定する
データ生成装置。 - 造形装置により付加造形される物体の3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、
表示装置に表示された入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供し、
前記出力画面に表示された3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記物体の形状を規定するパラメータの値を変更し、
前記入力画面を用いて指定されたパラメータの値及び前記出力画面を用いて変更されたパラメータの値に基づいて、前記モデルデータを生成する
データ生成装置。 - 造形装置により付加造形される物体の3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、
表示装置に表示された入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供し、
前記出力画面に表示された3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記入力画面に表示されている前記パラメータの値を、前記変更操作によって変更された3次元モデルの形状を規定する値に変更し、
前記入力画面を用いて指定されたパラメータの値及び前記出力画面を用いて変更されたパラメータの値に基づいて、前記モデルデータを生成する
データ生成装置。 - 造形装置により付加造形される物体の3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、
表示装置に表示された入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータの値に基づく3次元モデルを前記表示装置の出力画面に提供し、
前記出力画面に表示された前記3次元モデルの形状を変更するための前記ユーザによる前記出力画面への変更操作に応じて、前記物体の形状を規定するパラメータの値を変更し、
前記入力画面を用いて指定されたパラメータの値及び前記出力画面を用いて変更されたパラメータの値に基づいて、前記モデルデータを生成し、
前記出力画面には、前記3次元モデルのうち前記変更操作によって前記物体の形状を規定するパラメータの値の変更が可能な部分が表示される
データ生成装置。 - 造形装置により付加造形される物体の3次元モデルを表すモデルデータを生成するためのデータ生成装置であって、
表示装置に表示された入力画面を用いてユーザにより指定された前記物体の形状を規定するパラメータである第1パラメータおよび前記物体の形状を規定するパラメータである第2パラメータに基づいて、前記モデルデータを生成し、
前記入力画面を用いて前記ユーザが第1パラメータを指定し直した場合に、前記物体の形状に関する第3パラメータが維持されるように、前記ユーザが指定した第2パラメータを設定し直す
データ生成装置。 - 請求項65から68及び72のいずれか一項に記載のデータ生成装置から前記入力画面に関する情報を取得する取得部と、
前記取得部が取得した情報に基づいて、前記入力画面を表示する表示部と
を備える表示装置。 - 請求項62から64及び69から71のいずれか一項に記載のデータ生成装置から前記入力画面及び前記出力画面に関する情報を取得する取得部と、
前記取得部が取得した情報に基づいて、前記入力画面及び前記出力画面を表示する表示部と
を備える表示装置。 - 物体を造形する造形方法であって、
請求項1から50のいずれか一項に記載のデータ生成方法を用いて、前記モデルデータを生成することと、
前記モデルデータに基づいて、前記物体を造形するように造形装置を制御することと
を含む造形方法。 - 物体を造形する造形方法であって、
請求項62から72のいずれか一項に記載のデータ生成装置を用いて、前記モデルデータを生成することと、
前記モデルデータに基づいて、前記物体を造形するように造形装置を制御することと
を含む造形方法。 - 前記造形装置を制御することは、
前記モデルデータに基づいて、前記物体を造形するように前記造形装置を制御するための制御データを生成することと、
前記制御データに基づいて、前記造形装置を制御することと
を含む請求項75又は76に記載の造形方法。 - 請求項1から50いずれか一項に記載のデータ生成方法をコンピュータに実行させるコンピュータプログラム。
- 請求項51から61のいずれか一項に記載の造形受託方法をコンピュータに実行させるコンピュータプログラム。
- 請求項76から77のいずれか一項に記載の造形方法をコンピュータに実行させるコンピュータプログラム。
- 請求項78から80のいずれか一項に記載のコンピュータプログラムが記録された記録媒体。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/027,196 US20230330939A1 (en) | 2020-10-06 | 2020-10-06 | Data generation method, build contract method, data generation apparatus, display apparatus, build method, computer program and recording medium |
EP20956693.4A EP4227095A4 (en) | 2020-10-06 | 2020-10-06 | DATA GENERATING METHOD, FORMING ACCEPTANCE METHOD, DATA GENERATING DEVICE, DISPLAY DEVICE, FORMING METHOD, COMPUTER PROGRAM AND RECORDING MEDIUM |
PCT/JP2020/037905 WO2022074745A1 (ja) | 2020-10-06 | 2020-10-06 | データ生成方法、造形受託方法、データ生成装置、表示装置、造形方法、コンピュータプログラム及び記録媒体 |
JP2022555011A JPWO2022074745A1 (ja) | 2020-10-06 | 2020-10-06 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/037905 WO2022074745A1 (ja) | 2020-10-06 | 2020-10-06 | データ生成方法、造形受託方法、データ生成装置、表示装置、造形方法、コンピュータプログラム及び記録媒体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022074745A1 true WO2022074745A1 (ja) | 2022-04-14 |
Family
ID=81125771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/037905 WO2022074745A1 (ja) | 2020-10-06 | 2020-10-06 | データ生成方法、造形受託方法、データ生成装置、表示装置、造形方法、コンピュータプログラム及び記録媒体 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230330939A1 (ja) |
EP (1) | EP4227095A4 (ja) |
JP (1) | JPWO2022074745A1 (ja) |
WO (1) | WO2022074745A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12050765B2 (en) * | 2021-10-08 | 2024-07-30 | Medit Corp. | Method for processing intraoral image, and data processing apparatus |
US11948248B2 (en) * | 2022-07-27 | 2024-04-02 | NexTech AR Solutions Corp. | Three-dimensional (3D) model generation from two-dimensional (2D) images |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04505588A (ja) * | 1988-04-18 | 1992-10-01 | スリーディー、システムズ、インコーポレーテッド | 3次元物体の形成方法 |
US20090271323A1 (en) | 2005-10-13 | 2009-10-29 | Stratasys, Inc. | Transactional Method for Building Three-Dimensional Objects |
JP2012096426A (ja) * | 2010-11-01 | 2012-05-24 | Keyence Corp | 三次元造形装置用の設定データ作成装置、三次元造形装置用の設定データ作成方法及び三次元造形装置用の設定データ作成プログラム並びにコンピュータで読み取り可能な記録媒体 |
JP2015219371A (ja) * | 2014-05-16 | 2015-12-07 | 株式会社東芝 | 処理装置、血管模型、画像処理方法、プログラム、および、造形装置に関する。 |
JP2017068413A (ja) * | 2015-09-29 | 2017-04-06 | 富士フイルム株式会社 | 三次元造形システム、情報処理装置及び方法、並びにプログラム |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9223928B1 (en) * | 2012-10-26 | 2015-12-29 | Autodesk, Inc. | Reverse engineering part families for multiple disciplines |
EP2829993B1 (en) * | 2013-07-25 | 2020-09-30 | Dassault Systèmes | Design of a path connecting a first point to a second point in a three-dimensional scene |
ES2768673T3 (es) * | 2013-10-11 | 2020-06-23 | Advanced Solutions Life Sciences Llc | Sistema y estación de trabajo para el diseño, fabricación y ensamblaje de construcciones de biomaterial |
US10354018B2 (en) * | 2014-06-20 | 2019-07-16 | Autodesk, Inc. | Generating tubes within three-dimensional models |
-
2020
- 2020-10-06 WO PCT/JP2020/037905 patent/WO2022074745A1/ja unknown
- 2020-10-06 US US18/027,196 patent/US20230330939A1/en active Pending
- 2020-10-06 EP EP20956693.4A patent/EP4227095A4/en active Pending
- 2020-10-06 JP JP2022555011A patent/JPWO2022074745A1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04505588A (ja) * | 1988-04-18 | 1992-10-01 | スリーディー、システムズ、インコーポレーテッド | 3次元物体の形成方法 |
US20090271323A1 (en) | 2005-10-13 | 2009-10-29 | Stratasys, Inc. | Transactional Method for Building Three-Dimensional Objects |
JP2012096426A (ja) * | 2010-11-01 | 2012-05-24 | Keyence Corp | 三次元造形装置用の設定データ作成装置、三次元造形装置用の設定データ作成方法及び三次元造形装置用の設定データ作成プログラム並びにコンピュータで読み取り可能な記録媒体 |
JP2015219371A (ja) * | 2014-05-16 | 2015-12-07 | 株式会社東芝 | 処理装置、血管模型、画像処理方法、プログラム、および、造形装置に関する。 |
JP2017068413A (ja) * | 2015-09-29 | 2017-04-06 | 富士フイルム株式会社 | 三次元造形システム、情報処理装置及び方法、並びにプログラム |
Non-Patent Citations (1)
Title |
---|
See also references of EP4227095A4 |
Also Published As
Publication number | Publication date |
---|---|
US20230330939A1 (en) | 2023-10-19 |
EP4227095A1 (en) | 2023-08-16 |
EP4227095A4 (en) | 2024-07-03 |
JPWO2022074745A1 (ja) | 2022-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10890893B2 (en) | Method and apparatus for generating geometric data for use in additive manufacturing | |
WO2022074745A1 (ja) | データ生成方法、造形受託方法、データ生成装置、表示装置、造形方法、コンピュータプログラム及び記録媒体 | |
US9573323B2 (en) | Method for generating and building support structures with deposition-based digital manufacturing systems | |
US20180370145A1 (en) | Systems and methods for determining tool paths in three-dimensional printing | |
JP5408221B2 (ja) | 立体物造形装置及び制御プログラム | |
EP4186616A1 (en) | Processing system | |
EP3747633A1 (en) | Processing device, processing method, computer program, recording medium, and control device | |
JPWO2020079816A1 (ja) | 積層造形方法および加工経路生成方法 | |
WO2020017405A1 (ja) | 造形システム | |
WO2022074744A1 (ja) | データ生成方法、造形受託方法、データ生成装置、表示装置、造形方法、コンピュータプログラム及び記録媒体 | |
WO2022157914A1 (ja) | 加工方法 | |
WO2023058087A1 (ja) | データ生成方法、造形方法、加工方法、データ生成装置、コンピュータプログラム、記録媒体及び表示方法 | |
WO2022168268A1 (ja) | 加工パス情報生成方法 | |
JP2022092208A (ja) | 管部材、混合攪拌装置及び造形装置 | |
US20220176459A1 (en) | Processing system | |
WO2021019644A1 (ja) | 加工システム、加工方法、制御装置、コンピュータプログラム、記録媒体及び加工装置 | |
WO2024084642A1 (ja) | 情報処理方法、加工方法、表示方法、表示装置、情報処理装置、コンピュータプログラム及び記録媒体 | |
US20240075557A1 (en) | Build system | |
WO2022254648A1 (ja) | 造形装置及び造形方法 | |
JP7571801B2 (ja) | 造形システム | |
WO2022254671A1 (ja) | 付加製造装置および付加製造方法 | |
WO2022201346A1 (ja) | 造形装置及び造形方法 | |
WO2019216228A1 (ja) | 造形システム、及び、造形方法 | |
Kanakanala | Multi axis slicing for rapid prototyping | |
JP2021167462A (ja) | 積層造形システム、プログラム、及び積層造形方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20956693 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022555011 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020956693 Country of ref document: EP Effective date: 20230508 |