WO2023058087A1 - データ生成方法、造形方法、加工方法、データ生成装置、コンピュータプログラム、記録媒体及び表示方法 - Google Patents

データ生成方法、造形方法、加工方法、データ生成装置、コンピュータプログラム、記録媒体及び表示方法 Download PDF

Info

Publication number
WO2023058087A1
WO2023058087A1 PCT/JP2021/036616 JP2021036616W WO2023058087A1 WO 2023058087 A1 WO2023058087 A1 WO 2023058087A1 JP 2021036616 W JP2021036616 W JP 2021036616W WO 2023058087 A1 WO2023058087 A1 WO 2023058087A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
interference
display
model
displaying
Prior art date
Application number
PCT/JP2021/036616
Other languages
English (en)
French (fr)
Inventor
聡 奧野
重紀 杉下
俊光 倉見
泰一 伊藤
永策 小川
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2021/036616 priority Critical patent/WO2023058087A1/ja
Publication of WO2023058087A1 publication Critical patent/WO2023058087A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing

Definitions

  • the present invention provides, for example, a data generation method, a data generation device, a computer program, a recording medium, a modeling method for additively shaping an object, an object and, for example, a display method and a display device for displaying data related to interference of a modeling head that additionally shapes an object or a machining head that processes an object.
  • Patent Document 1 describes a method of displaying a three-dimensional model in which parts that cannot be additionally modeled by a 3D printer are visualized.
  • the method described in Patent Literature 1 has a technical problem that no consideration is given to interference between a modeling head that additionally models an object or a machining head that processes an object.
  • model data representing a three-dimensional shape of an object to be additionally modeled on a mounting device using a modeling head is generated; and the generated model data generating display data for displaying a three-dimensional model of the object on a display device based on; and generating modeling data for additively modeling the object based on the model data;
  • the three-dimensional model related to the object includes a three-dimensional model of the object before additional modeling of the object is completed, and the display data prevents interference between the modeling head and at least one of the object and the placement device.
  • the model data and the display data are re-generated based on the re-input, and the interference information is updated based on the re-input.
  • a data generation method is provided.
  • model data representing a three-dimensional shape of an object to be additionally modeled on a placement device using a modeling head is generated; and the generated model data generating display data for displaying a three-dimensional model of the object on a display device based on; and generating modeling data for additively modeling the object based on the model data;
  • the three-dimensional model related to the object includes a three-dimensional model of the object before additional modeling of the object is completed, and the display data prevents interference between the modeling head and at least one of the object and the placement device.
  • the generation of the display data includes a three-dimensional model showing the modeled object at a specified point in the period from the start point to the end point of the model, which is predicted to be generated at the specified point.
  • a data generation method is provided that includes generating display data for display on the display device with the interference information of the interference.
  • a modeling method for modeling the object with a modeling device using the data generation method provided by the first or second aspect is provided.
  • a data generation method for generating data relating to an indication of interference between the processing head and a second object that is expected to occur when the processing head processes the first object, generating display data for displaying a three-dimensional model showing the second object on a display device based on model data representing the three-dimensional shape of the first object, wherein the display data is the processing head and the There is provided a data generation method including, as interference information, interference depth information indicating the degree of interference with the second object.
  • a data generation method for generating data relating to an indication of interference between the processing head and a second object that is expected to occur when the processing head processes the first object, generating display data for displaying a three-dimensional model showing the second object on a display device based on model data representing the three-dimensional shape of the first object, wherein the display data is the processing head and the
  • the display data includes interference information indicating interference with the second object
  • the generation of the display data includes a three-dimensional model indicating the second object at a specified point in the period from the start point to the end point of the processing, the three-dimensional model at the specified point. and generating display data for display on the display device together with the interference information of the interference expected to occur at.
  • a data generation method for generating data relating to an indication of interference between the processing head and a second object that is expected to occur when the processing head processes a first object, comprising: inputting setting parameters specifying the shape of the first object based on device input; generating model data representing the three-dimensional shape of the first object based on the parameters; and generating display data for displaying a three-dimensional model showing the second object on a display device based on model data representing the three-dimensional shape of the processing head and the third object.
  • the generation of the display data includes displaying on the display device a display screen including a parameter display screen capable of displaying the parameters and an output screen capable of displaying the interference information.
  • a data generation method is provided that includes generating display data for.
  • a data generation method for generating data relating to an indication of interference between the processing head and a second object that is expected to occur when the processing head processes a first object, comprising: inputting setting parameters specifying the shape of the first object based on device input; generating model data representing the three-dimensional shape of the first object based on the parameters; and generating display data for displaying a three-dimensional model showing the second object on a display device based on model data representing the three-dimensional shape of the processing head and the third object.
  • Interference information indicating interference with two objects, and together with the interference information, generating display data for displaying on the display device a display object for proposing resetting of the parameters to the user.
  • model data representing a three-dimensional shape of an object to be processed on a mounting device using a processing head is generated based on an input from an input device; generating display data for displaying a three-dimensional model of the object on a display device based on the model data; generating processing data for processing the object based on the model data;
  • the three-dimensional model of the object includes a three-dimensional model of the workpiece before finishing machining of the object, and the display data is interference indicating interference between the machining head and at least one of the workpiece and the mounting device.
  • model data representing a three-dimensional shape of the object to be processed on the mounting device using the processing head is generated; generating display data for displaying a three-dimensional model of the object on a display device based on the model data; generating processing data for processing the object based on the model data;
  • the three-dimensional model of the object includes a three-dimensional model of the workpiece before finishing machining of the object, and the display data is interference indicating interference between the machining head and at least one of the workpiece and the mounting device.
  • the generation of the display data includes a three-dimensional model showing the workpiece at a specified point in the period from the start point to the end point of the machining, and the interference expected to occur at the specified point.
  • a data generation method is provided that includes generating display data for display on the display device along with the interference information.
  • model data representing a three-dimensional shape of an object to be additionally modeled on the placement device using the modeling head is generated based on input from the input device, and based on the generated model data display data for displaying a three-dimensional model of the object on a display device; modeling data for additively modeling the object based on the model data; and generating the three-dimensional model of the object.
  • the display data includes interference information indicating interference between the modeling head and at least one of the object and the mounting device;
  • a data generation device is provided in which, when a re-input is performed with the input device, the model data and the display data are re-generated based on the re-input, and the interference information is updated based on the re-input. be.
  • model data representing a three-dimensional shape of an object to be additionally modeled on the placement device using the modeling head is generated based on input from the input device, and based on the generated model data display data for displaying a three-dimensional model of the object on a display device; modeling data for additively modeling the object based on the model data; and generating the three-dimensional model of the object.
  • the display data includes interference information indicating interference between the modeling head and at least one of the object and the mounting device, for displaying, on the display device, a three-dimensional model showing the modeled object at a specified point during the period from the start point to the end point of the modelling, together with the interference information of the interference predicted to occur at the specified point;
  • a data generation apparatus is provided that includes generating display data.
  • a data generation device for generating data relating to an indication of interference between the processing head and a second object that is expected to occur when the processing head processes the first object, display data for displaying a three-dimensional model representing the second object on a display device based on model data representing the three-dimensional shape of the first object, wherein the display data includes the processing head and the second object;
  • a data generator is provided that includes interference depth information that indicates the degree of interference with an object.
  • a data generation device for generating data relating to an indication of interference between the processing head and a second object that is expected to occur when the processing head processes the first object, display data for displaying a three-dimensional model representing the second object on a display device based on model data representing the three-dimensional shape of the first object, wherein the display data includes the processing head and the second object; interference information indicating interference with an object, and a three-dimensional model indicating the object at a specified point in a period from the start point to the end point of the machining;
  • a data generator is provided for generating display data for display on a display device along with the interference information.
  • a data generation device for generating data relating to an indication of interference between the processing head and a second object that is expected to occur when the processing head processes a first object, comprising: setting parameters specifying the shape of the first object based on the input of the device, generating model data representing the three-dimensional shape of the first object based on the parameters, and generating the three-dimensional shape of the first object display data for displaying a three-dimensional model showing the second object on a display device based on model data representing and generating display data for displaying, on a display device, a display screen including a parameter display screen capable of displaying the parameters and an output screen capable of displaying the interference information.
  • a data generation device for generating data relating to an indication of interference between the processing head and a second object that is expected to occur when the processing head processes a first object, comprising: setting parameters specifying the shape of the first object based on the input of the device, generating model data representing the three-dimensional shape of the first object based on the parameters, and generating the three-dimensional shape of the first object is generated as display data for displaying a three-dimensional model representing the second object on a display device based on the model data representing the interference and generating display data for displaying on the display device a display object for proposing resetting of the parameters to the user together with the interference information.
  • a computer program that causes a computer to execute the data generation method according to any one of the first to second, fourth to seventh and ninth to tenth aspects.
  • the eighteenth aspect there is provided a recording medium on which the computer program provided by the seventeenth aspect is recorded.
  • the model data representing the three-dimensional shape of the object to be additionally modeled on the mounting device using the shaping head based on the model data representing the three-dimensional shape of the object to be additionally modeled on the mounting device using the shaping head, the model data of the shaping head, and the model data of the mounting device displaying a three-dimensional model of the object, a three-dimensional model of the molding head, and a three-dimensional model of the mounting device on a display device based on the display data; wherein the three-dimensional model of the object includes a three-dimensional model of a modeled object before completion of additional modeling of the object, and interference indicating interference between the modeling head and at least one of the modeled object and the placement device
  • a display method is provided for displaying information on the display device together with the three-dimensional model of the object to be molded, the three-dimensional model of the molding head, and the three-dimensional model of the mounting device.
  • FIG. 1 is a block diagram showing the configuration of the modeling system of this embodiment.
  • FIG. 2 is a cross-sectional view showing the structure of the modeling apparatus of this embodiment.
  • FIG. 3 is a system configuration diagram showing the system configuration of the modeling apparatus of this embodiment.
  • FIG. 4 is a block diagram showing the configuration of the data generation server of this embodiment.
  • FIG. 5 is a block diagram showing the configuration of the terminal device of this embodiment.
  • FIG. 6 is a flow chart showing the flow of operations performed by the modeling system (that is, operations for additively modeling a three-dimensional structure, such as commissioned modeling operations).
  • FIG. 7 is a plan view showing an example of a setting GUI.
  • FIG. 8 is a plan view showing an example of an input screen for setting shape information regarding the shape of a pipe.
  • FIG. 9 is a plan view showing a wireframe model of a pipe.
  • FIG. 10 is a plan view showing a surface model of a pipe with associated points through which the pipe passes.
  • FIG. 11 is a cross-sectional view showing a head model, a stage model, a work model and an unfinished modeling model.
  • FIG. 12 is a cross-sectional view showing the head model, the stage model, the work model, and the unfinished modeling model.
  • FIG. 13 shows the interference depth
  • FIG. 14 shows a display example of interference information.
  • FIG. 15 shows a display example of interference information.
  • FIG. 16 shows a display example of interference information.
  • FIG. 17 shows a display example of interference information.
  • FIG. 18 shows a display example of progress objects.
  • FIG. 15 shows a display example of interference information.
  • FIG. 16 shows a display example of interference information.
  • FIG. 17 shows a display example of interference information.
  • FIG. 18 shows a display example of progress objects.
  • FIG. 19 shows a display example of a progress object to which an index indicating the time point of interference is added.
  • FIG. 20 shows a display example of interference information including information about interference depth.
  • FIG. 21 shows a display example of a progress object to which an index indicating the time point of interference is added.
  • FIG. 22 shows a display example of interference information.
  • FIG. 23 shows a display example of a proposal object for proposing resetting of shape information to a terminal user.
  • 24(a) and 24(b) are perspective views showing the positional relationship between the three-dimensional structure and the processing space.
  • Embodiments of a data generation method, a modeling method, a processing method, a data generation device, a computer program, a recording medium, and a display method will be described below with reference to the drawings.
  • Embodiments of a data generation method, a modeling method, a processing method, a data generation device, a computer program, a recording medium, and a display method will be described below using the modeling system SYS.
  • the modeling system SYS may also be called a processing system.
  • FIG. 1 is a block diagram showing the overall configuration of the modeling system SYS.
  • the modeling system SYS comprises a modeling apparatus 1 and a data generation server 2.
  • the modeling apparatus 1 and the data generation server 2 can communicate via a communication network 4 including at least one of a wired communication network and a wireless communication network.
  • the data generation server 2 can communicate with the terminal device 3 via a communication network 5 including at least one of a wired communication network and a wireless communication network.
  • the communication networks 4 and 5 may be separate communication networks or may be the same communication network.
  • the modeling apparatus 1 and the data generation server 2 do not have to be able to communicate with each other.
  • the modeling apparatus 1 may perform operations described later in an offline state separated from the data generation server 2 .
  • the data generation server 2 may perform operations described later in an offline state separated from the modeling apparatus 1 .
  • the terminal device 3 may be a device that forms part of the modeling system SYS. That is, the modeling system SYS may include the terminal device 3 . Alternatively, the modeling system SYS may not include the terminal device 3 . In this case, any device that can communicate with the data generation server 2 provided in the modeling system SYS (for example, an information processing device such as a computer provided by a terminal user, which will be described later) may be used as the terminal device 3 .
  • the data generation server 2 may be installed at the location where the modeling apparatus 1 is installed, or may be installed at a location different from the location where the modeling apparatus 1 is installed.
  • the data generation server 2 may be installed at the place where the terminal device 3 is installed, or may be installed at a place different from the place where the terminal device 3 is installed.
  • the data generation server 2 may be installed at a place of business different from the place of business where at least one of the modeling apparatus 1 and the terminal device 3 is installed.
  • the data generation server 2 may be installed in a country different from the country where at least one of the modeling device 1 and the terminal device 3 is installed.
  • the modeling apparatus 1 is an apparatus capable of modeling a three-dimensional structure (that is, a three-dimensional object having a size in any three-dimensional direction).
  • the modeling apparatus 1 models a three-dimensional structure by performing additional processing. That is, the modeling apparatus 1 additively models a three-dimensional structure.
  • the modeling apparatus 1 may be called a processing apparatus.
  • the data generation server 2 is a device that can generate three-dimensional model data representing a three-dimensional model of a three-dimensional structure that is additively modeled by the modeling device 1 .
  • a three-dimensional model of a three-dimensional structure to be additively modeled will be referred to as an "additional modeling model”
  • three-dimensional model data representing the additively modeling model will be referred to as "additional modeling model data”.
  • the data generation server 2 may also be called a data generation device.
  • the data generation server 2 transmits (that is, outputs, the same shall apply hereinafter) the generated addition modeling model data to the modeling apparatus 1 via the communication network 4 .
  • the modeling apparatus 1 additionally models a three-dimensional structure based on the additive modeling model data transmitted from the data generation server 2 .
  • the data generation server 2 is a device capable of predicting whether or not interference will occur between members (for example, a processing head 121 to be described later) provided in the modeling apparatus 1 during the process in which the modeling apparatus 1 forms a three-dimensional structure. be. The details of the operation of predicting whether or not interference between members (for example, a processing head 121 described later) of the modeling apparatus 1 will occur will be described later.
  • the terminal device 3 is a device that can be operated by the user in order to set (that is, designate) feature information regarding the features of the three-dimensional structure to be additionally modeled by the modeling apparatus 1 .
  • a user who can operate the terminal device 3 is hereinafter referred to as a terminal user.
  • a terminal user may typically be a person who wishes to add-model a three-dimensional structure using the modeling apparatus 1 .
  • an example in which the terminal device 3 is a device that can be operated by the terminal user to set shape information related to the shape of the three-dimensional structure to be additionally modeled by the modeling device 1 will be described as an example of the feature information. do.
  • the terminal device 3 transmits the shape information set by the terminal user to the data generation server 2 via the communication network 5 .
  • the data generation server 2 generates additive modeling model data based on the shape information transmitted from the terminal device 3 .
  • the data generation server 2 generates the additive modeling model data representing the additive modeling model of the three-dimensional structure having the shape specified by the shape information set by the terminal user.
  • the modeling apparatus 1 additionally models a three-dimensional structure having a shape specified by the shape information set by the terminal user.
  • the terminal device 3 may display a setting GUI (Graphical User Interface) 9 (see FIG. 7, etc.) including an input screen 91 that can be operated by the user to set shape information.
  • the data generation server 2 transmits GUI information regarding the setting GUI 9 to the terminal device 3 via the communication network 5 .
  • the terminal device 3 displays the setting GUI 9 based on the GUI information.
  • the terminal user uses the setting GUI 9 displayed by the terminal device 3 to set the shape information.
  • the terminal user may be the same as or different from the user who can operate the data generation server 2 (hereinafter referred to as "server user”).
  • the terminal user may be the same as or different from the user who can operate the modeling apparatus 1 (hereinafter referred to as "modeling user”).
  • the modeling system SYS allows the terminal user to become a consignor who commissions the modeling user to model the three-dimensional structure, and the modeling user to perform modeling from the terminal user. It may be considered to be equivalent to a modeling entrustment system that becomes a consignee entrusted with entrusted modeling of a three-dimensional structure. In other words, the following operations performed by the modeling system SYS may be considered equivalent to the commissioned modeling operation (contracted modeling method).
  • FIG. 2 is a cross-sectional view showing an example of the structure of the modeling apparatus 1 of this embodiment.
  • FIG. 3 is a system configuration diagram showing an example of the system configuration of the modeling apparatus 1 of this embodiment.
  • each of the X-axis direction and the Y-axis direction is the horizontal direction (that is, a predetermined direction in the horizontal plane), and the Z-axis direction is the vertical direction (that is, the direction perpendicular to the horizontal plane). and substantially in the vertical direction or the gravitational direction).
  • the directions of rotation (in other words, tilt directions) about the X-, Y-, and Z-axes are referred to as the .theta.X direction, the .theta.Y direction, and the .theta.Z direction, respectively.
  • the Z-axis direction may be the direction of gravity.
  • the XY plane may be set horizontally.
  • the modeling apparatus 1 is capable of performing a modeling operation for forming a three-dimensional structure.
  • the modeling apparatus 1 can form a three-dimensional structure on a workpiece W that serves as a base for forming the three-dimensional structure.
  • the work W may be called a base member.
  • the modeling apparatus 1 can form a three-dimensional structure on the stage 131 .
  • the work W is an existing structure placed on the stage 131 (or placed on the stage 131)
  • the modeling apparatus 1 can form a three-dimensional structure on the existing structure. may be In this case, the modeling apparatus 1 may form a three-dimensional structure integrated with the existing structure.
  • the operation of forming a three-dimensional structure integrated with an existing structure can be regarded as equivalent to the operation of adding a new structure to the existing structure.
  • the existing structure may be, for example, a defective part requiring repair.
  • the modeling apparatus 1 may form a three-dimensional structure on the item to be repaired so as to fill the defective portion of the item to be repaired. Alternatively, the modeling apparatus 1 may form a three-dimensional structure separable from the existing structure.
  • FIG. 2 shows an example in which the work W is an existing structure held by the stage 131 . Also, the following explanation will proceed using an example in which the work W is an existing structure held by the stage 131 .
  • the modeling apparatus 1 is an apparatus capable of modeling a three-dimensional structure by performing additional processing (additional modeling) conforming to the laser build-up welding method.
  • the modeling apparatus 1 can also be said to be a 3D printer that forms an object using a layered modeling technique.
  • the layered manufacturing technology may also be referred to as rapid prototyping, rapid manufacturing, or additive manufacturing.
  • Laser Overlay Welding includes Direct Metal Deposition, Direct Energy Deposition, Laser Cladding, Laser Engineered Net Shaping, Direct Light Fabrication, Laser Consolidation, Shape ⁇ Deposition manufacturing, wire-feed laser deposition, gas through wire, laser powder fusion, laser metal forming, selective laser powder remelting, laser direct casting, It may also be referred to as laser powder deposition, laser additive manufacturing, laser rapid forming.
  • the modeling apparatus 1 processes the modeling material M with the processing light EL to form a three-dimensional structure.
  • the modeling material M is a material that can be melted by irradiation with processing light EL having a predetermined intensity or more.
  • a modeling material M for example, at least one of a metallic material and a resinous material can be used.
  • the modeling material M other materials different from the metallic material and the resinous material may be used.
  • the building material M is a powdery or granular material. That is, the modeling material M is a granular material. However, the modeling material M does not have to be granular.
  • the modeling material M at least one of a wire-like modeling material and a gaseous modeling material may be used.
  • the modeling apparatus 1 includes a material supply source 11, a processing device 12, a stage device 13, a light source 14, and a gas supply device 15, as shown in FIGS. , a housing 16 , a control device 17 , and a communication device 18 . At least part of each of the processing device 12 and the stage device 13 is accommodated within the chamber space 163IN inside the housing 16 .
  • the material supply source 11 supplies the modeling material M to the processing device 12 .
  • the material supply source 11 supplies a desired amount of the modeling material M according to the required amount so that the required amount of the modeling material M is supplied to the processing device 12 per unit time to form the three-dimensional structure. supply M.
  • the processing device 12 processes the modeling material M supplied from the material supply source 11 to form a three-dimensional structure. In other words, the processing device 12 additionally shapes the three-dimensional structure. For this reason, the processing device 12 may be referred to as a modeling device.
  • the processing device 12 includes a processing head 121 and a head drive system 122 to form a three-dimensional structure.
  • the processing head 121 may be called a shaping head.
  • the processing head 121 includes an irradiation optical system 1211 capable of emitting processing light EL, a material nozzle 1212 capable of supplying the modeling material M, and a head housing 1213 . At least part of the irradiation optical system 1211 and the material nozzle 1212 is housed in the head housing 1213 .
  • the machining head 121 and the head drive system 122 are accommodated within the chamber space 163IN. However, at least a part of the processing head 121 and the head driving system 122 may be arranged in an external space 164OUT which is a space outside the housing 16 . Note that the external space 164OUT may be a space that a modeling user can enter.
  • the head drive system 122 moves (that is, moves) the processing head 121 .
  • the head drive system 122 moves the processing head 121 along at least one of the X axis, Y axis, Z axis, ⁇ X direction, ⁇ Y direction, and ⁇ Z direction, for example.
  • the positional relationship between the processing head 121 and the stage 131 (furthermore, the work W placed on the stage 131) changes.
  • the head drive system 122 moves the processing head 121, the positional relationship between the processing head 121 and the object additionally formed on the workpiece W changes.
  • the modeling material M supplied from the material nozzle 1212 is irradiated with the processing light EL emitted by the irradiation optical system 1211 .
  • the modeling material M melts. That is, a molten pool containing the molten modeling material M is formed.
  • the processing light EL is no longer applied to the molten pool as the processing head 121 moves, the modeling material M melted in the molten pool solidifies. That is, a modeled object corresponding to the deposit of the solidified modeling material M is formed.
  • the modeling apparatus 1 moves the machining head 121 in at least one of the X-axis direction and the Y-axis direction to perform a series of modeling processes including the formation of the molten pool and the solidification of the molten modeling material M by irradiating the machining light EL. Repeat while moving along. That is, the modeling apparatus 1 performs a series of modeling processes including the formation of the molten pool and the solidification of the molten modeling material M by irradiating the processing light EL and the positional relationship between the machining head 121 and the workpiece W (furthermore, This is repeated while changing the positional relationship between the processing head 121 and the object formed on the workpiece W).
  • the modeling apparatus 1 sequentially forms a plurality of structural layers such that the plurality of structural layers are stacked. As a result, a three-dimensional structure corresponding to an assembly of multiple structural layers is additively formed.
  • the stage device 13 has a stage 131 .
  • the stage 131 is housed in the chamber space 163IN.
  • a workpiece W can be placed on the stage 131 .
  • the stage 131 may be capable of holding the work W placed on the stage 131 .
  • the stage 131 may have at least one of a mechanical chuck, an electrostatic chuck, a vacuum chuck, and the like to hold the work W.
  • the stage 131 may not be able to hold the work W placed on the stage 131 .
  • the workpiece W may be placed on the stage 131 without clamping.
  • the stage drive system 132 moves the stage 131 .
  • the stage drive system 132 moves the stage 131 along at least one of the X-axis, Y-axis, Z-axis, ⁇ X direction, ⁇ Y direction, and ⁇ Z direction.
  • the stage drive system 132 moves the stage 131
  • the positional relationship between the processing head 121 and the stage 131 (and the workpiece W placed on the stage 131) changes.
  • the stage drive system 132 moves the stage 131, the positional relationship between the processing head 121 and the modeled object additionally modeled on the workpiece W changes.
  • the light source 14 emits, for example, at least one of infrared light, visible light, and ultraviolet light as processing light EL.
  • the processing light EL may include a plurality of pulsed lights (that is, a plurality of pulsed beams).
  • the processing light EL may include continuous light (CW: Continuous Wave).
  • the processing light EL may be laser light.
  • the light source 14 may include a laser light source (for example, a semiconductor laser such as a laser diode (LD).
  • the laser light source may be a fiber laser, a CO2 laser, a YAG laser, an excimer laser, or the like).
  • the processing light EL may not be laser light.
  • the light source 14 may include at least one of an arbitrary light source (for example, an LED (Light Emitting Diode), a discharge lamp, etc.).
  • the irradiation optical system 1211 is optically connected to the light source 14 via an optical transmission member 141 including at least one of an optical fiber and a light pipe. emits the processing light EL propagating from the light source 14 via the light transmission member 141 .
  • the gas supply device 15 is a supply source of purge gas for purging the chamber space 163IN.
  • the purge gas contains inert gas. Examples of inert gas include at least one of nitrogen gas and argon gas.
  • the gas supply device 15 is connected to the chamber space 163 IN via a supply port 162 formed in a partition member 161 of the housing 16 and a supply pipe 151 connecting the gas supply device 15 and the supply port 162 .
  • the gas supply device 15 supplies purge gas to the chamber space 163 IN through the supply pipe 151 and the supply port 162 . As a result, the chamber space 163IN becomes a space purged with the purge gas.
  • the purge gas supplied to the chamber space 163IN may be discharged from a discharge port (not shown) formed in the partition member 161 .
  • the gas supply device 15 may be a cylinder containing an inert gas.
  • the inert gas is nitrogen gas
  • the gas supply device 15 may be a nitrogen gas generator that generates nitrogen gas using the atmosphere as a raw material.
  • the purge gas supplied from the gas supply device 15 is supplied to the supply port 162 opened to the chamber space 163IN in order to purge the entire chamber space 163IN inside the housing 16.
  • the purge gas locally changes the atmosphere in the vicinity of the irradiation position of the processing light EL by the irradiation optical system 1211. It may be supplied from a supply port (not shown) provided in the processing head 121 so as to be filled with the purge gas.
  • the atmosphere in the vicinity of the irradiation position of the processing light EL may be locally filled with the purge gas by the material nozzle 1212 that ejects the purge gas.
  • a supply port may be provided in the nozzle member 1212 to locally fill the atmosphere in the vicinity of the irradiation position of the processing light EL with the purge gas.
  • a purge gas may be supplied to the mixing device 112 to which material M is supplied.
  • the gas supply device 15 may be connected to the mixing device 112 via a supply pipe 152 that connects the gas supply device 15 and the mixing device 112 .
  • the gas supply device 15 supplies purge gas to the mixing device 112 via the supply pipe 152 .
  • the molding material M from the material supply source 11 is supplied through the supply pipe 111 toward the material nozzle 1212 (specifically , pumped).
  • the material nozzle 1212 supplies the modeling material M together with the purge gas for pumping the modeling material M from the material supply port.
  • the housing 16 is a housing device that houses at least a part of each of the processing device 12 and the stage device 13 in a chamber space 163IN, which is an internal space of the housing 16 .
  • the housing 16 includes a partition member 161 that defines a chamber space 163IN.
  • the partition member 161 is a member that separates the chamber space 163 IN and the external space 164 OUT of the housing 16 . In this case, the space surrounded by the partition member 161 becomes the chamber space 163IN.
  • the partition member 161 may be provided with a door that can be opened and closed. This door may be opened when the workpiece W is placed on the stage 131 . The door may be opened when the workpiece W and/or the three-dimensional structure is taken out from the stage 131. The door may be closed during the period when the shaping operation is taking place.
  • An observation window (not shown) for visually recognizing the chamber space 163IN from the external space 164OUT of the housing 16 may be formed in the partition member 161 .
  • the control device 17 controls the operation of the modeling device 1.
  • the control device 17 may include, for example, an arithmetic device and a storage device.
  • the computing device may include, for example, at least one of a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit).
  • a storage device may include, for example, memory.
  • the control device 17 functions as a device that controls the operation of the modeling device 1 by the arithmetic device executing a computer program.
  • This computer program is a computer program for causing the arithmetic device to perform (that is, to execute) the later-described operation that should be performed by the control device 17 .
  • this computer program is a computer program for causing the control device 17 to function so as to cause the modeling apparatus 1 to perform operations described later.
  • the computer program executed by the arithmetic device may be recorded in a storage device (that is, a recording medium) provided in the control device 17, or any storage that is built in the control device 17 or can be externally attached to the control device 17 It may be recorded on a medium (for example, hard disk or semiconductor memory).
  • the arithmetic device 21 may download the computer program to be executed from a device external to the control device 17 via the communication device 18 .
  • the control device 17 causes the modeling apparatus 1 to additively model a three-dimensional structure (that is, a three-dimensional structure having a shape set by the terminal user) based on the additive modeling model data transmitted from the data generation server 2. may control the operation of For example, the control device 17 may generate modeling data that defines the operation content of the modeling device 1 based on the additional modeling model data. Specifically, based on the additional modeling model data, the control device 17 controls the three-dimensional structure represented by the additional modeling model data (that is, the three-dimensional structure having a shape defined by the shape information set by the terminal user). It is also possible to generate modeling data that defines the details of the operation of the modeling apparatus 1 for additively modeling the . After that, the control device 17 may control the operation of the modeling device 1 to additively model the three-dimensional structure (that is, the three-dimensional structure having the shape set by the terminal user) based on the modeling data. .
  • the control device 17 does not have to be provided inside the modeling device 1 .
  • the control device 17 may be provided as a server or the like outside the modeling apparatus 1 .
  • the control device 17 may be integrated with the data generation server 2 .
  • the control device 17 and the modeling device 1 may be connected via a wired and/or wireless network (for example, the communication network 4, or a data bus and/or communication line).
  • a wired network a network using a serial bus interface represented by at least one of IEEE1394, RS-232x, RS-422, RS-423, RS-485 and USB may be used.
  • a network using a parallel bus interface may be used as the wired network.
  • a network using an Ethernet (registered trademark) interface represented by at least one of 10BASE-T, 100BASE-TX, and 1000BASE-T may be used.
  • a network using radio waves may be used as the wireless network.
  • An example of a network using radio waves is a network conforming to IEEE802.1x (for example, at least one of wireless LAN and Bluetooth (registered trademark)).
  • a network using infrared rays may be used as the wireless network.
  • a network using optical communication may be used as the wireless network.
  • the control device 17 and the modeling device 1 may be configured to be able to transmit and receive various types of information via the communication network 4 or the like.
  • control device 17 may be capable of transmitting information such as commands and control parameters to the modeling device 1 via the communication network 4 or the like.
  • the communication device 18 included in the modeling apparatus 1 may function as a receiving device that receives information such as commands and control parameters from the control device 17 via the communication network 4 or the like.
  • the communication device 18 included in the modeling apparatus 1 may function as a transmission device that transmits information such as commands and control parameters to the control device 17 via the communication network 4 or the like.
  • a first control device that performs part of the processing performed by the control device 17 is provided inside the modeling apparatus 1, while a second control device that performs another part of the processing performed by the control device 17 is provided.
  • the control device may be provided outside the modeling apparatus 1 .
  • part of the processing performed by the control device 17 may be performed by the data generation server 2 .
  • a computing model that can be constructed by machine learning may be implemented in the control device 17 by the computing device executing a computer program.
  • An example of an arithmetic model that can be constructed by machine learning is an arithmetic model that includes a neural network (so-called artificial intelligence (AI)).
  • learning the computational model may include learning neural network parameters (eg, at least one of weights and biases).
  • the control device 17 may use the arithmetic model to control the operation of the modeling system SYS.
  • the operation of controlling the operation of the modeling system SYS may include the operation of controlling the operation of the modeling system SYS using the arithmetic model.
  • control device 17 may be equipped with an arithmetic model that has already been constructed by off-line machine learning using teacher data. Further, the arithmetic model installed in the control device 17 may be updated on the control device 17 by online machine learning.
  • control device 17 may use a computation model implemented in a device external to the control device 17 (that is, a device provided outside the modeling system SYS). may be used to control the operation of the modeling system SYS.
  • Recording media for recording computer programs executed by the control device 17 include CD-ROMs, CD-Rs, CD-RWs, flexible disks, MOs, DVD-ROMs, DVD-RAMs, DVD-Rs, DVD+Rs, and DVDs.
  • optical discs such as RW, DVD+RW and Blu-ray (registered trademark)
  • magnetic media such as magnetic tapes
  • magneto-optical discs semiconductor memories such as USB memories
  • the recording medium may include a device capable of recording a computer program (for example, a general-purpose device or a dedicated device in which a computer program is implemented in at least one form of software, firmware, etc., in an executable state).
  • each process and function included in the computer program may be realized by a logical processing block realized in the control device 17 by the control device 17 (that is, computer) executing the computer program, It may be realized by hardware such as a predetermined gate array (FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit)) provided in the control device 17, or a logical processing block and part of the hardware
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the communication device 18 can communicate with the data generation server 2 via the communication network 4.
  • the communication device 18 can receive the additive modeling model data generated by the data generation server 2 from the data generation server 2 .
  • FIG. 4 is a block diagram showing the configuration of the data generation server 2. As shown in FIG.
  • the data generation server 2 includes an arithmetic device 21, a storage device 22, and a communication device 23. Furthermore, the data generation server 2 may have an input device 24 and an output device 25 . However, the data generation server 2 does not have to include at least one of the input device 24 and the output device 25 . Arithmetic device 21 , storage device 22 , communication device 23 , input device 24 and output device 25 may be connected via data bus 26 .
  • the data generation server 2 and the terminal device 3 may be an integrated device (or an integrated system). At least two of the modeling device 1, the data generation server 2, and the terminal device 3 may be an integrated device (or an integrated system).
  • the state in which "apparatus X and apparatus Y become an integrated apparatus” means the state in which "apparatus X and apparatus Y are accommodated in the same housing to form an integrated apparatus". may contain.
  • the state in which "apparatus X and apparatus Y form an integrated apparatus” includes the state in which "apparatus X and apparatus Y are accommodated in separate housings to form an integrated apparatus". You can
  • the computing device 21 includes, for example, at least one of a CPU and a GPU. Arithmetic device 21 reads a computer program. For example, arithmetic device 21 may read a computer program stored in storage device 22 . For example, the computing device 21 may read a computer program stored in a computer-readable non-temporary recording medium using a recording medium reading device (not shown). The computing device 21 may acquire (that is, download or read) a computer program from a device (not shown) arranged outside the data generation server 2 via the communication device 23 . That is, the computing device 21 may acquire a computer program stored in a storage device of a device (not shown) arranged outside the data generation server 2 via the communication device 23 (that is, download the computer program). or read).
  • Arithmetic device 21 executes the read computer program.
  • the computing device 21 there is a function for executing an operation to be performed by the data generation server 2 (for example, an operation for generating additional modeling model data and predicting whether or not interference of the processing head 121 will occur).
  • a logical functional block is realized.
  • the arithmetic device 21 can function as a controller for realizing logical functional blocks for executing operations that the data generation server 2 should perform.
  • any device typically a computer
  • any device that has executed a computer program can function as the data generation server 2 .
  • FIG. 4 shows an example of logical functional blocks implemented within the arithmetic device 21 for generating additive modeling model data and predicting whether or not interference of the machining head 121 will occur.
  • a display control unit 211 an information acquisition unit 212 , a data generation unit 213 , an interference prediction unit 214 , and a correction proposal unit 215 are realized in the arithmetic unit 21 .
  • the operations of the display control unit 211, the information acquisition unit 212, the data generation unit 213, the interference prediction unit 214, and the correction proposal unit 215 will be described later in detail with reference to FIG. Briefly explain.
  • the display control unit 211 generates GUI information, which is display data for displaying the setting GUI 9 .
  • the information acquisition unit 212 acquires the shape information set by the terminal user using the setting GUI 9 from the terminal device 3 via the communication device 23 .
  • the data generation unit 213 represents a three-dimensional model (that is, an additive manufacturing model) of a three-dimensional structure having a shape specified by the shape information set by the terminal user.
  • Generate additive manufacturing model data In other words, the data generation unit 213 generates the additive modeling model data based on the input from the input device 34 included in the terminal device 3 (that is, the input by the terminal user for setting the shape information).
  • the interference prediction unit 214 predicts whether or not interference of the processing head 121 will occur when the modeling apparatus 1 additionally models a three-dimensional structure.
  • the interference prediction unit 214 generates interference information regarding interference of the processing head 121 that is predicted to occur when the modeling apparatus 1 additionally models a three-dimensional structure. That is, the interference prediction unit 214 generates interference information regarding the interference between the machining head 121 and the interfered object.
  • the correction proposing unit 215 proposes to the terminal user to correct the shape information set by the terminal user using the setting GUI 9 . For example, when the interference prediction unit 214 predicts that the machining head 121 will interfere with the machining head 121, the correction proposing part 215 may propose a modification of the shape information for setting shape information that does not cause the machining head 121 to interfere. good.
  • a computing model that can be constructed by machine learning may be implemented in the computing device 21 by the computing device 21 executing a computer program.
  • An example of an arithmetic model that can be constructed by machine learning is an arithmetic model that includes a neural network (so-called artificial intelligence (AI)).
  • learning the computational model may include learning neural network parameters (eg, at least one of weights and biases).
  • the computation device 21 may generate additive manufacturing model data and predict whether or not interference of the processing head 121 will occur using the computation model. In other words, the operation of generating additional modeling model data and predicting whether or not interference of the processing head 121 will occur is performed by generating additional modeling model data using a computational model and predicting whether or not interference of the processing head 121 will occur.
  • It may include the operation of predicting whether. That is, at least one of the display control unit 211, the information acquisition unit 212, the data generation unit 213, the interference prediction unit 214, and the correction proposal unit 215 may be implemented using a computational model. In other words, the operation performed by at least one of the display control unit 211, the information acquisition unit 212, the data generation unit 213, the interference prediction unit 214, and the correction proposal unit 215 may be performed by the computation model.
  • the computing device 21 may be equipped with a computing model that has been constructed by off-line machine learning using teacher data. Further, the computational model installed in the computing device 21 may be updated by online machine learning on the computing device 21 .
  • the computation device 21 may include a computation model implemented in a device external to the computation device 21 (that is, a device provided outside the data generation server 2). may be used to generate additive manufacturing model data and predict whether or not interference of the processing head 121 will occur.
  • the terminal device 3 (for example, an arithmetic device 31 to be described later) may include at least part of the functional blocks in the arithmetic device 21 (that is, the display control unit 211 to the correction proposal unit 215).
  • the modeling device 1 (for example, the control device 17) may include at least part of the functional blocks in the arithmetic device 21 (that is, the display control section 211 to the correction proposal section 215). may be provided in the terminal device 3 or the modeling device 1 .
  • the storage device 22 can store desired data.
  • the storage device 22 may temporarily store computer programs executed by the arithmetic device 21 .
  • the storage device 22 may temporarily store data temporarily used by the arithmetic device 21 while the arithmetic device 21 is executing a computer program.
  • the storage device 22 may store data that the data generation server 2 saves for a long period of time.
  • the storage device 22 may include at least one of RAM (Random Access Memory), ROM (Read Only Memory), hard disk device, magneto-optical disk device, SSD (Solid State Drive), and disk array device. good. That is, the storage device 22 may include non-transitory recording media.
  • the communication device 23 can communicate with the modeling device 1 via the communication network 4.
  • the communication device 23 can transmit the additive modeling model data generated by the data generation unit 213 to the modeling device 1 .
  • the communication device 23 can communicate with the terminal device 3 via the communication network 5 .
  • the communication device 23 transmits GUI information about the setting GUI 9 generated by the display control unit 211 to the terminal device 3, and receives shape information set by the terminal user using the setting GUI 9 from the terminal device 3. It is possible.
  • the input device 24 is a device that accepts input of information to the data generation server 2 from outside the data generation server 2 .
  • the input device 24 may include an operation device (for example, at least one of a keyboard, a mouse and a touch panel) that can be operated by the server user.
  • the input device 24 may include a reading device capable of reading information recorded as data on a recording medium externally attached to the data generation server 2 .
  • the output device 25 is a device that outputs information to the outside of the data generation server 2 .
  • the output device 25 may output information as an image.
  • the output device 25 may include a display device (so-called display) capable of displaying an image showing information to be output.
  • the output device 25 may output information as voice.
  • the output device 25 may include an audio device capable of outputting audio (so-called speaker).
  • the output device 25 may output information on paper. That is, the output device 25 may include a printing device (so-called printer) capable of printing desired information on paper.
  • FIG. 5 is a block diagram showing the configuration of the terminal device 3. As shown in FIG.
  • the terminal device 3 includes an arithmetic device 31, a storage device 32, a communication device 33, an input device 34, and a display device 35. Arithmetic device 31 , storage device 32 , communication device 33 , input device 34 , and display device 35 may be connected via data bus 36 . Note that the terminal device 3 may not include the storage device 32 . In this case, the storage device 22 included in the data generation server 2 may be used as the storage device 32 of the terminal device 3 .
  • the computing device 31 includes, for example, at least one of a CPU and a GPU. Arithmetic device 31 reads a computer program. For example, arithmetic device 31 may read a computer program stored in storage device 32 . For example, the computing device 31 may read a computer program stored in a computer-readable non-temporary recording medium using a recording medium reading device (not shown). The computing device 31 may acquire (that is, download or read) a computer program from a device (not shown) arranged outside the terminal device 3 via the communication device 33 . Arithmetic device 31 executes the read computer program. As a result, logical functional blocks for executing operations that the terminal device 3 should perform are realized in the arithmetic device 31 . In other words, the arithmetic device 31 can function as a controller for realizing logical functional blocks for executing operations that the terminal device 3 should perform.
  • FIG. 5 shows an example of logical functional blocks implemented within the arithmetic unit 31.
  • a display control unit 311 and an information acquisition unit 312 are implemented in the computing device 31 .
  • the display control unit 311 controls the display device 35 to display the setting GUI 9 based on the GUI information transmitted from the data generation server 2 .
  • the information acquisition unit 312 acquires shape information set by the terminal user using the setting GUI 9 .
  • a computing model that can be constructed by machine learning may be implemented in the computing device 31 by the computing device 31 executing a computer program.
  • An example of an arithmetic model that can be constructed by machine learning is an arithmetic model that includes a neural network (so-called artificial intelligence (AI)).
  • learning the computational model may include learning neural network parameters (eg, at least one of weights and biases).
  • the arithmetic device 31 may perform the operation that the terminal device 3 should perform using the arithmetic model.
  • the computing device 31 may be equipped with a computing model that has been constructed by off-line machine learning using teacher data. Further, the computational model installed in the computing device 31 may be updated by online machine learning on the computing device 31 .
  • the computation device 31 may be implemented in a device external to the computation device 31 (i.e., a computation model implemented in a device provided outside the data generation server 2). may be used to perform the operation that the terminal device 3 should perform.
  • the data generation server 2 may include at least part of the functional blocks (that is, the display control unit 311 and the information acquiring unit 312) in the computing device 31.
  • the modeling apparatus 1 may include at least part of the functional blocks (that is, the display control section 311 and the information acquisition section 312) in the arithmetic device 31. may be provided in the terminal device 3 or the modeling device 1 .
  • the storage device 32 can store desired data.
  • the storage device 32 may temporarily store computer programs executed by the arithmetic device 31 .
  • the storage device 32 may temporarily store data temporarily used by the arithmetic device 31 while the arithmetic device 31 is executing a computer program.
  • the storage device 32 may store data that the terminal device 3 saves for a long period of time.
  • the storage device 32 may include at least one of RAM, ROM, hard disk device, magneto-optical disk device, SSD and disk array device. That is, the storage device 32 may include non-transitory recording media.
  • the communication device 33 can communicate with the data generation server 2 via the communication network 5.
  • the communication device 33 receives (that is, acquires) GUI information about the setting GUI 9 from the data generation server 2, and shape information set by the terminal user using the setting GUI 9 (that is, the information acquisition unit 312 ) can be transmitted to the data generation server 2 .
  • the input device 34 is a device that accepts input of information to the terminal device 3 from outside the terminal device 3 .
  • the input device 34 may include an operation device (for example, at least one of a keyboard, a mouse and a touch panel) operable by the terminal user.
  • the input device 34 may include a reading device capable of reading information recorded as data on a recording medium that can be externally attached to the terminal device 3 .
  • the display device 35 is a device capable of outputting information as an image. That is, the display device 35 is a device capable of displaying an image representing information to be output. In this embodiment, the display device 35 displays the setting GUI 9 .
  • the terminal user uses the setting GUI 9 displayed by the display device 35 to set the shape information. That is, the terminal user sets the shape information by performing an operation for setting the shape information using the input device 34 via the setting GUI 9 displayed by the display device 35 .
  • the display device 35 can function as an input device (for example, the display device 35 has a touch panel), the display device 35 may be called an input device. In this case, the terminal device 3 may not have the input device 34 .
  • a terminal user may operate the display device 35 as the input device 34 .
  • the terminal user may operate the input device 34 while operating the display device 35 . That is, the terminal user may use both the information input function using the display device 35 and the information input function using the input device 34 .
  • FIG. 6 is a flow chart showing the flow of operations performed by the modeling system SYS.
  • the arithmetic unit 21 executes the computer program to perform the operation that should be performed by the data generation server 2, the operation shown in FIG. 6 may be realized by the computer program.
  • the data generation server 2 performs an authentication operation for authenticating the terminal device 3 (step S11).
  • the data generation server 2 may perform the authentication operation using a desired authentication method.
  • the data generation server 2 may perform authentication using an authentication method based on ID information and password information.
  • the terminal user may use the input device 34 of the terminal device 3 to input ID information for identifying the terminal user and a unique password for the terminal user.
  • the communication device 33 of the terminal device 3 may transmit the ID information and password input by the terminal user to the data generation server 2 via the communication network 5 .
  • the data generation server 2 may use the ID information and password transmitted from the terminal device 3 to perform an authentication operation for authenticating the terminal device 3 .
  • the data generation server 2 may perform the authentication operation using another authentication method different from the authentication method based on the ID information and password information.
  • Examples of other authentication methods include at least one of an authentication method using a token and an authentication method using a terminal user's biometric information.
  • the display control unit 211 of the data generation server 2 After the authentication operation is completed (that is, after the data generation server 2 confirms that the terminal device 3 has the authority to access the data generation server 2), the display control unit 211 of the data generation server 2 performs the setting GUI information (display information) for displaying the GUI 9 on the display device 35 of the terminal device 3 is generated (step S12). That is, the display control unit 211 provides the setting GUI 9 to the terminal user. After that, the display control unit 211 transmits the generated GUI information to the terminal device 3 using the communication device 23 . The display device 35 of the terminal device 3 displays the setting GUI 9 based on the GUI information transmitted from the data generation server 2 (step S12).
  • the display control unit 211 may generate GUI information including information (for example, pixel information) on the display screen that constitutes the setting GUI 9 .
  • the arithmetic device 31 of the terminal device 3 may control the display device 35 so as to display the setting GUI 9 configured by the display screen indicated by the GUI information.
  • the display control unit 211 may generate GUI information including information for controlling the display device 35 of the terminal device 3 to display the setting GUI 9 .
  • the display device 35 of the terminal device 3 may display the setting GUI 9 indicated by the GUI information under the control of the data generation server 2 regardless of the control by the arithmetic device 31 .
  • the display control section 211 may control the display device 35 to display the setting GUI 9 .
  • the setting GUI 9 may include an input screen 91 and an output screen 92 . That is, the setting GUI 9 may constitute a display screen including the input screen 91 and the output screen 92 . However, the setting GUI 9 does not have to include the output screen 92 while including the input screen 91 . That is, the input screen 91 may be displayed on the display device 35 while the output screen 92 may not be displayed on the display device 35 . Alternatively, the setting GUI 9 may include the output screen 92 but not the input screen 91 . That is, the input screen 91 may not be displayed on the display device 35 while the output screen 92 is displayed on the display device 35 .
  • the input screen 91 is a screen (in other words, an input unit) that includes a GUI that can be operated by the terminal user to set (specify, the same applies hereinafter) shape information about the shape of the three-dimensional structure.
  • a terminal user may operate the input screen 91 using the input device 34 . That is, the terminal user may use the input device 34 to perform an operation for setting shape information on the input screen 91 .
  • the information acquisition unit 312 of the terminal device 3 acquires the shape information set by the terminal user using the setting GUI 9 (step S13 in FIG. 6).
  • the information acquisition unit 312 uses the communication device 33 of the terminal device 3 to transmit the shape information set by the terminal user to the data generation server 2 via the communication network 5 .
  • the communication device 23 of the data generation server 2 receives (that is, acquires) the shape information transmitted from the terminal device 3 (step S13 in FIG. 6).
  • the terminal user may use the input screen 91 to set (specify, the same shall apply hereinafter) the values of the parameters that specify the shape of the three-dimensional structure.
  • the input screen 91 may include a parameter setting GUI 911 that can be operated by the terminal user to set parameter values.
  • the information acquisition unit 312 may acquire parameter information regarding parameters set using the parameter setting GUI 911 as at least part of the shape information.
  • the parameters may include numerical parameters that quantitatively specify the shape of the three-dimensional structure.
  • the parameter setting GUI 911 includes a label displaying the setting item name of the numerical parameter and a text box in which the setting value of the numerical parameter can be entered (or a setting value of the numerical parameter can be specified from among multiple candidate values).
  • the parameters may include flag parameters that set the shape of the three-dimensional structure.
  • a flag parameter is used to set the shape of the three-dimensional structure to a shape corresponding to the value of the flag parameter. For example, when the flag value of the flag parameter is set to 1, the shape of the three-dimensional structure is set to the first shape corresponding to the flag value of 1, and the flag value of the flag parameter is set to 2. is set to a flag value of , the shape of the three-dimensional structure may be set to a second shape corresponding to a flag value of 2 .
  • the parameter setting GUI 911 includes a label displaying the setting item name of the flag parameter and a text box in which the setting value (flag value) of the flag parameter can be specified (or a flag parameter setting from a plurality of candidate values).
  • Combo box, drop-down list, radio button, etc. that can specify a value.
  • the parameters may include parameters specifying the location of at least a portion of the three-dimensional structure. For example, changing the size of at least a portion of the three-dimensional structure changes the shape of the three-dimensional structure. As such, the parameters may include parameters specifying the size of at least a portion of the three-dimensional structure.
  • the shape of the three-dimensional structure changes when the shape of at least a portion of the three-dimensional structure changes. As such, the parameters may include parameters specifying the shape of at least a portion of the three-dimensional structure.
  • the parameters may include parameters specifying the orientation of at least a portion of the three-dimensional structure.
  • the parameter setting GUI 911 may display parameter setting values set by the terminal user (that is, parameter values that have already been set).
  • the input screen 91 including the parameter setting GUI 911 may be able to display the values of set parameters.
  • the input screen 91 may be provided with parameter values that have already been set.
  • the parameter settings displayed on the parameter setting GUI 911 may be updated each time the terminal user resets the parameters.
  • the parameter settings displayed on the parameter setting GUI 911 may be updated periodically or at random intervals.
  • the parameter setting values displayed on the parameter setting GUI 911 are based on instructions from the terminal user (for example, triggered by the terminal user pressing a button for updating the parameter setting values included in the setting GUI 9). May be updated. As a result, the terminal user can recognize the latest setting values of the parameters set by the terminal user himself/herself.
  • the parameter setting values displayed on the parameter setting GUI 911 may be updated under the control of the display control unit 211 of the data generation server 2 .
  • the display control unit 211 may generate GUI information so as to update the setting values of the parameters displayed on the parameter setting GUI 911 based on the shape information acquired from the terminal device 3 .
  • the parameter setting values displayed on the parameter setting GUI 911 may be updated under the control of the display control unit 311 of the terminal device 3 .
  • the display control unit 311 may update the setting values of the parameters displayed on the parameter setting GUI 911 based on the shape information acquired by the information acquisition unit 312 of the terminal device 3 .
  • the terminal user may use the input screen 91 to select an icon designating the shape of the three-dimensional structure in addition to or instead of setting parameter values.
  • Icons are associated with specific shapes that can be set as the shape of the three-dimensional structure.
  • the input screen 91 may include an icon selection GUI 912 including a plurality of (or at least one) icons that can be selected by the terminal user to set the shape of the three-dimensional structure to a specific shape.
  • Each of a plurality of icons included in icon selection GUI 912 is selectable by the terminal user.
  • the terminal user selects one icon associated with the shape of the three-dimensional structure that the terminal user desires to additionally shape from among a plurality of icons included in the icon selection GUI 912, thereby obtaining shape information. May be set.
  • the information acquisition unit 312 may acquire icon information about an icon selected using the icon selection GUI 912 (that is, information about a shape associated with the selected icon) as at least part of the shape information.
  • icons selected by the terminal user may be displayed in a different display mode than icons not selected by the terminal user.
  • FIG. 7 shows an example in which icons selected by the terminal user are superimposed on the hatched area, while icons not selected by the terminal user are not superimposed on the hatched area.
  • the state in which the display mode of the icon selected by the terminal user differs from the display mode of the icon not selected by the terminal user is not limited to the state shown in FIG.
  • icons selected by the terminal user may be grayed out, while icons not selected by the terminal user may not be grayed out.
  • the terminal user can recognize the icon selected by the terminal user (that is, the shape of the three-dimensional structure set by the terminal user).
  • the terminal user draws the shape of the three-dimensional structure on the setting GUI 9 (for example, on the input screen 91) to obtain the shape information can be set.
  • the setting GUI 9 may include a drawing GUI that allows the terminal user to draw the shape of the three-dimensional structure.
  • the input screen 91 may include a feature setting GUI 913 that can be operated by the terminal user to set feature information regarding any feature of the three-dimensional structure that is different from the shape of the three-dimensional structure.
  • the feature setting GUI 913 may include a GUI operable by the terminal user to set the surface roughness of the three-dimensional structure.
  • the feature setting GUI 913 may include a GUI operable by the terminal user to set the type of material for additive manufacturing of the three-dimensional structure.
  • the feature setting GUI 913 may include a GUI that can be operated by the terminal user to set the mixing ratio of multiple types of materials. good.
  • the feature information set using the feature setting GUI 913 may be transmitted from the terminal device 3 to the data generation server 2 in the same manner as the shape information.
  • the modeling data described above may be generated using the feature information transmitted from the terminal device 3 .
  • modeling data may be generated for controlling the modeling apparatus 1 so that the three-dimensional modeled object having the features specified by the feature information is additionally modeled.
  • the modeling apparatus 1 may additively model a three-dimensional model having features specified by the feature information based on the feature information set using the feature setting GUI 913 .
  • the setting value of the feature information set by the terminal user may be displayed on the feature setting GUI 913 .
  • the setting values of the feature information displayed on the feature setting GUI 913 may be updated each time the terminal user resets the feature information.
  • the setting values of the feature information displayed on the feature setting GUI 913 may be updated periodically or at random intervals.
  • the setting values of the feature information displayed on the feature setting GUI 913 are based on the terminal user's instructions (for example, when the terminal user presses a button for updating the feature information setting values included in the setting GUI 9 as a trigger). ) may be updated.
  • the terminal user can recognize the latest setting value of the feature information set by the terminal user himself/herself.
  • the method of displaying the setting values of the feature information may be the same as the method of displaying the setting values of the parameters described above, so detailed description thereof will be omitted.
  • the shape information set using the parameter setting GUI 911 may be set using the icon selection GUI 912 .
  • shape information set using the icon selection GUI 912 may be set using the parameter setting GUI 911 .
  • the method of setting the shape information is not limited. The same applies to feature information.
  • the output screen 92 is a screen (in other words, an output unit) that can display a three-dimensional model (that is, an additive modeling model) based on the shape information set by the terminal user using the input screen 91 .
  • the output screen 92 displays an additive modeling model based on parameter values set by the terminal user using the parameter setting GUI 911 included in the input screen 91 (that is, a cubic model having a shape specified by the parameter values set by the terminal user).
  • additional modeling model of the original structure may be displayed.
  • the output screen 92 may be an additive modeling model based on an icon selected by the terminal user using the icon selection GUI 912 included in the input screen 91 (that is, a cubic model having a specific shape associated with the icon selected by the terminal user).
  • the output screen 92 is an additive modeling model based on feature information set by the terminal user using the feature setting GUI 913 included in the input screen 91 (that is, a three-dimensional structure having features specified by the feature information set by the terminal user). (additional modeling model of an object) may be displayed.
  • the data generation server 2 provides the additional modeling model based on the shape information set by the terminal user using the input screen 91 to the output screen 92 displayed by the display device 35 of the terminal device 3 (step S14). Specifically, in order to generate GUI information related to the setting GUI 9 including the output screen 92, the data generation unit 213 of the data generation server 2 acquires the shape information (further necessary Additional modeling model data representing the additional modeling model based on the shape information set by the terminal user is generated based on the additional feature information (other feature information depending on the configuration). After that, the display control unit 211 generates GUI information regarding the setting GUI 9 including the output screen 92 on which the additional modeling model represented by the additional modeling model data generated by the data generation unit 213 is displayed.
  • the GUI information generated by the display control unit 211 is transmitted to the terminal device 3 using the communication device 23 .
  • the display device 35 of the terminal device 3 displays the setting GUI 9 based on the GUI information transmitted from the data generation server 2 . That is, the display device 35 uses the output screen 92 to display the additive modeling model based on the shape information set by the terminal user. That is, the display device 35 displays the additive modeling model based on the shape information set by the terminal user on the output screen 92 .
  • the terminal user can relatively easily recognize the shape and the like of the additive modeling model based on the shape information set by the terminal user himself/herself.
  • the additive manufacturing model displayed on the output screen 92 may be a three-dimensional model in any format.
  • the output screen 92 may display an additive modeling model (see FIG. 7) corresponding to a solid model or a surface model.
  • the output screen 92 may display an additive modeling model (see FIG. 9 described later) corresponding to the wireframe model.
  • the display control unit 211 acquires GUI information related to the setting GUI 9 including the output screen 92 on which the additive modeling model based on the newly acquired shape information is displayed. may be generated.
  • GUI information regarding the setting GUI 9 including the screen 92 may be generated.
  • the display control unit 211 may update the additive modeling model displayed on the output screen 92 each time the terminal user newly sets (for example, changes or updates) the shape information using the setting GUI 9 .
  • the output screen 92 displays the additive modeling model in which the shape information set using the input screen 91 is reflected in real time.
  • the terminal user can relatively easily recognize the shape and the like of the additive modeling model based on the latest shape information set by the terminal user himself/herself.
  • the display control unit 211 periodically or at random periodically or randomly displays the GUI information regarding the setting GUI 9 including the output screen 92 on which the additive modeling model reflecting the shape information set using the input screen 91 is displayed. may be generated.
  • the output screen 92 updates the additive modeling model displayed on the output screen 92 periodically or at random.
  • the display control unit 211 may trigger the terminal user to press a button for updating the additive modeling model displayed on the output screen 92, which is included in the setting GUI 9, based on an instruction from the terminal user (for example, 2), GUI information relating to the setting GUI 9 including an output screen 92 on which an addition modeling model reflecting the shape information set using the input screen 91 is displayed may be generated.
  • the output screen 92 updates the additive modeling model displayed on the output screen 92 at the timing desired by the terminal user.
  • the display control unit 211 includes an input screen 91 corresponding to the type of the three-dimensional structure so that the terminal user can set appropriate shape information according to the type of the three-dimensional structure to be additionally molded by the modeling apparatus 1.
  • a setting GUI 9 may be generated. That is, the display control unit 211 may control the display device 35 to display the setting GUI 9 including the input screen 91 corresponding to the type of the three-dimensional structure.
  • the modeling apparatus 1 additively models a three-dimensional structure including a pipe (a pipe may also be referred to as a tube) corresponding to a member having a hollow structure will be described. Therefore, below, as an example of the input screen 91, the input screen 91 displayed when the three-dimensional structure includes a pipe will be described. That is, the input screen 91 for setting the shape information regarding the shape of the pipe will be described.
  • FIG. 8 shows an example of an input screen 91 (hereinafter referred to as "input screen 91pi") for setting shape information about the shape of a pipe.
  • the input screen 91pi may include a parameter setting GUI 911pi (hereinafter referred to as "parameter setting GUI 911pi #1") for setting the value of a parameter specifying the position of at least a portion of the pipe.
  • parameters specifying the shape of the pipe may include parameters specifying the position of at least a portion of the pipe.
  • the positions of a plurality of points P through which the pipe passes are specified. parameters may be used. Specifically, as shown in FIG.
  • the input screen 91pi is displayed as shown in FIG. , start point Po, intermediate points P1 and P2, and end point Pe.
  • the number of points P is not limited to four shown in FIG. That is, the terminal user may set the positions of the points P as desired. The terminal user may add a new point P to a desired position or delete an existing point P using the input screen 91pi.
  • the terminal user in addition to the start point Po, intermediate points P1 and P2, and the end point Pe, the terminal user can access another point P (for example, a point P located between the start point Po and the intermediate point P1).
  • the terminal user does not have to set at least one of the start point Po, intermediate points P1 and P2, and end point Pe.
  • Information about the point P whose position is not set by the terminal user may not be displayed on the input screen 91 .
  • the output screen 92 may display an additive manufacturing model associated with the plurality of points P as shown in FIG. good.
  • the terminal user can relatively easily recognize how the shape of the additional modeling model changes by setting the positions of the points P and the like.
  • parameters specifying the shape of the pipe may include parameters specifying the orientation of at least a portion of the pipe.
  • parameters specifying the direction of at least a portion of the pipe the direction in which the pipe extends at the positions of a plurality of points P through which the pipe passes (for example, starting from the point P, the center line C of the pipe at the point P direction) may be used. Specifically, as shown in FIG.
  • the input screen 91pi displays the direction in which the pipe extends at the start point Po
  • the intermediate A parameter setting GUI 911pi#2 may be included that can set the values of parameters that specify the direction in which the pipe extends at the point P1, the direction in which the pipe extends at the intermediate point P2, and the direction in which the pipe extends at the end point Pe.
  • the input screen 91pi is a parameter setting GUI 911pi (hereinafter referred to as "parameter setting GUI 911pi #3") for setting the value of a parameter that specifies the magnitude (strength) of curvature of at least a portion of the pipe. ) may be included. That is, parameters specifying the shape of the pipe may include parameters specifying the magnitude of curvature of at least a portion of the pipe. In this embodiment, a parameter that specifies the magnitude of the curvature of the pipe at the positions of a plurality of points P through which the pipe passes may be used as the parameter that specifies the magnitude of the curvature of at least a portion of the pipe. Specifically, as shown in FIG.
  • the input screen 91pi displays the magnitude of the curvature of the pipe at the start point Po. , the magnitude of the curvature of the pipe at the intermediate point P1, the magnitude of the curvature of the pipe at the intermediate point P2, and the magnitude of the curvature of the pipe at the end point Pe.
  • each of the parameter specifying the position of at least a portion of the pipe, the parameter specifying the direction of at least a portion of the pipe, and the parameter specifying the magnitude of the curvature of at least a portion of the pipe is a trajectory specifying the trajectory along which the pipe extends. may also be referred to as parameters.
  • the input screen 91pi may include a parameter setting GUI 911pi (hereinafter referred to as "parameter setting GUI 911pi #4") for setting the value of a parameter specifying the size of at least a portion of the pipe.
  • parameters specifying the shape of the pipe may include parameters specifying the size of at least a portion of the pipe.
  • parameters that specify the sizes of the pipe at the positions of the plurality of points P through which the pipe passes may be used as the parameters that specify the size of at least a portion of the pipe. Specifically, as shown in FIG.
  • the input screen 91pi displays the size of the pipe at the starting point Po
  • the intermediate point A parameter setting GUI 911pi#4 may be included that allows setting the values of parameters specifying the size of the pipe at P1, the size of the pipe at the intermediate point P2, and the size of the pipe at the end point Pe.
  • the parameter setting GUI 911pi#4 may be a GUI for setting the value of a parameter designating the cross-sectional size of at least a portion of the pipe.
  • the parameter setting GUI 911 pi#4 can set the pipe cross-sectional size at the starting point Po, the pipe cross-sectional size at the midpoint P1, the pipe cross-sectional size at the midpoint P2, and the pipe cross-sectional size at the end point Pe. It may be a GUI that can set the value of a parameter that designates the size of the cross section.
  • the cross-section of at least a portion of the pipe may mean a cross-section that intersects (typically, is perpendicular to) the direction in which the pipe extends.
  • the cross-sectional size of at least a portion of the pipe may include the cross-sectional size in a first direction along the cross-section (in other words, the first direction intersecting the centerline C of the pipe).
  • the parameter setting GUI 911pi#4 sets the size of the cross section of the pipe at the starting point Po in the first direction (longitudinal direction in the example shown in FIG. 8), the size of the cross section of the pipe at the midpoint P1
  • a parameter setting GUI 911 pi #41 that can set the values of parameters that specify the size in one direction, the size in one direction of the cross section of the pipe at the midpoint P2, and the size in one direction of the cross section of the pipe at the end point Pe. You can set the values of parameters that specify the size in one direction, the size in one direction of the cross section of the pipe at the midpoint P2, and the size in one direction of the cross section of the pipe at the end point Pe. You can set the values of parameters that specify the size in one direction, the size in one direction of the cross section of the pipe at
  • the cross-sectional size of at least a portion of the pipe may include the cross-sectional size in a second direction along the cross-section and intersecting (typically orthogonal) the first direction.
  • the parameter setting GUI 911pi#4 sets the size of the cross section of the pipe at the starting point Po in the second direction (horizontal direction in the example shown in FIG. 8), the size of the cross section of the pipe at the intermediate point P1.
  • a parameter setting GUI 911 pi #42 that can set the values of parameters that specify the size in the second direction, the size in the second direction of the cross section of the pipe at the midpoint P2, and the size in the second direction of the cross section of the pipe at the end point Pe. may contain.
  • the size of the cross section of the pipe in the first direction is the size of the two outer surfaces of the pipe (the outer wall of the pipe) that face each other along the first direction.
  • the size in the second direction of the cross section of the pipe is the distance (length) between the two outer sides of the pipe (outer walls of the pipe) facing each other along the second direction. ).
  • the size of the cross-section of the pipe in each of the first and second directions may refer to the diameter of the outer surface of the pipe. In either case, the size of the cross-section of the pipe in each of the first and second directions may be referred to as the outer diameter of the pipe.
  • the cross-sectional size of at least a portion of the pipe may include the thickness of the partition wall (in other words, pipe wall) of the pipe along the cross-section.
  • the parameter setting GUI 911 pi#4 sets the thickness of the partition wall of the pipe at the start point Po, the thickness of the partition wall of the pipe at the intermediate point P1, the thickness of the partition wall of the pipe at the intermediate point P2, and the thickness of the pipe partition at the end point Pe.
  • a parameter setting GUI 911pi#43 that can set the value of a parameter specifying the thickness of the partition wall may be included.
  • the thickness of the partition wall of the pipe is the inner surface of the pipe (that is, the side of the pipe facing the center line C side, the inner wall) and the outer surface of the pipe (that is, the pipe facing away from the center line C) and may mean the distance (length) between the outer wall).
  • the size of the cross-section of at least a portion of the pipe in a first direction, the size of the cross-section of at least a portion of the pipe in a second direction, and the partition thickness of the at least a portion of the pipe are determined, the inner diameter of the pipe (i.e., the inner surface of the pipe) or the distance (length) between two inner surfaces facing each other) and the outer diameter of the pipe (that is, the diameter of the outer surface of the pipe), respectively.
  • parameter setting GUI 911 pi#4 may include parameter setting GUI 911 for directly setting the value of a parameter that specifies the inner diameter of at least a portion of the pipe.
  • parameter setting GUI 911pi#4 may include parameter setting GUI 911 for directly setting the value of a parameter specifying the outer diameter of at least a portion of the pipe.
  • the input screen 91pi displays a parameter setting GUI 911pi (hereinafter referred to as "parameter setting GUI 911pi #5") for setting the value of a parameter that specifies the angle (rotation angle) of at least a portion of the pipe.
  • GUI 911pi #5 a parameter setting GUI 911pi
  • the parameters specifying the shape of the pipe may include parameters specifying the angle of at least a portion of the pipe.
  • the rotation angles of the pipe at the positions of a plurality of points P through which the pipe passes are used as parameters specifying the rotation angle of at least a portion of the pipe.
  • the rotation angle of the pipe at the position of the point P is the rotation angle of the cross section of the pipe at the point P about the axis along the center line C of the pipe at the position of the point P (specifically, with respect to the reference posture angle of rotation).
  • the input screen 91pi displays the rotation angle of the cross section of the pipe at the starting point Po.
  • the rotation angle of the pipe section at the intermediate point P1 the rotation angle of the pipe section at the intermediate point P2
  • the rotation angle of the pipe section at the end point Pe is the rotation angle of the cross section of the pipe at the end point Pe.
  • the parameter setting GUI 911pi#5 may be displayed in a display mode in which the terminal user cannot set (cannot input) parameter setting values. .
  • the parameter setting GUI 911pi#5 may be grayed out.
  • each of the parameter specifying the size of at least a portion of the pipe and the parameter specifying the angle of rotation of at least a portion of the pipe may be referred to as section parameters for the cross section of at least a portion of the pipe.
  • the input screen 91pi includes a parameter setting GUI 911pi (hereinafter referred to as "parameter setting GUI 911pi#6") for setting the value of a parameter specifying whether or not there is a branch for at least a portion of the pipe.
  • the parameters specifying the shape of the pipe may include parameters specifying whether or not at least a portion of the pipe is branched.
  • parameters that specify whether or not the pipe branches at a plurality of points P through which the pipe passes may be used as parameters that specify whether or not at least a portion of the pipe branches. Specifically, as shown in FIG.
  • the input screen 91pi displays whether or not the pipe branches at the start point Po. It may include a parameter setting GUI 911pi#6 capable of setting values of parameters specifying whether or not the pipe branches at the intermediate point P1, whether or not the pipe branches at the intermediate point P2, and whether or not the pipe branches at the end point Pe. That is, the input screen 91pi displays whether the pipe branches at the starting point Po, whether the pipe branches at the intermediate point P1, whether the pipe branches at the intermediate point P2, and whether the pipe branches at the end point Pe. It may include a parameter setting GUI 911pi#6 capable of setting a parameter specifying whether or not.
  • the cross-sectional parameter, trajectory parameter and end parameter regarding the branched pipe An input screen used for the terminal user to set at least one of may be displayed. At this time, even if the input screen for setting the edge parameter displays one of the screen for setting the edge parameter for the starting edge and the screen for setting the edge parameter for the trailing edge. good.
  • the input screen 91pi is a parameter setting GUI 911pi (hereinafter referred to as a , referred to as “parameter setting GUI 911pi#7”).
  • the parameter specifying the shape of the pipe may include a parameter specifying whether or not at least a portion of the pipe merges.
  • a parameter that specifies whether or not pipes merge at the positions of a plurality of points P through which the pipes pass is used as a parameter that specifies whether or not at least a portion of the pipes merge. Specifically, as shown in FIG.
  • the input screen 91pi displays whether or not the pipes merge at the start point Po. It may include a parameter setting GUI 911pi#7 capable of setting parameter values for specifying whether or not the pipes join at the intermediate point P1, whether the pipes join at the intermediate point P2, and whether the pipes join at the end point Pe.
  • the input screen 91pi displays whether or not the plurality of branched pipelines merge at the starting point Po, whether or not the plurality of branched pipelines merge at the middle point P1, and whether or not the plurality of branched pipelines
  • a parameter setting GUI 911pi#7 that can set parameters specifying whether or not the pipelines join at the intermediate point P2 and whether or not the plurality of branched pipelines join at the end point Pe may be included.
  • the parameter setting GU 911pi#7 if the setting value of the parameter specifying the presence or absence of merging is set to a value indicating that there is merging of pipes, the cross-sectional parameters, trajectory parameters, and end parameters related to the merging pipes are set.
  • An input screen may be displayed for use by the terminal user to set at least one. At this time, even if the input screen for setting the edge parameter displays one of the screen for setting the edge parameter for the starting edge and the screen for setting the edge parameter for the trailing edge. good.
  • the input screen 91pi displays a parameter setting GUI 911pi (hereinafter referred to as "parameter setting GUI 911pi#8") for setting the values of parameters that specify the multiple structure of at least a portion of the pipe.
  • GUI 911pi#8 a parameter setting GUI 911pi
  • the parameters specifying the shape of the pipe may include parameters specifying multiple structures of at least a portion of the pipe.
  • parameters for specifying the multiple structure of the pipe at the positions of a plurality of points P through which the pipe passes are used as parameters for specifying the multiple structure of at least a portion of the pipe.
  • the input screen 91pi is displayed between the start point Po and the intermediate point P1.
  • a parameter setting that can set the value of a parameter that designates a multiple structure of pipes at, a multiple structure of pipes between the intermediate point P1 and the intermediate point P2, and a multiple structure of pipes between the intermediate point P2 and the end point Pe GUI911pi#8 may be included.
  • the input screen 91pi displays the value of the parameter specifying whether the pipe is a multi-pipe (for example, a double pipe) or a single pipe between the starting point Po and the intermediate point P1, the intermediate point P1 and the intermediate point
  • the value of the parameter that specifies whether the pipe is a multi-pipe or a single pipe between P2, and whether the pipe is a multi-pipe or a single pipe between the intermediate point P2 and the end point Pe may include a parameter setting GUI 911pi#7 capable of setting the value of the parameter specifying the .
  • each of the parameter designating whether or not at least a portion of the pipe has a branch, the parameter designating whether or not there is a confluence of at least a portion of the pipe, and the parameter designating a multi-layered structure of at least a portion of the pipe is the structure of at least a portion of the pipe.
  • the input screen 91pi is used to input the cross-sectional shape of at least a portion of the pipe (that is, the shape of the opening, which is the shape of the pipe in the plane intersecting the extending direction of the pipe) into a specific type of shape.
  • An icon selection GUI 912pi (hereinafter referred to as “icon selection GUI 912pi#1”) including a plurality of selectable icons for setting the icon may be included. For example, FIG.
  • an icon selection GUI 912pi#1 that can be selected to set the cross-sectional shape of at least a portion of the pipe to a rectangular shape
  • an icon 9121#11 that can be selected to set the cross-sectional shape of at least a portion of the pipe to an elliptical shape
  • an icon 9121 #12 selectable to set the shape of the cross section of at least a portion of the pipe to a circular shape
  • an icon 9121 #13 selectable to set the shape of the cross section of at least a portion of the pipe to a triangular shape
  • a cross section of at least a portion of the pipe icon 9121 #14 that can be selected to set the shape of the pipe to a rectangular shape in which the pipeline is divided into a plurality of compartments by the partition wall
  • the cross-sectional shape of at least a portion of the pipe to set the shape of the pipeline into a plurality of compartments by the partition wall.
  • the example includes an icon 9121 #15 that can be selected to set an elliptical shape (or a circular shape) divided into . That is, FIG. 8 shows an example in which the icon selection GUI 912pi#1 includes multiple icons related to multiple cross-sections of the pipe (that is, multiple icons related to multiple different cross-sectional shapes). By selecting any one of the icons 9121#11 to 9121#15, the terminal user can set the cross-sectional shape of at least a portion of the pipe to a specific type of shape corresponding to the selected icon. .
  • the terminal user uses the icon selection GUI 912pi#1 to select icons related to a plurality of cross sections of the pipe (that is, select a desired icon from a plurality of icons related to a plurality of different cross-sectional shapes) to select the pipe sets shape information about the shape of the cross section of at least a portion of the
  • the shape of the cross section of the pipe at the positions of a plurality of points P through which the pipe passes is used as the shape of the cross section of at least a portion of the pipe.
  • the terminal user uses the icon selection GUI 912pi#1 to select the start point
  • the cross-sectional shape of the pipe at Po, the cross-sectional shape of the pipe at the intermediate point P1, the cross-sectional shape of the pipe at the intermediate point P2, and the cross-sectional shape of the pipe at the end point Pe may be set. That is, the terminal user may use the icon selection GUI 912pi#1 to select an icon designating each of a plurality of sections of the pipe.
  • cross-sectional parameters (section parameters) for the cross-section of at least a portion of the pipe.
  • the terminal user may set the shape information using at least one of the parameter setting GUI 911 and the icon selection GUI 912 so that the cross-sectional shapes of the pipe at a plurality of points P through which the pipe passes are all of the same shape.
  • the “shape type” referred to here may mean, for example, the type of cross-sectional shape that can be selected using the icon selection GUI 912pi#1. Therefore, when the cross-sectional shapes of the pipe at a plurality of points P are all of the same type, the cross-sectional shapes of the pipe at the plurality of points P are one type of shape associated with one icon. It may mean the set state.
  • the terminal user can use at least one of the parameter setting GUI 911 and the icon selection GUI 912 to change the shape of the cross section of the pipe at at least two of the points P through which the pipe passes. information can be set.
  • the state in which the cross-sectional shape of the pipe at the first point P is of the first type associated with the first icon is a state in which the cross-sectional shape of the pipe at at least two points P is of a different type. shape, while the shape of the cross-section of the pipe at the second point P is set to a second type of shape associated with the second icon.
  • the terminal user can determine the cross-sectional shape of the pipe at the first point P (for example, any one of the starting point Po, the middle point P1, the middle point P2, and the end point Pe) among the plurality of points P through which the pipe passes.
  • the second point P of the plurality of points P through which the pipe passes for example, any of the starting point Po, the intermediate point P1, the intermediate point P2, and the end point Pe
  • the cross-sectional shape of the pipe in the other one may be set to a second shape different from the first shape (for example, a circular shape).
  • the cross-sectional shape of the pipe changes from the first shape to the second shape between the first point P and the second point P.
  • the output screen 92 also displays an additive modeling model of a pipe whose cross-sectional shape changes from the first shape to the second shape between the first point P and the second point P. good too.
  • the shape information is set so that the cross-sectional shape of the pipe at the first point P is the first shape
  • the cross-sectional shape of the pipe at the second point P is the second shape.
  • the model portion between the first point P and the second point P of the additive manufacturing model displayed on the output screen 92 may be updated. More specifically, for example, after the parameter values are set so that the cross-sectional shape of the pipe at the first point P becomes the first shape, the cross-sectional shape of the pipe at the second point P becomes the second shape.
  • the first and the second point P (especially the shape of the model part) may be updated.
  • an icon is selected such that the cross-sectional shape of the pipe at the first point is the first shape, and then the icon is selected such that the cross-sectional shape of the pipe at the second point P is the second shape.
  • the first point P and the second point P of the additive modeling model displayed on the output screen 92 are displayed.
  • the model part (especially the shape of the model part) in between may be updated.
  • the cross-sectional shape of the pipe at least two of the plurality of points P has different types of shapes
  • the cross-sectional shape of the pipe at the first point P is the first shape. If the shape information is set so that the cross-sectional shape of the pipe at the second point P becomes the second shape after the shape information is set, the additional modeling model displayed on the output screen 92 is The part of the model between the first point P and the second point P may be updated.
  • the icon selection GUI 912pi#1 includes icons that can be selected to collectively set the cross-sectional shape of both the inner surface and the outer surface of at least a portion of the pipe to a specific type of shape. Contains multiple. However, the icon selection GUI 912pi#1 specifies a plurality of icons that can be selected to set the shape of the cross-section of the inner surface of at least a portion of the pipe to a particular shape and the shape of the cross-section of the outer surface of at least a portion of the pipe.
  • the terminal user may separately include a plurality of icons selectable to set the shape of the
  • the terminal user may separately set the cross-sectional shape of the inner surface of at least a portion of the pipe and the cross-sectional shape of the outer surface of at least a portion of the pipe.
  • a terminal user may select an icon such that the cross-sectional shape of the inner surface of at least a portion of the pipe differs from the cross-sectional shape of the outer surface of at least a portion of the pipe.
  • an input screen 91pi includes an icon selection GUI 912pi (hereinafter referred to as "icon selection GUI 912pi#2") including a plurality of selectable icons for setting the shape of the end of the pipe to a specific type of shape. ) may be included.
  • the shape of the end of the pipe may be referred to as an end parameter for the end of the pipe.
  • the ends of the pipe may include, for example, at least one of a beginning of the pipe and an end of the pipe.
  • the starting end of the pipe may include a portion of the pipe located between the starting point Po and a position a predetermined distance away from the starting point Po along the direction in which the pipe extends.
  • the end of the pipe may comprise a portion of the pipe located between the end point Pe and a position a predetermined distance away from the end point Pe along the direction in which the pipe extends.
  • FIG. 8 shows that the icon selection GUI 912pi#2 changes the shape of the end of the pipe so that the inner diameter of the pipe between the end and a position a predetermined distance away from the end gradually decreases toward the end.
  • the icon 9121 #21 selectable to set the end to a first shape with a closed end, and the shape of the end of the pipe between the end and a position a predetermined distance away from the end.
  • icon 9121 selectable to set a second shape in which the inner diameter of the pipe in #22 and the shape of the end of the pipe so that the inner diameter of the pipe between the end and a position a predetermined distance away from the end gradually decreases toward the end, and the end becomes a closed end; , an icon 9121 #23 that can be selected to set a third shape in which a threaded protrusion (that is, a portion corresponding to a male screw or threaded portion) is formed at the end, and a predetermined shape from the end to the end
  • the inner diameter of the pipe between the distant positions gradually decreases as it approaches the end, the inner diameter becomes constant near the end, the end becomes an open end, and the pipe near the end and an icon 9121 #24 selectable to set a fourth shape in which the inner surface is threaded (that is, the end is a female screw or screw hole).
  • interference The prediction unit 214 predicts whether or not the machining head 121 will interfere (step S15). Specifically, the interference prediction unit 214 predicts whether the processing head 121 will interfere with the processing head 121 when it is assumed that the processing head 121 additionally shapes a three-dimensional structure having a shape specified by the shape information. (Step S15).
  • the interference prediction unit 214 Based on the additional modeling model data generated from the shape information by the data generating unit 213 in order to display the setting GUI 9, the interference prediction unit 214 generates a three-dimensional shape having a three-dimensional shape indicated by the additional modeling model data. Assuming that the processing head 121 additionally shapes the structure, it is predicted whether or not the processing head 121 will interfere (step S15).
  • the interference of the processing head 121 may include interference between the processing head 121 and an interfered object that is an object different from the processing head 121. Interference between the processing head 121 and the interfered object may include contact between the processing head 121 and the interfered object. Interference between the processing head 121 and the interfered object may include collision between the processing head 121 and the interfered object.
  • the interference between the processing head 121 and the interfered object may include interference between the members provided in the processing head 121 and the interfered object.
  • the interference between the processing head 121 and the interfered object may include interference between the irradiation optical system 1211 included in the processing head 121 and the interfered object.
  • the interference between the processing head 121 and the interfered object may include interference between the material nozzle 1212 of the processing head 121 and the interfered object.
  • the interference between the processing head 121 and the interfered object may include the interference between the head housing 1213 of the processing head 121 and the interfered object.
  • the interference between the processing head 121 and the interfered object may include interference between the other members of the processing head 121 and the interfered object.
  • the interfered object may include a three-dimensional structure additionally shaped by the processing head 121 .
  • the interfered object is a three-dimensional structure during the modeling period (processing period) from the start to the end of additional modeling using the processing head 121 (that is, the three-dimensional structure during additive modeling, and an unfinished object). three-dimensional structure).
  • an unfinished three-dimensional structure during addition modeling is referred to as an unfinished model to distinguish it from a completed three-dimensional structure for which addition modeling has been completed.
  • the interfered object may include an incomplete modeled object or a completed three-dimensional structure.
  • the object to be interfered may include a work W on which a three-dimensional structure is additionally shaped.
  • the interfered object may include the stage 131 on which the workpiece W is placed.
  • the object to be interfered may include the stage device 13 including the stage 131 .
  • the object to be interfered may include a member included in the stage device 13 .
  • the interfered object may also include the stage drive system 132 provided in the stage device 13 .
  • the object to be interfered may include a member (for example, the housing 16) provided in the modeling apparatus 1.
  • the interference prediction unit 214 predicts, through simulation, the operation of the modeling apparatus 1 that additionally models a three-dimensional structure having the shape specified by the shape information. good too. In this case, the interference prediction unit 214 may predict whether or not the machining head 121 will interfere based on the simulation result of the operation of the modeling apparatus 1 . Specifically, the interference prediction unit 214 predicts that during the modeling period from when the modeling apparatus 1 starts the modeling operation for modeling the three-dimensional structure to when the modeling apparatus 1 ends the modeling operation, The behavior of the device 1 may be predicted by simulation. In particular, the interference prediction unit 214 may predict the motion of the processing head 121 and the motion of the interfered object during the modeling period by simulation.
  • the interference prediction unit 214 predicts the movement of the processing head 121 by the head drive system 122 and the movement of the stage 131 by the stage drive system 132 during the modeling period.
  • the motion of the interfering object may be predicted by simulation.
  • the period during which the modeling operation is virtually performed on the simulation is referred to as the modeling period.
  • the operation of predicting the movement of the machining head 121 and the movement of the interfered object by simulation is based on the movement of the head model HM, which is a three-dimensional model of the machining head 121, and the movement of the interfered object model, which is a three-dimensional model of the interfered object. It may also include the act of predicting motion within the simulation model space. In this case, when the head model HM and the interfered object model interfere with each other (for example, contact or collide) at one point during the modeling period in the simulation model space, the interference prediction unit 214 predicts that at one point during the modeling period It may be predicted that the machining head 121 and the interfered object will interfere at the point of time.
  • the interference prediction unit 214 may predict that interference between the machining head 121 and the interfered object will occur at one point during the modeling period.
  • the interference prediction unit 214 predicts that the machining head 121 and the interfered object model will interfere with each other at one point during the modeling period. It may be expected that interfering objects do not interfere.
  • the interference prediction unit 214 may predict that interference between the processing head 121 and the object to be interfered will not occur at one point during the modeling period. Alternatively, the interference prediction unit 214 may not predict that interference between the machining head 121 and the interfered object will occur at one point during the modeling period.
  • the interference prediction unit 214 predicts the movement of the head model HM, the stage model SM that is a three-dimensional model of the stage 131 that is an example of the interfered object, and the workpiece that is an example of the interfered object.
  • the movement of at least one of a work model WM, which is a three-dimensional model of W, and an unfinished model BM, which is a three-dimensional model of an unfinished object BO which is an example of an object to be interfered is predicted in the simulation model space.
  • the interference prediction unit 214 predicts that the machining head 121 and the stage 131 will interfere with each other at one point during the modeling period. may be expected to interfere with
  • the interference prediction unit 214 predicts that the machining head 121 and the work W will interfere with each other at one time during the modeling period. You can predict then.
  • the interference prediction unit 214 predicts that the machining head 121 and the unfinished modeling will interfere at one point during the modeling period. It may be predicted that the object BO will interfere.
  • the interference prediction unit 214 may use, as the head model HM, a three-dimensional model having a three-dimensional shape faithful to the actual external shape (that is, three-dimensional shape) of the machining head 121 . That is, the interference prediction unit 214 may use, as the head model HM, a three-dimensional model having a model surface MDS that has the same shape as the actual outer shape (that is, three-dimensional shape) of the machining head 121 . Note that FIG. 11 shows an example of a head model HM having the same outer shape as the actual outer shape (that is, three-dimensional shape) of the machining head 121 .
  • the interference prediction unit 214 may use a three-dimensional model having a three-dimensional shape different from the actual external shape of the machining head 121 as the head model HM.
  • the interference prediction unit 214 may use a three-dimensional model having a model surface MDS including the machining head 121 as the head model HM.
  • the interference prediction unit 214 may use, as the head model HM, a three-dimensional model having a model surface MDS at a position separated from the actual outer surface of the machining head 121 by a certain margin.
  • a margin may be set based on the maximum movable range of the processing head 121 . In this case, the interference prediction unit 214 can predict whether or not the machining head 121 will interfere under stricter conditions.
  • the margin is the movement range (this movement range may also be referred to as the required operation range) in which the processing head 121 moves to form one structural layer that constitutes the unfinished object BO.
  • at least one of the size and shape of the head model HM (that is, at least one of the size and shape of the model surface MDS) may change for each structural layer formed by the processing head 121 .
  • the range of movement is small when forming a narrow portion of the pipe, while the range of movement is large when forming a thick portion of the pipe.
  • the interference prediction unit 214 can more precisely predict whether or not the machining head 121 will interfere.
  • the margin may be common to multiple structural layers.
  • the interference prediction unit 214 may predict the motion of the machining head 121 and the interfered object using a predetermined motion constraint condition that restricts the motion of the machining head 121 and the interfered object.
  • the movement constraint conditions may include conditions indicating the movement of the processing head 121 and the interfered object that is permitted under the condition that the processing head 121 additionally shapes a three-dimensional structure having the shape specified by the shape information. good.
  • the movement constraint conditions may include conditions indicating the movement of the processing head 121 and the interfered object that is prohibited under the assumption that the processing head 121 additionally shapes a three-dimensional structure having the shape specified by the shape information. good.
  • the motion constraint conditions allow the machining head 121 and the interfered object to move so that the direction in which the unfinished object BO extends through additional modeling is parallel to or coincides with the direction of gravity (the Z-axis direction).
  • the movement constraint condition is that the processing head 121 and the object to be interfered move so that the direction in which the unfinished object BO extends by additional molding intersects the direction of gravity (Z-axis direction) or is in a twisted relationship. may include the condition that is prohibited.
  • the motion constraint condition is that the processing head 121 and the object to be interfered move so that the direction in which the unfinished object BO extends by addition molding is parallel to or coincides with the direction of the optical axis of the irradiation optical system 1211.
  • the movement constraint condition is that the processing head 121 and the interfered object are arranged such that the direction in which the unfinished object BO extends through additive manufacturing intersects the direction of the optical axis of the irradiation optical system 1211 or has a twisted relationship. It may also include a condition that movement is prohibited.
  • the motion constraint conditions are such that the direction in which the unfinished object BO extends through additional modeling is parallel to or coincides with the traveling direction of the processing light EL emitted from the irradiation optical system 1211. It may include a condition that the interfering object is allowed to move. As another example, the motion constraint condition is such that the direction in which the unfinished object BO extends by additional modeling intersects with the traveling direction of the processing light EL emitted from the irradiation optical system 1211 or has a twisted relationship. and a condition that the interfered object is prohibited from moving.
  • the interference prediction unit 214 determines that the modeling data for controlling the modeling apparatus 1 (that is, the modeling data actually used for additively modeling the three-dimensional structure by controlling the processing head 121 and the stage 131) is Even if they are not generated, the motion of the processing head 121 and the motion of the interfered object can be predicted. However, at the timing when the interference prediction unit 214 predicts whether the interference of the processing head 121 will occur, the interference prediction unit 214 generates modeling data for additional modeling of the three-dimensional structure having the shape specified by the shape information. may be generated, and the movement of the processing head 121 and the movement of the interfered object may be predicted based on the generated modeling data.
  • the interference prediction unit 214 may use mesh models as the head model HM and the interfered object model.
  • the interference prediction unit 214 converts the three-dimensional model of the machining head 121 into a mesh model to generate a head model HM, and converts the three-dimensional model of the interfered object model into a mesh model.
  • model may be generated.
  • the mesh model may be a model composed of a plurality of planes represented by geometric shapes (each plane is hereinafter referred to as a unit mesh).
  • the mesh model may be a model composed of triangular or quadrangular unit meshes.
  • the interference prediction unit 214 predicts whether or not the machining head 121 will interfere with each other by determining whether or not the mesh model that is the head model HM and the mesh model that is the interfered object model intersect. good too.
  • the interference prediction unit 214 may predict the time point at which the interference of the machining heads 121 is expected to occur. Specifically, as described above, when the head model HM and the interfered object model interfere with each other in the simulation model space at one point during the modeling period, the interference prediction unit 214 It is predicted that the machining head 121 and the interfered object will interfere at this point. In this case, one time point at which the head model HM and the interfered object model interfere with each other during the modeling period corresponds to the time point of interference. Therefore, in addition to predicting whether or not the head model HM and the interfered object model will interfere, the interference prediction unit 214 can also predict the time point at which the head model HM and the interfered object model interfere with each other. good.
  • the interference prediction unit 214 may predict the depth of interference that indicates the degree of interference between the processing head 121 and the interfered object.
  • the interference depth may be an index value that increases as the degree of interference between the processing head 121 and the interfered object increases.
  • the interference depth may be an index value determined based on the size of the model portion HMp of the head model HM that interferes with the interfered object model, as shown in FIG.
  • the interference depth may be an index value that increases as the size of the model portion HMp of the head model HM that interferes with the interfered object model increases. For example, as shown in FIG.
  • the interference depth interferes with the interfered object model of the head model HM from the surface of the interfered object model (in the example shown in FIG. 13, the unfinished model BM). It may be an index value determined based on the distance to the deepest part of the model portion HMp.
  • the deepest portion of the model portion HMp may include a portion of the model portion HMp that is positioned furthest from the surface of the interfered object model (in the example shown in FIG. 13, the unfinished model BM).
  • the interference depth may be an index value that increases as the distance from the surface of the interfered object model to the deepest part of the model portion HMp increases.
  • the interference depth is an index value determined based on the distance (size) of the model portion HMp of the head model HM that interferes with the interfered object model in the direction perpendicular to the model surface MDS of the head model HM.
  • the interference depth may be an index value that increases as the distance of the model portion HMp in the direction perpendicular to the model surface MDS of the head model HM increases. Since the index value is 0 when no interference of the machining head 121 occurs, the operation of predicting the depth of interference, which indicates the degree of interference between the machining head 121 and an object to be interfered, is performed only when the interference of the machining head 121 occurs. It may be considered to be included in the operation of predicting whether to do or not.
  • the display control unit 211 generates display data for displaying interference information indicating the result of interference prediction by the interference prediction unit 214 on the display device 35 of the terminal device 3 (step S16). After that, the display control unit 211 transmits the generated display data to the terminal device 3 using the communication device 23 (step S16).
  • the terminal device 3 receives the display data transmitted from the data generation server 2 (step S16).
  • the display device 35 of the terminal device 3 displays the interference information based on the display data transmitted from the data generation server 2 (step S16).
  • the display control unit 211 generates GUI information for displaying the setting GUI 9 on the display device 35 .
  • the display control unit 211 may generate GUI information for displaying the setting GUI 9 including the interference information on the display device 35 as display data for displaying the interference information.
  • the display control unit 211 may generate GUI information for displaying the setting GUI 9 partially displaying the interference information on the display device 35 as display data for displaying the interference information. That is, the interference information may be displayed on the setting GUI 9 .
  • interference information may be displayed on an input screen 91 included in the setting GUI 9 .
  • interference information may be displayed on an output screen 92 included in the setting GUI 9 .
  • the GUI information typically includes interference information.
  • the display control unit 211 may generate GUI information for displaying the output screen 92 on which the interference information is displayed in addition to or instead of the additive modeling model originally displayed on the output screen 92 .
  • the display control unit 211 may generate GUI information for displaying the setting GUI 9 including an input screen 91 for setting shape information and an output screen 92 for displaying interference information.
  • the interference information indicates the predicted result of interference between the machining head 121 and the interfered object.
  • the display control unit 211 displays GUI information for displaying the interference information together with at least one of the head model HM, which is a three-dimensional model of the machining head 121, and the interfered object model, which is a three-dimensional model of the interfered object. That is, display data) may be generated.
  • the GUI information may include interference information and three-dimensional model data representing at least one of the head model HM and the interfered object model.
  • the display control unit 211 may generate GUI information for displaying the interference information in a display mode in which the interference information is associated with at least one of the head model HM and the interfered object model.
  • the display control unit 211 may generate GUI information for displaying interference information together with the head model HM.
  • the display control unit 211 may generate GUI information for displaying the interference information in a display mode in which the interference information is associated with the head model HM.
  • the display control unit 211 may generate GUI information for displaying the interference information together with the stage model SM, which is a three-dimensional model of the stage 131, which is an example of the interfered object.
  • the display control unit 211 may generate GUI information for displaying the interference information in a display manner in which the interference information is associated with the stage model SM.
  • the display control unit 211 may generate GUI information for displaying the interference information together with the work model WM, which is a three-dimensional model of the work W, which is an example of the interfered object.
  • the display control unit 211 may generate GUI information for displaying the interference information in a display mode in which the interference information is associated with the work model WM.
  • the display control unit 211 may generate GUI information for displaying the interference information together with the unfinished model BM, which is a three-dimensional model of the unfinished object BO, which is an example of the interfered object.
  • the display control unit 211 may generate GUI information for displaying the interference information in a display mode in which the interference information is associated with the incomplete molded model BM.
  • the terminal user can intuitively recognize whether or not interference of the processing head 121 will occur.
  • the display control unit 211 may generate GUI information for displaying interference information regardless of the head model HM and the interfered object model.
  • the display control unit 211 may generate GUI information for displaying interference information using at least one of text, numbers, and graphics.
  • At least one of the head model HM and the interfered object model displayed on the display device 35 may be a surface model. At least one of the head model HM and the interfered object model displayed on the display device 35 may be a solid model. At least one of the head model HM and the interfered object model displayed on the display device 35 may be a wire frame model. At least one of the head model HM and the interfered object model displayed on the display device 35 may be a transmissive model in which the inside can be visually recognized. The terminal user may use the input device 34 to set the degree of transparency of the transparency model.
  • the head model HM displayed on the display device 35 may be the same as the head model HM used by the interference prediction unit 214 described above to predict whether or not the machining head 121 will interfere.
  • the head model HM displayed on the display device 35 may be different from the head model HM used by the above-described interference prediction unit 214 to predict whether or not the machining head 121 will interfere.
  • the size of the unit mesh of the head model HM displayed on the display device 35 may be different from the size of the unit mesh of the head model HM used by the interference prediction unit 214 described above.
  • the size of the unit mesh of the head model HM displayed on the display device 35 may be smaller than the size of the unit mesh of the head model HM used by the interference prediction unit 214 described above.
  • the display device 35 can display the head model HM with high resolution.
  • the larger the size of the unit mesh the lower the computational load using the head model HM. Therefore, the interference prediction unit 214 can predict whether or not the machining head 121 will interfere relatively quickly. The same applies to the interfered object model.
  • FIG. 14 An example of interference information displayed together with both the head model HM and the interfered object model is shown in FIG.
  • the display control unit 211 generates GUI information for displaying the head model HM, the stage model SM, the work model WM, and the unfinished modeling model BM at one time point during the modeling period.
  • the display device 35 displays the head model HM, the stage model SM, the work model WM, and the unfinished model BM at one time point during the modeling period.
  • the display control unit 211 when the interference information includes information indicating a prediction result as to whether or not interference between the processing head 121 and the interfered object will occur at one time point during the modeling period, the display control unit 211 As shown in FIG. 14, together with the head model HM and the interfered object model (in the example shown in FIG. 14, the stage model SM, the workpiece model WM, and the unfinished model BM) at one point in time. GUI information may be generated to jointly display the interference information regarding the predicted interference. For example, as shown in FIG. 14, the display control unit 211 changes the display mode of the interference portion IP1 where the head model HM and the interfered object model interfere with each other.
  • GUI information for displaying the head model HM and the interfered object model may be generated so as to be different from the display mode of the non-interfering portion IP2.
  • the display aspect may include, for example, at least one of color, brightness and highlight.
  • the interference information includes information indicating a predicted result that interference will occur between the processing head 121 and the unfinished object BO at time 15:00, which is one point in the modeling period, and
  • the display control unit 211 changes the display mode of the interfering portion IP1 where the head model HM and the unfinished molded model BM interfere with the display mode of the non-interfering portion IP2 where the head model HM and the unfinished molded model BM do not interfere.
  • the display control unit 211 changes the , the head model HM and the interfered object model (in the example shown in FIG. 15, the stage model SM, the workpiece model WM, and the unfinished modeling model BM) are displayed at one point in time, while at one point in time GUI information may be generated for not displaying interference information indicating that it is predicted that interference of the machining head 121 will occur.
  • the display control unit 211 changes the , the head model HM and the interfered object model (in the example shown in FIG. 15, the stage model SM, the workpiece model WM, and the unfinished modeling model BM) are displayed at one point in time, while at one point in time GUI information may be generated for not displaying interference information indicating that it is predicted that interference of the machining head 121 will occur.
  • GUI information may be generated for not displaying interference information indicating that it is predicted that interference of the machining head 121 will occur.
  • the display control unit 211 displays the head model HM and the interfered object model at one point in time, as well as an interference model indicating that it was not predicted that the machining head 121 would interfere at one point in time.
  • GUI information may be generated for displaying the information.
  • the display control unit 211 displays the head model HM and the interfered object model at one point in time together with an interference model indicating that it is predicted that the machining head 121 will not interfere at one point in time.
  • GUI information may be generated for displaying the information.
  • the interference prediction unit 214 predicts the motion of the head model HM and the interfered object model in order to predict the motion of the machining head 121 and the interfered object during the modeling period.
  • the display control unit 211 predicts the movement of the head model HM and the interfered object model during at least a part of the modeling period based on the prediction result of the movement of the machining head 121 and the interfered object by the interference prediction unit 214. You may generate GUI information for displaying the animation which shows.
  • the display control unit 211 predicts the movement of the head model HM and the interfered object model during at least a part of the modeling period separately from the prediction of the movement of the machining head 121 and the interfered object by the interference prediction unit 214.
  • GUI information for displaying a moving image showing the movement of the head model HM and the interfered object model during at least a part of the modeling period may be generated.
  • the display device 35 may display a moving image showing the movements of the head model HM and the interfered object model during at least part of the modeling period.
  • the moving image showing the movement of the head model HM and the interfered object model during at least a part of the modeling period is the positional relationship between the head model HM and the interfered object model during at least a part of the modeling period. It may be considered equivalent to a moving image showing changes in
  • the display control unit 211 When generating GUI information for displaying a moving image showing the motion of the head model HM and the interfered object model, the display control unit 211 temporarily stops the playback of the moving image at the time when interference is predicted to occur. GUI information for stopping may be generated. As a result, the terminal user can more reliably recognize that it is predicted that interference of the processing head 121 will occur.
  • the display control unit 211 may generate GUI information for displaying the interference information together with the head model HM and the interfered object model at the time designated by the terminal user (hereinafter referred to as "designated time"). For example, if the interference information includes information related to the prediction result that the machining head 121 will interfere at a specified time, the display control unit 211 displays the head model HM and the interfered object model at the specified time together with the head model HM at the specified time. GUI information may be generated for displaying together interference information related to the interference predicted to occur at . For example, if the interference information includes information about a prediction result that the machining head 121 will not interfere at a specified time, the display control unit 211 displays the head model HM and the interfered object model at the specified time.
  • GUI information for not displaying the interference information may be generated. For example, if the interference information includes information related to the prediction result that the machining head 121 will not interfere at the designated time, the display control unit 211 displays the head model HM and the interfered object model at the designated time together with the head model HM at the designated time. GUI information may be generated for displaying interference information indicating that it was not predicted that interference of the machining head 121 would occur. For example, if the interference information includes information related to the prediction result that the machining head 121 will not interfere at the designated time, the display control unit 211 displays the head model HM and the interfered object model at the designated time together with the head model HM at the designated time. GUI information may be generated for displaying interference information indicating that it is predicted that the machining head 121 will not interfere with the time.
  • the display control unit 211 displays the progress or the elapsed time after the molding apparatus 1 starts the modeling operation for additively modeling the three-dimensional structure, and also displays the specified time.
  • GUI information may be generated to display the progress object 9220 that is specifiable at a point in time. As a result, the terminal user can relatively easily specify the specified time.
  • the progress may be indicated as a progress rate (that is, percentage).
  • the interference prediction unit 214 uses any information (for example, the volume of the modeled object, the area of the modeled object, the The progress rate is calculated based on at least one of the height, the supply amount of the modeling material M, and the modeling time), and the display control unit 211 generates GUI information for displaying the progress rate predicted by the interference prediction unit 214.
  • the display control unit 211 may generate GUI information for displaying the progress object 9220 together with the head model HM and the interfered object model (and in some cases, together with the interference information).
  • the display device 35 of the terminal device 3 may display the progress object 9220 on the output screen 92 together with the head model HM and the interfered object model.
  • the progress from the start of the modeling operation may include the progress rate of the modeling operation when the entire length of the modeling operation is 100%.
  • the progress after the start of the modeling operation is the structure that has been additively manufactured among the multiple structural layers. It may include the number of layers.
  • the modeling operation may include an operation of actually additively modeling the three-dimensional structure by emitting the processing light EL and supplying the modeling material M.
  • the progress or the elapsed time from the start of the modeling operation is the progress or the elapsed time from the start of emitting the processing light EL and supplying the modeling material M for additive modeling of the three-dimensional structure. may mean.
  • the modeling operation may include a preliminary operation performed before starting the operation of emitting the processing light EL and supplying the modeling material M for additively modeling the three-dimensional structure.
  • the progress or elapsed time after starting the modeling operation may mean the progress or elapsed time after starting the pre-operation.
  • the display control unit 211 may generate GUI information for displaying a slide bar (slider) 9221 that is an example of the progress object 9220 .
  • the slide bar 9221 may include a bar body 9222 and knobs 9223 .
  • the bar body 9222 is a linearly extending display object.
  • the starting point of the bar body 9222 corresponds to the starting point of the modeling operation for modeling the three-dimensional structure, and the end point of the bar body 9222 corresponds to the ending point of the modeling operation for modeling the three-dimensional structure.
  • a knob 9223 is a display object that can be operated by the terminal user to specify a specified time. The terminal user may move the knob 9223 along the bar body 9222 to specify the point in time corresponding to the position of the knob 9223 as the specified point in time.
  • the operation result of the terminal user using the progress object 9220 is transmitted from the terminal device 3 to the data generation server 2 via the communication network 5.
  • the display control unit 211 can identify the specified time specified by the terminal user.
  • the display control unit 211 outputs the head model HM and the interfered object model at the newly designated time point together with the interference information about the interference predicted to occur at the new designated time point.
  • GUI information for displaying may be newly generated (that is, regenerated). For example, if the first time point is specified as the specified time point, the display control unit 211 predicts that the head model HM and the interfered object model at the first time point will occur at the first time point.
  • First GUI information is generated for displaying interference information about the interference.
  • a second GUI information may be generated to display interference information regarding interference expected to occur at a second time.
  • the display device 35 displays the head model HM and the interfered object model at the second time point together with the interference information regarding the interference expected to occur at the second time point.
  • the terminal user can recognize the interference information regarding the interference predicted to occur at the designated time point along with the head model HM and the interfered object model at the designated time point designated by the terminal user.
  • the display control unit 211 controls the A third display for displaying interference information about interference expected to occur during the period from the first point in time to the second point in time, together with the animation showing the movement of the head model HM and the interfered object model during the period of GUI information may be generated.
  • the display device 35 displays the moving image showing the movement of the head model HM and the interfered object model during the period from the first time point to the second time point, as well as from the first time point to the second time point.
  • the display device 35 displays the head model HM and the interfered object during the period from the first point in time to the second point in time.
  • a moving image showing the movement of the object model may be played forward. If the second time point is temporally earlier than the first time point, the display device 35 displays the head model HM and the interfered object during the period from the first time point to the second time point.
  • a moving image showing the movement of the object model may be played back in reverse.
  • the terminal user identifies the movement of the machining head 121 and the interfered object as one of the causes of the predicted interference of the machining head 121 during the period from the first time point to the second time point. It can be intuitively recognized, and as a result, it is possible to intuitively recognize the cause of the prediction that the interference will occur in the period between the first point in time and the second point in time.
  • the interference information is information about the time point at which interference between the machining heads 121 is expected to occur.
  • the display control unit 211 may generate GUI information for displaying interference information including information about the time of interference.
  • the display control unit 211 may generate GUI information for displaying the progress object 9220 to which the index 9224 indicating the time point of interference is added.
  • An example of an indicator 9224 indicating the point of interference is shown in FIG. As shown in FIG. 19 , the indicator 9224 may be attached to the bar body 9222 of the slide bar 9221 which is an example of the progress object 9220 .
  • the indicator 9224 may be provided on the bar body 9222 at a position corresponding to the point of interference. In FIG. 19, it is predicted that the processing head 121 will interfere with each other when the elapsed time from the start of the modeling operation reaches 21 minutes and at the time when the elapsed time from the initiation of the modeling operation reaches 33 minutes.
  • the terminal user may specify the interference time indicated by the indicator 9224 as the specified time by performing an operation to select the indicator 9224 using the input device 34 .
  • the display control unit 211 displays the head model HM and the interfered object model at the time of interference designated as the designated time, as well as the interference information regarding the interference predicted to occur at the time of interference designated as the designated time. GUI information may be generated.
  • the terminal user can intuitively recognize the predicted occurrence of interference together with the time of interference, and intuitively recognize the appearance of the interference predicted to occur at the time of interference.
  • the interference information includes information about the interference depth.
  • the display control unit 211 may generate GUI information for displaying interference information including information about interference depth.
  • the display control unit 211 may generate GUI information for changing the display mode of the interference information based on the difference in interference depth.
  • the display control unit 211 controls the head model HM and the interfered object model based on the difference in interference depth. You may generate GUI information which changes the display mode of at least one of. For example, FIG.
  • the display control unit 211 causes the interference depth of the interference predicted to occur in the first portion WP1 of the work model WM (that is, the interfered object model) to appear in the second portion WP2 of the work model WM.
  • GUI information may be generated that changes the display mode of the first part WP1 and the display mode of the second part WP2 when the interference depth of the interference predicted to occur is different.
  • the display control unit 211 may be regarded as generating GUI information that changes the display mode of each portion of the work model WM according to the interference depth of each portion.
  • the display aspect may include, for example, at least one of color, brightness, and highlighting, as described above.
  • the display device 35 may display the head model HM and the interfered object model such that the display mode of the first part WP1 and the display mode of the second part WP2 are different.
  • the display control unit 211 displays the head GUI information may be generated that changes the display mode of the first part of the model HM and the display mode of the second part of the head model HM.
  • the display control unit 211 may be regarded as generating GUI information that changes the display mode of each portion of the head model HM according to the interference depth of each portion.
  • the terminal user can intuitively recognize the degree of interference predicted to occur on the processing head 121 (that is, the depth of interference).
  • the interference prediction unit 214 determines whether the head model HM and the interfered object model intersect with each other.
  • the unit mesh of the interfered object model that intersects with the model HM may be colored.
  • the display control unit 212 changes the color of the interfered object model so that the color of the unit mesh colored by the interference prediction unit 214 is different from the color of the unit mesh not colored by the interference prediction unit 214. You can change it.
  • the intersection between the mesh model that configures the head model HM and the mesh model that configures the interfered object model is visualized. Note that the portions where the head model HM and the interfered object model do not actually interfere with each other may also be colored.
  • the display control unit 211 may generate GUI information representing the difference in interference depth using a plurality of colors including warm and cool colors.
  • the display control unit 211 may generate GUI information representing the difference in interference depth using a plurality of colors including red, yellow, green, and blue.
  • the display control unit 211 causes the color of a certain portion to become warmer (for example, red) as the interference depth of the certain portion increases, while the color of the certain portion becomes cooler (for example, red) as the interference depth of the certain portion decreases.
  • GUI information that approaches blue may be generated.
  • the GUI information may include information about display colors.
  • the display control unit 211 changes the display mode of the indicator 9224 (that is, the indicator 9224 indicating the time point of interference) described with reference to FIG. depth). That is, the display control unit 211 may generate GUI information that changes the display mode of the indicator 9224 according to the degree of interference predicted to occur at the time of interference indicated by the indicator 9224 (that is, interference depth). For example, as shown in FIG. 21, the interference depth of interference predicted to occur at a first interference time indicated by first indicator 9224 is predicted to occur at a second interference time indicated by second indicator 9224. The display control unit 211 may generate GUI information for changing the display mode of the first indicator 9224 and the display mode of the second indicator 9224 when the depth of interference differs from the interference depth of the interference.
  • the display device 35 may display the first and second indicators 9224 such that the display mode of the first indicator 9224 and the display mode of the second indicator 9224 are different. Even in this case, the terminal user can intuitively recognize the degree of interference predicted to occur in the processing head 121 (that is, the depth of interference).
  • the color representing the interference depth is the same as when the color of at least one of the head model HM and the interfered object model changes based on the difference in interference depth.
  • Multiple colors may be used.
  • the display control unit 211 may generate GUI information representing the difference in interference depth using a plurality of colors including warm and cool colors.
  • the display control unit 211 may generate GUI information representing the difference in interference depth using a plurality of colors including red, yellow, green, and blue.
  • the display control unit 211 causes the color of the indicator 9224 indicating the interference time point to become warmer (for example, red) as the interference depth at the interference time point increases, and GUI information may be generated in which the color of the indicator 9224 indicating a certain interference point approaches a cold color (eg, blue).
  • a cold color eg, blue
  • the display control unit 211 may embed information about progress or elapsed time in GUI information for displaying moving images.
  • the display control unit 211 may embed information about the presence or absence of interference or the depth of interference in GUI information for displaying moving images.
  • the display control unit 211 may embed information that associates the progress or elapsed time with the presence or absence of interference or the depth of interference in the GUI information for displaying the moving image.
  • the data generation server 2 may store information that associates the progress or elapsed time described later with the presence or absence of interference or the depth of interference, separately from the GUI information for displaying the moving image. In this case, information that associates the progress status or elapsed time described later with the presence or absence of interference or the depth of interference may be temporarily stored as a temporary file.
  • the display control unit 211 may implement various displays described above based on information stored in the data generation server 2 .
  • the interference information includes prediction result information regarding the prediction result of interference between the processing head 121 and the interfered objects, and the number of interfered objects. contains only In this case, the display control unit 211 selects at least one of the plurality of pieces of prediction result information, and displays the selected at least one piece of prediction result information, while displaying at least one remaining piece of prediction result information that was not selected. You may generate GUI information for not displaying .
  • the interference information is First prediction result information about the prediction result of interference, second prediction result information about the prediction result of the interference between the machining head 121 and the workpiece W, and third prediction result information about the prediction result of the interference between the machining head 121 and the stage 131 and prediction result information.
  • the display control unit 211 selects at least one of the first to third prediction result information, displays the selected at least one prediction result information, and displays at least the remaining unselected prediction result information. You may generate GUI information for not displaying one prediction result information.
  • the display control unit 211 displays at least one piece of prediction result information corresponding to at least one interfered object selected by the terminal user from among the first to third pieces of prediction result information.
  • GUI information may be generated for not displaying prediction result information corresponding to at least one remaining interfered object that was not displayed.
  • the display control unit 211 displays the first prediction result information while , GUI information for not displaying the second to third prediction result information may be generated.
  • the display control unit 211 displays at least one three-dimensional model of the interfered object selected by the terminal user, and at least one model of the interfered object not selected by the terminal user.
  • GUI information may be generated for not displaying the three-dimensional model of the remaining one interfered object.
  • FIG. 22 shows an example in which the unfinished model BM of the unfinished object BO selected by the terminal user is displayed, while the work model WM of the work W not selected by the terminal user and the stage model SM of the stage 131 are not displayed. is shown.
  • the display device 35 can selectively display the interference information that the terminal user wants to know. Therefore, the display device 35 can reliably display the interference information that the terminal user wants to know while simplifying the output screen 92 on which the interference information is displayed.
  • the display control unit 211 may generate GUI information for not displaying the head model HM according to the terminal user's selection or non-selection. A terminal user may be able to select display or non-display of each 3D model.
  • the terminal user who recognizes the interference information displayed on the display device 35 may use the input device 34 to perform the operation again to reset the shape information on the input screen 91 (step S13).
  • the terminal user may re-input using the input device 34 .
  • the interference information includes information indicating a predicted result that interference between the processing head 121 and the interfered object will occur
  • the modeling apparatus 1 the modeling operation is performed based on the modeling data generated based on the shape information that has not been reset.
  • the modeling apparatus 1 since it was predicted that the processing head 121 and the interfered object would interfere, there is a high possibility that the processing head 121 interferes with the interfered object during the modeling operation.
  • the modeling apparatus 1 may not be able to appropriately add-model the three-dimensional structure. Therefore, the terminal user may reset the shape information so that interference between the machining head 121 and the object to be interfered does not occur (step S13).
  • the terminal user may use the input device 34 to set information regarding at least one of the work model WM and the head model HM.
  • the terminal user may use the input device 34 to set information regarding the position of at least one of the work model WM and the head model HM.
  • the terminal user may use the input device 34 to set information regarding the shape of at least one of the work model WM and the head model HM.
  • the data generation server 2 can more accurately predict the possibility of appropriately adding to the three-dimensional structure.
  • the values that can be input using the input device 34 may be restricted.
  • an input that sets the size (for example, at least one of height and width) of the work model WM to a negative value may be restricted.
  • the data generator 213 may regenerate the additional shaping model data representing the additional shaping model based on the reset shape information (step S14). Thereafter, the display control unit 211 may regenerate GUI information regarding the setting GUI 9 including the output screen 92 on which the additional modeling model represented by the regenerated additional modeling model data is displayed (step S14). After that, the display control unit 211 may transmit the regenerated GUI information to the display device 35 (step S14). After that, the display device 35 may update the display of the setting GUI 9 including the additive modeling model based on the regenerated GUI information (step S14).
  • the data generation unit 213 may regenerate the additive manufacturing model data representing the additive manufacturing model based on the reset shape information, triggered by the reset of the shape information by the terminal user. After that, the display control unit 211 outputs GUI information about the setting GUI 9 including the output screen 92 on which the additional modeling model represented by the regenerated additional modeling model data is displayed, triggered by the regeneration of the additional modeling model data. You can regenerate. After that, the display control unit 211 may retransmit the regenerated GUI information to the display device 35 with the regeneration of the GUI information as a trigger.
  • the display device 35 triggered by the retransmission of the GUI information (in other words, triggered by the re-reception of the GUI information by the terminal device 3), displays the setting GUI 9 based on the retransmitted GUI information.
  • display may be updated.
  • the additional modeling model displayed on the output screen 92 of the setting GUI 9 is sequentially updated according to the resetting of the shape information.
  • the additive manufacturing model displayed on the output screen 92 of the setting GUI 9 is updated in real time according to the resetting of the shape information.
  • the terminal user can reset the shape information while sequentially (typically in real time) recognizing the additive modeling model having the three-dimensional shape indicated by the shape information reset by the terminal user.
  • the data generating unit 213 may regenerate the additive manufacturing model data representing the additive manufacturing model based on the reset shape information, triggered by input of a request from the terminal user, the server user, or the modeling user.
  • the display control unit 211 is triggered by an input of a request from a terminal user, a server user, or a modeling user, and displays GUI information about the setting GUI 9 including the output screen 92 on which the additive modeling model represented by the regenerated additive modeling model data is displayed. You can regenerate.
  • the display control unit 211 may resend the regenerated GUI information to the display device 35, triggered by input of a request from the terminal user, the server user, or the modeling user.
  • the display device 35 may update the display of the setting GUI 9 based on the retransmitted GUI information, triggered by input of a request from the terminal user, server user, or modeling user.
  • the additional modeling model displayed on the output screen 92 of the setting GUI 9 is sequentially updated according to requests from the terminal user, the server user, or the modeling user.
  • the interference prediction unit 214 determines whether or not the machining head 121 will interfere based on the additional modeling model data regenerated from the shape information by the data generation unit 213. Re-prediction may be performed (step S15). Thereafter, the display control unit 211 may regenerate GUI information for displaying interference information indicating the re-prediction result of interference by the interference prediction unit 214 on the display device 35 of the terminal device 3 (step S16). After that, the display control unit 211 may retransmit the regenerated GUI information to the display device 35 (step S16). After that, the display device 35 may update the display of the setting GUI 9 including the interference information based on the regenerated GUI information (step S16).
  • the interference prediction unit 214 may re-predict whether or not interference with the processing head 121 will occur, triggered by the resetting of the shape information by the terminal user. After that, the display control unit 211 displays the interference information indicating the re-prediction result of the interference by the interference prediction unit 214 on the display device of the terminal device 3, triggered by re-prediction of whether or not the processing head 121 will interfere. GUI information for display on 35 may be regenerated. After that, the display control unit 211 may retransmit the regenerated GUI information to the display device 35 with the regeneration of the GUI information as a trigger.
  • the display device 35 is triggered by the retransmission of the GUI information (in other words, triggered by the re-reception of the GUI information by the terminal device 3), based on the retransmitted GUI information, interference information You may update the display of setting GUI9 containing.
  • the interference information (furthermore, the head model HM and the interfered object model) displayed on the output screen 92 of the setting GUI 9 is successively updated according to the resetting of the shape information.
  • the interference information (furthermore, the head model HM and the interfered object model) displayed on the output screen 92 of the setting GUI 9 is updated in real time according to the resetting of the shape information.
  • the terminal user can reset the shape information while successively (typically in real time) recognizing the influence that the reset of the shape information has on the interference of the processing head 121 .
  • the interference prediction unit 214 may re-predict whether or not interference of the processing head 121 will occur, triggered by input of a request from the terminal user, server user, or modeling user.
  • the display control unit 211 may regenerate GUI information for displaying interference information indicating re-prediction results of interference by the interference prediction unit 214, triggered by input of a request from a terminal user, a server user, or a modeling user. .
  • the display control unit 211 may resend the regenerated GUI information to the display device 35, triggered by input of a request from the terminal user, the server user, or the modeling user.
  • the display device 35 may update the display of the setting GUI 9 including the interference information based on the retransmitted GUI information, triggered by input of a request from the terminal user, server user, or modeling user.
  • the interference information (furthermore, the head model HM and the interfered object model) displayed on the output screen 92 of the setting GUI 9 is sequentially updated according to requests from the terminal user, server user, or modeling user.
  • the setting GUI 9 includes an input screen 91 for setting shape information and an output screen 92 for displaying interference information together with the head model HM and the interfered object model.
  • the terminal user can reset the shape information using the input screen 91 displayed alongside the output screen 92 while recognizing the interference information displayed on the output screen 92 . Therefore, the terminal user can efficiently reset the shape information using the input screen 91 while recognizing the effect of resetting the shape information on the interference of the processing head 121 on the output screen 92. .
  • the terminal user may request that the interference information displayed on the display device 35 indicate that it was predicted that no interference of the processing head 121 would occur (or that it was not predicted that interference of the processing head 121 would occur).
  • the resetting of the shape information may be repeated until That is, until the interference information including the prediction result that the processing head 121 will interfere is changed to the interference information including the prediction result that the processing head 121 will not interfere, the terminal user keeps the shape information. may be reset repeatedly.
  • the interference information indicates that it is predicted that the machining head 121 will not interfere by resetting the shape information
  • an output screen 92 shown in FIGS. 15 to 17 is displayed on the display device 35. Therefore, the terminal user can recognize that it is predicted that the machining head 121 will not interfere with the resetting of the shape information.
  • the display control unit 211 sets the shape information before the resetting of the shape information.
  • GUI information for displaying a notification screen for notifying the terminal user that the interference of the machining head 121 that was predicted to occur has been resolved may be generated.
  • the interference information containing the information related to the prediction result that the interference of the processing head 121 will not occur due to the reset of the shape information may be changed to that of the interference of the processing head 121. It can also be turned into interference information that contains information about the predicted outcome that will occur. Even in this case, the terminal user can recognize the interference information displayed on the display device 35 to recognize that it is predicted that the machining head 121 will interfere with the current shape information. Therefore, the terminal user may repeat the resetting of the shape information until the interference information displayed on the display device 35 indicates that it is predicted that the machining head 121 will not interfere. No change.
  • the terminal user does not have to repeat the resetting of the shape information until the interference information indicates that it is predicted that the machining head 121 will not interfere. For example, if the interference information indicates that the machining head 121 will interfere, but the degree of interference is smaller than the allowable value, the terminal user may reset the shape information. You don't have to. For example, the terminal user repeatedly resets the shape information until the interference information indicates that the machining head 121 will interfere, but the degree of interference is smaller than the allowable value. may
  • the modification proposal unit 215 of the data generation server 2 may propose resetting (that is, modification) of the shape information to the terminal user (step S17).
  • the correction proposing unit 215 may propose to the terminal user a method for resetting the shape information so that it is predicted that interference of the machining head 121 will not occur.
  • the correction proposing unit 215 may propose to the terminal user a method for resetting the shape information so that interference of the processing head 121 is not expected to occur.
  • the correction proposing unit 215 determines whether the processing head 121 interferes with the processing head 121. You may calculate the shape of the three-dimensional structure that does not occur. Thereafter, the correction proposing unit 215 may identify a method for resetting the shape information so that shape information indicating the calculated shape is generated, and may propose the identified method to the terminal user. In this case, the terminal user can relatively easily reset the shape information by resetting the shape information according to the method proposed by the modification proposal unit 215 so that it is predicted that the processing head 121 will not interfere with the shape information. can do.
  • the bending angle of the pipe (that is, the angle formed by two pipe sections that are connected to each other to form a pipe and extend in different directions) It has a relatively large effect on the interference of the head 121 .
  • the greater the bend angle of the pipe the higher the possibility that the processing head 121 will interfere with at least one of the unfinished model BO, the work W, and the stage 131 . Therefore, the correction proposing section 215 may propose to the terminal user a method for resetting the shape information so that the bend angle of the pipe is reduced.
  • the terminal user may set the values of the parameters that specify the shape of the three-dimensional structure.
  • the correction suggesting unit 215 may propose recommended parameter values to the terminal user.
  • the correction proposing unit 215 may propose recommended parameter values to the terminal user as a method for resetting the shape information.
  • the correction proposing unit 215 may propose to the terminal user, as a recommended value, a parameter value capable of realizing a state in which interference of the machining head 121 is expected not to occur.
  • the correction proposing unit 215 recommends a parameter specifying the position of at least a portion of the pipe, a recommended parameter specifying the direction of at least a portion of the pipe, a pipe recommended values of parameters specifying the magnitude of curvature of at least a portion of the pipe; recommended values of parameters specifying the size of at least a portion of the pipe; recommended values of the parameters specifying the bulkhead thickness of at least a portion of the pipe;
  • the recommended value of the parameter that specifies the angle (rotation angle) of the pipe, the recommended value of the parameter that specifies whether or not at least a portion of the pipe branches, the recommended value of the parameter that specifies whether or not at least a portion of the pipe merges, at least a portion of the pipe
  • At least one of the recommended values of the parameters specifying the multi-layered structure and the recommended values of the parameters specifying the shape of the pipe end may be proposed.
  • the correction proposal unit 215 may propose two or more recommended values to the terminal user.
  • the terminal user may use input device 34 to select one of the two or more recommended values.
  • the terminal user may use the input device 34 to adopt one of two or more recommended values as the value of the parameter.
  • the correction proposing unit 215 may propose a recommended range of parameter values to the terminal user as the recommended parameter values. For example, the correction proposing unit 215 may propose the maximum and minimum recommended parameter values to the terminal user as the recommended parameter values. In this case, the terminal user may use the input device 34 to reset the parameters within the recommended range for the parameter values. You can suggest.
  • the correction proposal unit 215 may propose the recommended shape of the three-dimensional structure to the terminal user as a method for resetting the shape information.
  • the correction proposing unit 215 may propose to the terminal user, as a recommended shape, the shape of a three-dimensional structure that can realize a state in which it is predicted that no interference of the processing head 121 will occur.
  • the correction proposal unit 215 may propose two or more recommended shapes to the terminal user.
  • the terminal user may use the input device 34 to select one of the two or more recommended shapes.
  • the terminal user may use the input device 34 to reset the values of the parameters so as to achieve one of the two or more recommended shapes.
  • the correction proposing unit 215 may propose any method for eliminating interference of the processing head 121 to the terminal user.
  • the shape of the work W on which the three-dimensional structure is additionally shaped may affect the interference of the processing head 121 .
  • the surface of the work W on which the three-dimensional structure is additionally formed is positioned relatively close to the surface of the stage 131. do. Therefore, there is a relatively high possibility that the processing head 121 that additionally shapes the three-dimensional structure on the surface of the work W will interfere with the surface of the stage 131 .
  • the correction proposing unit 215 proposes to the terminal user the thickness of the workpiece W that can realize a state in which it is predicted that no interference of the machining head 121 will occur, as an arbitrary method for eliminating the interference of the machining head 121.
  • the correction proposing unit 215 displays a proposal object 93, which is a display object for proposing resetting of the shape information to the terminal user, on the display device 35 of the terminal device 3, thereby proposing resetting of the shape information to the terminal user.
  • the display control unit 211 may generate display data for displaying the proposal object 93 for proposing resetting of the shape information to the terminal user under the control of the correction proposal unit 215 .
  • the display control unit 211 may transmit the generated display data to the terminal device 3 using the communication device 23 .
  • the terminal device 3 may receive display data transmitted from the data generation server 2 .
  • the display device 35 of the terminal device 3 may display the suggested object 93 based on the display data transmitted from the data generation server 2 .
  • the display control unit 211 generates GUI information for displaying the setting GUI 9 on the display device 35 .
  • the display control unit 211 may generate GUI information for displaying the setting GUI 9 including the proposal object 93 on the display device 35 as display data for displaying the proposal object 93 . That is, the proposal object 93 may be displayed on the setting GUI 9 .
  • a proposal object 93 may be displayed on an input screen 91 included in the setting GUI 9.
  • suggestion object 93 may be displayed on output screen 92 included in setting GUI 9 .
  • the modification proposal unit 215 may directly reset (that is, modify) the shape information in addition to or instead of proposing resetting of the shape information to the terminal user.
  • the correction proposing unit 215 may reset the shape information so that it is predicted that the machining head 121 will not interfere. In this case, even if the terminal user does not manually reset the shape information, it is possible to automatically reset the shape information, so to speak, so that it is predicted that the processing head 121 will not interfere with the shape information.
  • the data generation unit 213 of the data generation server 2 determines whether or not the operation of setting (or resetting, the same applies hereinafter) shape information using the setting GUI 9 has ended (step S18). .
  • the data generation unit 213 ends the operation of setting the shape information using the setting GUI 9. It may be determined that
  • step S18 if it is determined that the operation of setting the shape information using the setting GUI 9 has not ended (step S18: No), the operation of setting the shape information using the setting GUI 9 continues. be done. That is, the modeling system SYS continues the operations from step S13 to step S17.
  • step S18 determines that the operation of setting the shape information using the setting GUI 9 has ended (step S18: Yes)
  • the data generation unit 213 obtains the latest shape acquired by the information acquisition unit 212 in step S13.
  • 3D model data representing a 3D model of a 3D structure having a shape specified by the shape information set by the terminal user (i.e., additive manufacturing model data representing an additive manufacturing model) is generated (step S19). If the shape information has been reset, the data generation unit 213 generates the additional modeling model data based on the latest shape information reset by the terminal user.
  • the format of the 3D model data can be any format.
  • the data generation unit 213 may generate additive manufacturing model data conforming to the STL (Standard Triangulated Language) file format.
  • the data generation unit 213 may generate additive manufacturing model data conforming to the STEP (Standard for Exchange of Product Model Data) file format.
  • the data generation unit 213 may generate additive manufacturing model data conforming to the IGES (Initial Graphics Exchange Specification) file format.
  • the data generation unit 213 may generate additive modeling model data conforming to the DWG file format.
  • the data generation unit 213 may generate additive modeling model data conforming to the DXF (Drawing Exchange Format) file format.
  • the data generation unit 213 may generate additive manufacturing model data conforming to the VRML (Virtual Reality Modeling Language) file format.
  • the data generation unit 213 may generate additive modeling model data conforming to the ISO10303 file format.
  • the additional modeling model data is generated in order to display the additional modeling model on the display device 35 of the terminal device 3 (see step S14 in FIG. 6).
  • the additional modeling model data generated for displaying the additional modeling model on the display device 35 of the terminal device 3 in step S14 represents the additional modeling model based on the latest shape information
  • data generation The unit 213 does not need to generate additional modeling model data again in step S19.
  • the data generation unit 213 may store the generated additive manufacturing model data in the storage device 22 .
  • the data generation unit 213 may add shape information (that is, shape information such as parameters set by the terminal user) used to generate the additional modeling model data in addition to or instead of the generated additional modeling model data. It may be stored in the storage device 22 .
  • shape information that is, shape information such as parameters set by the terminal user
  • the data generation unit 213 may generate additional modeling model data based on the shape information stored in the storage device 22 .
  • the data generation unit 213 may regenerate (that is, restore) the generated addition modeling model data based on the shape information stored in the storage device 22 .
  • the data generation unit 213 adds new parts (for example, screw parts) to the three-dimensional structure represented by the restored additive manufacturing model data. New additive manufacturing model data representing the three-dimensional structure may be generated. In other words, the data generation unit 213 may modify the restored addition modeling model data.
  • the data generation unit 213 may store the set shape information in the storage device 22 after it is determined that the operation of setting the shape information using the setting GUI 9 is completed.
  • the data generation unit 213 stores the shape information set so far (shape information in the process of setting) in the storage device 22 before it is determined that the operation of setting the shape information using the setting GUI 9 is completed.
  • the data generation unit 213 Information shape information in the process of setting
  • the display control unit 211 displays the setting GUI 9 used by the terminal user to continue setting the shape information based on the shape information in the middle of setting. 35 may be displayed.
  • the data generation unit 213 uses the communication device 23 to transmit the latest addition modeling model data generated in step S19 (or step S14) to the modeling device 1.
  • the data generator 213 may transmit the additional modeling model data to the modeling apparatus 1 based on an instruction from the server user (or the terminal user or the modeling user). Alternatively, the data generator 213 may automatically transmit the additional modeling model data to the modeling apparatus 1 without waiting for an instruction from the server user (or terminal user or modeling user).
  • the control device 17 of the modeling apparatus 1 uses the communication device 18 to receive (acquire) the additive modeling model data transmitted from the data generation server 2 .
  • the data generation unit 213 does not have to transmit the additional modeling model data to the modeling apparatus 1 under the condition that the interference prediction unit 214 still predicts that the processing heads 121 will interfere.
  • the data generation unit 213 may transmit to the modeling apparatus 1 additional modeling model data to which data indicating that interference of the processing head 121 is expected to occur is added.
  • the data generation unit 213 may transmit to the modeling apparatus 1 additional modeling model data in which an interference flag indicating that interference of the processing head 121 is predicted to occur is added to the header.
  • the data generation unit 213 transmits to the modeling apparatus 1 the additive modeling model data in which the data name (file name) is given the text “interference NG” indicating that the processing head 121 is expected to interfere. may
  • the control device 17 After that, the control device 17 generates modeling data that defines the operation content of the modeling device 1 based on the additional modeling model data (step S20). Specifically, based on the additional modeling model data, the control device 17 controls the three-dimensional structure represented by the additional modeling model data (that is, the three-dimensional structure having a shape defined by the shape information set by the terminal user). is generated. In other words, based on the additional modeling model data, the control device 17 generates modeling data that causes the modeling device 1 to perform additional modeling of the three-dimensional structure represented by the additional modeling model data.
  • the modeling data may include path information indicating the relative movement trajectory of the processing head 121 with respect to the stage 131 .
  • path information may be considered to indicate relative movement trajectories of the irradiation position of the processing light EL and the supply position of the modeling material M with respect to the stage 131 .
  • the additional modeling model data may be regenerated when the shape information is reset (see step S14 in FIG. 6).
  • the control device 17 When the additional modeling model data is regenerated in this way, the control device 17 generates the modeling data based on the regenerated additional modeling model data (that is, the latest addition modeling model data based on the latest shape information). will generate
  • control device 17 causes the modeling apparatus 1 to operate to model a three-dimensional structure (that is, a three-dimensional structure having a shape set by the terminal user) based on the modeling data generated in step S20. is controlled (step S21). As a result, a three-dimensional structure having a shape set by the terminal user is formed.
  • the terminal user can set the values of the parameters specifying the shape of the three-dimensional structure and/or select the icon. By doing so, the additional modeling model data can be generated.
  • the terminal user can generate additive modeling model data without using software that requires a high level of expertise, such as three-dimensional CAD (Computer Aided Design) software.
  • the data generation server 2 can appropriately assist the user in generating the additional modeling model data by providing the setting GUI 9 to the terminal user.
  • the display device 35 can display interference information including information on prediction results as to whether or not interference of the machining head 121 will occur.
  • the terminal user can reset the shape information while recognizing the interference information displayed on the display device 35 . Therefore, the terminal user can appropriately recognize whether or not the shape information set by the terminal user himself/herself will lead to interference of the processing head 121 . Therefore, the terminal user can appropriately set the shape information so that the processing head 121 does not interfere with the processing head 121 .
  • the display device 35 can display interference information including information on prediction results as to whether or not interference of the machining head 121 will occur at a specified time specified by the terminal user. Therefore, the terminal user can appropriately recognize whether or not there is a possibility that interference of the processing head 121 will occur at a certain time. Therefore, the terminal user can appropriately set the shape information so that the processing head 121 does not interfere with the processing head 121 at a certain time.
  • the data generation server 2 assumes that the processing head 121 additionally shapes a three-dimensional structure having a shape specified by the shape information set by the terminal user. , it may be determined whether or not the additionally shaped three-dimensional structure fits within the range of the processing space BA.
  • An example of the positional relationship between the three-dimensional structure and the processing space BA is shown in FIGS. 24(a) and 24(b).
  • FIG. 24(a) shows an example of a three-dimensional structure that fits in the processing space BA.
  • FIG. 24(b) shows an example of a three-dimensional structure that does not fit in the processing space BA (that is, deviates from the processing space BA).
  • the machining space BA is a space preset as a space in which the machining head 121 should perform additional modeling.
  • the processing space BA may include a space above the stage 131 .
  • the machining space BA may include the space between the stage 131 and the machining head 121 .
  • the data generation server 2 generates display data (for example, GUI information) for displaying the range of the processing space BA together with the additive manufacturing model (that is, the three-dimensional model of the three-dimensional structure) displayed in step S14 of FIG. may be generated.
  • display data for example, GUI information
  • the additive manufacturing model that is, the three-dimensional model of the three-dimensional structure displayed in step S14 of FIG.
  • the terminal user can intuitively recognize whether or not the three-dimensional structure having the shape specified by the shape information set by the terminal user can be additionally molded in the processing space BA.
  • the terminal user uses the input device 34 to perform the operation for resetting the shape information on the input screen 91 again.
  • the terminal user may reset the shape information so that the three-dimensional structure is within the working space BA.
  • the data generation unit 213 does not have to transmit the additional modeling model data to the modeling apparatus 1 under the situation where it is still determined that the three-dimensional structure does not fit within the range of the processing space BA.
  • the data generator 213 may transmit to the modeling apparatus 1 additional modeling model data to which data indicating that the three-dimensional structure does not fit within the range of the processing space BA is added.
  • the data generator 213 may transmit to the modeling apparatus 1 the additive modeling model data with a header added with a processing range NG flag indicating that the three-dimensional structure does not fit within the range of the processing space BA.
  • the data generation unit 213 creates the additive modeling model data whose data name (file name) is given a text “processing range NG” indicating that the three-dimensional structure does not fit within the range of the processing space BA. may be sent to
  • the data generation server 2 generates the additional modeling model data based on the shape information, and based on the additional modeling model data, whether or not the processing head 121 interferes. I predict no. However, an interference prediction device different from the data generation server 2 may predict whether or not the machining head 121 will interfere based on the additional modeling model data. In this case, the data generation server 2 transmits the generated additive manufacturing model data to the interference prediction device. You may predict whether it will occur or not.
  • the interference prediction device may be included in the control device 17 of the modeling device 1 .
  • the interference prediction device may be a device different from the modeling device 1 . If the data generation server 2 does not predict whether or not the machining head 121 will interfere, the data generation server 2 does not have to include the interference prediction unit 214 .
  • the control device 17 of the modeling apparatus 1 generates modeling data based on the additional modeling model data.
  • a modeling data generation device different from the control device 17 of the modeling device 1 may generate modeling data based on the additional modeling model data.
  • the data generation server 2 transmits the generated additive modeling model data to the modeling data generation device, and the modeling data generation device generates modeling data based on the additive modeling model data transmitted from the data generation server 2.
  • the modeling data generation device may be implemented by the arithmetic device 21 of the data generation server 2 .
  • the modeling data generation device may be a device different from the data generation server 2 .
  • the modeling data generation device may be a device called a so-called slicer.
  • the data generation server 2 proposes resetting (that is, correction) of the shape information to the terminal user.
  • the data generation server 2 does not have to propose resetting the shape information to the terminal user.
  • the data generation server 2 does not have to include the correction proposal section 215 .
  • a modification proposal device different from the data generation server 2 may propose resetting (that is, modification) of the shape information to the terminal user.
  • the modeling apparatus 1 melts the modeling material M by irradiating the modeling material M with the processing light EL.
  • the modeling apparatus 1 may melt the modeling material M by irradiating the modeling material M with an arbitrary energy beam.
  • arbitrary energy beams include at least one of charged particle beams and electromagnetic waves.
  • charged particle beams include at least one of electron beams and ion beams.
  • the modeling apparatus 1 models a three-dimensional structure by performing additional processing based on the laser build-up welding method.
  • the modeling apparatus 1 may model a three-dimensional structure by performing additional processing based on other methods that can form a three-dimensional structure.
  • the modeling apparatus 1 may model a three-dimensional structure by performing removal processing in addition to or instead of performing additional processing.
  • the modeling apparatus 1 may model a three-dimensional structure by performing machining in addition to or instead of performing at least one of additional processing and removal processing.
  • the modeling apparatus 1 includes the processing head 121 that performs additional processing on the workpiece W to additionally shape the three-dimensional structure.
  • the modeling apparatus 1 may include, in addition to or instead of the processing head 121, a measurement head that measures a measurement target (for example, at least one of the workpiece W and the modeled object).
  • the data generation server 2 predicts whether or not interference between the machining head 121 and the interfered object will occur when the machining head 121 additionally processes the workpiece W. It may be predicted whether or not interference between the measuring head and the interfered object will occur when measuring .
  • the measuring head may be equipped with a measuring device.
  • An example of a measuring device is a measuring device capable of measuring characteristics (for example, at least one of position and shape) of an object to be measured.
  • the measurement device may include, for example, at least one of a two-dimensional imaging device, a three-dimensional imaging device, a displacement gauge, a laser light source, and a beam light source.
  • a data generating method for generating data relating to an indication of interference between a measuring head and a second object expected to occur when the measuring head measures a first object comprising: generating display data for displaying a three-dimensional model showing the second object on a display device based on model data representing the three-dimensional shape of the first object; The data generation method, wherein the display data includes interference depth information indicating a degree of interference between the measurement head and the second object.
  • [Appendix 2] receiving model data representing a three-dimensional shape of an object to be additively modeled on the mounting device using the modeling head, which is generated based on the input of the input device; displaying a three-dimensional model representing the object based on the received model data; A display device that redisplays the three-dimensional model based on the input, the three-dimensional model of the object includes a three-dimensional model of the object before the end of additional modeling of the object; The display includes display of interference information indicating interference between the modeling head and at least one of the modeled object and the mounting device, A display device, wherein when re-input is performed with the input device, the three-dimensional model is re-generated based on the re-input, and the interference information is updated based on the re-input.
  • [Appendix 3] receiving model data representing a three-dimensional shape of an object to be additively modeled on the mounting device using the modeling head, which is generated based on the input of the input device; displaying a three-dimensional model representing the object based on the received model data; A display device that redisplays the three-dimensional model based on the input, the three-dimensional model of the object includes a three-dimensional model of the object before the end of additional modeling of the object; the display includes display of interference information indicating interference between the modeling head and at least one of the object and the mounting device; A display device for displaying a three-dimensional model showing the object at specified points between the start point and the end point of the modeling, together with the interference information predicted to occur at the specified points.
  • a display device for displaying data related to interference between the processing head and a second object, which is predicted to occur when the processing head processes the first object, displaying a three-dimensional model showing the second object based on model data representing the three-dimensional shape of the first object;
  • the display includes display of interference depth information indicating the degree of interference between the processing head and the second object.
  • a display device for displaying data relating to an indication of interference between the processing head and a second object that is expected to occur when the processing head processes the first object, receiving model data representing the three-dimensional shape of the first object generated based on parameters specifying the shape of the first object set based on input from an input device; displaying a three-dimensional model showing the second object based on model data representing the three-dimensional shape of the first object; the display includes display of interference information indicating interference between the processing head and the second object; The display includes a display that displays a display object for proposing the re-input to the user together with the interference information.
  • the present invention is not limited to the above-described embodiments, and can be modified as appropriate within a range that does not contradict the gist or idea of the invention that can be read from the scope of claims and the entire specification.
  • Data generation methods involving such modifications a modeling method, a processing method, a data generation device, a computer program, a recording medium, a display method, and a display device are also included in the technical scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Numerical Control (AREA)

Abstract

データ生成方法は、入力装置の入力に基づいて、造形ヘッドを用いて載置装置上で付加造形する物体の三次元形状を表すモデルデータを生成することと、モデルデータに基づいて、物体に関する三次元モデルを表示装置に表示するための表示データを生成することと、モデルデータに基づいて、物体を付加造形するための造形データを生成することを含み、物体に関する三次元モデルは、付加造形終了前の造形物の三次元モデルを含み、表示データは、造形ヘッドと造形物及び載置装置の少なくとも一方との干渉を示す干渉情報を含み、入力装置の再入力が行われた場合には、前記再入力に基づいてモデルデータ及び表示データが再生成され、干渉情報は再入力に基づいて更新される。

Description

データ生成方法、造形方法、加工方法、データ生成装置、コンピュータプログラム、記録媒体及び表示方法
 本発明は、例えば、物体を付加造形する造形ヘッド又は物体を加工する加工ヘッドの干渉に関するデータを生成するデータ生成方法、データ生成装置、コンピュータプログラム、記録媒体、物体を付加造形する造形方法、物体を加工する加工方法、並びに、例えば、物体を付加造形する造形ヘッド又は物体を加工する加工ヘッドの干渉に関するデータを表示する表示方法及び表示装置の技術分野に関する。
 特許文献1には、3Dプリンタによって付加造形できない部分が可視化された三次元モデルを表示する方法が記載されている。しかしながら、特許文献1に記載の方法は、物体を付加造形する造形ヘッド又は物体を加工する加工ヘッドの干渉について何ら考慮していないという技術的問題を有している。
米国特許公開第2015/269289号
 第1の態様によれば、入力装置の入力に基づいて、造形ヘッドを用いて載置装置上で付加造形する物体の三次元形状を表すモデルデータを生成することと、前記生成されるモデルデータに基づいて、前記物体に関する三次元モデルを表示装置に表示するための表示データを生成することと、前記モデルデータに基づいて、前記物体を付加造形するための造形データを生成することを含み、前記物体に関する前記三次元モデルは、前記物体の付加造形終了前の造形物の三次元モデルを含み、前記表示データは、前記造形ヘッドと前記造形物及び前記載置装置の少なくとも一方との干渉を示す干渉情報を含み、前記入力装置の再入力が行われた場合には、前記再入力に基づいて前記モデルデータ及び前記表示データが再生成され、前記干渉情報は前記再入力に基づいて更新されるデータ生成方法が提供される。
 第2の態様によれば、入力装置の入力に基づいて、造形ヘッドを用いて載置装置上で付加造形する物体の三次元形状を表すモデルデータを生成することと、前記生成されるモデルデータに基づいて、前記物体に関する三次元モデルを表示装置に表示するための表示データを生成することと、前記モデルデータに基づいて、前記物体を付加造形するための造形データを生成することを含み、前記物体に関する前記三次元モデルは、前記物体の付加造形終了前の造形物の三次元モデルを含み、前記表示データは、前記造形ヘッドと前記造形物及び前記載置装置の少なくとも一方との干渉を示す干渉情報とを含み、前記表示データの生成は、前記造形の開始点から終了点までの期間の指定点における前記造形物を示す三次元モデルを、前記指定点にて発生すると予測される前記干渉の前記干渉情報と共に前記表示装置に表示するための表示データを生成することを含むデータ生成方法が提供される。
 第3の態様によれば、第1又は第2の態様によって提供される前記データ生成方法を用いて、造形装置により前記物体を造形する造形方法が提供される。
 第4の態様によれば、加工ヘッドが第1物体を加工する場合に発生すると予測される、前記加工ヘッドと第2物体との干渉の表示に関するデータを生成するデータ生成方法であって、前記第1物体の三次元形状を表すモデルデータに基づいて、前記第2物体を示す三次元モデルを表示装置に表示するための表示データを生成することを含み、前記表示データは、前記加工ヘッドと前記第2物体との干渉の度合いを示す干渉深度情報を干渉情報として含むデータ生成方法が提供される。
 第5の態様によれば、加工ヘッドが第1物体を加工する場合に発生すると予測される、前記加工ヘッドと第2物体との干渉の表示に関するデータを生成するデータ生成方法であって、前記第1物体の三次元形状を表すモデルデータに基づいて、前記第2物体を示す三次元モデルを表示装置に表示するための表示データを生成することを含み、前記表示データは、前記加工ヘッドと前記第2物体との干渉を示す干渉情報を含み、前記表示データの生成は、前記加工の開始点から終了点までの期間の指定点における前記第2物体を示す三次元モデルを、前記指定点にて発生すると予測される前記干渉の前記干渉情報と共に前記表示装置に表示するための表示データを生成することと含むデータ生成方法が提供される。
 第6の態様によれば、加工ヘッドが第1物体を加工する場合に発生すると予測される、前記加工ヘッドと第2物体との干渉の表示に関するデータを生成するデータ生成方法であって、入力装置の入力に基づいて前記第1物体の形状を指定するパラメータを設定することと、前記パラメータに基づいて、前記第1物体の三次元形状を表すモデルデータを生成することと、前記第1物体の三次元形状を表すモデルデータに基づいて、前記第2物体を示す三次元モデルを表示装置に表示するための表示データを生成することとを含み、前記表示データは、前記加工ヘッドと前記第2物体との干渉に関する干渉情報を含み、前記表示データの生成は、前記パラメータを表示可能なパラメータ表示画面と、前記干渉情報を表示可能な出力画面とを含む表示画面を前記表示装置に表示するための表示データを生成することを含むデータ生成方法が提供される。
 第7の態様によれば、加工ヘッドが第1物体を加工する場合に発生すると予測される、前記加工ヘッドと第2物体との干渉の表示に関するデータを生成するデータ生成方法であって、入力装置の入力に基づいて前記第1物体の形状を指定するパラメータを設定することと、前記パラメータに基づいて、前記第1物体の三次元形状を表すモデルデータを生成することと、前記第1物体の三次元形状を表すモデルデータに基づいて、前記第2物体を示す三次元モデルを表示装置に表示するための表示データを生成することとを含み、前記表示データは、前記加工ヘッドと前記第2物体との干渉を示す干渉情報とを含み、前記干渉情報と共に、前記パラメータの再設定をユーザに提案するための表示オブジェクトを前記表示装置に表示するための表示データを生成することを含む、データ生成方法が提供される。
 第8の態様によれば、第3から第7の態様のいずれか一つによって提供される前記データ生成方法を用いて、加工装置により前記物体を加工する加工方法が提供される。
 第9の態様によれば、入力装置の入力に基づいて、加工ヘッドを用いて載置装置上で加工する物体の三次元形状を表すモデルデータを生成することと、前記生成されるモデルデータに基づいて、前記物体に関する三次元モデルを表示装置に表示するための表示データを生成することと、前記モデルデータに基づいて、前記物体を加工するための加工データを生成することとを含み、前記物体に関する前記三次元モデルは、前記物体の加工終了前の加工物の三次元モデルを含み、前記表示データは、前記加工ヘッドと前記加工物及び前記載置装置の少なくとも一方との干渉を示す干渉情報を含み、前記入力装置の再入力が行われた場合には、前記再入力に基づいて前記モデルデータ及び前記表示データが再生成され、前記干渉情報は前記再入力に基づいて更新されるデータ生成方法が提供される。
 第10の態様によれば、入力装置の入力に基づいて、加工ヘッドを用いて載置装置上で加工する物体の三次元形状を表すモデルデータを生成することと、前記生成されるモデルデータに基づいて、前記物体に関する三次元モデルを表示装置に表示するための表示データを生成することと、前記モデルデータに基づいて、前記物体を加工するための加工データを生成することとを含み、前記物体に関する前記三次元モデルは、前記物体の加工終了前の加工物の三次元モデルを含み、前記表示データは、前記加工ヘッドと前記加工物及び前記載置装置の少なくとも一方との干渉を示す干渉情報とを含み、前記表示データの生成は、前記加工の開始点から終了点までの期間の指定点における前記加工物を示す三次元モデルを、前記指定点にて発生すると予測される前記干渉の前記干渉情報と共に前記表示装置に表示するための表示データを生成することを含むデータ生成方法が提供される。
 第11の態様によれば、入力装置の入力に基づいて、造形ヘッドを用いて載置装置上で付加造形する物体の三次元形状を表すモデルデータを生成し、前記生成されるモデルデータに基づいて、前記物体に関する三次元モデルを表示装置に表示するための表示データを生成し、前記モデルデータに基づいて、前記物体を付加造形するための造形データを生成し、前記物体に関する前記三次元モデルは、前記物体の付加造形終了前の造形物の三次元モデルを含み、前記表示データは、前記造形ヘッドと前記造形物及び前記載置装置の少なくとも一方との干渉を示す干渉情報を含み、前記入力装置の再入力が行われた場合には、前記再入力に基づいて前記モデルデータ及び前記表示データが再生成され、前記干渉情報は前記再入力に基づいて更新されるデータ生成装置が提供される。
 第12の態様によれば、入力装置の入力に基づいて、造形ヘッドを用いて載置装置上で付加造形する物体の三次元形状を表すモデルデータを生成し、前記生成されるモデルデータに基づいて、前記物体に関する三次元モデルを表示装置に表示するための表示データを生成し、前記モデルデータに基づいて、前記物体を付加造形するための造形データを生成し、前記物体に関する前記三次元モデルは、前記物体の付加造形終了前の造形物の三次元モデルを含み、前記表示データは、前記造形ヘッドと前記造形物及び前記載置装置の少なくとも一方との干渉を示す干渉情報とを含み、前記造形の開始点から終了点までの期間の指定点における前記造形物を示す三次元モデルを、前記指定点にて発生すると予測される前記干渉の前記干渉情報と共に前記表示装置に表示するための表示データを生成することを含むデータ生成装置が提供される。
 第13の態様によれば、加工ヘッドが第1物体を加工する場合に発生すると予測される、前記加工ヘッドと第2物体との干渉の表示に関するデータを生成するデータ生成装置であって、前記第1物体の三次元形状を表すモデルデータに基づいて、前記第2物体を示す三次元モデルを表示装置に表示するための表示データを生成し、前記表示データは、前記加工ヘッドと前記第2物体との干渉の度合いを示す干渉深度情報を含むデータ生成装置が提供される。
 第14の態様によれば、加工ヘッドが第1物体を加工する場合に発生すると予測される、前記加工ヘッドと第2物体との干渉の表示に関するデータを生成するデータ生成装置であって、前記第1物体の三次元形状を表すモデルデータに基づいて、前記第2物体を示す三次元モデルを表示装置に表示するための表示データを生成し、前記表示データは、前記加工ヘッドと前記第2物体との干渉を示す干渉情報とを含み、前記加工の開始点から終了点までの期間の指定点における前記物体を示す三次元モデルを、前記指定点にて発生すると予測される前記干渉の前記干渉情報と共に表示装置に表示するための表示データを生成するデータ生成装置が提供される。
 第15の態様によれば、加工ヘッドが第1物体を加工する場合に発生すると予測される、前記加工ヘッドと第2物体との干渉の表示に関するデータを生成するデータ生成装置であって、入力装置の入力に基づいて前記第1物体の形状を指定するパラメータを設定し、前記パラメータに基づいて、前記第1物体の三次元形状を表すモデルデータを生成し、前記第1物体の三次元形状を表すモデルデータに基づいて、前記第2物体を示す三次元モデルを表示装置に表示するための表示データを生成し、前記表示データは、前記加工ヘッドと前記第2物体との干渉に関する干渉情報を含み、前記パラメータを表示可能なパラメータ表示画面と、前記干渉情報を表示可能な出力画面とを含む表示画面を表示装置に表示するための表示データを生成するデータ生成装置が提供される。
 第16の態様によれば、加工ヘッドが第1物体を加工する場合に発生すると予測される、前記加工ヘッドと第2物体との干渉の表示に関するデータを生成するデータ生成装置であって、入力装置の入力に基づいて前記第1物体の形状を指定するパラメータを設定し、前記パラメータに基づいて、前記第1物体の三次元形状を表すモデルデータを生成し、前記第1物体の三次元形状を表すモデルデータに基づいて、前記第2物体を示す三次元モデルを表示装置に表示するための表示データとして生成し、前記表示データは、前記加工ヘッドと前記第2物体との干渉を示す干渉情報とを含み、前記干渉情報と共に、前記パラメータの再設定をユーザに提案するための表示オブジェクトを前記表示装置に表示するための表示データを生成するデータ生成装置が提供される。
 第17の態様によれば、第1から第2、第4から第7及び第9から第10の態様のいずれか一項に記載のデータ生成方法をコンピュータに実行させるコンピュータプログラムが提供される。
 第18の態様によれば、第17の態様によって提供されるコンピュータプログラムが記録された記録媒体が提供される。
 第19の態様によれば、造形ヘッドを用いて載置装置上で付加造形する物体の三次元形状を表すモデルデータと、前記造形ヘッドのモデルデータと、前記載置装置のモデルデータとに基づいて、表示データを生成することと、前記表示データに基づいて、前記物体に関する三次元モデル、前記造形ヘッドの三次元モデル、及び、前記載置装置の三次元モデルを表示装置に表示することとを含み、前記物体に関する前記三次元モデルは、前記物体の付加造形終了前の造形物の三次元モデルを含み、前記造形ヘッドと前記造形物及び前記載置装置の少なくとも一方との干渉を示す干渉情報を、前記造形物の三次元モデル、前記造形ヘッドの三次元モデル、及び、前記載置装置の三次元モデルと共に、前記表示装置に表示する表示方法が提供される。
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。
図1は、本実施形態の造形システムの構成を示すブロック図である。 図2は、本実施形態の造形装置の構造を示す断面図である。 図3は、本実施形態の造形装置のシステム構成を示すシステム構成図である。 図4は、本実施形態のデータ生成サーバの構成を示すブロック図である。 図5は、本実施形態の端末装置の構成を示すブロック図である。 図6は、造形システムが行う動作(つまり、三次元構造物を付加造形する動作であり、例えば、造形受託動作)の流れを示すフローチャートである。 図7は、設定GUIの一例を示す平面図である。 図8は、パイプの形状に関する形状情報を設定するための入力画面の一例を示す平面図である。 図9は、パイプのワイヤフレームモデルを示す平面図である。 図10は、パイプが通過する複数の点が関連付けられたパイプのサーフェスモデルを示す平面図である。 図11は、ヘッドモデル、ステージモデル、ワークモデル及び未完成造形モデルを示す断面図である。 図12は、ヘッドモデル、ステージモデル、ワークモデル及び未完成造形モデルを示す断面図である。 図13は、干渉深度を示す 図14は、干渉情報の表示例を示す。 図15は、干渉情報の表示例を示す。 図16は、干渉情報の表示例を示す。 図17は、干渉情報の表示例を示す。 図18は、進捗オブジェクトの表示例を示す。 図19は、干渉時点を示す指標が付与された進捗オブジェクトの表示例を示す。 図20は、干渉深度に関する情報を含む干渉情報の表示例を示す。 図21は、干渉時点を示す指標が付与された進捗オブジェクトの表示例を示す。 図22は、干渉情報の表示例を示す。 図23は、形状情報の再設定を端末ユーザに提案するための提案オブジェクトの表示例を示す。 図24(a)及び図24(b)のそれぞれは、三次元構造物と加工空間との位置関係を示す斜視図である。
 以下、図面を参照しながら、データ生成方法、造形方法、加工方法、データ生成装置、コンピュータプログラム、記録媒体及び表示方法の実施形態について説明する。以下では、造形システムSYSを用いて、データ生成方法、造形方法、加工方法、データ生成装置、コンピュータプログラム、記録媒体及び表示方法の実施形態について説明する。尚、造形システムSYSは、加工システムと称されてもよい。
 (1)造形システムSYSの構成
 はじめに、造形システムSYSの構成について説明する。
 (1-1)造形システムSYSの全体構成
 はじめに、図1を参照しながら、造形システムSYSの全体構成の一例について説明する。図1は、造形システムSYSの全体構成を示すブロック図である。
 造形システムSYSは、造形装置1と、データ生成サーバ2とを備えている。造形装置1とデータ生成サーバ2とは、有線の通信ネットワーク及び無線の通信ネットワークの少なくとも一つを含む通信ネットワーク4を介して通信可能である。データ生成サーバ2は、有線の通信ネットワーク及び無線の通信ネットワークの少なくとも一つを含む通信ネットワーク5を介して、端末装置3と通信可能である。尚、通信ネットワーク4及び5は、別々の通信ネットワークであってもよいし、同一の通信ネットワークであってもよい。但し、造形装置1とデータ生成サーバ2とは、通信可能でなくてもよい。つまり、造形装置1は、データ生成サーバ2から切り離されたオフライン状態で、後述する動作を行ってもよい。データ生成サーバ2は、造形装置1から切り離されたオフライン状態で、後述する動作を行ってもよい。
 端末装置3は、造形システムSYSの一部を構成する装置であってもよい。つまり、造形システムSYSが端末装置3を備えていてもよい。或いは、造形システムSYSが端末装置3を備えていなくてもよい。この場合、造形システムSYSが備えるデータ生成サーバ2と通信可能な任意の装置(例えば、後述する端末ユーザが備えるコンピュータ等の情報処理装置)が、端末装置3として用いられてもよい。
 データ生成サーバ2は、造形装置1が設置されている場所に設置されていてもよいし、造形装置1が設置されている場所とは異なる場所に設置されていてもよい。データ生成サーバ2は、端末装置3が設置されている場所に設置されてもよいし、端末装置3が設置されている場所とは異なる場所に設置されていてもよい。一例として、データ生成サーバ2は、造形装置1及び端末装置3の少なくとも一方が設置されてる事業所とは異なる事業所に設置されていてもよい。他の一例として、データ生成サーバ2は、造形装置1及び端末装置3の少なくとも一方が設置されてる国とは異なる国に設置されていてもよい。
 造形装置1は、三次元構造物(つまり、三次元方向のいずれの方向においても大きさ(サイズ)を持つ三次元の物体)を造形可能な装置である。特に、本実施形態では、造形装置1は、付加加工を行うことで、三次元構造物を造形する。つまり、造形装置1は、三次元構造物を付加造形する。尚、造形装置1は、加工装置と称されてもよい。
 データ生成サーバ2は、造形装置1により付加造形される三次元構造物の三次元モデルを表す三次元モデルデータを生成可能な装置である。尚、以下の説明では、付加造形される三次元構造物の三次元モデルを、“付加造形モデル”と称し、付加造形モデルを表す三次元モデルデータを、“付加造形モデルデータ”と称する。尚、データ生成サーバ2は、データ生成装置と称されてもよい。データ生成サーバ2は、生成した付加造形モデルデータを、通信ネットワーク4を介して、造形装置1に送信(つまり、出力、以下同じ)する。造形装置1は、データ生成サーバ2から送信された付加造形モデルデータに基づいて、三次元構造物を付加造形する。
 データ生成サーバ2は更に、造形装置1が三次元構造物を造形する過程で、造形装置1が備える部材(例えば、後述する加工ヘッド121)の干渉が発生するか否かを予測可能な装置である。尚、造形装置1が備える部材(例えば、後述する加工ヘッド121)の干渉が発生するか否かを予測する動作の詳細については、後に詳述する。
 端末装置3は、造形装置1により付加造形される三次元構造物の特徴に関する特徴情報を設定する(つまり、指定する)ために、ユーザが操作可能な装置である。以降、端末装置3を操作可能なユーザを、端末ユーザと称する。端末ユーザは、典型的には、造形装置1を用いて三次元構造物を付加造形することを希望する人物であってもよい。本実施形態では、端末装置3が、特徴情報の一例として、造形装置1により付加造形される三次元構造物の形状に関する形状情報を設定するために端末ユーザが操作可能な装置である例について説明する。
 端末装置3は、端末ユーザが設定した形状情報を、通信ネットワーク5を介して、データ生成サーバ2に送信する。データ生成サーバ2は、端末装置3から送信された形状情報に基づいて、付加造形モデルデータを生成する。つまり、データ生成サーバ2は、端末ユーザが設定した形状情報によって指定される形状を有する三次元構造物の付加造形モデルを表す付加造形モデルデータを生成する。その結果、造形装置1は、端末ユーザが設定した形状情報によって指定される形状を有する三次元構造物を付加造形する。
 端末装置3は、後に詳述するように、形状情報を設定するためにユーザが操作可能な入力画面91を含む設定GUI(Graphical User Interface)9(図7等参照)を表示してもよい。この場合、データ生成サーバ2は、通信ネットワーク5を介して、設定GUI9に関するGUI情報を端末装置3に送信する。端末装置3は、GUI情報に基づいて、設定GUI9を表示する。端末ユーザは、端末装置3が表示した設定GUI9を用いて、形状情報を設定する。
 端末ユーザは、データ生成サーバ2を操作可能なユーザ(以降、“サーバユーザ”と称する)と同一であってもよいし、異なっていてもよい。端末ユーザは、造形装置1を操作可能なユーザ(以降、“造形ユーザ”と称する)と同一であってもよいし、異なっていてもよい。端末ユーザと造形ユーザとが異なる場合には、造形システムSYSは、端末ユーザが、三次元構造物の造形を造形ユーザに対して委託する委託者となり、且つ、造形ユーザが、端末ユーザから造形を委託された三次元構造物の造形を受託する受託者となる造形受託システムと等価であるとみなしてもよい。つまり、造形システムSYSが行う以下の動作は、造形受託動作(造形受託方法)と等価であるとみなしてもよい。
 (1-2)造形装置1の構成
 続いて、図2及び図3を参照しながら、造形装置1の構成について説明する。図2は、本実施形態の造形装置1の構造の一例を示す断面図である。図3は、本実施形態の造形装置1のシステム構成の一例を示すシステム構成図である。
 以下の説明では、互いに直交するX軸、Y軸及びZ軸から定義されるXYZ直交座標系に相当する造形座標系を用いて、造形装置1を構成する各種構成要素の位置関係について説明する。尚、以下の説明では、説明の便宜上、X軸方向及びY軸方向のそれぞれが水平方向(つまり、水平面内の所定方向)であり、Z軸方向が鉛直方向(つまり、水平面に直交する方向であり、実質的には上下方向或いは重力方向)であるものとする。また、X軸、Y軸及びZ軸周りの回転方向(言い換えれば、傾斜方向)を、それぞれ、θX方向、θY方向及びθZ方向と称する。ここで、Z軸方向を重力方向としてもよい。また、XY平面を水平方向としてもよい。
 造形装置1は、三次元構造物を形成するための造形動作を行うことが可能である。造形装置1は、三次元構造物を形成するための基礎となるワークW上に、三次元構造物を形成可能である。尚、ワークWは、ベース部材と称されてもよい。ワークWが後述するステージ131である場合には、造形装置1は、ステージ131上に、三次元構造物を形成可能である。ワークWがステージ131に載置されている(或いは、ステージ131に載置されている)既存構造物である場合には、造形装置1は、既存構造物上に、三次元構造物を形成可能であってもよい。この場合、造形装置1は、既存構造物と一体化された三次元構造物を形成してもよい。既存構造物と一体化された三次元構造物を形成する動作は、既存構造物に新たな構造物を付加する動作と等価とみなせる。尚、既存構造物は例えば欠損箇所がある要修理品であってもよい。造形装置1は、要修理品の欠損箇所を埋めるように、要修理品に三次元構造物を形成してもよい。或いは、造形装置1は、既存構造物と分離可能な三次元構造物を形成してもよい。尚、図2は、ワークWが、ステージ131によって保持されている既存構造物である例を示している。また、以下でも、ワークWがステージ131によって保持されている既存構造物である例を用いて説明を進める。
 本実施形態では、造形装置1が、レーザ肉盛溶接法に準拠した付加加工(付加造形)を行うことで三次元構造物を造形可能な装置である例について説明する。この場合、造形装置1は、積層造形技術を用いて物体を形成する3Dプリンタであるとも言える。尚、積層造形技術は、ラピッドプロトタイピング(Rapid Prototyping)、ラピッドマニュファクチャリング(Rapid Manufacturing)、又は、アディティブマニュファクチャリング(Additive Manufacturing)とも称されてもよい。レーザ肉盛溶接法(LMD)は、ダイレクト・メタル・デポジション、ダイレクト・エナジー・デポジション、レーザクラッディング、レーザ・エンジニアード・ネット・シェイピング、ダイレクト・ライト・ファブリケーション、レーザ・コンソリデーション、シェイプ・デポジション・マニュファクチャリング、ワイヤ-フィード・レーザ・デポジション、ガス・スルー・ワイヤ、レーザ・パウダー・フージョン、レーザ・メタル・フォーミング、セレクティブ・レーザ・パウダー・リメルティング、レーザ・ダイレクト・キャスティング、レーザ・パウダー・デポジション、レーザ・アディティブ・マニュファクチャリング、レーザ・ラピッド・フォーミングと称されてもよい。
 造形装置1は、造形材料Mを加工光ELで加工して三次元構造物を形成する。造形材料Mは、所定強度以上の加工光ELの照射によって溶融可能な材料である。このような造形材料Mとして、例えば、金属性の材料及び樹脂性の材料の少なくとも一方が使用可能である。但し、造形材料Mとして、金属性の材料及び樹脂性の材料とは異なるその他の材料が用いられてもよい。造形材料Mは、粉状の又は粒状の材料である。つまり、造形材料Mは、粉粒体である。但し、造形材料Mは、粉粒体でなくてもよい。例えば、造形材料Mとして、ワイヤ状の造形材料及びガス状の造形材料の少なくとも一方が用いられてもよい。
 三次元構造物を付加造形するために、造形装置1は、図2及び図3に示すように、材料供給源11と、加工装置12と、ステージ装置13と、光源14と、気体供給装置15と、筐体16と、制御装置17と、通信装置18とを備える。加工装置12とステージ装置13とのそれぞれの少なくとも一部は、筐体16の内部のチャンバ空間163IN内に収容されている。
 材料供給源11は、加工装置12に造形材料Mを供給する。材料供給源11は、三次元構造物を形成するために単位時間あたりに必要とする分量の造形材料Mが加工装置12に供給されるように、当該必要な分量に応じた所望量の造形材料Mを供給する。
 加工装置12は、材料供給源11から供給される造形材料Mを加工して三次元構造物を形成する。つまり、加工装置12は、三次元構造物を付加造形する。このため、加工装置12は、造形装置と称されてもよい。三次元構造物を形成するために、加工装置12は、加工ヘッド121と、ヘッド駆動系122とを備える。尚、加工ヘッド121は、造形ヘッドと称されてもよい。更に、加工ヘッド121は、加工光ELを射出可能な照射光学系1211と、造形材料Mを供給可能な材料ノズル1212と、ヘッド筐体1213とを備えている。照射光学系1211及び材料ノズル1212の少なくとも一部は、ヘッド筐体1213に収容される。加工ヘッド121と、ヘッド駆動系122とは、チャンバ空間163IN内に収容されている。但し、加工ヘッド121及びヘッド駆動系122の少なくとも一部が、筐体16の外部の空間である外部空間164OUTに配置されていてもよい。尚、外部空間164OUTは、造形ユーザが立ち入り可能な空間であってもよい。
 ヘッド駆動系122は、加工ヘッド121を移動させる(つまり、動かす)。ヘッド駆動系122は、例えば、X軸、Y軸、Z軸、θX方向、θY方向及びθZ方向の少なくとも一つに沿って加工ヘッド121を移動させる。ヘッド駆動系122が加工ヘッド121を移動させると、加工ヘッド121とステージ131(更には、ステージ131に載置されたワークW)との位置関係が変わる。更には、ヘッド駆動系122が加工ヘッド121を移動させると、加工ヘッド121とワークW上に付加造形される造形物との位置関係が変わる。
 材料ノズル1212から供給された造形材料Mには、照射光学系1211が射出した加工光ELが照射される。その結果、造形材料Mが溶融する。つまり、溶融した造形材料Mを含む溶融池が形成される。加工ヘッド121の移動に伴って溶融池に加工光ELが照射されなくなると、溶融池において溶融した造形材料Mが固化する。つまり、固化した造形材料Mの堆積物に相当する造形物が形成される。造形装置1は、このような加工光ELの照射による溶融池の形成及び溶融した造形材料Mの固化を含む一連の造形処理を、加工ヘッド121を、X軸方向及びY軸方向の少なくとも一方に沿って移動させながら繰り返す。つまり、造形装置1は、このような加工光ELの照射による溶融池の形成及び溶融した造形材料Mの固化を含む一連の造形処理を、加工ヘッド121とワークWとの位置関係(更には、加工ヘッド121とワークW上に形成される造形物との位置関係)を変更しながら繰り返す。その結果、溶融池の移動軌跡に応じたパターンで形成された造形物の集合体に相当する構造層が形成される。造形装置1は、複数の構造層が積層されるように複数の構造層を順に形成する。その結果、複数の構造層の集合体に相当する三次元構造物が付加造形される。
 ステージ装置13は、ステージ131を備えている。ステージ131は、チャンバ空間163INに収容される。ステージ131には、ワークWが載置可能である。ステージ131は、ステージ131に載置されたワークWを保持可能であってもよい。この場合、ステージ131は、ワークWを保持するために、機械的なチャック、静電チャック及び真空吸着チャック等の少なくとも一つを備えていてもよい。或いは、ステージ131は、ステージ131に載置されたワークWを保持可能でなくてもよい。この場合、ワークWは、クランプレスでステージ131に載置されていてもよい。
 ステージ駆動系132は、ステージ131を移動させる。ステージ駆動系132は、例えば、X軸、Y軸、Z軸、θX方向、θY方向及びθZ方向の少なくとも一つに沿ってステージ131を移動させる。ステージ駆動系132がステージ131を移動させると、加工ヘッド121とステージ131(更には、ステージ131に載置されたワークW)との位置関係が変わる。更には、ステージ駆動系132がステージ131を移動させると、加工ヘッド121とワークW上に付加造形される造形物との位置関係が変わる。
 光源14は、例えば、赤外光、可視光及び紫外光のうちの少なくとも一つを、加工光ELとして射出する。但し、加工光ELとして、その他の種類の光が用いられてもよい。加工光ELは、複数のパルス光(つまり、複数のパルスビーム)を含んでいてもよい。加工光ELは、連続光(CW:Continuous Wave)を含んでいてもよい。加工光ELは、レーザ光であってもよい。この場合、光源14は、レーザ光源(例えば、レーザダイオード(LD:Laser Diode)等の半導体レーザを含んでいてもよい。レーザ光源は、ファイバ・レーザ、COレーザ、YAGレーザ及びエキシマレーザ等のうちの少なくとも一つを含んでいてもよい。但し、加工光ELは、レーザ光でなくてもよい。光源14は、任意の光源(例えば、LED(Light Emitting Diode)及び放電ランプ等の少なくとも一つ)を含んでいてもよい。照射光学系1211は、光源14と、光ファイバ及びライトパイプ等の少なくとも一つを含む光伝送部材141を介して光学的に接続されている。照射光学系1211は、光伝送部材141を介して光源14から伝搬してくる加工光ELを射出する。
 気体供給装置15は、チャンバ空間163INをパージするためのパージガスの供給源である。パージガスは、不活性ガスを含む。不活性ガスの一例として、窒素ガス及びアルゴンガスの少なくとも一方があげられる。気体供給装置15は、筐体16の隔壁部材161に形成された供給口162及び気体供給装置15と供給口162とを接続する供給管151を介して、チャンバ空間163INに接続されている。気体供給装置15は、供給管151及び供給口162を介して、チャンバ空間163INにパージガスを供給する。その結果、チャンバ空間163INは、パージガスによってパージされた空間となる。チャンバ空間163INに供給されたパージガスは、隔壁部材161に形成された不図示の排出口から排出されてもよい。尚、気体供給装置15は、不活性ガスが格納されたボンベであってもよい。不活性ガスが窒素ガスである場合には、気体供給装置15は、大気を原料として窒素ガスを発生する窒素ガス発生装置であってもよい。
 尚、上述した説明では、気体供給装置15から供給されるパージガスは、筐体16の内部のチャンバ空間163INを全体的にパージするために、チャンバ空間163INに開口された供給口162に供給されている。しかしながら、パージガスは、チャンバ空間163INを全体的にパージするために供給口162に供給されることに加えて又は代えて、照射光学系1211による加工光ELの照射位置の近傍の雰囲気を局所的にパージガスで満たすように、加工ヘッド121に設けられた供給口(不図示)から供給されていてもよい。この場合、後述するように、造形材料Mをパージガスで圧送するときには、パージガスを噴出する材料ノズル1212によって加工光ELの照射位置の近傍の雰囲気をパージガスで局所的に満たしてもよいし、パージガスを供給する供給口をノズル部材1212に設けて加工光ELの照射位置の近傍の雰囲気を局所的にパージガスで満たしてもよい
 気体供給装置15は、チャンバ空間163INに加えて材料供給源11からの造形材料Mが供給される混合装置112にパージガスを供給してもよい。具体的には、気体供給装置15は、気体供給装置15と混合装置112とを接続する供給管152を介して混合装置112と接続されていてもよい。その結果、気体供給装置15は、供給管152を介して、混合装置112にパージガスを供給する。この場合、材料供給源11からの造形材料Mは、供給管152を介して気体供給装置15から供給されたパージガスによって、供給管111内を通って材料ノズル1212に向けて供給(具体的には、圧送)されてもよい。この場合、材料ノズル1212は、材料供給口から、造形材料Mを圧送するためのパージガスと共に造形材料Mを供給することになる。
 筐体16は、筐体16の内部空間であるチャンバ空間163INに少なくとも加工装置12及びステージ装置13のそれぞれの少なくとも一部を収容する収容装置である。筐体16は、チャンバ空間163INを規定する隔壁部材161を含む。隔壁部材161は、チャンバ空間163INと、筐体16の外部空間164OUTとを隔てる部材である。この場合、隔壁部材161によって囲まれた空間が、チャンバ空間163INとなる。尚、隔壁部材161には、開閉可能な扉が設けられていてもよい。この扉は、ワークWをステージ131に載置する際に開かれてもよい。扉は、ステージ131からワークW及び/又は三次元構造物を取り出す際に開かれてもよい。扉は、造形動作が行われている期間中には閉じられていてもよい。なお、筐体16の外部空間164OUTからチャンバ空間163INを視認するための観察窓(不図示)が、隔壁部材161に形成されていてもよい。
 制御装置17は、造形装置1の動作を制御する。制御装置17は、例えば、演算装置と、記憶装置とを備えていてもよい。演算装置は、例えば、CPU(Central Processing Unit)及びGPU(Graphics Processing Unit)の少なくとも一方を含んでいてもよい。記憶装置は、例えば、メモリを含んでいてもよい。制御装置17は、演算装置がコンピュータプログラムを実行することで、造形装置1の動作を制御する装置として機能する。このコンピュータプログラムは、制御装置17が行うべき後述する動作を演算装置に行わせる(つまり、実行させる)ためのコンピュータプログラムである。つまり、このコンピュータプログラムは、造形装置1に後述する動作を行わせるように制御装置17を機能させるためのコンピュータプログラムである。演算装置が実行するコンピュータプログラムは、制御装置17が備える記憶装置(つまり、記録媒体)に記録されていてもよいし、制御装置17に内蔵された又は制御装置17に外付け可能な任意の記憶媒体(例えば、ハードディスクや半導体メモリ)に記録されていてもよい。或いは、演算装置21は、実行するべきコンピュータプログラムを、通信装置18を介して、制御装置17の外部の装置からダウンロードしてもよい。
 制御装置17は、データ生成サーバ2から送信された付加造形モデルデータに基づいて、三次元構造物(つまり、端末ユーザが設定した形状を有する三次元構造物)を付加造形するように造形装置1の動作を制御してもよい。例えば、制御装置17は、付加造形モデルデータに基づいて、造形装置1の動作内容を規定する造形データを生成してもよい。具体的には、制御装置17は、付加造形モデルデータに基づいて、付加造形モデルデータが表す三次元構造物(つまり、端末ユーザが設定した形状情報によって規定される形状を有する三次元構造物)を付加造形するための造形装置1の動作内容を規定する造形データを生成してもよい。その後、制御装置17は、造形データに基づいて、三次元構造物(つまり、端末ユーザが設定した形状を有する三次元構造物)を付加造形するように造形装置1の動作を制御してもよい。
 制御装置17は、造形装置1の内部に設けられていなくてもよい。例えば、制御装置17は、造形装置1外にサーバ等として設けられていてもよい。例えば、制御装置17は、データ生成サーバ2と一体化されていてもよい。この場合、制御装置17と造形装置1とは、有線及び/又は無線のネットワーク(例えば、通信ネットワーク4、或いは、データバス及び/又は通信回線)で接続されていてもよい。有線のネットワークとして、例えばIEEE1394、RS-232x、RS-422、RS-423、RS-485及びUSBの少なくとも一つに代表されるシリアルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、パラレルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、10BASE-T、100BASE-TX及び1000BASE-Tの少なくとも一つに代表されるイーサネット(登録商標)に準拠したインタフェースを用いるネットワークが用いられてもよい。無線のネットワークとして、電波を用いたネットワークが用いられてもよい。電波を用いたネットワークの一例として、IEEE802.1xに準拠したネットワーク(例えば、無線LAN及びBluetooth(登録商標)の少なくとも一方)があげられる。無線のネットワークとして、赤外線を用いたネットワークが用いられてもよい。無線のネットワークとして、光通信を用いたネットワークが用いられてもよい。この場合、制御装置17と造形装置1とは通信ネットワーク4等を介して各種の情報の送受信が可能となるように構成されていてもよい。また、制御装置17は、通信ネットワーク4等を介して造形装置1にコマンドや制御パラメータ等の情報を送信可能であってもよい。造形装置1が備える通信装置18は、制御装置17からのコマンドや制御パラメータ等の情報を、通信ネットワーク4等を介して受信する受信装置として機能してもよい。造形装置1が備える通信装置18は、制御装置17に対してコマンドや制御パラメータ等の情報を、通信ネットワーク4等を介して送信する送信装置として機能してもよい。或いは、制御装置17が行う処理のうちの一部を行う第1制御装置が造形装置1の内部に設けられている一方で、制御装置17が行う処理のうちの他の一部を行う第2制御装置が造形装置1の外部に設けられていてもよい。例えば、制御装置17が行う処理のうちの一部が、データ生成サーバ2によって行われてもよい。
 制御装置17内には、演算装置がコンピュータプログラムを実行することで、機械学習によって構築可能な演算モデルが実装されてもよい。機械学習によって構築可能な演算モデルの一例として、例えば、ニューラルネットワークを含む演算モデル(いわゆる、人工知能(AI:Artificial Intelligence))があげられる。この場合、演算モデルの学習は、ニューラルネットワークのパラメータ(例えば、重み及びバイアスの少なくとも一つ)の学習を含んでいてもよい。制御装置17は、演算モデルを用いて、造形システムSYSの動作を制御してもよい。つまり、造形システムSYSの動作を制御する動作は、演算モデルを用いて造形システムSYSの動作を制御する動作を含んでいてもよい。尚、制御装置17には、教師データを用いたオフラインでの機械学習により構築済みの演算モデルが実装されてもよい。また、制御装置17に実装された演算モデルは、制御装置17上においてオンラインでの機械学習によって更新されてもよい。或いは、制御装置17は、制御装置17に実装されている演算モデルに加えて又は代えて、制御装置17の外部の装置(つまり、造形システムSYSの外部に設けられる装置に実装された演算モデルを用いて、造形システムSYSの動作を制御してもよい。
 尚、制御装置17が実行するコンピュータプログラムを記録する記録媒体としては、CD-ROM、CD-R、CD-RWやフレキシブルディスク、MO、DVD-ROM、DVD-RAM、DVD-R、DVD+R、DVD-RW、DVD+RW及びBlu-ray(登録商標)等の光ディスク、磁気テープ等の磁気媒体、光磁気ディスク、USBメモリ等の半導体メモリ、及び、その他プログラムを格納可能な任意の媒体の少なくとも一つが用いられてもよい。記録媒体には、コンピュータプログラムを記録可能な機器(例えば、コンピュータプログラムがソフトウェア及びファームウェア等の少なくとも一方の形態で実行可能な状態に実装された汎用機器又は専用機器)が含まれていてもよい。更に、コンピュータプログラムに含まれる各処理や機能は、制御装置17(つまり、コンピュータ)がコンピュータプログラムを実行することで制御装置17内に実現される論理的な処理ブロックによって実現されてもよいし、制御装置17が備える所定のゲートアレイ(FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit))等のハードウェアによって実現されてもよいし、論理的な処理ブロックとハードウェアの一部の要素を実現する部分的ハードウェアモジュールとが混在する形式で実現してもよい。
 通信装置18は、通信ネットワーク4を介して、データ生成サーバ2と通信可能である。本実施形態では、通信装置18は、データ生成サーバ2が生成した付加造形モデルデータをデータ生成サーバ2から受信可能である。
 (1-3)データ生成サーバ2の構成
 続いて、図4を参照しながら、データ生成サーバ2の構成について説明する。図4は、データ生成サーバ2の構成を示すブロック図である。
 図4に示すように、データ生成サーバ2は、演算装置21と、記憶装置22と、通信装置23とを備えている。更に、データ生成サーバ2は、入力装置24と、出力装置25とを備えていてもよい。但し、データ生成サーバ2は、入力装置24及び出力装置25の少なくとも一つを備えていなくてもよい。演算装置21と、記憶装置22と、通信装置23と、入力装置24と、出力装置25とは、データバス26を介して接続されていてもよい。
 尚、データ生成サーバ2と端末装置3とは、一体的な装置(或いは、一体的なシステム)であってもよい。造形装置1、データ生成サーバ2及び端末装置3の少なくとも二つは、一体的な装置(或いは、一体的なシステム)であってもよい。ここで、「装置Xと装置Yとが一体的な装置となる」状態は、「装置Xと装置Yとが同一の筐体に収容された状態で、一体的な装置を構成する」状態を含んでいてもよい。「装置Xと装置Yとが一体的な装置となる」状態は、「装置Xと装置Yとがそれぞれ別々の筐体に収容された状態で、一体的な装置を構成する」状態を含んでいてもよい。
 演算装置21は、例えば、CPU及びGPUの少なくとも一方を含む。演算装置21は、コンピュータプログラムを読み込む。例えば、演算装置21は、記憶装置22が記憶しているコンピュータプログラムを読み込んでもよい。例えば、演算装置21は、コンピュータで読み取り可能であって且つ一時的でない記録媒体が記憶しているコンピュータプログラムを、図示しない記録媒体読み取り装置を用いて読み込んでもよい。演算装置21は、通信装置23を介して、データ生成サーバ2の外部に配置される不図示の装置からコンピュータプログラムを取得してもよい(つまり、ダウンロードしてもよい又は読み込んでもよい)。つまり、演算装置21は、通信装置23を介して、データ生成サーバ2の外部に配置される不図示の装置の記憶装置に記憶されているコンピュータプログラムを取得してもよい(つまり、ダウンロードしてもよい又は読み込んでもよい)。演算装置21は、読み込んだコンピュータプログラムを実行する。その結果、演算装置21内には、データ生成サーバ2が行うべき動作(例えば、付加造形モデルデータを生成し且つ加工ヘッド121の干渉が発生するか否かを予測する動作)を実行するための論理的な機能ブロックが実現される。つまり、演算装置21は、データ生成サーバ2が行うべき動作を実行するための論理的な機能ブロックを実現するためのコントローラとして機能可能である。この場合、コンピュータプログラムを実行した任意の装置(典型的には、コンピュータ)は、データ生成サーバ2として機能可能である。
 図4には、付加造形モデルデータを生成し且つ加工ヘッド121の干渉が発生するか否かを予測するために演算装置21内に実現される論理的な機能ブロックの一例が示されている。図4に示すように、演算装置21内には、表示制御部211と、情報取得部212と、データ生成部213と、干渉予測部214と、修正提案部215とが実現される。尚、表示制御部211、情報取得部212、データ生成部213、干渉予測部214及び修正提案部215のそれぞれの動作については、後に図6等を参照しながら詳述するが、ここにその概要を簡単に説明する。表示制御部211は、設定GUI9を表示するための表示データであるGUI情報を生成する。情報取得部212は、通信装置23を介して、設定GUI9を用いて端末ユーザが設定した形状情報を端末装置3から取得する。データ生成部213は、情報取得部212が取得した形状情報に基づいて、端末ユーザが設定した形状情報によって指定される形状を有する三次元構造物の三次元モデル(つまり、付加造形モデル)を表す付加造形モデルデータを生成する。つまり、データ生成部213は、端末装置3が備える入力装置34の入力(つまり、形状情報を設定するための端末ユーザによる入力)に基づいて、付加造形モデルデータを生成する。干渉予測部214は、造形装置1が三次元構造物を付加造形する場合に加工ヘッド121の干渉が発生するか否かを予測する。干渉予測部214は、造形装置1が三次元構造物を付加造形する場合に発生すると予測される加工ヘッド121の干渉に関する干渉情報を生成する。つまり、干渉予測部214は、加工ヘッド121と被干渉物との干渉に関する干渉情報を生成する。修正提案部215は、設定GUI9を用いて端末ユーザが設定した形状情報の修正を、端末ユーザに提案する。例えば、修正提案部215は、加工ヘッド121の干渉が発生すると干渉予測部214が予測した場合に、加工ヘッド121の干渉を発生させない形状情報を設定するための形状情報の修正を提案してもよい。
 演算装置21内には、演算装置21がコンピュータプログラムを実行することで、機械学習によって構築可能な演算モデルが実装されてもよい。機械学習によって構築可能な演算モデルの一例として、例えば、ニューラルネットワークを含む演算モデル(いわゆる、人工知能(AI:Artificial Intelligence))があげられる。この場合、演算モデルの学習は、ニューラルネットワークのパラメータ(例えば、重み及びバイアスの少なくとも一つ)の学習を含んでいてもよい。演算装置21は、演算モデルを用いて、付加造形モデルデータを生成し且つ加工ヘッド121の干渉が発生するか否かを予測してもよい。つまり、付加造形モデルデータを生成し且つ加工ヘッド121の干渉が発生するか否かを予測する動作は、演算モデルを用いて付加造形モデルデータを生成し且つ加工ヘッド121の干渉が発生するか否かを予測する動作を含んでいてもよい。つまり、表示制御部211、情報取得部212、データ生成部213、干渉予測部214及び修正提案部215の少なくとも一つは、演算モデルを用いて実現されてもよい。言い換えれば、表示制御部211、情報取得部212、データ生成部213、干渉予測部214及び修正提案部215の少なくとも一つが行う動作が、演算モデルによって行われてもよい。尚、演算装置21には、教師データを用いたオフラインでの機械学習により構築済みの演算モデルが実装されてもよい。また、演算装置21に実装された演算モデルは、演算装置21上においてオンラインでの機械学習によって更新されてもよい。或いは、演算装置21は、演算装置21に実装されている演算モデルに加えて又は代えて、演算装置21の外部の装置(つまり、データ生成サーバ2の外部に設けられる装置に実装された演算モデルを用いて、付加造形モデルデータを生成し且つ加工ヘッド121の干渉が発生するか否かを予測してもよい。
 尚、データ生成サーバ2の演算装置21内の機能ブロック(つまり、表示制御部211から修正提案部215)の少なくとも一部は、演算装置21が(つまり、データ生成サーバ2が)備えていてなくてもよい。例えば、端末装置3(例えば、後述する演算装置31)が、演算装置21内の機能ブロック(つまり、表示制御部211から修正提案部215)の少なくとも一部を備えていてもよい。例えば、造形装置1(例えば、制御装置17)が、演算装置21内の機能ブロック(つまり、表示制御部211から修正提案部215)の少なくとも一部を備えていてもよい。は、端末装置3や造形装置1に設けられていてもよい。
 記憶装置22は、所望のデータを記憶可能である。例えば、記憶装置22は、演算装置21が実行するコンピュータプログラムを一時的に記憶していてもよい。記憶装置22は、演算装置21がコンピュータプログラムを実行している際に演算装置21が一時的に使用するデータを一時的に記憶してもよい。記憶装置22は、データ生成サーバ2が長期的に保存するデータを記憶してもよい。尚、記憶装置22は、RAM(Random Access Memory)、ROM(Read Only Memory)、ハードディスク装置、光磁気ディスク装置、SSD(Solid State Drive)及びディスクアレイ装置のうちの少なくとも一つを含んでいてもよい。つまり、記憶装置22は、一時的でない記録媒体を含んでいてもよい。
 通信装置23は、通信ネットワーク4を介して、造形装置1と通信可能である。本実施形態では、通信装置23は、データ生成部213が生成した付加造形モデルデータを造形装置1に送信可能である。更に、通信装置23は、通信ネットワーク5を介して、端末装置3と通信可能である。本実施形態では、通信装置23は、表示制御部211が生成した設定GUI9に関するGUI情報を端末装置3に送信し、且つ、設定GUI9を用いて端末ユーザが設定した形状情報を端末装置3から受信可能である。
 入力装置24は、データ生成サーバ2の外部からのデータ生成サーバ2に対する情報の入力を受け付ける装置である。例えば、入力装置24は、サーバユーザが操作可能な操作装置(例えば、キーボード、マウス及びタッチパネルのうちの少なくとも一つ)を含んでいてもよい。例えば、入力装置24は、データ生成サーバ2に対して外付け可能な記録媒体にデータとして記録されている情報を読み取り可能な読取装置を含んでいてもよい。
 出力装置25は、データ生成サーバ2の外部に対して情報を出力する装置である。例えば、出力装置25は、情報を画像として出力してもよい。つまり、出力装置25は、出力したい情報を示す画像を表示可能な表示装置(いわゆる、ディスプレイ)を含んでいてもよい。例えば、出力装置25は、情報を音声として出力してもよい。つまり、出力装置25は、音声を出力可能な音声装置(いわゆる、スピーカ)を含んでいてもよい。例えば、出力装置25は、紙面に情報を出力してもよい。つまり、出力装置25は、紙面に所望の情報を印刷可能な印刷装置(いわゆる、プリンタ)を含んでいてもよい。
 (1-4)端末装置3の構成
 続いて、図5を参照しながら、端末装置3の構成について説明する。図5は、端末装置3の構成を示すブロック図である。
 図5に示すように、端末装置3は、演算装置31と、記憶装置32と、通信装置33と、入力装置34と、表示装置35とを備えている。演算装置31と、記憶装置32と、通信装置33と、入力装置34と、表示装置35とは、データバス36を介して接続されていてもよい。尚、端末装置3は、記憶装置32を備えていなくてもよい。この場合、データ生成サーバ2が備える記憶装置22が、端末装置3の記憶装置32として用いられてもよい。
 演算装置31は、例えば、CPU及びGPUの少なくとも一方を含む。演算装置31は、コンピュータプログラムを読み込む。例えば、演算装置31は、記憶装置32が記憶しているコンピュータプログラムを読み込んでもよい。例えば、演算装置31は、コンピュータで読み取り可能であって且つ一時的でない記録媒体が記憶しているコンピュータプログラムを、図示しない記録媒体読み取り装置を用いて読み込んでもよい。演算装置31は、通信装置33を介して、端末装置3の外部に配置される不図示の装置からコンピュータプログラムを取得してもよい(つまり、ダウンロードしてもよい又は読み込んでもよい)。演算装置31は、読み込んだコンピュータプログラムを実行する。その結果、演算装置31内には、端末装置3が行うべき動作を実行するための論理的な機能ブロックが実現される。つまり、演算装置31は、端末装置3が行うべき動作を実行するための論理的な機能ブロックを実現するためのコントローラとして機能可能である。
 図5には、演算装置31内に実現される論理的な機能ブロックの一例が示されている。図5に示すように、演算装置31内には、表示制御部311と、情報取得部312とが実現される。表示制御部311は、データ生成サーバ2から送信されるGUI情報に基づいて、設定GUI9を表示するように表示装置35を制御する。情報取得部312は、設定GUI9を用いて端末ユーザが設定した形状情報を取得する。
 演算装置31内には、演算装置31がコンピュータプログラムを実行することで、機械学習によって構築可能な演算モデルが実装されてもよい。機械学習によって構築可能な演算モデルの一例として、例えば、ニューラルネットワークを含む演算モデル(いわゆる、人工知能(AI:Artificial Intelligence))があげられる。この場合、演算モデルの学習は、ニューラルネットワークのパラメータ(例えば、重み及びバイアスの少なくとも一つ)の学習を含んでいてもよい。演算装置31は、演算モデルを用いて、端末装置3が行うべき動作を行ってもよい。尚、演算装置31には、教師データを用いたオフラインでの機械学習により構築済みの演算モデルが実装されてもよい。また、演算装置31に実装された演算モデルは、演算装置31上においてオンラインでの機械学習によって更新されてもよい。或いは、演算装置31は、演算装置31に実装されている演算モデルに加えて又は代えて、演算装置31の外部の装置(つまり、データ生成サーバ2の外部に設けられる装置に実装された演算モデルを用いて、端末装置3が行うべき動作を行ってもよい。
 尚、端末装置3の演算装置31内の機能ブロック(つまり、表示制御部311及び情報取得部312)の少なくとも一部は、演算装置31が(つまり、端末装置3が)備えていてなくてもよい。例えば、データ生成サーバ2(例えば、演算装置21)が、演算装置31内の機能ブロック(つまり、表示制御部311及び情報取得部312)の少なくとも一部を備えていてもよい。例えば、造形装置1(例えば、制御装置17)が、演算装置31内の機能ブロック(つまり、表示制御部311及び情報取得部312)の少なくとも一部を備えていてもよい。は、端末装置3や造形装置1に設けられていてもよい。
 記憶装置32は、所望のデータを記憶可能である。例えば、記憶装置32は、演算装置31が実行するコンピュータプログラムを一時的に記憶していてもよい。記憶装置32は、演算装置31がコンピュータプログラムを実行している際に演算装置31が一時的に使用するデータを一時的に記憶してもよい。記憶装置32は、端末装置3が長期的に保存するデータを記憶してもよい。尚、記憶装置32は、RAM、ROM、ハードディスク装置、光磁気ディスク装置、SSD及びディスクアレイ装置のうちの少なくとも一つを含んでいてもよい。つまり、記憶装置32は、一時的でない記録媒体を含んでいてもよい。
 通信装置33は、通信ネットワーク5を介して、データ生成サーバ2と通信可能である。本実施形態では、通信装置33は、設定GUI9に関するGUI情報をデータ生成サーバ2から受信(つまり、取得)し、且つ、設定GUI9を用いて端末ユーザが設定した形状情報(つまり、情報取得部312が取得した形状情報)をデータ生成サーバ2に送信可能である。
 入力装置34は、端末装置3の外部からの端末装置3に対する情報の入力を受け付ける装置である。例えば、入力装置34は、端末ユーザが操作可能な操作装置(例えば、キーボード、マウス及びタッチパネルのうちの少なくとも一つ)を含んでいてもよい。例えば、入力装置34は、端末装置3に対して外付け可能な記録媒体にデータとして記録されている情報を読み取り可能な読取装置を含んでいてもよい。
 表示装置35は、情報を画像として出力可能な装置である。つまり、表示装置35は、出力したい情報を示す画像を表示可能な装置である。本実施形態では、表示装置35は、設定GUI9を表示する。端末ユーザは、表示装置35が表示した設定GUI9を用いて、形状情報を設定する。つまり、端末ユーザは、表示装置35が表示した設定GUI9を介して、入力装置34を用いて形状情報を設定するための操作を行うことで、形状情報を設定する。
 尚、表示装置35が入力装置として機能可能である(例えば、表示装置35がタッチパネルを備えている)場合には、表示装置35は、入力装置と称されてもよい。この場合、端末装置3は、入力装置34を備えていなくてもよい。端末ユーザは、表示装置35を入力装置34として操作してもよい。端末ユーザは、表示装置35を操作しつつ、入力装置34を操作してもよい。つまり、端末ユーザは、表示装置35を用いた情報の入力機能と、入力装置34を用いた情報の入力機能とを併用してもよい。
 (2)造形システムSYSが行う動作
 続いて、図6を参照しながら、造形システムSYSが行う動作(つまり、三次元構造物を付加造形する動作であり、例えば、造形受託動作)について説明する。図6は、造形システムSYSが行う動作の流れを示すフローチャートである。尚、上述したように演算装置21がコンピュータプログラムを実行することでデータ生成サーバ2が行うべき動作を行う場合には、図6に示す動作は、コンピュータプログラムによって実現されてもよい。
 図6に示すように、造形システムSYSが動作(例えば、造形受託動作)を開始すると、データ生成サーバ2は、端末装置3を認証するための認証動作を行う(ステップS11)。データ生成サーバ2は、所望の認証方法を用いて認証動作を行ってもよい。例えば、データ生成サーバ2は、ID情報とパスワード情報とに基づく認証方法を用いて認証動作を行ってもよい。この場合、例えば、端末ユーザは、端末装置3の入力装置34を用いて、端末ユーザを識別するためのID情報と、端末ユーザに固有のパスワードとを入力してもよい。端末装置3の通信装置33は、端末ユーザが入力したID情報及びパスワードを、通信ネットワーク5を介してデータ生成サーバ2に送信してもよい。データ生成サーバ2は、端末装置3から送信されたID情報及びパスワードを用いて、端末装置3を認証するための認証動作を行ってもよい。或いは、例えば、データ生成サーバ2は、ID情報とパスワード情報とに基づく認証方法とは異なるその他の認証方法を用いて認証動作を行ってもよい。その他の認証方法の一例として、トークンを用いる認証方法及び端末ユーザの生体情報を用いる認証方法の少なくとも一つがあげられる。
 認証動作が完了した後(つまり、端末装置3がデータ生成サーバ2にアクセスする権限を有していることをデータ生成サーバ2が確認した後)、データ生成サーバ2の表示制御部211は、設定GUI9を端末装置3の表示装置35に表示させるためのGUI情報(表示情報)を生成する(ステップS12)。つまり、表示制御部211は、端末ユーザに対して、設定GUI9を提供する。その後、表示制御部211は、生成したGUI情報を、通信装置23を用いて端末装置3に送信する。端末装置3の表示装置35は、データ生成サーバ2から送信されたGUI情報に基づいて、設定GUI9を表示する(ステップS12)。
 表示制御部211は、設定GUI9を構成する表示画面に関する情報(例えば、画素情報)を含むGUI情報を生成しいてもよい。この場合、端末装置3の演算装置31は、GUI情報が示す表示画面によって構成される設定GUI9を表示するように、表示装置35を制御してもよい。或いは、表示制御部211は、設定GUI9を表示するように端末装置3の表示装置35を制御するための情報を含むGUI情報を生成してもよい。この場合、端末装置3の表示装置35は、演算装置31による制御とは無関係に、データ生成サーバ2の制御下で、GUI情報が示す設定GUI9を表示してもよい。表示制御部211は、設定GUI9を表示するように表示装置35を制御してもよい。
 設定GUI9の一例が図7に示されている。図7に示すように、設定GUI9は、入力画面91と、出力画面92とを含んでいてもよい。つまり、設定GUI9は、入力画面91と出力画面92とを含む表示画面を構成していてもよい。但し、設定GUI9は、入力画面91を含む一方で、出力画面92を含んでいなくてもよい。つまり、入力画面91が表示装置35に表示される一方で、出力画面92が表示装置35に表示されなくてもよい。或いは、設定GUI9は、出力画面92を含む一方で、入力画面91を含んでいなくてもよい。つまり、出力画面92が表示装置35に表示される一方で、入力画面91が表示装置35に表示されなくてもよい。
 入力画面91は、三次元構造物の形状に関する形状情報を設定する(指定する、以下同じ)ために端末ユーザが操作可能なGUIを含む画面(言い換えれば、入力部)である。端末ユーザは、入力装置34を用いて、入力画面91を操作してもよい。つまり、端末ユーザは、入力装置34を用いて、入力画面91上で形状情報を設定するための操作を行ってもよい。その結果、端末装置3の情報取得部312は、設定GUI9を用いて端末ユーザが設定した形状情報を取得する(図6のステップS13)。その後、情報取得部312は、端末装置3の通信装置33を用いて、端末ユーザが設定した形状情報を、通信ネットワーク5を介してデータ生成サーバ2に送信する。その結果、データ生成サーバ2の通信装置23は、端末装置3から送信される形状情報を受信(つまり、取得)する(図6のステップS13)。
 形状情報を設定するために、端末ユーザは、入力画面91を用いて、三次元構造物の形状を指定するパラメータの値を設定(指定、以下同じ)してもよい。この場合、入力画面91は、パラメータの値を設定するために端末ユーザが操作可能なパラメータ設定GUI911を含んでいてもよい。情報取得部312は、パラメータ設定GUI911を用いて設定されたパラメータに関するパラメータ情報を、形状情報の少なくとも一部として取得してもよい。パラメータは、三次元構造物の形状を定量的に指定する数値パラメータを含んでいてもよい。この場合、パラメータ設定GUI911は、数値パラメータの設定項目名が表示されたラベルと、数値パラメータの設定値を入力可能なテキストボックス(或いは、複数の候補値の中から数値パラメータの設定値を指定可能なコンボボックス、ドロップダウンリスト又はラジオボタン等)とを含んでいてもよい。或いは、パラメータは、三次元構造物の形状を設定するフラグパラメータを含んでいてもよい。フラグパラメータは、三次元構造物の形状を、フラグパラメータの値に対応する一の形状に設定するために用いられる。例えば、フラグパラメータのフラグ値が1というフラグ値に設定された場合には、三次元構造物の形状は、1というフラグ値に対応する第1の形状に設定され、フラグパラメータのフラグ値が2というフラグ値に設定された場合には、三次元構造物の形状は、2というフラグ値に対応する第2の形状に設定されてもよい。この場合、パラメータ設定GUI911は、フラグパラメータの設定項目名が表示されたラベルと、フラグパラメータの設定値(フラグ値)を指定可能なテキストボックス(或いは、複数の候補値の中からフラグパラメータの設定値を指定可能なコンボボックス、ドロップダウンリスト又はラジオボタン等)とを含んでいてもよい。
 例えば、三次元構造物の少なくとも一部分の位置が変わると、三次元構造物の形状が変わる。このため、パラメータは、三次元構造物の少なくとも一部分の位置を指定するパラメータを含んでいてもよい。例えば、三次元構造物の少なくとも一部分のサイズが変わると、三次元構造物の形状が変わる。このため、パラメータは、三次元構造物の少なくとも一部分のサイズを指定するパラメータを含んでいてもよい。例えば、三次元構造物の少なくとも一部分の形状が変わると、三次元構造物の形状が変わる。このため、パラメータは、三次元構造物の少なくとも一部分の形状を指定するパラメータを含んでいてもよい。例えば、三次元構造物の少なくとも一部分の方向(例えば、三次元構造物の少なくとも一部分が向いている又は延びている方向)が変わると、三次元構造物の形状が変わる。このため、パラメータは、三次元構造物の少なくとも一部分の方向を指定するパラメータを含んでいてもよい。
 パラメータ設定GUI911には、端末ユーザが設定したパラメータの設定値(つまり、設定済みのパラメータの値)が表示されていてもよい。つまり、パラメータ設定GUI911を含む入力画面91は、設定済みのパラメータの値を表示可能であってもよい。入力画面91には、設定済みのパラメータの値が提供されてもよい。パラメータ設定GUI911に表示されるパラメータの設定値は、端末ユーザがパラメータを設定し直すたびに更新されてもよい。パラメータ設定GUI911に表示されるパラメータの設定値は、周期的に又はランダムな周期で更新されてもよい。パラメータ設定GUI911に表示されるパラメータの設定値は、端末ユーザの指示に基づいて(例えば、設定GUI9に含まれる、パラメータの設定値を更新するためのボタンを端末ユーザが押下することをトリガに)更新されてもよい。その結果、端末ユーザは、端末ユーザ自身が設定しているパラメータの最新の設定値を認識することができる。尚、パラメータ設定GUI911に表示されるパラメータの設定値の更新は、データ生成サーバ2の表示制御部211の制御下で行われてもよい。この場合、表示制御部211は、端末装置3から取得した形状情報に基づいて、パラメータ設定GUI911に表示されるパラメータの設定値を更新するようにGUI情報を生成してもよい。或いは、パラメータ設定GUI911に表示されるパラメータの設定値の更新は、端末装置3の表示制御部311の制御下で行われてもよい。この場合、表示制御部311は、端末装置3の情報取得部312が取得した形状情報に基づいて、パラメータ設定GUI911に表示されるパラメータの設定値を更新してもよい。
 形状情報を設定するために、端末ユーザは、入力画面91を用いて、パラメータの値を設定することに加えて又は代えて、三次元構造物の形状を指定するアイコンを選択してもよい。アイコンは、三次元構造物の形状として設定可能な特定の形状に関連付けられている。この場合、入力画面91は、三次元構造物の形状を特定の形状に設定するために端末ユーザが選択可能なアイコンを複数(或いは、少なくとも一つ)含むアイコン選択GUI912を含んでいてもよい。アイコン選択GUI912に含まれる複数のアイコンのそれぞれは、端末ユーザが選択可能である。端末ユーザは、アイコン選択GUI912に含まれる複数のアイコンの中から、端末ユーザが付加造形することを希望する三次元構造物の形状に関連付けられている一のアイコンを選択することで、形状情報を設定してもよい。情報取得部312は、アイコン選択GUI912を用いて選択されたアイコンに関するアイコン情報(つまり、選択されたアイコンに関連付けられている形状に関する情報)を、形状情報の少なくとも一部として取得してもよい。
 アイコン設定GUI912には、端末ユーザが選択したアイコンが、端末ユーザが選択していないアイコンとは異なる表示態様で表示されていてもよい。図7は、端末ユーザが選択したアイコンがハッチングされた領域に重ねて表示される一方で、端末ユーザが選択していないアイコンがハッチングされた領域に重ねて表示されていない例を示している。但し、端末ユーザが選択したアイコンの表示態様と端末ユーザが選択していないアイコンの表示態様とが異なる状態は、図7に示す状態に限定されることはない。例えば、端末ユーザが選択したアイコンがグレーアウト表示される一方で、端末ユーザが選択していないアイコンがグレーアウト表示されなくてもよい。その結果、端末ユーザは、端末ユーザ自身が選択しているアイコン(つまり、端末ユーザ自身が設定している三次元構造物の形状)を認識することができる。
 尚、端末ユーザは、複数のアイコンから一のアイコンを選択することに加えて又は代えて、設定GUI9上で(例えば、入力画面91上で)三次元構造物の形状を描画することで、形状情報を設定してもよい。この場合、設定GUI9は、端末ユーザが三次元構造物の形状を描画可能な描画GUIを含んでいてもよい。
 入力画面91は、三次元構造物の形状とは異なる三次元構造物の任意の特徴に関する特徴情報を設定するために端末ユーザが操作可能な特徴設定GUI913を含んでいてもよい。例えば、図7に示すように、特徴設定GUI913は、三次元構造物の表面粗さを設定するために端末ユーザが操作可能なGUIを含んでいてもよい。特徴設定GUI913は、三次元構造物を付加造形するための材料の種類を設定するために端末ユーザが操作可能なGUIを含んでいてもよい。三次元構造物を付加造形するために複数種類の材料が用いられる場合には、特徴設定GUI913は、複数種類の材料の混合率を設定するために端末ユーザが操作可能なGUIを含んでいてもよい。特徴設定GUI913を用いて設定された特徴情報は、形状情報と同様に、端末装置3からデータ生成サーバ2に送信されてもよい。上述した造形データは、端末装置3から送信された特徴情報を用いて生成されてもよい。つまり、特徴情報が指定する特徴を有する三次元造形物が付加造形されるように造形装置1を制御するための造形データが生成されてもよい。つまり、造形装置1は、特徴設定GUI913を用いて設定された特徴情報に基づいて、特徴情報が指定する特徴を有する三次元造形物を付加造形してもよい。
 特徴設定GUI913には、端末ユーザが設定した特徴情報の設定値が表示されていてもよい。特徴設定GUI913に表示される特徴情報の設定値は、端末ユーザが特徴情報を設定し直すたびに更新されてもよい。特徴設定GUI913に表示される特徴情報の設定値は、周期的に又はランダムな周期で更新されてもよい。特徴設定GUI913に表示される特徴情報の設定値は、端末ユーザの指示に基づいて(例えば、設定GUI9に含まれる、特徴情報の設定値を更新するためのボタンを端末ユーザが押下することをトリガに)更新されてもよい。その結果、端末ユーザは、端末ユーザ自身が設定している特徴情報の最新の設定値を認識することができる。尚、特徴情報の設定値の表示方法については、上述したパラメータの設定値の表示方法と同一であってもよいため、その詳細な説明を省略する。
 尚、パラメータ設定GUI911を用いて設定される形状情報は、アイコン選択GUI912を用いて設定されてもよい。同様に、アイコン選択GUI912を用いて設定される形状情報は、パラメータ設定GUI911を用いて設定されてもよい。要は、入力画面91を用いて形状情報が設定される限りは、形状情報を設定する方法が限定されることはない。特徴情報についても同様である。
 出力画面92は、入力画面91を用いて端末ユーザが設定した形状情報に基づく三次元モデル(つまり、付加造形モデル)を表示可能な画面(言い換えれば、出力部)である。例えば、出力画面92は、入力画面91に含まれるパラメータ設定GUI911を用いて端末ユーザが設定したパラメータの値に基づく付加造形モデル(つまり、端末ユーザが設定したパラメータの値が指定する形状を有する三次元構造物の付加造形モデル)を表示可能であってもよい。例えば、出力画面92は、入力画面91に含まれるアイコン選択GUI912を用いて端末ユーザが選択したアイコンに基づく付加造形モデル(つまり、端末ユーザが選択したアイコンに関連付けられている特定の形状を有する三次元構造物の付加造形モデル)を表示可能であってもよい。例えば、出力画面92は、入力画面91に含まれる特徴設定GUI913を用いて端末ユーザが設定した特徴情報に基づく付加造形モデル(つまり、端末ユーザが設定した特徴情報が指定する特徴を有する三次元構造物の付加造形モデル)を表示可能であってもよい。
 データ生成サーバ2は、入力画面91を用いて端末ユーザが設定した形状情報に基づく付加造形モデルを、端末装置3の表示装置35が表示する出力画面92に提供する(ステップS14)。具体的には、出力画面92を含む設定GUI9に関するGUI情報を生成するために、データ生成サーバ2のデータ生成部213は、情報取得部212が端末装置3から取得した形状情報(更には、必要に応じてその他の特徴情報)に基づいて、端末ユーザが設定した形状情報に基づく付加造形モデルを表す付加造形モデルデータを生成する。その後、表示制御部211は、データ生成部213が生成した付加造形モデルデータが表す付加造形モデルが表示される出力画面92を含む設定GUI9に関するGUI情報を生成する。その後、表示制御部211によって生成されたGUI情報は、通信装置23を用いて端末装置3に送信される。端末装置3の表示装置35は、データ生成サーバ2から送信されたGUI情報に基づいて、設定GUI9を表示する。つまり、表示装置35は、出力画面92を用いて、端末ユーザが設定した形状情報に基づく付加造形モデルを表示する。つまり、表示装置35は、出力画面92に、端末ユーザが設定した形状情報に基づく付加造形モデルを表示する。その結果、端末ユーザは、端末ユーザ自身が設定した形状情報に基づく付加造形モデルの形状等を比較的容易に認識することができる。
 出力画面92に表示される付加造形モデルは、どのようなフォーマットの三次元モデルであってもよい。例えば、出力画面92には、ソリッドモデル又はサーフェスモデルに相当する付加造形モデル(図7参照)が表示されてもよい。例えば、出力画面92には、ワイヤフレームモデルに相当する付加造形モデル(後述の図9参照)が表示されてもよい。
 表示制御部211は、情報取得部212が端末装置3から形状情報を新たに取得する都度、新たに取得された形状情報に基づく付加造形モデルが表示される出力画面92を含む設定GUI9に関するGUI情報を生成してもよい。表示制御部211は、設定GUI9を用いて端末ユーザが形状情報を新たに設定する(例えば、変更又は更新する)都度、端末ユーザが新たに設定した形状情報に基づく付加造形モデルが表示される出力画面92を含む設定GUI9に関するGUI情報を生成してもよい。表示制御部211は、設定GUI9を用いて端末ユーザが形状情報を新たに設定する(例えば、変更又は更新する)都度、出力画面92に表示される付加造形モデルを更新してもよい。この場合、入力画面91を用いて設定された形状情報がリアルタイムに反映された付加造形モデルが、出力画面92に表示される。その結果、端末ユーザは、端末ユーザ自身が設定した最新の形状情報に基づく付加造形モデルの形状等を比較的容易に認識することができる。或いは、表示制御部211は、入力画面91を用いて設定された形状情報が反映された付加造形モデルが表示される出力画面92を含む設定GUI9に関するGUI情報を、周期的に又はランダムな周期で生成してもよい。この場合、出力画面92は、出力画面92に表示されている付加造形モデルを、周期的に又はランダムな周期で更新する。或いは、表示制御部211は、端末ユーザの指示に基づいて(例えば、設定GUI9に含まれる、出力画面92に表示されている付加造形モデルを更新するためのボタンを端末ユーザが押下することをトリガに)、入力画面91を用いて設定された形状情報が反映された付加造形モデルが表示される出力画面92を含む設定GUI9に関するGUI情報を生成してもよい。この場合、出力画面92は、端末ユーザが望むタイミングで、出力画面92に表示されている付加造形モデルを更新する。
 表示制御部211は、造形装置1により付加造形される三次元構造物の種類に応じた適切な形状情報を端末ユーザが設定できるように、三次元構造物の種類に応じた入力画面91を含む設定GUI9を生成してもよい。つまり、表示制御部211は、三次元構造物の種類に応じた入力画面91を含む設定GUI9を表示するように、表示装置35を制御してもよい。本実施形態では、造形装置1が、中空構造を有する部材に相当するパイプ(尚、パイプは、チューブと称されてもよい)を含む三次元構造物を付加造形する例について説明する。このため、以下では、入力画面91の一例として、三次元構造物がパイプを含む場合に表示される入力画面91について説明する。つまり、パイプの形状に関する形状情報を設定するための入力画面91について説明する。
 図8は、パイプの形状に関する形状情報を設定するための入力画面91(以降、“入力画面91pi”と称する)の一例を示す。
 図8に示すように、入力画面91piは、パイプの少なくとも一部分の位置を指定するパラメータの値を設定するためのパラメータ設定GUI911pi(以降、“パラメータ設定GUI911pi#1”と称する)を含んでいてもよい。つまり、パイプの形状を指定するパラメータは、パイプの少なくとも一部分の位置を指定するパラメータを含んでいてもよい。本実施形態では、パイプの少なくとも一部分の位置を指定するパラメータとして、パイプが通過する複数の点Pの位置(例えば、造形座標系と同じ又は異なる表示座標系での位置、以下同じ)を指定するパラメータが用いられてもよい。具体的には、図9に示すようにパイプの中心線Cが始点Poから中間点P1及びP2を順に通過して終点Peに到達する場合には、入力画面91piは、図8に示すように、始点Po、中間点P1及びP2並びに終点Peの位置を指定するパラメータの値を設定可能なパラメータ設定GUI911pi#1を含んでいてもよい。尚、点Pの数が図9に示す四つに限定されることはない。つまり、端末ユーザは、所望数の点Pの位置を設定してもよい。端末ユーザは、入力画面91piを用いて、新たな点Pを所望位置に追加してもよいし、既存の点Pを削除してもよい。例えば、図9に示す例では、端末ユーザは、始点Po、中間点P1及びP2並びに終点Peに加えて、他の点P(例えば、始点Poと中間点P1との間に位置する点P)を追加し、且つ、当該追加した他の点Pの位置を設定してもよい。例えば、図9に示す例では、端末ユーザは、始点Po、中間点P1及びP2並びに終点Peのうちの少なくとも一つの位置を設定しなくてもよい。端末ユーザが位置を設定しない点Pに関する情報は、入力画面91に表示されなくてもよい。
 パイプが通過する複数の点Pを用いて形状情報が設定される場合には、出力画面92には、図10に示すように、複数の点Pが関連付けられた付加造形モデルが表示されてもよい。この場合、端末ユーザは、複数の点Pの位置等を設定することで付加造形モデルの形状がどのように変わるかを比較的容易に認識することができる。
 再び図8において、入力画面91piは、パイプの少なくとも一部分の方向(つまり、パイプの少なくとも一部分が延びる(進展する)方向)を指定するパラメータの値を設定するためのパラメータ設定GUI911pi(以降、“パラメータ設定GUI911pi#2”と称する)を含んでいてもよい。つまり、パイプの形状を指定するパラメータは、パイプの少なくとも一部分の方向を指定するパラメータを含んでいてもよい。本実施形態では、パイプの少なくとも一部分の方向を指定するパラメータとして、パイプが通過する複数の点Pの位置においてパイプが延びる方向(例えば、点Pを起点に、点Pでのパイプの中心線Cが延びる方向)を指定するパラメータが用いられてもよい。具体的には、図9に示すように、パイプが始点Poから中間点P1及びP2を順に通過して終点Peに到達する場合には、入力画面91piは、始点Poにおいてパイプが延びる方向、中間点P1においてパイプが延びる方向、中間点P2においてパイプが延びる方向及び終点Peにおいてパイプが延びる方向を指定するパラメータの値を設定可能なパラメータ設定GUI911pi#2を含んでいてもよい。
 図8に示すように、入力画面91piは、パイプの少なくとも一部分の曲率の大きさ(強さ)を指定するパラメータの値を設定するためのパラメータ設定GUI911pi(以降、“パラメータ設定GUI911pi#3”と称する)を含んでいてもよい。つまり、パイプの形状を指定するパラメータは、パイプの少なくとも一部分の曲率の大きさを指定するパラメータを含んでいてもよい。本実施形態では、パイプの少なくとも一部分の曲率の大きさを指定するパラメータとして、パイプが通過する複数の点Pの位置におけるパイプの曲率の大きさを指定するパラメータが用いられてもよい。具体的には、図9に示すように、パイプが始点Poから中間点P1及びP2を順に通過して終点Peに到達する場合には、入力画面91piは、始点Poにおけるパイプの曲率の大きさ、中間点P1におけるパイプの曲率の大きさ、中間点P2におけるパイプの曲率の大きさ及び終点Peにおけるパイプの曲率の大きさを指定するパラメータの値を設定可能なパラメータ設定GUI911pi#3を含んでいてもよい。
 尚、パイプの少なくとも一部分の位置、方向及び曲率の大きさのそれぞれが変わると、パイプが延びる軌跡が変わる。このため、パイプの少なくとも一部分の位置を指定するパラメータ、パイプの少なくとも一部分の方向を指定するパラメータ及びパイプの少なくとも一部分の曲率の大きさを指定するパラメータのそれぞれは、パイプの延びる軌跡を指定する軌跡パラメータと称されてもよい。
 図8に示すように、入力画面91piは、パイプの少なくとも一部分のサイズを指定するパラメータの値を設定するためのパラメータ設定GUI911pi(以降、“パラメータ設定GUI911pi#4”と称する)を含んでいてもよい。つまり、パイプの形状を指定するパラメータは、パイプの少なくとも一部分のサイズを指定するパラメータを含んでいてもよい。本実施形態では、パイプの少なくとも一部分のサイズを指定するパラメータとして、パイプが通過する複数の点Pの位置におけるパイプのサイズを指定するパラメータが用いられてもよい。具体的には、図9に示すように、パイプが始点Poから中間点P1及びP2を順に通過して終点Peに到達する場合には、入力画面91piは、始点Poにおけるパイプのサイズ、中間点P1におけるパイプのサイズ、中間点P2におけるパイプのサイズ及び終点Peにおけるパイプのサイズを指定するパラメータの値を設定可能なパラメータ設定GUI911pi#4を含んでいてもよい。
 本実施形態では、パラメータ設定GUI911pi#4は、パイプの少なくとも一部分の断面のサイズを指定するパラメータの値を設定するためのGUIであってもよい。例えば、図8に示すように、パラメータ設定GUI911pi#4は、始点Poにおけるパイプの断面のサイズ、中間点P1におけるパイプの断面のサイズ、中間点P2におけるパイプの断面のサイズ及び終点Peにおけるパイプの断面のサイズを指定するパラメータの値を設定可能なGUIであってもよい。尚、パイプの少なくとも一部分の断面は、パイプが延びる方向と交差する(典型的には、直交する)断面を意味していてもよい。
 パイプの少なくとも一部分の断面のサイズは、断面に沿った第1の方向(言い換えれば、パイプの中心線Cに交差する第1の方向)における断面のサイズを含んでいてもよい。例えば、図8に示すように、パラメータ設定GUI911pi#4は、始点Poにおけるパイプの断面の第1の方向(図8に示す例では、縦方向)におけるサイズ、中間点P1におけるパイプの断面の第1の方向におけるサイズ、中間点P2におけるパイプの断面の1の方向におけるサイズ及び終点Peにおけるパイプの断面の1の方向におけるサイズを指定するパラメータの値を設定可能なパラメータ設定GUI911pi#41を含んでいてもよい。
 パイプの少なくとも一部分の断面のサイズは、断面に沿っており且つ第1の方向に交差する(典型的には、直交する)第2の方向における断面のサイズを含んでいてもよい。例えば、図8に示すように、パラメータ設定GUI911pi#4は、始点Poにおけるパイプの断面の第2の方向(図8に示す例では、横方向)におけるサイズ、中間点P1におけるパイプの断面の第2の方向におけるサイズ、中間点P2におけるパイプの断面の第2の方向におけるサイズ及び終点Peにおけるパイプの断面の第2の方向におけるサイズを指定するパラメータの値を設定可能なパラメータ設定GUI911pi#42を含んでいてもよい。
 尚、パイプの断面の形状が矩形形状である場合には、パイプの断面の第1の方向におけるサイズは、第1の方向に沿って互いに対向するパイプの二つの外側面(パイプの外壁)の間の距離(長さ)を意味し、パイプの断面の第2の方向におけるサイズは、第2の方向に沿って互いに対向するパイプの二つの外側面(パイプの外壁)の間の距離(長さ)を意味していてもよい。パイプの断面の形状が円形形状である場合には、パイプの断面の第1及び第2の方向のそれぞれにおけるサイズは、パイプの外側面の径を意味していてもよい。いずれの場合においても、パイプの断面の第1及び第2の方向のそれぞれにおけるサイズは、パイプの外径と称されてもよい。
 パイプの少なくとも一部分の断面のサイズは、断面に沿ったパイプの隔壁(言い換えれば、管壁)の厚みを含んでいてもよい。例えば、図8に示すように、パラメータ設定GUI911pi#4は、始点Poにおけるパイプの隔壁の厚み、中間点P1におけるパイプの隔壁の厚み、中間点P2におけるパイプの隔壁の厚み及び終点Peにおけるパイプの隔壁の厚みを指定するパラメータの値を設定可能なパラメータ設定GUI911pi#43を含んでいてもよい。尚、パイプの隔壁の厚みは、パイプの内側面(つまり、中心線C側を向いたパイプの側面であり、内壁)とパイプの外側面(つまり、中心線Cとは反対側を向いたパイプの側面であり、外壁)との間の距離(長さ)を意味していてもよい。
 パイプの少なくとも一部分の断面の第1の方向におけるサイズ、パイプの少なくとも一部分の断面の第2の方向におけるサイズ及びパイプの少なくとも一部分の隔壁の厚みが決まると、パイプの内径(つまり、パイプの内側面の径又は互いに対向する二つの内側面の間の距離(長さ))及びパイプの外径(つまり、パイプの外側面の径)のそれぞれが決まる。このため、パイプの少なくとも一部分の断面の第1の方向におけるサイズを指定するパラメータの値、パイプの少なくとも一部分の断面の第2の方向におけるサイズを指定するパラメータの値及びパイプの少なくとも一部分の隔壁の厚みを指定するパラメータの値を設定することは、パイプの内径を指定するパラメータの値及びパイプの外径を指定するパラメータの値を設定することと等価であるとみなしてもよい。或いは、パラメータ設定GUI911pi#4は、パイプの少なくとも一部分の内径を指定するパラメータの値を直接設定するためのパラメータ設定GUI911を含んでいてもよい。パラメータ設定GUI911pi#4は、パイプの少なくとも一部分の外径を指定するパラメータの値を直接設定するためのパラメータ設定GUI911を含んでいてもよい。
 図8に示すように、入力画面91piは、パイプの少なくとも一部分の角度(回転角度)を指定するパラメータの値を設定するためのパラメータ設定GUI911pi(以降、“パラメータ設定GUI911pi#5”と称する)を含んでいてもよい。つまり、パイプの形状を指定するパラメータは、パイプの少なくとも一部分の角度を指定するパラメータを含んでいてもよい。本実施形態では、パイプの少なくとも一部分の回転角度を指定するパラメータとして、パイプが通過する複数の点Pの位置におけるパイプの回転角度が用いられる。ここで、点Pの位置におけるパイプの回転角度は、点Pの位置でのパイプの中心線Cに沿った軸廻りにおける点Pでのパイプの断面の回転角度(具体的には、基準姿勢に対する回転角度)を意味していてもよい。具体的には、図9に示すように、パイプが始点Poから中間点P1及びP2を順に通過して終点Peに到達する場合には、入力画面91piは、始点Poにおけるパイプの断面の回転角度、中間点P1におけるパイプの断面の回転角度、中間点P2におけるパイプの断面の回転角度及び終点Peにおけるパイプの断面の回転角度を指定するパラメータの値を設定可能なパラメータ設定GUI911pi#5を含んでいてもよい。尚、パイプの断面が真円等の無限回回転対称な断面である場合、パラメータ設定GUI911pi#5は、端末ユーザがパラメータの設定値を設定できない(入力できない)表示態様で表示されていてもよい。例えば、パラメータ設定GUI911pi#5の部分がグレーアウトされていてもよい。
 尚、上述した例では、パイプの少なくとも一部分のサイズ及びパイプの少なくとも一部分の回転角度のそれぞれが変わると、パイプの少なくとも一部分の断面の形状が変わる。このため、パイプの少なくとも一部分のサイズを指定するパラメータ及びパイプの少なくとも一部分の回転角度を指定するパラメータのそれぞれは、パイプの少なくとも一部分の断面に関する断面パラメータ(セクションパラメータ)と称されてもよい。
 図8に示すように、入力画面91piは、パイプの少なくとも一部分の分岐の有無を指定するパラメータの値を設定するためのパラメータ設定GUI911pi(以降、“パラメータ設定GUI911pi#6”と称する)を含んでいてもよい。つまり、パイプの形状を指定するパラメータは、パイプの少なくとも一部分の分岐の有無を指定するパラメータを含んでいてもよい。本実施形態では、パイプの少なくとも一部分の分岐の有無を指定するパラメータとして、パイプが通過する複数の点Pの位置におけるパイプの分岐の有無を指定するパラメータが用いられてもよい。具体的には、図9に示すように、パイプが始点Poから中間点P1及びP2を順に通過して終点Peに到達する場合には、入力画面91piは、始点Poにおけるパイプの分岐の有無、中間点P1におけるパイプの分岐の有無、中間点P2におけるパイプの分岐の有無及び終点Peにおけるパイプの分岐の有無を指定するパラメータの値を設定可能なパラメータ設定GUI911pi#6を含んでいてもよい。つまり、入力画面91piは、始点Poにおいてパイプが分岐するか否か、中間点P1においてパイプが分岐するか否か、中間点P2においてパイプが分岐するか否か及び終点Peにおいてパイプが分岐するか否かを指定するパラメータを設定可能なパラメータ設定GUI911pi#6を含んでいてもよい。尚、パラメータ設定GU911pi#6において、分岐の有無を指定するパラメータの設定値が、パイプの分岐が有ることを示す値に設定された場合、分岐されたパイプに関する断面パラメータ、軌跡パラメータ及び端部パラメータの少なくとも一つを端末ユーザが設定するために用いられる入力画面が表示されてもよい。このとき、端部パラメータを設定するための入力画面は、始端部に関する端部パラメータを設定するための画面及び終端部に関する端部パラメータを設定するための画面のうちの一方を表示していてもよい。
 図8に示すように、入力画面91piは、パイプの少なくとも一部分の合流(つまり、分岐している複数の管路の合流)の有無を指定するパラメータの値を設定するためのパラメータ設定GUI911pi(以降、“パラメータ設定GUI911pi#7”と称する)を含んでいてもよい。つまり、パイプの形状を指定するパラメータは、パイプの少なくとも一部分の合流の有無を指定するパラメータを含んでいてもよい。本実施形態では、パイプの少なくとも一部分の合流の有無を指定するパラメータとして、パイプが通過する複数の点Pの位置におけるパイプの合流の有無を指定するパラメータが用いられる。具体的には、図9に示すように、パイプが始点Poから中間点P1及びP2を順に通過して終点Peに到達する場合には、入力画面91piは、始点Poにおけるパイプの合流の有無、中間点P1におけるパイプの合流の有無、中間点P2におけるパイプの合流の有無及び終点Peにおけるパイプの合流の有無を指定するパラメータの値を設定可能なパラメータ設定GUI911pi#7を含んでいてもよい。つまり、入力画面91piは、分岐していた複数の管路が始点Poにおいて合流するか否か、分岐していた複数の管路が中間点P1において合流するか否か、分岐していた複数の管路が中間点P2において合流するか否か及び分岐していた複数の管路が終点Peにおいて合流するか否かを指定するパラメータを設定可能なパラメータ設定GUI911pi#7を含んでいてもよい。尚、パラメータ設定GU911pi#7において、合流の有無を指定するパラメータの設定値が、パイプの合流が有ることを示す値に設定された場合、合流したパイプに関する断面パラメータ、軌跡パラメータ及び端部パラメータの少なくとも一つを端末ユーザが設定するために用いられる入力画面が表示されてもよい。このとき、端部パラメータを設定するための入力画面は、始端部に関する端部パラメータを設定するための画面及び終端部に関する端部パラメータを設定するための画面のうちの一方を表示していてもよい。
 図8に示すように、入力画面91piは、パイプの少なくとも一部分の管路の多重構造を指定するパラメータの値を設定するためのパラメータ設定GUI911pi(以降、“パラメータ設定GUI911pi#8”と称する)を含んでいてもよい。つまり、パイプの形状を指定するパラメータは、パイプの少なくとも一部分の多重構造を指定するパラメータを含んでいてもよい。本実施形態では、パイプの少なくとも一部分の多重構造を指定するパラメータとして、パイプが通過する複数の点Pの位置におけるパイプの多重構造を指定するパラメータが用いられる。具体的には、図9に示すように、パイプが始点Poから中間点P1及びP2を順に通過して終点Peに到達する場合には、入力画面91piは、始点Poと中間点P1との間におけるパイプの多重構造、中間点P1と中間点P2との間におけるパイプの多重構造、及び、中間点P2と終点Peとの間におけるパイプの多重構造を指定するパラメータの値を設定可能なパラメータ設定GUI911pi#8を含んでいてもよい。つまり、入力画面91piは、始点Poと中間点P1との間においてパイプが多重管(例えば、二重管)であるか又は一重管であるかを指定するパラメータの値、中間点P1と中間点P2との間においてパイプが多重管であるか又は一重管であるかを指定するパラメータの値、及び、中間点P2と終点Peとの間においてパイプが多重管であるか又は一重管であるかを指定するパラメータの値を設定可能なパラメータ設定GUI911pi#7を含んでいてもよい。
 尚、上述した例では、パイプの少なくとも一部分の分岐の有無、合流の有無及び多重構造は、いずれも、パイプの構造に関連する。このため、パイプの少なくとも一部分の分岐の有無を指定するパラメータ、パイプの少なくとも一部分の合流の有無を指定するパラメータ及びパイプの少なくとも一部分の多重構造を指定するパラメータのそれぞれは、パイプの少なくとも一部分の構造に関する構造パラメータと称されてもよい。
 図8に示すように、入力画面91piは、パイプの少なくとも一部分の断面の形状(つまり、開口の形状であり、パイプの延びる方向に交差する面内でのパイプの形状)を特定の種類の形状に設定するために選択可能なアイコンを複数含むアイコン選択GUI912pi(以降、“アイコン選択GUI912pi#1”と称する)を含んでいてもよい。例えば、図8は、アイコン選択GUI912pi#1が、パイプの少なくとも一部分の断面の形状を矩形形状に設定するために選択可能なアイコン9121#11と、パイプの少なくとも一部分の断面の形状を楕円形状(或いは、円形状)に設定するために選択可能なアイコン9121#12と、パイプの少なくとも一部分の断面の形状を三角形形状に設定するために選択可能なアイコン9121#13と、パイプの少なくとも一部分の断面の形状を、区画壁によって管路が複数の区画に区分された矩形形状に設定するために選択可能なアイコン9121#14と、パイプの少なくとも一部分の断面の形状を、区画壁によって管路が複数の区画に区分された楕円形状(或いは、円形状)に設定するために選択可能なアイコン9121#15とを含む例を示している。つまり、図8は、アイコン選択GUI912pi#1が、パイプの複数の断面に関する複数のアイコン(つまり、複数の異なる断面の形状に関する複数のアイコン)を含む例を示している。端末ユーザは、アイコン9121#11から9121#15のいずれか一つを選択することで、パイプの少なくとも一部分の断面の形状を、選択したアイコンに対応する特定の種類の形状に設定することができる。つまり、端末ユーザは、アイコン選択GUI912pi#1を用いて、パイプの複数の断面に関するアイコンを選択する(つまり、複数の異なる断面の形状に関する複数のアイコンから所望のアイコンを選択する)ことで、パイプの少なくとも一部分の断面の形状に関する形状情報を設定する。
 本実施形態では、パイプの少なくとも一部分の断面の形状として、パイプが通過する複数の点Pの位置におけるパイプの断面の形状が用いられる。具体的には、図9に示すように、パイプが始点Poから中間点P1及びP2を順に通過して終点Peに到達する場合には、端末ユーザは、アイコン選択GUI912pi#1を用いて、始点Poにおけるパイプの断面の形状、中間点P1におけるパイプの断面の形状、中間点P2におけるパイプの断面の形状及び終点Peにおけるパイプの断面の形状を設定してもよい。つまり、端末ユーザは、アイコン選択GUI912pi#1を用いて、パイプの複数個所の断面のそれぞれを指定するアイコンを選択してもよい。
 尚、上述した例では、パイプの少なくとも一部分の断面の形状の種類が変わると、パイプの少なくとも一部分の断面の形状が変わる。このため、パイプの少なくとも一部分の断面の形状の種類を指定するパラメータは、パイプの少なくとも一部分の断面に関する断面パラメータ(セクションパラメータ)と称されてもよい。
 端末ユーザは、パイプが通過する複数の点Pにおけるパイプの断面の形状が全て同一種類の形状となるように、パラメータ設定GUI911及びアイコン選択GUI912の少なくとも一方を用いて形状情報を設定してもよい。尚、ここで言う「形状の種類」は、例えば、アイコン選択GUI912pi#1を用いて選択可能な断面の形状の種類を意味していてもよい。このため、複数の点Pにおけるパイプの断面の形状が全て同一種類の形状となる状態は、複数の点Pにおけるパイプの断面の形状が、一つのアイコンに関連付けられている一の種類の形状に設定されている状態を意味していてもよい。
 或いは、端末ユーザは、パイプが通過する複数の点Pのうちの少なくとも二つにおけるパイプの断面の形状が異なる種類の形状となるように、パラメータ設定GUI911及びアイコン選択GUI912の少なくとも一方を用いて形状情報を設定してもよい。尚、少なくとも二つの点Pにおけるパイプの断面の形状が異なる種類の形状となる状態は、第1の点Pにおけるパイプの断面の形状が、第1のアイコンに関連付けられている第1の種類の形状に設定されている一方で、第2の点Pにおけるパイプの断面の形状が、第2のアイコンに関連付けられている第2の種類の形状に設定されている状態を意味していてもよい。例えば、端末ユーザは、パイプが通過する複数の点Pのうちの第1の点P(例えば、始点Po、中間点P1、中間点P2及び終点Peのいずれか一つ)におけるパイプの断面の形状を第1の形状(例えば、矩形形状)に設定し、パイプが通過する複数の点Pのうちの第2の点P(例えば、始点Po、中間点P1、中間点P2及び終点Peのいずれか他の一つ)におけるパイプの断面の形状を、第1の形状とは異なる第2の形状(例えば、円形状)に設定してもよい。この場合、パイプの断面の形状は、第1の点Pから第2の点Pとの間において、第1の形状から第2の形状へと変化する。このため、出力画面92もまた、第1の点Pと第2の点Pとの間において断面の形状が第1の形状から第2の形状へと変化するパイプの付加造形モデルを表示してもよい。例えば、第1の点Pにおけるパイプの断面の形状が第1の形状となるように形状情報が設定された後に第2の点Pにおけるパイプの断面の形状が第2の形状となるように形状情報が設定された場合には、出力画面92に表示されている付加造形モデルのうち第1の点Pと第2の点Pとの間におけるモデル部分が更新されてもよい。より具体的には、例えば、第1におけるパイプの断面の形状が第1の形状となるようにパラメータの値が設定された後に第2の点Pにおけるパイプの断面の形状が第2の形状となるようにパラメータの値が設定された場合には、第2の点Pにおけるパイプの形状を指定するパラメータの値の設定に合わせて、出力画面92に表示されている付加造形モデルのうち第1の点Pと第2の点Pとの間におけるモデル部分(特に、当該モデル部分の形状)が更新されてもよい。例えば、第1におけるパイプの断面の形状が第1の形状となるようにアイコンが選択された後に第2の点Pにおけるパイプの断面の形状が第2の形状となるようにアイコンが選択された場合には、第2の点Pにおけるパイプの形状を設定するためのアイコンの選択に合わせて、出力画面92に表示されている付加造形モデルのうち第1の点Pと第2の点Pとの間におけるモデル部分(特に、当該モデル部分の形状)が更新されてもよい。但し、複数の点Pのうちの少なくとも二つにおけるパイプの断面の形状が異なる種類の形状となる場合に限らず、第1の点Pにおけるパイプの断面の形状が第1の形状となるように形状情報が設定された後に第2の点Pにおけるパイプの断面の形状が第2の形状となるように形状情報が設定された場合には、出力画面92に表示されている付加造形モデルのうち第1の点Pと第2の点Pとの間におけるモデル部分が更新されてもよい。
 尚、図8に示す例では、アイコン選択GUI912pi#1は、パイプの少なくとも一部分の内側面及び外側面の双方の断面の形状をまとめて特定の種類の形状に設定するために選択可能なアイコンを複数含んでいる。しかしながら、アイコン選択GUI912pi#1は、パイプの少なくとも一部分の内側面の断面の形状を特定の形状に設定するために選択可能な複数のアイコンと、パイプの少なくとも一部分の外側面の断面の形状を特定の形状に設定するために選択可能な複数のアイコンとを別個に含んでいてもよい。この場合、端末ユーザは、パイプの少なくとも一部分の内側面の断面の形状と、パイプの少なくとも一部分の外側面の断面の形状とを別個に設定してもよい。端末ユーザは、パイプの少なくとも一部分の内側面の断面の形状と、パイプの少なくとも一部分の外側面の断面の形状とが異なるものとなるように、アイコンを選択してもよい。
 図8に示すように、入力画面91piは、パイプの端部の形状を特定の種類の形状に設定するために選択可能なアイコンを複数含むアイコン選択GUI912pi(以降、“アイコン選択GUI912pi#2”と称する)を含んでいてもよい。尚、パイプの端部の形状は、パイプの端部に関する端部パラメータと称されてもよい。パイプの端部は、例えば、パイプの始端部及びパイプの終端部の少なくとも一つを含んでいてもよい。パイプの始端部は、始点Poとパイプが延びる方向に沿って始点Poから所定距離離れた位置との間に位置するパイプの一部分を含んでいてもよい。パイプの終端部は、終点Peとパイプが延びる方向に沿って終点Peから所定距離離れた位置との間に位置するパイプの一部分を含んでいてもよい。例えば、図8は、アイコン選択GUI912pi#2が、パイプの端部の形状を、端部と端部から所定距離離れた位置との間におけるパイプの内径が、端部に近づくにつれて徐々に小さくなり、且つ、端部が閉鎖端となる第1の形状に設定するために選択可能なアイコン9121#21と、パイプの端部の形状を、端部と端部から所定距離離れた位置との間におけるパイプの内径が、端部に近づくにつれて徐々に小さくなり、端部の近傍において内径が一定になり、且つ、端部が開放端となる第2の形状に設定するために選択可能なアイコン9121#22と、パイプの端部の形状を、端部と端部から所定距離離れた位置との間におけるパイプの内径が、端部に近づくにつれて徐々に小さくなり、端部が閉鎖端となり、且つ、端部にねじ切りされた突起部分(つまり、オスネジ又はネジ部に相当する部分)が形成された第3の形状に設定するために選択可能なアイコン9121#23と、端部と端部から所定距離離れた位置との間におけるパイプの内径が、端部に近づくにつれて徐々に小さくなり、端部の近傍において内径が一定になり、端部が開放端となり、且つ、端部の近傍におけるパイプの内側面がねじ切りされた(つまり、端部がメスネジ又はネジ穴部となる)第4の形状に設定するために選択可能なアイコン9121#24とを含む例を示している。端末ユーザは、アイコン9121#21から9121#24のいずれか一つを選択することで、パイプの端部の形状を、選択したアイコンに対応する特定の形状に設定することができる。
 再び図6において、形状情報が取得された場合には、上述した形状情報が指定する形状を有する三次元構造物の付加造形モデルの表示(ステップS14)と並行して又は相前後して、干渉予測部214は、加工ヘッド121の干渉が発生するか否かを予測する(ステップS15)。具体的には、干渉予測部214は、形状情報が指定する形状を有する三次元構造物を加工ヘッド121が付加造形すると仮定した場合に、加工ヘッド121の干渉が発生するか否かを予測する(ステップS15)。より具体的には、干渉予測部214は、設定GUI9を表示するためにデータ生成部213が形状情報から生成する付加造形モデルデータに基づいて、付加造形モデルデータが示す三次元形状を有する三次元構造物を加工ヘッド121が付加造形すると仮定した場合に、加工ヘッド121の干渉が発生するか否かを予測する(ステップS15)。
 加工ヘッド121の干渉は、加工ヘッド121と、加工ヘッド121とは異なる物体である被干渉物との干渉を含んでいてもよい。加工ヘッド121と被干渉物との干渉は、加工ヘッド121と被干渉物との接触を含んでいてもよい。加工ヘッド121と被干渉物との干渉は、加工ヘッド121と被干渉物との衝突を含んでいてもよい。
 加工ヘッド121と被干渉物との干渉は、加工ヘッド121が備える部材と被干渉物との干渉を含んでいてもよい。例えば、加工ヘッド121と被干渉物との干渉は、加工ヘッド121が備える照射光学系1211と被干渉物との干渉を含んでいてもよい。例えば、加工ヘッド121と被干渉物との干渉は、加工ヘッド121が備える材料ノズル1212と被干渉物との干渉を含んでいてもよい。例えば、加工ヘッド121と被干渉物との干渉は、加工ヘッド121が備えるヘッド筐体1213と被干渉物との干渉を含んでいてもよい。加工ヘッド121がその他の部材を備えている場合には、加工ヘッド121と被干渉物との干渉は、加工ヘッド121が備えるその他の部材と被干渉物との干渉を含んでいてもよい。
 被干渉物は、加工ヘッド121が付加造形する三次元構造物を含んでいてもよい。特に、被干渉物は、加工ヘッド121を用いた付加造形の開始から終了までの造形期間(加工期間)中の三次元構造物(つまり、付加造形中の三次元構造物であり、未完成の三次元構造物)を含んでいてもよい。尚、以下の説明では、説明の便宜上、付加造形中の未完成の三次元構造物を、未完成造形物と称することで、付加造形が完了した完成済みの三次元構造物と区別する。この場合、被干渉物は、未完成造形物を含んでいてもよいし、完成済みの三次元構造物を含んでいてもよい。また、被干渉物は、三次元構造物がその上で付加造形されるワークWを含んでいてもよい。また、被干渉物は、ワークWが載置されるステージ131を含んでいてもよい。また、被干渉物は、ステージ131を含むステージ装置13を含んでいてもよい。例えば、被干渉物は、ステージ装置13が備える部材を含んでいてもよい。例えば、また、被干渉物は、ステージ装置13が備えるステージ駆動系132を含んでいてもよい。また、被干渉物は、造形装置1が備える部材(例えば、筐体16)を含んでいてもよい。
 加工ヘッド121の干渉が発生するか否かを予測するために、干渉予測部214は、形状情報が指定する形状を有する三次元構造物を付加造形する造形装置1の動作をシミュレーションによって予測してもよい。この場合、干渉予測部214は、造形装置1の動作のシミュレーション結果に基づいて、加工ヘッド121の干渉が発生するか否かを予測してもよい。具体的には、干渉予測部214は、造形装置1が三次元構造物を造形するための造形動作を開始してから、造形装置1が造形動作を終了するまでの間の造形期間中の造形装置1の動作をシミュレーションによって予測してもよい。特に、干渉予測部214は、造形期間中の加工ヘッド121の動きと被干渉物の動きとをシミュレーションによって予測してもよい。この場合、干渉予測部214は、造形期間中のヘッド駆動系122による加工ヘッド121の動き及びステージ駆動系132によるステージ131の動きを予測することで、造形期間中の加工ヘッド121の動きと被干渉物の動きとをシミュレーションによって予測してもよい。尚、以下では、シミュレーション上で仮想的に行われる造形動作の期間を造形期間として説明する。
 加工ヘッド121の動きと被干渉物の動きとをシミュレーションによって予測する動作は、加工ヘッド121の三次元モデルであるヘッドモデルHMの動きと、被干渉物の三次元モデルである被干渉物モデルの動きとをシミュレーションモデル空間内において予測する動作を含んでいてもよい。この場合、シミュレーションモデル空間内において造形期間中の一の時点でヘッドモデルHMと被干渉物モデルとが干渉する(例えば、接触又は衝突する)場合に、干渉予測部214は、造形期間中の一の時点で加工ヘッド121と被干渉物とが干渉すると予測してもよい。つまり、干渉予測部214は、造形期間中の一の時点で加工ヘッド121と被干渉物との干渉が発生すると予測してもよい。一方で、シミュレーションモデル空間内において造形期間中の一の時点でヘッドモデルHMと被干渉物モデルとが干渉しない場合に、干渉予測部214は、造形期間中の一の時点で加工ヘッド121と被干渉物とが干渉しないと予測してもよい。干渉予測部214は、造形期間中の一の時点で加工ヘッド121と被干渉物との干渉が発生しないと予測してもよい。或いは、干渉予測部214は、造形期間中の一の時点で加工ヘッド121と被干渉物との干渉が発生すると予測しなくてもよい。
 一例として、図11に示すように、干渉予測部214は、ヘッドモデルHMの動きと、被干渉物の一例であるステージ131の三次元モデルであるステージモデルSM、被干渉物の一例であるワークWの三次元モデルであるワークモデルWM及び被干渉物の一例である未完成造形物BOの三次元モデルである未完成造形モデルBMのうちの少なくとも一つの動きとを、シミュレーションモデル空間内において予測してもよい。この場合、シミュレーションモデル空間内において造形期間中の一の時点でヘッドモデルHMとステージモデルSMとが干渉する場合に、干渉予測部214は、造形期間中の一の時点で加工ヘッド121とステージ131とが干渉すると予測してもよい。シミュレーションモデル空間内において造形期間中の一の時点でヘッドモデルHMとワークモデルWMとが干渉する場合に、干渉予測部214は、造形期間中の一の時点で加工ヘッド121とワークWとが干渉すると予測してもよい。シミュレーションモデル空間内において造形期間中の一の時点でヘッドモデルHMと未完成造形モデルBMとが干渉する場合に、干渉予測部214は、造形期間中の一の時点で加工ヘッド121と未完成造形物BOとが干渉すると予測してもよい。
 干渉予測部214は、加工ヘッド121の実際の外形(つまり、三次元形状)に忠実な三次元形状を有する三次元モデルを、ヘッドモデルHMとして用いてもよい。つまり、干渉予測部214は、加工ヘッド121の実際の外形(つまり、三次元形状)と同じ形状のモデル表面MDSを有する三次元モデルを、ヘッドモデルHMとして用いてもよい。尚、図11は、加工ヘッド121の実際の外形(つまり、三次元形状)と同じ外形を有するヘッドモデルHMの一例を示している。或いは、干渉予測部214は、加工ヘッド121の実際の外形とは異なる三次元形状を有する三次元モデルを、ヘッドモデルHMとして用いてもよい。例えば、図12に示すように、干渉予測部214は、加工ヘッド121を包含するモデル表面MDSを有する三次元モデルを、ヘッドモデルHMとして用いてもよい。例えば、図12に示すように、干渉予測部214は、加工ヘッド121の実際の外面から一定のマージンだけ離れた位置にモデル表面MDSを有する三次元モデルを、ヘッドモデルHMとして用いてもよい。マージンは、加工ヘッド121の最大可動範囲に基づいて設定されてもよい。この場合には、干渉予測部214は、加工ヘッド121の干渉が発生するか否かをより厳しい条件下で予測することができる。
 マージンは、加工ヘッド121が未完成造形物BOを構成する一つの構造層を造形するために加工ヘッド121が移動する移動範囲(尚、この移動範囲を、必要稼動範囲と称してもよい)に基づいて設定されてもよい。マージンは、構造層毎に設定されてもよい。この場合、加工ヘッド121が造形する構造層毎に、ヘッドモデルHMの大きさ及び形状の少なくとも一方(つまり、モデル表面MDSの大きさ及び形状の少なくとも一方)が変わってもよい。一例として、三次元構造物がパイプである場合には、パイプの細い箇所を造形するときは移動範囲が小さくなる一方で、パイプの太い箇所を造形するときは移動範囲が大きくなる。このため、パイプの細い箇所を造形する場合のヘッドモデルHMを生成するために用いられるマージンは、パイプの太い箇所を造形する場合のヘッドモデルHMを生成するために用いられるマージンよりも小さくてもよい。その結果、パイプの細い箇所を造形する場合のヘッドモデルHMは、パイプの太い箇所を造形する場合のヘッドモデルHMよりも小さくてもよい。この場合には、干渉予測部214は、加工ヘッド121の干渉が発生するか否かをより精微に予測することができる。但し、マージンは、複数の構造層に共通であってもよい。
 干渉予測部214は、加工ヘッド121の動きと被干渉物の動きとを制約する所定の動き制約条件を用いて、加工ヘッド121の動きと被干渉物の動きとを予測してもよい。動き制約条件は、形状情報が指定する形状を有する三次元構造物を加工ヘッド121が付加造形すると仮定した状況下で許容される加工ヘッド121及び被干渉物の動きを示す条件を含んでいてもよい。動き制約条件は、形状情報が指定する形状を有する三次元構造物を加工ヘッド121が付加造形すると仮定した状況下で禁止される加工ヘッド121及び被干渉物の動きを示す条件を含んでいてもよい。一例として、動き制約条件は、付加造形によって未完成造形物BOが延びる方向が重力方向(Z軸方向)と平行になる又は一致するように加工ヘッド121及び被干渉物が動くことが許容されるという条件を含んでいてもよい。他の一例として、動き制約条件は、付加造形によって未完成造形物BOが延びる方向が重力方向(Z軸方向)と交差する又はねじれの関係になるように加工ヘッド121及び被干渉物が動くことが禁止されるという条件を含んでいてもよい。他の一例として、動き制約条件は、付加造形によって未完成造形物BOが延びる方向が照射光学系1211の光軸の方向と平行になる又は一致するように加工ヘッド121及び被干渉物が動くことが許容されるという条件を含んでいてもよい。他の一例として、動き制約条件は、付加造形によって未完成造形物BOが延びる方向が照射光学系1211の光軸の方向と交差する又はねじれの関係になるように加工ヘッド121及び被干渉物が動くことが禁止されるという条件を含んでいてもよい。他の一例として、動き制約条件は、付加造形によって未完成造形物BOが延びる方向が照射光学系1211から射出される加工光ELの進行方向と平行になる又は一致するように加工ヘッド121及び被干渉物が動くことが許容されるという条件を含んでいてもよい。他の一例として、動き制約条件は、付加造形によって未完成造形物BOが延びる方向が照射光学系1211から射出される加工光ELの進行方向と交差する又はねじれの関係になるように加工ヘッド121及び被干渉物が動くことが禁止されるという条件を含んでいてもよい。この場合、干渉予測部214は、造形装置1を制御するための造形データ(つまり、加工ヘッド121及びステージ131を制御して三次元構造物を付加造形するために実際に用いられる造形データ)が生成されていない場合であっても、加工ヘッド121の動きと被干渉物の動きとを予測することができる。但し、干渉予測部214は、干渉予測部214が加工ヘッド121の干渉が発生するか否かを予測するタイミングで、形状情報が指定する形状を有する三次元構造物を付加造形するための造形データを生成し、生成した造形データに基づいて、加工ヘッド121の動きと被干渉物の動きとを予測してもよい。
 干渉予測部214は、ヘッドモデルHM及び被干渉物モデルとして、メッシュモデルを用いてもよい。この場合、干渉予測部214は、加工ヘッド121の三次元モデルをメッシュモデルに変換することでヘッドモデルHMを生成し、被干渉物モデルの三次元モデルをメッシュモデルに変換することで被干渉物モデルを生成してもよい。メッシュモデルは、幾何学形状で表現された複数の平面(以降、各平面を、単位メッシュと称する)から構成されるモデルであってもよい。一例として、メッシュモデルは、三角形又は四角形の単位メッシュから構成されるモデルであってもよい。干渉予測部214は、ヘッドモデルHMであるメッシュモデルと被干渉物モデルであるメッシュモデルとが交差するか否かを判定することで、加工ヘッド121の干渉が発生するか否かを予測してもよい。
 干渉予測部214は、加工ヘッド121の干渉が発生するか否かを予測することに加えて又は代えて、加工ヘッド121の干渉が発生すると予測される干渉時点を予測してもよい。具体的には、上述したように、干渉予測部214は、シミュレーションモデル空間内において造形期間中の一の時点でヘッドモデルHMと被干渉物モデルとが干渉する場合に、造形期間中の一の時点で加工ヘッド121と被干渉物とが干渉すると予測する。この場合、造形期間中においてヘッドモデルHMと被干渉物モデルとが干渉する一の時点が、干渉時点に相当する。従って、干渉予測部214は、ヘッドモデルHMと被干渉物モデルとが干渉するか否かを予測することに加えて、ヘッドモデルHMと被干渉物モデルとが干渉する干渉時点を予測してもよい。
 干渉予測部214は、加工ヘッド121の干渉が発生するか否かを予測することに加えて又は代えて、加工ヘッド121と被干渉物との干渉の度合いを示す干渉深度を予測してもよい。干渉深度は、加工ヘッド121と被干渉物との干渉の度合いが大きくなるほど大きくなる指標値であってもよい。例えば、干渉深度は、図13に示すように、ヘッドモデルHMのうちの被干渉物モデルに干渉しているモデル部分HMpのサイズに基づいて定まる指標値であってもよい。この場合、干渉深度は、ヘッドモデルHMのうちの被干渉物モデルに干渉しているモデル部分HMpのサイズが大きくなるほど大きくなる指標値であってもよい。例えば、干渉深度は、図13に示すように、被干渉物モデル(図13に示す例では、未完成造形モデルBM)の表面から、ヘッドモデルHMのうちの被干渉物モデルに干渉しているモデル部分HMpの最深部までの距離に基づいて定まる指標値であってもよい。モデル部分HMpの最深部は、モデル部分HMpのうち被干渉物モデル(図13に示す例では、未完成造形モデルBM)の表面から最も遠い位置に位置している部分を含んでいてもよい。この場合、干渉深度は、被干渉物モデルの表面からモデル部分HMpの最深部までの距離が長くなるほど大きくなる指標値であってもよい。例えば、干渉深度は、ヘッドモデルHMのモデル表面MDSに対して垂直な方向における、ヘッドモデルHMのうちの被干渉物モデルに干渉しているモデル部分HMpの距離(サイズ)に基づいて定まる指標値であってもよい。この場合、干渉深度は、ヘッドモデルHMのモデル表面MDSに対して垂直な方向におけるモデル部分HMpの距離が長くなるほど大きくなる指標値であってもよい。尚、加工ヘッド121の干渉が発生しないときの指標値が0であることから、加工ヘッド121と被干渉物との干渉の度合いを示す干渉深度を予測する動作は、加工ヘッド121の干渉が発生するか否かを予測する動作に含まれるとみなしてもよい。
 再び図6において、表示制御部211は、干渉予測部214による干渉の予測結果を示す干渉情報を端末装置3の表示装置35に表示するための表示データを生成する(ステップS16)。その後、表示制御部211は、生成した表示データを、通信装置23を用いて端末装置3に送信する(ステップS16)。端末装置3は、データ生成サーバ2から送信された表示データを受信する(ステップS16)。端末装置3の表示装置35は、データ生成サーバ2から送信された表示データに基づいて、干渉情報を表示する(ステップS16)。
 上述したように、表示制御部211は、設定GUI9を表示装置35に表示するためのGUI情報を生成している。この場合、表示制御部211は、干渉情報を含む設定GUI9を表示装置35に表示するためのGUI情報を、干渉情報を表示するための表示データとして生成してもよい。表示制御部211は、干渉情報が一部に表示された設定GUI9を表示装置35に表示するためのGUI情報を、干渉情報を表示するための表示データとして生成してもよい。つまり、干渉情報は、設定GUI9に表示されてもよい。例えば、干渉情報は、設定GUI9に含まれる入力画面91に表示されてもよい。例えば、干渉情報は、設定GUI9に含まれる出力画面92に表示されてもよい。この場合、GUI情報は、典型的には、干渉情報を含む。
 以下の説明では、説明の便宜上、干渉情報が出力画面92に表示される例について説明する。この場合、表示制御部211は、出力画面92に本来表示される付加造形モデルに加えて又は代えて干渉情報が表示される出力画面92を表示するためのGUI情報を生成してもよい。表示制御部211は、形状情報を設定するための入力画面91と干渉情報が表示される出力画面92とを含む設定GUI9を表示するためのGUI情報を生成してもよい。
 上述したように、干渉情報は、加工ヘッド121と被干渉物との干渉の予測結果を示している。この場合、表示制御部211は、加工ヘッド121の三次元モデルであるヘッドモデルHMと被干渉物の三次元モデルである被干渉物モデルとの少なくとも一方と共に干渉情報を表示するためのGUI情報(つまり、表示データ)を生成してもよい。この場合、GUI情報は、干渉情報と、ヘッドモデルHM及び被干渉物モデルの少なくとも一方を表す三次元モデルデータを含んでいてもよい。具体的には、表示制御部211は、ヘッドモデルHM及び被干渉物モデルの少なくとも一方に干渉情報が関連付けられる表示態様で干渉情報を表示するためのGUI情報を生成してもよい。例えば、表示制御部211は、ヘッドモデルHMと共に干渉情報を表示するためのGUI情報を生成してもよい。例えば、表示制御部211は、ヘッドモデルHMに干渉情報が関連付けられる表示態様で干渉情報を表示するためのGUI情報を生成してもよい。例えば、表示制御部211は、被干渉物の一例であるステージ131の三次元モデルであるステージモデルSMと共に干渉情報を表示するためのGUI情報を生成してもよい。例えば、表示制御部211は、ステージモデルSMに干渉情報が関連付けられる表示態様で干渉情報を表示するためのGUI情報を生成してもよい。例えば、表示制御部211は、被干渉物の一例であるワークWの三次元モデルであるワークモデルWMと共に干渉情報を表示するためのGUI情報を生成してもよい。例えば、表示制御部211は、ワークモデルWMに干渉情報が関連付けられる表示態様で干渉情報を表示するためのGUI情報を生成してもよい。例えば、表示制御部211は、被干渉物の一例である未完成造形物BOの三次元モデルである未完成造形モデルBMと共に干渉情報を表示するためのGUI情報を生成してもよい。例えば、表示制御部211は、未完成造形モデルBMに干渉情報が関連付けられる表示態様で干渉情報を表示するためのGUI情報を生成してもよい。その結果、端末ユーザは、加工ヘッド121の干渉が発生するか否かを直感的に認識することができる。尚、以下の説明では、説明の便宜上、ヘッドモデルHM及び被干渉物モデルの双方と共に干渉情報が表示される例について説明する。但し、表示制御部211は、ヘッドモデルHM及び被干渉物モデルとは無関係に干渉情報を表示するためのGUI情報を生成してもよい。例えば、表示制御部211は、テキスト、数字及び図形の少なくとも一つを用いて干渉情報を表示するためのGUI情報を生成してもよい。
 表示装置35に表示されるヘッドモデルHM及び被干渉物モデルの少なくとも一方は、サーフェスモデルであってもよい。表示装置35に表示されるヘッドモデルHM及び被干渉物モデルの少なくとも一方は、ソリッドモデルであってもよい。表示装置35に表示されるヘッドモデルHM及び被干渉物モデルの少なくとも一方は、ワイヤフレームモデルであってもよい。表示装置35に表示されるヘッドモデルHM及び被干渉物モデルの少なくとも一方は、内部を視認可能な透過モデルであってもよい。端末ユーザは、入力装置34を用いて透過モデルの透過の度合いを設定してもよい。
 表示装置35に表示されるヘッドモデルHMは、上述した干渉予測部214が加工ヘッド121の干渉が発生するか否かを予測するために用いるヘッドモデルHMと同じであってもよい。或いは、表示装置35に表示されるヘッドモデルHMは、上述した干渉予測部214が加工ヘッド121の干渉が発生するか否かを予測するために用いるヘッドモデルHMと異なっていてもよい。例えば、表示装置35に表示されるヘッドモデルHMの単位メッシュの大きさは、上述した干渉予測部214が用いるヘッドモデルHMの単位メッシュの大きさと異なっていてもよい。一例として、表示装置35に表示されるヘッドモデルHMの単位メッシュの大きさは、上述した干渉予測部214が用いるヘッドモデルHMの単位メッシュの大きさよりも小さくてもよい。単位メッシュの大きさが小さくなるほど、ヘッドモデルHMの解像度が高くなる。従って、表示装置35は、解像度が高いヘッドモデルHMを表示することができる。一方で、単位メッシュの大きさが大きくなるほど、ヘッドモデルHMを用いた演算の負荷が低くなる。このため、干渉予測部214は、相対的に迅速に加工ヘッド121の干渉が発生するか否かを予測することができる。被干渉物モデルについても同様である。
 ヘッドモデルHM及び被干渉物モデルの双方と共に表示される干渉情報の一例が、図14に示されている。図14に示すように、表示制御部211は、造形期間中の一の時点でのヘッドモデルHMとステージモデルSMとワークモデルWMと未完成造形モデルBMとを表示するためのGUI情報を生成してもよい。その結果、表示装置35は、造形期間中の一の時点でのヘッドモデルHMとステージモデルSMとワークモデルWMと未完成造形モデルBMとを表示する。
 ここで、造形期間中の一の時点に加工ヘッド121と被干渉物との干渉が発生するか否かの予測結果を示す情報を干渉情報が含んでいる場合には、表示制御部211は、図14に示すように、一の時点でのヘッドモデルHMと被干渉物モデル(図14に示す例では、ステージモデルSM、ワークモデルWM及び未完成造形モデルBM)と共に、一の時点に発生すると予測された干渉に関する干渉情報を合わせて表示するためのGUI情報を生成してもよい。例えば、図14に示すように、表示制御部211は、ヘッドモデルHMと被干渉物モデルとが干渉している干渉部分IP1の表示態様が、ヘッドモデルHMと被干渉物モデルとが干渉していない非干渉部分IP2の表示態様と異なるものとなるように、ヘッドモデルHMと被干渉物モデルとを表示するためのGUI情報を生成してもよい。表示態様は、例えば、色、輝度及びハイライトのうちの少なくとも一つを含んでいてもよい。図14は、干渉情報が、造形期間中の一の時点である時刻15:00に加工ヘッド121と未完成造形物BOとの干渉が発生するという予測結果を示す情報を含んでおり、且つ、表示制御部211は、ヘッドモデルHMと未完成造形モデルBMとが干渉している干渉部分IP1の表示態様が、ヘッドモデルHMと未完成造形モデルBMとが干渉していない非干渉部分IP2の表示態様と異なるものとなるように、ヘッドモデルHMと未完成造形モデルBMとを表示するためのGUI情報を生成する例を示している。その結果、端末ユーザは、造形期間中において加工ヘッド121の干渉が発生すると予測された位置を直感的に認識することができる。
 一方で、干渉情報が、造形期間中の一の時点に加工ヘッド121と被干渉物との干渉が発生しないという予測結果を示す情報を含んでいる場合には、表示制御部211は、図15に示すように、一の時点でのヘッドモデルHMと被干渉物モデル(図15に示す例では、ステージモデルSM、ワークモデルWM及び未完成造形モデルBM)を表示する一方で、一の時点に加工ヘッド121の干渉が発生すると予測されたことを示す干渉情報を表示しないためのGUI情報を生成してもよい。或いは、図16に示すように、表示制御部211は、一の時点でのヘッドモデルHMと被干渉物モデルと共に、一の時点に加工ヘッド121の干渉が発生すると予測されなかったことを示す干渉情報を表示するためのGUI情報を生成してもよい。或いは、図17に示すように、表示制御部211は、一の時点でのヘッドモデルHMと被干渉物モデルと共に、一の時点に加工ヘッド121の干渉が発生しないと予測されたことを示す干渉情報を表示するためのGUI情報を生成してもよい。
 上述したように、干渉予測部214は、造形期間中の加工ヘッド121の動きと被干渉物の動きとを予測するために、ヘッドモデルHMの動きと被干渉物モデルの動きとを予測している。この場合、表示制御部211は、干渉予測部214による加工ヘッド121及び被干渉物の動きの予測結果に基づいて、造形期間中の少なくとも一部の期間におけるヘッドモデルHM及び被干渉物モデルの動きを示す動画を表示するためのGUI情報を生成してもよい。或いは、表示制御部211は、干渉予測部214による加工ヘッド121及び被干渉物の動きの予測とは別に造形期間中の少なくとも一部の期間におけるヘッドモデルHM及び被干渉物モデルの動きを予測し、造形期間中の少なくとも一部の期間におけるヘッドモデルHM及び被干渉物モデルの動きを示す動画を表示するためのGUI情報を生成してもよい。この場合、表示装置35は、造形期間中の少なくとも一部の期間におけるヘッドモデルHM及び被干渉物モデルの動きを示す動画を表示してもよい。その結果、端末ユーザは、加工ヘッド121の干渉が発生すると予測された原因の一つとしての加工ヘッド121と被干渉物との動きを直感的に認識することができ、その結果、干渉が発生すると予測された原因を直感的に認識することができる。
 尚、ヘッドモデルHM及び被干渉物モデルの少なくとも一方が移動すると、ヘッドモデルHMと被干渉物モデルとの位置関係(つまり、相対的な位置)が変わる可能性がある。このため、造形期間中の少なくとも一部の期間におけるヘッドモデルHM及び被干渉物モデルの動きを示す動画は、造形期間中の少なくとも一部の期間におけるヘッドモデルHMと被干渉物モデルとの位置関係の変化を示す動画と等価であるとみなしてもよい。
 ヘッドモデルHM及び被干渉物モデルの動きを示す動画を表示するためのGUI情報を生成する場合には、表示制御部211は、干渉が発生すると予測された干渉時点において動画の再生を一時的に停止させるGUI情報を生成してもよい。その結果、端末ユーザは、加工ヘッド121の干渉が発生すると予測されたことをより確実に認識することができる。
 表示制御部211は、端末ユーザによって指定された時点(以下、“指定時点”と称する)のヘッドモデルHM及び被干渉物モデルと共に干渉情報を表示するためのGUI情報を生成してもよい。例えば、干渉情報が、指定時点において加工ヘッド121の干渉が発生するという予測結果に関する情報を含む場合には、表示制御部211は、指定時点でのヘッドモデルHMと被干渉物モデルと共に、指定時点に発生すると予測された干渉に関する干渉情報を合わせて表示するためのGUI情報を生成してもよい。例えば、干渉情報が、指定時点において加工ヘッド121の干渉が発生しないという予測結果に関する情報を含む場合には、表示制御部211は、指定時点でのヘッドモデルHMと被干渉物モデルを表示する一方で、干渉情報を表示しないためのGUI情報を生成してもよい。例えば、干渉情報が、指定時点において加工ヘッド121の干渉が発生しないという予測結果に関する情報を含む場合には、表示制御部211は、指定時点でのヘッドモデルHMと被干渉物モデルと共に、指定時点に加工ヘッド121の干渉が発生すると予測されなかったことを示す干渉情報を表示するためのGUI情報を生成してもよい。例えば、干渉情報が、指定時点において加工ヘッド121の干渉が発生しないという予測結果に関する情報を含む場合には、表示制御部211は、指定時点でのヘッドモデルHMと被干渉物モデルと共に、指定時点に加工ヘッド121の干渉が発生しないと予測されたことを示す干渉情報を表示するためのGUI情報を生成してもよい。
 端末ユーザに指定時点を指定させるために、表示制御部211は、造形装置1が三次元構造物を付加造形するための造形動作を開始してからの進捗状況又は経過時間を表し、且つ、指定時点を特定可能な進捗オブジェクト9220を表示するためのGUI情報を生成してもよい。その結果、端末ユーザは、指定時点を比較的容易に指定することができる。
 進捗状況は、進捗率(つまり、パーセンテージ)で示されていてもよい。この場合、干渉予測部214(或いは、その他の機能ブロック)は、上述したシミュレーションにおいて、三次元構造物の造形の進捗に関する任意の情報(例えば、造形物の体積、造形物の面積、造形物の高さ、造形材料Mの供給量及び造形時間の少なくとも一つ)に基づいて進捗率を算出し、表示制御部211は、干渉予測部214が予測した進捗率を表示するためのGUI情報を生成してもよい。一例として、三次元構造物が50層の構造層から構成される場合には、10層目の構造層を造形している段階での進捗率は、10/50=0.2=20%となる。
 表示制御部211は、ヘッドモデルHM及び被干渉物モデルと共に(更には、場合によっては、干渉情報と共に)進捗オブジェクト9220を表示するためのGUI情報を生成してもよい。この場合、端末装置3の表示装置35は、出力画面92に、ヘッドモデルHM及び被干渉物モデルと共に、進捗オブジェクト9220を表示してもよい。
 造形動作を開始してからの進捗状況は、造形動作の全体の長さを100%とした場合の造形動作の進捗率を含んでいてもよい。上述したように三次元構造物を付加造形するために複数の構造層が付加造形されるがゆえに、造形動作を開始してからの進捗状況は、複数の構造層のうちの付加造形済みの構造層の数を含んでいてもよい。尚、造形動作は、加工光ELを射出し且つ造形材料Mを供給することで三次元構造物を実際に付加造形していく動作を含んでいてもよい。この場合、造形動作を開始してからの進捗状況又は経過時間は、三次元構造物を付加造形するために加工光ELを射出し且つ造形材料Mを供給し始めてからの進捗状況又は経過時間を意味していてもよい。或いは、造形動作は、三次元構造物を付加造形するために加工光ELを射出し且つ造形材料Mを供給する動作を開始する前に行われる事前動作を含んでいてもよい。この場合、造形動作を開始してからの進捗状況又は経過時間は、事前動作を開始してからの進捗状況又は経過時間を意味していてもよい。
 進捗オブジェクト9220の一例が、図18に示されている。図18に示すように、表示制御部211は、進捗オブジェクト9220の一例であるスライドバー(スライダ)9221を表示するためのGUI情報を生成してもよい。スライドバー9221は、バー本体9222と、ノブ9223とを含んでいてもよい。バー本体9222は、直線状に延びる表示オブジェクトである。バー本体9222の始点は、三次元構造物を造形するための造形動作の開始時点に対応し、バー本体9222の終点は、三次元構造物を造形するための造形動作の終了時点に対応していてもよい。ノブ9223は、端末ユーザが指定時刻を指定するために操作可能な表示オブジェクトである。端末ユーザは、バー本体9222に沿ってノブ9223を移動させることで、ノブ9223の位置に対応する時点を指定時点として指定してもよい。
 進捗オブジェクト9220を用いた端末ユーザの操作結果は、通信ネットワーク5を介して、端末装置3からデータ生成サーバ2に送信される。その結果、表示制御部211は、端末ユーザが指定した指定時点を特定することができる。指定時点が新たに指定された場合には、表示制御部211は、新たに指定された指定時点のヘッドモデルHM及び被干渉物モデルと共に、新たな指定時点に発生すると予測される干渉に関する干渉情報を表示するためのGUI情報を新たに生成(つまり、再生成)してもよい。例えば、第1の時点が指定時点として指定されている場合には、表示制御部211は、第1の時点時点のヘッドモデルHM及び被干渉物モデルと共に、第1の時点に発生すると予測される干渉に関する干渉情報を表示するための第1のGUI情報を生成している。この状況下で、第1の時点とは異なる第2の時点が新たに指定時点として指定された場合には、表示制御部211は、第2の時点のヘッドモデルHM及び被干渉物モデルと共に、第2の時点に発生すると予測される干渉に関する干渉情報を表示するための第2のGUI情報を生成してもよい。その結果、表示装置35は、第2の時点のヘッドモデルHM及び被干渉物モデルと共に、第2の時点に発生すると予測される干渉に関する干渉情報を表示する。その結果、端末ユーザは、端末ユーザが指定した指定時点のヘッドモデルHM及び被干渉物モデルと共に、指定時点に発生すると予測される干渉に関する干渉情報を認識することができる。
 第1の時点が指定時点として指定されている状況下で第2の時点が新たに指定時点として指定された場合には、表示制御部211は、第1の時点から第2の時点までの間の期間中のヘッドモデルHM及び被干渉物モデルの動きを示す動画と共に、第1の時点から第2の時点までの間の期間に発生すると予測される干渉に関する干渉情報を表示するための第3のGUI情報を生成してもよい。その結果、表示装置35は、第1の時点から第2の時点までの間の期間中のヘッドモデルHM及び被干渉物モデルの動きを示す動画と共に、第1の時点から第2の時点までの間の期間に発生すると予測される干渉に関する干渉情報を表示する。第2の時点が第1の時点よりも時間的に後の時点である場合には、表示装置35は、第1の時点から第2の時点までの間の期間中のヘッドモデルHM及び被干渉物モデルの動きを示す動画を順再生してもよい。第2の時点が第1の時点よりも時間的に前の時点である場合には、表示装置35は、第1の時点から第2の時点までの間の期間中のヘッドモデルHM及び被干渉物モデルの動きを示す動画を逆再生してもよい。その結果、端末ユーザは、第1の時点から第2の時点までの間の期間に加工ヘッド121の干渉が発生すると予測された原因の一つとしての加工ヘッド121と被干渉物との動きを直感的に認識することができ、その結果、第1の時点から第2の時点までの間の期間において干渉が発生すると予測された原因を直感的に認識することができる。
 上述したように干渉予測部214が加工ヘッド121の干渉が発生すると予測される干渉時点を予測している場合には、干渉情報は、加工ヘッド121の干渉が発生すると予測される干渉時点に関する情報を含んでいる。この場合、表示制御部211は、干渉時点に関する情報を含む干渉情報を表示するためのGUI情報を生成してもよい。例えば、表示制御部211は、干渉時点を示す指標9224が付与された進捗オブジェクト9220を表示するためのGUI情報を生成してもよい。干渉時点を示す指標9224の一例が、図19に示されている。図19に示すように、指標9224は、進捗オブジェクト9220の一例であるスライドバー9221のバー本体9222に付与されていてもよい。特に、指標9224は、バー本体9222のうちの干渉時点に対応する位置に付与されていてもよい。図19は、造形動作が開始されてからの経過時間が21分となる時点及び造形動作が開始されてからの経過時間が33分となる時点のそれぞれにおいて加工ヘッド121の干渉が発生すると予測された場合の指標9224の一例を示している。
 端末ユーザは、入力装置34を用いて指標9224を選択する操作を行うことで、指標9224が示す干渉時点を指定時点として指定してもよい。この場合、表示制御部211は、指定時点として指定された干渉時点のヘッドモデルHM及び被干渉物モデルと共に、指定時点として指定された干渉時点に発生すると予測される干渉に関する干渉情報を表示するためのGUI情報を生成してもよい。その結果、端末ユーザは、干渉が発生すると予測された干渉時点と共に直感的に認識することができると共に、干渉時点に発生すると予測された干渉の様子を直感的に認識することができる。
 上述したように干渉予測部214が干渉深度を予測している場合には、干渉情報は、干渉深度に関する情報を含んでいる。この場合、表示制御部211は、干渉深度に関する情報を含む干渉情報を表示するためのGUI情報を生成してもよい。例えば、表示制御部211は、干渉深度の違いに基づいて干渉情報の表示態様を変えるGUI情報を生成してもよい。一例として、上述したように、干渉情報がヘッドモデルHM及び被干渉物モデルの双方と共に表示される場合には、表示制御部211は、干渉深度の違いに基づいてヘッドモデルHM及び被干渉物モデルの少なくとも一方の表示態様を変えるGUI情報を生成してもよい。例えば、干渉深度の違いに基づいてヘッドモデルHM及び被干渉物モデルの少なくとも一方の表示態様を変える表示例が、図20に示されている。図20に示すように、表示制御部211は、ワークモデルWM(つまり、被干渉物モデル)の第1部分WP1に発生すると予測される干渉の干渉深度が、ワークモデルWMの第2部分WP2に発生すると予測される干渉の干渉深度と異なる場合に、第1部分WP1の表示態様と第2部分WP2の表示態様とを変えるGUI情報を生成してもよい。この場合、表示制御部211は、ワークモデルWMの各部分の表示態様を各部分の干渉深度に応じて変えるGUI情報を生成しているとみなしてもよい。表示態様は、上述したように、例えば、色、輝度及びハイライトの少なくとも一つを含んでいてもよい。この場合、表示装置35は、第1部分WP1の表示態様と第2部分WP2の表示態様とが異なるものとなるように、ヘッドモデルHM及び被干渉物モデルを表示してもよい。或いは、表示制御部211は、ヘッドモデルHMの第1部分に発生すると予測される干渉の干渉深度が、ヘッドモデルHMの第2部分に発生すると予測される干渉の干渉深度と異なる場合に、ヘッドモデルHMの第1部分の表示態様とヘッドモデルHMの第2部分の表示態様とを変えるGUI情報を生成してもよい。この場合、表示制御部211は、ヘッドモデルHMの各部分の表示態様を各部分の干渉深度に応じて変えるGUI情報を生成しているとみなしてもよい。その結果、端末ユーザは、加工ヘッド121に発生すると予測されている干渉の度合い(つまり、干渉深度)を直感的に認識することができる。
 一例として、干渉深度の違いに基づいて被干渉物モデルの色が変わる場合には、干渉予測部214は、ヘッドモデルHMと被干渉物モデルとが交差するか否かを判定する際に、ヘッドモデルHMと交差する被干渉物モデルの単位メッシュに色づけしてもよい。この場合、表示制御部212は、干渉予測部214が色づけした単位メッシュの色が、干渉予測部214が色づけしていない単位メッシュの色と異なる色となるように、被干渉物モデルの色を変えてもよい。この場合には、ヘッドモデルHMを構成するメッシュモデルと被干渉物モデルを構成するメッシュモデルとの交差が視覚化される。尚、ヘッドモデルHMと被干渉物モデルが実際には干渉していない部分にも色付けがされてもよい。
 干渉深度の違いに基づいてヘッドモデルHM及び被干渉物モデルの少なくとも一方の色が変わる場合には、干渉深度を表す色として、複数の色が用いられてもよい。例えば、表示制御部211は、暖色及び寒色を含む複数の色を用いて干渉深度の違いを表すGUI情報を生成してもよい。例えば、表示制御部211は、赤色、黄色、緑色及び青色を含む複数の色を用いて干渉深度の違いを表すGUI情報を生成してもよい。具体的には、表示制御部211は、ある部分の干渉深度が大きくなるほどある部分の色が暖色(例えば、赤色)に近づく一方で、ある部分の干渉深度が小さくなるほどある部分の色が寒色(例えば、青色)に近づくGUI情報を生成してもよい。この場合、GUI情報には、表示色に関する情報が含まれていてもよい。
 表示制御部211は、図19を参照しながら説明した指標9224(つまり、干渉時点を示す指標9224)の表示態様を、指標9224が示す干渉時点に発生すると予測された干渉の度合い(つまり、干渉深度)に応じて変えてもよい。つまり、表示制御部211は、指標9224が示す干渉時点に発生すると予測された干渉の度合い(つまり、干渉深度)に応じて指標9224の表示態様を変えるGUI情報を生成してもよい。例えば、図21に示すように、第1の指標9224が示す第1の干渉時点に発生すると予測された干渉の干渉深度が、第2の指標9224が示す第2の干渉時点に発生すると予測された干渉の干渉深度と異なる場合に、表示制御部211は、第1の指標9224の表示態様と第2の指標9224の表示態様とを変えるGUI情報を生成してもよい。この場合、表示装置35は、第1の指標9224の表示態様と第2の指標9224の表示態様とが異なるものとなるように、第1及び第2の指標9224を表示してもよい。この場合においても、端末ユーザは、加工ヘッド121に発生すると予測されている干渉の度合い(つまり、干渉深度)を直感的に認識することができる。
 干渉深度の違いに基づいて指標9224の色が変わる場合も、干渉深度の違いに基づいてヘッドモデルHM及び被干渉物モデルの少なくとも一方の色が変わる場合と同様に、干渉深度を表す色として、複数の色が用いられてもよい。例えば、表示制御部211は、暖色及び寒色を含む複数の色を用いて干渉深度の違いを表すGUI情報を生成してもよい。例えば、表示制御部211は、赤色、黄色、緑色及び青色を含む複数の色を用いて干渉深度の違いを表すGUI情報を生成してもよい。具体的には、表示制御部211は、ある干渉時点の干渉深度が大きくなるほどある干渉時点を示す指標9224の色が暖色(例えば、赤色)に近づく一方で、ある干渉時点の干渉深度が小さくなるほどある干渉時点を示す指標9224の色が寒色(例えば、青色)に近づくGUI情報を生成してもよい。
 表示制御部211は、動画を表示するためのGUI情報に、進捗状況又は経過時間に関する情報を埋め込んでもよい。表示制御部211は、動画を表示するためのGUI情報に、干渉の有無又は干渉深度に関する情報を埋め込んでいてもよい。表示制御部211は、動画を表示するためのGUI情報に、進捗状況又は経過時間と干渉の有無又は干渉深度とを関連付けた情報を埋め込んでいてもよい。データ生成サーバ2は、動画を表示するためのGUI情報とは別に、後述する進捗状況又は経過時間と干渉の有無又は干渉深度とを関連付けた情報を記憶していてもよい。この場合、後述する進捗状況又は経過時間と干渉の有無又は干渉深度とを関連付けた情報は、一時ファイルとして一時的に記憶されていてもよい。後述する形状情報の再設定が行われた場合には、データ生成サーバ2が記憶している進捗状況又は経過時間と干渉の有無又は干渉深度とを関連付けた情報が更新されてもよい。表示制御部211は、データ生成サーバ2が記憶している情報に基づいて、上述した各種表示を実現してもよい。
 加工ヘッド121と干渉する可能性がある複数の被干渉物が存在する場合には、干渉情報は、加工ヘッド121と被干渉物との干渉の予測結果に関する予測結果情報を、複数の被干渉物の数だけ含んでいる。この場合、表示制御部211は、複数の予測結果情報のうちの少なくとも一つを選択し、選択した少なくとも一つの予測結果情報を表示する一方で、選択しなかった少なくとも残りの一つの予測結果情報を表示しないためのGUI情報を生成してもよい。例えば、上述したように、加工ヘッド121と未完成造形物BO、ワークW及びステージ131のそれぞれが干渉する可能性がある場合には、干渉情報は、加工ヘッド121と未完成造形物BOとの干渉の予測結果に関する第1の予測結果情報と、加工ヘッド121とワークWとの干渉の予測結果に関する第2の予測結果情報と、加工ヘッド121とステージ131との干渉の予測結果に関する第3の予測結果情報とを含んでいてもよい。この場合、表示制御部211は、第1から第3の予測結果情報のうちの少なくとも一つを選択し、選択した少なくとも一つの予測結果情報を表示する一方で、選択しなかった少なくとも残りの一つの予測結果情報を表示しないためのGUI情報を生成してもよい。例えば、表示制御部211は、第1から第3の予測結果情報のうちの端末ユーザが選択した少なくとも一つの被干渉物に対応する少なくとも一つの予測結果情報を表示する一方で、端末ユーザが選択しなかった少なくとも残りの一つの被干渉物に対応する予測結果情報を表示しないためのGUI情報を生成してもよい。例えば、端末ユーザが干渉情報を表示する被干渉物として未完成造形物BOを選択した場合には、図22に示すように、表示制御部211は、第1の予測結果情報を表示する一方で、第2から第3の予測結果情報を表示しないためのGUI情報を生成してもよい。また、表示制御部211は、予測結果情報(つまり、干渉情報)に加えて、端末ユーザが選択した少なくとも一つの被干渉物の三次元モデルを表示する一方で、端末ユーザが選択しなかった少なくとも残りの一つの被干渉物の三次元モデルを表示しないためのGUI情報を生成してもよい。図22は、端末ユーザが選択した未完成造形物BOの未完成造形モデルBMを表示する一方で、端末ユーザが選択しなかったワークWのワークモデルWM及びステージ131のステージモデルSMを表示しない例を示している。この場合、表示装置35は、端末ユーザが知りたい干渉情報を選択的に表示することができる。このため、表示装置35は、干渉情報が表示される出力画面92を簡略化しつつも、端末ユーザが知りたい干渉情報を確実に表示することができる。なお、表示制御部211は、端末ユーザの選択または非選択により、ヘッドモデルHMを表示しないためのGUI情報を生成してもよい。端末ユーザが各三次元モデルの表示又は非表示を選択可能であってもよい。
 再び図6において、表示装置35に表示された干渉情報を認識した端末ユーザは、入力装置34を用いて、入力画面91上で形状情報を再設定するための操作を再度行ってもよい(ステップS13)。つまり、端末ユーザは、入力装置34の再入力を行ってもよい。具体的には、干渉情報が、加工ヘッド121と被干渉物との干渉が発生するという予測結果を示す情報を含んでいる場合には、仮に形状情報が再設定されなければ、造形装置1は、再設定されていない形状情報に基づいて生成された造形データに基づいて造形動作を行うことになる。しかしながら、加工ヘッド121と被干渉物との干渉が発生すると予測されたがゆえに、造形動作の途中で加工ヘッド121と被干渉物との干渉が発生する可能性が高い。その結果、造形装置1は、三次元構造物を適切に付加造形することができない可能性がある。そこで、端末ユーザは、加工ヘッド121と被干渉物との干渉が発生しなくなるように、形状情報を再設定してもよい(ステップS13)。
 尚、端末ユーザは、入力装置34を用いて、ワークモデルWM及びヘッドモデルHMの少なくとも一方に関する情報を設定してもよい。例えば、端末ユーザは、入力装置34を用いて、ワークモデルWM及びヘッドモデルHMの少なくとも一方の位置に関する情報を設定してもよい。例えば、端末ユーザは、入力装置34を用いて、ワークモデルWM及びヘッドモデルHMの少なくとも一方の形状に関する情報を設定してもよい。このような場合、データ生成サーバ2は、三次元構造物を適切に付加造形する可能性をより正確に予測することができる。このとき、入力装置34を用いて入力できる値が制限されてもよい。例えば、ワークモデルWMのサイズ(例えば、高さ及び幅の少なくとも一方)をマイナスの値に設定する入力が制限されてもよい。 
 形状情報が再設定された場合には、データ生成部213は、再設定された形状情報に基づく付加造形モデルを表す付加造形モデルデータを再生成してもよい(ステップS14)。その後、表示制御部211は、再生成された付加造形モデルデータが表す付加造形モデルが表示される出力画面92を含む設定GUI9に関するGUI情報を再生成してもよい(ステップS14)。その後、表示制御部211は、再生成されたGUI情報を、表示装置35に送信してもよい(ステップS14)。その後、表示装置35は、再生成されたGUI情報に基づいて、付加造形モデルを含む設定GUI9の表示を更新してもよい(ステップS14)。
 データ生成部213は、端末ユーザによって形状情報が再設定されたことをトリガに、再設定された形状情報に基づく付加造形モデルを表す付加造形モデルデータを再生成してもよい。その後、表示制御部211は、付加造形モデルデータが再生成されたことをトリガに、再生成された付加造形モデルデータが表す付加造形モデルが表示される出力画面92を含む設定GUI9に関するGUI情報を再生成してもよい。その後、表示制御部211は、GUI情報が再生成されたことをトリガに、再生成されたGUI情報を、表示装置35に再送信してもよい。その後、表示装置35は、GUI情報が再送信されたことをトリガに(言い換えれば、端末装置3がGUI情報を再受信したことをトリガに)、再送信されたGUI情報に基づいて、設定GUI9の表示を更新してもよい。この場合、設定GUI9の出力画面92に表示される付加造形モデルが、形状情報の再設定に合わせて逐次更新される。典型的には、設定GUI9の出力画面92に表示される付加造形モデルが、形状情報の再設定に合わせてリアルタイムに更新される。その結果、端末ユーザは、端末ユーザが再設定した形状情報が示す三次元形状を有する付加造形モデルを逐次(典型的には、リアルタイムに)認識しながら、形状情報を再設定することができる。
 但し、データ生成部213は、端末ユーザ、サーバユーザ又は造形ユーザの要求の入力をトリガに、再設定された形状情報に基づく付加造形モデルを表す付加造形モデルデータを再生成してもよい。表示制御部211は、端末ユーザ、サーバユーザ又は造形ユーザの要求の入力をトリガに、再生成された付加造形モデルデータが表す付加造形モデルが表示される出力画面92を含む設定GUI9に関するGUI情報を再生成してもよい。表示制御部211は、端末ユーザ、サーバユーザ又は造形ユーザの要求の入力をトリガに、再生成されたGUI情報を、表示装置35に再送信してもよい。表示装置35は、端末ユーザ、サーバユーザ又は造形ユーザの要求の入力をトリガに、再送信されたGUI情報に基づいて、設定GUI9の表示を更新してもよい。この場合、設定GUI9の出力画面92に表示される付加造形モデルが、端末ユーザ、サーバユーザ又は造形ユーザの要求に合わせて逐次更新される。
 更に、形状情報が再設定された場合には、干渉予測部214は、データ生成部213が形状情報から再生成した付加造形モデルデータに基づいて、加工ヘッド121の干渉が発生するか否かを再予測してもよい(ステップS15)。その後、表示制御部211は、干渉予測部214による干渉の再予測結果を示す干渉情報を端末装置3の表示装置35に表示するためのGUI情報を再生成してもよい(ステップS16)。その後、表示制御部211は、再生成されたGUI情報を、表示装置35に再送信してもよい(ステップS16)。その後、表示装置35は、再生成されたGUI情報に基づいて、干渉情報を含む設定GUI9の表示を更新してもよい(ステップS16)。
 干渉予測部214は、端末ユーザによって形状情報が再設定されたことをトリガに、加工ヘッド121の干渉が発生するか否かを再予測してもよい。その後、表示制御部211は、加工ヘッド121の干渉が発生するか否かが再予測されたことをトリガに、干渉予測部214による干渉の再予測結果を示す干渉情報を端末装置3の表示装置35に表示するためのGUI情報を再生成してもよい。その後、表示制御部211は、GUI情報が再生成されたことをトリガに、再生成されたGUI情報を、表示装置35に再送信してもよい。その後、表示装置35は、GUI情報が再送信されたことをトリガに(言い換えれば、端末装置3がGUI情報を再受信したことをトリガに)、再送信されたGUI情報に基づいて、干渉情報を含む設定GUI9の表示を更新してもよい。この場合、設定GUI9の出力画面92に表示される干渉情報(更には、ヘッドモデルHM及び被干渉物モデル)が、形状情報の再設定に合わせて逐次更新される。典型的には、設定GUI9の出力画面92に表示される干渉情報(更には、ヘッドモデルHM及び被干渉物モデル)が、形状情報の再設定に合わせてリアルタイムに更新される。その結果、端末ユーザは、形状情報の再設定が加工ヘッド121の干渉に対して与える影響を逐次(典型的には、リアルタイムに)認識しながら、形状情報を再設定することができる。
 但し、干渉予測部214は、端末ユーザ、サーバユーザ又は造形ユーザの要求の入力をトリガに、加工ヘッド121の干渉が発生するか否かを再予測してもよい。表示制御部211は、端末ユーザ、サーバユーザ又は造形ユーザの要求の入力をトリガに、干渉予測部214による干渉の再予測結果を示す干渉情報を表示するためのGUI情報を再生成してもよい。表示制御部211は、端末ユーザ、サーバユーザ又は造形ユーザの要求の入力をトリガに、再生成されたGUI情報を、表示装置35に再送信してもよい。表示装置35は、端末ユーザ、サーバユーザ又は造形ユーザの要求の入力をトリガに、再送信されたGUI情報に基づいて、干渉情報を含む設定GUI9の表示を更新してもよい。この場合、設定GUI9の出力画面92に表示される干渉情報(更には、ヘッドモデルHM及び被干渉物モデル)が、端末ユーザ、サーバユーザ又は造形ユーザの要求に合わせて逐次更新される。
 上述したように、設定GUI9は、形状情報を設定するための入力画面91と、ヘッドモデルHM及び被干渉物モデルと共に干渉情報を表示するための出力画面92とを含んでいる。この場合、端末ユーザは、出力画面92に表示される干渉情報を認識しながら、出力画面92と並んで表示される入力画面91を用いて形状情報を再設定することができる。このため、端末ユーザは、形状情報の再設定が加工ヘッド121の干渉に対して与える影響を出力画面92で認識しながら、入力画面91を用いて形状情報を効率的に再設定することができる。
 端末ユーザは、表示装置35に表示される干渉情報が、加工ヘッド121の干渉が発生しないと予測されたことを示す(或いは、加工ヘッド121の干渉が発生すると予測されなかったことを示す)ようになるまで、形状情報の再設定を繰り返してもよい。つまり、端末ユーザは、加工ヘッド121の干渉が発生するという予測結果に関する情報を含んでいた干渉情報が、加工ヘッド121の干渉が発生しないという予測結果に関する情報を含む干渉情報に変わるまで、形状情報の再設定を繰り返してもよい。形状情報の再設定によって加工ヘッド121の干渉が発生しないと予測されたことを干渉情報が示すようになった場合には、図15から図17に示す出力画面92が表示装置35に表示されるがゆえに、端末ユーザは、形状情報の再設定によって加工ヘッド121の干渉が発生しないと予測されたことを認識することができる。尚、形状情報の再設定によって加工ヘッド121の干渉が発生しないと予測されたことを干渉情報が示すようになった場合には、表示制御部211は、形状情報が再設定される前には発生すると予測されていた加工ヘッド121の干渉が解消されたことを端末ユーザに通知するための通知画面を表示するためのGUI情報を生成してもよい。
 一方で、端末ユーザによる形状情報の再設定の内容によっては、形状情報の再設定によって、加工ヘッド121の干渉が発生しないという予測結果に関する情報を含んでいた干渉情報が、加工ヘッド121の干渉が発生するという予測結果に関する情報を含む干渉情報に変わってしまう可能性もある。この場合においても、端末ユーザは、表示装置35に表示される干渉情報を認識することで、現状の形状情報では加工ヘッド121の干渉が発生すると予測されていることを認識することができる。このため、端末ユーザは、表示装置35に表示される干渉情報が、加工ヘッド121の干渉が発生しないと予測されたことを示すようになるまで、形状情報の再設定を繰り返してもよいことに変わりはない。
 尚、端末ユーザは、加工ヘッド121の干渉が発生しないと予測されたことを干渉情報が示すようになるまで、形状情報の再設定を繰り返さなくてもよい。例えば、端末ユーザは、干渉情報が、加工ヘッド121の干渉が発生することを示しているものの、その干渉の度合いが許容値よりも小さいことを示している場合には、形状情報の再設定を行わなくてもよい。例えば、端末ユーザは、干渉情報が、加工ヘッド121の干渉が発生することを示しているものの、その干渉の度合いが許容値よりも小さいことを示すようになるまで、形状情報の再設定を繰り返してもよい。
 端末ユーザが形状情報を設定する場合には、データ生成サーバ2の修正提案部215は、形状情報の再設定(つまり、修正)を、端末ユーザに提案してもよい(ステップS17)。例えば、修正提案部215は、加工ヘッド121の干渉が発生しないと予測されるように形状情報を再設定するための方法を、端末ユーザに提案してもよい。例えば、修正提案部215は、加工ヘッド121の干渉が発生すると予測されなくなるように形状情報を再設定するための方法を、端末ユーザに提案してもよい。このため、修正提案部215は、干渉情報に基づいて(更には、必要に応じて、ヘッドモデルHM、被干渉物モデル及び付加造形モデルデータの少なくとも一つに基づいて)、加工ヘッド121の干渉が発生しなくなる三次元構造物の形状を算出してもよい。その後、修正提案部215は、算出した形状を示す形状情報が生成されるように形状情報を再設定するための方法を特定し、特定した方法を端末ユーザに提案してもよい。この場合、端末ユーザは、修正提案部215によって提案された方法で形状情報を再設定することで、加工ヘッド121の干渉が発生しないと予測されるように、形状情報を比較的容易に再設定することができる。
 一例として、例えば、三次元構造物がパイプである場合には、パイプの曲げ角度(つまり、パイプを構成するように互いに連結され且つ互いに異なる方向に延びる二つのパイプ部分がなす角度)が、加工ヘッド121の干渉に相対的に大きな影響を与える。典型的には、パイプの曲げ角度が大きくなるほど、加工ヘッド121が未完成造形物BO、ワークW及びステージ131の少なくとも一つと干渉する可能性が高くなる。このため、修正提案部215は、パイプの曲げ角度が小さくなるように形状情報を再設定するための方法を、端末ユーザに提案してもよい。
 上述したように、形状情報を設定するために、端末ユーザは、三次元構造物の形状を指定するパラメータの値を設定してもよい。この場合、修正提案部215は、パラメータの推奨値を端末ユーザに提案してもよい。つまり、修正提案部215は、形状情報を再設定するための方法として、パラメータの推奨値を端末ユーザに提案してもよい。例えば、修正提案部215は、加工ヘッド121の干渉が発生しないと予測される状態を実現可能なパラメータの値を、推奨値として端末ユーザに提案してもよい。一例として、三次元構造物がパイプである場合には、修正提案部215は、パイプの少なくとも一部分の位置を指定するパラメータの推奨値、パイプの少なくとも一部分の方向を指定するパラメータの推奨値、パイプの少なくとも一部分の曲率の大きさを指定するパラメータの推奨値、パイプの少なくとも一部分のサイズを指定するパラメータの推奨値、パイプの少なくとも一部分の隔壁の厚みを指定するパラメータの推奨値、パイプの少なくとも一部分の角度(回転角度)を指定するパラメータの推奨値、パイプの少なくとも一部分の分岐の有無を指定するパラメータの推奨値、パイプの少なくとも一部分の合流の有無を指定するパラメータの推奨値、パイプの少なくとも一部分の多重構造を指定するパラメータの推奨値、及び、パイプ端部の形状を指定するパラメータの推奨値のうちの少なくとも一つを提案してもよい。
 修正提案部215は、二つ以上の推奨値を端末ユーザに提案してもよい。この場合、端末ユーザは、入力装置34を用いて、二つ以上の推奨値のうちの一つを選択してもよい。端末ユーザは、入力装置34を用いて、二つ以上の推奨値のうちの一つを、パラメータの値として採用してもよい。
 修正提案部215は、パラメータの推奨値として、パラメータの値として推奨される範囲を端末ユーザに提案してもよい。例えば、修正提案部215は、パラメータの推奨値として、パラメータの値として推奨される最大値及び最小値を端末ユーザに提案してもよい。この場合、端末ユーザは、入力装置34を用いて、パラメータの値として推奨される範囲内において、パラメータを再設定してもよい
 修正提案部215は、三次元構造物の推奨形状を端末ユーザに提案してもよい。つまり、修正提案部215は、形状情報を再設定するための方法として、三次元構造物の推奨形状を端末ユーザに提案してもよい。例えば、修正提案部215は、加工ヘッド121の干渉が発生しないと予測される状態を実現可能な三次元構造物の形状を、推奨形状として端末ユーザに提案してもよい。
 修正提案部215は、二つ以上の推奨形状を端末ユーザに提案してもよい。この場合、端末ユーザは、入力装置34を用いて、二つ以上の推奨形状のうちの一つを選択してもよい。端末ユーザは、入力装置34を用いて、二つ以上の推奨形状のうちの一つを実現するように、パラメータの値を再設定してもよい。
 尚、修正提案部215は、形状情報の再設定を提案することに加えて又は代えて、加工ヘッド121の干渉をなくすための任意の方法を端末ユーザに提案してもよい。例えば、三次元構造物が付加造形されるワークWの形状が、加工ヘッド121の干渉に影響を与える可能性がある。具体的には、相対的に薄いワークWがステージ131に載置されている場合には、三次元構造物が付加造形されるワークWの表面がステージ131の表面に相対的に近い位置に位置する。このため、ワークWの表面に三次元構造物を付加造形する加工ヘッド121が、ステージ131の表面と干渉する可能性が相対的に高くなる。一方で、相対的に厚いワークWがステージ131に載置されている場合には、三次元構造物が付加造形されるワークWの表面がステージ131の表面から相対的に遠い位置に位置する。このため、ワークWの表面に三次元構造物を付加造形する加工ヘッド121が、ステージ131の表面と干渉する可能性が相対的に低くなる。このため、修正提案部215は、加工ヘッド121の干渉が発生しないと予測される状態を実現可能なワークWの厚みを、加工ヘッド121の干渉をなくすための任意の方法として端末ユーザに提案してもよい。
 修正提案部215は、形状情報の再設定を端末ユーザに提案するための表示オブジェクトである提案オブジェクト93を端末装置3の表示装置35に表示することで、形状情報の再設定を端末ユーザに提案してもよい。この場合、表示制御部211は、修正提案部215の制御下で、形状情報の再設定を端末ユーザに提案するための提案オブジェクト93を表示するための表示データを生成してもよい。その後、表示制御部211は、生成した表示データを、通信装置23を用いて端末装置3に送信してもよい。端末装置3は、データ生成サーバ2から送信された表示データを受信してもよい。端末装置3の表示装置35は、データ生成サーバ2から送信された表示データに基づいて、提案オブジェクト93を表示してもよい。
 上述したように、表示制御部211は、設定GUI9を表示装置35に表示するためのGUI情報を生成している。この場合、表示制御部211は、提案オブジェクト93を含む設定GUI9を表示装置35に表示するためのGUI情報を、提案オブジェクト93を表示するための表示データとして生成してもよい。つまり、提案オブジェクト93は、設定GUI9に表示されてもよい。例えば、図23に示すように、提案オブジェクト93は、設定GUI9に含まれる入力画面91に表示されてもよい。例えば、提案オブジェクト93は、設定GUI9に含まれる出力画面92に表示されてもよい。
 或いは、修正提案部215は、形状情報の再設定を端末ユーザに提案することに加えて又は代えて、形状情報を直接再設定(つまり、修正)してもよい。例えば、修正提案部215は、加工ヘッド121の干渉が発生しないと予測されるように、形状情報を再設定してもよい。この場合、端末ユーザが形状情報を手動で再設定しなくても、加工ヘッド121の干渉が発生しないと予測されるように、形状情報がいわば自動的に再設定可能となる。
 再び図6において、データ生成サーバ2のデータ生成部213は、設定GUI9を用いて形状情報を設定する(或いは、再設定する、以下同じ)動作が終了したか否かを判定する(ステップS18)。例えば、データ生成部213は、形状情報を設定する動作を終了することを端末装置3の入力装置34を用いて端末ユーザが指示した場合に、設定GUI9を用いて形状情報を設定する動作が終了したと判定してもよい。
 ステップS18における判定の結果、設定GUI9を用いて形状情報を設定する動作が終了していないと判定される場合には(ステップS18:No)、設定GUI9を用いて形状情報を設定する動作が継続される。つまり、造形システムSYSは、ステップS13からステップS17までの動作を継続する。
 他方で、設定GUI9を用いて形状情報を設定する動作が終了したと判定される場合には(ステップS18:Yes)、データ生成部213は、ステップS13において情報取得部212が取得した最新の形状情報に基づいて、端末ユーザが設定した形状情報によって指定される形状を有する三次元構造物の三次元モデルを表す三次元モデルデータ(つまり、付加造形モデルを表す付加造形モデルデータ)を生成する(ステップS19)。形状情報が再設定されている場合には、データ生成部213は、端末ユーザによって再設定された最新の形状情報に基づいて、付加造形モデルデータを生成する。
 三次元モデルデータのフォーマットは、どのようなフォーマットであってもよい。例えば、データ生成部213は、STL(Standard Triangulated Language)ファイルフォーマットに準拠した付加造形モデルデータを生成してもよい。例えば、データ生成部213は、STEP(Standard for Exchange of Product Model Data)ファイルフォーマットに準拠した付加造形モデルデータを生成してもよい。例えば、データ生成部213は、IGES(Initial Graphics Exchange Specification)ファイルフォーマットに準拠した付加造形モデルデータを生成してもよい。例えば、データ生成部213は、DWGファイルフォーマットに準拠した付加造形モデルデータを生成してもよい。例えば、データ生成部213は、DXF(Drawing Exchange Format)ファイルフォーマットに準拠した付加造形モデルデータを生成してもよい。例えば、データ生成部213は、VRML(Virtual Reality Modeling Language)ファイルフォーマットに準拠した付加造形モデルデータを生成してもよい。例えば、データ生成部213は、ISO10303ファイルフォーマットに準拠した付加造形モデルデータを生成してもよい。
 尚、付加造形モデルを端末装置3の表示装置35に表示するために付加造形モデルデータが生成されることは、上述したとおりである(図6のステップS14参照)。この場合、ステップS14において付加造形モデルを端末装置3の表示装置35に表示するために生成された付加造形モデルデータが、最新の形状情報に基づく付加造形モデルを表している場合には、データ生成部213は、ステップS19において付加造形モデルデータを改めて生成しなくてもよい。
 データ生成部213は、生成した付加造形モデルデータを、記憶装置22に記憶させてもよい。或いは、データ生成部213は、生成した付加造形モデルデータに加えて又は代えてを、付加造形モデルデータを生成するために用いた形状情報(つまり、端末ユーザが設定したパラメータ等の形状情報)を記憶装置22に記憶させてもよい。記憶装置22が形状情報を記憶する場合、データ生成部213は、記憶装置22が記憶している形状情報に基づいて、付加造形モデルデータを生成してもよい。データ生成部213は、記憶装置22が記憶している形状情報に基づいて、生成済みの付加造形モデルデータを再度生成(つまり、復元)してもよい。データ生成部213は、復元した付加造形モデルデータに基づいて、復元した付加造形モデルデータが表す三次元構造物に対して新たな部分(例えば、ネジ部分等)を追加することで得られる新たな三次元構造物を表す新たな付加造形モデルデータを生成してもよい。つまり、データ生成部213は、復元した付加造形モデルデータを改変してもよい。
 また、データ生成部213は、設定GUI9を用いて形状情報を設定する動作が終了したと判定された後に、設定された形状情報を記憶装置22に記憶させてもよい。また、データ生成部213は、設定GUI9を用いて形状情報を設定する動作が終了したと判定される前に、それまでに設定された形状情報(設定途中の形状情報)を記憶装置22に記憶させてもよい。例えば、データ生成部213は、設定GUI9を用いて形状情報を設定する動作が終了していないものの、当該動作を一時的に中断したいと端末ユーザが希望する場合に、それまでに設定された形状情報(設定途中の形状情報)を記憶装置22に記憶させてもよい。この場合、端末ユーザが形状情報の設定を再開する際には、表示制御部211は、設定途中の形状情報に基づいて、続きから形状情報を設定するために端末ユーザが用いる設定GUI9を表示装置35に表示させてもよい。
 その後、データ生成部213は、通信装置23を用いて、ステップS19(或いは、ステップS14)で生成した最新の付加造形モデルデータを造形装置1に送信する。尚、データ生成部213は、サーバユーザ(或いは、端末ユーザ又は造形ユーザ)の指示に基づいて、付加造形モデルデータを造形装置1に送信してもよい。或いは、データ生成部213は、サーバユーザ(或いは、端末ユーザ又は造形ユーザ)の指示を待つことなく、付加造形モデルデータを自動的に造形装置1に送信してもよい。造形装置1の制御装置17は、通信装置18を用いて、データ生成サーバ2から送信された付加造形モデルデータを受信(取得)する。
 尚、加工ヘッド121の干渉が発生すると干渉予測部214が依然として予測している状況下では、データ生成部213は、付加造形モデルデータを造形装置1に送信しなくてもよい。或いは、データ生成部213は、加工ヘッド121の干渉が発生すると予測されている旨を示すデータを付与した付加造形モデルデータを造形装置1に送信してもよい。例えば、データ生成部213は、加工ヘッド121の干渉が発生すると予測されている旨を示す干渉フラグをヘッダに付与した付加造形モデルデータを造形装置1に送信してもよい。例えば、データ生成部213は、加工ヘッド121の干渉が発生すると予測されている旨を示す「干渉NG」というテキストをデータ名(ファイル名)に付与した付加造形モデルデータを造形装置1に送信してもよい。
 その後、制御装置17は、付加造形モデルデータに基づいて、造形装置1の動作内容を規定する造形データを生成する(ステップS20)。具体的には、制御装置17は、付加造形モデルデータに基づいて、付加造形モデルデータが表す三次元構造物(つまり、端末ユーザが設定した形状情報によって規定される形状を有する三次元構造物)を付加造形するための造形装置1の動作内容を規定する造形データを生成する。つまり、制御装置17は、付加造形モデルデータに基づいて、付加造形モデルデータが表す三次元構造物を付加造形するように造形装置1を動作させる造形データを生成する。
 造形データは、ステージ131に対する加工ヘッド121の相対的な移動軌跡を示すパス情報を含んでいてもよい。ステージ131に対する加工ヘッド121の相対的な移動に伴って、照射光学系1211からの加工光ELの照射位置及び材料ノズル1212からの造形材料Mの供給位置もまた、ステージ131に対して相対的に移動する。このため、パス情報は、ステージ131に対する加工光ELの照射位置及び造形材料Mの供給位置のそれぞれの相対的な移動軌跡を示しているとみなしてもよい。
 尚、形状情報が再設定された場合に付加造形モデルデータが再生成されてもよいことは、上述したとおりである(図6のステップS14参照)。このように付加造形モデルデータが再生成される場合には、制御装置17は、再生成された付加造形モデルデータ(つまり、最新の形状情報に基づく最新の付加造形モデルデータ)に基づいて造形データを生成することになる。
 その後、制御装置17は、ステップS20で生成された造形データに基づいて、三次元構造物(つまり、端末ユーザが設定した形状を有する三次元構造物)を造形するように、造形装置1の動作を制御する(ステップS21)。その結果、端末ユーザが設定した形状を有する三次元構造物が造形される。
 (3)造形システムSYSの技術的効果
 以上説明したように、本実施形態の造形システムSYSでは、端末ユーザは、三次元構造物の形状を指定するパラメータの値を設定する及び/又はアイコンを選択することで、付加造形モデルデータを生成することができる。つまり、端末ユーザは、三次元CAD(Computer Aided Design)ソフト等の高度な専門知識を必要とするソフトウェアを用いることなく、付加造形モデルデータを生成することができる。つまり、データ生成サーバ2は、設定GUI9を端末ユーザに提供することで、ユーザが付加造形モデルデータを生成することを適切に支援することができる。
 更に、表示装置35は、加工ヘッド121の干渉が発生するか否かの予測結果に関する情報を含む干渉情報を表示することができる。この場合、端末ユーザは、表示装置35に表示された干渉情報を認識しながら、形状情報を再設定することができる。このため、端末ユーザは、端末ユーザ自身が設定した形状情報が、加工ヘッド121の干渉につながるか否かを適切に認識することができる。このため、端末ユーザは、加工ヘッド121の干渉が発生しなくなるように、形状情報を適切に設定することができる。
 更に、表示装置35は、端末ユーザによって指定された指定時点に加工ヘッド121の干渉が発生するか否かの予測結果に関する情報を含む干渉情報を表示することができる。このため、端末ユーザは、ある時点で加工ヘッド121の干渉が発生する可能性があるか否かを適切に認識することができる。このため、端末ユーザは、ある時点での加工ヘッド121の干渉が発生しなくなるように、形状情報を適切に設定することができる。
 (4)変形例
 続いて、造形システムSYSの変形例について説明する。
 (4-1)第1変形例
 第1変形例では、データ生成サーバ2は、端末ユーザが設定した形状情報が指定する形状を有する三次元構造物を加工ヘッド121が付加造形すると仮定した場合に、付加造形された三次元構造物が加工空間BAの範囲内に収まるか否かを判定してもよい。三次元構造物と加工空間BAとの位置関係の一例が、図24(a)及び図24(b)に示されている。図24(a)は、加工空間BAに収まる三次元構造物の一例を示している。一方で、図24(b)は、加工空間BAに収まらない(つまり、加工空間BAから逸脱する)三次元構造物の一例を示している。
 加工空間BAは、加工ヘッド121が付加造形を行うべき空間として予め設定された空間である。例えば、ステージ131に載置されたワークW上で付加造形が行われるため、加工空間BAは、ステージ131の上方の空間を含んでいてもよい。例えば、ステージ131と加工ヘッド121との間において付加造形が行われるため、加工空間BAは、ステージ131と加工ヘッド121との間の空間を含んでいてもよい。
 データ生成サーバ2は、図6のステップS14で表示する付加造形モデル(つまり、三次元構造物の三次元モデル)と共に、加工空間BAの範囲を表示するための表示データ(例えば、GUI情報)を生成してもよい。この場合、端末ユーザは、端末ユーザが設定した形状情報によって指定される形状を有する三次元構造物が、加工空間BA内で付加造形可能か否かを直感的に認識することができる。
 三次元構造物が加工空間BAの範囲内に収まらないと判定された場合には、端末ユーザは、入力装置34を用いて、入力画面91上で形状情報を再設定するための操作を再度行ってもよい。例えば、端末ユーザは、三次元構造物が加工空間BAの範囲内に収まるように、形状情報を再設定してもよい。
 尚、三次元構造物が加工空間BAの範囲内に収まらないと依然として判定されている状況下では、データ生成部213は、付加造形モデルデータを造形装置1に送信しなくてもよい。或いは、データ生成部213は、三次元構造物が加工空間BAの範囲内に収まらない旨を示すデータを付与した付加造形モデルデータを造形装置1に送信してもよい。例えば、データ生成部213は、三次元構造物が加工空間BAの範囲内に収まらない旨を示す加工範囲NGフラグをヘッダに付与した付加造形モデルデータを造形装置1に送信してもよい。例えば、データ生成部213は、三次元構造物が加工空間BAの範囲内に収まらない旨を示す「加工範囲NG」というテキストをデータ名(ファイル名)に付与した付加造形モデルデータを造形装置1に送信してもよい。
 (4-2)その他の変形例
 上述した説明では、データ生成サーバ2が、形状情報に基づいて付加造形モデルデータを生成し、付加造形モデルデータに基づいて、加工ヘッド121の干渉が発生するか否かを予測している。しかしながら、データ生成サーバ2とは異なる干渉予測装置が、付加造形モデルデータに基づいて、加工ヘッド121の干渉が発生するか否かを予測してもよい。この場合、データ生成サーバ2は、生成した付加造形モデルデータを干渉予測装置に送信し、干渉予測装置は、データ生成サーバ2から送信された付加造形モデルデータに基づいて、加工ヘッド121の干渉が発生するか否かを予測してもよい。干渉予測装置は、造形装置1の制御装置17に含まれていてもよい。干渉予測装置は、造形装置1とは異なる装置であってもよい。尚、データ生成サーバ2が加工ヘッド121の干渉が発生するか否かを予測しない場合には、データ生成サーバ2は、干渉予測部214を備えていなくてもよい。
 上述した説明では、造形装置1の制御装置17が、付加造形モデルデータに基づいて、造形データを生成している。しかしながら、造形装置1の制御装置17とは異なる造形データ生成装置が、付加造形モデルデータに基づいて、造形データを生成してもよい。この場合、データ生成サーバ2は、生成した付加造形モデルデータを造形データ生成装置に送信し、造形データ生成装置は、データ生成サーバ2から送信された付加造形モデルデータに基づいて、造形データを生成してもよい。造形データ生成装置は、データ生成サーバ2の演算装置21によって実現されていてもよい。造形データ生成装置は、データ生成サーバ2とは異なる装置であってもよい。造形データ生成装置は、いわゆるスライサと称される装置であってもよい。
 上述した説明では、データ生成サーバ2が、形状情報の再設定(つまり、修正)を、端末ユーザに提案している。しかしながら、データ生成サーバ2は、形状情報の再設定を、端末ユーザに提案しなくてもよい。この場合、データ生成サーバ2は、修正提案部215を備えていなくてもよい。或いは、データ生成サーバ2とは異なる修正提案装置が、形状情報の再設定(つまり、修正)を、端末ユーザに提案してもよい。
 上述した説明では、造形装置1は、造形材料Mに加工光ELを照射することで、造形材料Mを溶融させている。しかしながら、造形装置1は、任意のエネルギービームを造形材料Mに照射することで、造形材料Mを溶融させてもよい。任意のエネルギービームの一例として、荷電粒子ビーム及び電磁波等の少なくとも一つがあげられる。荷電粒子ビームの一例として、電子ビーム及びイオンビーム等の少なくとも一つがあげられる。
 上述した説明では、造形装置1は、レーザ肉盛溶接法に基づく付加加工を行うことで、三次元構造物を造形している。しかしながら、造形装置1は、三次元構造物を形成可能なその他の方式に準拠した付加加工を行うことで、三次元構造物を造形してもよい。或いは、造形装置1は、付加加工を行うことに加えて又は代えて、除去加工を行うことで、三次元構造物を造形してもよい。造形装置1は、付加加工及び除去加工の少なくとも一つを行うことに加えて又は代えて、機械加工を行うことで、三次元構造物を造形してもよい。
 上述した説明では、造形装置1は、ワークWに対して付加加工を行うことで三次元構造物を付加造形する加工ヘッド121を備えている。しかしながら、造形装置1は、加工ヘッド121に加えて又は代えて、計測対象物(例えば、ワークW及び造形物の少なくとも一方)を計測する計測ヘッドを備えていてもよい。この場合、データ生成サーバ2は、加工ヘッド121がワークWを付加加工する場合に加工ヘッド121と被干渉物の干渉が発生するか否かを予測する場合と同様に、計測ヘッドが計測対象物を計測する場合に計測ヘッドと被干渉物の干渉が発生するか否かを予測してもよい。計測対象物を計測するために、計測ヘッドは、計測装置を備えていてもよい。計測装置の一例として、計測対象物の特性(例えば、位置及び形状の少なくとも一つ)を計測可能な計測装置があげられる。計測装置は、例えば、二次元撮像装置、三次元撮像装置、変位計、レーザ光源及びビーム光源のうちの少なくとも一つを含んでいてもよい。
 (5)付記
 以上説明した実施形態に関して、更に以下の付記を開示する。
[付記1]
 計測ヘッドが第1物体を計測する場合に発生すると予測される、前記計測ヘッドと第2物体との干渉の表示に関するデータを生成するデータ生成方法であって、
 前記第1物体の三次元形状を表すモデルデータに基づいて、前記第2物体を示す三次元モデルを表示装置に表示するための表示データを生成することを含み、
 前記表示データは、前記計測ヘッドと前記第2物体との干渉の度合いを示す干渉深度情報を含む
 データ生成方法。
[付記2]
 入力装置の入力に基づいて生成される、造形ヘッドを用いて載置装置上で付加造形する物体の三次元形状を表すモデルデータを受信し、
 前記受信したモデルデータに基づいて、前記物体を示す三次元モデルを表示し、
 前記入力に基づいて、前記三次元モデルを再表示する表示装置であって、
 前記物体に関する前記三次元モデルは、前記物体の付加造形終了前の造形物の三次元モデルを含み、
 前記表示は、前記造形ヘッドと前記造形物及び前記載置装置の少なくとも一方との干渉を示す干渉情報の表示を含み、
 前記入力装置の再入力が行われた場合には、前記再入力に基づいて前記三次元モデルが再生成され、前記再入力に基づいて前記干渉情報が更新される
 表示装置。
[付記3]
 入力装置の入力に基づいて生成される、造形ヘッドを用いて載置装置上で付加造形する物体の三次元形状を表すモデルデータを受信し、
 前記受信したモデルデータに基づいて、前記物体を示す三次元モデルを表示し、
 前記入力に基づいて、前記三次元モデルを再表示する表示装置であって、
 前記物体に関する前記三次元モデルは、前記物体の付加造形終了前の造形物の三次元モデルを含み、
 前記表示は、前記造形ヘッドと前記物体及び前記載置装置の少なくとも一方との干渉を示す干渉情報の表示を含み、
 前記造形の開始点から終了点までの間の指定点における前記物体を示す三次元モデルを、前記指定点にて発生すると予測される前記干渉情報と共に表示する
 表示装置。
[付記4]
 加工ヘッドが第1物体を加工する場合に発生すると予測される、前記加工ヘッドと第2物体との干渉に関するデータを表示する表示装置であって、
 前記第1物体の三次元形状を表すモデルデータに基づいて、前記第2物体を示す三次元モデルを表示し、
 前記表示は、前記加工ヘッドと前記第2物体との干渉の度合いを示す干渉深度情報の表示を含む表示装置。
[付記5]
 加工ヘッドが第1物体を加工する場合に発生すると予測される、前記加工ヘッドと第2物体との干渉に関するデータを表示する表示装置であって、
 前記第1物体の三次元形状を表すモデルデータに基づいて、前記第2物体を示す三次元モデルを表示し、
 前記表示は、前記加工ヘッドと前記第2物体との干渉を示す干渉情報の表示を含み、
 前記加工の開始点から終了点までの期間の指定点における前記物体を示す三次元モデルを、前記指定点にて発生すると予測される前記干渉の前記干渉情報と共に表示する
 表示装置。
[付記6]
 加工ヘッドが第1物体を加工する場合に発生すると予測される、前記加工ヘッドと第2物体との干渉に関するデータを表示する表示装置であって、
 入力装置の入力に基づいて設定された前記第1物体の形状を指定するパラメータに基づいて生成された、前記第1物体の三次元形状を表すモデルデータを受信し、
 前記モデルデータに基づいて、前記第2物体を示す三次元モデルを表示し、
 前記表示は、前記加工ヘッドと前記第2物体との干渉に関する干渉情報の表示を含み、
 前記表示は、前記パラメータを表示可能なパラメータ表示画面と、前記干渉情報を表示可能な出力画面とを含む表示画面の表示を含む
 表示装置。
[付記7]
 加工ヘッドが第1物体を加工する場合に発生すると予測される、前記加工ヘッドと第2物体との干渉の表示に関するデータを表示する表示装置であって、
 入力装置の入力に基づいて設定された前記第1物体の形状を指定するパラメータに基づいて生成された、前記第1物体の三次元形状を表すモデルデータを受信し、
 前記第1物体の三次元形状を表すモデルデータに基づいて、前記第2物体を示す三次元モデルを表示し、
 前記表示は、前記加工ヘッドと前記第2物体との干渉を示す干渉情報の表示を含み、
 前記表示は、前記干渉情報と共に、前記再入力を前記ユーザに提案するための表示オブジェクトを表示する表示を含む
 表示装置。
 上述の各実施形態の構成要件の少なくとも一部は、上述の各実施形態の構成要件の少なくとも他の一部と適宜組み合わせることができる。上述の各実施形態の構成要件のうちの一部が用いられなくてもよい。また、法令で許容される限りにおいて、上述の各実施形態で引用した全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。
 本発明は、上述した実施例に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴うデータ生成方法、造形方法、加工方法、データ生成装置、コンピュータプログラム、記録媒体、表示方法及び表示装置もまた本発明の技術的範囲に含まれるものである。
 SYS 造形システム
 1 造形装置
 121 加工ヘッド
 131 ステージ
 2 データ生成サーバ
 21 演算装置
 211 表示制御部
 212 情報取得部
 213 データ生成部
 214 干渉予測部
 215 修正提案部
 3 端末装置
 311 表示制御部
 312 情報取得部
 9 設定GUI
 91 入力画面
 92 出力画面
 EL 加工光
 W ワーク
 BO 未完成造形物
 HM ヘッドモデル
 BM 未完成造形モデル
 WM ワークモデル
 SM ステージモデル

Claims (96)

  1.  入力装置の入力に基づいて、造形ヘッドを用いて載置装置上で付加造形する物体の三次元形状を表すモデルデータを生成することと、
     前記生成されるモデルデータに基づいて、前記物体に関する三次元モデルを表示装置に表示するための表示データを生成することと、
     前記モデルデータに基づいて、前記物体を付加造形するための造形データを生成することを
     含み、
     前記物体に関する前記三次元モデルは、前記物体の付加造形終了前の造形物の三次元モデルを含み、
     前記表示データは、前記造形ヘッドと前記造形物及び前記載置装置の少なくとも一方との干渉を示す干渉情報を含み、
     前記入力装置の再入力が行われた場合には、前記再入力に基づいて前記モデルデータ及び前記表示データが再生成され、
     前記干渉情報は前記再入力に基づいて更新される
     データ生成方法。
  2.  前記干渉情報は、前記物体の付加造形において、
     前記干渉が発生すると予測される場合に、前記干渉が発生することを示す第1干渉情報と、
     前記干渉が発生すると予測されない場合に、前記干渉が発生しないことを示す第2干渉情報を含み、
     前記干渉情報の更新は、前記第1干渉情報が、前記第2干渉情報に更新されることを含む、
     請求項1に記載のデータ生成方法。
  3.  前記干渉情報は、前記造形ヘッドと前記造形物及び前記載置装置の少なくとも一方との干渉の度合いを示す干渉深度情報を含む
     請求項1又は2に記載のデータ生成方法。
  4.  前記表示データは、前記干渉の度合いの違いに基づいて前記干渉深度情報の表示態様を変えるデータを含む
     請求項3に記載のデータ生成方法。
  5.  前記表示データは、前記造形物及び前記載置装置の少なくとも一方の第1部分に発生すると予測される前記干渉の度合いが前記造形物及び前記載置装置の少なくとも一方の第2部分に発生すると予測される前記干渉の度合いと異なる場合には、前記三次元モデルのうちの前記第1部分に相当するモデル部分と共に表示される前記干渉深度情報の表示態様と前記三次元モデルのうちの前記第2部分に相当するモデル部分と共に表示される前記干渉深度情報の表示態様とを変えるデータを含む
     請求項4に記載のデータ生成方法。
  6.  前記表示データは、前記造形物及び前記載置装置の少なくとも一方の各部分に発生すると予測される前記干渉の度合いに応じて前記表示装置に表示される前記三次元モデルのうちの前記各部分に相当するモデル部分の表示態様を変えることで、前記三次元モデルと共に前記干渉深度情報を表示するデータを含む
     請求項4又は5に記載のデータ生成方法。
  7.  前記表示態様は、表示色を含む
     請求項4から6のいずれか一項に記載のデータ生成方法。
  8.  前記表示データの生成は、前記付加造形の開始点から終了点までの期間の指定点における前記造形物を示す三次元モデルを、前記指定点にて発生すると予測される前記干渉の前記干渉情報と共に前記表示装置に表示するための表示データを生成することを含む
     請求項1から7のいずれか一項に記載のデータ生成方法。
  9.  前記表示データは、前記造形の開始からの進捗又は前記造形の開始からの時間を表し、前記指定点を特定可能な進捗オブジェクトを前記表示装置に表示するための表示データを含み、
     前記表示データの生成は、前記進捗オブジェクトと、前記指定点における前記造形物を示す三次元モデルとを、前記指定点に発生すると予測される前記干渉の前記干渉情報と共に前記表示装置に表示するための表示データを生成することを含む
     請求項8に記載のデータ生成方法。
  10.  前記干渉情報は、前記期間において前記造形ヘッドと前記造形物及び前記載置装置の少なくとも一方との干渉が発生すると予測される干渉時点に関する干渉時点情報を含み、
     前記進捗オブジェクトには、前記干渉時点を示す指標が付与されている
     請求項9に記載のデータ生成方法。
  11.  前記表示データを生成することは、前記指標が選択された場合に、前記選択された指標が示す前記干渉時点における前記造形物を示す三次元モデルと、前記選択された干渉時点に発生すると予測される前記干渉に関する前記干渉情報とを表示するための前記表示データを生成することを含む
     請求項10に記載のデータ生成方法。
  12.  前記表示データは、前記干渉時点に発生が予測される干渉の度合いに応じて、前記指標の表示態様を変えるデータを含む
     請求項10又は11に記載のデータ生成方法。
  13.  前記表示データを生成することは、第1点が前記指定点として特定されており且つ前記第1点における前記造形物を示す三次元モデルと前記第1点に発生すると予測される前記干渉に関する前記干渉情報とを表示するための前記表示データが生成されている状況下で前記第1点とは異なる第2点が前記指定点として新たに特定された場合に、前記造形物を示す三次元モデルと前記第1点と前記第2点の間で予測される前記干渉に関する前記干渉情報とを表示するための前記表示データを再生成することを含む
     請求項8から12のいずれか一項に記載のデータ生成方法。
  14.  前記表示データを生成することは、第1点が前記指定点として特定されており且つ前記第1点における前記造形物を示す三次元モデルと前記第1点に発生すると予測される前記干渉に関する前記干渉情報とを表示するための前記表示データが生成されている状況下で前記第1点とは異なる第2点が前記指定点として新たに特定された場合に、前記第2点における前記造形物を示す三次元モデルと前記第2点に発生すると予測される前記干渉に関する前記干渉情報とを表示するための前記表示データを再生成することを含む
     請求項8から13のいずれか一項に記載のデータ生成方法。
  15.  前記表示データは、前記入力装置の入力に基づいて設定される前記物体の形状を指定するパラメータを表示可能なパラメータ表示画面と、前記干渉情報を前記造形物の三次元モデルと共に表示可能な出力画面とを含む表示画面を前記表示装置に表示するための表示データを含む
     請求項1から14のいずれか一項に記載のデータ生成方法。
  16.  前記モデルデータを生成することは、前記入力装置の入力に基づいて前記パラメータが再設定された場合に、前記再設定されたパラメータに基づいて、前記モデルデータを再生成することを含み、
     前記表示データを生成することは、前記モデルデータが再生成された場合に、前記干渉情報を更新し、且つ、前記更新された干渉情報を表示可能な前記出力画面を含む前記表示画面を表示するための前記表示データを再生成することを含む
     請求項15に記載のデータ生成方法。
  17.  前記モデルデータを生成することは、前記入力装置の入力に基づいて前記パラメータが再設定されたことをトリガに、前記再設定されたパラメータに基づいて、前記モデルデータを再生成することを含み、
     前記表示データを生成することは、前記モデルデータが再生成されたことをトリガに、前記干渉情報を更新し、且つ、前記更新された干渉情報を表示可能な前記出力画面を含む前記表示画面を表示するための前記表示データを再生成することを含む
     請求項15又は16に記載のデータ生成方法。
  18.  前記表示データを前記表示装置に出力することと、
     前記表示データに基づいて、前記表示装置によって前記干渉情報を表示することと
     を更に含む請求項15から17のいずれか一項に記載のデータ生成方法。
  19.  前記表示データを出力することは、前記表示データが再生成された場合に、前記再生成された表示データを前記表示装置に再出力することを含み、
     前記干渉情報を表示することは、前記表示データが再出力された場合に、前記再出力された表示データに基づいて前記干渉情報を表示することを含む
     請求項18に記載のデータ生成方法。
  20.  前記表示データを出力することは、前記表示データが再生成されたことをトリガに、前記再生成された表示データを前記表示装置に再出力することを含み、
     前記干渉情報を表示することは、前記表示データが再出力されたことをトリガに、前記再出力された表示データに基づいて前記干渉情報を表示することを含む
     請求項18又は19に記載のデータ生成方法。
  21.  前記表示データは、前記干渉情報と共に、前記再入力をユーザに提案するための表示オブジェクトを前記表示装置に表示するための表示データを生成することを含む、
     請求項1から20のいずれか一項に記載のデータ生成方法。
  22.  前記表示データは、前記表示オブジェクトと、前記入力装置の入力に基づいて設定される前記物体の形状を指定するパラメータを表示可能なパラメータ表示画面とを含む前記表示画面を表示するためのデータを含む
     請求項21に記載のデータ生成方法。
  23.  前記表示データは、前記表示オブジェクトと前記造形物を示す三次元モデルを表示可能な出力画面とを含む前記表示画面を表示するためのデータを含む
     請求項21又は22に記載のデータ生成方法。
  24.  前記表示オブジェクトは、前記入力装置の入力に基づいて設定される前記物体の形状を指定するパラメータの推奨値及び付加造形後の前記物体の推奨形状の少なくとも一方を前記ユーザに提案するための表示オブジェクトを含む
     請求項21から23のいずれか一項に記載のデータ生成方法。
  25.  前記推奨値は、前記パラメータのうち軌跡パラメータに関する値を含む
     請求項24に記載のデータ生成方法。
  26.  入力装置の入力に基づいて、造形ヘッドを用いて載置装置上で付加造形する物体の三次元形状を表すモデルデータを生成することと、
     前記生成されるモデルデータに基づいて、前記物体に関する三次元モデルを表示装置に表示するための表示データを生成することと、
     前記モデルデータに基づいて、前記物体を付加造形するための造形データを生成すること
     を含み、
     前記物体に関する前記三次元モデルは、前記物体の付加造形終了前の造形物の三次元モデルを含み、
     前記表示データは、前記造形ヘッドと前記造形物及び前記載置装置の少なくとも一方との干渉を示す干渉情報とを含み、
     前記表示データの生成は、前記付加造形の開始点から終了点までの期間の指定点における前記造形物を示す三次元モデルを、前記指定点にて発生すると予測される前記干渉の前記干渉情報と共に前記表示装置に表示するための表示データを生成することを含む
     データ生成方法。
  27.  前記干渉情報は、前記造形ヘッドと前記造形物及び前記載置装置の少なくとも一方との干渉の度合いを示す干渉深度情報を含む、
     請求項26に記載のデータ生成方法。
  28.  前記表示データは、前記干渉の度合いの違いに基づいて前記干渉深度情報の表示態様を変えるデータを含む
     請求項27に記載のデータ生成方法。
  29.  前記表示データは、前記造形物及び前記載置装置の少なくとも一方の第1部分に発生すると予測される前記干渉の度合いが前記造形物及び前記載置装置の少なくとも一方の第2部分に発生すると予測される前記干渉の度合いと異なる場合には、前記三次元モデルのうちの前記第1部分に相当するモデル部分と共に表示される前記干渉深度情報の表示態様と前記三次元モデルのうちの前記第2部分に相当するモデル部分と共に表示される前記干渉深度情報の表示態様とを変えるデータを含む
     請求項28に記載のデータ生成方法。
  30.  前記表示データは、前記造形物及び前記載置装置の少なくとも一方の各部分に発生すると予測される前記干渉の度合いに応じての前記表示装置に表示される前記三次元モデルのうちの前記各部分に相当するモデル部分の表示態様を変えることで、前記三次元モデルと共に前記干渉深度情報を表示するデータを含む
     請求項28又は29に記載のデータ生成方法。
  31.  前記表示態様は、表示色を含む
     請求項28から30のいずれか一項に記載のデータ生成方法。
  32.  前記表示データは、前記造形の開始からの進捗又は前記造形の開始からの時間を表し、前記指定点を特定可能な進捗オブジェクトを前記表示装置に表示するための表示データを含み、
     前記表示データの生成は、前記進捗オブジェクトと、前記指定点における前記造形物を示す三次元モデルとを、前記指定点に発生すると予測される前記干渉の前記干渉情報と共に前記表示装置に表示するための表示データを生成することを含む
     請求項26から31のいずれか一項に記載のデータ生成方法。
  33.  前記干渉情報は、前記期間において前記造形ヘッドと前記造形物及び前記載置装置の少なくとも一方との干渉が発生すると予測される干渉時点に関する干渉時点情報を含み、
     前記進捗オブジェクトには、前記干渉時点を示す指標が付与されている
     請求項32に記載のデータ生成方法。
  34.  前記表示データを生成することは、前記指標が選択された場合に、前記選択された指標が示す前記干渉時点における前記造形物を示す三次元モデルと、前記選択された干渉時点に発生すると予測される前記干渉に関する前記干渉情報とを表示するための前記表示データを生成することを含む
     請求項33に記載のデータ生成方法。
  35.  前記表示データは、前記干渉時点に発生が予測される干渉の度合いに応じて、前記指標の表示態様を変えるデータを含む
     請求項33又は34に記載のデータ生成方法。
  36.  前記表示データを生成することは、第1点が前記指定点として特定されており且つ前記第1点における前記造形物を示す三次元モデルと前記第1点に発生すると予測される前記干渉に関する前記干渉情報とを表示するための前記表示データが生成されている状況下で前記第1点とは異なる第2点が前記指定点として新たに特定された場合に、前記造形物を示す三次元モデルと前記第1点と前記第2点の間で予測される前記干渉に関する前記干渉情報とを表示するための前記表示データを再生成することを含む
     請求項26から35のいずれか一項に記載のデータ生成方法。
  37.  前記表示データを生成することは、第1点が前記指定点として特定されており且つ前記第1点における前記造形物を示す三次元モデルと前記第1点に発生すると予測される前記干渉に関する前記干渉情報とを表示するための前記表示データが生成されている状況下で前記第1点とは異なる第2点が前記指定点として新たに特定された場合に、前記第2点における前記造形物を示す三次元モデルと前記第2点に発生すると予測される前記干渉に関する前記干渉情報とを表示するための前記表示データを再生成することを含む
     請求項26から36のいずれか一項に記載のデータ生成方法。
  38.  前記表示データは、前記入力装置の入力に基づいて設定される前記物体の形状を指定するパラメータを表示可能なパラメータ表示画面と、前記干渉情報を表示可能な出力画面とを含む表示画面を前記表示装置に表示するための表示データを含む
     請求項26から37のいずれか一項に記載のデータ生成方法。
  39.  前記モデルデータを生成することは、前記入力装置の入力に基づいて前記パラメータが再設定された場合に、前記再設定されたパラメータに基づいて、前記モデルデータを再生成することを含み、
     前記表示データを生成することは、前記モデルデータが再生成された場合に、前記干渉情報を更新し、且つ、前記更新された干渉情報を表示可能な前記出力画面を含む前記表示画面を表示するための前記表示データを再生成することを含む
     請求項38に記載のデータ生成方法。
  40.  前記モデルデータを生成することは、前記入力装置の入力に基づいて前記パラメータが再設定されたことをトリガに、前記再設定されたパラメータに基づいて、前記モデルデータを再生成することを含み、
     前記表示データを生成することは、前記モデルデータが再生成されたことをトリガに、前記干渉情報を更新し、且つ、前記更新された干渉情報を表示可能な前記出力画面を含む前記表示画面を表示するための前記表示データを再生成することを含む
     請求項38又は39に記載のデータ生成方法。
  41.  前記表示データを前記表示装置に出力することと、
     前記表示データに基づいて、前記表示装置によって前記干渉情報を表示することと
     を更に含む請求項38から40のいずれか一項に記載のデータ生成方法。
  42.  前記表示データを出力することは、前記表示データが再生成された場合に、前記再生成された表示データを前記表示装置に再出力することを含み、
     前記干渉情報を表示することは、前記表示データが再出力された場合に、前記再出力された表示データに基づいて前記干渉情報を表示することを含む
     請求項41に記載のデータ生成方法。
  43.  前記表示データを出力することは、前記表示データが再生成されたことをトリガに、前記再生成された表示データを前記表示装置に再出力することを含み、
     前記干渉情報を表示することは、前記表示データが再出力されたことをトリガに、前記再出力された表示データに基づいて前記干渉情報を表示することを含む
     請求項41又は42に記載のデータ生成方法。
  44.  前記干渉は、前記造形ヘッドと前記造形物との干渉及び前記造形ヘッドと前記載置装置との干渉を含む複数の干渉を含み、
     前記表示データを生成することは、前記複数の干渉の中から選択された少なくとも一つを示す前記干渉情報を前記表示装置に表示するための表示データを生成することを含む
     請求項1から43のいずれか一項に記載のデータ生成方法。
  45.  前記表示データを前記表示装置に出力することを更に含む
     請求項1から44のいずれか一項に記載のデータ生成方法。
  46.  前記造形ヘッドと前記造形物との位置関係を変更しながら前記物体の造形が行われる、
     請求項1から45のいずれか一項に記載のデータ生成方法。
  47.  前記付加造形終了前の造形物とは、前記造形ヘッドを用いた付加造形の開始から終了までの付加造形中の造形物である
     請求項1から46のいずれか一項に記載のデータ生成方法。
  48.  ベース部材が前記載置装置上に載置され、
     前記ベース部材上に前記造形物が付加造形され、
     前記表示データは、前記ベース部材の三次元モデルを前記表示装置に表示するための表示データを含み、
     前記干渉情報は、前記造形ヘッドと前記ベース部材との干渉を示す情報を含む
     請求項1から47のいずれか一項に記載のデータ生成方法。
  49.  前記表示データは、前記造形ヘッドを示す三次元モデルと前記載置装置の三次元モデルとを前記表示装置に表示する表示データを含む
     請求項1から48のいずれか一項に記載のデータ生成方法。
  50.  前記造形データを生成することは、前記再生成されたモデルデータに基づいて、前記物体を付加造形するための造形データを生成することを含む
     請求項1から25のいずれか一項に記載のデータ生成方法。
  51.  請求項1から50のいずれか一項に記載の前記データ生成方法を用いて、造形装置により前記物体を造形する造形方法。
  52.  加工ヘッドが第1物体を加工する場合に発生すると予測される、前記加工ヘッドと第2物体との干渉の表示に関するデータを生成するデータ生成方法であって、
     前記第1物体の三次元形状を表すモデルデータに基づいて、前記第2物体を示す三次元モデルを表示装置に表示するための表示データを生成することを含み、
     前記表示データは、前記加工ヘッドと前記第2物体との干渉の度合いを示す干渉深度情報を干渉情報として含むデータ生成方法。
  53.  前記表示データは、前記干渉の度合いの違いに基づいて前記干渉深度情報の表示態様を変えるデータを含む
     請求項52に記載のデータ生成方法。
  54.  前記表示データは、前記第2物体の第1部分に発生すると予測される前記干渉の度合いが前記第2物体の第2部分に発生すると予測される前記干渉の度合いと異なる場合には、前記三次元モデルのうちの前記第1部分に相当するモデル部分と共に表示される前記干渉深度情報の表示態様と前記三次元モデルのうちの前記第2部分に相当するモデル部分と共に表示される前記干渉深度情報の表示態様とを変えるデータを含む
     請求項53に記載のデータ生成方法。
  55.  前記表示データは、前記第2物体の各部分に発生すると予測される前記干渉の度合いに応じて前記表示装置に表示される前記各部分の表示態様を変えることで、前記三次元モデルと共に前記干渉深度情報を表示するデータを含む
     請求項53又は54に記載のデータ生成方法。
  56.  前記表示態様は、表示色を含む
     請求項53から55のいずれか一項に記載のデータ生成方法。
  57.  前記干渉深度情報は、前記第1物体を計測する計測ヘッドが第1物体を計測する場合に発生すると予測される、前記計測ヘッドと前記第2物体との干渉を示す情報を含む
     請求項52から56のいずれか一項に記載のデータ生成方法。
  58.  加工ヘッドが第1物体を加工する場合に発生すると予測される、前記加工ヘッドと第2物体との干渉の表示に関するデータを生成するデータ生成方法であって、
     前記第1物体の三次元形状を表すモデルデータに基づいて、前記第2物体を示す三次元モデルを表示装置に表示するための表示データを生成することを含み、
     前記表示データは、前記加工ヘッドと前記第2物体との干渉を示す干渉情報を含み、
     前記表示データの生成は、前記加工の開始点から終了点までの期間の指定点における前記第2物体を示す三次元モデルを、前記指定点にて発生すると予測される前記干渉の前記干渉情報と共に前記表示装置に表示するための表示データを生成することと含む
     データ生成方法。
  59.  前記表示データは、前記造形の開始からの進捗又は前記造形の開始からの時間を表し、前記指定点を特定可能な進捗オブジェクトを前記表示装置に表示するための表示データを含み、
     前記表示データの生成は、前記進捗オブジェクトと、前記指定点における前記第2物体を示す三次元モデルとを、前記指定点に発生すると予測される前記干渉の前記干渉情報と共に前記表示装置に表示するための表示データを生成することを含む
     請求項58に記載のデータ生成方法。
  60.  前記干渉情報は、前記期間において前記加工ヘッドと前記第2物体との干渉が発生すると予測される干渉時点に関する干渉時点情報を含み、
     前記進捗オブジェクトには、前記干渉時点を示す指標が付与されている
     請求項59に記載のデータ生成方法。
  61.  前記表示データを生成することは、前記指標が選択された場合に、前記選択された指標が示す前記干渉時点における前記第2物体を示す三次元モデルと、前記選択された干渉時点に発生すると予測される前記干渉に関する前記干渉情報とを表示するための前記表示データを生成することを含む
     請求項60に記載のデータ生成方法。
  62.  前記表示データは、前記干渉時点に発生が予測される干渉の度合いに応じて、前記指標の表示態様を変えるデータを含む
     請求項60又は61に記載のデータ生成方法。
  63.  前記表示データを生成することは、第1点が前記指定点として特定されており且つ前記第1点における前記加工ヘッド及び前記第2物体を示す三次元モデルと前記第1点に発生すると予測される前記干渉に関する前記干渉情報とを表示するための前記表示データが生成されている状況下で前記第1点とは異なる第2点が前記指定点として新たに特定された場合に、前記第2物体を示す三次元モデルと前記第1点と前記第2点の間で予測される前記干渉に関する前記干渉情報とを表示するための前記表示データを再生成することを含む
     請求項58から62のいずれか一項に記載のデータ生成方法。
  64.  前記表示データを生成することは、第1点が前記指定点として特定されており且つ前記第1点における前記加工ヘッド及び前記第2物体を示す三次元モデルと前記第1点に発生すると予測される前記干渉に関する前記干渉情報とを表示するための前記表示データが生成されている状況下で前記第1点とは異なる第2点が前記指定点として新たに特定された場合に、前記第2点における前記加工ヘッド及び前記第2物体を示す三次元モデルと前記第2点に発生すると予測される前記干渉に関する前記干渉情報とを表示するための前記表示データを再生成することを含む
     請求項58から63のいずれか一項に記載のデータ生成方法。
  65.  加工ヘッドが第1物体を加工する場合に発生すると予測される、前記加工ヘッドと第2物体との干渉の表示に関するデータを生成するデータ生成方法であって、
     入力装置の入力に基づいて前記第1物体の形状を指定するパラメータを設定することと、
     前記パラメータに基づいて、前記第1物体の三次元形状を表すモデルデータを生成することと、
     前記第1物体の三次元形状を表すモデルデータに基づいて、前記第2物体を示す三次元モデルを表示装置に表示するための表示データを生成することと
     を含み、
     前記表示データは、前記加工ヘッドと前記第2物体との干渉に関する干渉情報を含み、
     前記表示データの生成は、前記パラメータを表示可能なパラメータ表示画面と、前記干渉情報を表示可能な出力画面とを含む表示画面を前記表示装置に表示するための表示データを生成することを含むデータ生成方法。
  66.  前記モデルデータを生成することは、前記入力装置の入力に基づいて前記パラメータが再設定された場合に、前記再設定されたパラメータに基づいて、前記モデルデータを再生成することを含み、
     前記表示データを生成することは、前記モデルデータが再生成された場合に、前記干渉情報を更新し、且つ、前記更新された干渉情報を表示可能な前記出力画面を含む前記表示画面を表示するための前記表示データを再生成することを含む
     請求項65に記載のデータ生成方法。
  67.  前記モデルデータを生成することは、前記入力装置の入力に基づいて前記パラメータが再設定されたことをトリガに、前記再設定されたパラメータに基づいて、前記モデルデータを再生成することを含み、
     前記表示データを生成することは、前記モデルデータが再生成されたことをトリガに、前記干渉情報を更新し、且つ、前記更新された干渉情報を表示可能な前記出力画面を含む前記表示画面を表示するための前記表示データを再生成することを含む
     請求項65又は66に記載のデータ生成方法。
  68.  前記表示データを前記表示装置に出力することと、
     前記表示データに基づいて、前記表示装置によって前記干渉情報を表示することと
     を更に含む請求項65から67のいずれか一項に記載のデータ生成方法。
  69.  前記表示データを出力することは、前記表示データが再生成された場合に、前記再生成された表示データを前記表示装置に再出力することを含み、
     前記干渉情報を表示することは、前記表示データが再出力された場合に、前記再出力された表示データに基づいて前記干渉情報を表示することを含む
     請求項68に記載のデータ生成方法。
  70.  前記表示データを出力することは、前記表示データが再生成されたことをトリガに、前記再生成された表示データを前記表示装置に再出力することを含み、
     前記干渉情報を表示することは、前記表示データが再出力されたことをトリガに、前記再出力された表示データに基づいて前記干渉情報を表示することを含む
     請求項68又は69に記載のデータ生成方法。
  71.  加工ヘッドが第1物体を加工する場合に発生すると予測される、前記加工ヘッドと第2物体との干渉の表示に関するデータを生成するデータ生成方法であって、
     入力装置の入力に基づいて前記第1物体の形状を指定するパラメータを設定することと、
     前記パラメータに基づいて、前記第1物体の三次元形状を表すモデルデータを生成することと、
     前記第1物体の三次元形状を表すモデルデータに基づいて、前記第2物体を示す三次元モデルを表示装置に表示するための表示データを生成することと
     を含み、
     前記表示データは、前記加工ヘッドと前記第2物体との干渉を示す干渉情報とを含み、
     前記干渉情報と共に、前記パラメータの再設定をユーザに提案するための表示オブジェクトを前記表示装置に表示するための表示データを生成することを含む、
     データ生成方法。
  72.  前記表示データは、前記表示オブジェクトと前記パラメータを表示可能なパラメータ表示画面とを含む前記表示画面を表示するためのデータを含む
     請求項71に記載のデータ生成方法。
  73.  前記表示データは、前記表示オブジェクトと前記加工ヘッド及び前記第2物体を示す三次元モデルを表示可能な出力画面とを含む前記表示画面を表示するためのデータを含む
     請求項71又は72に記載のデータ生成方法。
  74.  前記表示オブジェクトは、前記パラメータの推奨値及び加工後の前記第1物体の推奨形状の少なくとも一方を前記ユーザに提案するための表示オブジェクトを含む
     請求項71から73のいずれか一項に記載のデータ生成方法。
  75.  前記推奨値は、前記パラメータのうち軌跡パラメータに関する値を含む
     請求項74に記載のデータ生成方法。
  76.  入力装置の入力に基づいて設定した加工後の前記第1物体の三次元形状を指定するパラメータに基づいて、前記モデルデータを生成することを更に含み、
     前記干渉情報を生成することは、前記生成されたモデルデータに基づいて前記干渉情報を生成することを含む
     請求項52から75のいずれか一項に記載のデータ生成方法。
  77.  前記加工ヘッドが前記第1物体を加工する加工期間に発生すると予測される前記加工ヘッドと複数の異なる前記第2物体との干渉の度合いをそれぞれ示す複数の前記干渉情報を生成することを含み、
     前記表示データを生成することは、前記複数の干渉情報の中から、前記複数の第2物体のうちの少なくとも一つの第2物体に対応する少なくとも一つの干渉情報を選択し、前記選択した少なくとも一つの干渉情報を表示するための前記表示データを生成することを含む
     請求項52から76のいずれか一項に記載のデータ生成方法。
  78.  前記表示データを前記表示装置に出力することを更に含む
     請求項52から77のいずれか一項に記載のデータ生成方法。
  79.  前記加工ヘッドと前記第1物体との位置関係を変更しながら前記第1物体の加工が行われる、
     請求項52から78のいずれか一項に記載のデータ生成方法。
  80.  前記第1物体は、前記加工ヘッドを用いて加工されている最中または加工後の加工対象物である
     請求項52から79のいずれか一項に記載のデータ生成方法。
  81.  前記第2物体は、前記第1物体及び前記第1物体が載置され且つ前記加工ヘッドとの間の位置関係が変更可能な載置装置の少なくとも一つを含む
     請求項52から80のいずれか一項に記載のデータ生成方法。
  82.  前記表示データは、前記加工ヘッドを示す三次元モデルと前記第2物体を示す三次元モデルを共に表示するデータを含む、
     請求項52から81のいずれか一項に記載のデータ生成方法。
  83.  前記加工ヘッドは、前記第1物体に付加加工を行うことで造形物を造形し、
     前記第2物体は、前記造形物の少なくとも一部を含む
     請求項52から82のいずれか一項に記載のデータ生成方法。
  84.  請求項52から83のいずれか一項に記載の前記データ生成方法を用いて、加工装置により前記物体を加工する加工方法。
  85.  入力装置の入力に基づいて、加工ヘッドを用いて載置装置上で加工する物体の三次元形状を表すモデルデータを生成することと、
     前記生成されるモデルデータに基づいて、前記物体に関する三次元モデルを表示装置に表示するための表示データを生成することと、
     前記モデルデータに基づいて、前記物体を加工するための加工データを生成することと
     を含み、
     前記物体に関する前記三次元モデルは、前記物体の加工終了前の加工物の三次元モデルを含み、
     前記表示データは、前記加工ヘッドと前記加工物及び前記載置装置の少なくとも一方との干渉を示す干渉情報を含み、
     前記入力装置の再入力が行われた場合には、前記再入力に基づいて前記モデルデータ及び前記表示データが再生成され、
     前記干渉情報は前記再入力に基づいて更新される
     データ生成方法。
  86.  入力装置の入力に基づいて、加工ヘッドを用いて載置装置上で加工する物体の三次元形状を表すモデルデータを生成することと、
     前記生成されるモデルデータに基づいて、前記物体に関する三次元モデルを表示装置に表示するための表示データを生成することと、
     前記モデルデータに基づいて、前記物体を加工するための加工データを生成することと
     を含み、
     前記物体に関する前記三次元モデルは、前記物体の加工終了前の加工物の三次元モデルを含み、
     前記表示データは、前記加工ヘッドと前記加工物及び前記載置装置の少なくとも一方との干渉を示す干渉情報とを含み、
     前記表示データの生成は、前記加工の開始点から終了点までの期間の指定点における前記加工物を示す三次元モデルを、前記指定点にて発生すると予測される前記干渉の前記干渉情報と共に前記表示装置に表示するための表示データを生成することを含む
     データ生成方法。
  87.  入力装置の入力に基づいて、造形ヘッドを用いて載置装置上で付加造形する物体の三次元形状を表すモデルデータを生成し、
     前記生成されるモデルデータに基づいて、前記物体に関する三次元モデルを表示装置に表示するための表示データを生成し、
     前記モデルデータに基づいて、前記物体を付加造形するための造形データを生成し、
     前記物体に関する前記三次元モデルは、前記物体の付加造形終了前の造形物の三次元モデルを含み、
     前記表示データは、前記造形ヘッドと前記造形物及び前記載置装置の少なくとも一方との干渉を示す干渉情報を含み、
     前記入力装置の再入力が行われた場合には、前記再入力に基づいて前記モデルデータ及び前記表示データが再生成され、
     前記干渉情報は前記再入力に基づいて更新される
     データ生成装置。
  88.  入力装置の入力に基づいて、造形ヘッドを用いて載置装置上で付加造形する物体の三次元形状を表すモデルデータを生成し、
     前記生成されるモデルデータに基づいて、前記物体に関する三次元モデルを表示装置に表示するための表示データを生成し、
     前記モデルデータに基づいて、前記物体を付加造形するための造形データを生成し、
     前記物体に関する前記三次元モデルは、前記物体の付加造形終了前の造形物の三次元モデルを含み、
     前記表示データは、前記造形ヘッドと前記造形物及び前記載置装置の少なくとも一方との干渉を示す干渉情報とを含み、
     前記造形の開始点から終了点までの期間の指定点における前記造形物を示す三次元モデルを、前記指定点にて発生すると予測される前記干渉の前記干渉情報と共に前記表示装置に表示するための表示データを生成することを含む
     データ生成装置。
  89.  加工ヘッドが第1物体を加工する場合に発生すると予測される、前記加工ヘッドと第2物体との干渉の表示に関するデータを生成するデータ生成装置であって、
     前記第1物体の三次元形状を表すモデルデータに基づいて、前記第2物体を示す三次元モデルを表示装置に表示するための表示データを生成し、
     前記表示データは、前記加工ヘッドと前記第2物体との干渉の度合いを示す干渉深度情報を含むデータ生成装置。
  90.  加工ヘッドが第1物体を加工する場合に発生すると予測される、前記加工ヘッドと第2物体との干渉の表示に関するデータを生成するデータ生成装置であって、
     前記第1物体の三次元形状を表すモデルデータに基づいて、前記第2物体を示す三次元モデルを表示装置に表示するための表示データを生成し、
     前記表示データは、前記加工ヘッドと前記第2物体との干渉を示す干渉情報とを含み、
     前記加工の開始点から終了点までの期間の指定点における前記物体を示す三次元モデルを、前記指定点にて発生すると予測される前記干渉の前記干渉情報と共に表示装置に表示するための表示データを生成する
     データ生成装置。
  91.  加工ヘッドが第1物体を加工する場合に発生すると予測される、前記加工ヘッドと第2物体との干渉の表示に関するデータを生成するデータ生成装置であって、
     入力装置の入力に基づいて前記第1物体の形状を指定するパラメータを設定し、
     前記パラメータに基づいて、前記第1物体の三次元形状を表すモデルデータを生成し、
     前記第1物体の三次元形状を表すモデルデータに基づいて、前記第2物体を示す三次元モデルを表示装置に表示するための表示データを生成し、
     前記表示データは、前記加工ヘッドと前記第2物体との干渉に関する干渉情報を含み、
     前記パラメータを表示可能なパラメータ表示画面と、前記干渉情報を表示可能な出力画面とを含む表示画面を表示装置に表示するための表示データを生成する
     データ生成装置。
  92.  加工ヘッドが第1物体を加工する場合に発生すると予測される、前記加工ヘッドと第2物体との干渉の表示に関するデータを生成するデータ生成装置であって、
     入力装置の入力に基づいて前記第1物体の形状を指定するパラメータを設定し、
     前記パラメータに基づいて、前記第1物体の三次元形状を表すモデルデータを生成し、
     前記第1物体の三次元形状を表すモデルデータに基づいて、前記第2物体を示す三次元モデルを表示装置に表示するための表示データとして生成し、
     前記表示データは、前記加工ヘッドと前記第2物体との干渉を示す干渉情報とを含み、
     前記干渉情報と共に、前記パラメータの再設定をユーザに提案するための表示オブジェクトを前記表示装置に表示するための表示データを生成する
     データ生成装置。
  93.  請求項1から50、52から83及び85から86のいずれか一項に記載のデータ生成方法をコンピュータに実行させるコンピュータプログラム。
  94.  請求項93に記載のコンピュータプログラムが記録された記録媒体。
  95.  造形ヘッドを用いて載置装置上で付加造形する物体の三次元形状を表すモデルデータと、前記造形ヘッドのモデルデータと、前記載置装置のモデルデータとに基づいて、表示データを生成することと、
     前記表示データに基づいて、前記物体に関する三次元モデル、前記造形ヘッドの三次元モデル、及び、前記載置装置の三次元モデルを表示装置に表示することと
     を含み、
     前記物体に関する前記三次元モデルは、前記物体の付加造形終了前の造形物の三次元モデルを含み、
     前記造形ヘッドと前記造形物及び前記載置装置の少なくとも一方との干渉を示す干渉情報を、前記造形物の三次元モデル、前記造形ヘッドの三次元モデル、及び、前記載置装置の三次元モデルと共に、前記表示装置に表示する表示方法。
  96.  前記表示データに基づく前記表示装置の表示は、前記造形物の三次元モデル、前記造形ヘッドの三次元モデル、及び、前記載置装置の三次元モデルの、前記付加造形における相対的な位置変化を含む
     請求項95に記載の表示方法。
PCT/JP2021/036616 2021-10-04 2021-10-04 データ生成方法、造形方法、加工方法、データ生成装置、コンピュータプログラム、記録媒体及び表示方法 WO2023058087A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/036616 WO2023058087A1 (ja) 2021-10-04 2021-10-04 データ生成方法、造形方法、加工方法、データ生成装置、コンピュータプログラム、記録媒体及び表示方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/036616 WO2023058087A1 (ja) 2021-10-04 2021-10-04 データ生成方法、造形方法、加工方法、データ生成装置、コンピュータプログラム、記録媒体及び表示方法

Publications (1)

Publication Number Publication Date
WO2023058087A1 true WO2023058087A1 (ja) 2023-04-13

Family

ID=85803251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036616 WO2023058087A1 (ja) 2021-10-04 2021-10-04 データ生成方法、造形方法、加工方法、データ生成装置、コンピュータプログラム、記録媒体及び表示方法

Country Status (1)

Country Link
WO (1) WO2023058087A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000280357A (ja) * 1999-03-29 2000-10-10 Minolta Co Ltd 三次元造形装置および三次元造形方法
JP2008071272A (ja) * 2006-09-15 2008-03-27 Toshiba Corp Camシステム及びcamプログラム
US20150269289A1 (en) 2014-03-18 2015-09-24 Palo Alto Research Center Incorporated System for visualizing a three dimensional (3d) model as printed from a 3d printer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000280357A (ja) * 1999-03-29 2000-10-10 Minolta Co Ltd 三次元造形装置および三次元造形方法
JP2008071272A (ja) * 2006-09-15 2008-03-27 Toshiba Corp Camシステム及びcamプログラム
US20150269289A1 (en) 2014-03-18 2015-09-24 Palo Alto Research Center Incorporated System for visualizing a three dimensional (3d) model as printed from a 3d printer

Similar Documents

Publication Publication Date Title
US9573323B2 (en) Method for generating and building support structures with deposition-based digital manufacturing systems
WO2020006468A1 (en) Manipulating one or more formation variables to form three-dimensional objects
JP6985131B2 (ja) 2軸3Dプリンティングプロセスの結果のB−Rep
JPWO2020079816A1 (ja) 積層造形方法および加工経路生成方法
US20210039319A1 (en) Method for additive manufacture of a three-dimensional object
Urbanic et al. A process planning framework and virtual representation for bead-based additive manufacturing processes
US11073824B1 (en) System and method of simulating and optimizing surface quality based on location and orientation of additively manufactured build parts
JP2019147171A (ja) 積層造形物の造形手順設計方法、積層造形物の造形方法及び製造装置、並びにプログラム
US20230264266A1 (en) Processing system
JP6824487B1 (ja) 付加製造装置、付加製造方法および機械学習装置
WO2023058087A1 (ja) データ生成方法、造形方法、加工方法、データ生成装置、コンピュータプログラム、記録媒体及び表示方法
Liu et al. Toolpath planning for additive manufacturing using sliced model decomposition and metaheuristic algorithms
WO2022074745A1 (ja) データ生成方法、造形受託方法、データ生成装置、表示装置、造形方法、コンピュータプログラム及び記録媒体
JP7086306B2 (ja) 加工プログラム生成装置、積層造形装置、加工プログラム生成方法、積層造形方法および機械学習装置
WO2022157914A1 (ja) 加工方法
JP2021088736A (ja) 品質予測システム
WO2022168268A1 (ja) 加工パス情報生成方法
WO2022074744A1 (ja) データ生成方法、造形受託方法、データ生成装置、表示装置、造形方法、コンピュータプログラム及び記録媒体
TWI726683B (zh) 管理系統及管理方法
JP2022185291A (ja) 造形装置及び造形方法、並びに、加工装置及び加工方法
WO2021019644A1 (ja) 加工システム、加工方法、制御装置、コンピュータプログラム、記録媒体及び加工装置
US20220176459A1 (en) Processing system
WO2024084642A1 (ja) 情報処理方法、加工方法、表示方法、表示装置、情報処理装置、コンピュータプログラム及び記録媒体
WO2023242983A1 (ja) 加工制御情報生成方法、加工方法及びモデル生成方法
US11809160B2 (en) Multi-tooltip control for computer-aided manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959831

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021959831

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021959831

Country of ref document: EP

Effective date: 20240506