WO2022073438A1 - 一种高负载藻蓝蛋白的纳米颗粒及其制备方法与应用 - Google Patents

一种高负载藻蓝蛋白的纳米颗粒及其制备方法与应用 Download PDF

Info

Publication number
WO2022073438A1
WO2022073438A1 PCT/CN2021/121055 CN2021121055W WO2022073438A1 WO 2022073438 A1 WO2022073438 A1 WO 2022073438A1 CN 2021121055 W CN2021121055 W CN 2021121055W WO 2022073438 A1 WO2022073438 A1 WO 2022073438A1
Authority
WO
WIPO (PCT)
Prior art keywords
phycocyanin
solution
preparation
nanoparticle
pamma
Prior art date
Application number
PCT/CN2021/121055
Other languages
English (en)
French (fr)
Inventor
李晓玲
郭晓明
陈填烽
Original Assignee
暨南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 暨南大学 filed Critical 暨南大学
Publication of WO2022073438A1 publication Critical patent/WO2022073438A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/41Porphyrin- or corrin-ring-containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/58Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. poly[meth]acrylate, polyacrylamide, polystyrene, polyvinylpyrrolidone, polyvinylalcohol or polystyrene sulfonic acid resin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention claims the priority of the invention "A highly loaded phycocyanin nanoparticle and its preparation method and application” submitted to the Chinese Patent Office on October 9, 2020.
  • the application number of the prior invention application is CN202011072079.0.
  • the invention belongs to the fields of health care products, functional foods and biomedicine, and particularly relates to a nanoparticle with high load of phycocyanin and a preparation method and application thereof.
  • Spirulina is rich in nutrients and contains a variety of biologically active substances. It is easy to be cultured on a large scale, and has a very broad prospect as a carrier for selenium bioorganization.
  • Phycocyanin is one of the biologically active substances with the highest content in Spirulina, up to about 20% of the dry mass of the algae. It has good antioxidant and anti-tumor effects. Phycocyanin can not only scavenge oxygen free radicals efficiently in vitro, but also scavenge a variety of free radicals in animals. The existing research results show that phycocyanin has good functional activity and development prospects.
  • Nanotechnology is an important means to improve the stability and bioavailability of proteins.
  • chemical cross-linking method is basically used at home and abroad to prepare phycocyanin nanoparticles as a carrier for drug delivery.
  • Commonly used chemical crosslinkers include glutaraldehyde (Huang et al., J.Mater.Chem.B, 2017, 5, 3300-3314), N-hydroxysuccinimide, 1-ethyl-3-( 3-Dimethylaminopropyl) carbodiimide (Bharathiraja et al., European Journal of Pharmaceutics and Biopharmaceutics, 2018, Pages 20-30), etc.
  • the primary purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art, and to provide a method for preparing nanoparticles with high loading of phycocyanin.
  • Another object of the present invention is to provide nanoparticles with high loading of phycocyanin obtained by the above preparation method.
  • Another object of the present invention is to provide the application of the above-mentioned highly loaded phycocyanin nanoparticles.
  • a preparation method of a highly loaded phycocyanin nanoparticle comprising the following steps:
  • the preparation method of the described high-loaded phycocyanin nanoparticles comprises the following steps:
  • the water described in step (1) is preferably deionized water or ultrapure water.
  • the concentration of the phycocyanin solution described in step (1) is preferably 0.2-2 mg/mL; more preferably 1.0 mg/mL.
  • the concentration of the PAMMA solution described in step (1) is preferably 0.2-1 mg/mL; more preferably 0.5 mg/mL.
  • the concentration of the tannic acid solution described in step (1) is preferably 0.5-2 mg/mL; more preferably 1 mg/mL.
  • the concentration of the PVA solution described in step (1) is preferably 0.1-1 mg/mL; more preferably 0.5 mg/mL.
  • the pH regulators described in step (1) include alkalis and acids.
  • the alkali is preferably NaOH; more preferably, a NaOH solution with a concentration of 0.1 mol/L.
  • the acid is preferably HCl; more preferably, a HCl solution with a concentration of 0.1 mol/L.
  • the mixing method described in the step (2) is preferably that the phycocyanin solution, the PAMMA solution, the tannic acid solution and the PVA solution are respectively transported through pipelines, and at the same time, they are combined and mixed in a mixing container.
  • the conveying flow rate is preferably 5-20 mL/min; more preferably 10 mL/min.
  • the mixing described in the step (2) is preferably mixed by a fast nano-composite instrument
  • the structure of the fast nano-composite instrument is as follows: it includes four pumps and a mixer; the mixer includes a top cover, a mixing part and a material outlet; four liquid inlets are arranged on the top cover, and the four pumps respectively pass through the polytetrafluoroethylene
  • the pipe is connected with the four liquid inlets of the top cover;
  • the mixing part is located under the top cover, including four grooves and a circular truncated structure with openings at both ends, and the confluence of the four grooves is a circular truncated structure;
  • the liquid inlet is connected with the grooves ;
  • the circular truncated structure is wide at the top and narrow at the bottom, and the narrow part is connected with the discharge port.
  • the pumps include syringe pumps and peristaltic pumps.
  • the truncated truncated structure is preferably a truncated truncated structure with a bottom surface radius of 5 mm, a cross-sectional radius of 1.6 mm, and a height of 10 mm.
  • the protective agent described in step (3) is preferably sodium alginate.
  • the dosage of the protective agent is calculated as the concentration in solution A is 6-10 g/mL; more preferably the concentration in solution A is 8 g/mL.
  • the freeze-drying time is preferably 36-60h; more preferably 48h.
  • the degree of said pulverization is preferably able to pass through a 40-mesh sieve.
  • a high-loaded phycocyanin nanoparticle is obtained by the above preparation method.
  • the high-loaded phycocyanin nanoparticles are used in the fields of health care products, functional foods and biomedicine.
  • the present invention has the following advantages and effects:
  • the present invention utilizes electrostatic interaction, hydrogen bonding and hydrophobic interaction to synthesize highly stable phycocyanin-tannic acid (TA)-polyvinyl alcohol (PVA)-dendritic cationic polymer (PAMMA) composite nanoparticles,
  • TA phycocyanin-tannic acid
  • PVA polyvinyl alcohol
  • PAMMA dendritic cationic polymer
  • the stability of nanoparticles is maintained by the hydrogen bonding force formed by tannic acid (TA), PVA and phycocyanin and the electrostatic force formed by phycocyanin and PAMMA, which has the advantages of high loading rate and high stability.
  • the range of applications of phycocyanin-based nanoparticles provides the basis.
  • the phycocyanin nanoparticles produced by the preparation method provided by the present invention have the advantages of uniform particle size, high loading rate and continuous production.
  • the method provided by the present invention has the advantages of simple process, mild conditions and scalable production.
  • the advantages of the present invention to prepare phycocyanin nanoparticles by using a rapid nano-composite instrument are small particle size, small PDI, and continuous production.
  • the common solution stirring and mixing is batch production, and the obtained phycocyanin nanoparticles may have a long reaction time, larger product particle size and larger PDI.
  • the phycocyanin solution, tannin emulsion, , PAMMA solution, and PVA solution (10 mL each) were mixed, and the average particle size and PDI were 249 nm and 0.443, respectively.
  • Figure 1 is a schematic diagram of the structure of the rapid nano-composite instrument used in the present invention; wherein, 1-syringe pump, 2-top cover, 3-mixing part.
  • Figure 2 is a graph showing the results of the hydrophobic interaction between tannic acid (TA) and phycocyanin.
  • Figure 3 is an electron transmission photograph of chitosan-TA-PVA@phycocyanin nanoparticles.
  • FIG. 4 is an electron transmission photograph of PEI-TA-PVA@phycocyanin nanoparticles.
  • Figure 5 is the electron transmission image of PAMMA-TA-PVA@phycocyanin nanoparticles.
  • FIG. 6 is a graph showing the detection results of particle size distribution of three loaded phycocyanin nanoparticles.
  • Figure 7 is a graph showing the detection results of the effect of different cationic polymers on the particle size of loaded phycocyanin nanoparticles.
  • Figure 8 is a graph showing the detection results of the effect of different cationic polymers on the polydispersity coefficient of phycocyanin nanoparticles.
  • Figure 9 is a graph of the detection results of the effect of different polymer combinations on the phycocyanin loading rate.
  • Figure 10 is a graph showing the detection results of the particle size change of PAMMA-TA-PVA@phycocyanin nanoparticles during the 28d storage period.
  • Fig. 11 is a graph showing the change of phycocyanin retention rate with heating time.
  • PAMMA Dendritic polyamide
  • Tannic acid food grade, purchased from Guangzhou Desheng Chemical Co., Ltd.;
  • Trehalose, food grade purchased from Henan Qinuo Food Ingredients Co., Ltd.;
  • PEI purchased from Shanghai Aladdin Reagent Co., Ltd., catalog number: E107079.
  • a phycocyanin solution with a concentration of 1.0 mg/mL
  • a PAMMA solution with a concentration of 0.5 mg/mL
  • a tannic acid solution with 1 mg/mL
  • a PVA solution with a concentration of 0.5 mg/mL.
  • the pH of the above solution was adjusted to 7 with mol/L NaOH or 0.1 mol/L HCl.
  • the fast nanocomposite instrument includes four syringe pumps 1 and a mixer; the mixer includes a top cover 2, a mixing part 3 and a material outlet; the top cover 2 is provided with four liquid inlets, and the four syringe pumps are respectively It is connected with the four liquid inlets of the top cover through polytetrafluoroethylene pipes; the mixing part 3 is located under the top cover, and includes four grooves and a truncated truncated structure with openings at both ends, and the confluence of the four grooves is a truncated truncated structure; The liquid inlet is connected with the groove; the circular truncated structure is wide at the top and narrow at the bottom, and the narrow part is connected with the discharge port.
  • the liquids of the four channels are mixed at the frustum structure through the grooves to form PAMMA-tannic acid-PVA@phycocyanin nanoparticles, which are then discharged through the discharge port.
  • the phycocyanin solution, PAMMA solution, tannin solution, and PVA solution were simultaneously passed through the syringe pump and entered into the mixer from the liquid inlet of the top cover at a flow rate of 10 mL/min to obtain a nanoparticle dispersion.
  • the preparation method of chitosan-tannic acid-PVA@phycocyanin nanoparticles and PEI-tannic acid-PVA@phycocyanin nanoparticles is the same as the preparation method of PAMMA-tannic acid-PVA@phycocyanin nanoparticles, The difference is that 0.5 mg/mL PAMMA solution was replaced by 0.5 mg/mL chitosan solution and 0.5 mg/mL PEI solution, respectively.
  • the preparation method of PAMMA@phycocyanin nanoparticles is the same as the preparation method of PAMMA-tannic acid-PVA@phycocyanin nanoparticles, the difference is that 1 mg/mL tannic acid solution and 0.5 mg/mL PVA solution are removed Ionized water instead.
  • the other two channels were also replaced with deionized water.
  • Trehalose was added to the nanoparticle dispersion prepared in step (2) to a concentration of 8 g/mL, and freeze-dried for 48 hours.
  • the high-loaded phycocyanin nanoparticle powder obtained in step (3) was pulverized and passed through a 40-mesh sieve.
  • Average particle size of nanoparticles with high loading of phycocyanin The powder of nanoparticles with high loading of phycocyanin was dissolved in deionized water to prepare a dispersion liquid of 0.2 mg/mL, and PAMMA-tannic acid- The average particle size of PVA@phycocyanin nanoparticles is 145nm.
  • Morphology analysis of cationic polymer-tannic acid-PVA@phycocyanin The effect of cationic species on the morphology of cationic polymer-tannic acid-PVA@phycocyanin particles was analyzed by electron transmission electron microscopy, and the obtained results are as follows Figure 3, Figure 4, Figure 5.
  • chitosan and PEI flocculent aggregates with different sizes and no fixed shape are formed, but when PAMMA is used, spherical nanoparticles can be obtained with a size between 50 and 200 nm.
  • the average particle size, particle size distribution curve, and polydispersity coefficient (PDI) of the phycocyanin-loaded nanoparticles were detected by dynamic light scattering, as shown in Figure 6, Figure 7, and Figure 8.
  • the average particle size of PAMMA-tannic acid-PVA@phycocyanin nanoparticles was 145 nm, while the average particle size of the composite particles obtained from chitosan and PEI reached 355 nm and 1173 nm.
  • the PDI of PAMMA-tannic acid-PVA@phycocyanin nanoparticles is also lower, indicating that PAMMA is more suitable for tannic acid than chitosan and PEI.
  • PVA and phycocyanin form nanoparticles with uniform size and smaller particle size.
  • Bicinchoninic acid method was used to detect the loading rate of phycocyanin: (1) Take 1.5 mL of phycocyanin-loaded nanoparticle dispersion into an ultrafiltration centrifuge tube (molecular weight cut-off 1000Da), and centrifuge at 2000g for 20min , and then resuspended to 1.5mL with deionized water; (2) The dispersion liquid before and after ultrafiltration centrifugation was detected by BCA protein quantitative kit method (Biyuntian, product number P0010) to detect the phycocyanin content, and the phycocyanin loading rate was determined according to the formula (1) Calculation, the obtained result is shown in Fig. 9.
  • C 0 and C 1 respectively represent the concentration of phycocyanin in the dispersion before and after ultrafiltration treatment, in mg/mL.
  • the loading rate is only 85%.
  • PVP alone can hardly adsorb phycocyanin, and its loading rate is only 2.8%, while tannic acid has a certain adsorption effect on phycocyanin, and its loading rate is 25.5%.
  • the loading rate of phycocyanin was as high as 95%, indicating that tannin could combine with PAMMA and phycocyanin to form a nanoelectrostatic complex, which may be attributed to the combination of tannin and phycocyanin. Hydrophobic interactions between proteins.
  • phycocyanin solution with concentration of 1.0mg/mL, PAMMA solution of 0.5mg/mL, tannic acid solution of 2mg/mL, and PVA solution of 1mg/mL respectively, for subsequent use; use 0.1mol /L NaOH or 0.1mol/L HCl to adjust the pH of the above solution to 7.
  • (2) Phycocyanin nanoparticles were prepared by a self-made fast nanocomposite instrument.
  • the equipment consists of a four-channel mixer and four syringe pumps.
  • the syringe pump and the mixer are connected by stainless steel pipes.
  • the phycocyanin solution, the PAMMA solution, the tannic acid solution and the PVA solution are respectively arranged in the first, second, third and fourth channels, and the mixing flow rate is 15 mL/min to obtain a nanoparticle dispersion liquid.
  • Trehalose was added to the nanoparticle dispersion prepared in step (2) to a concentration of 7 g/mL, and freeze-dried for 48 hours.
  • the phycocyanin nanoparticle powder obtained in step (3) was pulverized and passed through a 40-mesh sieve.
  • Average particle size of phycocyanin nanoparticles The average particle size of PAMMA-tannic acid-PVA@phycocyanin nanoparticles detected by dynamic light scattering was 170 nm.
  • a phycocyanin solution with a concentration of 0.2 mg/mL Using deionized water as a solvent, prepare a phycocyanin solution with a concentration of 0.2 mg/mL, a PAMMA solution with a concentration of 0.2 mg/mL, a tannic acid solution with 2 mg/mL, and a PVA solution with a concentration of 0.5 mg/mL, respectively.
  • (2) Phycocyanin nanoparticles were prepared by a self-made fast nanocomposite instrument.
  • the equipment consists of a four-channel mixer and four syringe pumps.
  • the syringe pump and the mixer are connected by stainless steel pipes.
  • the phycocyanin solution, the PAMMA solution, the tannic acid solution and the PVA solution are respectively arranged in the first, second, third and fourth channels, and the mixed flow rate is 5 mL/min to obtain a nanoparticle dispersion liquid.
  • Trehalose was added to the nanoparticle dispersion prepared in step (2) to a concentration of 7 g/mL, and freeze-dried for 48 hours.
  • the phycocyanin nanoparticle powder obtained in step (3) was pulverized and passed through a 40-mesh sieve.
  • Average particle size of phycocyanin nanoparticles The average particle size of PAMMA-tannic acid-PVA@phycocyanin nanoparticles detected by dynamic light scattering was 160 nm.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Manufacturing & Machinery (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种高负载藻蓝蛋白的纳米颗粒及其制备方法与应用。本发明将藻蓝蛋白溶液、PAMMA溶液、单宁酸溶液和PVA溶液同时混合,得到含高负载藻蓝蛋白的纳米颗粒的溶液。

Description

一种高负载藻蓝蛋白的纳米颗粒及其制备方法与应用
本发明要求2020年10月9日向中国专利局提交的发明《一种高负载藻蓝蛋白的纳米颗粒及其制备方法与应用》的优先权,该在先发明申请的申请号是CN202011072079.0。
技术领域
本发明属于保健品、功能食品和生物医药领域,特别涉及一种高负载藻蓝蛋白的纳米颗粒及其制备方法与应用。
背景技术
螺旋藻(Spirulina)营养丰富,含有多种生物活性物质,易于大规模培养,作为硒生物有机化的载体前景将十分广阔。藻蓝蛋白是螺旋藻含量最高的生物活性物质之一,可达藻干质量的20%左右,其具有良好的抗氧化、抗肿瘤等作用。藻蓝蛋白不仅可以在体外高效清除氧自由基,而且可以清除动物机体内的多种自由基。现有研究结果表明,藻蓝蛋白具有良好的功能活性与开发前景。然而,藻蓝蛋白在中性pH、30℃条件下表现稳定,但在pH4.0以下、45℃以上时变色显著,其稳定性大幅下降。这种温度、酸度敏感性导致口服藻蓝蛋白的生物利用度差,较大的限制其在食品、生物医药领域的应用。因此,如何提高藻蓝蛋白的稳定性已成为拓展其应用范围的关键问题。
纳米化技术是提高蛋白的稳定性、生物利用度的重要手段。近年来,蛋白纳米颗粒的制备与应用研究得到广泛重视。目前,国内外基本采用化学交联法制备藻蓝蛋白纳米颗粒,作为药物递送的载体。常用的化学交联剂包括戊二醛(Huang et al.,J.Mater.Chem.B,2017,5,3300-3314)、N-羟基丁二酰亚胺、1-乙基-3-(3-二甲氨基丙基)碳二亚胺(Bharathiraja et al.,European Journal of Pharmaceutics and Biopharmaceutics,2018,Pages 20-30)等,此法虽能制备纳米尺度的藻蓝蛋白颗粒,但化学修饰造成藻蓝蛋白生物活性下降,且交联剂也存在一定的毒性。因此,研发稳定性高、毒性小、负载量大的的藻蓝蛋白纳米颗粒具有重要意义。
发明内容
本发明的首要目的在于克服现有技术的缺点与不足,提供一种高负载藻蓝蛋白的纳米颗粒的制备方法。
本发明的另一目的在于提供通过上述制备方法得到的高负载藻蓝蛋白的纳米颗粒。
本发明的再一目的在于提供上述高负载藻蓝蛋白的纳米颗粒的应用。
本发明的目的通过下述技术方案实现:一种高负载藻蓝蛋白的纳米颗粒的制备方法,包括如下步骤:
(1)配制溶液:用水分别将藻蓝蛋白、PAMMA、单宁酸、PVA配制成溶液,再将溶液的pH值调节成6.5~7.5,得到藻蓝蛋白溶液、PAMMA溶液、单宁酸溶液和PVA溶液;
(2)高负载藻蓝蛋白的纳米颗粒的制备:将藻蓝蛋白溶液、PAMMA溶液、单宁酸溶液和PVA溶液同时混合,得到含高负载藻蓝蛋白的纳米颗粒的溶液;其中,藻蓝蛋白、PAMMA、单宁酸和PVA按质量比0.2~2:0.2~1:0.5~2:0.1~1配比混合。
所述的高负载藻蓝蛋白的纳米颗粒的制备方法,包括如下步骤:
(3)高负载藻蓝蛋白的纳米颗粒粉末的制备:在含高负载藻蓝蛋白的纳米颗粒的溶液中加入保护剂,得到溶液A;将溶液A冷冻干燥,粉碎,得到高负载藻蓝蛋白的纳米颗粒粉末。
步骤(1)中所述的水优选为去离子水、超纯水。
步骤(1)中所述的藻蓝蛋白溶液的浓度优选为0.2~2mg/mL;更优选为1.0mg/mL。
步骤(1)中所述的PAMMA溶液的浓度优选为0.2~1mg/mL;更优选为0.5mg/mL。
步骤(1)中所述的单宁酸溶液的浓度优选为0.5~2mg/mL;更优选为1mg/mL。
步骤(1)中所述的PVA溶液的浓度优选为0.1~1mg/mL;更优选为0.5mg/mL。
步骤(1)中所述的pH值的调节剂包括碱和酸。
所述的碱优选为NaOH;更优选为浓度为0.1mol/L的NaOH溶液。
所述的酸优选为HCl;更优选为浓度为0.1mol/L的HCl溶液。
步骤(2)中所述的混合的方式优选为将藻蓝蛋白溶液、PAMMA溶液、单宁酸溶液和PVA溶液分别通过管道输送,同时在混合容器中汇合进行混合。
所述的输送的流速优选为5~20mL/min;更优选10mL/min。
步骤(2)中所述的混合优选为通过快速纳米复合仪混合;
所述的快速纳米复合仪的结构如下:包括四台泵和混合器;混合器包括顶盖、混合部件和出料口;顶盖上设置四个液体入口,四台泵分别通过聚四氟乙烯管道与顶盖的四个液体入口连接;混合部件位于顶盖下方,包括四个凹槽和两端开口的圆台形结构,四个凹槽的汇合处为圆台形结构;液体入口与凹槽连接;圆台形结构上宽下窄,窄处与出料口连接。
所述的泵包括注射泵和蠕动泵。
所述的凹槽优选为深度×宽度=2mm×2mm的凹槽。
所述的圆台形结构优选为底面半径为5mm、截面半径为1.6mm、高度为10mm的圆台形结构。
步骤(3)中所述的保护剂优选为海藻酸钠。
所述的保护剂的用量按在溶液A中的浓度为6~10g/mL计算;更优选为按在溶液A中的浓度为8g/mL计算。
所述的冷冻干燥的时间优选为36~60h;更优选为48h。
所述的粉碎的程度优选为能过40目筛。
一种高负载藻蓝蛋白的纳米颗粒,通过上述制备方法得到。
所述的高负载藻蓝蛋白的纳米颗粒在保健品、功能食品和生物医药领域中进行应用。
本发明相对于现有技术具有如下的优点及效果:
(1)本发明利用静电作用、氢键、疏水相互作用力合成高稳定的藻蓝蛋白-单宁酸(TA)-聚乙烯醇(PVA)-树枝状阳离子聚合物(PAMMA)复合纳米颗粒,通过单宁酸(TA)、PVA与藻蓝蛋白形成的氢键作用力与藻蓝蛋白与PAMMA形成的静电作用力维系纳米颗粒的稳定性,具有高负载率、高稳定性的优点,为拓宽藻蓝蛋白基纳米颗粒的应用范围提供了基础。
(2)本发明提供的制备方法生产得到的藻蓝蛋白纳米颗粒具有粒径均一、负载率高、可连续生产的优点。
(3)本发明提供的方法具有工艺简单、条件温和、可放大化生产的优点。
(4)本发明运用快速纳米复合仪制备得到藻蓝蛋白纳米颗粒的优点是粒度小、PDI小,并可连续生产。而普通的溶液搅拌混合是间歇式生产,得到的藻蓝蛋白纳米颗粒可能反应时间长,产品粒径、PDI更大,如注射泵以10mL/min的流速将藻蓝蛋白溶液、单宁酸乳液、PAMMA溶液、PVA溶液(各10mL)混合时,平均粒径和PDI分别为249nm、0.443。
附图说明
图1是本发明所用的快速纳米复合仪的结构示意图;其中,1-注射泵,2-顶盖,3-混合部件。
图2是单宁酸(TA)和藻蓝蛋白疏水相互作用的结果检测图。
图3是壳聚糖-TA-PVA@藻蓝蛋白纳米颗粒的电子透射照片图。
图4是PEI-TA-PVA@藻蓝蛋白纳米颗粒的电子透射照片图。
图5是PAMMA-TA-PVA@藻蓝蛋白纳米颗粒的电子透射图。
图6是三种负载藻蓝蛋白纳米颗粒的粒度分布检测结果图。
图7是不同阳离子聚合物对荷载藻蓝蛋白纳米颗粒粒径影响的检测结果图。
图8是不同阳离子聚合物对藻蓝蛋白纳米颗粒多分散系数的影响的检测结果图。
图9是不同聚合物组合对藻蓝蛋白负载率影响的检测结果图。
图10是PAMMA-TA-PVA@藻蓝蛋白纳米颗粒在28d储藏期内的粒径变化的检测结果图。
图11是藻蓝蛋白保留率随加热时间的变化结果图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
藻蓝蛋白,食品级,购于浙江宾美生物有限公司;
树枝状聚酰胺(PAMMA),购于美国Sigma-aldrich公司,货号412368;
单宁酸,食品级,购于广州市德晟化工有限公司;
聚乙烯醇(PVA),食品级,购于广州市宏州化工有限公司;
海藻糖,食品级,购于河南旗诺食品配料有限公司;
壳聚糖,食品级,购于南京京润生物科技有限公司;
PEI,购于上海阿拉丁试剂有限公司,货号:E107079。
实施例1
(1)溶液配制
以去离子水为溶剂,分别配制浓度为1.0mg/mL的藻蓝蛋白溶液、0.5mg/mL的PAMMA溶液、1mg/mL的单宁酸溶液、0.5mg/mL的PVA溶液,备用;用0.1mol/L的NaOH或0.1mol/L的HCl将上述溶液的pH调整7。
(2)采用快速纳米复合仪制备藻蓝蛋白纳米颗粒
如图1所示,快速纳米复合仪包括四台注射泵1和混合器;混合器包括顶盖2、混合部件3和出料口;顶盖2上设置四个液体入口,四台注射泵分别通过聚四氟乙烯管道与顶盖的四个液体入口连接;混合部件3位于顶盖下方,包括四个凹槽和两端开口的圆台形结构,四个凹槽的汇合处为圆台形结构;液体入口与凹槽连接;圆台形结构上宽下窄,窄处与出料口连接。其中,凹槽的深度×宽度=2mm×2mm;圆台形结构的底面半径为5mm、截面半径为1.6mm、高度为10mm。
工作时,四个通道的液体通过凹槽在圆台形结构处混合,形成PAMMA-单宁酸-PVA@藻蓝蛋白纳米颗粒,随后通过出料口排出。
藻蓝蛋白溶液、PAMMA溶液、单宁酸溶液、PVA溶液分别同时通过注射泵,从顶盖的入液口进入到混合器,流速为10mL/min,得到纳米颗粒分散液。
壳聚糖-单宁酸-PVA@藻蓝蛋白纳米颗粒、PEI-单宁酸-PVA@藻蓝蛋白纳米颗粒的制备方法同PAMMA-单宁酸-PVA@藻蓝蛋白纳米颗粒的制备方法,不同之处在于0.5mg/mL的PAMMA溶液分别被0.5mg/mL的壳聚糖溶液、0.5mg/mL的PEI溶液替代。
PAMMA@藻蓝蛋白纳米颗粒的制备方法同PAMMA-单宁酸-PVA@藻蓝蛋白纳米颗粒的 制备方法,不同之处在于1mg/mL的单宁酸溶液、0.5mg/mL的PVA溶液被去离子水代替。同理,制备PVA@藻蓝蛋白纳米颗粒、单宁酸@藻蓝蛋白纳米颗粒时,其他两个通道也用去离子水代替。
(3)冷冻干燥
在步骤(2)制备的纳米颗粒分散液中加入海藻糖至浓度为8g/mL,冷冻干燥48h。
(4)粉碎
将步骤(3)得到的高负载藻蓝蛋白的纳米颗粒粉末粉碎,过40目筛。
(5)检测
高负载藻蓝蛋白的纳米颗粒的平均粒度:将高负载藻蓝蛋白的纳米颗粒粉末溶解于去离子水中,配制成0.2mg/mL的分散液,由动态光散射法检测PAMMA-单宁酸-PVA@藻蓝蛋白纳米颗粒的平均粒径,为145nm。
单宁酸与藻蓝蛋白的疏水相互作用:1.0mg/mL的藻蓝蛋白溶液和1mg/mL的单宁酸溶液分别按体积比10:1、15:1、30:1、150:1混合,混匀后于室温下静置5min,随后用荧光光谱仪监测单宁酸与藻蓝蛋白间的疏水相互作用力,得到的结果如图2所示。可见,随着藻蓝蛋白:单宁酸比例的逐渐最大,藻蓝蛋白的荧光发射强度逐渐减小,表明藻蓝蛋白与单宁酸间的疏水相互作用强度逐渐增大。
阳离子聚合物-单宁酸-PVA@藻蓝蛋白的形貌分析:采用电子透射电镜分析了阳离子种类对阳离子聚合物-单宁酸-PVA@藻蓝蛋白颗粒形貌的影响,得到的结果如图3、图4、图5所示。当采用壳聚糖、PEI时,形成尺寸不一、无固定形状的絮状聚集体,而使用PAMMA却能得到球形的纳米颗粒,尺寸介于50~200nm之间。
采用动态光散射法检测荷载藻蓝蛋白的纳米颗粒的平均粒径、粒径分布曲线、多分散系数(PDI),如图6、图7、图8所示。PAMMA-单宁酸-PVA@藻蓝蛋白纳米颗粒的平均粒径为145nm,而壳聚糖、PEI得到的复合颗粒的平均粒径却达355nm、1173nm。此外,相对于采用壳聚糖、PEI得到的复合颗粒而言,PAMMA-单宁酸-PVA@藻蓝蛋白纳米颗粒的PDI也较低,表明PAMMA比壳聚糖、PEI更适合与单宁酸、PVA、藻蓝蛋白形成尺寸均一、粒径更小的纳米颗粒。
采用双辛可宁酸法(BCA)检测藻蓝蛋白的负载率:(1)取1.5mL荷载藻蓝蛋白的纳米颗粒分散液置于超滤离心管(截留分子量1000Da)中,在2000g离心力下离心20min,再用去离子水重悬至1.5mL;(2)超滤离心前后的分散液采用BCA蛋白定量试剂盒法(碧云天公司,货号P0010)检测藻蓝蛋白含量,藻蓝蛋白负载率按照公式(1)计算,得到的结果如图9所示。
藻蓝蛋白负载率=(C 0-C 1)/C 0×100  (1);
公式(1)中,C 0、C 1分别代表超滤处理前后分散液中藻蓝蛋白的浓度,单位mg/mL。
如图9所示,虽然单独PAMMA也能负载藻蓝蛋白,但负载率仅为85%。单独PVP对藻蓝蛋白几乎无法吸附藻蓝蛋白,其负载率仅为2.8%,而单宁酸对藻蓝蛋白却具有一定的吸附效果,其负载率为25.5%。当使用PAMMA、单宁酸和PVA的组合时,藻蓝蛋白的负载率高达95%,说明单宁酸能联合PAMMA与藻蓝蛋白形成纳米静电复合物,可能归因于单宁酸与藻蓝蛋白间的疏水相互作用。
PAMMA-单宁酸-PVA@藻蓝蛋白纳米颗粒的储藏稳定性:采用动态光散射法,进一步检测PAMMA-单宁酸-PVA@藻蓝蛋白纳米颗粒在28天储藏期内的粒径变化,得到的结果如图10所示。PAMMA-单宁酸-PVA@藻蓝蛋白纳米颗粒的平均粒径从141nm增至197n m,稳定性良好。
PAMMA-单宁酸-PVA@藻蓝蛋白纳米颗粒的热稳定性:将PAMMA-单宁酸-PVA@藻蓝蛋白纳米颗粒置于45℃水浴中,评价加热时间对藻蓝蛋白保留率的影响,得到的结果如图11所示。与藻蓝蛋白相比,荷载在PAMMA-单宁酸-PVA纳米颗粒中的藻蓝蛋白具有更强的热稳定性,加热12h后藻蓝蛋白的保留率仍达80%以上。
实施例2
(1)溶液配制
以去离子水为溶剂,分别配制浓度为1.0mg/mL的藻蓝蛋白溶液、0.5mg/mL的PAMMA溶液、2mg/mL的单宁酸溶液、1mg/mL的PVA溶液,备用;用0.1mol/L的NaOH或0.1mol/L的HCl将上述溶液的pH调整7。
(2)采用自制快速纳米复合仪制备藻蓝蛋白纳米颗粒。该设备由四通道的混合器及四台注射泵组成,注射泵与混合器间通过不锈钢管路连接。
藻蓝蛋白溶液、PAMMA溶液、单宁酸溶液、PVA溶液分别设置于第一、第二、第三、第四通道,混合流速为15mL/min,得到纳米颗粒分散液。
(3)冷冻干燥
在步骤(2)制备的纳米颗粒分散液中加入海藻糖至浓度为7g/mL,冷冻干燥48h。
(4)粉碎
将步骤(3)得到的藻蓝蛋白纳米颗粒粉末粉碎,过40目筛。
(5)检测
藻蓝蛋白纳米颗粒的平均粒度:由动态光散射法检测PAMMA-单宁酸-PVA@藻蓝蛋白纳米颗粒的平均粒径,为170nm。
实施例3
(1)溶液配制
以去离子水为溶剂,分别配制浓度为0.2mg/mL的藻蓝蛋白溶液、0.2mg/mL的PAMMA溶液、2mg/mL的单宁酸溶液、0.5mg/mL的PVA溶液,备用;用0.1mol/L的NaOH或0.1mol/L的HCl将上述溶液的pH调整7。
(2)采用自制快速纳米复合仪制备藻蓝蛋白纳米颗粒。该设备由四通道的混合器及四台注射泵组成,注射泵与混合器间通过不锈钢管路连接。
藻蓝蛋白溶液、PAMMA溶液、单宁酸溶液、PVA溶液分别设置于第一、第二、第三、第四通道,混合流速为5mL/min,得到纳米颗粒分散液。
(3)冷冻干燥
在步骤(2)制备的纳米颗粒分散液中加入海藻糖至浓度为7g/mL,冷冻干燥48h。
(4)粉碎
将步骤(3)得到的藻蓝蛋白纳米颗粒粉末粉碎,过40目筛。
(5)检测
藻蓝蛋白纳米颗粒的平均粒度:由动态光散射法检测PAMMA-单宁酸-PVA@藻蓝蛋白纳米颗粒的平均粒径,为160nm。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种高负载藻蓝蛋白的纳米颗粒的制备方法,其特征在于包括如下步骤:
    (1)配制溶液:用水分别将藻蓝蛋白、PAMMA、单宁酸、PVA配制成溶液,再将溶液的pH值调节成6.5~7.5,得到藻蓝蛋白溶液、PAMMA溶液、单宁酸溶液和PVA溶液;
    (2)高负载藻蓝蛋白的纳米颗粒的制备:将藻蓝蛋白溶液、PAMMA溶液、单宁酸溶液和PVA溶液同时混合,得到含高负载藻蓝蛋白的纳米颗粒的溶液;其中,藻蓝蛋白、PAMMA、单宁酸和PVA按质量比0.2~2:0.2~1:0.5~2:0.1~1配比混合。
  2. 根据权利要求1所述的高负载藻蓝蛋白的纳米颗粒的制备方法,其特征在于还包括如下步骤:
    (3)高负载藻蓝蛋白的纳米颗粒粉末的制备:在含高负载藻蓝蛋白的纳米颗粒的溶液中加入保护剂,得到溶液A;将溶液A冷冻干燥,粉碎,得到高负载藻蓝蛋白的纳米颗粒粉末。
  3. 根据权利要求1或2所述的高负载藻蓝蛋白的纳米颗粒的制备方法,其特征在于:
    步骤(1)中所述的藻蓝蛋白溶液的浓度为0.2~2mg/mL;
    步骤(1)中所述的PAMMA溶液的浓度为0.2~1mg/mL;
    步骤(1)中所述的单宁酸溶液的浓度为0.5~2mg/mL;
    步骤(1)中所述的PVA溶液的浓度为0.1~1mg/mL。
  4. 根据权利要求1或2所述的高负载藻蓝蛋白的纳米颗粒的制备方法,其特征在于:
    步骤(2)中所述的混合的方式为将藻蓝蛋白溶液、PAMMA溶液、单宁酸溶液和PVA溶液分别通过管道输送,同时在混合容器中汇合进行混合。
  5. 根据权利要求4所述的高负载藻蓝蛋白的纳米颗粒的制备方法,其特征在于:
    步骤(2)中所述的混合为通过快速纳米复合仪混合;
    所述的快速纳米复合仪包括四台泵和混合器;混合器包括顶盖、混合部件和出料口;顶盖上设置四个液体入口,四台泵分别通过聚四氟乙烯管道与顶盖的四个液体入口连接;混合部件位于顶盖下方,包括四个凹槽和两端开口的圆台形结构,四个凹槽的汇合处为圆台形结构;液体入口与凹槽连接;圆台形结构上宽下窄,窄处与出料口连接。
  6. 根据权利要求5所述的高负载藻蓝蛋白的纳米颗粒的制备方法,其特征在于:
    所述的泵包括注射泵和蠕动泵;
    所述的凹槽为深度×宽度=2mm×2mm的凹槽;
    所述的圆台形结构为底面半径为5mm、截面半径为1.6mm、高度为10mm的圆台形结构。
  7. 根据权利要求5所述的高负载藻蓝蛋白的纳米颗粒的制备方法,其特征在于:
    所述的输送的流速为5~20mL/min;进一步为10mL/min。
  8. 根据权利要求2所述的高负载藻蓝蛋白的纳米颗粒的制备方法,其特征在于:
    步骤(3)中所述的保护剂为海藻酸钠;
    所述的保护剂的用量按在溶液A中的浓度为6~10g/mL计算;进一步为按在溶液A中的浓度为8g/mL计算。
  9. 一种高负载藻蓝蛋白的纳米颗粒,其特征在于:通过权利要求1~8任一项所述的制备方法得到。
  10. 权利要求9所述的高负载藻蓝蛋白的纳米颗粒在保健品、功能食品和生物医药领域中的应用。
PCT/CN2021/121055 2020-10-09 2021-09-27 一种高负载藻蓝蛋白的纳米颗粒及其制备方法与应用 WO2022073438A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011072079.0 2020-10-09
CN202011072079.0A CN112190697B (zh) 2020-10-09 2020-10-09 一种高负载藻蓝蛋白的纳米颗粒及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2022073438A1 true WO2022073438A1 (zh) 2022-04-14

Family

ID=74014153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121055 WO2022073438A1 (zh) 2020-10-09 2021-09-27 一种高负载藻蓝蛋白的纳米颗粒及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN112190697B (zh)
WO (1) WO2022073438A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874460A (zh) * 2022-04-19 2022-08-09 江南大学 一种高效光防护螺旋藻基高内相凝胶乳液的制备及应用
CN115607477A (zh) * 2022-10-24 2023-01-17 中国海洋大学 维持藻蓝蛋白在酸性条件下热稳定性的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112190697B (zh) * 2020-10-09 2024-05-28 暨南大学 一种高负载藻蓝蛋白的纳米颗粒及其制备方法与应用
CN113278193B (zh) * 2021-06-30 2022-07-01 陕西师范大学 藻蓝蛋白-酪蛋白/多孔淀粉微凝胶及其制备方法和应用
CN116687001B (zh) * 2023-06-20 2024-06-04 南昌大学 藻蓝蛋白-单宁酸-益生菌运载体及其制备方法与营养品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105813471A (zh) * 2013-12-18 2016-07-27 巴斯夫欧洲公司 用于蓝色的稳定化的藻蓝蛋白
CN106214663A (zh) * 2016-07-26 2016-12-14 中山大学 藻蓝蛋白纳米脂质微粒及其制备方法
CN108159396A (zh) * 2018-01-26 2018-06-15 广州加原医药科技有限公司 一种藻蓝蛋白纳米制剂及其制备方法
CN111317142A (zh) * 2020-02-27 2020-06-23 广东科贸职业学院 一种稳定的功能性藻蓝蛋白多重乳液及其制备方法与应用
CN112190697A (zh) * 2020-10-09 2021-01-08 暨南大学 一种高负载藻蓝蛋白的纳米颗粒及其制备方法与应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4552459B2 (ja) * 2003-02-28 2010-09-29 チッソ株式会社 ポリアミン−ポリフェノールハイブリッド及びラジカル消去剤
CN102274510B (zh) * 2011-07-15 2012-12-05 华南理工大学 碳纳米管-壳聚糖-藻蓝蛋白纳米粒的制备方法
EP3265132A1 (en) * 2015-03-03 2018-01-10 University of Miami Nanoparticle conjugates and uses thereof
CN104740647A (zh) * 2015-04-08 2015-07-01 东莞市麦亘生物科技有限公司 一种艾塞那肽口服制剂及其制备方法
CN105476956B (zh) * 2015-12-11 2018-12-14 华南师范大学 一种抑制脑癌的藻蓝蛋白-聚乳酸-阿霉素胶束及其制备方法和应用
KR101898528B1 (ko) * 2017-11-24 2018-09-13 인하대학교 산학협력단 피코시아닌(Phycocyanin) 또는 피코에리트린(phycoerythrin)을 유효성분으로 담지한 리포좀을 포함하는 뇌질환용 약학적 조성물
CN108264743A (zh) * 2018-02-08 2018-07-10 福建农林大学 一种基于多重氢键作用的植物多酚/纳米纤维素高分子复合材料的制备方法
CN109224063B (zh) * 2018-08-31 2020-11-10 厦门大学 双重负载肽类及化疗药物的纳米复合载体及其制备与应用
CN109224081A (zh) * 2018-09-12 2019-01-18 中山大学 一种基于氢键络合的多肽或蛋白纳米粒及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105813471A (zh) * 2013-12-18 2016-07-27 巴斯夫欧洲公司 用于蓝色的稳定化的藻蓝蛋白
CN106214663A (zh) * 2016-07-26 2016-12-14 中山大学 藻蓝蛋白纳米脂质微粒及其制备方法
CN108159396A (zh) * 2018-01-26 2018-06-15 广州加原医药科技有限公司 一种藻蓝蛋白纳米制剂及其制备方法
CN111317142A (zh) * 2020-02-27 2020-06-23 广东科贸职业学院 一种稳定的功能性藻蓝蛋白多重乳液及其制备方法与应用
CN112190697A (zh) * 2020-10-09 2021-01-08 暨南大学 一种高负载藻蓝蛋白的纳米颗粒及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MADHYASTHA HARISHKUMAR, MADHYASTHA RADHA, THAKUR ABHISHEK, KENTARO SAKAI, DEV ABHIMANYU, SINGH SNEHA, CHANDRASHEKHARAPPA R BISTIVA: "c-Phycocyanin primed silver nano conjugates: Studies on red blood cell stress resilience mechanism", COLLOIDS AND SURFACES B: BIOINTERFACES, vol. 194, 1 October 2020 (2020-10-01), NL , pages 1 - 10, XP055920185, ISSN: 0927-7765, DOI: 10.1016/j.colsurfb.2020.111211 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874460A (zh) * 2022-04-19 2022-08-09 江南大学 一种高效光防护螺旋藻基高内相凝胶乳液的制备及应用
CN115607477A (zh) * 2022-10-24 2023-01-17 中国海洋大学 维持藻蓝蛋白在酸性条件下热稳定性的方法
CN115607477B (zh) * 2022-10-24 2024-04-02 中国海洋大学 维持藻蓝蛋白在酸性条件下热稳定性的方法

Also Published As

Publication number Publication date
CN112190697B (zh) 2024-05-28
CN112190697A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
WO2022073438A1 (zh) 一种高负载藻蓝蛋白的纳米颗粒及其制备方法与应用
Luo et al. Combined near infrared photothermal therapy and chemotherapy using gold nanoshells coated liposomes to enhance antitumor effect
Luque-Alcaraz et al. Preparation of chitosan nanoparticles by nanoprecipitation and their ability as a drug nanocarrier
CN112022834B (zh) 一种负载金丝桃苷的玉米醇溶蛋白-果胶复合纳米颗粒及其制备方法
Liang et al. Stepwise size shrinkage cascade‐activated supramolecular prodrug boosts antitumor immunity by eliciting pyroptosis
Gil et al. Synthesis of porous Pd nanoparticles by therapeutic chaga extract for highly efficient tri-modal cancer treatment
US20150328157A1 (en) Application of silicon dioxide aerogel as nano-drug carrying system in pharmacy
Casa et al. Bovine serum albumin nanoparticles containing amphotericin B: characterization, cytotoxicity and in vitro antifungal evaluation
CN102070864A (zh) 一种纳米级聚甲基丙烯酸甲酯磁性复合微球及其制备方法
Pan et al. Plumbagin-loaded aptamer-targeted poly D, L-lactic-co-glycolic acid-b-polyethylene glycol nanoparticles for prostate cancer therapy
Acter et al. Efficient cellular internalization and transport of bowl‐shaped polydopamine particles
Das et al. Preparation of a size selective nanocomposite through temperature assisted co-assembly of gelatin and pluronic F127 for passive targeting of doxorubicin
Li et al. Immunotoxicity assessment of ordered mesoporous carbon nanoparticles modified with PVP/PEG
Doustgani et al. Dexamethasone sodium phosphate release from chitosan nanoparticles prepared by ionic gelation method
CN105535018B (zh) 一种碳酸钙d3颗粒及其制备方法
CN1931129A (zh) 一种可生物降解聚合物磁性载药微球的制备方法
CN113041220A (zh) 一种以tpgs为载体的柚皮素纳米混悬剂及其制备方法与应用
CN114948880B (zh) 一种咖啡酸苯乙酯纳米稳定缓释剂型的制备方法
Rahme et al. A simple protocol to stabilize gold nanoparticles using amphiphilic block copolymers: stability studies and viable cellular uptake
Qudsiani et al. Polyamidoamine-Remdesivir Conjugate: Physical Stability and Cellular Uptake Enhancement.
CN104587467B (zh) 一种包载icg的聚合物‑磷脂纳米颗粒及其制备方法
Bo et al. Immunoregulatory effects on RAW264. 7 cells and subacute oral toxicity of ultra-large pore mesoporous silica nanoparticles loading Lycium barbarum polysaccharides
Sharma et al. Lignin nanoparticles as a novel carrier for efficacious delivery of toll like receptor 7/8 agonist: Physicochemical and in-vitro evaluation
Zhang et al. Preparation of sertraline-loaded chitosan nanoparticles and the pharmacokinetics studies
CN104721173B (zh) 一种包溴丁苯酞plga纳米颗粒及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21876956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21876956

Country of ref document: EP

Kind code of ref document: A1