WO2022071501A1 - 停車判定装置 - Google Patents
停車判定装置 Download PDFInfo
- Publication number
- WO2022071501A1 WO2022071501A1 PCT/JP2021/036184 JP2021036184W WO2022071501A1 WO 2022071501 A1 WO2022071501 A1 WO 2022071501A1 JP 2021036184 W JP2021036184 W JP 2021036184W WO 2022071501 A1 WO2022071501 A1 WO 2022071501A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- stop
- braking
- braking force
- unit
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/172—Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/32—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
- B60T8/58—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration responsive to speed and another condition or to plural speed conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/171—Detecting parameters used in the regulation; Measuring values used in the regulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2210/00—Detection or estimation of road or environment conditions; Detection or estimation of road shapes
- B60T2210/30—Environment conditions or position therewithin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2210/00—Detection or estimation of road or environment conditions; Detection or estimation of road shapes
- B60T2210/30—Environment conditions or position therewithin
- B60T2210/32—Vehicle surroundings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2240/00—Monitoring, detecting wheel/tire behaviour; counteracting thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2250/00—Monitoring, detecting, estimating vehicle conditions
- B60T2250/04—Vehicle reference speed; Vehicle body speed
Definitions
- the present invention relates to a stop determination device.
- Patent Document 1 describes an example of a stop determination device that suppresses pitching behavior just before the vehicle stops by reducing the braking force applied to the vehicle immediately before the vehicle stops to be smaller than the braking force required by the driver. ing.
- the vehicle stop determination device When it is determined that the vehicle has stopped, the vehicle stop determination device as described above increases the braking force applied to the vehicle in order to maintain the stopped state of the vehicle. Therefore, it is necessary for the vehicle stop determination device as described above to accurately determine whether or not the vehicle has stopped. This situation is generally common to the stop determination device that changes the control content for various actuators of the vehicle before and after the vehicle stops.
- the vehicle stop determination device that solves the above problems is a wheel speed sensor that outputs a signal according to the rotation speed of the wheel, and a wheel speed at a predetermined reference timing in which the vehicle is decelerating based on the output signal of the wheel speed sensor.
- the acquisition unit for acquiring the above
- the derivation unit for deriving the stop position at which the vehicle stops based on the wheel speed acquired by the acquisition unit, and the position of the vehicle and the stop position after the reference timing.
- a vehicle stop determination device including a determination unit for performing a stop determination for determining that the vehicle has stopped when the difference distance is equal to or less than the stop determination value.
- the stop determination device determines whether or not the vehicle has stopped based on the difference distance between the position of the vehicle that changes with the running of the vehicle and the stop position derived in advance. Therefore, if the difference distance between the vehicle position and the stop position is larger than the stop determination value, the vehicle stop determination device will acquire "0" even if the wheel speed acquired based on the output signal of the wheel speed sensor becomes "0". , Does not determine that the vehicle has stopped. Therefore, the vehicle stop determination device can accurately determine whether or not the vehicle has stopped.
- a schematic diagram of a vehicle provided with a stop determination device according to an embodiment.
- (A) to (c) are timing charts when the vehicle stop determination device performs pre-stop brake control.
- (A) to (c) are timing charts when the vehicle stop determination device performs pre-stop brake control.
- FIG. 1 shows a schematic configuration of a vehicle 10 including the stop determination device 100 of the present embodiment.
- braking force is applied to the front wheels 11 and the rear wheels 12 of the vehicle 10 by the operation of the braking mechanism 13.
- Each braking mechanism 13 is configured so that the higher the WC pressure, which is the hydraulic pressure in the wheel cylinder 131, the greater the force that presses the friction material 133 against the rotating body 132 that rotates integrally with the wheels 11 and 12. Therefore, each braking mechanism 13 can apply a larger braking force to the wheels 11 and 12 as the WC pressure is higher.
- the braking device 20 of the vehicle 10 includes a hydraulic pressure generating device 21 and a braking actuator 22 to which brake fluid is supplied from the hydraulic pressure generating device 21.
- hydraulic pressure is generated according to the amount of operation of the braking operation member 23 by the driver of the vehicle 10.
- a brake pedal can be mentioned.
- the braking actuator 22 is connected to each wheel cylinder 131. Therefore, when the braking operation member 23 is operated, an amount of brake fluid corresponding to the operation amount is supplied to each wheel cylinder 131. That is, braking force is applied to the wheels 11 and 12.
- Output signals from various detection devices are input to the control device 30.
- Examples of the detection device include a stroke sensor 41, a wheel speed sensor 42, a vehicle position information acquisition device 43, and a target information acquisition device 44.
- the stroke sensor 41 outputs a signal according to the amount of operation of the braking operation member 23.
- the wheel speed sensor 42 outputs a signal having a pulse width corresponding to the rotation speed of the wheels 11 and 12.
- the wheel speed sensor 42 outputs a signal including 48 pulses during one rotation of the wheels 11 and 12. In this case, each time a pulse appears in the output signal of the wheel speed sensor 42, the wheels 11 and 12 rotate by 1/48.
- the vehicle position information acquisition device 43 is a GPS (Global Positioning System) device that acquires position information regarding the current position of the vehicle 10.
- the target information acquisition device 44 acquires information regarding at least one of the position of the target existing around the vehicle 10 and the distance between the vehicle 10 and the target.
- the target information acquisition device 44 may be configured to include, for example, a camera, or may be configured to include a detection device using a radar or a laser beam. Examples include other vehicles and signs existing on the side of the road.
- the vehicle stop determination device 100 is configured to include the control device 30 and the wheel speed sensor 42.
- the control device 30 has a braking control unit 31, an acquisition unit 32, a derivation unit 33, a determination unit 34, and a correction unit 35 as functional units.
- the braking control unit 31 operates the braking actuator 22 of the braking device 20 based on the target braking force BPT according to the operation amount of the braking operation member 23. In this way, the braking control unit 31 individually controls the braking force applied to the wheels 11 and 12. In other words, the braking control unit 31 controls the braking force applied to the vehicle 10.
- the braking control unit 31 implements pre-stop braking control for adjusting the braking force applied to the vehicle 10 in order to suppress the pitching behavior of the vehicle 10 just before the vehicle 10 stops.
- the braking control unit 31 determines the start of the pre-stop brake control based on, for example, the vehicle body speed VS and the vehicle body acceleration AS. When the target stop position for stopping the vehicle 10 is determined, the braking control unit 31 may determine the start of the pre-stop brake control based on the remaining distance to the target stop position. On the other hand, the braking control unit 31 determines the end of the pre-stop brake control depending on whether or not the vehicle 10 has stopped. Further, the braking control unit 31 ends the pre-stop braking control even when the operation of the braking operation member 23 is canceled.
- the braking control unit 31 When the braking control unit 31 performs the pre-stop braking control, the braking control unit 31 applies to the vehicle 10 based on the braking profile in which the time change of the target value of the braking force applied to the wheels 11 and 12 before the vehicle 10 stops is defined. Adjust the braking force to be applied. Therefore, when the braking control unit 31 performs the pre-stop braking control, the braking force applied to the vehicle 10 changes from the target braking force BPT.
- the braking profile is acquired by the acquisition unit 32, which will be described later, in consideration of the state of the vehicle 10 at the start of the pre-stop brake control, specifically, the vehicle body speed VS and the vehicle body acceleration AS.
- the braking profile is applied to the vehicle 10 with an increasing period P1 in which the braking force applied to the vehicle 10 is made larger than the target braking force BPT, a decreasing period P2 in which the braking force applied to the vehicle 10 is made smaller than the target braking force BPT.
- a maintenance period P3 which maintains the braking force to be applied.
- the braking force applied to the vehicle 10 is less than the target braking force BPT. Therefore, when the pre-stop brake control is performed, the vehicle is compared with the case where the pre-stop brake control is not performed.
- the braking distance of 10 may increase.
- the increase period P1 is a period for suppressing an increase in the braking distance of the vehicle 10 by applying a braking force larger than the target braking force BPT to the vehicle 10.
- the decrease period P2 is a period following the increase period P1.
- the reduction period P2 is a period in which the pitching behavior of the vehicle 10 is suppressed by reducing the braking force applied to the vehicle 10 from the target braking force BPT.
- the maintenance period P3 is a period following the decrease period P2.
- the maintenance period P3 is a period of waiting for the vehicle 10 to stop with the braking force applied to the vehicle 10 reduced.
- the maintenance period P3 can be omitted.
- the braking force applied to the vehicle 10 is set as the target braking force in order to maintain the stopped state of the vehicle 10. Rapidly increase towards BPT. However, if the braking force applied to the vehicle 10 before the vehicle 10 is completely stopped is increased, the deceleration of the vehicle 10 becomes large, so that the vehicle 10 may have a pitching behavior. On the other hand, if there is a time lag between when the vehicle 10 is completely stopped and when the braking force applied to the vehicle 10 is increased, the stopped state of the vehicle 10 may not be maintained. For example, if the vehicle 10 stops on a slope, the vehicle 10 may slide down along the slope. Therefore, as in the present embodiment, in the control device 30 that changes the control content of the actuator of the vehicle 10 before and after the vehicle 10 is stopped, it is preferable that the determination as to whether or not the vehicle 10 is stopped is performed with high accuracy. ..
- the acquisition unit 32 acquires the wheel speed VW of each wheel 11 and 12 based on the output signal of the wheel speed sensor 42. Further, the acquisition unit 32 sets the wheel speed VW of at least one of the wheels 11 and 12 as the vehicle body speed VS which is the speed of the vehicle 10. Further, the acquisition unit 32 acquires the vehicle body acceleration AS based on the amount of change in the vehicle body speed VS per unit time. The acquisition unit 32 can also acquire the mileage of the vehicle 10 from the timing by counting the pulses appearing in the output signal of the wheel speed sensor 42 from an arbitrary timing.
- the acquisition unit 32 can accurately acquire the vehicle body speed VS and the vehicle body acceleration AS based on the output signal of the wheel speed sensor 42. It may disappear. In this case, the braking control unit 31 may not be able to correctly determine the timing at which the vehicle 10 stops, in other words, the timing at which the pre-stop brake control ends.
- control device 30 of the present embodiment determines whether or not the vehicle 10 has stopped based on the mileage of the vehicle 10 instead of the vehicle body speed VS.
- the contents of the processing performed by each functional unit in order to determine the stop of the vehicle 10 will be described.
- the derivation unit 33 derives the stop position at which the vehicle 10 stops based on the vehicle body speed VS and the vehicle body acceleration AS acquired by the acquisition unit 32 at the reference timing TS. In other words, the derivation unit 33 derives the "stop distance Dx" which is the mileage from the reference timing TS to the stop of the vehicle 10. That is, the position advanced by the stop distance Dx from the position of the vehicle 10 in the reference timing TS corresponds to the stop position.
- the reference timing TS is the timing at which the vehicle 10 is decelerating, and the timing at which the acquisition unit 32 can accurately acquire the vehicle body speed VS.
- the reference timing TS is the timing at which the vehicle body speed VS is equal to or higher than the reference speed VSS.
- the reference speed VSS is preferably determined according to the performance of the wheel speed sensor 42 and the outer diameters of the wheels 11 and 12.
- the reference speed VSS is generally about several km / h as an example.
- the determination unit 34 performs a stop determination to determine that the vehicle 10 has stopped when the difference distance between the position of the vehicle 10 and the stop position after the reference timing TS is equal to or less than the stop determination value ⁇ Dth1.
- the determination unit 34 determines that the vehicle 10 has stopped when the difference between the "cumulative distance Dy", which is the mileage of the vehicle 10 from the reference timing TS, and the stop distance Dx is the stop determination value ⁇ Dth1 or less. do.
- the determination unit 34 determines that the vehicle 10 has stopped when the difference obtained by subtracting the cumulative distance Dy from the stop distance Dx is equal to or less than the stop determination value ⁇ Dth1.
- the cumulative distance Dy is acquired by the acquisition unit 32 based on the output signal of the wheel speed sensor 42.
- the stop distance Dx is an estimated value
- the cumulative distance Dy is an actually measured value
- the stop determination value ⁇ Dth1 may be the distance that the vehicle 10 travels while the wheel speed sensor 42 outputs a signal including one to several pulses.
- the braking force applied to the vehicle 10 changes based on the above braking profile, so that the vehicle body acceleration AS changes during the period from the reference timing TS until the vehicle 10 stops. Is not kept constant. Therefore, in the case where the pre-stop brake control is executed from the reference timing TS and the case where the pre-stop brake control is not executed, even if the vehicle body speed VS and the vehicle body acceleration AS in the reference timing TS are equal, the vehicle 10 is transmitted from the reference timing TS. There may be a difference in the actual mileage until the vehicle stops.
- the derivation unit 33 considers the braking profile created by the reference timing TS in addition to the vehicle body speed VS and the vehicle body acceleration AS in the reference timing TS, and the stop position. That is, the stop distance Dx is derived.
- the derivation unit 33 derives the first mileage, which is the mileage during the increase period P1, based on the length of the increase period P1 and the acceleration of the increase period P1. Further, the derivation unit 33 derives the second mileage, which is the mileage during the decrease period P2, based on the length of the decrease period P2 and the acceleration of the decrease period P2. Further, the derivation unit 33 derives a third mileage, which is a mileage during the maintenance period P3, based on the length of the maintenance period P3 and the acceleration of the maintenance period P3. The accelerations in the increase period P1, the decrease period P2, and the maintenance period P3 correlate with the braking force in the increase period P1, the decrease period P2, and the maintenance period P3, respectively. Then, the derivation unit 33 derives the sum of the first mileage, the second mileage, and the third mileage as the stop distance Dx.
- the derivation unit 33 first determines the time from the reference timing TS to the stop of the vehicle 10 based on the vehicle body speed VS, the vehicle body acceleration AS, and the braking profile acquired by the acquisition unit 32 in the reference timing TS.
- a stop profile showing the relationship with the mileage of the vehicle 10 is derived. In the following description, the mileage shown in the stop profile is also referred to as "estimated distance Dz".
- the correction unit 35 corrects the braking profile so as to eliminate the difference. For example, when the cumulative distance Dy becomes larger than the estimated distance Dz at a certain timing, the correction unit 35 corrects the braking profile so that the braking force applied to the vehicle 10 is increased after the above timing. Similarly, when the cumulative distance Dy is smaller than the estimated distance Dz at a certain timing, the correction unit 35 corrects the braking profile so that the braking force applied to the vehicle 10 after the above timing is reduced. In this case, it is preferable that the correction unit 35 corrects the braking profile so that the larger the difference between the estimated distance Dz and the cumulative distance Dy, the larger the increase / decrease in the braking force.
- the correction unit 35 uses the correction determination value ⁇ Dth2 as a determination value for determining whether or not the braking profile can be corrected. That is, the correction unit 35 corrects the braking profile when the difference between the estimated distance Dz and the cumulative distance Dy is larger than the correction determination value ⁇ Dth2, and the difference between the estimated distance Dz and the cumulative distance Dy is the correction determination value ⁇ Dth2 or less. In the case of, the braking profile is not corrected.
- the braking control unit 31 cancels the pre-stop brake control. Then, the braking control unit 31 quickly increases the braking force applied to the vehicle 10 to the target braking force BPT.
- the timing at which the derivation unit 33 derives the stop distance Dx and the stop profile is such that the vehicle body speed VS acquired by the acquisition unit 32 is larger than the above-mentioned reference speed VSS. Moreover, it is the timing when the vehicle body speed VS becomes as small as possible. Therefore, the derivation unit 33 derives the stop distance Dx and the stop profile when the vehicle body speed VS is equal to or less than the speed determination value VSth slightly larger than the reference speed VSS. Further, in the present embodiment, the braking control unit 31 starts the pre-stop brake control at the timing when the acquisition unit 32 derives the stop distance Dx and the stop profile. That is, the braking control unit 31 starts the pre-stop brake control when the vehicle body speed VS is equal to or less than the speed determination value VSth.
- This process is a process performed every predetermined control cycle when the vehicle 10 is decelerating.
- the control device 30 acquires the vehicle body speed VS and the vehicle body acceleration AS based on the output signal of the wheel speed sensor 42 (S11). Subsequently, the control device 30 determines whether or not the vehicle body speed VS is equal to or less than the speed determination value VSth (S12). When the vehicle body speed VS is larger than the speed determination value VSth (S12: NO), that is, when the vehicle 10 is not on the verge of stopping, the control device 30 ends this process.
- the control device 30 starts the pre-stop brake control (S13). That is, the control device 30 creates a braking profile and adjusts the braking force applied to the vehicle 10 based on the braking profile. Then, the control device 30 acquires the stop distance Dx and the stop profile (S14).
- the vehicle body speed VS and the vehicle body acceleration AS required for deriving the stop distance Dx and the stop profile are acquired in step S11. That is, immediately before the affirmative determination of step S12, the timing at which step S11 is executed corresponds to the reference timing TS.
- the control device 30 adjusts the braking force applied to the vehicle 10 based on the braking profile (S15). For example, the control device 30 acquires the braking force according to the elapsed time from the start time of the pre-stop brake control from the braking profile. When the braking force acquired from the braking profile is used as the indicated braking force, the control device 30 operates the braking device 20 based on the indicated braking force.
- the control device 30 acquires the cumulative distance Dy from the reference timing TS based on the output signal of the wheel speed sensor 42 (S16).
- the cumulative distance Dy can be obtained from the reference timing TS based on the integrated value of the number of pulses included in the output signal of the wheel speed sensor 42.
- the control device 30 determines whether or not the difference obtained by subtracting the cumulative distance Dy from the stop distance Dx is the stop determination value ⁇ Dth1 or less (S17). In other words, it is determined whether or not the difference distance between the current position of the vehicle 10 and the stop position is equal to or less than the stop determination value ⁇ Dth1.
- the control device 30 ends the pre-stop brake control. (S18), the braking force applied to the vehicle 10 is increased toward the target braking force BPT (S19). After that, the control device 30 ends this process.
- the control device 30 When the difference between the estimated distance Dz and the cumulative distance Dy is larger than the stop determination value ⁇ Dth3 (S20: NO), that is, when the actual traveling mode of the vehicle 10 and the stop profile are significantly different, the control device 30 is used. , The brake control before stopping is stopped (S21), and the braking force applied to the vehicle 10 is increased toward the target braking force BPT (S22). After that, the control device 30 ends this process.
- the control device 30 determines that the vehicle 10 is stopped when the previous steps S18 and S19 are executed, but the vehicle 10 is not stopped when the steps S21 and S22 are executed. It is judged that. Therefore, it is preferable that the increasing speed of the braking force at the time of performing step S22 in which the vehicle 10 is not stopped is slower than the increasing speed of the braking force at the time of performing step S19 in which the vehicle 10 is stopped. This is because if the braking force applied to the vehicle 10 before stopping is increased in a short period of time, the vehicle 10 causes a pitching behavior due to the sudden increase in the deceleration of the vehicle 10.
- step S20 when the difference between the estimated distance Dz and the cumulative distance Dy is the stop determination value ⁇ Dth3 or less (S20: YES), that is, when the difference between the actual traveling mode of the vehicle 10 and the stop profile is not so large. , The control device 30 determines whether or not the difference between the estimated distance Dz and the cumulative distance Dy is the correction determination value ⁇ Dth2 or less (S23).
- the control device 30 corrects the braking profile so that the difference becomes small (S24). After that, the control device 30 shifts the process to step S15. In this case, the braking force applied to the vehicle 10 is adjusted based on the corrected braking profile.
- the difference between the estimated distance Dz and the cumulative distance Dy is the correction determination value ⁇ Dth2 or less (S23: YES), that is, there is no discrepancy between the actual traveling mode of the vehicle 10 and the stop profile. If it can be determined, the control device 30 shifts the process to step S15.
- FIGS. 3 (a) to 3 (c) and FIGS. 4 (a) to 4 (c) The operation and effect of this embodiment will be described.
- the target braking force BPT is applied to the vehicle 10 on the verge of stopping under the condition that the target braking force BPT is maintained constant.
- the transition of braking force, vehicle body speed and mileage will be described.
- 3 (a) and 4 (a) show the braking force based on the braking profile as "BPP".
- the vehicle body speed VS is the actual traveling speed of the vehicle 10 that cannot be acquired based on the output signal of the wheel speed sensor 42.
- the pre-stop brake control is performed. It will be started. Therefore, from the first timing t11, the increasing period P1 in which the braking force applied to the vehicle 10 becomes larger than the required braking force starts. Further, at the first timing t11, the stop distance Dx and the stop profile are derived. That is, in the example shown in FIG. 3, the first timing t11 roughly corresponds to the reference timing TS.
- the increase period P1 ends, and the decrease period P2 in which the braking force applied to the vehicle 10 is gradually decreased starts.
- the third timing t13 during the decrease period P2 a difference between the estimated distance Dz and the cumulative distance Dy begins to occur.
- the cumulative distance Dy is larger than the estimated distance Dz due to the influence of the disturbance that accelerates the vehicle 10 on the vehicle 10, such as the vehicle 10 approaching the downhill road surface. Start to become.
- the braking profile is corrected as shown by the two-dot chain line in FIG. 3A.
- the cumulative distance Dy becomes larger than the estimated distance Dz as shown in FIG. 3C
- the braking profile is corrected, the braking force BPP based on the corrected braking profile is based on the braking profile before correction.
- the braking force is larger than the BPP.
- the braking force applied to the vehicle 10 becomes large.
- the difference between the estimated distance Dz and the cumulative distance Dy temporarily increases and then gradually decreases. Then, the magnitude of the correction amount of the braking profile gradually decreases. Then, when the difference between the estimated distance Dz and the cumulative distance Dy becomes the correction determination value ⁇ Dth2 or less at the fifth timing t15, the braking profile is not corrected as shown in FIG. 3A.
- the seventh timing t17 is also a timing at which the traveling speed of the vehicle 10 becomes “0” as shown in FIG. 3 (b).
- the cumulative distance Dy is calculated from the stop distance Dx. If the subtracted difference is not equal to or less than the stop determination value ⁇ Dth1, it is not determined that the vehicle 10 has been stopped. In this way, even if the vehicle body speed VS cannot be accurately acquired based on the output signal of the wheel speed sensor 42, it is possible to suppress the deterioration of the accuracy of the stop determination of the vehicle 10.
- the braking force applied to the vehicle 10 rapidly increases toward the target braking force BPT so that the vehicle 10 is maintained in the stopped state. Will be done. That is, by accurately determining the stop of the vehicle 10, the disturbance of the vehicle behavior due to the deviation between the stop timing of the vehicle 10 and the increase timing of the braking force is suppressed.
- the braking profile is corrected in the direction of correcting the deviation between the estimated distance Dz and the cumulative distance Dy. Then, the braking force applied to the vehicle 10 is adjusted based on the corrected braking profile. Therefore, it is possible to prevent the actual mileage of the vehicle 10 from the reference timing TS from continuing to deviate from the estimated distance Dz in the stop profile.
- the difference between the estimated distance Dz and the cumulative distance Dy continues to increase even after the fourth timing t14.
- the correction of the braking profile is stopped, in other words, stopped.
- the front brake control is stopped. That is, after the fifth timing t141, the braking force applied to the vehicle 10 is not adjusted based on the braking profile, but is applied to the vehicle 10 as shown by the alternate long and short dash line in FIG. 4A. The braking force is increased toward the target braking force BPT. Therefore, in the case shown in FIG. 4, the vehicle 10 stops at the sixth timing t142, which is a timing different from the seventh timing t17 according to the stop distance Dx.
- the brake control before stopping is stopped, and the braking force applied to the vehicle 10 becomes the target braking force BPT. Therefore, when a disturbance that greatly accelerates or decelerates the vehicle 10 acts, it is possible to avoid a situation in which the vehicle 10 is braked in a manner different from the driver's intention.
- the control device 30 determines that the vehicle 10 has stopped when the difference distance between the position of the vehicle 10 and the stop position, which changes with time, is equal to or less than the stop determination value ⁇ Dth1 during the execution of the pre-stop brake control. May be good.
- the position of the vehicle 10 can be derived as follows.
- the derivation unit 33 of the control device 30 may derive the position of the vehicle 10 after the reference timing TS based on the position information acquired by the vehicle position information acquisition device 43.
- the derivation unit 33 of the control device 30 may acquire the position of the vehicle 10 based on the information acquired by the target information acquisition device 44. In this case, the derivation unit 33 may acquire the position of the vehicle 10 based on the change in the position of the target, or may acquire the position of the vehicle 10 based on the change in the distance to the target.
- the acquisition unit 32 of the control device 30 corrects the cumulative distance Dy derived based on the detection signal of the wheel speed sensor 42 based on the information output by the vehicle position information acquisition device 43 and the target information acquisition device 44. good.
- the correction unit 35 of the control device 30 may correct the indicated braking force acquired from the braking profile instead of correcting the braking profile.
- the control device 30 may determine whether or not the vehicle 10 has stopped in order to perform a process other than the pre-stop brake control. For example, such processing includes an auto brake hold that turns on the electric parking brake after the vehicle is stopped and an idling stop that stops the engine after the vehicle is stopped.
- the control device 30 determines the stop distance Dx based on the vehicle body speed VS and the vehicle body acceleration AS in the reference timing TS, assuming that the target braking force BPT after the reference timing TS does not change when the pre-stop brake control is not performed. It may be derived. In this case, the control device 30 may derive a stop profile in the reference timing TS, or may adjust the braking force applied to the vehicle 10 based on the difference between the estimated distance Dz and the cumulative distance Dy.
- the braking profile may be a braking profile showing the relationship between the amount of movement of the vehicle 10 from the reference timing TS and the braking force.
- the control device 30 may shift the timing of deriving the stop distance Dx and the stop profile from the timing of starting the execution of the pre-stop brake control.
- the control device 30 When the difference between the estimated distance Dz and the cumulative distance Dy is often larger than the stop determination value ⁇ Dth3 while the pre-stop brake control is repeatedly executed, the control device 30 is in other words, before the stop. If the brake control is terminated abnormally many times, it may be learned to that effect. For example, in the above case, the control device 30 may learn that the cause of the abnormal termination of the pre-stop brake control is due to the vehicle characteristics, and may increase the stop determination value ⁇ Dth3.
- the vehicle 10 may be provided with a regenerative braking device that applies a regenerative braking force to the wheels 11 and 12.
- the control device 30 can adjust the magnitude of the braking force applied to the vehicle 10 by changing the regenerative braking force applied to the wheels 11 and 12.
- the control device 30 may have any of the following configurations (a) to (c).
- the control device 30 includes one or more processors that execute various processes according to a computer program.
- the processor includes a CPU and a memory such as RAM and ROM.
- the memory stores a program code or a command configured to cause the CPU to execute the process.
- Memory a computer-readable medium, includes any available medium accessible by a general purpose or dedicated computer.
- the control device 30 includes one or more dedicated hardware circuits that execute various processes.
- the dedicated hardware circuit for example, an integrated circuit for a specific application, that is, an ASIC or FPGA can be mentioned.
- the control device 30 includes a processor that executes a part of various processes according to a computer program, and a dedicated hardware circuit that executes the remaining processes of the various processes.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Regulating Braking Force (AREA)
Abstract
停車判定装置100は、車輪11,12の回転速度に応じた信号を出力する車輪速センサ42と、車輪速センサ42の出力信号に基づいて、車両10が減速している所定の基準タイミングにおける車輪速を取得する取得部32と、取得部32により取得された車輪速に基づいて、車両10が停止する停止位置を導出する導出部33と、基準タイミング以降の車両10の位置と停止位置との差分距離が停止判定値以下となる場合に、車両10が停止したことを判定する停止判定を実施する判定部34と、を備える。
Description
本発明は、停車判定装置に関する。
特許文献1には、車両が停止する直前に車両に付与する制動力を運転者の要求制動力よりも減少させることで、車両の停止間際のピッチング挙動を抑制する停車判定装置の一例が記載されている。
上記のような停車判定装置は、車両が停止したと判定すると、車両が停止した状態を維持するために車両に付与する制動力を増大させる。このため、上記のような停車判定装置は、車両が停止したか否かの判定を精度良く行う必要がある。こうした実情は、車両が停止する前後で、車両の様々なアクチュエータを対象とした制御内容を変更する停車判定装置においても概ね共通する。
以下、上記課題を解決するための手段及びその作用効果について記載する。
上記課題を解決する停車判定装置は、車輪の回転速度に応じた信号を出力する車輪速センサと、前記車輪速センサの出力信号に基づいて、車両が減速している所定の基準タイミングにおける車輪速を取得する取得部と、前記取得部により取得された前記車輪速に基づいて、前記車両が停止する停止位置を導出する導出部と、前記基準タイミング以降の前記車両の位置と前記停止位置との差分距離が停止判定値以下となる場合に、前記車両が停止したことを判定する停止判定を実施する判定部と、を備える停車判定装置。
上記課題を解決する停車判定装置は、車輪の回転速度に応じた信号を出力する車輪速センサと、前記車輪速センサの出力信号に基づいて、車両が減速している所定の基準タイミングにおける車輪速を取得する取得部と、前記取得部により取得された前記車輪速に基づいて、前記車両が停止する停止位置を導出する導出部と、前記基準タイミング以降の前記車両の位置と前記停止位置との差分距離が停止判定値以下となる場合に、前記車両が停止したことを判定する停止判定を実施する判定部と、を備える停車判定装置。
車両が停止する直前など、車体速度が極めて低速となる場合には、車輪速センサの出力信号に基づいて車輪速を精度良く取得することが困難となる場合がある。この点、上記停車判定装置は、車両の走行に伴って変化する車両の位置と事前に導出した停止位置との差分距離に基づいて車両が停止したか否かを判定する。このため、停車判定装置は、車両の位置と停止位置との差分距離が停止判定値よりも大きければ、車輪速センサの出力信号に基づいて取得される車輪速が「0」になったとしても、車両が停止したと判定しない。したがって、停車判定装置は、車両が停止したか否かの判定を精度良く行うことができる。
以下、車両の制御装置の一実施形態について、図面を参照して説明する。
図1には、本実施形態の停車判定装置100を備える車両10の概略構成が図示されている。図1に示すように、車両10の前輪11及び後輪12には、制動機構13の作動によって制動力がそれぞれ付与される。各制動機構13は、ホイールシリンダ131内の液圧であるWC圧が高いほど、車輪11,12と一体回転する回転体132に摩擦材133を押し付ける力が大きくなるように構成されている。そのため、各制動機構13は、WC圧が高いほど大きな制動力を車輪11,12に付与することができる。
図1には、本実施形態の停車判定装置100を備える車両10の概略構成が図示されている。図1に示すように、車両10の前輪11及び後輪12には、制動機構13の作動によって制動力がそれぞれ付与される。各制動機構13は、ホイールシリンダ131内の液圧であるWC圧が高いほど、車輪11,12と一体回転する回転体132に摩擦材133を押し付ける力が大きくなるように構成されている。そのため、各制動機構13は、WC圧が高いほど大きな制動力を車輪11,12に付与することができる。
車両10の制動装置20は、液圧発生装置21と、液圧発生装置21からブレーキ液が供給される制動アクチュエータ22と、を備えている。液圧発生装置21内では、車両10の運転者による制動操作部材23の操作量に応じた液圧が発生する。制動操作部材23としては、例えば、ブレーキペダルを挙げることができる。制動アクチュエータ22は、各ホイールシリンダ131に接続されている。そのため、制動操作部材23が操作されると、その操作量に応じた量のブレーキ液が各ホイールシリンダ131に供給される。すなわち、各車輪11,12に制動力が付与される。
制御装置30には、各種の検出装置からの出力信号が入力される。検出装置としては、ストロークセンサ41、車輪速センサ42、車両位置情報取得装置43及び対象情報取得装置44を挙げることができる。
ストロークセンサ41は、制動操作部材23の操作量に応じた信号を出力する。車輪速センサ42は、車輪11,12の回転速度に応じたパルス幅の信号を出力する。例えば、車輪速センサ42は、車輪11,12が1回転する間に48個のパルスを含む信号を出力する。この場合、車輪速センサ42の出力信号にパルスが現れる度に車輪11,12が48分の1回転することになる。
車両位置情報取得装置43は、車両10の現在位置に関する位置情報を取得するGPS(グローバル・ポジショニング・システム)装置である。対象情報取得装置44は、車両10の周囲に存在する対象の位置及び車両10と対象との距離の少なくとも一方に関する情報を取得する。対象情報取得装置44は、例えば、カメラを含んで構成することもできるし、レーダー又はレーザ光を用いた検出装置を含んで構成することもできる。対象としては、他の車両及び道路脇に存在する標識などを挙げることができる。
次に、制御装置30について詳しく説明する。なお、本実施形態では、制御装置30と車輪速センサ42とを含んで、停車判定装置100が構成されている。
制御装置30は、機能部として、制動制御部31と、取得部32と、導出部33と、判定部34と、補正部35と、を有している。
制御装置30は、機能部として、制動制御部31と、取得部32と、導出部33と、判定部34と、補正部35と、を有している。
制動制御部31は、制動操作部材23の操作量に応じた目標制動力BPTに基づいて、制動装置20の制動アクチュエータ22を作動させる。こうして、制動制御部31は、各車輪11,12に付与する制動力を個別に制御する。言い換えれば、制動制御部31は、車両10に付与する制動力を制御する。
また、制動制御部31は、車両10の停止間際において、車両10のピッチング挙動を抑制するために、車両10に付与する制動力を調整する停止前ブレーキ制御を実施する。制動制御部31は、例えば、車体速度VS及び車体加速度ASに基づいて、停止前ブレーキ制御の開始判定を行う。制動制御部31は、車両10を停止させる目標停止位置が決まっている場合には、目標停止位置までの残りの距離によって、停止前ブレーキ制御の開始判定を行ってもよい。一方、制動制御部31は、車両10が停止したか否かで、停止前ブレーキ制御の終了判定を行う。また、制動制御部31は、制動操作部材23の操作が解消される場合にも停止前ブレーキ制御を終了する。
制動制御部31は、停止前ブレーキ制御を実施する場合、車両10が停止するまでに車輪11,12に付与する制動力の目標値の時間変化が規定された制動プロファイルに基づいて、車両10に付与する制動力を調整する。このため、制動制御部31が停止前ブレーキ制御を実施する場合には、車両10に付与する制動力が目標制動力BPTから変化する。なお、制動プロファイルは、停止前ブレーキ制御の開始時点における車両10の状態、詳しくは、車体速度VS及び車体加速度ASを考慮して、後述する取得部32により取得される。
制動プロファイルは、車両10に付与する制動力を目標制動力BPTよりも大きくする増大期間P1と、車両10に付与する制動力を目標制動力BPTよりも減少させる減少期間P2と、車両10に付与する制動力を維持する維持期間P3と、を含んでいる。減少期間P2及び維持期間P3は、車両10に付与する制動力が目標制動力BPT未満となるため、停止前ブレーキ制御を実施する場合には停止前ブレーキ制御を実施しない場合と比較して、車両10の制動距離が増大する可能性がある。この点で、増大期間P1は、目標制動力BPTよりも大きい制動力を車両10に付与することで、車両10の制動距離が増大することを抑制する期間である。減少期間P2は、増大期間P1に続く期間である。減少期間P2は、車両10に付与する制動力を目標制動力BPTよりも減少させることで、車両10のピッチング挙動を抑制する期間である。維持期間P3は、減少期間P2に続く期間である。維持期間P3は、車両10に付与する制動力を小さくした状態で、車両10が停止するのを待機する期間である。なお、維持期間P3は省略可能である。
制動制御部31は、車両10の停止を判定したことに起因して停止前ブレーキ制御を終了した場合、車両10が停止した状態を維持するために、車両10に付与する制動力を目標制動力BPTに向けて速やかに増大させる。ただし、車両10が完全に停止する前に車両10に付与する制動力が増大されると、車両10の減速度が大きくなるため、車両10にピッチング挙動が発生するおそれがある。一方、車両10が完全に停止してから車両10に付与する制動力が増大されるまでに時間差があると、車両10が停止した状態が維持されなくなるおそれがある。例えば、車両10が坂路で停止した場合、車両10が坂路に沿ってずり下がるおそれがある。このため、本実施形態のように、車両10の停止前後で車両10のアクチュエータの制御内容を変更する制御装置30においては、車両10が停止されたか否かの判定が精度良く行われることが好ましい。
取得部32は、車輪速センサ42の出力信号に基づいて、各車輪11,12の車輪速VWを取得する。また、取得部32は、各車輪11,12のうちの少なくとも1つの車輪の車輪速VWを車両10の速度である車体速度VSとする。さらに、取得部32は、車体速度VSの単位時間あたりの変化量に基づいて、車体加速度ASを取得する。取得部32は、任意のタイミングから車輪速センサ42の出力信号に現れるパルスを計数することにより、当該タイミングからの車両10の走行距離を取得することもできる。
ところで、車両10が低速で走行する場合には車両10が高速で走行する場合よりも、車輪速センサ42の出力信号に含まれる単位時間あたりのパルス数が少なくなる。このため、車両10が停止する直前など、車体速度VSが極めて低速となる場合には、取得部32は、車輪速センサ42の出力信号に基づいて車体速度VS及び車体加速度ASを精度良く取得できなくなるおそれがある。この場合、制動制御部31は、車両10が停止するタイミング、言い換えれば、停止前ブレーキ制御を終了するタイミングを正しく判定できなくなるおそれがある。
そこで、本実施形態の制御装置30は、車体速度VSではなく、車両10の走行距離に基づいて車両10が停止したか否かの判定を行う。以下、車両10の停止を判定するために、各機能部が実施する処理の内容について説明する。
導出部33は、取得部32が基準タイミングTSで取得した車体速度VS及び車体加速度ASに基づいて、車両10が停止する停止位置を導出する。言い換えれば、導出部33は、基準タイミングTSから車両10が停止するまでの走行距離である「停止距離Dx」を導出する。つまり、基準タイミングTSにおける車両10の位置から停止距離Dxだけ進んだ位置が停止位置に相当する。
ここで、基準タイミングTSは、車両10が減速中のタイミングであり、取得部32が車体速度VSを精度良く取得できるタイミングである。本実施形態では、取得部32が取得した車体速度VSが基準速度VSS以上である場合、当該車体速度VSの取得精度は良好である。このため、基準タイミングTSは、車体速度VSが基準速度VSS以上であるタイミングといえる。なお、基準速度VSSは、車輪速センサ42の性能及び車輪11,12の外径に応じて定めることが好ましい。基準速度VSSは、一例として、数km/h程度となることが一般的である。
そして、判定部34は、基準タイミングTS以降の車両10の位置と停止位置との差分距離が停止判定値ΔDth1以下となる場合に、車両10が停止したことを判定する停止判定を実施する。言い換えれば、判定部34は、基準タイミングTSからの車両10の走行距離である「累積距離Dy」と停止距離Dxとの差分が停止判定値ΔDth1以下となる場合に、車両10が停止したと判定する。詳しくは、判定部34は、停止距離Dxから累積距離Dyを差し引いた差が停止判定値ΔDth1以下となる場合に、車両10が停止したと判定する。累積距離Dyは、車輪速センサ42の出力信号に基づき取得部32により取得される。つまり、停止距離Dxが推定値であるのに対して、累積距離Dyは実測値である。一例として、停止判定値ΔDth1は、車輪速センサ42が1個~数個のパルスを含む信号を出力する間に車両10が進む距離とすればよい。
停止前ブレーキ制御の実施中である場合には、上記の制動プロファイルに基づいて車両10に付与される制動力が変化するため、基準タイミングTSから車両10が停止するまでの期間において、車体加速度ASが一定に維持されることはない。このため、基準タイミングTSから停止前ブレーキ制御を実施する場合と停止前ブレーキ制御を実施しない場合とでは、基準タイミングTSにおける車体速度VS及び車体加速度ASが等しくても、基準タイミングTSから車両10が停止するまでの実際の走行距離に差が生じるおそれがある。このため、停止前ブレーキ制御が実施される場合には、導出部33は、基準タイミングTSにおける車体速度VS及び車体加速度ASに加え、基準タイミングTSで作成された制動プロファイルも考慮して、停止位置、すなわち停止距離Dxを導出する。
一例として、導出部33は、増大期間P1の長さと増大期間P1の加速度とを基に、増大期間P1中における走行距離である第1走行距離を導出する。また、導出部33は、減少期間P2の長さと減少期間P2の加速度とを基に、減少期間P2中における走行距離である第2走行距離を導出する。さらに、導出部33は、維持期間P3の長さと維持期間P3の加速度とを基に、維持期間P3中における走行距離である第3走行距離を導出する。なお、増大期間P1、減少期間P2及び維持期間P3における加速度は、それぞれ増大期間P1、減少期間P2及び維持期間P3における制動力と相関する。そして、導出部33は、第1走行距離、第2走行距離及び第3走行距離の和を、停止距離Dxとして導出する。
さらに、停止前ブレーキ制御の実施中において、車両10が走行する路面の勾配が一定でない場合など、車両10を加速させたり減速させたりする外乱が車両10に作用すると、制動プロファイルに基づいて車両10に付与する制動力を制御しても、車両10が停止するまでの実際の走行距離が停止距離Dxから乖離するおそれがある。このため、導出部33は、まず、取得部32が基準タイミングTSで取得した車体速度VS及び車体加速度ASと制動プロファイルとに基づいて、基準タイミングTSから車両10が停止するまでの期間における時間と車両10の走行距離との関係を示した停止プロファイルを導出する。以降の記載では、停止プロファイルに示される走行距離を「推定距離Dz」ともいう。
そして、補正部35は、推定距離Dzと累積距離Dyとに差分が生じている場合、当該差分を解消するように、制動プロファイルを補正する。例えば、あるタイミングにおいて、累積距離Dyが推定距離Dzよりも大きくなる場合、補正部35は、上記タイミングよりも後に車両10に付与される制動力が増大されるように制動プロファイルを補正する。同様に、あるタイミングにおいて、累積距離Dyが推定距離Dzよりも小さい場合、補正部35は、上記タイミングよりも後に車両10に付与される制動力が減少されるように制動プロファイルを補正する。この場合、補正部35は、推定距離Dzと累積距離Dyとの差分が大きいほど、制動力の増減量が大きくなるように制動プロファイルを補正することが好ましい。
補正部35は、制動プロファイルの補正の可否を判定するための判定値として、補正判定値ΔDth2を用いる。つまり、補正部35は、推定距離Dzと累積距離Dyとの差分が補正判定値ΔDth2よりも大きい場合には制動プロファイルを補正し、推定距離Dzと累積距離Dyとの差分が補正判定値ΔDth2以下の場合には制動プロファイルを補正しない。
ただし、推定距離Dzと累積距離Dyとの差分が補正判定値ΔDth2よりも大きい場合であっても、当該差分が大き過ぎる場合には、補正部35が制動プロファイルを補正しても、当該差分を解消できない可能性がある。このため、制動制御部31は、推定距離Dzと累積距離Dyとの差分が補正判定値ΔDth2よりも大きな中止判定値ΔDth3以上の場合、停止前ブレーキ制御を中止する。そして、制動制御部31は、車両10に付与する制動力を速やかに目標制動力BPTまで増大させる。
本実施形態では、車両10の制動中において、導出部33が停止距離Dx及び停止プロファイルを導出するタイミングは、取得部32が取得する車体速度VSが上述した基準速度VSSよりも大きな状態であってかつ当該車体速度VSがなるべく小さくなったタイミングである。そこで、導出部33は、車体速度VSが基準速度VSSよりも僅かに大きな速度判定値VSth以下となる場合に、停止距離Dx及び停止プロファイルを導出する。また、本実施形態では、取得部32が停止距離Dx及び停止プロファイルを導出するタイミングで、制動制御部31が停止前ブレーキ制御を開始する。つまり、制動制御部31は、車体速度VSが速度判定値VSth以下となる場合に、停止前ブレーキ制御を開始する。
次に、図2に示すフローチャートを参照して、制御装置30が実施する処理の流れについて説明する。本処理は、車両10が減速中である場合に所定の制御サイクルごとに実施される処理である。
図2に示すように、制御装置30は、車輪速センサ42の出力信号に基づいて、車体速度VS及び車体加速度ASを取得する(S11)。続いて、制御装置30は、車体速度VSが速度判定値VSth以下か否かを判定する(S12)。車体速度VSが速度判定値VSthよりも大きい場合(S12:NO)、すなわち、車両10が停止間際でない場合、制御装置30は、本処理を終了する。
一方、車体速度VSが速度判定値VSth以下の場合(S12:YES)、すなわち、車両10が停止間際の場合、制御装置30は、停止前ブレーキ制御を開始する(S13)。つまり、制御装置30は、制動プロファイルを作成し、制動プロファイルに基づいて車両10に付与する制動力を調整する。そして、制御装置30は、停止距離Dx及び停止プロファイルを取得する(S14)。ここで、停止距離Dx及び停止プロファイルの導出に必要な車体速度VS及び車体加速度ASは、ステップS11で取得される。つまり、ステップS12が肯定判定される直前において、ステップS11が実施されるタイミングが基準タイミングTSに相当する。
次のステップS15において、制御装置30は、制動プロファイルに基づいて車両10に付与する制動力を調整する(S15)。例えば、制御装置30は、停止前ブレーキ制御の開始時点からの経過時間に応じた制動力を、制動プロファイルから取得する。制動プロファイルから取得した制動力を指示制動力とした場合、制御装置30は、指示制動力を基に制動装置20を作動させる。
続いて、制御装置30は、車輪速センサ42の出力信号に基づいて、基準タイミングTSからの累積距離Dyを取得する(S16)。例えば、累積距離Dyは、基準タイミングTSから、車輪速センサ42の出力信号に含まれるパルス数の積算値に基づいて取得できる。
そして、制御装置30は、停止距離Dxから累積距離Dyを差し引いた差が停止判定値ΔDth1以下か否かを判定する(S17)。言い換えれば、現在の車両10の位置と停止位置との差分距離が停止判定値ΔDth1以下か否かを判定する。停止距離Dxから累積距離Dyを差し引いた差が停止判定値ΔDth1以下の場合(S17:YES)、すなわち、車両10が停止していると判定できる場合、制御装置30は、停止前ブレーキ制御を終了し(S18)、車両10に付与する制動力を目標制動力BPTに向けて増大させる(S19)。その後、制御装置30は、本処理を終了する。
一方、先のステップS17において、停止距離Dxから累積距離Dyを差し引いた差が停止判定値ΔDth1よりも大きい場合(S17:NO)、すなわち、車両10が停止していないと判定できる場合、制御装置30は、停止プロファイルにおける推定距離Dzと累積距離Dyとの差分が中止判定値ΔDth3以下か否かを判定する(S20)。
推定距離Dzと累積距離Dyとの差分が中止判定値ΔDth3よりも大きい場合(S20:NO)、すなわち、車両10の実際の走行態様と停止プロファイルとが大きく乖離している場合、制御装置30は、停止前ブレーキ制御を中止し(S21)、車両10に付与する制動力を目標制動力BPTに向けて増大させる(S22)。その後、制御装置30は、本処理を終了する。
制御装置30は、先のステップS18,S19を実施する場合には、車両10が停止していると判定しているが、ステップS21,S22を実施する場合には、車両10が停止していないと判定している。このため、車両10が停止していないステップS22の実施時における制動力の増大速度は、車両10が停止しているステップS19の実施時における制動力の増大速度よりも低速とすることが好ましい。停止前の車両10に付与する制動力を短期間で増大させると、車両10の減速度が急に大きくなったことに起因して車両10にピッチング挙動が発生するためである。
先のステップS20において、推定距離Dzと累積距離Dyとの差分が中止判定値ΔDth3以下の場合(S20:YES)、すなわち、車両10の実際の走行態様と停止プロファイルとの乖離がそれほど大きくない場合、制御装置30は、推定距離Dzと累積距離Dyとの差分が補正判定値ΔDth2以下か否かを判定する(S23)。
推定距離Dzと累積距離Dyとの差分が補正判定値ΔDth2よりも大きい場合(S23:NO)、すなわち、車両10の実際の走行態様と停止プロファイルとの間に乖離が発生していると判定できる場合、制御装置30は、当該差分が小さくなるように制動プロファイルを補正する(S24)。その後、制御装置30は、ステップS15に処理を移行する。この場合、補正後の制動プロファイルに基づき、車両10に付与する制動力が調整される。一方、推定距離Dzと累積距離Dyとの差分が補正判定値ΔDth2以下である場合(S23:YES)、すなわち、車両10の実際の走行態様と停止プロファイルとの間に乖離が発生していないと判定できる場合、制御装置30は、ステップS15に処理を移行する。
本実施形態の作用及び効果について説明する。
詳しくは、図3(a)~(c)及び図4(a)~(c)を参照して、目標制動力BPTが一定に維持される状況下において、停止間際の車両10に付与される制動力、車体速度及び走行距離の推移について説明する。
詳しくは、図3(a)~(c)及び図4(a)~(c)を参照して、目標制動力BPTが一定に維持される状況下において、停止間際の車両10に付与される制動力、車体速度及び走行距離の推移について説明する。
図3(a)及び図4(a)は、制動プロファイルに基づく制動力を「BPP」で示している。また、図3(b)及び図4(b)において、車体速度VSは、車輪速センサ42の出力信号に基づいて取得不能な車両10の実際の走行速度である。
まず、図3を参照して、停止間際の車両10に作用する外乱が小さい場合について説明する。
図3(a),(b)に示すように、車両10に制動力が付与されることにより、車体速度VSが速度判定値VSth以下となる第1のタイミングt11になると、停止前ブレーキ制御が開始される。このため、第1のタイミングt11から、車両10に付与される制動力が要求制動力よりも大きくなる増大期間P1が開始する。また、第1のタイミングt11では、停止距離Dx及び停止プロファイルが導出される。すなわち、図3に示す例では、第1のタイミングt11が、概ね基準タイミングTSに相当する。
図3(a),(b)に示すように、車両10に制動力が付与されることにより、車体速度VSが速度判定値VSth以下となる第1のタイミングt11になると、停止前ブレーキ制御が開始される。このため、第1のタイミングt11から、車両10に付与される制動力が要求制動力よりも大きくなる増大期間P1が開始する。また、第1のタイミングt11では、停止距離Dx及び停止プロファイルが導出される。すなわち、図3に示す例では、第1のタイミングt11が、概ね基準タイミングTSに相当する。
第2のタイミングt12になると、増大期間P1が終了し、車両10に付与される制動力が次第に減少される減少期間P2が開始する。その後、図3(c)に示すように、減少期間P2中の第3のタイミングt13になると、推定距離Dzと累積距離Dyとに差が生じ始める。詳しくは、第3のタイミングt13において、車両10が下り勾配の路面に差し掛かるなど、車両10を加速させる外乱が車両10に作用することに起因して、累積距離Dyが推定距離Dzよりも大きくなり始める。
第4のタイミングt14において、推定距離Dzと累積距離Dyとの差分が補正判定値ΔDth2よりも大きくなると、図3(a)に二点鎖線で示すように、制動プロファイルが補正される。図3(c)に示すように累積距離Dyが推定距離Dzよりも大きくなる場合、制動プロファイルが補正されると、補正後の制動プロファイルに基づいた制動力BPPが、補正前の制動プロファイルに基づいた制動力BPPよりも大きくなる。その結果、図3(a)に示すように、車両10に付与される制動力が大きくなる。
第4のタイミングt14以降では、図3(c)に示すように、推定距離Dzと累積距離Dyとの差分が一時的に大きくなった後、次第に小さくなる。すると、制動プロファイルの補正量の大きさが徐々に小さくなる。そして、推定距離Dzと累積距離Dyとの差分が補正判定値ΔDth2以下になる第5のタイミングt15になると、図3(a)に示すように、制動プロファイルが補正されなくなる。
その後、図3(a)に示すように、第6のタイミングt16になると、減少期間P2が終了し、車両10に付与される制動力が維持される維持期間P3が開始する。そして、減少期間P2中の第7のタイミングt17になると、図3(c)に示すように、停止距離Dxと累積距離Dyとが等しくなる。詳しくは、停止距離Dxから累積距離Dyを差し引いた差が停止判定値ΔDth1以下となる。言い換えれば、現在の車両10の位置と停止位置との差分距離が停止判定値ΔDth1以下となる。このため、第7のタイミングt17において、車両10が停止されたと判定される。また、第7のタイミングt17は、図3(b)に示すように、車両10の走行速度が「0」になるタイミングでもある。
本実施形態では、第7のタイミングt17よりも前に、車輪速センサ42の出力信号に基づいて取得される車体速度VSが「0」になっていたとしても、停止距離Dxから累積距離Dyを差し引いた差が停止判定値ΔDth1以下になっていなければ、車両10が停止されたと判定されない。こうして、車輪速センサ42の出力信号に基づいて車体速度VSを精度良く取得できない場合でも、車両10の停止判定の精度が低下することが抑制される。
図3(a)に示すように、第7のタイミングt17以降は、車両10が停止した状態が維持されるように、車両10に付与される制動力が目標制動力BPTに向けて速やかに増大される。つまり、精度良く車両10の停止判定が行われることにより、車両10の停止タイミングと制動力の増大タイミングとのずれによる車両挙動の乱れが抑制される。
また、停止前ブレーキ制御の実施中において、車両10を加減速させる外乱が作用する場合には、推定距離Dzと累積距離Dyとの乖離を是正する方向に制動プロファイルが補正される。そして、補正後の制動プロファイルに基づいて車両10に付与する制動力が調整される。このため、基準タイミングTSからの車両10の実際の走行距離が、停止プロファイルにおける推定距離Dzから乖離した状態が続くことを抑制できる。
続いて、図4を参照して、停止間際の車両10に作用する外乱が大きい場合について説明する。第1のタイミングt11から第4のタイミングt14までは、図3と略同様のため、第4のタイミングt14以降について説明する。
図4に示すように、第4のタイミングt14において、推定距離Dzと累積距離Dyとの差分が補正判定値ΔDth2よりも大きくなると、図4(a)に二点鎖線で示すように、制動プロファイルが補正される。その結果、図4(a)に示すように、車両10に付与される制動力が大きくなる。
ところが、図4に示す場合には、車両10に作用する外乱が大きいため、第4のタイミングt14以降も推定距離Dzと累積距離Dyとの差分が増大し続ける。そして、図4(c)に示すように、第5のタイミングt141において、推定距離Dzと累積距離Dyとの差分が中止判定値ΔDth3よりも大きくなると、制動プロファイルの補正が中止、言い換えれば、停止前ブレーキ制御が中止される。つまり、第5のタイミングt141以降では、制動プロファイルに基づいて車両10に付与する制動力の調整が行われなくなる代わりに、図4(a)に二点鎖線で示すように、車両10に付与される制動力が目標制動力BPTに向けて増大される。このため、図4に示す場合には、停止距離Dxに応じた第7のタイミングt17とは異なるタイミングである第6のタイミングt142で車両10が停止する。
こうして、推定距離Dzと累積距離Dyとが大きく乖離する場合には、停止前ブレーキ制御が中止され、車両10に付与する制動力が目標制動力BPTとなる。このため、車両10を大きく加減速させる外乱が作用する場合に、車両10が運転者の意図とは異なる態様で制動される事態が回避される。
本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・制御装置30は、停止前ブレーキ制御の実施中において、時間とともに変化する車両10の位置と停止位置との差分距離が停止判定値ΔDth1以下となる場合に、車両10が停止したと判定してもよい。この場合、車両10の位置は、以下のように導出できる。
・制御装置30は、停止前ブレーキ制御の実施中において、時間とともに変化する車両10の位置と停止位置との差分距離が停止判定値ΔDth1以下となる場合に、車両10が停止したと判定してもよい。この場合、車両10の位置は、以下のように導出できる。
・制御装置30の導出部33は、車両位置情報取得装置43により取得された位置情報に基づいて、基準タイミングTS以降の車両10の位置を導出してもよい。
・制御装置30の導出部33は、対象情報取得装置44により取得された情報に基づいて、車両10の位置を取得してもよい。この場合、導出部33は、対象の位置の変化に基づいて車両10の位置を取得したり、対象との距離の変化に基づいて車両10の位置を取得したりすればよい。
・制御装置30の導出部33は、対象情報取得装置44により取得された情報に基づいて、車両10の位置を取得してもよい。この場合、導出部33は、対象の位置の変化に基づいて車両10の位置を取得したり、対象との距離の変化に基づいて車両10の位置を取得したりすればよい。
・制御装置30の取得部32は、車両位置情報取得装置43及び対象情報取得装置44が出力する情報に基づいて、車輪速センサ42の検出信号に基づいて導出した累積距離Dyを補正してもよい。
・制御装置30の補正部35は、推定距離Dzと累積距離Dyとに差分が生じている場合、制動プロファイルを補正するのではなく、制動プロファイルから取得した指示制動力を補正してもよい。
・制御装置30は、停止前ブレーキ制御以外の処理を実施するために、車両10が停止したか否かを判定してもよい。例えば、こうした処理としては、車両停止後に電動パーキングブレーキをオンにするオートブレーキホールド及び車両停止後にエンジンを停止するアイドリングストップが挙げられる。
・制御装置30は、停止前ブレーキ制御を実施しない場合、基準タイミングTS以降の目標制動力BPTが変化しないと想定して、基準タイミングTSにおける車体速度VS及び車体加速度ASに基づいて停止距離Dxを導出してもよい。この場合、制御装置30は、基準タイミングTSにおいて、停止プロファイルを導出したり、推定距離Dzと累積距離Dyとの差分に基づいて車両10に付与する制動力を調整したりしてもよい。
・制動プロファイルは、基準タイミングTSからの車両10の移動量と制動力との関係を示す制動プロファイルであってもよい。
・制御装置30は、停止距離Dx及び停止プロファイルを導出するタイミングと停止前ブレーキ制御の実施を開始するタイミングとをずらしてもよい。
・制御装置30は、停止距離Dx及び停止プロファイルを導出するタイミングと停止前ブレーキ制御の実施を開始するタイミングとをずらしてもよい。
・制御装置30は、停止前ブレーキ制御が繰り返し実施される中で、推定距離Dzと累積距離Dyとの差分が中止判定値ΔDth3よりも大きくなることが何度もある場合、言い換えれば、停止前ブレーキ制御が何度も異常終了される場合には、その旨を学習してもよい。例えば、上記の場合には、制御装置30は、停止前ブレーキ制御の異常終了の原因が車両特性によるものであると学習し、中止判定値ΔDth3を大きくしてもよい。
・車両10は、車輪11,12に回生制動力を付与する回生制動装置を備えていてもよい。この場合、制御装置30は、車輪11,12に付与する回生制動力を変化させることにより、車両10に付与する制動力の大きさを調整できる。
・制御装置30は、以下(a)~(c)の何れかの構成であればよい。(a)制御装置30は、コンピュータプログラムに従って各種処理を実行する一つ以上のプロセッサを備えている。プロセッサは、CPU並びに、RAM及びROMなどのメモリを含んでいる。メモリは、処理をCPUに実行させるように構成されたプログラムコード又は指令を格納している。メモリ、すなわちコンピュータ可読媒体は、汎用又は専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含んでいる。(b)制御装置30は、各種処理を実行する一つ以上の専用のハードウェア回路を備えている。専用のハードウェア回路としては、例えば、特定用途向け集積回路、すなわちASIC又はFPGAを挙げることができる。ASICとは「Application Specific Integrated Circuit」の略記であり、FPGAとは「Field Programmable Gate Array」の略記である。(c)制御装置30は、各種処理の一部をコンピュータプログラムに従って実行するプロセッサと、各種処理のうち残りの処理を実行する専用のハードウェア回路とを備えている。
Claims (5)
- 車輪の回転速度に応じた信号を出力する車輪速センサと、
前記車輪速センサの出力信号に基づいて、車両が減速している所定の基準タイミングにおける車輪速を取得する取得部と、
前記取得部により取得された前記車輪速に基づいて、前記車両が停止する停止位置を導出する導出部と、
前記基準タイミング以降の前記車両の位置と前記停止位置との差分距離が停止判定値以下となる場合に、前記車両が停止したことを判定する停止判定を実施する判定部と、を備える
停車判定装置。 - 前記車両が停止するまでに前記車輪に付与する制動力の目標値の時間変化が規定された制動プロファイルに基づいて、前記車輪に付与する制動力を調整する制動制御部を備え、
前記取得部は、前記基準タイミングにおける前記制動プロファイルを取得し、
前記導出部は、前記取得部により取得された前記制動プロファイルに基づいて前記停止位置を導出する
請求項1に記載の停車判定装置。 - 前記基準タイミングは、前記車輪速が基準速度以上であるタイミングである
請求項1又は請求項2に記載の停車判定装置。 - 前記車両は、前記車両の現在位置に関する位置情報を取得する車両位置情報取得装置を備え、
前記導出部は、前記車両位置情報取得装置により取得された前記位置情報に基づいて、前記基準タイミング以降の前記車両の位置を導出する
請求項1~請求項3の何れか一項に記載の停車判定装置。 - 前記車両は、前記車両の周辺に存在する対象の位置及び前記車両と前記対象との距離の少なくとも一方に関する情報を取得する対象情報取得装置を備え、
前記導出部は、前記対象情報取得装置により取得された前記情報に基づいて、前記車両の位置を導出する
請求項1~請求項3の何れか一項に記載の停車判定装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112021005178.4T DE112021005178T5 (de) | 2020-09-30 | 2021-09-30 | Fahrzeugstoppbestimmungseinrichtung |
CN202180064224.7A CN116323346A (zh) | 2020-09-30 | 2021-09-30 | 停车判定装置 |
US18/026,871 US20230331204A1 (en) | 2020-09-30 | 2021-09-30 | Vehicle stop determination device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020166219A JP7574595B2 (ja) | 2020-09-30 | 2020-09-30 | 停車判定装置 |
JP2020-166219 | 2020-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022071501A1 true WO2022071501A1 (ja) | 2022-04-07 |
Family
ID=80950485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/036184 WO2022071501A1 (ja) | 2020-09-30 | 2021-09-30 | 停車判定装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230331204A1 (ja) |
JP (1) | JP7574595B2 (ja) |
CN (1) | CN116323346A (ja) |
DE (1) | DE112021005178T5 (ja) |
WO (1) | WO2022071501A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013049389A (ja) * | 2011-08-31 | 2013-03-14 | Nissan Motor Co Ltd | 車両の制駆動力制御装置及び制駆動力制御方法 |
JP2015020481A (ja) * | 2013-07-17 | 2015-02-02 | トヨタ自動車株式会社 | 車輪情報取得装置 |
JP2019025977A (ja) * | 2017-07-26 | 2019-02-21 | 株式会社アドヴィックス | 車両の停止支援装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016028913A (ja) | 2014-07-25 | 2016-03-03 | 日産自動車株式会社 | 車両の前後振動制御装置 |
-
2020
- 2020-09-30 JP JP2020166219A patent/JP7574595B2/ja active Active
-
2021
- 2021-09-30 CN CN202180064224.7A patent/CN116323346A/zh active Pending
- 2021-09-30 WO PCT/JP2021/036184 patent/WO2022071501A1/ja active Application Filing
- 2021-09-30 US US18/026,871 patent/US20230331204A1/en active Pending
- 2021-09-30 DE DE112021005178.4T patent/DE112021005178T5/de active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013049389A (ja) * | 2011-08-31 | 2013-03-14 | Nissan Motor Co Ltd | 車両の制駆動力制御装置及び制駆動力制御方法 |
JP2015020481A (ja) * | 2013-07-17 | 2015-02-02 | トヨタ自動車株式会社 | 車輪情報取得装置 |
JP2019025977A (ja) * | 2017-07-26 | 2019-02-21 | 株式会社アドヴィックス | 車両の停止支援装置 |
Also Published As
Publication number | Publication date |
---|---|
CN116323346A (zh) | 2023-06-23 |
JP2022057785A (ja) | 2022-04-11 |
DE112021005178T5 (de) | 2023-08-10 |
JP7574595B2 (ja) | 2024-10-29 |
US20230331204A1 (en) | 2023-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4297132B2 (ja) | 車両用警報装置 | |
JP6380309B2 (ja) | 車両の制御装置 | |
US10906541B2 (en) | Method for braking a vehicle on a slope | |
US7866427B2 (en) | Vehicle multi-stage integrated brake assist for a collision preparation system | |
US20120109412A1 (en) | Vehicle movement control apparatus and vehicle movement control method | |
EP2281728A1 (en) | Device/method for controlling turning behavior of vehicle | |
JP6418407B2 (ja) | 車両のブレーキ制御装置 | |
FR2949414A1 (fr) | Systeme de stabilisation de la direction de circulation d'un vehicule | |
JP2002019594A (ja) | 車両に設けられているブレーキ・アクチュエータのブレーキ作用の保証方法および装置 | |
JP2009061941A (ja) | 車両走行制御装置 | |
US11173957B2 (en) | Vehicle movement control apparatus | |
JPWO2018230341A1 (ja) | 車両制御装置 | |
US9873432B2 (en) | Control apparatus for vehicle | |
JP4766109B2 (ja) | 車両用警報装置 | |
US11518350B2 (en) | Driving assistance apparatus | |
EP2862765A1 (en) | Vehicle travel assistance device | |
US11299132B2 (en) | Driving support apparatus | |
US10086669B2 (en) | Stabilizer control device | |
WO2022071501A1 (ja) | 停車判定装置 | |
US20200223404A1 (en) | Driving support system | |
JP2015047980A (ja) | ブレーキ制御装置 | |
US11161411B2 (en) | Driving support apparatus | |
AU2018202517B2 (en) | Lane departure prevention device and lane departure prevention system | |
JP2016094112A (ja) | 車両の走行制御装置 | |
JP2020083027A (ja) | 制動制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21875797 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21875797 Country of ref document: EP Kind code of ref document: A1 |