WO2023242983A1 - 加工制御情報生成方法、加工方法及びモデル生成方法 - Google Patents

加工制御情報生成方法、加工方法及びモデル生成方法 Download PDF

Info

Publication number
WO2023242983A1
WO2023242983A1 PCT/JP2022/023913 JP2022023913W WO2023242983A1 WO 2023242983 A1 WO2023242983 A1 WO 2023242983A1 JP 2022023913 W JP2022023913 W JP 2022023913W WO 2023242983 A1 WO2023242983 A1 WO 2023242983A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
processing
control information
deformed
reference model
Prior art date
Application number
PCT/JP2022/023913
Other languages
English (en)
French (fr)
Inventor
知哉 中川
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2022/023913 priority Critical patent/WO2023242983A1/ja
Publication of WO2023242983A1 publication Critical patent/WO2023242983A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present invention provides, for example, a processing control information generation method for generating processing control information for controlling processing of an object, a processing method for processing an object using processing control information, and a model generation method for generating a model related to an object. related to the technical field of
  • Patent Document 1 An example of a processing device that processes an object is described in Patent Document 1.
  • One of the technical challenges for such processing devices is to appropriately generate processing control information for controlling processing of objects.
  • a processing method that performs additional processing using the processing control information generation method provided by the first aspect.
  • the steps include: obtaining an object model that represents a three-dimensional shape of an object; and generating a deformed model that is deformed based on the object model and represents a target shape of the object after processing. , generating a difference model indicating a difference between the deformed model and the object model; and additionally processing the object so that the three-dimensional shape of the object becomes the target shape based on the difference model.
  • a processing control information generation method is provided, which includes: generating processing control information.
  • a deformed model indicating a target shape of the object after processing is generated; Processing including: generating a difference model indicating a required machining part for the original shape to become the target shape; and generating processing control information for additionally processing the object based on the difference model.
  • a control information generation method is provided.
  • the object is processed by obtaining an object model generated by measuring the three-dimensional shape of the object and deforming a reference model of the object based on the object model.
  • a process control information generation method is provided, which includes generating a deformation model indicating a subsequent target shape, and generating process control information for additionally machining the object based on the object model and the deformation model. Ru.
  • a processing method that performs processing using the processing control information generation method provided by any one of the above-described first to fourth aspects.
  • the target shape of the object after processing is obtained by obtaining measurement results of measuring the three-dimensional shape of the object and deforming the reference model of the object in accordance with the measurement results.
  • a model generation method is provided that includes: generating a deformed model that represents the deformed model; and generating a difference model that represents the difference between the deformed model and the object model.
  • FIG. 1 is a block diagram showing the overall configuration of a processing system according to this embodiment.
  • FIG. 2 is a block diagram showing the system configuration of the processing apparatus of this embodiment.
  • FIG. 3 is a sectional view showing the configuration of the processing device of this embodiment.
  • FIG. 4 is a block diagram showing the configuration of the measurement system.
  • FIG. 5 is a block diagram showing the configuration of the control information generation device.
  • FIGS. 6(a) to 6(e) is a cross-sectional view showing a situation in which a certain area on a workpiece is irradiated with modeling light and a modeling material is supplied.
  • FIGS. 7(a) to 7(c) is a cross-sectional view showing the process of modeling a three-dimensional structure.
  • FIG. 1 is a block diagram showing the overall configuration of a processing system according to this embodiment.
  • FIG. 2 is a block diagram showing the system configuration of the processing apparatus of this embodiment.
  • FIG. 3 is a sectional view showing the configuration of the
  • FIG. 8(a) schematically shows a reference model
  • FIG. 8(b) schematically shows an object model
  • 9(a) schematically shows the reference model
  • FIG. 9(b) schematically shows the object model
  • FIG. 9(c) shows the reference model shown in FIG. 9(a) and the reference model shown in FIG.
  • a differential model generated based on the object model shown in b) is schematically shown.
  • FIG. 10(a) schematically shows a reference model when the workpiece is deformed as the workpiece is used
  • FIG. 10(b) schematically shows the object model when the workpiece deforms as the workpiece is used. to show.
  • FIG. 11(a) schematically shows a reference model when the workpiece is deformed as the workpiece is used
  • FIG. 11(a) schematically shows a reference model when the workpiece is deformed as the workpiece is used
  • FIG. 11(a) schematically shows a reference model when the workpiece is deformed as the workpiece is used
  • FIG. 11(a)
  • FIG. 11(b) schematically shows the object model when the workpiece deforms as the workpiece is used.
  • FIG. 11(c) schematically shows a differential model generated based on the reference model shown in FIG. 11(a) and the object model shown in FIG. 11(b).
  • FIG. 12 is a flowchart showing the flow of the control information generation operation of this embodiment.
  • FIG. 13 schematically shows an undeformed reference model and a deformed reference model.
  • FIG. 14 schematically shows an undeformed reference model and a deformed reference model.
  • FIG. 15(a) schematically shows an undeformed reference model
  • FIG. 15(b) schematically shows a deformed reference model.
  • FIG. 16(a) schematically shows a reference model when the workpiece is deformed as the workpiece is used, and FIG.
  • FIG. 16(b) schematically shows the object model when the workpiece deforms as the workpiece is used.
  • FIG. 16(c) schematically shows a differential model generated based on the reference model shown in FIG. 16(a) and the object model shown in FIG. 16(b).
  • FIG. 17 is a flowchart showing a flow of a specific example of the operation of generating a deformed model by deforming the reference model in step S4 of FIG.
  • FIG. 18 schematically shows an example of alignment between a reference model and an object model.
  • FIG. 19 schematically shows an example of a reference model in which each vertex is designated as one of a fixed vertex, a control vertex, and a dependent vertex.
  • FIG. 20 schematically shows an undeformed reference model and a deformed reference model.
  • FIG. 21 schematically shows an undeformed object model and a deformed object model.
  • FIG. 22 schematically shows the differential model.
  • FIG. 23 schematically shows the differential model.
  • FIG. 1 is a block diagram showing the overall configuration of the processing system SYS.
  • the processing system SYS includes a processing device 1, a measurement system 2, and a transport device 3.
  • the processing system SYS includes a single processing device 1, but may include a plurality of processing devices 1.
  • the processing system SYS includes a single measurement system 2, but may include a plurality of measurement systems 2.
  • the processing system SYS includes a single transport device 3, it may include a plurality of transport devices 3.
  • the processing system SYS does not need to include the transport device 3.
  • the number of measurement systems 2 may be smaller than the number of processing devices 1.
  • the processing system SYS may include two or more processing devices 1 and one measurement system 2.
  • the processing system SYS includes a plurality of measurement systems 2
  • the number of processing devices 1 may be smaller than the number of measurement systems 2.
  • the processing system SYS may include one processing device 1 and two or more measurement systems 2.
  • the processing device 1 is capable of processing the workpiece W.
  • the processing device 1 is a processing device that can process the workpiece W by irradiating the workpiece W with processing light EL (that is, an energy beam in the form of light).
  • processing light EL that is, an energy beam in the form of light
  • the processing apparatus 1 may process the workpiece W without using the processing light EL.
  • the processing device 1 is capable of performing additional processing on the workpiece W.
  • the processing device 1 can form a shaped object on the workpiece W by performing additional processing on the workpiece W.
  • the processing device 1 may perform additional processing on the workpiece W to form a shaped object that is integrated with the workpiece W or is separable from the workpiece W.
  • the modeled object modeled by the processing device 1 may mean any object modeled by the processing device 1.
  • the processing device 1 uses a three-dimensional structure ST (that is, a three-dimensional structure that has a size in any three-dimensional direction, a three-dimensional object, in other words, an X-axis (a structure having dimensions in the direction, the Y-axis direction, and the Z-axis direction) may also be modeled.
  • a three-dimensional structure ST that is, a three-dimensional structure that has a size in any three-dimensional direction, a three-dimensional object, in other words, an X-axis (a structure having dimensions in the direction, the Y-axis direction, and the Z-axis direction) may also be modeled.
  • the processing device 1 may perform additional processing using any additional processing method (that is, a modeling method) that can form a shaped object.
  • additional processing methods include laser metal deposition (LMD), powder bed fusion such as selective laser sintering (SLS), and bonding materials.
  • LMD laser metal deposition
  • SLS selective laser sintering
  • LFS selective laser sintering
  • LMF laser metal fusion
  • DED Directed Energy Deposition
  • the workpiece W may be a repaired item with a missing part.
  • the processing device 1 may perform repair processing to repair (in other words, repair) the item requiring repair by performing additional processing to form a modeled object to compensate for the missing portion. That is, the additional processing performed by the processing device 1 may include additional processing of adding a three-dimensional structure ST corresponding to a molded object to the workpiece W to compensate for a missing portion.
  • An example of an item that requires repair and has a missing part is at least a part of a worn turbine.
  • an example of an item that requires repair and has a missing portion is a turbine blade that constitutes a turbine.
  • the turbine include at least one of a power generation turbine, an aircraft engine turbine, and the like.
  • the processing device 1 may repair (in other words, repair) the worn turbine.
  • Another example of an item that needs repair and has a missing part is a worn propeller-shaped part.
  • Other examples of items that require repair and have missing parts include body parts of vehicles such as automobiles, motorcycles, electric vehicles, and railway vehicles.
  • Other examples of repair-required products with missing parts include parts for engines such as automobile engines, motorcycle engines, and spacecraft engines.
  • Another example of an item that requires repair and has a missing part is a battery part for an electric vehicle.
  • the processing device may repair these items requiring repair.
  • the work W may be an intermediate product manufactured in the process of modeling the three-dimensional structure ST.
  • the processing device 1 performs additional processing on the work W, which is an intermediate product of the three-dimensional structure ST, to complete the three-dimensional structure ST, thereby converting the intermediate product into the three-dimensional structure ST. May be manufactured.
  • the processing apparatus 1 may manufacture a finished turbine product from an intermediate turbine product by performing additional processing on the workpiece W, which is an intermediate turbine product, to complete the turbine.
  • the processing device 1 may be able to perform removal processing on the workpiece W in addition to or instead of performing additional processing. That is, the processing apparatus 1 may be capable of performing removal processing to remove a part of the workpiece W. In addition to or in place of performing removal processing on the workpiece W, the processing device 1 may perform removal processing on a shaped object formed on the workpiece W by the processing device 1.
  • the measurement system 2 measures the workpiece W before the processing device 1 actually starts processing the workpiece W.
  • the measurement system 2 measures the three-dimensional shape of the workpiece W. Note that when the three-dimensional shape of the workpiece W is known, the position of the workpiece W in the three-dimensional space (for example, the position of the surface of the workpiece W) is known. Therefore, measuring the three-dimensional shape of the workpiece W may be considered to be substantially equivalent to measuring the position of the workpiece W.
  • the processing device 1 receives (that is, acquires) processing control information transmitted from the measurement system 2.
  • the processing device 1 that has received the processing path information processes the workpiece W based on the received processing control information. Therefore, after the measurement system 2 measures the three-dimensional shape of the work W, the work W is transported from the measurement system 2 to the processing device 1. Specifically, the workpiece W is removed from the measurement system 2, and the removed workpiece W is transported to the processing device 1. For example, the work W may be transported from the measurement system 2 to the processing device 1 by the transport device 3. For example, the workpiece W may be transported from the measurement system 2 to the processing apparatus 1 by a user of the processing system SYS.
  • the workpiece W transported to the processing device 1 is installed (in other words, mounted or attached) on the processing device 1. As a result, the processing device 1 can process the workpiece W.
  • the processing system SYS includes a processing device 1 and a measurement system 2, which are separate devices.
  • the processing system SYS may include a device in which the processing device 1 and the measurement system 2 are integrated. That is, the processing device 1 and the measurement system 2 may be integrated.
  • the control server 4 may function as a cloud server. In this case, the control server 4 may be able to communicate with at least one of the processing device 1, the measurement system 2, and the transport device 3 via a communication network including the Internet. Alternatively, the control server 4 may function as an edge server. In this case, the control server 4 may be able to communicate with at least one of the processing device 1, the measurement system 2, and the transport device 3 via a communication network including an intranet or a local area network.
  • the processing system SYS may include, as part of the transport device 3, a third computer that controls the transport device 3.
  • the transport device 3 may include a third computer.
  • the third computer may be a notebook computer or other type of computer.
  • FIG. 2 is a block diagram showing the system configuration of the processing device 1.
  • FIG. 3 is a sectional view showing the configuration of the processing device 1.
  • FIG. 2 is a block diagram showing the system configuration of the processing device 1.
  • FIG. 3 is a sectional view showing the configuration of the processing device 1.
  • each of the X-axis direction and the Y-axis direction is a horizontal direction (that is, a predetermined direction within a horizontal plane), and the Z-axis direction is a vertical direction (that is, a direction perpendicular to the horizontal plane). (and substantially in the vertical direction).
  • the rotation directions (in other words, the tilt directions) around the X-axis, Y-axis, and Z-axis are referred to as the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction, respectively.
  • the Z-axis direction may be the direction of gravity.
  • the XY plane may be set in the horizontal direction.
  • the irradiation optical system 1211 is an optical system (for example, a condensing optical system) for emitting the processing light EL. Specifically, the irradiation optical system 1211 is optically connected to the light source 15 that emits the processing light EL via a light transmission member 151 such as an optical fiber or a light pipe. The irradiation optical system 1211 emits the processing light EL propagated from the light source 15 via the light transmission member 151. The irradiation optical system 1211 irradiates processing light EL downward (that is, to the ⁇ Z side). A stage 131 is arranged below the irradiation optical system 1211.
  • a light transmission member 151 such as an optical fiber or a light pipe.
  • the irradiation optical system 1211 emits the processing light EL propagated from the light source 15 via the light transmission member 151.
  • the irradiation optical system 1211 irradiates processing light EL downward (that is, to the ⁇ Z side).
  • the irradiation optical system 1211 irradiates the work W with the emitted processing light EL.
  • the irradiation optical system 1211 irradiates the workpiece W with the processing light EL from above the workpiece W.
  • the irradiation optical system 1211 processes the processing light EL into a target irradiation area EA set on or near the workpiece W as an area to be irradiated (typically focused) with the processing light EL.
  • Light EL can be irradiated.
  • the state of the irradiation optical system 1211 can be switched under the control of the control device 17 between a state in which the target irradiation area EA is irradiated with the processed light EL and a state in which the target irradiation area EA is not irradiated with the processed light EL. It is.
  • the modeling material M supplied from the material nozzle 1212 is irradiated with the processing light EL emitted by the irradiation optical system 1211.
  • the modeling material M melts. That is, a molten pool MP containing the molten modeling material M is formed on the workpiece W.
  • a workpiece W is placed on the stage 131.
  • the stage 131 can support a work W placed on the stage 131.
  • the stage 131 may be able to hold the work W placed on the stage 131.
  • the stage 131 may include at least one of a mechanical chuck, an electrostatic chuck, a vacuum chuck, etc. to hold the workpiece W.
  • the stage 131 may not be able to hold the work W placed on the stage 131.
  • the workpiece W may be placed on the stage 131 without a clamp.
  • the workpiece W may be attached to a holder such as a jig, or the holder to which the workpiece W is attached may be placed on the stage 31. Note that the work W does not need to be placed on the stage 131, and may be placed on the floor, for example.
  • the stage drive system 132 moves the stage 131 under the control of the control device 17.
  • the stage drive system 132 moves the stage 131 along at least one of the X-axis, Y-axis, Z-axis, ⁇ X direction, ⁇ Y direction, and ⁇ Z direction, for example.
  • the stage drive system 132 moves the stage 131, the relative positions of the processing head 121 and the stage 131 and the work W placed on the stage 131 change.
  • the target irradiation area EA and the target supply area MA (furthermore, the molten pool MP) move relative to the workpiece W.
  • the light source 15 emits, for example, at least one of infrared light, visible light, and ultraviolet light as processing light EL.
  • the processing light EL may include a plurality of pulsed lights (that is, a plurality of pulsed beams).
  • the processing light EL may include continuous wave (CW) light.
  • the processing light EL may be a laser beam.
  • the light source 15 may include a laser light source (for example, a semiconductor laser such as a laser diode (LD).
  • the laser light source may include a fiber laser, a CO 2 laser, a YAG laser, an excimer laser, etc.
  • the processing light EL does not have to be a laser beam.
  • the light source 15 may include at least one of an arbitrary light source (for example, an LED (Light Emitting Diode), a discharge lamp, etc.). ) may also be included.
  • the gas supply source 16 is a purge gas supply source for purging the chamber space 183IN inside the housing 18.
  • the purge gas includes an inert gas.
  • An example of the inert gas is nitrogen gas or argon gas.
  • the gas supply source 16 is connected to the chamber space 183IN via a supply port 182 formed in a partition member 181 of the housing 18 and a supply pipe 161 connecting the gas supply source 16 and the supply port 182.
  • the gas supply source 16 supplies purge gas to the chamber space 183IN via the supply pipe 161 and the supply port 182.
  • the chamber space 183IN becomes a space purged with the purge gas.
  • the purge gas supplied to the chamber space 183IN may be exhausted from an outlet (not shown) formed in the partition member 181.
  • the gas supply source 16 may be a cylinder containing an inert gas.
  • the gas supply source 16 may be a nitrogen gas generator that generates nitrogen gas using the atmosphere as a raw material.
  • the gas supply source 16 may supply the purge gas to the mixing device 112 to which the modeling material M from the material supply source 11 is supplied.
  • the gas supply source 16 may be connected to the mixing device 112 via a supply pipe 162 that connects the gas supply source 16 and the mixing device 112.
  • gas source 16 supplies purge gas to mixing device 112 via supply pipe 162 .
  • the modeling material M from the material supply source 11 is supplied (specifically, , pumping). That is, the gas supply source 16 may be connected to the material nozzle 1212 via the supply pipe 162, the mixing device 112, and the supply pipe 111.
  • the material nozzle 1212 supplies the modeling material M together with a purge gas for pumping the modeling material M.
  • the control device 17 controls the operation of the processing device 1.
  • the control device 17 may control the processing unit 12 (for example, at least one of the processing head 121 and the head drive system 122) included in the processing device 1 so as to process the workpiece W.
  • the control device 17 may control the stage unit 13 (for example, the stage drive system 132) included in the processing device 1 so as to process the workpiece W.
  • the control device 17 may include, for example, a calculation device and a storage device.
  • the arithmetic device may include, for example, at least one of a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit).
  • the storage device may include, for example, memory.
  • the control device 17 functions as a device that controls the operation of the processing device 1 by a calculation device executing a computer program.
  • This computer program is a computer program for causing the arithmetic device to perform (that is, execute) the operation to be performed by the control device 17, which will be described later. That is, this computer program is a computer program for causing the control device 17 to function so as to cause the processing device 1 to perform the operations described below.
  • the control device 17 may control the emission mode of the processing light EL by the irradiation optical system 1211.
  • the injection mode may include, for example, at least one of the intensity of the processing light EL and the emission timing of the processing light EL.
  • the emission mode is, for example, the light emission time of the pulsed light, the light emission period of the pulsed light, and the ratio of the length of the light emission time of the pulsed light to the light emission period of the pulsed light. (so-called duty ratio).
  • the control device 17 may control the manner in which the processing head 121 is moved by the head drive system 122.
  • the control device 17 may control the manner in which the stage 131 is moved by the stage drive system 132.
  • the movement mode may include, for example, at least one of a movement amount, a movement speed, a movement direction, and a movement timing (movement timing). Furthermore, the control device 17 may control the manner in which the modeling material M is supplied by the material nozzle 1212.
  • the supply mode may include, for example, at least one of supply amount (particularly supply amount per unit time) and supply timing (supply timing).
  • the control device 17 does not need to be provided inside the processing device 1.
  • the control device 17 may be provided outside the processing device 1 as a server or the like.
  • the control device 17 and the processing device 1 may be connected via a wired and/or wireless network (or a data bus and/or a communication line).
  • a wired network for example, a network using a serial bus type interface represented by at least one of IEEE1394, RS-232x, RS-422, RS-423, RS-485, and USB may be used.
  • a network using a parallel bus interface may be used.
  • a network using an interface compliant with Ethernet typified by at least one of 10BASE-T, 100BASE-TX, and 1000BASE-T may be used.
  • a network using radio waves may be used.
  • An example of a network using radio waves is a network compliant with IEEE802.1x (for example, at least one of a wireless LAN and Bluetooth (registered trademark)).
  • a network using infrared rays may be used.
  • a network using optical communication may be used as the wireless network.
  • the control device 17 and the processing device 1 may be configured to be able to transmit and receive various information via a network.
  • control device 17 may be able to transmit information such as commands and control parameters to the processing device 1 via a network.
  • the processing device 1 may include a receiving device that receives information such as commands and control parameters from the control device 17 via the network.
  • the processing device 1 may include a transmitting device that transmits information such as commands and control parameters to the control device 17 via the network (that is, an output device that outputs information to the control device 17). good.
  • a first control device that performs some of the processing performed by the control device 17 is provided inside the processing device 1, while a second control device that performs another part of the processing performed by the control device 17 is provided inside the processing device 1.
  • the control device may be provided outside the processing device 1.
  • the calculation model installed in the control device 17 may be updated by online machine learning on the control device 17.
  • the control device 17 may use a calculation model installed in a device external to the control device 17 (that is, a device provided outside the processing device 1) in addition to or in place of the calculation model installed in the control device 17.
  • the operation of the processing device 1 may be controlled using the following.
  • the recording medium for recording the computer program executed by the control device 17 includes CD-ROM, CD-R, CD-RW, flexible disk, MO, DVD-ROM, DVD-RAM, DVD-R, DVD+R, and DVD.
  • At least one of optical disks such as RW, DVD+RW and Blu-ray (registered trademark), magnetic media such as magnetic tape, magneto-optical disks, semiconductor memories such as USB memory, and any other arbitrary medium capable of storing programs is used. It's okay to be hit.
  • the recording medium may include a device capable of recording a computer program (for example, a general-purpose device or a dedicated device in which a computer program is implemented in an executable state in the form of at least one of software and firmware).
  • FIG. 4 is a block diagram showing the configuration of the measurement system 2.
  • the measurement system 2 includes a shape measurement device 21 and a control information generation device 22.
  • the shape measuring device 21 is capable of measuring the three-dimensional shape of the object to be measured.
  • the measurement system 2 measures the workpiece W before the processing apparatus 1 actually starts processing the workpiece W. Therefore, the object to be measured by the shape measuring device 21 may include the workpiece W.
  • the three-dimensional shape of the object to be measured may be measured using a time-of-flight method in which the distance to the object to be measured is measured at multiple positions on the object.
  • the shape measuring device 21 uses a moire topography method (specifically, a grating irradiation method or a grating projection method), a holographic interference method, an autocollimation method, a stereo method, an astigmatism method, a critical angle method, and a knife edge method.
  • the three-dimensional shape of the object to be measured may be measured using at least one of them.
  • the control information generation device 22 generates processing control information.
  • An example of the configuration of the control information generation device 22 that can generate processing control information is shown in FIG.
  • the control information generation device 22 includes a calculation device 221, a storage device 222, and a communication device 223.
  • the control information generation device 22 may include an input device 224 and an output device 225.
  • the control information generation device 22 does not need to include at least one of the input device 224 and the output device 225.
  • Arithmetic device 221 , storage device 222 , communication device 223 , input device 224 , and output device 225 may be connected via data bus 226 .
  • the arithmetic device 221 may obtain, via the communication device 223, a computer program stored in a storage device of a device (not shown) located outside the control information generation device 22 (that is, download it). (or may be loaded).
  • the arithmetic unit 221 executes the loaded computer program.
  • a logical functional block is realized for executing the operation (for example, the operation for generating processing control information) that the control information generation device 22 should perform.
  • the arithmetic device 221 can function as a controller for realizing a logical functional block for executing the operations that the control information generation device 22 should perform.
  • any device typically a computer
  • the computer program can function as the control information generating device 22.
  • FIG. 5 shows an example of logical functional blocks implemented within the arithmetic unit 221.
  • a control information generation section 2211 is implemented within the arithmetic device 221.
  • the control information generation unit 2211 generates processing control information. Note that the operation for generating processing control information will be described in detail later.
  • a calculation model that can be constructed by machine learning may be implemented in the calculation device 221 by the calculation device 221 executing a computer program.
  • An example of a calculation model that can be constructed by machine learning is a calculation model that includes a neural network (so-called artificial intelligence (AI)).
  • learning the computational model may include learning parameters (eg, at least one of weights and biases) of the neural network.
  • the calculation device 221 may generate processing control information using the calculation model.
  • the calculation device 221 may be equipped with a calculation model that has been constructed by offline machine learning using teacher data. Further, the calculation model installed in the calculation device 221 may be updated by online machine learning on the calculation device 221.
  • the storage device 222 can store desired data.
  • the storage device 222 may temporarily store a computer program executed by the arithmetic device 221.
  • the storage device 222 may temporarily store data that is temporarily used by the arithmetic device 221 when the arithmetic device 221 is executing a computer program.
  • the storage device 222 may store data that the control information generation device 22 stores for a long period of time.
  • the storage device 222 may include at least one of a RAM (Random Access Memory), a ROM (Read Only Memory), a hard disk device, a magneto-optical disk device, an SSD (Solid State Drive), and a disk array device. good. That is, the storage device 222 may include a non-temporary recording medium.
  • (2-1) Machining operation First, the machining operation will be explained with reference to FIGS. 6 and 7. In particular, as an example of a machining operation, an additional machining operation performed by the machining device 1 will be described. As described above, the processing device 1 shapes the three-dimensional structure ST using the laser overlay welding method. For this reason, the processing device 1 may model the three-dimensional structure ST by performing an existing additional processing operation based on the laser overlay welding method. Hereinafter, an example of the processing operation for modeling the three-dimensional structure ST using the laser overlay welding method will be briefly described.
  • the processing device 1 sequentially models, for example, a plurality of layered partial structures (hereinafter referred to as "structural layers") SL arranged along the Z-axis direction. For example, the processing device 1 sequentially shapes a plurality of structural layers SL, one layer at a time, obtained by cutting the three-dimensional structure ST into rings along the Z-axis direction. As a result, a three-dimensional structure ST, which is a layered structure in which a plurality of structural layers SL are stacked, is modeled.
  • a flow of operations for modeling a three-dimensional structure ST by sequentially modeling a plurality of structural layers SL one by one will be described.
  • each structural layer SL Under the control of the control device 17, the processing device 1 operates the processing head so that the target irradiation area EA is set at a desired area on the modeling surface MS corresponding to the surface of the workpiece W or the surface of the structured layer SL that has been modeled. At least one of stage 121 and stage 131 is moved. After that, the processing apparatus 1 irradiates the target irradiation area EA with the processing light EL from the irradiation optical system 1211. At this time, the condensing surface on which the processing light EL is condensed in the Z-axis direction may coincide with the modeling surface MS.
  • the structural layer SL corresponds to an aggregate of objects formed on the modeling surface MS in a pattern corresponding to the movement path of the molten pool MP (in other words, in a plan view, the structure layer SL has a shape corresponding to the movement path of the molten pool MP).
  • a structural layer SL) having the structure layer SL) is modeled. Note that when the target irradiation area EA is set in an area where it is not desired to model a modeled object, the processing device 1 irradiates the target irradiation area EA with the processing light EL, and even if the supply of the modeling material M is stopped. good.
  • the processing device 1 performs an operation similar to that for modeling the structural layer SL#1, and generates processing control information (for example, processing path information for modeling the structural layer SL#2). Based on this, a structural layer SL#2 is formed on the structural layer SL#1. As a result, the structural layer SL#2 is formed as shown in FIG. 7(b). Thereafter, similar operations are repeated until all structural layers SL constituting the three-dimensional structure ST to be modeled on the workpiece W are modeled. As a result, as shown in FIG. 7C, a three-dimensional structure ST is formed by a layered structure in which a plurality of structural layers SL are stacked.
  • the measurement system 2 (in particular, the control information generation unit 2211 of the control information generation device 22) generates processing control information by performing the control information generation operation. generate.
  • a three-dimensional model indicated by a file indicating CAD data may be used as the object model OM.
  • files representing CAD data include at least one of a file with an extension of DWF, a file with an extension of DXF, a file with an extension of DWG, and a file with an extension of STP.
  • a mesh model is used as the object model OM
  • a three-dimensional model indicated by a file with an STL extension may be used as the object model OM.
  • a file may include a differential model DM as assembly information and an object model OM as assembly information.
  • the file may include a reference model RM as assembly information.
  • the obtained first object model OM may also be included.
  • the file may include information regarding the measurement accuracy used when acquiring the object model OM.
  • the first object model OM and information regarding the measurement accuracy used when acquiring the first object model OM may be associated.
  • the second object model OM and information regarding the measurement accuracy used when acquiring the second object model OM may be associated.
  • control information generation unit 2211 uses the object model OM, it may also generate processing control information without using the reference model RM.
  • the control information generation unit 2211 may generate processing control information using the reference model RM but without using the object model OM.
  • the three-dimensional shape may be different from the three-dimensional shape of the corresponding model portion CMP.
  • the three-dimensional shape of the object model OM generated based on the measurement results by the shape measuring device 21 may differ from the reference model RM.
  • the three-dimensional shape will be different from the three-dimensional shape of the model portion CMP.
  • the measurement system 2 may perform the control information generation operation described below.
  • the shape measuring device 21 measures the three-dimensional shape of the workpiece W (step S1).
  • the shape measuring device 21 measures the three-dimensional shape of the used workpiece W (step S1).
  • the shape measuring device 21 generates measurement information indicating the three-dimensional shape of the workpiece W.
  • the shape measurement device 21 outputs (for example, transmits) the generated measurement information to the control information generation device 22.
  • the control information generation unit 2211 generates one of the object model OM and the deformed model TM, as shown in FIG. Transform the reference model RM so that the difference between the corresponding model part MPt corresponding to the object model OM is smaller than the difference between the object model OM and the corresponding model part MPr corresponding to the object model OM of the reference model RM. You may. Note that the difference between the object model OM and the corresponding model portion MPr of the reference model RM may be considered to be equivalent to the amount of deformation of the workpiece W.
  • FIG. 15(b) shows an example in which the vertex Pom#1 of the object model OM corresponds to the vertex Ptm#1 of the first mesh of the deformed model TM, which is a mesh model. Further, FIG. 15(b) shows an example in which the vertex Pom#2 of the object model OM corresponds to the vertex Ptm#2 of the second mesh of the deformed model TM. Note that since the deformed reference model RM is used as the deformed model TM, the vertex Ptm#1 of the deformed model TM is equivalent to the vertex Prm#1 of the deformed reference model RM. Similarly, the vertex Ptm#2 of the deformed model TM is equivalent to the vertex Prm#2 of the deformed reference model RM.
  • control information generation unit 2211 uses the distance between the vertex Pom#1 of the object model OM and the vertex Prm#1 of the reference model RM as an index indicating the difference between the corresponding model portion MPr of the object model OM and the reference model RM. May be used as a value.
  • the control information generation unit 2211 uses the distance between the vertex Pom#2 of the object model OM and the vertex Prm#2 of the reference model RM as an index value indicating the difference between the corresponding model portion MPr of the object model OM and the reference model RM. It's okay.
  • control information generation unit 2211 uses the distance between the vertex Pom#1 of the object model OM and the vertex Ptm#1 of the deformed model TM as an index indicating the difference between the corresponding model portion MPt of the object model OM and the deformed model TM. May be used as a value.
  • the control information generation unit 2211 uses the distance between the vertex Pom#2 of the object model OM and the vertex Ptm#2 of the deformed model TM as an index value indicating the difference between the object model OM and the corresponding model portion MPt of the deformed model TM. It's okay.
  • the control information generation unit 2211 determines that the distance between vertex Pom#1 and vertex Ptm#1 (see FIG. 15(b)) is
  • the reference model RM may be modified so that the distance is shorter than the distance between the vertex Pom#1 and the vertex Prm#1 (see FIG. 15(a)).
  • the control information generation unit 2211 determines that the distance Dxt#1 between the apex Pom#1 and the apex Ptm#1 in the X-axis direction is the distance Dxt#1 between the apex Pom#1 and the apex Prm#1 in the X-axis direction.
  • control information generation unit 2211 determines that while distance Dxt#1 does not become shorter than distance Dxr#1, distance Dyt#1 becomes shorter than distance Dyr#1 and/or distance Dzt#1 becomes shorter than distance Dzr#1.
  • the reference model RM may be modified so that it is shorter than .
  • the control information generation unit 2211 determines whether distance Dyt#1 does not become shorter than distance Dyr#1, while distance Dxt#1 becomes shorter than distance Dxr#1, and/or distance Dzt#1 becomes shorter than distance Dzr#1.
  • the reference model RM may be modified so that it becomes shorter.
  • the control information generation unit 2211 determines that the distance between vertex Pom#2 and vertex Ptm#2 (see FIG. 15(b)) is The reference model RM may be modified so that the distance is shorter than the distance between the vertex Pom#2 and the vertex Prm#2 (see FIG. 15(a)). For example, the control information generation unit 2211 determines that the distance Dxt#2 between the apex Pom#2 and the apex Ptm#2 in the X-axis direction is the distance Dxt#2 between the apex Pom#2 and the apex Prm#2 in the X-axis direction.
  • Reference model RM may be modified so that it is shorter than Dxr#2.
  • the control information generation unit 2211 determines that the distance Dyt#2 between the apex Pom#2 and the apex Ptm#2 in the Y-axis direction is the distance between the apex Pom#2 and the apex Prm#2 in the Y-axis direction.
  • the reference model RM may be modified so that it is shorter than Dyr#2.
  • the control information generation unit 2211 determines that the distance Dzt#2 between the vertex Pom#2 and the vertex Ptm#2 in the Z-axis direction is the distance between the vertex Pom#2 and the vertex Prm#2 in the Z-axis direction.
  • the reference model RM may be modified so that it is shorter than Dzr#2.
  • control information generation unit 2211 determines that while distance Dxt#2 does not become shorter than distance Dxr#2, distance Dyt#2 becomes shorter than distance Dyr#2 and/or distance Dzt#2 becomes shorter than distance Dzr#2.
  • the reference model RM may be modified so that it is shorter than .
  • the control information generation unit 2211 determines that while distance Dyt#2 does not become shorter than distance Dyr#2, distance Dxt#2 becomes shorter than distance Dxr#2 and/or distance Dzt#2 becomes shorter than distance Dzr#2.
  • the reference model RM may be modified so that it becomes shorter.
  • the control information generation unit 2211 determines that while distance Dzt#2 does not become shorter than distance Dzr#2, distance Dxt#2 becomes shorter than distance Dxr#2 and/or distance Dyt#2 becomes shorter than distance Dyr#2.
  • the reference model RM may be modified so that it becomes shorter.
  • the control information generation unit 2211 may deform the reference model RM so that the object model OM and the corresponding model portion MPt of the deformed model TM match. For example, the control information generation unit 2211 may transform the reference model RM so that the vertex Pom#1 of the object model OM and the vertex Ptm#1 of the deformed model TM match. The control information generation unit 2211 may transform the reference model RM so that the distance between the vertex Pom#1 and the vertex Ptm#1 becomes zero. For example, the control information generation unit 2211 transforms the reference model RM so that at least one of the distances Dxt#1, Dyt#1, Dzt#1, Dxt#2, Dyt#2, and Dzt#2 becomes zero. You may.
  • the distance between the vertex Pom#1 of the object model OM and the vertex Prm#1 of the reference model RM is the distance between the vertex Pom#2 of the object model OM and the vertex Prm#2 of the reference model RM. It may be different from the distance. That is, the amount of deformation in one part of the workpiece W may be different from the amount of deformation in another part of the workpiece W. As an example, when the workpiece W is a turbine blade, the amount of deformation of a portion of the turbine blade generally increases as the portion approaches the tip of the turbine blade. In other words, the amount of deformation of a portion of the turbine blade generally decreases as the portion approaches the root of the turbine blade.
  • the root of the turbine blade may also mean the shank of the turbine blade (that is, the member attached to the rotatable rotor).
  • the tip of a turbine blade may refer to the tip of the blade body extending from the shank.
  • the apex Pom#1 and the apex Prm#1 may be larger than the distance between the apex Pom#2 and the apex Prm#2.
  • the deformed model TM as assembly information and the object model OM as assembly information are included in a file (for example, a CAD file indicating CAD data, the same applies hereinafter in this paragraph). May be included.
  • the file may also include a reference model RM as assembly information.
  • the file may include a differential model DM as assembly information.
  • At least one of the object model OM, reference model RM, deformation model TM, and difference model DM may be a file (for example, a CAD file indicating CAD data; ) may be included.
  • a file containing the object model OM, a file containing the reference model RM, a file containing the deformed model TM, and a file containing the difference model DM may be stored in the storage device 222 or the like. That is, the object model OM, reference model RM, deformation model TM, and difference model DM may be included in separate files.
  • information indicating that at least two of the file containing the object model OM, the file containing the reference model RM, the file containing the deformed model TM, and the file containing the difference model DM are associated with each other.
  • a management file containing the information may be stored in the storage device 222 or the like.
  • the control information generation unit 2211 generates the difference model DM (step S5).
  • the control information generation unit 2211 generates the difference model DM based on the object model OM generated (acquired) in step S2 and the deformed model TM generated in step S4.
  • the control information generation unit 2211 may generate a three-dimensional model corresponding to the difference between the deformed model TM and the object model OM as the difference model DM.
  • the difference model DM is typically a three-dimensional model corresponding to a part of the deformed model TM.
  • FIG. 16(a) schematically shows the reference model RM when the workpiece W is deformed as the workpiece is used, and FIG.
  • FIG. 16(b) schematically shows the reference model RM when the workpiece W is deformed as the workpiece is used.
  • FIG. 16(c) schematically shows the difference model DM generated based on the reference model RM shown in FIG. 16(a) and the object model OM shown in FIG. 16(b). to show.
  • the difference model DM corresponding to the difference between the deformation model TM and the object model OM is the cubic model represented by the difference model DM corresponding to the difference between the reference model RM and the object model OM.
  • the difference model DM corresponding to the difference between the deformed model TM and the object model OM has a three-dimensional shape ( (See FIG. 11(c)), the shape is closer to the three-dimensional shape of the defective portion of the workpiece W.
  • the difference model DM see FIG.
  • the difference model DM (see FIG. 16(c)) corresponding to the difference between the deformed model TM and the object model OM has the same three-dimensional shape as the three-dimensional shape of the missing portion of the workpiece W.
  • the difference model DM appropriately indicates the three-dimensional shape of the three-dimensional structure ST to be modeled by the processing device 1 so that the three-dimensional shape of the workpiece W becomes the target shape.
  • the difference model DM is a three-dimensional model that the processing device 1 should model so that the three-dimensional shape of the deformed workpiece W becomes a target shape that is appropriately modified according to the deformation of the workpiece W.
  • the three-dimensional shape of the structure ST is appropriately shown.
  • the difference model DM appropriately indicates the three-dimensional shape of the machined portion necessary for the three-dimensional shape of the work W to become the target shape.
  • the processing device 1 can form a three-dimensional structure ST having a desired shape.
  • the processing device 1 can model a three-dimensional structure ST that can appropriately compensate for a missing portion.
  • the measurement system 2 in particular, the control information generation device 22
  • the control information generation device 22 can print the three-dimensional structure ST having the desired shape. Processing control information for controlling the processing apparatus 1 can be generated in this manner.
  • the operation of printing the three-dimensional structure ST is considered to be equivalent to the operation of printing the three-dimensional structure ST whose difference model DM shows a three-dimensional shape on the workpiece W whose object model OM shows a three-dimensional shape.
  • the control device 17 of the processing device 1 controls the processing device 1 so that the three-dimensional structure ST whose difference model DM shows a three-dimensional shape is formed on the workpiece W whose object model OM shows a three-dimensional shape. May be controlled.
  • control device 17 may perform the control information generation operation shown in FIG. That is, the control device 17 may generate the deformed model TM by deforming the reference model RM based on the object model OM, and may generate the difference model DM based on the deformed model TM and the object model OM. .
  • the control device 17 (or the control information generation device 22) converts a three-dimensional model representing the three-dimensional structure of the three-dimensional structure ST to be formed on the undeformed workpiece W into a three-dimensional model of the deformed workpiece W. By deforming based on the object model OM indicating the shape, a deformed three-dimensional model may be generated as the difference model DM.
  • the operation of transforming the three-dimensional model of the three-dimensional structure ST based on the object model OM may be the same as the operation of transforming the reference model RM based on the object model OM. That is, the control device 17 (or control information generation device 22) aligns the three-dimensional model of the three-dimensional structure ST with the object model OM, and controls each vertex of the three-dimensional model of the three-dimensional structure ST.
  • the three-dimensional model of the three-dimensional structure ST may be deformed by specifying one of the vertices, dependent vertices, and fixed vertices, and moving the control vertices and dependent vertices.
  • the control device 17 may generate the difference model DM based on the slice data and at least one of the object model OM, the reference model RM, and the deformed model TM.
  • the control device 17 may generate processing control information based on the slice data and at least one of the object model OM, the reference model RM, and the deformed model TM.
  • the control device 17 controls the processing device 1 to form a three-dimensional structure ST on the workpiece W based on the slice data and at least one of the object model OM, the reference model RM, and the deformed model TM. Good too.
  • the control device 17 may edit the G code so as to model the three-dimensional structure ST on the workpiece W. For example, the control device 17 may align the G code data so as to form the three-dimensional structure ST on the workpiece W.
  • FIG. 17 is a flowchart showing the flow of operations for generating the deformed model TM by deforming the reference model RM in step S4 of FIG.
  • FIG. 17 shows the flow of operations for generating the deformed model TM by deforming the reference model RM using the Laplacian coordinate representation.
  • transforming the reference model RM may be referred to as Laplacian transformation.
  • the control information generation device 22 may transform the reference model RM and generate the modified model TM by performing an operation different from the operation shown in FIG. 17 .
  • the control information generation unit 2211 aligns the reference model RM and the object model OM (step S41).
  • An example of alignment between the reference model RM and the object model OM is shown in FIG.
  • the control information generation unit 2211 aligns the reference model RM and the object model OM so that the reference part Brm of the reference model RM and the reference part Bom of the object model OM match.
  • the control information generation unit 2211 may align the reference model RM and the object model OM so that the reference part Brm of the reference model RM and the reference part Bom of the object model OM are located at the same position. .
  • the reference part Brm of the reference model RM may be a model part that indicates the reference part Bw of the workpiece W in the reference model RM.
  • the reference portion Bom of the object model OM may be a model portion that indicates the same reference portion Bw of the workpiece W in the object model OM. That is, the reference part Bom of the object model OM may be a model part corresponding to the reference part Brm of the reference model RM of the object model OM.
  • the reference portion Bw of the workpiece may include a portion where the amount of deformation due to use of the workpiece W is less than or equal to the allowable amount.
  • the reference portion Bw of the workpiece may include a portion that does not deform due to use of the workpiece W.
  • the reference portion Bw of the workpiece may be a portion to which a jig used for placing the workpiece W on the stage 131 is attached.
  • the reference portion Bw of the workpiece may be a predetermined portion.
  • the control information generation unit 2211 may use an existing alignment method.
  • An example of an existing alignment method is an alignment method using RANSAC (Random Sample Consensus).
  • Another example of the existing positioning method is a positioning method using SIFT (Scale-Invariant Feature Transform).
  • Another example of existing alignment methods is an alignment method using ICP (Iterative Closest Point).
  • Another example of existing alignment methods is an alignment method using DSO (Direct Sparse Odometry).
  • the control information generation unit 2211 may align the reference model RM and the object model OM based on instructions from the user of the processing system SYS. Specifically, the user may use the input device 224 to input an instruction to align the reference model RM and object model OM to the control information generation device 22.
  • the output device 225 that can function as a display device may display the reference model RM and the object model OM. The user may use the input device 224 to move at least one of the reference model RM and the object model OM displayed by the output device 225 to align the reference model RM and the object model OM.
  • a fixed vertex corresponds to a vertex that does not move when the reference model RM is deformed to generate the deformed model TM.
  • the fixed vertex may be a vertex used as a non-ROI (Non Region of Interest), for example.
  • the control information generation unit 2211 generates a reference model RM.
  • a vertex included in the reference portion Brm is designated as a fixed vertex will be described.
  • the reference part Brm of the reference model RM may be considered to be the fixed model part MPA#1 of the reference model RM that should not be deformed.
  • a control vertex corresponds to a vertex that moves when deforming the reference model RM to generate the deformed model TM.
  • the control vertex is a vertex where a target movement position to which the control vertex should be moved is set. Therefore, the control vertex moves to the set target movement position when deforming the reference model RM to generate the deformed model TM.
  • the control vertex may be considered to be the vertex for which the amount of movement and direction of movement are set.
  • the control information generation unit 2211 designates, as control vertices, vertices included in at least a part of the corresponding model portion MPr corresponding to the object model OM of the reference model RM.
  • the control information generation unit 2211 designates, as control vertices, vertices included in at least a part of the corresponding model portion MPr corresponding to the object model OM of the reference model RM.
  • at least a part of the corresponding model part MPr of the reference model RM is considered to be the control model part MPA#2 that should be transformed by moving the control vertices of the reference model RM. Good too.
  • control information generation unit 2211 is included in the dependent model part MPA#3, which is different from the fixed model part MPA#1 and the control model part MPA#2 of the reference model RM.
  • An example of specifying a vertex as a dependent vertex will be explained.
  • each of the multiple vertices can be designated as either the fixed vertex, the control vertex, or the dependent vertex, compared to the case where all of the multiple vertices are designated as either the fixed vertex, the control vertex, or the dependent vertex.
  • the processing load required for specification is reduced.
  • the control information generation unit 2211 sets the target movement position of the control vertex (step S43). That is, the control information generation unit 2211 sets the target movement position of the vertex of the reference model RM designated as the control vertex in step S42 (step S43). For example, the control information generation unit 2211 moves the control vertex to the target movement position so that the difference between the control model portion MPA#2 (see FIG. 19) and the object model OM becomes smaller by moving the control vertex to the target movement position. may be set.
  • control information generation unit 2211 changes the three-dimensional shape of the control model portion MPA#2, which is a part of the surface of the reference model RM, and the surface of the object model OM by moving the control vertex to the target movement position.
  • the target movement position of the control vertex may be set so that the difference from the three-dimensional shape of the model portion corresponding to the control model portion MPA#2 becomes small.
  • the control information generation unit 2211 uses the control model portion MPA# of the surface of the object model OM in order to set the target movement position of the control vertex so that the difference between the control model portion MPA#2 and the object model OM becomes small.
  • the target movement position may be set on the model portion corresponding to 2.
  • the control information generation unit 2211 extracts from the object model OM a model part corresponding to the control model part MPA#2 on the surface of the object model OM, and sets a target movement position on the extracted model part. It's okay.
  • the control information generation unit 2211 may set the target movement position of the control vertex based on instructions from the user of the processing system SYS. Specifically, the user may use the input device 224 to input an instruction for setting the target position to the control information generation device 22.
  • the output device 225 that can function as a display device may display the reference model RM.
  • the user may use the input device 224 to set a target movement position for the reference model RM displayed by the output device 225. In this case, it may be assumed that the user is specifying the amount of deformation of the reference model RM.
  • the control information generation unit 2211 may determine whether the deformed model TM can be generated based on the target movement position set in step S43. For example, considering that the control vertex moves to the target movement position, the operation of setting the target movement position can be said to be equivalent to the operation of setting the movement amount of the control vertex.
  • the larger the amount of deformation of the workpiece W the larger the amount of movement of the control vertex should be.
  • the amount of deformation of the workpiece W is greater than or equal to the allowable amount of deformation, even if the workpiece W is repaired by modeling the three-dimensional structure ST on the workpiece W, the three-dimensional shape of the workpiece W after the repair is The shape may differ significantly from the originally expected three-dimensional shape.
  • the control information generation unit 2211 determines whether the deformed model TM can be generated by determining whether the amount of movement of at least one control vertex is equal to or greater than the allowable amount of movement based on the target movement position. It may be determined whether For example, if it is determined that the amount of movement of at least one control vertex is equal to or greater than the allowable amount of movement, the control information generation unit 2211 may determine that the deformed model TM cannot be generated.
  • the control information generation device 22 uses the output device 225 to generate notification information for notifying the user of the processing system SYS that the deformed model TM cannot be generated. may be output.
  • the control information generation device 22 may use the output device 225 that can function as a display device to display a notification image for notifying the user that the deformed model TM cannot be generated.
  • control information generation device 22 in addition to or in place of outputting notification information for notifying the user that the deformed model TM cannot be generated, the control information generation unit 2211 may be controlled so as not to generate processing control information. In addition to or instead of outputting the notification information, the control information generation device 22 may control the communication device 223 so as not to transmit the processing control information to the processing device 1.
  • control information generation unit 2211 transforms the reference model RM to generate a modified model TM (steps S44 to S45).
  • control information generation unit 2211 moves the control vertex to the target movement position in a state where the reference model RM and the object model OM are aligned (step S44). That is, the control information generation unit 2211 moves the vertex of the reference model RM designated as the control vertex in step S42 to the target movement position set in step S43 (step S44).
  • FIG. 20 which schematically shows an undeformed reference model RM and a deformed reference model RM
  • the control model portion MPA#2 of the reference model RM is deformed in accordance with the movement of the control vertex. . That is, the three-dimensional shape of the control model portion MPA#2 of the reference model RM changes.
  • the control model part MPA#2 of the reference model RM is moved so that the control model part MPA#2 of the reference model RM moves to the position of the model part corresponding to the control model part MPA#2 of the object model OM. #2 is deformed. Therefore, the operation of moving the control vertex may be considered to be equivalent to the operation of deforming the control model portion MPA#2 of the reference model RM.
  • the operation of moving the control vertex to the target movement position is performed by moving the reference model so that the control model part MPA#2 of the reference model RM moves to the position of the model part corresponding to the control model part MPA#2 of the object model OM.
  • This may be considered to be equivalent to the operation of transforming the control model portion MPA#2 of the RM.
  • control information generation unit 2211 moves the dependent vertices in accordance with the movement of the control vertices (step S45). That is, the control information generation unit 2211 moves the vertex of the reference model RM designated as the dependent vertex in step S42 in accordance with the movement of the control vertex in step S44 (step S45). For example, the control information generation unit 2211 may move the dependent vertices in accordance with the movement of the control vertices by performing mesh deformation.
  • the dependent model portion MPA#3 of the reference model RM is deformed in accordance with the movement of the dependent vertices. . That is, the three-dimensional shape of the dependent model portion MPA#3 of the reference model RM changes. In this case, it can be said that the dependent model portion MPA#3 of the reference model RM is deformed in accordance with the deformation of the control model portion MPA#2 of the reference model RM.
  • control information generation unit 2211 may move the control vertex based on instructions from the user of the processing system SYS. Specifically, the user may use the input device 224 to input an instruction to move the control vertex to the control information generation device 22.
  • the output device 225 that can function as a display device may display the reference model RM.
  • the output device 225 which can function as a display device, may display the control vertices of the reference model RM.
  • the user may use the input device 224 to move the control vertex displayed by the output device 225. In this case, it may be assumed that the user is specifying the amount of deformation of the reference model RM.
  • the control information generation unit 2211 may move the dependent vertices based on instructions from the user of the processing system SYS. Specifically, the user may use the input device 224 to input an instruction to move the dependent vertex to the dependent information generation device 22.
  • the output device 225 that can function as a display device may display the reference model RM.
  • the output device 225 which can function as a display device, may display dependent vertices of the reference model RM.
  • the user may use the input device 224 to move the dependent vertices displayed by the output device 225. In this case, it may be assumed that the user is specifying the amount of deformation of the reference model RM.
  • the control information generation unit 2211 does not move the fixed vertices. In other words, even if the control vertex and the dependent vertex are moving, the position of the fixed vertex is fixed.
  • the deformed reference model RM is generated as the deformed model TM.
  • the difference model DM generated from the deformed model TM may typically include at least a portion of the deformed dependent model portion MPA#3.
  • the file may include deformation information regarding the deformation of the reference model RM.
  • the information regarding the deformation of the reference model RM may include information regarding at least one of a control vertex, a dependent vertex, and a fixed vertex.
  • the information regarding the control vertex may include information regarding the position of the control vertex.
  • the information regarding the control vertex may include information regarding movement of the control vertex.
  • the information regarding the movement of the control vertex may include information regarding at least one of the amount and direction of movement of the control vertex.
  • the information regarding dependent vertices may include information regarding the position of the dependent vertices.
  • the information regarding dependent vertices may include information regarding movement of the dependent vertices.
  • the information regarding the movement of the dependent vertex may include information regarding at least one of the amount and direction of movement of the dependent vertex.
  • the information regarding the fixed vertex may include information regarding the position of the fixed vertex.
  • the control information generation unit 2211 may generate the deformed model TM by deforming the reference model RM using deformation information included in the file. As a result, the control information generation unit 2211 can easily regenerate the same deformed model TM as the deformed model TM that has been generated in the past.
  • the reference model RM and the deformation information may be included in separate files.
  • a management file containing information indicating that a file containing the reference model RM and a file containing deformation information are associated with each other may be stored in the storage device 222 or the like.
  • the control information generation device 22 processes a second workpiece W different from the first workpiece W using the deformation information generated to generate processing control information for processing the first workpiece W. Processing control information may also be generated. For example, the control information generation device 22 may deform the reference model RM of the second workpiece W using deformation information regarding deformation of the reference model RM of the first workpiece W. In this case, the control information generation device 22 does not need to set the target movement position of the control vertex of the reference model RM of the second workpiece W. As a result, the processing load on the control information generation device 22 can be reduced. This operation is particularly effective when the amount of deformation of the first workpiece W and the amount of deformation of the second workpiece W are similar.
  • the workpiece A deformation model TM reflecting the deformation of W is used. Therefore, the three-dimensional shape shown by the differential model DM generated based on the deformed model TM (see FIG. 15(b)) is different from the three-dimensional shape shown by the differential model DM generated based on the reference model RM (see FIG. 11). (c)), it becomes closer to the three-dimensional shape of the three-dimensional structure ST to be modeled by the processing device 1. Therefore, even if the workpiece W is deformed as the workpiece W is used, the measurement system 2 (in particular, the control information generation device 22) is configured to print the three-dimensional structure ST having the desired shape. Processing control information for controlling the processing apparatus 1 can be generated. In other words, the control information generation device 22 can generate processing control information in which the influence of the deformation of the workpiece W is reduced or canceled out. As a result, the processing device 1 can form a three-dimensional structure ST having a desired shape.
  • the amount of deformation in one part of the workpiece W may be different from the amount of deformation in another part of the workpiece W.
  • the control information generating device 22 can generate processing control information in which the influence of not only the relatively small deformation of the root of the turbine blade but also the relatively large deformation of the tip of the turbine blade is reduced or offset. can.
  • the processing device 1 forms a shaped object on the tip of the turbine blade.
  • control information generation device 22 can generate processing control information in which the influence of deformation of the portion of the turbine blade where the processing device 1 should form the object is appropriately reduced or offset.
  • the processing device 1 can appropriately shape the three-dimensional structure ST having a desired shape that can appropriately compensate for the missing portion of the turbine blade.
  • the processing system SYS of this embodiment can generate a deformed model TM by deforming the reference model RM.
  • the processing system SYS can generate the deformed model TM by moving the control vertices and dependent vertices of the reference model RM. Since the control vertices and dependent vertices are located on the surface of the reference model RM (particularly the surface including the side surfaces), the processing system SYS calculates the shape of the workpiece W based on the object model OM in which the deformation of the side surface of the workpiece W is reflected.
  • the reference model RM having a side surface corresponding to the side surface can be deformed.
  • the processing system SYS can appropriately deform (for example, bend) the side surface of the reference model RM in accordance with the deformation of the side surface of the workpiece W.
  • the processing system SYS can appropriately generate the deformation model TM (furthermore, the difference model DM) in which the deformation of the side surface of the workpiece W is appropriately reflected.
  • the measurement system 2 deforms the reference model RM based on the object model OM in order to generate the deformed model TM.
  • the control information generation device 22 may deform the object model OM based on the reference model RM in order to generate the deformed model TM.
  • the operation of transforming the object model OM based on the reference model RM may be the same as the operation of transforming the reference model RM based on the object model OM.
  • the control information generation device 22 aligns the reference model RM and the object model OM, designates each vertex of the object model OM as either a control vertex, a dependent vertex, or a fixed vertex, and The object model OM may be deformed by moving the . Thereafter, as shown in FIG. 22, the control information generation device 22 may generate a three-dimensional model corresponding to the difference between the reference model RM and the deformed object model OM as a difference model DM. After that, as shown in FIG. 22, the deformation of the workpiece W is reflected by deforming the difference model DM based on the object model OM on which the deformation of the workpiece W is reflected (that is, the object model OM before deformation). A differential model DM may be generated.
  • the operation of transforming the differential model DM based on the object model OM may be the same as the operation of transforming the reference model RM based on the object model OM. That is, the control information generation device 22 aligns the difference model DM and the object model OM, designates each vertex of the difference model DM as either a control vertex, a dependent vertex, or a fixed vertex, and The differential model DM may be transformed by moving .
  • the measurement system 2 (in particular, the control information generation device 22) generates the deformation model TM based on the object model OM and the reference model RM, and generates the difference model DM based on the deformation model TM.
  • the control information generation device 22 may generate the difference model DM without generating the deformed model TM.
  • the control information generation device 22 predicts the amount of deformation of the three-dimensional structure ST in accordance with the deformation of the work W based on the object model OM and the reference model RM, and generates a three-dimensional structure ST that reflects the predicted amount of deformation.
  • a three-dimensional model representing the three-dimensional shape of the structure ST may be generated as the differential model DM.
  • the control information generation device 22 may predict the amount of deformation of the three-dimensional structure ST using a calculation model that can be constructed by machine learning.
  • the calculation model may be a model that outputs the amount of deformation of the three-dimensional structure ST in accordance with the deformation of the workpiece W when the object model OM and the reference model RM are input.
  • An example of a calculation model that can be constructed by machine learning is a calculation model that includes a neural network (so-called artificial intelligence (AI)).
  • Machine learning of the computational model may include deep learning.
  • the control information generation device 22 may generate the difference model DM by cutting out the reference model RM along a cut plane set based on the object model OM. good.
  • the cut surface may be a surface that defines the tip of the object model OM.
  • the cut surface may be a surface that defines the tip of the object model OM that is farthest from the reference portion Brm of the object model OM.
  • the deformation of the workpiece W is reflected by deforming the difference model DM based on the object model OM on which the deformation of the workpiece W is reflected (that is, the object model OM before deformation).
  • a differential model DM may be generated.
  • the operation of transforming the differential model DM based on the object model OM may be the same as the operation of transforming the reference model RM based on the object model OM. That is, the control information generation device 22 aligns the difference model DM and the object model OM, designates each vertex of the difference model DM as either a control vertex, a dependent vertex, or a fixed vertex, and The differential model DM may be transformed by moving . In this case, the control information generation device 22 may align the portion of the differential model DM facing the cut surface with the portion of the object model OM facing the cut surface. The control information generation device 22 may designate a vertex of a portion of the differential model DM facing the cut surface as a control vertex.
  • the measurement system 2 generates the processing control information.
  • a control information generation device different from the measurement system 2 may generate the processing control information.
  • the processing device 1 (particularly its control device 17) that can function as a control information generation device may generate the processing control information.
  • the control server 4 that can function as a control information generation device may generate the processing control information.
  • a control information generation device different from the processing device 1 and the control server 4 may generate the processing control information. For example, even if a control information generation device that can communicate with the processing device 1 generates the processing control information, For example, a control information generation device that can communicate with the control server 4 may generate the processing control information.
  • the control information generation device different from the measurement system 2 When a control information generation device different from the measurement system 2 generates processing control information, the control information generation device different from the measurement system 2 further generates a deformed model TM from the reference model RM, and then generates the deformed model TM.
  • the difference model DM may be generated based on the object model OM and the object model OM.
  • the measurement system 2 may use the communication device 223 to transmit the object model OM to the control information generation device.
  • the reference model RM may be stored in the control information generation device.
  • the processing device 1 melts the modeling material M by irradiating the modeling material M with the processing light EL.
  • the processing device 1 may melt the modeling material M by irradiating the modeling material M with an arbitrary energy beam.
  • arbitrary energy beams include at least one of charged particle beams and electromagnetic waves.
  • charged particle beams include at least one of electron beams and ion beams.
  • Generating the deformed model is performed so that the difference between the three-dimensional shape of a first portion of the surface of the reference model and the three-dimensional shape of a second portion of the surface of the object model corresponding to the first portion is small. From Appendix 1, the method includes deforming the first portion so that the shape of the third portion of the reference model differs from the first portion in accordance with the deformation of the first portion. 5. The processing control information generation method according to any one of 5. [Additional note 7] The processing control information generation method according to any one of Supplementary Notes 1 to 6, wherein generating the deformed model includes Laplacian deforming the reference model.
  • Generating the deformed model includes: the reference model so that a first reference model portion of the surface of the reference model that should not be deformed matches a first object model portion of the surface of the object model that corresponds to the first reference model portion; and the object model, and In a state where the reference model and the object model are aligned, a second reference model portion different from the first reference model portion of the surface of the reference model is aligned with the second reference model portion of the surface of the object model.
  • the processing control information generation method according to any one of Supplementary Notes 1 to 7, comprising: deforming the second reference model part so as to move it to the position of a second object model part corresponding to the second reference model part. .
  • Generating the deformed model includes: extracting the second object model portion corresponding to the second reference model portion from the object model before deforming the second reference model portion; Supplementary note 8, wherein deforming the second reference model portion includes deforming the second reference model portion such that the second reference model portion moves to the position of the extracted second object model portion.
  • Generating the deformed model includes: With the reference model and the object model aligned, a third reference model portion of the surface of the reference model that is different from the first and second reference model portions is removed from the second reference model portion.
  • [Additional note 14] The processing control information generation method according to any one of Supplementary Notes 1 to 13, wherein the object includes a turbine blade.
  • [Additional note 15] A processing method that performs additional processing using the processing control information generation method according to any one of Supplementary Notes 1 to 14.
  • [Additional note 16] Obtaining an object model that represents the three-dimensional shape of the object; generating a deformed model that is deformed based on the object model and indicates a target shape of the object after processing; generating a difference model indicating a difference between the deformed model and the object model; and generating processing control information for additionally processing the object so that the three-dimensional shape of the object becomes the target shape based on the difference model.
  • [Additional note 17] generating a deformed model indicating a target shape of the object after processing by deforming a reference model of the object; generating a differential model that is a part of the deformed model and indicates a processed portion necessary for the three-dimensional shape of the object to become the target shape; and generating processing control information for additionally processing the object based on the differential model.
  • [Additional note 18] Obtaining an object model generated by measuring the three-dimensional shape of the object, generating a deformed model indicating a target shape of the object after processing by deforming a reference model of the object based on the object model;
  • a processing control information generation method comprising: generating processing control information for additionally processing the object based on the object model and the deformation model.
  • a processing method that performs processing using the processing control information generation method according to any one of Supplementary Notes 1 to 18.
  • [Additional note 20] Obtaining object information indicating the three-dimensional shape of the object; generating a deformed model indicating a target shape of the object after processing by deforming a reference model of the object in accordance with the object information;
  • a model generation method comprising: generating a difference model indicating a difference between the deformed model and the object model.
  • [Additional note 21] Obtaining the measurement results of measuring the three-dimensional shape of the object, generating a deformed model indicating a target shape of the object after processing by deforming a reference model of the object in accordance with the measurement results; generating a difference model indicating a difference between the deformed model and the object model; model generation methods including; [Additional note 22] A processing device capable of processing objects; a control information generation device that generates processing control information for controlling the processing device to perform additional processing on the object, The control information generation device includes: Obtaining an object model showing the three-dimensional shape of the object, generating a deformed model indicating a target shape of the object after processing by deforming a reference model of the object based on the object model; generating a difference model indicating a difference between the deformed model and the object model; The processing system generates the processing control information for controlling the processing device to perform additional processing on the object so that the three-dimensional shape of the object becomes the target shape, based on the difference model.
  • the control information generation device is configured to reduce a difference between a three-dimensional shape of a first portion of the surface of the reference model and a three-dimensional shape of a second portion of the surface of the object model that corresponds to the first portion. generating the deformed model by deforming the first part and deforming a three-dimensional shape of a third part of the reference model that is different from the first part in accordance with the deformation of the first part; The processing system according to any one of appendices 22 to 26. [Additional note 28] The processing system according to any one of appendices 22 to 27, wherein the control information generation device generates the deformed model by Laplacian deforming the reference model.
  • the control information generation device includes: the reference model so that a first reference model portion of the surface of the reference model that should not be deformed matches a first object model portion of the surface of the object model that corresponds to the first reference model portion; and the object model, In a state where the reference model and the object model are aligned, a second reference model portion different from the first reference model portion of the surface of the reference model is aligned with the second reference model portion of the surface of the object model. deforming the second reference model part so as to move it to a position of a second object model part corresponding to the second reference model part; 29.
  • the processing system according to any one of appendices 22 to 28, which generates the deformed model.
  • the control information generation device includes: extracting the second object model portion corresponding to the second reference model portion from the object model before deforming the second reference model portion; Deforming the second reference model portion may include transforming the second reference model portion such that the second reference model portion moves to the position of the extracted second object model portion; The processing system according to appendix 29, comprising: generating the deformed model.
  • the control information generation device includes: With the reference model and the object model aligned, a third reference model portion of the surface of the reference model that is different from the first and second reference model portions is removed from the second reference model portion. The processing system according to appendix 29 or 30, wherein the deformed model is generated by deforming according to the deformation.
  • the control information generation device includes: Obtaining an object model showing the three-dimensional shape of the object, generating a deformed model that is deformed based on the object model and indicates a target shape of the object after processing; generating a difference model indicating a difference between the deformed model and the object model;
  • the processing system generates the processing control information for controlling the processing device to perform additional processing on the object so that the three-dimensional shape of the object becomes the target shape, based on the difference model.
  • a processing device capable of processing objects; a control information generation device that generates processing control information for controlling the processing device to perform additional processing on the object,
  • the control information generation device includes: generating a deformed model indicating a target shape of the object after processing by deforming a reference model of the object; generating a differential model that is a part of the deformed model and indicates a processed part necessary for the three-dimensional shape of the object to become the target shape;
  • a processing system that generates the processing control information for controlling the processing device to perform additional processing on the object based on the differential model.
  • a processing device capable of processing objects; a control information generation device that generates processing control information for controlling the processing device to perform additional processing on the object,
  • the control information generation device includes: Obtaining an object model generated by measuring the three-dimensional shape of the object; generating a deformed model indicating a target shape of the object after processing by deforming a reference model of the object based on the object model;
  • the processing system includes generating the processing control information for controlling the processing device to perform additional processing on the object, based on the object model and the deformation model.
  • the present invention is not limited to the above-mentioned embodiments, and can be modified as appropriate within the scope of the invention that does not contradict the gist or idea of the invention that can be read from the claims and the entire specification.
  • Generation methods, processing methods, model generation methods, and processing systems are also included within the technical scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

加工制御生成方法は、物体の三次元形状を示す物体モデルを取得することと、物体モデルに基づいて物体の参照モデルを変形することで、物体の加工後の目標形状を示す変形モデルを生成することと、変形モデルと物体モデルとの差分を示す差分モデルを生成することと、差分モデルに基づいて、物体の三次元形状が目標形状となるように物体を付加加工するための加工制御情報を生成することとを含む。

Description

加工制御情報生成方法、加工方法及びモデル生成方法
 本発明は、例えば、物体の加工を制御するための加工制御情報を生成する加工制御情報生成方法、加工制御情報を用いて物体を加工する加工方法、及び、物体に関するモデルを生成するモデル生成方法の技術分野に関する。
 物体を加工する加工装置の一例が、特許文献1に記載されている。このような加工装置の技術的課題の一つとして、物体の加工を制御するための加工制御情報を適切に生成することがあげられる。
米国特許出願公開第2018/0029298号明細書
 第1の態様によれば、物体の三次元形状を示す物体モデルを取得することと、前記物体モデルに基づいて前記物体の参照モデルを変形することで、前記物体の加工後の目標形状を示す変形モデルを生成することと、前記変形モデルと前記物体モデルとの差分を示す差分モデルを生成することと、前記差分モデルに基づいて、前記物体の三次元形状が前記目標形状となるように前記物体を付加加工するための加工制御情報を生成することとを含む加工制御情報生成方法が提供される。
 第2の態様によれば、第1の態様によって提供される加工制御情報生成方法を用いて付加加工を行う加工方法が提供される。
 第3の態様によれば、物体の三次元形状を示す物体モデルを取得することと、前記物体モデルに基づいて変形された、前記物体の加工後の目標形状を示す変形モデルを生成することと、前記変形モデルと前記物体モデルとの差分を示す差分モデルを生成することと、前記差分モデルに基づいて、前記物体の三次元形状が前記目標形状となるように前記物体を付加加工するための加工制御情報を生成することとを含む加工制御情報生成方法が提供される。
 第4の態様によれば、物体の参照モデルを変形することで、前記物体の加工後の目標形状を示す変形モデルを生成することと、前記変形モデルの一部であって、前記物体の三次元形状が前記目標形状となるために必要な加工部分を示す差分モデルを生成することと、前記差分モデルに基づいて、前記物体を付加加工するための加工制御情報を生成することとを含む加工制御情報生成方法が提供される。
 第5の態様によれば、物体の三次元形状を計測することで生成される物体モデルを取得することと、前記物体モデルに基づいて前記物体の参照モデルを変形することで、前記物体の加工後の目標形状を示す変形モデルを生成することと、前記物体モデルと変形モデルとに基づいて、前記物体を付加加工するための加工制御情報を生成することを含む加工制御情報生成方法が提供される。
 第6の態様によれば、上述した第1の態様から第4の態様のいずれか一つによって提供される加工制御情報生成方法を用いて加工を行う加工方法が提供される。
 第7の態様によれば、物体の三次元形状を示す物体情報を取得することと、前記物体情報に対応して前記物体の参照モデルを変形することで、前記物体の加工後の目標形状を示す変形モデルを生成することと、前記変形モデルと前記物体モデルとの差分を示す差分モデルを生成することとを含むモデル生成方法が提供される。
 第8の態様によれば、物体の三次元形状を計測した計測結果を取得することと、前記計測結果に対応して前記物体の参照モデルを変形することで、前記物体の加工後の目標形状を示す変形モデルを生成することと、前記変形モデルと前記物体モデルとの差分を示す差分モデルを生成することと、を含むモデル生成方法が提供される。
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。
図1は、本実施形態の加工システムの全体構成を示すブロック図である。 図2は、本実施形態の加工装置のシステム構成を示すブロック図である。 図3は、本実施形態の加工装置の構成を示す断面図である。 図4は、計測システムの構成を示すブロック図である。 図5は、制御情報生成装置の構成を示すブロック図である。 図6(a)から図6(e)のそれぞれは、ワーク上のある領域に造形光を照射し且つ造形材料を供給した場合の様子を示す断面図である。 図7(a)から図7(c)のそれぞれは、三次元構造物を造形する過程を示す断面図である。 図8(a)は、参照モデルを模式的に示し、図8(b)は、物体モデルを模式的に示す。 図9(a)は、参照モデルを模式的に示し、図9(b)は、物体モデルを模式的に示し、図9(c)は、図9(a)に示す参照モデルと図9(b)に示す物体モデルとに基づいて生成される差分モデルを模式的に示す。 図10(a)は、ワークの使用に伴ってワークが変形した場合の参照モデルを模式的に示し、図10(b)は、ワークの使用に伴ってワークが変形した場合の物体モデルを模式的に示す。 図11(a)は、ワークの使用に伴ってワークが変形した場合の参照モデルを模式的に示し、図11(b)は、ワークの使用に伴ってワークが変形した場合の物体モデルを模式的に示し、図11(c)は、図11(a)に示す参照モデルと図11(b)に示す物体モデルとに基づいて生成される差分モデルを模式的に示す。 図12は、本実施形態の制御情報生成動作の流れを示すフローチャートである。 図13は、変形していない参照モデルと変形した参照モデルとを模式的に示す。 図14は、変形していない参照モデルと変形した参照モデルとを模式的に示す。 図15(a)は、変形していない参照モデルを模式的に示し、図15(b)は、変形した参照モデルを模式的に示す。 図16(a)は、ワークの使用に伴ってワークが変形した場合の参照モデルを模式的に示し、図16(b)は、ワークの使用に伴ってワークが変形した場合の物体モデルを模式的に示し、図16(c)は、図16(a)に示す参照モデルと図16(b)に示す物体モデルとに基づいて生成される差分モデルを模式的に示す。 図17は、図12のステップS4において参照モデルを変形することで変形モデルを生成する動作の一具体例の流れを示すフローチャートである。 図18は、参照モデルと物体モデルとの位置合わせの一例を模式的に示す。 図19は、各頂点が固定頂点、制御頂点及び従属頂点のいずれか一つに指定された参照モデルの一例を模式的に示す。 図20は、変形していない参照モデルと変形した参照モデルとを模式的に示す。 図21は、変形していない物体モデルと変形した物体モデルとを模式的に示す。 図22は、差分モデルを模式的に示す。 図23は、差分モデルを模式的に示す。
 以下、図面を参照しながら、加工制御情報生成方法、加工方法及びモデル生成方法の実施形態について説明する。以下では、物体の一例であるワークWを加工可能な加工システムSYSを用いて、加工制御情報生成方法、加工方法及びモデル生成方法の実施形態を説明する。
 (1)加工システムSYSの構成
 (1-1)加工システムSYSの全体構成
 はじめに、図1を参照しながら、加工システムSYSの全体構成について説明する。図1は、加工システムSYSの全体構成を示すブロック図である。
 図1に示すように、加工システムSYSは、加工装置1と、計測システム2と、搬送装置3とを備えている。尚、図1に示す例では、加工システムSYSは、単一の加工装置1を備えているが、複数の加工装置1を備えていてもよい。加工システムSYSは、単一の計測システム2を備えているが、複数の計測システム2を備えていてもよい。加工システムSYSは、単一の搬送装置3を備えているが、複数の搬送装置3を備えていてもよい。尚、加工システムSYSは、搬送装置3を備えていなくてもよい。尚、加工システムSYSが複数の加工装置1を備えている場合、計測システム2の数は、加工装置1の数よりも少なくてもよい。例えば、加工システムSYSは、二台以上の加工装置1と、一台の計測システム2とを備えていてもよい。また、加工システムSYSが複数の計測システム2を備えている場合、加工装置1の数は、計測システム2の数よりも少なくてもよい。例えば、加工システムSYSは、一台の加工装置1と、二台以上の計測システム2とを備えていてもよい。
 加工装置1は、ワークWを加工可能である。本実施形態では、加工装置1が、ワークWに加工光EL(つまり、光の形態を有するエネルギビーム)を照射することでワークWを加工可能な加工装置である例について説明する。但し、加工装置1は、加工光ELを用いることなく、ワークWを加工してもよい。
 加工装置1は、ワークWに対して付加加工を行うことが可能である。つまり、加工装置1は、ワークWに対して付加加工を行うことで、ワークW上に造形物を造形可能である。この場合、加工装置1は、ワークWに対して付加加工を行うことで、ワークWと一体化された又は分離可能な造形物を造形してもよい。加工装置1が造形する造形物は、加工装置1が造形する任意の物体を意味していてもよい。例えば、加工装置1は、造形物の一例として、三次元構造物ST(つまり、三次元方向のいずれの方向においても大きさを持つ三次元の構造物であり、立体物、言い換えると、X軸方向、Y軸方向及びZ軸方向において大きさを持つ構造物)を造形してもよい。
 加工装置1は、造形物を造形可能な任意の付加加工方法(つまり、造形方法)を用いて、付加加工を行ってもよい。付加加工方法の一例として、レーザ肉盛溶接法(LMD:Laser Metal Deposition)、粉末焼結積層造形法(SLS:Selective Laser Sintering)等の粉末床溶融結合法(Powder Bed Fusion)、結合材噴射法(バインダージェッティング方式:Binder Jetting)、材料噴射法(マテリアルジェッティング方式:Material Jetting)、光造形法及びレーザメタルフュージョン法(LMF:Laser Metal Fusion)のうちの少なくとも一つがあげられる。尚、レーザ肉盛溶接法は、指向性エネルギ堆積法(DED:Directed Energy Deposition)と称されてもよい。
 ワークWは、欠損部分がある要修理品であってもよい。この場合、加工装置1は、欠損部分を補填するための造形物を造形する付加加工を行うことで、要修理品を補修する(言い換えれば、修復する)補修加工を行ってもよい。つまり、加工装置1が行う付加加工は、欠損部分を補填するための造形物に相当する三次元構造物STをワークWに付加する付加加工を含んでいてもよい。
 欠損部分がある要修理品の一例として、摩耗したタービンの少なくとも一部があげられる。例えば、欠損部分がある要修理品の一例として、タービンを構成するタービンブレードがあげられる。タービンの一例として、発電用タービン及び航空機エンジン用タービン等の少なくとも一つがあげられる。この場合、加工装置1は、摩耗したタービンを補修(言い換えれば、修復)してもよい。欠損部分がある要修理品の他の一例として、摩耗したプロペラ形状部品があげられる。欠損部分がある要修理品の他の一例として、自動車、自動二輪車、電気自動車及び鉄道車両等の車両の車体部品があげられる。欠損部分がある要修理品の他の一例として、自動車用エンジン、自動二輪車用エンジン及び宇宙航空機用エンジン等のエンジンの部品があげられる。欠損部分がある要修理品の他の一例として、電気自動車のバッテリの部品があげられる。加工装置は、これら要修理品を補修してもよい。
 ワークWは、三次元構造物STを造形するための土台であってもよい。この場合、加工装置1は、ワークW上に三次元構造物STを造形する付加加工を行うことで、三次元構造物STを一から製造してもよい。一例として、加工装置1は、ワークW上にタービンに相当する三次元構造物STを造形する付加加工を行うことで、タービンを一から製造してもよい。
 ワークWは、三次元構造物STを造形する過程で製造される中間品であってもよい。この場合、加工装置1は、三次元構造物STの中間品であるワークWに対して、三次元構造物STを完成させるための付加加工を行うことで、中間品から三次元構造物STを製造してもよい。一例として、加工装置1は、タービンの中間品であるワークWに対してタービンを完成させるための付加加工を行うことで、タービンの中間品からタービンの完成品を製造してもよい。
 加工装置1は、付加加工を行うことに加えて又は代えて、ワークWに対して除去加工を行うことが可能であってもよい。つまり、加工装置1は、ワークWの一部を除去する除去加工を行うことが可能であってもよい。尚、加工装置1は、ワークWに対して除去加工を行うことに加えて又は代えて、加工装置1によってワークWに造形された造形物に対して除去加工を行ってもよい。
 計測システム2は、加工装置1がワークWを実際に加工し始める前に、ワークWを計測する。本実施形態では、計測システム2は、ワークWの三次元形状を計測する。尚、ワークWの三次元形状が判明すると、三次元空間内でのワークWの位置(例えば、ワークWの表面の位置)が判明する。このため、ワークWの三次元形状を計測することは、実質的には、ワークWの位置を計測することと等価であるとみなしてもよい。
 計測システム2は更に、加工制御情報を生成する。加工制御情報は、ワークWを加工するように加工装置1を制御するために用いられる制御情報である。例えば、加工制御情報は、加工パス情報を含んでいてもよい。加工パス情報は、ワークWを加工するために加工光ELが照射されるべき目標照射位置を示していてもよい。具体的には、加工パス情報は、ワークWを加工するために加工光ELが照射されるべき目標照射位置の経路である目標移動経路を示していてもよい。この目標移動経路は、加工パス又はツールパスと称されてもよい。この場合、計測システム2は、加工パス又はツールパスを示すGコードを、加工制御情報として生成してもよい。計測システム2は、gcodeという拡張子又はgcoという拡張子を有するファイルを、加工制御情報として生成してもよい。計測システム2が生成した加工制御情報は、不図示の通信ネットワークを介して、計測システム2から加工装置1に送信される。
 加工装置1は、計測システム2から送信される加工制御情報を受信(つまり、取得)する。加工パス情報を受信した加工装置1は、受信した加工制御情報に基づいて、ワークWを加工する。このため、計測システム2がワークWの三次元形状を計測した後には、ワークWは、計測システム2から加工装置1に搬送される。具体的には、ワークWは、計測システム2から取り外され、取り外されたワークWが加工装置1に搬送される。例えば、ワークWは、搬送装置3によって、計測システム2から加工装置1に搬送されてもよい。例えば、ワークWは、加工システムSYSのユーザによって、計測システム2から加工装置1に搬送されてもよい。加工装置1に搬送されたワークWは、加工装置1に設置される(言い換えれば、載置される又は取り付けられる)。その結果、加工装置1は、ワークWを加工することができる。
 尚、図1に示す例では、加工システムSYSは、それぞれ別々の装置である加工装置1と計測システム2とを備えている。しかしながら、加工システムSYSは、加工装置1と計測システム2とが一体化された装置を備えていてもよい。つまり、加工装置1と計測システム2とが、一体化されていてもよい。
 加工システムSYSは更に、制御サーバ4を備えていてもよい。但し、加工システムSYSは、制御サーバ4を備えていなくてもよい。
 制御サーバ4は、加工システムSYS全体の動作を制御してもよい。例えば、制御サーバ4は、加工装置1の動作を制御してもよい。例えば、制御サーバ4は、計測システム2の動作を制御してもよい。例えば、制御サーバ4は、搬送装置3の動作を制御してもよい。
 制御サーバ4は、クラウドサーバとして機能してもよい。この場合、制御サーバ4は、加工装置1、計測システム2及び搬送装置3のうちの少なくとも一つと、インターネットを含む通信ネットワークを介して通信可能であってもよい。或いは、制御サーバ4は、エッジサーバとして機能してもよい。この場合、制御サーバ4は、加工装置1、計測システム2及び搬送装置3のうちの少なくとも一つと、イントラネット又はローカルエリアネットワークを含む通信ネットワークを介して通信可能であってもよい。
 加工システムSYSは、加工装置1を制御する制御サーバ4に加えて又は代えて、加工装置1を制御する第1のコンピュータを、加工装置1の一部として備えていてもよい。つまり、加工装置1が第1のコンピュータを備えていてもよい。第1のコンピュータは、ノートパソコンであってもよいし、その他の種類のコンピュータであってもよい。第1のコンピュータは、後述する制御装置17(図2参照)として機能してもよい。加工システムSYSは、計測システム2を制御する制御サーバ4に加えて又は代えて、計測システム2を制御する第2のコンピュータを、計測システム2の一部として備えていてもよい。つまり、計測システム2が第2のコンピュータを備えていてもよい。第2のコンピュータは、ノートパソコンであってもよいし、その他の種類のコンピュータであってもよい。第2のコンピュータは、後述する制御情報生成装置22(図4参照)として機能してもよい。加工システムSYSは、搬送装置3を制御する制御サーバ4に加えて又は代えて、搬送装置3を制御する第3のコンピュータを、搬送装置3の一部として備えていてもよい。つまり、搬送装置3が第3のコンピュータを備えていてもよい。第3のコンピュータは、ノートパソコンであってもよいし、その他の種類のコンピュータであってもよい。
 (1-2)加工装置1の構成
 続いて、図2及び図3を参照しながら、加工装置1の構成について説明する。図2は、加工装置1のシステム構成を示すブロック図である。図3は、加工装置1の構成を示す断面図である。
 尚、以下の説明では、互いに直交するX軸、Y軸及びZ軸から定義されるXYZ直交座標系を加工座標系として用いて、加工装置1を構成する各種構成要素の位置関係について説明する。尚、以下の説明では、説明の便宜上、X軸方向及びY軸方向のそれぞれが水平方向(つまり、水平面内の所定方向)であり、Z軸方向が鉛直方向(つまり、水平面に直交する方向であり、実質的には上下方向)であるものとする。また、X軸、Y軸及びZ軸周りの回転方向(言い換えれば、傾斜方向)を、それぞれ、θX方向、θY方向及びθZ方向と称する。ここで、Z軸方向を重力方向としてもよい。また、XY平面を水平方向としてもよい。
 また、以下の説明では、説明の便宜上、加工装置1の構成の一例として、付加加工を行う加工装置1の構成について説明する。特に、以下の説明では、加工装置1の構成の一例として、レーザ肉盛溶接法を用いて付加加工を行う加工装置1の構成について説明する。
 レーザ肉盛溶接法を用いて付加加工を行う加工装置1は、加工光ELを用いて造形材料Mを加工することで付加加工を行う。造形材料Mは、所定強度以上の加工光ELの照射によって溶融可能な材料である。このような造形材料Mとして、例えば、金属性の材料及び樹脂性の材料の少なくとも一方が使用可能である。但し、造形材料Mとして、金属性の材料及び樹脂性の材料とは異なるその他の材料が用いられてもよい。造形材料Mは、粉状の又は粒状の材料である。つまり、造形材料Mは、粉粒体である。但し、造形材料Mは、粉粒体でなくてもよい。例えば、造形材料Mとして、ワイヤ状の造形材料及びガス状の造形材料の少なくとも一方が用いられてもよい。
 レーザ肉盛溶接法を用いて付加加工を行う加工装置1は、複数の構造層SL(後述する図7参照)を順に形成することで、複数の構造層SLが積層された三次元構造物STを造形する。この場合、加工装置1は、まず、ワークWの表面を、造形物を実際に造形する造形面MSに設定し、当該造形面MS上に、1層目の構造層SLを造形する。その後、加工装置1は、1層目の構造層SLの表面を新たな造形面MSに設定し、当該造形面MS上に、2層目の構造層SLを造形する。以降、加工装置1は、同様の動作を繰り返すことで、複数の構造層SLが積層された三次元構造物STを造形する。
 付加加工を行うために、加工装置1は、図2から図3に示すように、材料供給源11と、加工ユニット12と、ステージユニット13と、光源15と、気体供給源16と、制御装置17とを備える。加工ユニット12と、ステージユニット13とは、筐体18の内部のチャンバ空間183INに収容されていてもよい。尚、加工ユニット12とステージユニット13とのうち少なくとも一方は、筐体18の内部のチャンバ空間183INに収容されていなくてもよい。
 材料供給源11は、加工ユニット12に造形材料Mを供給する。材料供給源11は、付加加工を行うために単位時間あたりに必要とする分量の造形材料Mが加工ユニット12に供給されるように、当該必要な分量に応じた所望量の造形材料Mを供給する。
 加工ユニット12は、材料供給源11から供給される造形材料Mを加工して造形物を造形する。造形物を造形するために、加工ユニット12は、加工ヘッド121と、ヘッド駆動系122とを備える。更に、加工ヘッド121は、照射光学系1211と、材料ノズル1212とを備えている。尚、図2から図3に示す例では、加工ヘッド121が単一の照射光学系1211を備えているが、加工ヘッド121は、複数の照射光学系1211を備えていてもよい。また、図2から図3に示す例では、加工ヘッド121が単一の材料ノズル1212を備えているが、加工ヘッド121は、複数の材料ノズル1212を備えていてもよい。
 照射光学系1211は、加工光ELを射出するための光学系(例えば、集光光学系)である。具体的には、照射光学系1211は、加工光ELを発する光源15と、光ファイバやライトパイプ等の光伝送部材151を介して光学的に接続されている。照射光学系1211は、光伝送部材151を介して光源15から伝搬してくる加工光ELを射出する。照射光学系1211は、照射光学系1211から下方(つまり、-Z側)に向けて加工光ELを照射する。照射光学系1211の下方には、ステージ131が配置されている。ステージ131にワークWが載置されている場合には、照射光学系1211は、射出した加工光ELをワークWに照射する。この場合、照射光学系1211は、ワークWの上方からワークWに向けて加工光ELを照射する。具体的には、照射光学系1211は、加工光ELが照射される(典型的には、集光される)領域としてワークW上に又はワークWの近傍に設定される目標照射領域EAに加工光ELを照射可能である。更に、照射光学系1211の状態は、制御装置17の制御下で、目標照射領域EAに加工光ELを照射する状態と、目標照射領域EAに加工光ELを照射しない状態との間で切替可能である。
 材料ノズル1212は、造形材料Mを供給する(例えば、射出する、噴射する、噴出する、又は、吹き付ける)。材料ノズル1212は、供給管111及び混合装置112を介して造形材料Mの供給源である材料供給源11と物理的に接続されている。材料ノズル1212は、供給管111及び混合装置112を介して材料供給源11から供給される造形材料Mを供給する。材料ノズル1212は、供給管111を介して材料供給源11から供給される造形材料Mを圧送してもよい。即ち、材料供給源11からの造形材料Mと搬送用の気体(つまり、圧送ガスであり、例えば、窒素やアルゴン等の不活性ガス)とは、混合装置112で混合された後に供給管111を介して材料ノズル1212に圧送されてもよい。その結果、材料ノズル1212は、搬送用の気体と共に造形材料Mを供給する。搬送用の気体として、例えば、気体供給源16から供給されるパージガスが用いられる。但し、搬送用の気体として、気体供給源16とは異なる気体供給源から供給される気体が用いられてもよい。材料ノズル1212は、材料ノズル1212から下方(つまり、-Z側)に向けて造形材料Mを供給する。材料ノズル1212の下方には、ステージ131が配置されている。ステージ131にワークWが搭載されている場合には、材料ノズル1212は、ワークW又はワークWの近傍に向けて造形材料Mを供給する。
 本実施形態では、材料ノズル1212は、加工光ELの照射位置(つまり、照射光学系1211からの加工光ELが照射される目標照射領域EA)に造形材料Mを供給する。このため、材料ノズル1212が造形材料Mを供給する領域としてワークW上に又はワークWの近傍に設定される目標供給領域MAが、目標照射領域EAと一致する(或いは、少なくとも部分的に重複する)ように、材料ノズル1212と照射光学系1211とが位置合わせされている。この場合、材料ノズル1212から供給された造形材料Mには、照射光学系1211が射出した加工光ELが照射される。その結果、造形材料Mが溶融する。つまり、溶融した造形材料Mを含む溶融池MPがワークW上に形成される。
 尚、材料ノズル1212は、照射光学系1211から射出された加工光ELによって形成される溶融池MPに造形材料Mを供給してもよい。例えば、加工装置1は、材料ノズル1212からの造形材料MがワークWに到達する前に当該造形材料Mを照射光学系1211によって溶融させ、溶融した造形材料MをワークWに付着させてもよい。
 ヘッド駆動系122は、制御装置17の制御下で、加工ヘッド121を移動させる。つまり、ヘッド駆動系122は、制御装置17の制御下で、照射光学系1211及び材料ノズル1212を移動させる。ヘッド駆動系122は、例えば、X軸、Y軸、Z軸、θX方向、θY方向及びθZ方向の少なくとも一つに沿って加工ヘッド121を移動させる。ヘッド駆動系122が加工ヘッド121を移動させると、加工ヘッド121とステージ131及びステージ131に載置されたワークWのそれぞれとの相対位置が変わる。その結果、目標照射領域EA及び目標供給領域MA(更には、溶融池MP)がワークWに対して相対的に移動する。
 ステージユニット13は、ステージ131と、ステージ駆動系132とを備えている。
 ステージ131には、ワークWが載置される。ステージ131は、ステージ131に載置されたワークWを支持可能である。ステージ131は、ステージ131に載置されたワークWを保持可能であってもよい。この場合、ステージ131は、ワークWを保持するために、機械的なチャック、静電チャック及び真空吸着チャック等の少なくとも一つを備えていてもよい。或いは、ステージ131は、ステージ131に載置されたワークWを保持可能でなくてもよい。この場合、ワークWは、クランプレスでステージ131に載置されていてもよい。また、ワークWは、治具等の保持具に取り付けられていてもよく、ワークWが取り付けられた保持具がステージ31に載置されていてもよい。尚、ワークWは、ステージ131に載置されていなくてもよく、例えば床面に載置されていてもよい。
 ステージ駆動系132は、制御装置17の制御下で、ステージ131を移動させる。ステージ駆動系132は、例えば、X軸、Y軸、Z軸、θX方向、θY方向及びθZ方向の少なくとも一つに沿ってステージ131を移動させる。ステージ駆動系132がステージ131を移動させると、ステージ131及びステージ131に載置されたワークWのそれぞれと加工ヘッド121との相対位置が変わる。その結果、目標照射領域EA及び目標供給領域MA(更には、溶融池MP)がワークWに対して相対的に移動する。
 光源15は、例えば、赤外光、可視光及び紫外光のうちの少なくとも一つを、加工光ELとして射出する。但し、加工光ELとして、その他の種類の光が用いられてもよい。加工光ELは、複数のパルス光(つまり、複数のパルスビーム)を含んでいてもよい。加工光ELは、連続光(CW:Continuous Wave)を含んでいてもよい。加工光ELは、レーザ光であってもよい。この場合、光源15は、レーザ光源(例えば、レーザダイオード(LD:Laser Diode)等の半導体レーザを含んでいてもよい。レーザ光源は、ファイバ・レーザ、COレーザ、YAGレーザ及びエキシマレーザ等のうちの少なくとも一つを含んでいてもよい。但し、加工光ELは、レーザ光でなくてもよい。光源15は、任意の光源(例えば、LED(Light Emitting Diode)及び放電ランプ等の少なくとも一つ)を含んでいてもよい。
 気体供給源16は、筐体18の内部のチャンバ空間183INをパージするためのパージガスの供給源である。パージガスは、不活性ガスを含む。不活性ガスの一例として、窒素ガス又はアルゴンガスがあげられる。気体供給源16は、筐体18の隔壁部材181に形成された供給口182及び気体供給源16と供給口182とを接続する供給管161を介して、チャンバ空間183INに接続されている。気体供給源16は、供給管161及び供給口182を介して、チャンバ空間183INにパージガスを供給する。その結果、チャンバ空間183INは、パージガスによってパージされた空間となる。チャンバ空間183INに供給されたパージガスは、隔壁部材181に形成された不図示の排出口から排出されてもよい。尚、気体供給源16は、不活性ガスが格納されたボンベであってもよい。不活性ガスが窒素ガスである場合には、気体供給源16は、大気を原料として窒素ガスを発生する窒素ガス発生装置であってもよい。
 材料ノズル1212がパージガスと共に造形材料Mを供給する場合には、気体供給源16は、材料供給源11からの造形材料Mが供給される混合装置112にパージガスを供給してもよい。具体的には、気体供給源16は、気体供給源16と混合装置112とを接続する供給管162を介して混合装置112と接続されていてもよい。その結果、気体供給源16は、供給管162を介して、混合装置112にパージガスを供給する。この場合、材料供給源11からの造形材料Mは、供給管162を介して気体供給源16から供給されたパージガスによって、供給管111内を通って材料ノズル1212に向けて供給(具体的には、圧送)されてもよい。つまり、気体供給源16は、供給管162、混合装置112及び供給管111を介して、材料ノズル1212に接続されていてもよい。この場合、材料ノズル1212は、造形材料Mを圧送するためのパージガスと共に造形材料Mを供給することになる。
 制御装置17は、加工装置1の動作を制御する。例えば、制御装置17は、ワークWを加工するように、加工装置1が備える加工ユニット12(例えば、加工ヘッド121及びヘッド駆動系122の少なくとも一方)を制御してもよい。例えば、制御装置17は、ワークWを加工するように、加工装置1が備えるステージユニット13(例えば、ステージ駆動系132)を制御してもよい。
 制御装置17は、例えば、演算装置と、記憶装置とを備えていてもよい。演算装置は、例えば、CPU(Central Processing Unit)及びGPU(Graphics Processing Unit)の少なくとも一方を含んでいてもよい。記憶装置は、例えば、メモリを含んでいてもよい。制御装置17は、演算装置がコンピュータプログラムを実行することで、加工装置1の動作を制御する装置として機能する。このコンピュータプログラムは、制御装置17が行うべき後述する動作を演算装置に行わせる(つまり、実行させる)ためのコンピュータプログラムである。つまり、このコンピュータプログラムは、加工装置1に後述する動作を行わせるように制御装置17を機能させるためのコンピュータプログラムである。演算装置が実行するコンピュータプログラムは、制御装置17が備える記憶装置(つまり、記録媒体)に記録されていてもよいし、制御装置17に内蔵された又は制御装置17に外付け可能な任意の記憶媒体(例えば、ハードディスクや半導体メモリ)に記録されていてもよい。或いは、演算装置は、実行するべきコンピュータプログラムを、ネットワークインタフェースを介して、制御装置17の外部の装置からダウンロードしてもよい。
 制御装置17は、照射光学系1211による加工光ELの射出態様を制御してもよい。射出態様は、例えば、加工光ELの強度及び加工光ELの射出タイミングの少なくとも一方を含んでいてもよい。加工光ELが複数のパルス光を含む場合には、射出態様は、例えば、パルス光の発光時間、パルス光の発光周期、及び、パルス光の発光時間の長さとパルス光の発光周期との比(いわゆる、デューティ比)の少なくとも一つを含んでいてもよい。更に、制御装置17は、ヘッド駆動系122による加工ヘッド121の移動態様を制御してもよい。制御装置17は、ステージ駆動系132によるステージ131の移動態様を制御してもよい。移動態様は、例えば、移動量、移動速度、移動方向及び移動タイミング(移動時期)の少なくとも一つを含んでいてもよい。更に、制御装置17は、材料ノズル1212による造形材料Mの供給態様を制御してもよい。供給態様は、例えば、供給量(特に、単位時間当たりの供給量)及び供給タイミング(供給時期)の少なくとも一方を含んでいてもよい。
 制御装置17は、加工装置1の内部に設けられていなくてもよい。例えば、制御装置17は、加工装置1外にサーバ等として設けられていてもよい。この場合、制御装置17と加工装置1とは、有線及び/又は無線のネットワーク(或いは、データバス及び/又は通信回線)で接続されていてもよい。有線のネットワークとして、例えばIEEE1394、RS-232x、RS-422、RS-423、RS-485及びUSBの少なくとも一つに代表されるシリアルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、パラレルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、10BASE-T、100BASE-TX及び1000BASE-Tの少なくとも一つに代表されるイーサネット(登録商標)に準拠したインタフェースを用いるネットワークが用いられてもよい。無線のネットワークとして、電波を用いたネットワークが用いられてもよい。電波を用いたネットワークの一例として、IEEE802.1xに準拠したネットワーク(例えば、無線LAN及びBluetooth(登録商標)の少なくとも一方)があげられる。無線のネットワークとして、赤外線を用いたネットワークが用いられてもよい。無線のネットワークとして、光通信を用いたネットワークが用いられてもよい。この場合、制御装置17と加工装置1とはネットワークを介して各種の情報の送受信が可能となるように構成されていてもよい。また、制御装置17は、ネットワークを介して加工装置1にコマンドや制御パラメータ等の情報を送信可能であってもよい。加工装置1は、制御装置17からのコマンドや制御パラメータ等の情報を、上記ネットワークを介して受信する受信装置を備えていてもよい。加工装置1は、制御装置17に対してコマンドや制御パラメータ等の情報を、上記ネットワークを介して送信する送信装置(つまり、制御装置17に対して情報を出力する出力装置)を備えていてもよい。或いは、制御装置17が行う処理のうちの一部を行う第1制御装置が加工装置1の内部に設けられている一方で、制御装置17が行う処理のうちの他の一部を行う第2制御装置が加工装置1の外部に設けられていてもよい。
 制御装置17内には、演算装置がコンピュータプログラムを実行することで、機械学習によって構築可能な演算モデルが実装されてもよい。機械学習によって構築可能な演算モデルの一例として、例えば、ニューラルネットワークを含む演算モデル(いわゆる、人工知能(AI:Artificial Intelligence))があげられる。この場合、演算モデルの学習は、ニューラルネットワークのパラメータ(例えば、重み及びバイアスの少なくとも一つ)の学習を含んでいてもよい。制御装置17は、演算モデルを用いて、加工装置1の動作を制御してもよい。つまり、加工装置1の動作を制御する動作は、演算モデルを用いて加工装置1の動作を制御する動作を含んでいてもよい。尚、制御装置17には、教師データを用いたオフラインでの機械学習により構築済みの演算モデルが実装されてもよい。また、制御装置17に実装された演算モデルは、制御装置17上においてオンラインでの機械学習によって更新されてもよい。或いは、制御装置17は、制御装置17に実装されている演算モデルに加えて又は代えて、制御装置17の外部の装置(つまり、加工装置1の外部に設けられる装置)に実装された演算モデルを用いて、加工装置1の動作を制御してもよい。
 尚、制御装置17が実行するコンピュータプログラムを記録する記録媒体としては、CD-ROM、CD-R、CD-RWやフレキシブルディスク、MO、DVD-ROM、DVD-RAM、DVD-R、DVD+R、DVD-RW、DVD+RW及びBlu-ray(登録商標)等の光ディスク、磁気テープ等の磁気媒体、光磁気ディスク、USBメモリ等の半導体メモリ、及び、その他プログラムを格納可能な任意の媒体の少なくとも一つが用いられてもよい。記録媒体には、コンピュータプログラムを記録可能な機器(例えば、コンピュータプログラムがソフトウェア及びファームウェア等の少なくとも一方の形態で実行可能な状態に実装された汎用機器又は専用機器)が含まれていてもよい。更に、コンピュータプログラムに含まれる各処理や機能は、制御装置17(つまり、コンピュータ)がコンピュータプログラムを実行することで制御装置17内に実現される論理的な処理ブロックによって実現されてもよいし、制御装置17が備える所定のゲートアレイ(FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit))等のハードウェアによって実現されてもよいし、論理的な処理ブロックとハードウェアの一部の要素を実現する部分的ハードウモジュールとが混在する形式で実現してもよい。
 (1-3)計測システム2の構造
 続いて、図4を参照しながら、計測システム2の構成について説明する。図4は、計測システム2の構成を示すブロック図である。図4に示すように、計測システム2は、形状計測装置21と、制御情報生成装置22とを備えている。
 形状計測装置21は、計測対象物の三次元形状を計測可能である。本実施形態では、上述したように、計測システム2は、加工装置1がワークWを実際に加工し始める前に、ワークWを計測する。このため、形状計測装置21の計測対象物は、ワークWを含んでいてもよい。
 形状計測装置21は、計測対象物の三次元形状を計測可能である限りは、どのような構成を有していてもよい。例えば、形状計測装置21は、計測対象物の表面に計測光を照射することで当該表面に光パターンを投影し、投影されたパターンの形状を計測するパターン投影法又は光切断法を用いて、計測対象物の三次元形状を計測してもよい。例えば、形状計測装置21は、計測対象物の表面に計測光を投射し、投射された計測光が計測対象物から形状計測装置21に戻ってくるまでの時間を算出し、且つ、当該時間に基づいて計測対象物までの距離を測定する動作を、計測対象物上の複数の位置で行うタイム・オブ・フライト法を用いて、計測対象物の三次元形状を計測してもよい。例えば、形状計測装置21は、モアレトポグラフィ法(具体的には、格子照射法若しくは格子投影法)、ホログラフィック干渉法、オートコリメーション法、ステレオ法、非点収差法、臨界角法及びナイフエッジ法のうちの少なくとも一つを用いて、計測対象物の三次元形状を計測してもよい。
 尚、形状計測装置21は、その筐体内に格納された計測対象物の三次元形状を計測する装置には限定されない。例えば、形状計測装置21は、計測対象物の周囲で移動可能となるように、ロボットアームに取り付けられていてもよい。
 制御情報生成装置22は、加工制御情報を生成する。加工制御情報を生成可能な制御情報生成装置22の構成の一例が、図5に示されている。図5に示すように、制御情報生成装置22は、演算装置221と、記憶装置222と、通信装置223とを備えている。更に、制御情報生成装置22は、入力装置224と、出力装置225とを備えていてもよい。但し、制御情報生成装置22は、入力装置224及び出力装置225の少なくとも一つを備えていなくてもよい。演算装置221と、記憶装置222と、通信装置223と、入力装置224と、出力装置225とは、データバス226を介して接続されていてもよい。
 演算装置221は、例えば、CPU(Central Prcessing Unit)及びGPU(Graphics Processing Unit)の少なくとも一方を含む。演算装置221は、コンピュータプログラムを読み込む。例えば、演算装置221は、記憶装置222が記憶しているコンピュータプログラムを読み込んでもよい。例えば、演算装置221は、コンピュータで読み取り可能であって且つ一時的でない記録媒体が記憶しているコンピュータプログラムを、図示しない記録媒体読み取り装置を用いて読み込んでもよい。演算装置221は、通信装置223を介して、制御情報生成装置22の外部に配置される不図示の装置からコンピュータプログラムを取得してもよい(つまり、ダウンロードしてもよい又は読み込んでもよい)。つまり、演算装置221は、通信装置223を介して、制御情報生成装置22の外部に配置される不図示の装置の記憶装置に記憶されているコンピュータプログラムを取得してもよい(つまり、ダウンロードしてもよい又は読み込んでもよい)。演算装置221は、読み込んだコンピュータプログラムを実行する。その結果、演算装置221内には、制御情報生成装置22が行うべき動作(例えば、加工制御情報を生成するための動作)を実行するための論理的な機能ブロックが実現される。つまり、演算装置221は、制御情報生成装置22が行うべき動作を実行するための論理的な機能ブロックを実現するためのコントローラとして機能可能である。この場合、コンピュータプログラムを実行した任意の装置(典型的には、コンピュータ)は、制御情報生成装置22として機能可能である。
 図5には、演算装置221内に実現される論理的な機能ブロックの一例が示されている。図5に示すように、演算装置221内には、制御情報生成部2211が実現される。制御情報生成部2211は、加工制御情報を生成する。尚、加工制御情報を生成する動作については、後に詳述する。
 演算装置221内には、演算装置221がコンピュータプログラムを実行することで、機械学習によって構築可能な演算モデルが実装されてもよい。機械学習によって構築可能な演算モデルの一例として、例えば、ニューラルネットワークを含む演算モデル(いわゆる、人工知能(AI:Artificial Intelligence))があげられる。この場合、演算モデルの学習は、ニューラルネットワークのパラメータ(例えば、重み及びバイアスの少なくとも一つ)の学習を含んでいてもよい。演算装置221は、演算モデルを用いて、加工制御情報を生成してもよい。尚、演算装置221には、教師データを用いたオフラインでの機械学習により構築済みの演算モデルが実装されてもよい。また、演算装置221に実装された演算モデルは、演算装置221上においてオンラインでの機械学習によって更新されてもよい。或いは、演算装置221は、演算装置221に実装されている演算モデルに加えて又は代えて、演算装置221の外部の装置(つまり、制御情報生成装置22の外部に設けられる装置)に実装された演算モデルを用いて、加工装置1の動作を制御してもよい。
 記憶装置222は、所望のデータを記憶可能である。例えば、記憶装置222は、演算装置221が実行するコンピュータプログラムを一時的に記憶していてもよい。記憶装置222は、演算装置221がコンピュータプログラムを実行している際に演算装置221が一時的に使用するデータを一時的に記憶してもよい。記憶装置222は、制御情報生成装置22が長期的に保存するデータを記憶してもよい。尚、記憶装置222は、RAM(Random Access Memory)、ROM(Read Only Memory)、ハードディスク装置、光磁気ディスク装置、SSD(Solid State Drive)及びディスクアレイ装置のうちの少なくとも一つを含んでいてもよい。つまり、記憶装置222は、一時的でない記録媒体を含んでいてもよい。
 通信装置223は、不図示の通信ネットワークを介して、加工装置1と通信可能である。本実施形態では、通信装置223は、制御情報生成装置22が生成した加工制御情報を、加工装置1に送信可能である。
 入力装置224は、制御情報生成装置22の外部からの制御情報生成装置22に対する情報の入力を受け付ける装置である。例えば、入力装置224は、ユーザが操作可能な操作装置(例えば、キーボード、マウス及びタッチパネルのうちの少なくとも一つ)を含んでいてもよい。例えば、入力装置224は、制御情報生成装置22に対して外付け可能な記録媒体にデータとして記録されている情報を読み取り可能な読取装置を含んでいてもよい。例えば、入力装置224は、制御情報生成装置22の外部のロボットからの情報の入力を受け付けてもよい。例えば、入力装置224は、制御情報生成装置22の外部のコンピュータからの情報の入力を受け付けてもよい。されるに対して外付け可能な記録媒体にデータとして記録されている情報を読み取り可能な読取装置
 出力装置225は、制御情報生成装置22の外部に対して情報を出力する装置である。例えば、出力装置225は、情報を画像として出力してもよい。つまり、出力装置225は、出力したい情報を示す画像を表示可能な表示装置(いわゆる、ディスプレイ)を含んでいてもよい。例えば、出力装置225は、情報を音声として出力してもよい。つまり、出力装置225は、音声を出力可能な音声装置(いわゆる、スピーカ)を含んでいてもよい。例えば、出力装置225は、紙面に情報を出力してもよい。つまり、出力装置225は、紙面に所望の情報を印刷可能な印刷装置(いわゆる、プリンタ)を含んでいてもよい。
 出力装置225は、ロボットに取り付けられていてもよい。この場合、出力装置225が取り付けられたロボットが、制御情報生成装置22の外部に対して情報を出力してもよい。例えば、出力装置225が取り付けられたロボットが、情報を画像として出力してもよい。
 (2)加工システムSYSの動作
 続いて、加工システムSYSが行う動作について説明する。本実施形態では、加工システムSYSは、主として加工装置1を用いて、ワークWを加工するための加工動作を行ってもよい。更に、加工システムSYSは、主として計測システム2を用いて、加工制御情報を生成するための制御情報生成動作を行ってもよい。このため、以下では、加工動作及び制御情報生成動作について、順に説明する。
 (2-1)加工動作
 はじめに、図6から図7を参照しながら、加工動作について説明する。特に、加工動作の一例として、加工装置1が行う付加加工動作について説明する。上述したように、加工装置1は、レーザ肉盛溶接法を用いて三次元構造物STを造形する。このため、加工装置1は、レーザ肉盛溶接法に準拠した既存の付加加工動作を行うことで、三次元構造物STを造形してもよい。以下、レーザ肉盛溶接法を用いて三次元構造物STを造形する加工動作の一例について簡単に説明する。
 加工装置1は、三次元構造物STを造形するために、例えば、Z軸方向に沿って並ぶ複数の層状の部分構造物(以下、“構造層”と称する)SLを順に造形していく。例えば、加工装置1は、三次元構造物STをZ軸方向に沿って輪切りにすることで得られる複数の構造層SLを1層ずつ順に造形していく。その結果、複数の構造層SLが積層された積層構造体である三次元構造物STが造形される。以下、複数の構造層SLを1層ずつ順に造形していくことで三次元構造物STを造形する動作の流れについて説明する。
 まず、各構造層SLを造形する動作について図6(a)から図6(e)を参照して説明する。加工装置1は、制御装置17の制御下で、ワークWの表面又は造形済みの構造層SLの表面に相当する造形面MS上の所望領域に目標照射領域EAが設定されるように、加工ヘッド121及びステージ131の少なくとも一方を移動させる。その後、加工装置1は、目標照射領域EAに対して照射光学系1211から加工光ELを照射する。この際、Z軸方向において加工光ELが集光される集光面は、造形面MSに一致していてもよい。或いは、Z軸方向において集光面は、造形面MSから外れていてもよい。その結果、図6(a)に示すように、加工光ELが照射された造形面MS上に溶融池(つまり、加工光ELによって溶融した金属等のプール)MPが形成される。更に、加工装置1は、制御装置17の制御下で、材料ノズル1212から造形材料Mを供給する。その結果、溶融池MPに造形材料Mが供給される。溶融池MPに供給された造形材料Mは、溶融池MPに照射されている加工光ELによって溶融する。或いは、材料ノズル1212から供給された造形材料Mは、溶融池MPに到達する前に加工光ELによって溶融し、溶融した造形材料Mが溶融池MPに供給されてもよい。その後、加工ヘッド121及びステージ131の少なくとも一方の移動に伴って溶融池MPに加工光ELが照射されなくなると、溶融池MPにおいて溶融した造形材料Mは、冷却されて固化(つまり、凝固)する。その結果、図6(c)に示すように、固化した造形材料Mから構成される造形物が造形面MS上に堆積される。
 加工装置1は、このような加工光ELの照射による溶融池MPの形成、溶融池MPへの造形材料Mの供給、供給された造形材料Mの溶融及び溶融した造形材料Mの固化を含む一連の造形処理を、図6(d)に示すように、造形面MSに対して加工ヘッド121を、X軸方向及びY軸方向の少なくとも一方に沿って移動させながら繰り返す。この際、加工装置1は、造形面MS上において造形物を造形したい領域に加工光ELを照射する一方で、造形面MS上において造形物を造形したくない領域に加工光ELを照射しない。つまり、加工装置1は、造形面MS上を所定の移動経路に沿って目標照射領域EAを移動させながら、造形物を造形したい領域の分布の態様に応じたタイミングで加工光ELを造形面MSに照射する。
 造形面MS上での目標照射領域EAの移動経路は、加工パス(言い換えれば、ツールパス)と称されてもよい。上述した加工制御情報は、この加工パスに関する情報を加工パス情報として含む。このため、制御情報生成装置22は、加工パス情報を含む加工制御情報を生成してもよい。加工装置1は、加工制御情報に基づいて、造形面MS上を所定の移動経路に沿って目標照射領域EAを移動させながら、造形物を造形したい領域の分布の態様に応じたタイミングで加工光ELを造形面MSに照射する。
 その結果、溶融池MPもまた、目標照射領域EAの移動経路に応じた移動経路に沿って造形面MS上を移動することになる。具体的には、溶融池MPは、造形面MS上において、目標照射領域EAの移動経路に沿った領域のうち加工光ELが照射された部分に順次形成される。その結果、図6(e)に示すように、造形面MS上に、溶融した後に固化した造形材料Mの集合体である造形物に相当する構造層SLが造形される。つまり、溶融池MPの移動経路に応じたパターンで造形面MS上に造形された造形物の集合体に相当する構造層SL(つまり、平面視において、溶融池MPの移動経路に応じた形状を有する構造層SL)が造形される。尚、造形物を造形したくない領域に目標照射領域EAが設定されている場合、加工装置1は、加工光ELを目標照射領域EAに照射すると共に、造形材料Mの供給を停止してもよい。また、造形物を造形したくない領域に目標照射領域EAが設定されている場合に、加工装置1は、造形材料Mを目標照射領域EAに供給すると共に、溶融池MPができない強度の加工光ELを目標照射領域EAに照射してもよい。
 加工装置1は、このような構造層SLを造形するための動作を、制御装置17の制御下で、加工制御情報に基づいて繰り返し行う。具体的には、まず、加工装置1は、ワークWの表面に相当する造形面MS上に1層目の構造層SL#1を造形するための動作を、加工制御情報(例えば、構造層SL#1を造形するための加工パスに関する情報)に基づいて行う。その結果、造形面MS上には、図7(a)に示すように、構造層SL#1が造形される。その後、加工装置1は、構造層SL#1の表面(つまり、上面)を新たな造形面MSに設定した上で、当該新たな造形面MS上に2層目の構造層SL#2を造形する。構造層SL#2を造形するために、制御装置17は、まず、ステージ131に対して加工ヘッド121がZ軸に沿って移動するように、ヘッド駆動系122及びステージ駆動系132の少なくとも一方を制御する。具体的には、制御装置17は、ヘッド駆動系122及びステージ駆動系132の少なくとも一方を制御して、目標照射領域EAが構造層SL#1の表面(つまり、新たな造形面MS)に設定されるように、+Z側に向かって加工ヘッド121を移動させる及び/又は-Z側に向かってステージ131を移動させる。その後、加工装置1は、制御装置17の制御下で、構造層SL#1を造形する動作と同様の動作で、加工制御情報(例えば、構造層SL#2を造形するための加工パス情報)に基づいて、構造層SL#1上に構造層SL#2を造形する。その結果、図7(b)に示すように、構造層SL#2が造形される。以降、同様の動作が、ワークW上に造形するべき三次元構造物STを構成する全ての構造層SLが造形されるまで繰り返される。その結果、図7(c)に示すように、複数の構造層SLが積層された積層構造物によって、三次元構造物STが造形される。
 (2-2)制御情報生成動作
 続いて、制御情報生成動作について説明する。
 (2-2-1)制御情報生成動作の概要
 上述したように、計測システム2(特に、制御情報生成装置22の制御情報生成部2211)は、制御情報生成動作を行うことで、加工制御情報を生成する。
 制御情報生成部2211は、加工装置1が加工しようとしているワークWという物体の実際の三次元形状を示す物体情報に基づいて、加工制御情報を生成してもよい。
 物体情報の一例として、形状計測装置21によるワークWの三次元形状の計測結果を示す計測情報があげられる。この場合、加工制御情報を生成するために、形状計測装置21は、ワークWの三次元形状を計測し、制御情報生成部2211は、計測情報に基づいて、加工制御情報を生成してもよい。複数のワークWを加工装置1が加工する場合には、形状計測装置21は、複数のワークWのそれぞれの三次元形状をまとめて又は順に計測し、制御情報生成部2211は、複数のワークWの計測情報に基づいて、複数のワークWを加工するためにそれぞれ用いられる複数の加工制御情報を順に生成してもよい。
 但し、同じ特性(例えば、形状)を有していると想定される複数のワークWを加工装置1が加工する場合には、加工制御情報を生成するために、形状計測装置21は、複数のワークWの全ての三次元形状を計測しなくてもよい。例えば、形状計測装置21は、複数のワークWのうちの一のワークWの三次元形状を計測する一方で、複数のワークWのうちの残りのワークWの三次元形状を計測しなくてもよい。この場合、制御情報生成部2211は、一のワークWの三次元形状の計測結果を示す計測情報に基づいて、複数のワークWのそれぞれを加工するために共通して用いられる加工制御情報を生成してもよい。
 同じ特性を有していると想定される複数のワークWの一例として、タービンを構成し且つ回転軸周りに回転可能なローターに取り付けられる複数のタービンブレードがあげられる。ローターには、通常、同じ特性を有する複数のタービンブレードが取り付けられる。しかしながら、タービンが使用されると、流体とタービンブレードとの間に生ずる摩擦によって、タービンブレードが摩耗する。その結果、タービンの使用開始前は同じ特性を有していた複数のタービンブレードのうちの少なくとも二つの特性(特に、形状)が、タービンの使用に起因して異なるものとなる可能性がある。しかしながら、この場合であっても、複数のタービンブレードの摩耗量は、概ね同じになる可能性が高い。その結果、タービンの使用開始前は同じ特性を有していた複数のタービンブレードのうちの少なくとも二つの特性は、タービンの使用後であっても、厳密には異なるものの、概ね同じであるとみなしてもよい。この場合、形状計測装置21は、複数の摩耗したタービンブレードのうちの一のタービンブレード三次元形状を計測する一方で、複数の摩耗したタービンブレードのうちの残りのタービンブレードの三次元形状を計測しなくてもよい。制御情報生成部2211は、一のタービンブレードの三次元形状の計測結果を示す計測情報に基づいて、複数の摩耗したタービンブレードのそれぞれを加工する(典型的には、補修する)ために共通して用いられる加工制御情報を生成してもよい。
 物体情報は、ワークWの実際の三次元形状を直接的に又は間接的に示すことができる限りは、どのような情報であってもよい。例えば、物体情報は、複数の点を用いてワークWの実際の三次元形状を示す点群情報であってもよい。本実施形態では、物体モデルOMが物体情報として用いられる例について説明する。言い換えれば、本実施形態では、物体モデルOMを示すモデル情報が物体情報として用いられる例について説明する。物体モデルOMは、ワークWの実際の三次元形状を示す三次元モデルである。つまり、物体モデルOMは、ワークWの実際の三次元形状と同じ三次元形状を有する三次元モデルである。三次元モデルの一例として、ワイヤフレームモデル、サーフェスモデル及びソリッドモデルの少なくとも一つがあげられる。本実施形態では、サーフェスモデルの一具体例であるメッシュモデルが(典型的には、多角形メッシュモデル、以下同じ)物体モデルOMとして用いられる例について説明する。メッシュモデルは、頂点、エッジ及び面を用いて物体の三次元形状を表現する三次元モデルである。メッシュモデルは、多角形形状を有する複数のメッシュ(言い換えれば、ファセット又は計算格子)を用いて物体の三次元形状を表現する三次元モデルである。
 物体モデルOMは、形状計測装置21によるワークWの三次元形状の計測結果を示す計測情報に基づいて生成されてもよい。つまり、物体モデルOMは、形状計測装置21によるワークWの三次元形状の計測結果に基づいて生成されてもよい。この場合、制御情報生成部2211が、計測情報に基づいて物体モデルOMを生成してもよい。或いは、制御情報生成部2211とは異なる装置(例えば、形状計測装置21)が、計測情報に基づいて物体モデルOMを生成してもよい。
 或いは、物体モデルOMは、形状計測装置21によるワークWの三次元形状の計測結果を示す計測情報を用いることなく、生成されてもよい。例えば、制御情報生成部2211(或いは、制御情報生成部2211とは異なる装置、以下この段落において同じ)は、ワークWの三次元形状に影響を与える事象に基づいて、ワークWの実際の三次元形状を推定し、推定結果に基づいて物体モデルOMを生成してもよい。つまり、制御情報生成部2211は、推定した三次元形状を示す三次元モデルを、物体モデルOMとして生成してもよい。この際、制御情報生成部2211は、機械学習によって構築可能な演算モデル(例えば、ニューラルネットワークを含む演算モデル(いわゆる、人工知能(AI)))を用いて、ワークWの実際の三次元形状を推定してもよい。或いは、加工システムSYSのユーザは、ワークWの三次元形状に影響を与える事象に基づいて、ワークWの実際の三次元形状を推定し、推定結果に基づいて物体モデルOMを生成してもよい。つまり、ユーザは、推定した三次元形状を示す三次元モデルを物体モデルOMとして生成してもよい。或いは、制御情報生成部2211が、ユーザによるワークWの実際の三次元形状の推定結果に基づいて、物体モデルOMを生成してもよい。
 ワークWの三次元形状に影響を与える事象の一例として、ワークWの使用環境があげられる。ワークWの三次元形状に影響を与える事象の他の一例として、ワークWが使用されている状況下でのワークWに加わる力があげられる。ワークWの三次元形状に影響を与える事象の他の一例として、ワークWの使用期間があげられる。例えば、ワークWが上述したタービンブレードである場合には、タービンブレードの三次元形状に影響を与える事象の一例として、タービンブレードの使用環境、タービンブレードに加わる力及びタービンブレードの使用期間の少なくとも一つがあげられる。この場合、制御情報生成部2211、制御情報生成部2211とは異なる装置又はユーザは、タービンブレードの三次元形状に影響を与える事象に基づいて、タービンブレードの摩耗量(つまり、タービンブレードの欠損部分)を推定し、推定した摩耗量に基づいて、タービンブレードの実際の三次元形状を推定してもよい。
 CADデータを示すファイルが示す三次元モデルが、物体モデルOMとして用いられてもよい。CADデータを示すファイルの一例として、DWFという拡張子を有するファイル、DXFという拡張子を有するファイル、DWGという拡張子を有するファイル及びSTPという拡張子を有するファイルの少なくとも一つがあげられる。メッシュモデルが物体モデルOMとして用いられる場合には、STLという拡張子を有するファイルが示す三次元モデルが、物体モデルOMとして用いられてもよい。
 制御情報生成部2211は、上述した物体情報に加えて又は代えて、加工後のワークWの目標形状を示す参照情報に基づいて、加工制御情報を生成してもよい。つまり、制御情報生成部2211は、加工後のワークWの設計上の、名目上の又は理想的な三次元形状を示す参照情報に基づいて、加工制御情報を生成してもよい。
 参照情報は、ワークWの目標形状を直接的に又は間接的に示すことができる限りは、どのような情報であってもよい。例えば、参照情報は、複数の点を用いてワークWの目標形状を示す点群情報であってもよい。本実施形態では、参照モデルRMが参照情報として用いられる例について説明する。言い換えれば、本実施形態では、参照モデルRMを示すモデル情報が参照情報として用いられる例について説明する。参照モデルRMは、ワークWの目標形状を示す三次元モデルである。つまり、参照モデルRMは、ワークWの目標形状と同じ三次元形状を有する三次元モデルである。本実施形態では、サーフェスモデルの一具体例であるメッシュモデルが参照モデルRMとして用いられる例について説明する。尚、参照モデルRMがワークWの目標形状を示すがゆえに、参照モデルRMは、目標モデルと称されてもよい。
 目標形状を有するワークWのCAD(Computer Aided Design)モデルが、参照モデルRMとして用いられてもよい。目標形状を有するワークWの三次元形状を実際に計測することで得られる情報に基づいて生成される三次元モデルが、参照モデルRMとして用いられてもよい。この場合、CADデータを示すファイルが示す三次元モデルが、参照モデルRMとして用いられてもよい。CADデータを示すファイルの一例として、DWFという拡張子を有するファイル、DXFという拡張子を有するファイル、DWGという拡張子を有するファイル及びSTPという拡張子を有するファイルの少なくとも一つがあげられる。メッシュモデルが参照モデルRMとして用いられる場合には、STLという拡張子を有するファイルが示す三次元モデルが、参照モデルRMとして用いられてもよい。
 ここで、参照モデルRM及び物体モデルOMをそれぞれ模式的に示す図8(a)及び図8(b)に示すように、参照モデルRMが示すワークWの目標形状(つまり、ワークWの設計上の又は理想的な三次元形状)は、典型的には、物体モデルOMが示すワークWの実際の三次元形状とは異なる。例えば、上述したように、欠損部分がある要修理品がワークWとして用いられる場合には、図8(b)に示すように、物体モデルOMは、ワークWの使用に起因して一部が欠損したワークWの三次元形状を示す一方で、図8(a)に示すように、参照モデルRMは、欠損していないワークWの三次元形状を示す。つまり、物体モデルOMは、実際に使用済みのワークWの三次元形状を示す一方で、参照モデルRMは、実際に使用される前のワークWの三次元形状を示す。一例として、ワークWが、一部が摩耗したタービンブレードである場合には、物体モデルOMは、一部が摩耗したタービンブレードの三次元形状を示す一方で、参照モデルRMは、摩耗していないタービンブレードの三次元形状を示す。つまり、物体情報は、タービンブレードがタービンの部品として実際に使用された後のタービンブレードの三次元形状を示す一方で、参照情報は、タービンブレードがタービンの部品として実際に使用される前のタービンブレードの三次元形状を示す。言い換えれば、物体情報は、使用済みのタービンブレードの三次元形状を示す一方で、参照情報は、未使用のタービンブレードの三次元形状を示す。従って、ワークWの使用に伴ってワークWの一部が欠損する(例えば、摩耗する)場合には、通常は、参照モデルRMが示すワークWの目標形状は、物体モデルOMが示すワークWの実際の三次元形状とは異なる。
 尚、本実施形態での「ワークWの使用」は、ワークWを、ワークWの用途に即した使用方法で使用することを含んでいてもよい。ワークWが製品の部品として用いられる場合には、「ワークWの使用」は、ワークWを含む製品を、製品の用途に即した使用方法で使用することを含んでいてもよい。例えば、ワークWがタービンブレードを含む場合には、タービンブレードの使用は、タービンブレードを含むタービンを、タービンの用途に即した使用方法で使用することを含んでいてもよい。
 また、上述したようにワークWの使用に伴ってワークWの一部が欠損する(例えば、摩耗する)場面が本実施形態の加工システムSYSが用いられる場面の一例であることを考慮すると、「ワークWの使用」は、ワークWの一部の欠損を引き起こすワークWの使用を含んでいてもよい。例えば、「ワークWの使用」は、ワークWの一部の欠損を引き起こすほどに長期間にわたるワークWの使用を含んでいてもよい。このため、実際に使用済みのワークWは、一部が欠損するほどに使用されたワークWを含んでいてもよい。一方で、実際に使用される前のワークWは、使用されているもののワークWの一部の欠損を引き起こすほどには使用されてないワークWを含んでいてもよい。例えば、実際に使用される前のワークWは、ワークWの一部の欠損を引き起こさないほどの短期間にわたるワークWの使用(例えば、ワークW又はワークWを含む製品の試運転等)を含んでいてもよい。もちろん、実際に使用される前のワークWは、文字通り、未だに使用されていないワークWを含んでいてもよい。例えば、実際に使用される前のワークWは、製品又は部品として出荷される前のワークWを含んでいてもよい。例えば、実際に使用される前のワークWは、設計段階のワークWを含んでいてもよい。
 参照モデルRMは、実際に使用される前のワークWの三次元形状の計測結果に基づいて生成されてもよい。この場合、形状計測装置21(或いは、形状計測装置21とは異なる装置、以下、この段落において同じ)は、実際に使用される前のワークWの三次元形状を計測し、形状計測装置21の計測結果に基づいて、参照モデルRMが生成されてもよい。或いは、参照モデルRMは、ワークWの設計上の三次元形状を示すCADデータ等に基づいて生成されてもよい。
 本実施形態では、制御情報生成部2211は、物体情報の一例である物体モデルOMと、参照情報の一例である参照モデルRMとの双方に基づいて、加工制御情報を生成する。具体的には、上述したように、参照モデルRMは、ワークWの目標形状を示し、物体モデルOMは、ワークWの実際の三次元形状を示している。この場合、参照モデルRMと物体モデルOMとの差分は、加工装置1が付加加工を行うことで造形するべき造形物(つまり、三次元構造物ST)の三次元形状を示す三次元モデルに相当する。このため、制御情報生成部2211は、参照モデルRMと物体モデルOMとの差分に相当する三次元モデルを、加工装置1が付加加工を行うことで造形するべき三次元構造物STの三次元形状を示す差分モデルDMとして生成してもよい。差分モデルDMは、典型的には、参照モデルRMの一部に相当する三次元モデルである。尚、図9(a)は、参照モデルRMを模式的に示し、図9(b)は、物体モデルOMを模式的に示し、図9(c)は、図9(a)に示す参照モデルRMと図9(b)に示す物体モデルOMとに基づいて生成される差分モデルDMを模式的に示す。その後、制御情報生成部2211は、差分モデルDMに基づいて、加工制御情報を生成してもよい。例えば、制御情報生成部2211は、差分モデルDMを、構造層SLの厚さに相当する積層ピッチで複数の層状モデルに分割するスライス処理を行うことで、三次元構造物STを構成する複数の構造層SLにそれぞれ対応する複数のスライスデータを生成してもよい。その後、制御情報生成部2211は、複数のスライスデータに基づいて、複数の構造層SLを造形するためにそれぞれ用いられる複数の加工制御情報を生成してもよい。
 CADデータを示すファイルが示す三次元モデルが、差分モデルDMとして用いられてもよい。CADデータを示すファイルの一例として、DWFという拡張子を有するファイル、DXFという拡張子を有するファイル、DWGという拡張子を有するファイル及びSTPという拡張子を有するファイルの少なくとも一つがあげられる。メッシュモデルが差分モデルDMとして用いられる場合には、STLという拡張子を有するファイルが示す三次元モデルが、差分モデルDMとして用いられてもよい。
 ファイル(例えば、CADデータを示すCADファイル、以下この段落において同じ)の中に、アッセンブリ情報としての差分モデルDMと、アッセンブリ情報としての物体モデルOMとが含まれていてもよい。ファイルの中に、アッセンブリ情報としての差分モデルDMと、アッセンブリ情報としての物体モデルOMとに加えて、アッセンブリ情報としての参照モデルRMが含まれていてもよい。ファイルの中に、第1の計測精度でワークWを計測することで得られる第1の物体モデルOMと、第1の計測精度とよりも高い第2の計測精度でワークWを計測することで得られる第1の物体モデルOMとが含まれていてもよい。この場合、ファイルの中には、物体モデルOMを取得した場合に用いられた計測精度に関する情報が含まれていてもよい。例えば、ファイルの中で、第1の物体モデルOMと、第1の物体モデルOMを取得した場合に用いられた計測精度に関する情報とが関連付けられていてもよい。例えば、ファイルの中で、第2の物体モデルOMと、第2の物体モデルOMを取得した場合に用いられた計測精度に関する情報とが関連付けられていてもよい。
 或いは、物体モデルOM、参照モデルRM及び差分モデルDMの少なくとも一つは、アッセンブリ情報の情報形式とは異なる情報形式でファイル(例えば、CADデータを示すCADファイル、以下この段落において同じ)に含まれていてもよい。或いは、物体モデルOMを含むファイルと、参照モデルRMを含むファイルと、差分モデルDMを含むファイルとの少なくとも一つが記憶装置222等に記憶されていてもよい。つまり、物体モデルOM、参照モデルRM及び差分モデルDMが、別々のファイルに含まれていてもよい。この場合、物体モデルOMを含むファイルと、参照モデルRMを含むファイルと、差分モデルDMを含むファイルとのうちの少なくとも二つが互いに関連付けられていることを示す情報を含む管理ファイルが、記憶装置222等に記憶されていてもよい。
 但し、制御情報生成部2211は、物体モデルOMを用いる一方で、参照モデルRMを用いることなく、加工制御情報を生成してもよい。制御情報生成部2211は、参照モデルRMを用いる一方で、物体モデルOMを用いることなく、加工制御情報を生成してもよい。
 (2-2-2)加工制御情報を生成する場合に生ずる技術的問題
 ワークWの使用に伴って、ワークWの一部が欠損することは、上述したとおりである。一方で、ワークWの使用に伴って、ワークWの一部が欠損することに加えて又は代えて、ワークWの少なくとも一部が物理的に変形する可能性がある。例えば、高温環境下で使用されているワークWに加わる荷重に起因して、ワークWが物理的に変形する可能性がある。つまり、クリープが発生する可能性がある。例えば、経年劣化等によって、ワークWが物理的に変形する可能性がある。
 ワークWが変形する場合には、「ワークWの使用」は、ワークWの変形を引き起こすほどのワークWの使用を含んでいてもよい。例えば、「ワークWの使用」は、ワークWの変形を引き起こすほどに長期間にわたるワークWの使用を含んでいてもよい。このため、実際に使用済みのワークWは、ワークWが変形するまで使用されたワークWを含んでいてもよい。一方で、実際に使用される前のワークWは、使用されているもののワークWの変形を引き起こすほどには使用されてないワークWを含んでいてもよい。例えば、実際に使用される前のワークWは、ワークWの変形を引き起こさないほどの短期間にわたるワークWの使用(例えば、ワークW又はワークWを含む製品の試運転等)を含んでいてもよい。
 尚、ワークWの使用に伴ってワークWの一部が欠損する(例えば、摩耗する)場合においても、ワークWの三次元形状が変わるがゆえに、ワークWが変形しているとも言える。しかしながら、本実施形態では、「ワークWの変形」とは、ワークWの使用に伴って生ずるワークWの変形であって、且つ、ワークWの欠損とは異なる要因に起因したワークWの変形を意味するものとする。
 ここで、上述したように、物体モデルOMは、実際に使用済みのワークWの三次元形状を示している。このため、ワークWの使用に伴ってワークWが変形する場合には、ワークWが変形している場合に生成される物体モデルOMを模式的に示す図10(b)に示すように、物体モデルOMは、ワークWの使用に伴って変形してしまったワークWの実際の三次元形状を示している。つまり、物体モデルOMには、ワークWの使用に伴って生じたワークWの変形が反映されている。一方で、上述したように、参照モデルRMには、実際に使用される前のワークWの三次元形状を示している。このため、参照モデルRMには、ワークWの使用に伴って生じたワークWの変形が何ら反映されていない。このため、図10(a)に示すように、参照モデルRMは、変形していないワークWの目標形状を示している。
 この場合、本来は物体モデルOMの三次元形状が参照モデルRMのうちの物体モデルOMに対応する対応モデル部分CMPの三次元形状と同じになるべきであるにも関わらず、ワークWの変形に起因して、図10(a)及び(b)に示すように、物体モデルOMの三次元形状が参照モデルRMの対応モデル部分CMPの三次元形状とは異なるものとなってしまう。その結果、ワークWが変形している場合に生成される差分モデルDMを模式的に示す図11(c)に示すように、参照モデルRMと物体モデルOMとの差分に相当する差分モデルDMは、加工装置1が付加加工を行うことで造形するべき三次元構造物STの三次元形状とは異なる三次元形状を示すことになる。尚、図11(a)は、ワークの使用に伴ってワークWが変形した場合の参照モデルRMを模式的に示し、図11(b)は、ワークの使用に伴ってワークWが変形した場合の物体モデルOMを模式的に示し、図11(c)は、図11(a)に示す参照モデルRMと図11(b)に示す物体モデルOMとに基づいて生成される差分モデルDMを模式的に示す。例えば、差分モデルDMは、ワークWの欠損部分の三次元形状とは異なる三次元形状を示すことになる。その結果、このような差分モデルDMに基づいて加工制御情報が生成される場合には、加工装置1は、所望形状とは異なる形状を有する三次元構造物STを造形することになる。つまり、加工装置1は、所望形状を有する三次元構造物STを造形することができない。例えば、加工装置1は、欠損部分を適切に補填可能な三次元構造物STを造形することができない。このように、ワークWの使用に伴ってワークWが変形している場合には、計測システム2(特に、制御情報生成装置22)は、所望形状を有する三次元構造物STを造形するように加工装置1を制御するための加工制御情報を生成することができない可能性があるという技術的問題を有する。
 そこで、本実施形態では、上述した技術的問題を解決するために、計測システム2は、以下に示す制御情報生成動作を行う。その結果、ワークWの使用に伴ってワークWが変形している場合であっても、計測システム2(特に、制御情報生成装置22)は、所望形状を有する三次元構造物STを造形するように加工装置1を制御するための加工制御情報を生成することができる。このため、ワークWの使用に伴ってワークWが変形している場合であっても、加工装置1は、所望形状を有する三次元構造物STを造形することができる。
 尚、ここで説明した技術的問題が発生する理由の一つは、上述したように、物体モデルOMの三次元形状が参照モデルRMの対応モデル部分のCMP三次元形状とは異なるものとなってしまうことである。このため、ワークWが変形していない場合であっても、物体モデルOMの三次元形状が参照モデルRMの対応モデル部分CMPの三次元形状とは異なるものとなっている場合には、上述した技術的問題が生ずる可能性がある。例えば、ワークWの製造誤差に起因してそもそもワークWの三次元形状が設計上の三次元形状とは異なるものとなっている場合には、物体モデルOMの三次元形状が、参照モデルRMの対応モデル部分CMPの三次元形状とは異なるものとなる可能性がある。例えば、ワークWの三次元形状を計測する形状計測装置21の計測誤差に起因して、形状計測装置21による計測結果に基づいて生成される物体モデルOMの三次元形状が、参照モデルRMの対応モデル部分CMPの三次元形状とは異なるものとなる可能性がある。例えば、参照モデルRMの寸法誤差に起因して、物体モデルOMの三次元形状が、参照モデルRMの対応モデル部分CMPの三次元形状とは異なるものとなる可能性がある。この場合であっても、計測システム2は、以下に示す制御情報生成動作を行ってもよい。その結果、物体モデルOMの三次元形状が参照モデルRMの対応モデル部分CMPの三次元形状とは異なるものとなっている任意の場面において、計測システム2(特に、制御情報生成装置22)は、所望形状を有する三次元構造物STを造形するように加工装置1を制御するための加工制御情報を生成することができる。このため、物体モデルOMの三次元形状が参照モデルRMの対応モデル部分CMPの三次元形状とは異なるものとなる任意の場面において、加工装置1は、所望形状を有する三次元構造物STを造形することができる。
 但し、以下の説明では、説明の簡略化のために、ワークWの変形に起因して、物体モデルOMの三次元形状が、参照モデルRMの対応モデル部分CMPの三次元形状とは異なるものとなっている状況下で行われる制御情報生成動作について説明する。但し、ワークWの変形とは異なる要因に起因して、物体モデルOMの三次元形状が、参照モデルRMの対応モデル部分CMPの三次元形状とは異なるものとなっている状況下であっても、計測システム2は、以下に説明する制御情報生成動作を行ってもよい。
 (2-2-3)制御情報生成動作の流れ
 続いて、図12を参照しながら、本実施形態の制御情報生成動作の流れについて説明する。図12は、本実施形態の制御情報生成動作の流れを示すフローチャートである。
 図12に示すように、形状計測装置21は、ワークWの三次元形状を計測する(ステップS1)。特に、本実施形態では、形状計測装置21は、使用済みのワークWの三次元形状を計測する(ステップS1)。その結果、形状計測装置21は、ワークWの三次元形状を示す計測情報を生成する。形状計測装置21は、生成した計測情報を、制御情報生成装置22に出力(例えば、送信)する。
 但し、ステップS1において、形状計測装置21とは異なる任意の計測装置が、ワークWの三次元形状を計測してもよい。例えば、計測システム2の外部に配置された計測装置が、ワークWの三次元形状を計測してもよい。例えば、加工システムSYSの外部に配置された計測装置が、ワークWの三次元形状を計測してもよい。任意の計測装置は、生成した計測情報を、制御情報生成装置22に出力(例えば、送信)する。
 その後、制御情報生成装置22(特に、制御情報生成部2211)は、ステップS1において生成された計測情報に基づいて、ワークWの実際の三次元形状を示す物体モデルOMを生成する(ステップS2)。つまり、制御情報生成部2211は、物体モデルOMを示すモデル情報を生成する(ステップS2)。
 但し、上述したように、制御情報生成部2211とは異なるモデル生成装置が物体モデルOMを生成する場合には、制御情報生成部2211は、物体モデルOMを生成しなくてもよい。この場合、制御情報生成部2211は、モデル生成装置から物体モデルOMを取得してもよい。或いは、物体モデルOM(具体的には、物体モデルOMを示すモデル情報)が記憶装置222等の記録媒体に予め記録されている場合には、制御情報生成部2211は、記録媒体から物体モデルOMを読み出すことで、物体モデルOMを取得してもよい。或いは、物体モデルOM(具体的には、物体モデルOMを示すモデル情報)が、通信ネットワークを介して計測システム2と通信可能な外部装置に記録されている場合には、制御情報生成部2211は、外部装置から物体モデルOMをダウンロードすることで、物体モデルOMを取得してもよい。尚、図12に示す例では、制御情報生成装置22は、物体モデルOMを生成することで、物体モデルOMを取得しているとみなしてもよい。
 制御情報生成装置22は、ステップS2において生成された物体モデルOMを表示するように、表示装置として機能可能な出力装置225を制御してもよい。加工システムSYSのユーザは、入力装置224を用いて、出力装置225に表示された物体モデルOMを操作してもよい。例えば、ユーザは、入力装置224を用いて、出力装置225に表示された物体モデルOMの表示態様を変更するための操作を行ってもよい。一例として、ユーザは、入力装置224を用いて、出力装置225に表示された物体モデルOMを回転させるための操作を行ってもよい。他の一例として、ユーザは、入力装置224を用いて、出力装置225に表示された物体モデルOMの表示サイズを変更するための操作を行ってもよい。
 ステップS1からステップS2までの動作と並行して又は相前後して、制御情報生成部2211は、参照モデルRMを取得する(ステップS3)。例えば、参照モデルRM(具体的には、参照モデルRMを示すモデル情報)が記憶装置222等の記録媒体に予め記録されている場合には、制御情報生成部2211は、記録媒体から参照モデルRMを読み出すことで、参照モデルRMを取得してもよい。或いは、参照モデルRM(具体的には、参照モデルRMを示すモデル情報)が、通信ネットワークを介して計測システム2と通信可能な外部装置に記録されている場合には、制御情報生成部2211は、外部装置から参照モデルRMをダウンロードすることで参照モデルRMを取得してもよい。
 制御情報生成部2211は、加工システムSYSのユーザの指示に基づいて、参照モデルRMを取得してもよい。具体的には、ユーザは、入力装置224を用いて、複数の異なる参照モデルRMの中から一の参照モデルRMを選択するための指示を、制御情報生成装置22に入力してもよい。この場合、表示装置として機能可能な出力装置225は、複数の異なる参照モデルRMを表示してもよい。ユーザは、出力装置225が表示した複数の異なる参照モデルRMの中から一の参照モデルRMを選択してもよい。その後、制御情報生成部225は、ユーザが選択した一の参照モデルRMを取得してもよい。
 制御情報生成装置22は、ステップS3において取得された参照モデルRMを表示するように、表示装置として機能可能な出力装置225を制御してもよい。制御情報生成装置22は、参照モデルRMと物体モデルOMとの双方を表示するように、表示装置として機能可能な出力装置225を制御してもよい。加工システムSYSのユーザは、入力装置224を用いて、出力装置225に表示された参照モデルRMを操作してもよい。例えば、ユーザは、入力装置224を用いて、出力装置225に表示された参照モデルRMの表示態様を変更するための操作を行ってもよい。一例として、ユーザは、入力装置224を用いて、出力装置225に表示された参照モデルRMを回転させるための操作を行ってもよい。他の一例として、ユーザは、入力装置224を用いて、出力装置225に表示された参照モデルRMの表示サイズを変更するための操作を行ってもよい。
 その後、本実施形態では、制御情報生成部2211は、変形モデルTMを生成する(ステップS4)。変形モデルTMは、参照モデルRMと同様に、加工後のワークWの目標形状を示す三次元モデルである。尚、変形モデルTMがワークWの目標形状を示すがゆえに、変形モデルTMは、参照モデルRMと同様に、目標モデルと称されてもよい。
 変形モデルTMは、参照モデルRMとは以下の点で異なる。具体的には、変形モデルTMは、変形しているワークWの目標形状を示す三次元モデルであるという点で、変形していないワークWの目標形状を示す三次元モデルである参照モデルRMとは異なる。つまり、変形モデルTMは、ワークWの変形が反映された目標形状を示す三次元モデルであるという点で、ワークWの変形が反映されていない目標形状を示す三次元モデルである参照モデルRMとは異なる。
 変形モデルTMを生成するために、制御情報生成部2211は、ワークWの変形に合わせて参照モデルRMを変形してもよい。つまり、制御情報生成部2211は、参照モデルRMを変形することで、変形した参照モデルRMを、変形モデルTMとして生成してもよい。具体的には、上述したように、物体モデルOMには、ワークWの変形が反映されている。一方で、上述したように、参照モデルRMには、ワークWの変形が反映されていない。この場合、変形していない参照モデルRMと変形した参照モデルRM(つまり、変形モデルTM)とを模式的に示す図13に示すように、制御情報生成部2211は、ワークWの変形が反映された物体モデルOMに基づいて、ワークWの変形が反映されていない参照モデルRMを変形してもよい。つまり、制御情報生成部2211は、ワークWの変形が反映されていない参照モデルRMを、物体モデルOMが示すワークWの実際の形状(つまり、変形したワークWの形状)に合わせて変形してもよい。但し、制御情報生成部2211は、ワークWの変形に合わせて参照モデルRMを変形することができる限りは、物体モデルOMを用いることなく、参照モデルRMを変形してもよい。
 制御情報生成部2211は、変形していない参照モデルRMと変形した参照モデルRM(つまり、変形モデルTM)とを模式的に示す図14に示すように、物体モデルOMと変形モデルTMのうちの物体モデルOMに対応する対応モデル部分MPtとの差分が、物体モデルOMと参照モデルRMのうちの物体モデルOMに対応する対応モデル部分MPrとの差分よりも小さくなるように、参照モデルRMを変形してもよい。尚、物体モデルOMと参照モデルRMの対応モデル部分MPrとの差分は、ワークWの変形量と等価であるとみなしてもよい。
 図14に示すように、物体モデルOMと変形モデルTMの対応モデル部分MPtとの差分は、物体モデルOMの表面の第1部分S11の三次元形状と変形モデルTMの表面のうちの物体モデルOMの第1部分S11に対応する第2部分S12の三次元形状との差分を意味していてもよい。同様に、図14に示すように、物体モデルOMと参照モデルRMの対応モデル部分MPrとの差分は、物体モデルOMの表面の第1部分S11の三次元形状と参照モデルRMの表面のうちの物体モデルOMの第1部分S11に対応する第3部分S13の三次元形状との差分を意味していてもよい。
 一例として、上述したように物体モデルOMがメッシュモデルである場合には、物体モデルOMの表面には、メッシュの頂点が位置している。同様に、参照モデルRMがメッシュモデルである場合には、参照モデルRMの表面には、メッシュの頂点が位置している。同様に、変形モデルTMがメッシュモデルである場合には、変形モデルTMの表面には、メッシュの頂点が位置している。この場合、メッシュの頂点を用いて、物体モデルOMと変形モデルTMの対応モデル部分MPtとの差分が定義されてもよい。同様に、メッシュの頂点を用いて、物体モデルOMと参照モデルRMの対応モデル部分MPrとの差分が定義されてもよい。
 例えば、図15(a)は、メッシュモデルである物体モデルOMの第1のメッシュの頂点Pom#1が、メッシュモデルである参照モデルRMの第1のメッシュの頂点Prm#1に対応している例を示している。更に、図15(a)は、物体モデルOMの第2のメッシュの頂点Pom#2が、参照モデルRMの第2のメッシュの頂点Prm#2に対応している例を示している。つまり、図15(a)は、ワークWが変形していない場合には、物体モデルOMの頂点Pom#1と参照モデルRMの頂点Prm#1とが一致し、且つ、物体モデルOMの頂点Pom#2と参照モデルRMの頂点Prm#2とが一致する例を示している。この場合、頂点Pom#1と頂点Prm#1との差分は、ワークWの一の部分の変形量と等価であるとみなしてもよい。同様に、頂点Pom#2と頂点Prm#2との差分は、ワークWの他の部分の変形量と等価であるとみなしてもよい。
 一方で、図15(b)は、物体モデルOMの頂点Pom#1が、メッシュモデルである変形モデルTMの第1のメッシュの頂点Ptm#1に対応している例を示している。更に、図15(b)は、物体モデルOMの頂点Pom#2が、変形モデルTMの第2のメッシュの頂点Ptm#2に対応している例を示している。尚、変形済みの参照モデルRMが変形モデルTMとして用いられるがゆえに、変形モデルTMの頂点Ptm#1は、変形済みの参照モデルRMの頂点Prm#1と等価である。同様に、変形モデルTMの頂点Ptm#2は、変形済みの参照モデルRMの頂点Prm#2と等価である。
 この場合、制御情報生成部2211は、物体モデルOMの頂点Pom#1と参照モデルRMの頂点Prm#1との距離を、物体モデルOMと参照モデルRMの対応モデル部分MPrとの差分を示す指標値として用いてもよい。制御情報生成部2211は、物体モデルOMの頂点Pom#2と参照モデルRMの頂点Prm#2との距離を、物体モデルOMと参照モデルRMの対応モデル部分MPrとの差分を示す指標値として用いてもよい。同様に、制御情報生成部2211は、物体モデルOMの頂点Pom#1と変形モデルTMの頂点Ptm#1との距離を、物体モデルOMと変形モデルTMの対応モデル部分MPtとの差分を示す指標値として用いてもよい。制御情報生成部2211は、物体モデルOMの頂点Pom#2と変形モデルTMの頂点Ptm#2との距離を、物体モデルOMと変形モデルTMの対応モデル部分MPtとの差分を示す指標値として用いてもよい。
 この場合、図15(a)及び図15(b)に示すように、制御情報生成部2211は、頂点Pom#1と頂点Ptm#1との間の距離(図15(b)参照)が、頂点Pom#1と頂点Prm#1との間の距離(図15(a)参照)よりも短くなるように、参照モデルRMを変形してもよい。例えば、制御情報生成部2211は、X軸方向における頂点Pom#1と頂点Ptm#1との間の距離Dxt#1が、X軸方向における頂点Pom#1と頂点Prm#1との間の距離Dxr#1よりも短くなるように、参照モデルRMを変形してもよい。例えば、制御情報生成部2211は、Y軸方向における頂点Pom#1と頂点Ptm#1との間の距離Dyt#1が、Y軸方向における頂点Pom#1と頂点Prm#1との間の距離Dyr#1よりも短くなるように、参照モデルRMを変形してもよい。例えば、制御情報生成部2211は、Z軸方向における頂点Pom#1と頂点Ptm#1との間の距離Dzt#1が、Z軸方向における頂点Pom#1と頂点Prm#1との間の距離Dzr#1よりも短くなるように、参照モデルRMを変形してもよい。
 尚、制御情報生成部2211は、距離Dxt#1が距離Dxr#1よりも短くならない一方で、距離Dyt#1が距離Dyr#1よりも短くなる及び/又は距離Dzt#1が距離Dzr#1よりも短くなるように、参照モデルRMを変形してもよい。制御情報生成部2211は、距離Dyt#1が距離Dyr#1よりも短くならない一方で、距離Dxt#1が距離Dxr#1よりも短くなる及び/又は距離Dzt#1が距離Dzr#1よりも短くなるように、参照モデルRMを変形してもよい。制御情報生成部2211は、距離Dzt#1が距離Dzr#1よりも短くならない一方で、距離Dxt#1が距離Dxr#1よりも短くなる及び/又は距離Dyt#1が距離Dyr#1よりも短くなるように、参照モデルRMを変形してもよい。
 同様に、図15(a)及び図15(b)に示すように、制御情報生成部2211は、頂点Pom#2と頂点Ptm#2との間の距離(図15(b)参照)が、頂点Pom#2と頂点Prm#2との間の距離(図15(a)参照)よりも短くなるように、参照モデルRMを変形してもよい。例えば、制御情報生成部2211は、X軸方向における頂点Pom#2と頂点Ptm#2との間の距離Dxt#2が、X軸方向における頂点Pom#2と頂点Prm#2との間の距離Dxr#2よりも短くなるように、参照モデルRMを変形してもよい。例えば、制御情報生成部2211は、Y軸方向における頂点Pom#2と頂点Ptm#2との間の距離Dyt#2が、Y軸方向における頂点Pom#2と頂点Prm#2との間の距離Dyr#2よりも短くなるように、参照モデルRMを変形してもよい。例えば、制御情報生成部2211は、Z軸方向における頂点Pom#2と頂点Ptm#2との間の距離Dzt#2が、Z軸方向における頂点Pom#2と頂点Prm#2との間の距離Dzr#2よりも短くなるように、参照モデルRMを変形してもよい。
 尚、制御情報生成部2211は、距離Dxt#2が距離Dxr#2よりも短くならない一方で、距離Dyt#2が距離Dyr#2よりも短くなる及び/又は距離Dzt#2が距離Dzr#2よりも短くなるように、参照モデルRMを変形してもよい。制御情報生成部2211は、距離Dyt#2が距離Dyr#2よりも短くならない一方で、距離Dxt#2が距離Dxr#2よりも短くなる及び/又は距離Dzt#2が距離Dzr#2よりも短くなるように、参照モデルRMを変形してもよい。制御情報生成部2211は、距離Dzt#2が距離Dzr#2よりも短くならない一方で、距離Dxt#2が距離Dxr#2よりも短くなる及び/又は距離Dyt#2が距離Dyr#2よりも短くなるように、参照モデルRMを変形してもよい。
 制御情報生成部2211は、物体モデルOMと変形モデルTMの対応モデル部分MPtとが一致するように、参照モデルRMを変形してもよい。例えば、制御情報生成部2211は、物体モデルOMの頂点Pom#1と変形モデルTMの頂点Ptm#1とが一致するように、参照モデルRMを変形してもよい。制御情報生成部2211は、頂点Pom#1と頂点Ptm#1との間の距離がゼロになるように、参照モデルRMを変形してもよい。例えば、制御情報生成部2211は、距離Dxt#1、Dyt#1、Dzt#1、Dxt#2、Dyt#2及びDzt#2のうちの少なくとも一つがゼロになるように、参照モデルRMを変形してもよい。
 尚、図15(a)において、物体モデルOMの頂点Pom#1と参照モデルRMの頂点Prm#1との距離は、物体モデルOMの頂点Pom#2と参照モデルRMの頂点Prm#2との距離と異なっていてもよい。つまり、ワークWの一の部分における変形量は、ワークWの他の部分における変形量と異なっていてもよい。一例として、ワークWがタービンブレードである場合には、タービンブレードの一の部分の変形量は、当該一の部分がタービンブレードの先端に近づくほど大きくなるのが一般的である。つまり、タービンブレードの一の部分の変形量は、当該一の部分がタービンブレードの根本に近づくほど小さくなるのが一般的である。尚、タービンブレードの根本は、タービンブレードのシャンク(つまり、回転可能なロータに取り付けられる部材)を意味していてもよい。タービンブレードの先端は、シャンクから延びるブレード本体の先端を意味していてもよい。この場合、頂点Pom#1、Prm#1及びPtm#1が、頂点Pom#2、Prm#2及びPtm#2よりもタービンブレードの先端に近い場合には、頂点Pom#1と頂点Prm#1との間の距離は、頂点Pom#2と頂点Prm#2との間の距離よりも大きくてもよい。
 変形モデルTMが生成された場合には、ファイル(例えば、CADデータを示すCADファイル、以下この段落において同じ)の中に、アッセンブリ情報としての変形モデルTMと、アッセンブリ情報としての物体モデルOMとが含まれていてもよい。ファイルの中に、アッセンブリ情報としての変形モデルTMと、アッセンブリ情報としての物体モデルOMとに加えて、アッセンブリ情報としての参照モデルRMが含まれていてもよい。ファイルの中に、アッセンブリ情報としての変形モデルTMと、アッセンブリ情報としての物体モデルOMと、アッセンブリ情報としての参照モデルRMとに加えて、アッセンブリ情報としての差分モデルDMが含まれていてもよい。
 或いは、物体モデルOM、参照モデルRM、変形モデルTM及び差分モデルDMの少なくとも一つは、アッセンブリ情報の情報形式とは異なる情報形式でファイル(例えば、CADデータを示すCADファイル、以下この段落において同じ)に含まれていてもよい。或いは、物体モデルOMを含むファイルと、参照モデルRMを含むファイルと、変形モデルTMを含むファイルと、差分モデルDMを含むファイルとの少なくとも一つが記憶装置222等に記憶されていてもよい。つまり、物体モデルOM、参照モデルRM、変形モデルTM及び差分モデルDMが、別々のファイルに含まれていてもよい。この場合、物体モデルOMを含むファイルと、参照モデルRMを含むファイルと、変形モデルTMを含むファイルと、差分モデルDMを含むファイルとのうちの少なくとも二つが互いに関連付けられていることを示す情報を含む管理ファイルが、記憶装置222等に記憶されていてもよい。
 再び図12において、変形モデルTMが生成された後、制御情報生成部2211は、差分モデルDMを生成する(ステップS5)。本実施形態では、制御情報生成部2211は、ステップS2において生成(取得)された物体モデルOMと、ステップS4において生成された変形モデルTMとに基づいて、差分モデルDMを生成する。具体的には、制御情報生成部2211は、変形モデルTMと物体モデルOMとの差分に相当する三次元モデルを、差分モデルDMとして生成してもよい。差分モデルDMは、典型的には、変形モデルTMの一部に相当する三次元モデルである。尚、図16(a)は、ワークの使用に伴ってワークWが変形した場合の参照モデルRMを模式的に示し、図16(b)は、ワークの使用に伴ってワークWが変形した場合の物体モデルOMを模式的に示し、図16(c)は、図16(a)に示す参照モデルRMと図16(b)に示す物体モデルOMとに基づいて生成される差分モデルDMを模式的に示す。
 その結果、図16(c)に示すように、変形モデルTMと物体モデルOMとの差分に相当する差分モデルDMは、参照モデルRMと物体モデルOMとの差分に相当する差分モデルDMが示す三次元形状(図11(c)参照)と比較して、加工装置1が造形するべき三次元構造物STの三次元形状に近くなる。例えば、変形モデルTMと物体モデルOMとの差分に相当する差分モデルDM(図16(c)参照)は、参照モデルRMと物体モデルOMとの差分に相当する差分モデルDMが示す三次元形状(図11(c)参照)と比較して、ワークWの欠損部分の三次元形状に近くなる。典型的には、変形モデルTMと物体モデルOMとの差分に相当する差分モデルDM(図16(c)参照)は、加工装置1が付加加工を行うことで造形するべき三次元構造物STの三次元形状と同じ三次元形状を示す。例えば、変形モデルTMと物体モデルOMとの差分に相当する差分モデルDM(図16(c)参照)は、ワークWの欠損部分の三次元形状と同じ三次元形状を示す。
 このように、本実施形態では、差分モデルDMの精度が向上する。つまり、差分モデルDMは、ワークWの三次元形状が目標形状となるように加工装置1が造形するべき三次元構造物STの三次元形状を適切に示す。具体的には、差分モデルDMは、変形しているワークWの三次元形状が、ワークWの変形に合わせて適切に修正された目標形状となるように、加工装置1が造形するべき三次元構造物STの三次元形状を適切に示す。つまり、差分モデルDMは、ワークWの三次元形状が目標形状となるために必要な加工部分の三次元形状を適切に示す。
 制御情報生成装置22は、ステップS5において生成された変形モデルTMを表示するように、表示装置として機能可能な出力装置225を制御してもよい。制御情報生成装置22は、参照モデルRMと物体モデルOMと変形モデルTMとの少なくとも二つを表示するように、表示装置として機能可能な出力装置225を制御してもよい。加工システムSYSのユーザは、入力装置224を用いて、出力装置225に表示された変形モデルTMを操作してもよい。例えば、ユーザは、入力装置224を用いて、出力装置225に表示された変形モデルTMの表示態様を変更するための操作を行ってもよい。一例として、ユーザは、入力装置224を用いて、出力装置225に表示された変形モデルTMを回転させるための操作を行ってもよい。他の一例として、ユーザは、入力装置224を用いて、出力装置225に表示された変形モデルTMの表示サイズを変更するための操作を行ってもよい。
 その後、制御情報生成部2211は、ステップS5において生成された差分モデルDMに基づいて、加工制御情報を生成する(ステップS6)。例えば、制御情報生成部2211は、差分モデルDMを、構造層SLの厚さに相当する積層ピッチで複数の層状モデルに分割するスライス処理を行うことで、三次元構造物STを構成する複数の構造層SLにそれぞれ対応する複数のスライスデータを生成してもよい。その後、制御情報生成部2211は、複数のスライスデータに基づいて、複数の構造層SLを造形するためにそれぞれ用いられる複数の加工制御情報を生成してもよい。
 その結果、加工装置1は、所望形状を有する三次元構造物STを造形することができる。例えば、加工装置1は、欠損部分を適切に補填可能な三次元構造物STを造形することができる。このように、ワークWの使用に伴ってワークWが変形している場合であっても、計測システム2(特に、制御情報生成装置22)は、所望形状を有する三次元構造物STを造形するように加工装置1を制御するための加工制御情報を生成することができる。
 三次元構造物STを造形する動作は、物体モデルOMが三次元形状を示すワークW上に、差分モデルDMが三次元形状を示す三次元構造物STを造形する動作と等価であるとみなしてもよい。この場合、加工装置1の制御装置17は、物体モデルOMが三次元形状を示すワークW上に、差分モデルDMが三次元形状を示す三次元構造物STを造形するように、加工装置1を制御してもよい。
 制御情報生成装置22に加えて又は代えて、制御装置17が、図12に示す制御情報生成動作を行ってもよい。つまり、制御装置17は、物体モデルOMに基づいて参照モデルRMを変形することで、変形モデルTMを生成し、変形モデルTMと物体モデルOMとに基づいて、差分モデルDMを生成してもよい。或いは、制御装置17(或いは、制御情報生成装置22)は、変形していないワークW上に形成するべき三次元構造物STの三次元構造を示す三次元モデルを、変形したワークWの三次元形状を示す物体モデルOMに基づいて変形することで、変形した三次元モデルを差分モデルDMとして生成してもよい。物体モデルOMに基づいて三次元構造物STの三次元モデルを変形する動作は、物体モデルOMに基づいて参照モデルRMを変形する動作と同様であってもよい。つまり、制御装置17(或いは、制御情報生成装置22)は、三次元構造物STの三次元モデルと物体モデルOMとの位置合わせを行い、三次元構造物STの三次元モデルの各頂点を制御頂点、従属頂点及び固定頂点のいずれかに指定し、制御頂点及び従属頂点を移動させることで、三次元構造物STの三次元モデルを変形してもよい。
 制御装置17(或いは、制御情報生成装置22、以下、この段落において同じ)は、変形していないワークW上に形成するべき三次元構造物STの三次元モデルとして、当該三次元モデルを構造層SLの厚みに相当する積層ピッチで分割するためのスライス処理を三次元モデルに施すことで得られるスライスデータを用いてもよい。或いは、制御装置17は、上述したように三次元構造物STの三次元モデルを物体モデルOMに基づいて変形することで得られる三次元モデルに対してスライス処理を施すことで得られるスライスデータを用いてもよい。スライスデータは、Gコードを示すデータ(ファイル)を含んでいてもよい。この場合、制御装置17は、スライスデータと、物体モデルOM、参照モデルRM及び変形モデルTMの少なくとも一つとに基づいて、差分モデルDMを生成してもよい。制御装置17は、スライスデータと、物体モデルOM、参照モデルRM及び変形モデルTMの少なくとも一つとに基づいて、加工制御情報を生成してもよい。制御装置17は、スライスデータと、物体モデルOM、参照モデルRM及び変形モデルTMの少なくとも一つとに基づいて、ワークW上に三次元構造物STを造形するように、加工装置1を制御してもよい。スライスデータがGコードを示すデータ(ファイル)を含んでいる場合には、制御装置17は、ワークW上に三次元構造物STを造形するように、Gコードを編集してもよい。例えば、制御装置17は、ワークW上に三次元構造物STを造形するように、Gコードのデータを位置合わせしてもよい。
 (2-2-4)参照モデルRMを変形することで変形モデルTMを生成する動作
 続いて、図17を参照しながら、図12のステップS4において参照モデルRMを変形することで変形モデルTMを生成する動作について説明する。図17は、図12のステップS4において参照モデルRMを変形することで変形モデルTMを生成する動作の流れを示すフローチャートである。
 以下の説明では、参照モデルRMを変形することで変形モデルTMを生成する動作の一具体例として、ラプラシアン座標表現(Laplacian Coordinates Representation)を用いて参照モデルRMを変形することで変形モデルTMを生成する動作について説明する。このため、図17は、ラプラシアン座標表現を用いて参照モデルRMを変形することで変形モデルTMを生成する動作の流れを示している。この場合、参照モデルRMを変形することを、ラプラシアン変形と称してもよい。しかしながら、制御情報生成装置22は、図17に示す動作とは異なる動作を行うことで、参照モデルRMを変形して変形モデルTMを生成してもよい。
 図17に示すように、制御情報生成部2211は、参照モデルRMと物体モデルOMとの位置合わせを行う(ステップS41)。参照モデルRMと物体モデルOMとの位置合わせの一例が図18に示されている。図18に示すように、制御情報生成部2211は、参照モデルRMの基準部位Brmと物体モデルOMの基準部位Bomとが一致するように、参照モデルRMと物体モデルOMとの位置合わせを行ってもよい。つまり、制御情報生成部2211は、参照モデルRMの基準部位Brmと物体モデルOMの基準部位Bomとが同じ位置に位置するように、参照モデルRMと物体モデルOMとの位置合わせを行ってもよい。参照モデルRMの基準部位Brmは、参照モデルRMのうちのワークWの基準部位Bwを示すモデル部分であってもよい。物体モデルOMの基準部位Bomは、物体モデルOMのうちのワークWの同じ基準部位Bwを示すモデル部分であってもよい。つまり、物体モデルOMの基準部位Bomは、物体モデルOMのうちの参照モデルRMの基準部位Brmに対応するモデル部分であってもよい。
 尚、参照モデルRMがメッシュモデルである(つまり、参照モデルRMの表面を形成する複数のメッシュを含む)がゆえに、参照モデルRMの表面の基準部位Brmが、参照モデルRMの基準部位Brmとして用いられてもよい。同様に、物体モデルOMがメッシュモデルである(つまり、物体モデルOMの表面を形成する複数のメッシュを含む)がゆえに、物体モデルOMの表面の基準部位Bomが、物体モデルOMの基準部位Bomとして用いられてもよい。
 ワークの基準部位Bwは、ワークWの使用に起因した変形量が許容量以下になる部位を含んでいてもよい。ワークの基準部位Bwは、ワークWの使用に起因して変形しない部位を含んでいてもよい。ワークの基準部位Bwは、ワークWをステージ131に載置するために用いる治具が取り付けられる部位であってもよい。ワークの基準部位Bwは、予め決められた部位であってもよい。
 参照モデルRMと物体モデルOMとの位置合わせを行うために、制御情報生成部2211は、既存の位置合わせ方法を用いてもよい。既存の位置合わせ方法の一例として、RANSAC(Random Sample Consensus)を用いた位置合わせ方法があげられる。既存の位置合わせ方法の他の一例として、SIFT(Scale-Invariant Feature Transform)を用いた位置合わせ方法があげられる。既存の位置合わせ方法の他の一例として、ICP(Iterative Closest Point)を用いた位置合わせ方法があげられる。既存の位置合わせ方法の他の一例として、DSO(Direct Sparse Odometry)を用いた位置合わせ方法があげられる。
 制御情報生成部2211は、加工システムSYSのユーザの指示に基づいて、参照モデルRMと物体モデルOMとの位置合わせを行ってもよい。具体的には、ユーザは、入力装置224を用いて、参照モデルRMと物体モデルOMとの位置合わせを行うための指示を、制御情報生成装置22に入力してもよい。この場合、表示装置として機能可能な出力装置225は、参照モデルRMと物体モデルOMとを表示してもよい。ユーザは、入力装置224を用いて、出力装置225が表示した参照モデルRM及び物体モデルOMの少なくとも一方を移動させることで、参照モデルRMと物体モデルOMとの位置合わせを行ってもよい。
 再び図17において、ステップS41の動作と並行して又は相前後して、制御情報生成部2211は、メッシュモデルである参照モデルRMの各メッシュの各頂点を、固定頂点、制御頂点及び従属頂点のいずれかに指定する(ステップS42)。
 例えば、制御情報生成部2211は、加工システムSYSのユーザの指示に基づいて、参照モデルRMの各頂点を、固定頂点、制御頂点及び従属頂点のいずれかに指定してもよい。具体的には、ユーザは、入力装置224を用いて、参照モデルRMの各頂点を、固定頂点、制御頂点及び従属頂点のいずれかに指定するための指示を、制御情報生成装置22に入力してもよい。この場合、表示装置として機能可能な出力装置225は、参照モデルRMを表示してもよい。ユーザは、入力装置224を用いて、出力装置225が表示した参照モデルRM上で、参照モデルRMの各頂点を、固定頂点、制御頂点及び従属頂点のいずれかに指定してもよい。この場合、後述するように、制御頂点及び従属頂点を移動させることで参照モデルRMが変形されることを考慮すれば、ユーザは、参照モデルRMの変形箇所を指定しているとみなしてもよい。
 或いは、例えば、制御情報生成部2211は、ユーザの指示を用いることなく、所定の頂点指定条件に従って、参照モデルRMの各頂点を、固定頂点、制御頂点及び従属頂点のいずれかに自動的に指定してもよい。
 固定頂点は、変形モデルTMを生成するために参照モデルRMを変形させる際に移動しない頂点に相当する。尚、固定頂点は、例えば非ROI(Non Region of Interest)として用いられる頂点であってもよい。
 各頂点が固定頂点、制御頂点及び従属頂点のいずれか一つに指定された参照モデルRMの一例を示す図19に示すように、本実施形態では、制御情報生成部2211が、参照モデルRMの基準部位Brmに含まれる頂点を、固定頂点に指定する例について説明する。この場合、図19に示すように、参照モデルRMの基準部位Brmは、参照モデルRMのうち変形すべきでない固定モデル部分MPA#1であるとみなしてもよい。
 制御頂点は、変形モデルTMを生成するために参照モデルRMを変形させる際に移動する頂点に相当する。特に、制御頂点は、制御頂点を移動させるべき目標移動位置が設定される頂点である。このため、制御頂点は、変形モデルTMを生成するために参照モデルRMを変形させる際に、設定された目標移動位置まで移動する。尚、目標移動位置が設定される場合には、制御頂点の移動量及び移動方向が実質的に設定される。このため、制御頂点は、移動量及び移動方向が設定される頂点であるとみなしてもよい。
 図19に示すように、本実施形態では、制御情報生成部2211が、参照モデルRMのうちの物体モデルOMに対応する対応モデル部分MPrの少なくとも一部に含まれる頂点を、制御頂点に指定する例について説明する。この場合、図19に示すように、参照モデルRMの対応モデル部分MPrの少なくとも一部は、参照モデルRMのうち制御頂点を移動させることで変形すべき制御モデル部分MPA#2であるとみなしてもよい。
 従属頂点は、制御頂点と同様に、変形モデルTMを生成するために参照モデルRMを変形させる際に移動する頂点に相当する。従属頂点は、制御頂点と比較して、従属頂点を移動させる目標移動位置が設定されない頂点である。従属頂点は、移動量及び移動方向が設定されない頂点であるとみなしてもよい。この場合、従属頂点は、制御頂点の移動に合わせて移動する。つまり、従属頂点は、制御頂点の移動に起因して参照モデルRMが変形した結果として受動的に移動する。この場合、従属頂点は、制御頂点の移動に基づいて定まる移動量だけ移動する頂点であるとみなしてもよい。従属頂点は、制御頂点の移動に基づいて定まる移動方向に移動する頂点であるとみなしてもよい。尚、従属頂点は、例えばROI(Region of Interest)として用いられる頂点であってもよい。
 図19に示すように、本実施形態では、制御情報生成部2211が、参照モデルRMのうちの固定モデル部分MPA#1及び制御モデル部分MPA#2とは異なる従属モデル部分MPA#3に含まれる頂点を、従属頂点に指定する例について説明する。
 尚、制御情報生成部2211は、参照モデルRMに含まれる複数の頂点の全てを、一つずつ、固定頂点、制御頂点及び従属頂点のいずれかに指定してもよい。或いは、制御情報生成部2211は、参照モデルRMに含まれる複数の頂点のうちの二つ以上の頂点をまとめて、固定頂点、制御頂点及び従属頂点のいずれかに指定してもよい。例えば、制御情報生成部2211は、参照モデルRMのうちの一部に相当するモデル部分を指定し、指定したモデル部分に含まれる二つ以上の頂点をまとめて、固定頂点、制御頂点及び従属頂点のいずれかに指定してもよい。その結果、複数の頂点の全てを一つずつ固定頂点、制御頂点及び従属頂点のいずれかに指定する場合と比較して、複数の頂点のそれぞれを固定頂点、制御頂点及び従属頂点のいずれかに指定するために必要な処理負荷が小さくなる。
 再び図17において、その後、制御情報生成部2211は、制御頂点の目標移動位置を設定する(ステップS43)。つまり、制御情報生成部2211は、ステップS42において制御頂点として指定された参照モデルRMの頂点の目標移動位置を設定する(ステップS43)。例えば、制御情報生成部2211は、制御頂点が目標移動位置に移動することで制御モデル部分MPA#2(図19参照)と物体モデルOMとの差分が小さくなるように、制御頂点の目標移動位置を設定してもよい。つまり、制御情報生成部2211は、制御頂点が目標移動位置に移動することで、参照モデルRMの表面の一部である制御モデル部分MPA#2の三次元形状と、物体モデルOMの表面のうちの制御モデル部分MPA#2に対応するモデル部分の三次元形状との差分が小さくなるように、制御頂点の目標移動位置を設定してもよい。
 制御情報生成部2211は、制御モデル部分MPA#2と物体モデルOMとの差分が小さくなるように制御頂点の目標移動位置を設定するために、物体モデルOMの表面のうちの制御モデル部分MPA#2に対応するモデル部分上に、目標移動位置を設定してもよい。この場合、制御情報生成部2211は、物体モデルOMから、物体モデルOMの表面のうちの制御モデル部分MPA#2に対応するモデル部分を抽出し、抽出したモデル部分上に目標移動位置を設定してもよい。
 制御情報生成部2211は、加工システムSYSのユーザの指示に基づいて、制御頂点の目標移動位置を設定してもよい。具体的には、ユーザは、入力装置224を用いて、目標位置を設定するための指示を、制御情報生成装置22に入力してもよい。この場合、表示装置として機能可能な出力装置225は、参照モデルRMを表示してもよい。ユーザは、入力装置224を用いて、出力装置225が表示した参照モデルRMに対して目標移動位置を設定してもよい。この場合、ユーザは、参照モデルRMの変形量を指定しているとみなしてもよい。
 制御情報生成部2211は、ステップS43において設定された目標移動位置に基づいて、変形モデルTMを生成可能であるか否かを判定してもよい。例えば、制御頂点が目標移動位置に移動することを考慮すれば、目標移動位置を設定する動作は、制御頂点の移動量を設定する動作と等価であると言える。ここで、ワークWの変形量が大きければ大きくなるほど、制御頂点の移動量が大きくなるはずである。この場合、ワークWの変形量が許容変形量以上である場合には、ワークW上に三次元構造物STを造形することでワークWが補修されたとしても、補修後のワークWの三次元形状は、本来期待される三次元形状とは大きく異なる可能性がある。つまり、ワークWが適切に補修されているとは言い難い可能性がある。そこで、制御情報生成部2211は、目標移動位置に基づいて、少なくとも一つの制御頂点の移動量が許容移動量以上であるか否かを判定することで、変形モデルTMを生成可能であるか否かを判定してもよい。例えば、制御情報生成部2211は、少なくとも一つの制御頂点の移動量が許容移動量以上であると判定された場合には、変形モデルTMを生成可能でないと判定してもよい。
 変形モデルTMが生成可能でないと判定された場合には、制御情報生成装置22は、出力装置225を用いて、変形モデルTMが生成可能でない旨を加工システムSYSのユーザに報知するための報知情報を出力してもよい。例えば、制御情報生成装置22は、表示装置として機能可能な出力装置225を用いて、変形モデルTMが生成可能でない旨をユーザに報知するための報知画像を表示してもよい。
 変形モデルTMが生成可能でないと判定された場合には、制御情報生成装置22は、変形モデルTMが生成可能でない旨をユーザに報知するための報知情報を出力することに加えて又は代えて、加工制御情報を生成しないように制御情報生成部2211を制御してもよい。制御情報生成装置22は、報知情報を出力することに加えて又は代えて、加工制御情報を加工装置1に送信しないように通信装置223を制御してもよい。
 その後、制御情報生成部2211は、参照モデルRMを変形して変形モデルTMを生成する(ステップS44からステップS45)。
 具体的には、制御情報生成部2211は、参照モデルRMと物体モデルOMとが位置合わせされた状態において、制御頂点を目標移動位置に移動させる(ステップS44)。つまり、制御情報生成部2211は、ステップS42において制御頂点として指定された参照モデルRMの頂点を、ステップS43において設定された目標移動位置に移動させる(ステップS44)。
 その結果、変形していない参照モデルRMと変形した参照モデルRMとを模式的に示す図20に示すように、制御頂点の移動に合わせて、参照モデルRMの制御モデル部分MPA#2が変形する。つまり、参照モデルRMの制御モデル部分MPA#2の三次元形状が変わる。具体的には、参照モデルRMの制御モデル部分MPA#2が、物体モデルOMのうちの制御モデル部分MPA#2に対応するモデル部分の位置に移動するように、参照モデルRMの制御モデル部分MPA#2が変形する。このため、制御頂点を移動させる動作は、参照モデルRMの制御モデル部分MPA#2を変形させる動作と等価であるとみなしてもよい。制御頂点を目標移動位置に移動させる動作は、参照モデルRMの制御モデル部分MPA#2が、物体モデルOMのうちの制御モデル部分MPA#2に対応するモデル部分の位置に移動するように参照モデルRMの制御モデル部分MPA#2を変形させる動作と等価であるとみなしてもよい。
 更に、制御情報生成部2211は、制御頂点の移動に合わせて従属頂点を移動させる(ステップS45)。つまり、制御情報生成部2211は、ステップS42において従属頂点として指定された参照モデルRMの頂点を、ステップS44における制御頂点の移動に合わせて移動させる(ステップS45)。例えば、制御情報生成部2211は、メッシュ変形(Mesh Deformation)を行うことで、制御頂点の移動に合わせて従属頂点を移動させてもよい。
 その結果、変形していない参照モデルRMと変形した参照モデルRMとを模式的に示す図20に示すように、従属頂点の移動に合わせて、参照モデルRMの従属モデル部分MPA#3が変形する。つまり、参照モデルRMの従属モデル部分MPA#3の三次元形状が変わる。この場合、参照モデルRMの従属モデル部分MPA#3は、参照モデルRMの制御モデル部分MPA#2の変形に合わせて変形していると言える。
 尚、制御情報生成部2211は、加工システムSYSのユーザの指示に基づいて、制御頂点移動させてもよい。具体的には、ユーザは、入力装置224を用いて、制御頂点を移動させるための指示を、制御情報生成装置22に入力してもよい。この場合、表示装置として機能可能な出力装置225は、参照モデルRMを表示してもよい。特に、表示装置として機能可能な出力装置225は、参照モデルRMの制御頂点を表示してもよい。ユーザは、入力装置224を用いて、出力装置225が表示した制御頂点を移動させてもよい。この場合、ユーザは、参照モデルRMの変形量を指定しているとみなしてもよい。
 制御情報生成部2211は、加工システムSYSのユーザの指示に基づいて、従属頂点移動させてもよい。具体的には、ユーザは、入力装置224を用いて、従属頂点を移動させるための指示を、従属情報生成装置22に入力してもよい。この場合、表示装置として機能可能な出力装置225は、参照モデルRMを表示してもよい。特に、表示装置として機能可能な出力装置225は、参照モデルRMの従属頂点を表示してもよい。ユーザは、入力装置224を用いて、出力装置225が表示した従属頂点を移動させてもよい。この場合、ユーザは、参照モデルRMの変形量を指定しているとみなしてもよい。
 一方で、図20に示すように、制御情報生成部2211は、固定頂点を移動させない。つまり、制御頂点及び従属頂点が移動している場合であっても、固定頂点の位置は固定される。
 その結果、図20に示すように、変形した参照モデルRMが変形モデルTMとして生成される。この場合、図16及び図20から分かるように、変形モデルTMから生成される差分モデルDMは、典型的には、変形した従属モデル部分MPA#3の少なくとも一部を含んでいてもよい。
 アッセンブリ情報としての参照モデルRMとが含まれるファイルが生成される場合には、当該ファイルの中に、参照モデルRMの変形に関する変形情報が含まれていてもよい。参照モデルRMの変形に関する情報は、制御頂点、従属頂点及び固定頂点の少なくとも一つに関する情報を含んでいてもよい。制御頂点に関する情報は、制御頂点の位置に関する情報を含んでいてもよい。制御頂点に関する情報は、制御頂点の移動に関する情報を含んでいてもよい。制御頂点の移動に関する情報は、制御頂点の移動量及び移動方向の少なくとも一つに関する情報を含んでいてもよい。従属頂点に関する情報は、従属頂点の位置に関する情報を含んでいてもよい。従属頂点に関する情報は、従属頂点の移動に関する情報を含んでいてもよい。従属頂点の移動に関する情報は、従属頂点の移動量及び移動方向の少なくとも一つに関する情報を含んでいてもよい。固定頂点に関する情報は、固定頂点の位置に関する情報を含んでいてもよい。この場合、制御情報生成部2211は、ファイルに含まれている変形情報を用いて参照モデルRMを変形することで、変形モデルTMを生成してもよい。その結果、制御情報生成部2211は、過去に生成したことがある変形モデルTMと同じ変形モデルTMを容易に再生成することができる。
 但し、参照モデルRMと、変形情報とは、別々のファイルに含まれていてもよい。この場合、参照モデルRMを含むファイルと、変形情報を含むファイルとが互いに関連付けられていることを示す情報を含む管理ファイルが、記憶装置222等に記憶されていてもよい。
 制御情報生成装置22は、第1のワークWを加工するための加工制御情報を生成するために生成された変形情報を用いて、第1のワークWとは異なる第2のワークWを加工するための加工制御情報を生成してもよい。例えば、制御情報生成装置22は、第1のワークWの参照モデルRMの変形に関する変形情報を用いて、第2のワークWの参照モデルRMを変形させてもよい。この場合、制御情報生成装置22は、第2のワークWの参照モデルRMの制御頂点の目標移動位置を設定しなくてもよい。その結果、制御情報生成装置22の処理負荷が低減可能となる。この動作は、特に、特に、第1のワークWの変形量と第2のワークWの変形量とが似ている場合に有効である。
 (3)技術的効果
 以上説明したように、本実施形態の加工システムSYSでは、ワークWの目標形状を示す三次元モデルとして、ワークWの変形が反映されていない参照モデルRMに代えて、ワークWの変形が反映された変形モデルTMが用いられる。このため、変形モデルTMに基づいて生成された差分モデルDMが示す三次元形状(図15(b)参照)は、参照モデルRMに基づいて生成された差分モデルDMが示す三次元形状(図11(c)参照)と比較して、加工装置1が造形するべき三次元構造物STの三次元形状に近くなる。このため、ワークWの使用に伴ってワークWが変形している場合であっても、計測システム2(特に、制御情報生成装置22)は、所望形状を有する三次元構造物STを造形するように加工装置1を制御するための加工制御情報を生成することができる。つまり、制御情報生成装置22は、ワークWの変形の影響が低減又は相殺された加工制御情報を生成することができる。その結果、加工装置1は、所望形状を有する三次元構造物STを造形することができる。
 ここで、ワークWが変形している状況下において、ワークWの一の部分における変形量が、ワークWの他の部分における変形量と異なっていてもよいことは、上述したとおりである。一例として、ワークWがタービンブレードである場合には、タービンブレードの一の部分の変形量は、当該一の部分がタービンブレードの先端に近づくほど大きくなるのが一般的であることは、上述したとおりである。この場合、制御情報生成装置22は、相対的に小さいタービンブレードの根本の変形のみならず、相対的に大きいタービンブレードの先端の変形の影響が低減又は相殺された加工制御情報を生成することができる。ここで、タービンブレードの先端が摩耗によって欠損するがゆえに、加工装置1は、タービンブレードの先端に造形物を造形する。このため、制御情報生成装置22は、タービンブレードのうちの加工装置1が造形物を造形するべき部分の変形の影響が適切に低減又は相殺された加工制御情報を生成することができる。その結果、加工装置1は、タービンブレードの欠損部分を適切に補填可能な所望形状を有する三次元構造物STを適切に造形することができる。
 また、本実施形態の加工システムSYSは、参照モデルRMを変形することで変形モデルTMを生成することができる。特に、加工システムSYSは、参照モデルRMの制御頂点及び従属頂点を移動させることで、変形モデルTMを生成することができる。制御頂点及び従属頂点が参照モデルRMの表面(特に、側面を含む表面)に位置することから、加工システムSYSは、ワークWの側面の変形が反映された物体モデルOMに基づいて、ワークWの側面に相当する側面を有する参照モデルRMを変形させることができる。このため、加工システムSYSは、参照モデルRMの側面を、ワークWの側面の変形に合わせて適切に変形させる(例えば、曲げる)ことができる。その結果、加工システムSYSは、ワークWの側面の変形が適切に反映された変形モデルTM(更には、差分モデルDM)を適切に生成することができる。
 (4)変形例
 上述した説明では、計測システム2(特に、制御情報生成装置22)は、変形モデルTMを生成するために、物体モデルOMに基づいて参照モデルRMを変形している。しかしながら、図21に示すように、制御情報生成装置22)は、変形モデルTMを生成するために、参照モデルRMに基づいて物体モデルOMを変形してもよい。尚、参照モデルRMに基づいて物体モデルOMを変形する動作は、物体モデルOMに基づいて参照モデルRMを変形する動作と同様であってもよい。つまり、制御情報生成装置22は、参照モデルRMと物体モデルOMとの位置合わせを行い、物体モデルOMの各頂点を制御頂点、従属頂点及び固定頂点のいずれかに指定し、制御頂点及び従属頂点を移動させることで、物体モデルOMを変形してもよい。その後、図22に示すように、制御情報生成装置22は、参照モデルRMと変形した物体モデルOMとの差分に相当する三次元モデルを、差分モデルDMとして生成してもよい。その後、図22に示すように、ワークWの変形が反映された物体モデルOM(つまり、変形前の物体モデルOM)に基づいて差分モデルDMを変形することで、ワークWの変形が反映された差分モデルDMを生成してもよい。尚、物体モデルOMに基づいて差分モデルDMを変形する動作は、物体モデルOMに基づいて参照モデルRMを変形する動作と同様であってもよい。つまり、制御情報生成装置22は、差分モデルDMと物体モデルOMとの位置合わせを行い、差分モデルDMの各頂点を制御頂点、従属頂点及び固定頂点のいずれかに指定し、制御頂点及び従属頂点を移動させることで、差分モデルDMを変形してもよい。
 上述した説明では、計測システム2(特に、制御情報生成装置22)は、物体モデルOM及び参照モデルRMに基づいて変形モデルTMを生成し、変形モデルTMに基づいて差分モデルDMを生成している。しかしながら、制御情報生成装置22は、変形モデルTMを生成することなく、差分モデルDMを生成してもよい。
 一例として、制御情報生成装置22は、物体モデルOM及び参照モデルRMに基づいて、ワークWの変形に合わせた三次元構造物STの変形量を予測し、予測した変形量が反映された三次元構造物STの三次元形状を示す三次元モデルを差分モデルDMとして生成してもよい。この場合、制御情報生成装置22は、機械学習によって構築可能な演算モデルを用いて、三次元構造物STの変形量を予測してもよい。演算モデルは、物体モデルOM及び参照モデルRMが入力された場合に、ワークWの変形に合わせた三次元構造物STの変形量を出力するモデルであってもよい。機械学習によって構築可能な演算モデルの一例として、例えば、ニューラルネットワークを含む演算モデル(いわゆる、人工知能(AI:Artificial Intelligence))があげられる。演算モデルの機械学習は、ディープラーニングを含んでいてもよい。
 他の一例として、図23に示すように、制御情報生成装置22は、参照モデルRMを、物体モデルOMに基づいて設定されるカット面に沿って切り出すことで、差分モデルDMを生成してもよい。カット面は、物体モデルOMの先端を規定する面であってもよい。カット面は、物体モデルOMの基準部位Brmから最も離れた物体モデルOMの先端を規定する面であってもよい。その後、図23に示すように、ワークWの変形が反映された物体モデルOM(つまり、変形前の物体モデルOM)に基づいて差分モデルDMを変形することで、ワークWの変形が反映された差分モデルDMを生成してもよい。尚、物体モデルOMに基づいて差分モデルDMを変形する動作は、物体モデルOMに基づいて参照モデルRMを変形する動作と同様であってもよい。つまり、制御情報生成装置22は、差分モデルDMと物体モデルOMとの位置合わせを行い、差分モデルDMの各頂点を制御頂点、従属頂点及び固定頂点のいずれかに指定し、制御頂点及び従属頂点を移動させることで、差分モデルDMを変形してもよい。この場合、制御情報生成装置22は、カット面に面する差分モデルDMの部位とカット面に面する物体モデルOMの部位との位置合わせを行ってもよい。制御情報生成装置22は、カット面に面する差分モデルDMの部位の頂点を、制御頂点に指定してもよい。
 上述した説明では、計測システム2が加工制御情報を生成している。しかしながら、計測システム2とは異なる制御情報生成装置が、加工制御情報を生成してもよい。例えば、制御情報生成装置として機能可能な加工装置1(特に、その制御装置17)が加工制御情報を生成してもよい。例えば、制御情報生成装置として機能可能な制御サーバ4が加工制御情報を生成してもよい。例えば、加工装置1及び制御サーバ4とは異なる制御情報生成装置(が加工制御情報を生成してもよい。例えば、加工装置1と通信可能な制御情報生成装置が加工制御情報を生成してもよい。例えば、制御サーバ4と通信可能な制御情報生成装置が加工制御情報を生成してもよい。
 計測システム2とは異なる制御情報生成装置が加工制御情報を生成する場合には、計測システム2とは異なる制御情報生成装置は更に、参照モデルRMから変形モデルTMを生成し、その後、変形モデルTMと物体モデルOMとに基づいて、差分モデルDMを生成してもよい。この場合、計測システム2は、通信装置223を用いて、物体モデルOMを制御情報生成装置に送信してもよい。また、参照モデルRMが制御情報生成装置に記憶されていてもよい。
 上述した説明では、加工装置1は、造形材料Mに加工光ELを照射することで、造形材料Mを溶融させている。しかしながら、加工装置1は、任意のエネルギビームを造形材料Mに照射することで、造形材料Mを溶融させてもよい。任意のエネルギビームの一例として、荷電粒子ビーム及び電磁波等の少なくとも一つがあげられる。荷電粒子ビームの一例として、電子ビーム及びイオンビーム等の少なくとも一つがあげられる。
 (5)付記
 以上説明した実施形態に関して、更に以下の付記を開示する。
[付記1]
 物体の三次元形状を示す物体モデルを取得することと、
 前記物体モデルに基づいて前記物体の参照モデルを変形することで、前記物体の加工後の目標形状を示す変形モデルを生成することと、
 前記変形モデルと前記物体モデルとの差分を示す差分モデルを生成することと、
 前記差分モデルに基づいて、前記物体の三次元形状が前記目標形状となるように前記物体を付加加工するための加工制御情報を生成することと
 を含む加工制御情報生成方法。
[付記2]
 前記物体モデルは、前記物体の三次元形状を計測することで生成される
 付記1に記載の加工制御情報生成方法。
[付記3]
 前記参照モデルは、前記物体の、前記三次元形状と相違する参照三次元形状を示す
 付記1又は2に記載の加工制御情報生成方法。
[付記4]
 前記参照モデルは、前記物体が使用される前の三次元形状を示す
 付記3に記載の加工制御情報生成方法。
[付記5]
 変形された後の前記参照モデルの一部と前記物体モデルとの差は、変形される前の前記参照モデルの一部と物体モデルとの差よりも小さい
 付記1から4のいずれか一項に記載の加工制御情報生成方法。
[付記6]
 前記変形モデルを生成することは、前記参照モデルの表面の第1部分の三次元形状と前記物体モデルの表面のうちの前記第1部分に対応する第2部分の三次元形状との差分が小さくなるように前記第1部分を変形すると共に、前記参照モデルのうちの前記第1部分とは異なる第3部分の三次元形状を前記第1部分の変形に合わせて変形することを含む
 付記1から5のいずれか一項に記載の加工制御情報生成方法。
[付記7]
 前記変形モデルを生成することは、前記参照モデルをラプラシアン変形することを含む
 付記1から6のいずれか一項に記載の加工制御情報生成方法。
[付記8]
 前記変形モデルを生成することは、
 前記参照モデルの表面のうちの変形すべきでない第1参照モデル部分と前記物体モデルの表面のうちの前記第1参照モデル部分に対応する第1物体モデル部分とが一致するように、前記参照モデルと前記物体モデルとを位置合わせすることと、
 前記参照モデルと前記物体モデルとが位置合わせされた状態で、前記参照モデルの表面のうちの前記第1参照モデル部分とは異なる第2参照モデル部分が、前記物体モデルの表面のうちの前記第2参照モデル部分に対応する第2物体モデル部分の位置に移動するように、前記第2参照モデル部分を変形することと
 を含む付記1から7のいずれか一項に記載の加工制御情報生成方法。
[付記9]
 前記変形モデルを生成することは、
 前記第2参照モデル部分を変形する前に、前記物体モデルから、前記第2参照モデル部分に対応する前記第2物体モデル部分を抽出することと、
 前記第2参照モデル部分を変形することは、前記第2参照モデル部分が前記抽出された第2物体モデル部分の位置に移動するように、前記第2参照モデル部分を変形すること
 を含む付記8に記載の加工制御情報生成方法。
[付記10]
 前記変形モデルを生成することは、
 前記参照モデルと前記物体モデルとが位置合わせされた状態で、前記参照モデルの表面のうちの前記第1及び第2参照モデル部分とは異なる第3参照モデル部分を、前記第2参照モデル部分の変形に合わせて変形することを含む
 付記8又は9に記載の加工制御情報生成方法。
[付記11]
 前記差分モデルは、前記第2参照モデル部分の変形に合わせて変形された前記第3参照モデル部分の少なくとも一部を含む
 付記10に記載の加工制御情報生成方法。
[付記12]
 前記参照モデル及び前記物体モデルのそれぞれは、多角形メッシュモデルである
 付記8から11のいずれか一項に記載の加工制御情報生成方法。
[付記13]
 前記加工方法は、前記物体の三次元形状を計測することを含み、
 前記物体モデルは、前記物体の三次元形状の計測結果に基づいて生成される
 付記1から12のいずれか一項に記載の加工制御情報生成方法。
[付記14]
 前記物体は、タービンブレードを含む
 付記1から13のいずれか一項に記載の加工制御情報生成方法。
[付記15]
 付記1から14のいずれか一項に記載の加工制御情報生成方法を用いて付加加工を行う加工方法。
[付記16]
 物体の三次元形状を示す物体モデルを取得することと、
 前記物体モデルに基づいて変形された、前記物体の加工後の目標形状を示す変形モデルを生成することと、
 前記変形モデルと前記物体モデルとの差分を示す差分モデルを生成することと、
 前記差分モデルに基づいて、前記物体の三次元形状が前記目標形状となるように前記物体を付加加工するための加工制御情報を生成することと
 を含む加工制御情報生成方法。
[付記17]
 物体の参照モデルを変形することで、前記物体の加工後の目標形状を示す変形モデルを生成することと、
 前記変形モデルの一部であって、前記物体の三次元形状が前記目標形状となるために必要な加工部分を示す差分モデルを生成することと、
 前記差分モデルに基づいて、前記物体を付加加工するための加工制御情報を生成することと
 を含む加工制御情報生成方法。
[付記18]
 物体の三次元形状を計測することで生成される物体モデルを取得することと、
 前記物体モデルに基づいて前記物体の参照モデルを変形することで、前記物体の加工後の目標形状を示す変形モデルを生成することと、
 前記物体モデルと変形モデルとに基づいて、前記物体を付加加工するための加工制御情報を生成することを含む
 加工制御情報生成方法。
[付記19]
 付記1から18のいずれか一項に記載の加工制御情報生成方法を用いて加工を行う加工方法。
[付記20]
 物体の三次元形状を示す物体情報を取得することと、
 前記物体情報に対応して前記物体の参照モデルを変形することで、前記物体の加工後の目標形状を示す変形モデルを生成することと、
 前記変形モデルと前記物体モデルとの差分を示す差分モデルを生成することと
 を含むモデル生成方法。
[付記21]
 物体の三次元形状を計測した計測結果を取得することと、
 前記計測結果に対応して前記物体の参照モデルを変形することで、前記物体の加工後の目標形状を示す変形モデルを生成することと、
 前記変形モデルと前記物体モデルとの差分を示す差分モデルを生成することと、
 を含むモデル生成方法。
[付記22]
 物体を加工可能な加工装置と、
 前記物体を付加加工するように前記加工装置を制御するための加工制御情報を生成する制御情報生成装置と
 を備え、
 前記制御情報生成装置は、
 前記物体の三次元形状を示す物体モデルを取得し、
 前記物体モデルに基づいて前記物体の参照モデルを変形することで、前記物体の加工後の目標形状を示す変形モデルを生成し、
 前記変形モデルと前記物体モデルとの差分を示す差分モデルを生成し、
 前記差分モデルに基づいて、前記物体の三次元形状が前記目標形状となるように前記物体を付加加工するように前記加工装置を制御するための前記加工制御情報を生成する
 加工システム。
[付記23]
 前記物体モデルは、前記物体の三次元形状を計測することで生成される
 付記21に記載の加工システム。
[付記24]
 前記参照モデルは、前記物体の、前記三次元形状と相違する参照三次元形状を示す
 付記22又は23に記載の加工システム。
[付記25]
 前記参照モデルは、前記物体が使用される前の三次元形状を示す
 付記24に記載の加工システム。
[付記26]
 変形された後の前記参照モデルの一部と前記物体モデルとの差は、変形される前の前記参照モデルの一部と物体モデルとの差よりも小さい
 付記22から25のいずれか一項に記載の加工システム。
[付記27]
 前記制御情報生成装置は、前記参照モデルの表面の第1部分の三次元形状と前記物体モデルの表面のうちの前記第1部分に対応する第2部分の三次元形状との差分が小さくなるように前記第1部分を変形すると共に、前記参照モデルのうちの前記第1部分とは異なる第3部分の三次元形状を前記第1部分の変形に合わせて変形することで、前記変形モデルを生成する
 付記22から26のいずれか一項に記載の加工システム。
[付記28]
 前記制御情報生成装置は、前記参照モデルをラプラシアン変形することで、前記変形モデルを生成する
 付記22から27のいずれか一項に記載の加工システム。
[付記29]
 前記制御情報生成装置は、
 前記参照モデルの表面のうちの変形すべきでない第1参照モデル部分と前記物体モデルの表面のうちの前記第1参照モデル部分に対応する第1物体モデル部分とが一致するように、前記参照モデルと前記物体モデルとを位置合わせし、
 前記参照モデルと前記物体モデルとが位置合わせされた状態で、前記参照モデルの表面のうちの前記第1参照モデル部分とは異なる第2参照モデル部分が、前記物体モデルの表面のうちの前記第2参照モデル部分に対応する第2物体モデル部分の位置に移動するように、前記第2参照モデル部分を変形することで、
 前記変形モデルを生成する
 付記22から28のいずれか一項に記載の加工システム。
[付記30]
 前記制御情報生成装置は、
 前記第2参照モデル部分を変形する前に、前記物体モデルから、前記第2参照モデル部分に対応する前記第2物体モデル部分を抽出、
 前記第2参照モデル部分を変形することは、前記第2参照モデル部分が前記抽出された第2物体モデル部分の位置に移動するように、前記第2参照モデル部分を変形することで、
 前記変形モデルを生成する
 を含む付記29に記載の加工システム。
[付記31]
 前記制御情報生成装置は、
 前記参照モデルと前記物体モデルとが位置合わせされた状態で、前記参照モデルの表面のうちの前記第1及び第2参照モデル部分とは異なる第3参照モデル部分を、前記第2参照モデル部分の変形に合わせて変形することで、前記変形モデルを生成する
 付記29又は30に記載の加工システム。
[付記32]
 前記差分モデルは、前記第2参照モデル部分の変形に合わせて変形された前記第3参照モデル部分の少なくとも一部を含む
 付記31に記載の加工システム。
[付記33]
 前記参照モデル及び前記物体モデルのそれぞれは、多角形メッシュモデルである
 付記29から32のいずれか一項に記載の加工システム。
[付記34]
 前記制御情報生成装置は、前記物体の三次元形状を更に計測し、
 前記物体モデルは、前記物体の三次元形状の計測結果に基づいて生成される
 付記22から33のいずれか一項に記載の加工システム。
[付記35]
 前記物体は、タービンブレードを含む
 付記22から34のいずれか一項に記載の加工システム。
[付記36]
 物体を加工可能な加工装置と、
 前記物体を付加加工するように前記加工装置を制御するための加工制御情報を生成する制御情報生成装置と
 を備え、
 前記制御情報生成装置は、
 前記物体の三次元形状を示す物体モデルを取得し、
 前記物体モデルに基づいて変形された、前記物体の加工後の目標形状を示す変形モデルを生成し、
 前記変形モデルと前記物体モデルとの差分を示す差分モデルを生成し、
 前記差分モデルに基づいて、前記物体の三次元形状が前記目標形状となるように前記物体を付加加工するように前記加工装置を制御するための前記加工制御情報を生成する
 加工システム。
[付記37]
 物体を加工可能な加工装置と、
 前記物体を付加加工するように前記加工装置を制御するための加工制御情報を生成する制御情報生成装置と
 を備え、
 前記制御情報生成装置は、
 前記物体の参照モデルを変形することで、前記物体の加工後の目標形状を示す変形モデルを生成し、
 前記変形モデルの一部であって、前記物体の三次元形状が前記目標形状となるために必要な加工部分を示す差分モデルを生成し、
 前記差分モデルに基づいて、前記物体を付加加工するように前記加工装置を制御するための前記加工制御情報を生成する
 加工システム。
[付記38]
 物体を加工可能な加工装置と、
 前記物体を付加加工するように前記加工装置を制御するための加工制御情報を生成する制御情報生成装置と
 を備え、
 前記制御情報生成装置は、
 前記物体の三次元形状を計測することで生成される物体モデルを取得することと、
 前記物体モデルに基づいて前記物体の参照モデルを変形することで、前記物体の加工後の目標形状を示す変形モデルを生成することと、
 前記物体モデルと変形モデルとに基づいて、前記物体を付加加工するように前記加工装置を制御するための前記加工制御情報を生成することを含む
 加工システム。
[付記39]
 付記22から38のいずれか一項に記載の加工システムを用いて加工を行う加工方法。
 上述の各実施形態の構成要件の少なくとも一部は、上述の各実施形態の構成要件の少なくとも他の一部と適宜組み合わせることができる。上述の各実施形態の構成要件のうちの一部が用いられなくてもよい。また、法令で許容される限りにおいて、上述の各実施形態で引用した全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。
 本発明は、上述した実施例に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う加工制御情報生成方法、加工方法、モデル生成方法及び加工システムもまた本発明の技術的範囲に含まれるものである。
 SYS 加工システム
 1 加工装置
 2 計測システム
 21 形状計測装置
 22 制御情報生成装置
 W ワーク
 OM 物体モデル
 RM 参照モデル
 TM 変形モデル
 DM 差分モデル

Claims (21)

  1.  物体の三次元形状を示す物体モデルを取得することと、
     前記物体モデルに基づいて前記物体の参照モデルを変形することで、前記物体の加工後の目標形状を示す変形モデルを生成することと、
     前記変形モデルと前記物体モデルとの差分を示す差分モデルを生成することと、
     前記差分モデルに基づいて、前記物体の三次元形状が前記目標形状となるように前記物体を付加加工するための加工制御情報を生成することと
     を含む加工制御情報生成方法。
  2.  前記物体モデルは、前記物体の三次元形状を計測することで生成される
     請求項1に記載の加工制御情報生成方法。
  3.  前記参照モデルは、前記物体の、前記三次元形状と相違する参照三次元形状を示す
     請求項1又は2に記載の加工制御情報生成方法。
  4.  前記参照モデルは、前記物体が使用される前の三次元形状を示す
     請求項3に記載の加工制御情報生成方法。
  5.  変形された後の前記参照モデルの一部と前記物体モデルとの差は、変形される前の前記参照モデルの一部と物体モデルとの差よりも小さい
     請求項1から4のいずれか一項に記載の加工制御情報生成方法。
  6.  前記変形モデルを生成することは、前記参照モデルの表面の第1部分の三次元形状と前記物体モデルの表面のうちの前記第1部分に対応する第2部分の三次元形状との差分が小さくなるように前記第1部分を変形すると共に、前記参照モデルのうちの前記第1部分とは異なる第3部分の三次元形状を前記第1部分の変形に合わせて変形することを含む
     請求項1から5のいずれか一項に記載の加工制御情報生成方法。
  7.  前記変形モデルを生成することは、前記参照モデルをラプラシアン変形することを含む
     請求項1から6のいずれか一項に記載の加工制御情報生成方法。
  8.  前記変形モデルを生成することは、
     前記参照モデルの表面のうちの変形すべきでない第1参照モデル部分と前記物体モデルの表面のうちの前記第1参照モデル部分に対応する第1物体モデル部分とが一致するように、前記参照モデルと前記物体モデルとを位置合わせすることと、
     前記参照モデルと前記物体モデルとが位置合わせされた状態で、前記参照モデルの表面のうちの前記第1参照モデル部分とは異なる第2参照モデル部分が、前記物体モデルの表面のうちの前記第2参照モデル部分に対応する第2物体モデル部分の位置に移動するように、前記第2参照モデル部分を変形することと
     を含む請求項1から7のいずれか一項に記載の加工制御情報生成方法。
  9.  前記変形モデルを生成することは、
     前記第2参照モデル部分を変形する前に、前記物体モデルから、前記第2参照モデル部分に対応する前記第2物体モデル部分を抽出することと、
     前記第2参照モデル部分を変形することは、前記第2参照モデル部分が前記抽出された第2物体モデル部分の位置に移動するように、前記第2参照モデル部分を変形すること
     を含む請求項8に記載の加工制御情報生成方法。
  10.  前記変形モデルを生成することは、
     前記参照モデルと前記物体モデルとが位置合わせされた状態で、前記参照モデルの表面のうちの前記第1及び第2参照モデル部分とは異なる第3参照モデル部分を、前記第2参照モデル部分の変形に合わせて変形することを含む
     請求項8又は9に記載の加工制御情報生成方法。
  11.  前記差分モデルは、前記第2参照モデル部分の変形に合わせて変形された前記第3参照モデル部分の少なくとも一部を含む
     請求項10に記載の加工制御情報生成方法。
  12.  前記参照モデル及び前記物体モデルのそれぞれは、多角形メッシュモデルである
     請求項8から11のいずれか一項に記載の加工制御情報生成方法。
  13.  前記加工方法は、前記物体の三次元形状を計測することを含み、
     前記物体モデルは、前記物体の三次元形状の計測結果に基づいて生成される
     請求項1から12のいずれか一項に記載の加工制御情報生成方法。
  14.  前記物体は、タービンブレードを含む
     請求項1から13のいずれか一項に記載の加工制御情報生成方法。
  15.  請求項1から14のいずれか一項に記載の加工制御情報生成方法を用いて付加加工を行う加工方法。
  16.  物体の三次元形状を示す物体モデルを取得することと、
     前記物体モデルに基づいて変形された、前記物体の加工後の目標形状を示す変形モデルを生成することと、
     前記変形モデルと前記物体モデルとの差分を示す差分モデルを生成することと、
     前記差分モデルに基づいて、前記物体の三次元形状が前記目標形状となるように前記物体を付加加工するための加工制御情報を生成することと
     を含む加工制御情報生成方法。
  17.  物体の参照モデルを変形することで、前記物体の加工後の目標形状を示す変形モデルを生成することと、
     前記変形モデルの一部であって、前記物体の三次元形状が前記目標形状となるために必要な加工部分を示す差分モデルを生成することと、
     前記差分モデルに基づいて、前記物体を付加加工するための加工制御情報を生成することと
     を含む加工制御情報生成方法。
  18.  物体の三次元形状を計測することで生成される物体モデルを取得することと、
     前記物体モデルに基づいて前記物体の参照モデルを変形することで、前記物体の加工後の目標形状を示す変形モデルを生成することと、
     前記物体モデルと変形モデルとに基づいて、前記物体を付加加工するための加工制御情報を生成することを含む
     加工制御情報生成方法。
  19.  請求項1から18のいずれか一項に記載の加工制御情報生成方法を用いて加工を行う加工方法。
  20.  物体の三次元形状を示す物体情報を取得することと、
     前記物体情報に対応して前記物体の参照モデルを変形することで、前記物体の加工後の目標形状を示す変形モデルを生成することと、
     前記変形モデルと前記物体モデルとの差分を示す差分モデルを生成することと
     を含むモデル生成方法。
  21.  物体の三次元形状を計測した計測結果を取得することと、
     前記計測結果に対応して前記物体の参照モデルを変形することで、前記物体の加工後の目標形状を示す変形モデルを生成することと、
     前記変形モデルと前記物体モデルとの差分を示す差分モデルを生成することと、
     を含むモデル生成方法。
PCT/JP2022/023913 2022-06-15 2022-06-15 加工制御情報生成方法、加工方法及びモデル生成方法 WO2023242983A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023913 WO2023242983A1 (ja) 2022-06-15 2022-06-15 加工制御情報生成方法、加工方法及びモデル生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023913 WO2023242983A1 (ja) 2022-06-15 2022-06-15 加工制御情報生成方法、加工方法及びモデル生成方法

Publications (1)

Publication Number Publication Date
WO2023242983A1 true WO2023242983A1 (ja) 2023-12-21

Family

ID=89192430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023913 WO2023242983A1 (ja) 2022-06-15 2022-06-15 加工制御情報生成方法、加工方法及びモデル生成方法

Country Status (1)

Country Link
WO (1) WO2023242983A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160129638A1 (en) * 2014-11-12 2016-05-12 International Business Machines Corporation Method for Repairing with 3D Printing
JP2018170005A (ja) * 2017-03-01 2018-11-01 ソニー株式会社 画像及び深度データを用いて3次元(3d)人物顔面モデルを発生させるための仮想現実ベースの装置及び方法
JP2020513869A (ja) * 2016-12-06 2020-05-21 ナショナル ユニバーシティ オブ シンガポール 頭蓋骨を復元する方法
JP2020515931A (ja) * 2016-12-28 2020-05-28 インターデジタル シーイー パテント ホールディングス シーンのセグメンテーションと3d再構築を組み合わせるための方法及び装置
JP2020122217A (ja) * 2019-01-30 2020-08-13 ゼネラル・エレクトリック・カンパニイ 付加製造システム、及びワークピース上に付加印刷するためのcadモデルを生成する方法
WO2020194448A1 (ja) * 2019-03-25 2020-10-01 株式会社ニコン 造形システム
WO2020208708A1 (ja) * 2019-04-09 2020-10-15 株式会社ニコン 造形ユニット
JP3231517U (ja) * 2021-01-28 2021-04-08 株式会社ニコン 加工システム
JP2021525309A (ja) * 2018-05-31 2021-09-24 ゼネラル・エレクトリック・カンパニイ 積層造形を使用したターボ機械の修理
WO2022018853A1 (ja) * 2020-07-22 2022-01-27 株式会社ニコン 加工システム
US20220143694A1 (en) * 2020-11-09 2022-05-12 General Electric Company Systems and methods for compensating a geometry of a green body part based on sintering-induced distortion

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160129638A1 (en) * 2014-11-12 2016-05-12 International Business Machines Corporation Method for Repairing with 3D Printing
JP2020513869A (ja) * 2016-12-06 2020-05-21 ナショナル ユニバーシティ オブ シンガポール 頭蓋骨を復元する方法
JP2020515931A (ja) * 2016-12-28 2020-05-28 インターデジタル シーイー パテント ホールディングス シーンのセグメンテーションと3d再構築を組み合わせるための方法及び装置
JP2018170005A (ja) * 2017-03-01 2018-11-01 ソニー株式会社 画像及び深度データを用いて3次元(3d)人物顔面モデルを発生させるための仮想現実ベースの装置及び方法
JP2021525309A (ja) * 2018-05-31 2021-09-24 ゼネラル・エレクトリック・カンパニイ 積層造形を使用したターボ機械の修理
JP2020122217A (ja) * 2019-01-30 2020-08-13 ゼネラル・エレクトリック・カンパニイ 付加製造システム、及びワークピース上に付加印刷するためのcadモデルを生成する方法
WO2020194448A1 (ja) * 2019-03-25 2020-10-01 株式会社ニコン 造形システム
WO2020208708A1 (ja) * 2019-04-09 2020-10-15 株式会社ニコン 造形ユニット
WO2022018853A1 (ja) * 2020-07-22 2022-01-27 株式会社ニコン 加工システム
US20220143694A1 (en) * 2020-11-09 2022-05-12 General Electric Company Systems and methods for compensating a geometry of a green body part based on sintering-induced distortion
JP3231517U (ja) * 2021-01-28 2021-04-08 株式会社ニコン 加工システム

Similar Documents

Publication Publication Date Title
Griffiths et al. Cost-driven build orientation and bin packing of parts in Selective Laser Melting (SLM)
Pham et al. Rapid manufacturing: the technologies and applications of rapid prototyping and rapid tooling
Flynn et al. Hybrid additive and subtractive machine tools–Research and industrial developments
Kruth Material incress manufacturing by rapid prototyping techniques
US7917243B2 (en) Method for building three-dimensional objects containing embedded inserts
Ding et al. Process planning for laser wire-feed metal additive manufacturing system
US11640156B2 (en) Methods of manufacturing a plurality of discrete objects from a body of material created by additive manufacturing
US20070251072A1 (en) Adaptive machining and weld repair process
JP3231517U (ja) 加工システム
US11567473B2 (en) Methods of manufacturing one or more discrete objects from a body of material created by additive manufacturing
Urbanic et al. A process planning framework and virtual representation for bead-based additive manufacturing processes
US10656626B2 (en) Methods and software for manufacturing a discrete object from an additively manufactured body of material including a precursor to a discrete object and a reference feature(s)
JP7380769B2 (ja) 処理装置及び処理方法、加工方法、並びに、造形装置及び造形方法
EP4186616A1 (en) Processing system
Freire et al. Direct energy deposition: a complete workflow for the additive manufacturing of complex shape parts
Kapil et al. Elimination of support mechanism in additive manufacturing through substrate tilting
WO2023242983A1 (ja) 加工制御情報生成方法、加工方法及びモデル生成方法
JP7468614B2 (ja) 加工システム
Królikowski et al. Does metal additive manufacturing in Industry 4.0 reinforce the role of substractive machining?
CN113939394B (zh) 造型单元
JP2022115799A (ja) 加工システム
WO2024142376A1 (ja) 情報処理方法、情報処理装置、コンピュータプログラム、加工方法及び加工装置
KR102237232B1 (ko) 3차원 형상 재료 적층을 위한 공급장치 및 그 제어방법
JP2022185291A (ja) 造形装置及び造形方法、並びに、加工装置及び加工方法
WO2022168268A1 (ja) 加工パス情報生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946803

Country of ref document: EP

Kind code of ref document: A1