WO2022071248A1 - 包装材、包装袋及び包装体 - Google Patents

包装材、包装袋及び包装体 Download PDF

Info

Publication number
WO2022071248A1
WO2022071248A1 PCT/JP2021/035450 JP2021035450W WO2022071248A1 WO 2022071248 A1 WO2022071248 A1 WO 2022071248A1 JP 2021035450 W JP2021035450 W JP 2021035450W WO 2022071248 A1 WO2022071248 A1 WO 2022071248A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas barrier
packaging material
packaging
polyolefin
Prior art date
Application number
PCT/JP2021/035450
Other languages
English (en)
French (fr)
Inventor
亮太 田中
信哉 落合
昂太郎 渡邉
雄太 桶屋
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to CN202180066302.7A priority Critical patent/CN116348386A/zh
Priority to JP2022553968A priority patent/JPWO2022071248A1/ja
Priority to EP21875550.2A priority patent/EP4223663A4/en
Publication of WO2022071248A1 publication Critical patent/WO2022071248A1/ja
Priority to US18/127,344 priority patent/US20230227228A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • B05D7/58No clear coat specified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2507/00Polyolefins
    • B05D2507/01Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2507/00Polyolefins
    • B05D2507/02Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/242All polymers belonging to those covered by group B32B27/32
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7248Odour barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/46Bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2565/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D2565/38Packaging materials of special type or form
    • B65D2565/381Details of packaging materials of special type or form
    • B65D2565/385Details of packaging materials of special type or form especially suited for or with means facilitating recycling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2565/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D2565/38Packaging materials of special type or form
    • B65D2565/381Details of packaging materials of special type or form
    • B65D2565/387Materials used as gas barriers

Definitions

  • This disclosure relates to packaging materials, packaging bags and packaging bodies. Specifically, the present disclosure relates to a packaging material for packaging a content containing a fragrance, which can suppress the dissipation and transfer of fragrance and is material recyclable. The present disclosure also relates to a packaging bag and a packaging body using the packaging material that can be recycled as a material.
  • hair care products such as shampoos and conditioners, liquid detergents for clothing, soft finishes, etc. have been filled in soft packaging materials and sold for the purpose of reducing the amount of plastic used, and they are sold in plastic bottles at home. It has become the mainstream to transfer and use it.
  • packaging materials are made by laminating plastic films and making bags.
  • a print layer was formed on a polyethylene terephthalate (PET) film having a thickness of 12 ⁇ m by a gravure printing method, and a urethane-based adhesive was used for this printed surface and a nylon film (Ny) having a thickness of 15 ⁇ m.
  • PET polyethylene terephthalate
  • Ny nylon film
  • a laminate is obtained by laminating by a dry laminating method. Further, the nylon film surface of this laminate and the linear low density polyethylene (LLDPE) having a thickness of 100 ⁇ m are bonded in the same manner to obtain a laminate having a PET / Ny / LLDPE configuration.
  • LLDPE linear low density polyethylene
  • a standing pouch having a spout portion is generally used in consideration of display suitability at the store and pourability.
  • a printing layer is formed on a 15 ⁇ m thick nylon film (Ny) or a 12 ⁇ m thick polyethylene terephthalate (PET) film by a gravure printing method, and the printed surface and a 120 ⁇ m thick linear low density polyethylene (LLDPE) are formed.
  • a laminated body having a PET / LLDPE structure or a Ny / LLDPE structure, which are laminated by a dry laminating method using a urethane-based adhesive are also used in the same manner.
  • a packaging bag made of a laminate having a PET / Ny / LLDPE composition or a Ny / LLDPE composition.
  • the problem is the dissipation of fragrance components and the accompanying transfer of fragrance to other articles.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a packaging material capable of realizing good permeation inhibitory properties of fragrance components by using polyolefin as a main material.
  • the present disclosure is also intended to provide packaging bags and packages using the packaging material.
  • the inventors examined a polyolefin packaging material that can be recycled as a material and that does not easily dissipate or transfer fragrance components. As a result, it has been found that at least a packaging material in which a first polyolefin layer, an inorganic vapor-deposited layer, a gas barrier coating layer, and a second polyolefin layer having a heat-sealing property are laminated can achieve the above object.
  • the disclosed packaging material has been completed.
  • the packaging material according to one aspect of the present disclosure is a packaging material for packaging contents containing fragrances, and has a first polyolefin layer, an inorganic vapor deposition layer, a gas barrier coating layer, and a heat sealability.
  • a second polyolefin layer is provided in this order.
  • the glass transition point (Tg) of PET is around 70 ° C and the glass transition point of Ny is around 50 ° C, when these are used as the constituent films of the packaging bag, PET and Ny are used under normal conditions of use.
  • the molecules in the amorphous portion of the above are in a glass state with gentle thermal motion, and the fragrance component is difficult to dissolve in these films, and permeation is suppressed. Therefore, when a packaging bag made of a laminated body having a PET / Ny / LLDPE structure or a Ny / LLDPE structure is used, it is unlikely that the fragrance component is dissipated or the scent is transferred to other articles.
  • the glass transition temperature of polyethylene is around -125 ° C and the glass transition temperature of polypropylene is around 0 ° C
  • polyethylene and polypropylene are used at normal operating temperatures.
  • the thermal motion of the molecular chain of the non-crystalline portion is in an active state, and the fragrance component is easily dissolved in these films and permeates the outside of the packaging bag.
  • a soft packaging material mainly made of polyolefin such as polyethylene or polypropylene
  • the gas barrier coating layer comprises at least one of a hydroxyl group-containing polymer compound and a hydrolyzate thereof, and at least one selected from the group consisting of a metal alkoxide, a silane coupling agent and a hydrolyzate thereof. It may be a heat-dried product of the composition containing.
  • the gas barrier coating layer may contain a polycarboxylic acid-based polymer crosslinked with a polyvalent metal or a polyvalent metal compound.
  • the gas barrier coating layer may be a cured product of an adhesive composition containing a resin having at least one of an aromatic ring and an aliphatic ring.
  • the inorganic vapor deposition layer may contain at least one of aluminum oxide and silicon oxide.
  • the first polyolefin layer and the second polyolefin layer may be made of the same material.
  • the first polyolefin layer and the second polyolefin layer may be made of polyethylene.
  • the first polyolefin layer and the second polyolefin layer may be made of polypropylene.
  • the packaging bag according to one aspect of the present disclosure is formed from the above packaging material.
  • the package according to one aspect of the present disclosure includes the above-mentioned packaging bag and the contents containing the fragrance packaged in the packaging bag.
  • the fragrance may contain at least one of esters and terpenes.
  • a packaging material capable of realizing good permeation inhibitory properties of fragrance components by using polyolefin as a main material is provided. Further, according to the present disclosure, a packaging bag and a packaging body using the packaging material are provided.
  • FIG. 1 is a cross-sectional view showing one aspect of the packaging material according to the present disclosure.
  • the packaging material of the present disclosure is a material for packaging the contents containing a fragrance.
  • the fragrances include isobutyl acetate, ethyl acetate, methyl butyrate, ethyl butyrate, ethyl hexanoate, ethyl methyl butyrate, ethyl 2-methylbutyrate, ethyl 2-methylvalerate, hexyl acetate, allyl hexaneate, allyl heptate, acetic acid.
  • Esters such as benzyl, amyl butyrate, amyl valerate, isoamyl acetate, ⁇ -methylbenzyl acetate, ⁇ -pinene, allyl cyclohexanepropionate, 2-phenoxyethyl isobutyrate, methyl salicylate, limonene, citronellol, linalol, nerol, nerolidol , ⁇ -Terpineol, Milsen, Timor, Thioterpineol and other terpenes and the like can be mentioned.
  • the contents containing these fragrances include hair care products such as shampoos and conditioners, liquid detergents for clothing, and fabric softeners.
  • the packaging material of the present disclosure is particularly excellent in permeation inhibitory property against esters and terpenes. Both esters and terpenes have a common feature that the solubility parameter (SP value) is close to that of polyolefin.
  • the solubility parameter is a value defined by regular solution theory, and it is empirically known that the smaller the difference between the SP values of the two components, the greater the solubility.
  • the SP value of polyethylene is 8.6 (cal / cm 3 ) 1/2
  • the SP value of polypropylene is 8.0 (cal / cm 3 ) 1/2 .
  • the SP value of esters is about 7.8 to 8.5 (cal / cm 3 ) 1/2
  • the SP value of terpenes such as limonene is 7.3 to 7.8 (cal / cm 3 ) 1 /. It is about 2 , and the difference from the SP value of polyethylene or polypropylene is small.
  • the SP value of PET is 13.3 (cal / cm 3 ) 1/2
  • the SP value of Ny is 9.9 to 13.7 (cal / cm 3 ) 1/2
  • the SP value of polyolefin is It is shown that the difference from the SP value of esters and terpenes is large and the solubility is small as compared with.
  • the fragrance permeation inhibitory property in the conventional packaging is also explained from the viewpoint of the SP value.
  • the packaging material of the present disclosure includes a first polyolefin layer, an inorganic vapor deposition layer, a gas barrier coating layer, and a second polyolefin layer having a heat seal property in this order.
  • FIG. 1 is a cross-sectional view showing one aspect of the packaging material according to the present disclosure.
  • the packaging material 10 includes a first polyolefin layer 1, an inorganic vapor deposition layer 2, a gas barrier coating layer 3, and a second polyolefin layer 4 having a heat-sealing property in this order.
  • the inorganic vapor deposition layer 2 is formed on one surface of the first polyolefin layer 1, but the inorganic vapor deposition layer may be formed on both sides of the first polyolefin layer 1.
  • the second polyolefin layer 4 may be laminated on the gas barrier coating layer 3 via an adhesive layer (not shown).
  • the first polyolefin layer serves as a base material (polyolefin film) for forming the inorganic vapor-filmed layer.
  • Examples of the polyolefin constituting the first polyolefin layer include polyethylene and polypropylene.
  • polyethylene examples include high-density polyethylene (HDPE) in consideration of vapor deposition processing, printing processing, bag making processing, filling suitability, and the like. Further, in order to improve physical properties such as flexibility, for example, high density polyethylene (HDPE) / medium density polyethylene (MDPE) / low density polyethylene (LDPE) / medium density polyethylene (MDPE) formed by a coextrusion method. / A multi-layered film such as high density polyethylene (HDPE) may be used as the first polyolefin layer.
  • HDPE high-density polyethylene
  • MDPE medium density polyethylene
  • LDPE low density polyethylene
  • MDPE medium density polyethylene
  • a multi-layered film such as high density polyethylene (HDPE) may be used as the first polyolefin layer.
  • polypropylene examples include stretched polypropylene. Generally, polypropylene is roughly classified into homopolymers, random copolymers, block copolymers, and terpolymers, and the polymer type is selected according to the application and required performance. However, when used as a base film for a package, polypropylene is homopolymerized. The polymer polypropylene is preferred. Further, for the purpose of imparting easy adhesiveness and sealing property, a multilayer film in which a copolymer or a terpolymer is formed as a skin layer on a homopolymer which is a core layer by a coextrusion method is used as a first polyolefin layer. It is also good.
  • the polyolefin constituting the first polyolefin layer may be a recycled polyolefin, or may be a polyolefin obtained by polymerizing a raw material derived from biomass such as a plant. These polyolefins may be used alone or in admixture with polyolefins polymerized from conventional fossil fuels.
  • the polyolefin film constituting the first polyolefin layer may be a stretched film or a non-stretched film.
  • the polyolefin film may be a stretched film from the viewpoints of impact resistance, heat resistance, water resistance, dimensional stability and the like.
  • the laminated body can be more preferably used for the application of hot filling.
  • the stretching method is not particularly limited, and any method may be used as long as a film having stable dimensions can be supplied, such as stretching by inflation, uniaxial stretching, and biaxial stretching.
  • the thickness of the polyolefin film is not particularly limited. Depending on the application, the thickness can be 6 to 200 ⁇ m, but from the viewpoint of obtaining excellent impact resistance and excellent gas barrier property, it may be 9 to 50 ⁇ m or 12 to 38 ⁇ m.
  • Various pretreatments such as corona treatment, plasma treatment, and frame treatment may be performed on the first polyolefin layer in order to improve the adhesion to the inorganic thin-film deposition layer as long as the barrier performance is not impaired.
  • An adhesion layer may be provided on the surface of the first polyolefin layer on which the inorganic thin-film deposition layer is laminated.
  • the adhesion layer can obtain two effects of improving the adhesion performance between the first polyolefin layer and the inorganic thin-film deposition layer and improving the smoothness of the surface of the polyolefin layer. By improving the smoothness, it becomes easy to form the inorganic vapor-filmed layer uniformly without defects, and it is easy to develop a high barrier property.
  • the thickness of the adhesion layer is not particularly limited, but is preferably in the range of 0.01 to 5 ⁇ m, more preferably in the range of 0.03 to 3 ⁇ m, and particularly preferably in the range of 0.05 to 2 ⁇ m. preferable.
  • the thickness of the adhesion layer is at least the above lower limit value, more sufficient interlayer adhesion strength tends to be obtained, while when it is at least the above upper limit value, the desired gas barrier property tends to be easily developed.
  • the adhesion layer can be formed by using an anchor coating agent.
  • the anchor coating agent include polyester-based polyurethane resin, polyether-based polyurethane resin, acrylic-based polyurethane resin, and the like. Of these, polyester-based polyurethane resins are preferable from the viewpoint of heat resistance and interlayer adhesion strength.
  • a known coating method can be used without particular limitation, and a dipping method (dipping method), a spray, a coater, a printing machine, a brush, or the like can be used.
  • a dipping method dipping method
  • the types of coaters and printing machines used in these methods and their coating methods include gravure coaters such as direct gravure method, reverse gravure method, kiss reverse gravure method, and offset gravure method, reverse roll coater, and micro gravure. Examples include coaters, chamber doctor combined coaters, air knife coaters, dip coaters, bar coaters, comma coaters, and die coaters.
  • the amount of the adhesive layer applied is preferably 0.01 to 5 g / m 2 and 0.03 to 3 g / m 2 per 1 m 2 after the anchor coating agent is applied and dried. Is more preferable.
  • the mass per 1 m 2 after applying the anchor coating agent and drying is at least the above lower limit, the film formation tends to be sufficient, while when it is at least the above upper limit, it is easy to sufficiently dry and the solvent is released. It tends to be difficult to remain.
  • the method for drying the adhesion layer is not particularly limited, but a method by natural drying, a method of drying in an oven set to a predetermined temperature, a dryer attached to the above coater, for example, an arch dryer, a floating dryer, a drum dryer, etc. A method using an infrared dryer or the like can be mentioned. Further, the drying conditions can be appropriately selected depending on the method of drying. For example, in the method of drying in an oven, it is preferable to dry at a temperature of 60 to 100 ° C. for about 1 second to 2 minutes.
  • a polyvinyl alcohol-based resin may be used as the anchor coating agent.
  • the polyvinyl alcohol-based resin may have a vinyl alcohol unit obtained by saponifying vinyl ester units, and examples thereof include polyvinyl alcohol (PVA) and ethylene-vinyl alcohol copolymer (EVOH).
  • the PVA for example, vinyl esters such as vinyl acetate, vinyl formate, vinyl propionate, vinyl valerate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl pivalate, and vinyl versatic acid are independently polymerized. Then, the saponified resin is mentioned.
  • the PVA may be a copolymerized or post-modified modified PVA.
  • the modified PVA can be obtained, for example, by copolymerizing a vinyl ester with an unsaturated monomer copolymerizable with the vinyl ester and then saponifying the resin.
  • Examples of unsaturated monomers copolymerizable with vinyl esters include olefins such as ethylene, propylene, isobutylene, ⁇ -octene, ⁇ -dodecene, and ⁇ -octadecene; 3-butene-1-ol and 4-pentin-1-ol.
  • the degree of polymerization of PVA is preferably 300 to 3000. If the degree of polymerization is less than 300, the barrier property tends to decrease, and if it exceeds 3000, the viscosity is too high and the coatability tends to decrease.
  • the degree of saponification of PVA is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 99 mol% or more. Further, the saponification degree of PVA may be 100 mol% or less, or 99.9 mol% or less. The degree of polymerization and saponification of PVA can be measured according to the method described in JIS K 6726 (1994).
  • EVOH is generally a common weight of ethylene with an acid vinyl ester such as vinyl acetate, vinyl formate, vinyl propionate, vinyl valerate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl pivalate, vinyl versatic acid and the like. Obtained by converting the coalescence into Ken.
  • the degree of polymerization of EVOH is preferably 300 to 3000. If the degree of polymerization is less than 300, the barrier property tends to decrease, and if it exceeds 3000, the viscosity is too high and the coatability tends to decrease.
  • the saponification degree of the vinyl ester component of EVOH is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 99 mol% or more. Further, the saponification degree of EVOH may be 100 mol% or less or 99.9 mol% or less.
  • the degree of saponification of EVOH is determined from the peak area of hydrogen atoms contained in the vinyl ester structure and the peak area of hydrogen atoms contained in the vinyl alcohol structure by performing nuclear magnetic resonance ( 1 H-NMR) measurement.
  • the ethylene unit content of EVOH is preferably 10 mol% or more, more preferably 15 mol% or more, further preferably 20 mol% or more, and particularly preferably 25 mol% or more.
  • the ethylene unit content of EVOH is preferably 65 mol% or less, more preferably 55 mol% or less, still more preferably 50 mol% or less.
  • the gas barrier property and the dimensional stability under high humidity can be kept good.
  • the gas barrier property can be enhanced.
  • the ethylene unit content of EVOH can be determined by the NMR method.
  • examples of the method for forming the adhesion layer include coating with a polyvinyl alcohol-based resin solution and multi-layer extrusion.
  • the layers may be laminated via an adhesive resin such as maleic anhydride graft-modified polyethylene.
  • the anchor coating agent may contain a silane coupling agent from the viewpoint of improving the adhesion between the base material layer and the thin-film deposition layer.
  • a silane coupling agent containing any organic functional group can be used, for example, vinyltrimethoxysilane, ⁇ -chloropropylmethyldimethoxysilane, ⁇ -chloropropyltrimethoxysilane, glycidoxypropyltrimethoxysilane, ⁇ -methacry.
  • silane coupling agents such as roxypropyltrimethoxysilane and ⁇ -methacryloxypropylmethyldimethoxysilane or their hydrolyzates can be used.
  • silane coupling agents those having a functional group that reacts with the hydroxyl group of the polyol or the isocyanate group of the isocyanate compound are preferable.
  • those containing an isocyanate group such as ⁇ -isocyanatepropyltriethoxysilane and ⁇ -isocyanatepropyltrimethoxysilane
  • those containing a mercapto group such as ⁇ -mercaptopropyltriethoxysilane
  • ⁇ -aminopropyltriethoxysilane those having a functional group that reacts with the hydroxyl group of the polyol or the isocyanate group of the isocyanate compound are preferable.
  • those containing an isocyanate group such as ⁇ -isocyanatepropyltriethoxysilane and ⁇ -isocyanatepropyltrimethoxysilane
  • those containing a mercapto group such as ⁇ -mercaptopropyltriethoxysi
  • the amount of the silane coupling agent can be 0.1 to 100 parts by mass with respect to 100 parts by mass of the resin (main agent) constituting the adhesion layer, and may be 1 to 50 parts by mass.
  • the inorganic thin-film deposition layer is provided to prevent the perfume component of the package contents from being dissolved in the first polyolefin layer.
  • the constituent material of the inorganic thin-film deposition layer include inorganic oxides such as aluminum oxide, silicon oxide, magnesium oxide, and tin oxide. Therefore, the inorganic vapor deposition layer can also be called an inorganic oxide layer.
  • the inorganic oxide may be selected from the group consisting of aluminum oxide, silicon oxide, and magnesium oxide. Further, considering printability and cost, the inorganic oxide may be selected from aluminum oxide or silicon oxide. Further, the inorganic oxide may be silicon oxide from the viewpoint of excellent tensile stretchability during processing.
  • the O / Al ratio is 1.4 or more when aluminum oxide is selected as the inorganic vapor deposition layer.
  • the O / Al ratio is 1.4 or more, the content ratio of the metallic Al is suppressed and good transparency is easily obtained.
  • the O / Al ratio is preferably 1.7 or less. When the O / Al ratio is 1.7 or less, the crystallinity of AlO becomes high, it is possible to prevent the inorganic thin-film deposition layer from becoming too hard, and good tensile resistance can be obtained.
  • the first polyolefin layer may shrink due to the heat during hot filling even after molding into the packaging bag, but the O / Al ratio of 1.7 or less makes it easy for the inorganic thin-film deposition layer to follow the shrinkage. , It is possible to suppress the deterioration of the barrier property. From the viewpoint of obtaining these effects more sufficiently, the O / Al ratio of the inorganic vapor-film-deposited layer is preferably 1.4 or more and 1.7 or less, and more preferably 1.5 or more and 1.55 or less.
  • the O / Si ratio is 1.7 or more when silicon oxide is selected as the inorganic thin-film deposition layer.
  • the O / Si ratio is 1.7 or more, the content ratio of metallic Si is suppressed and good transparency is easily obtained.
  • the O / Si ratio is preferably 2.0 or less.
  • the crystallinity of SiO becomes high, it is possible to prevent the inorganic thin-film deposition layer from becoming too hard, and good tensile resistance can be obtained.
  • the first polyolefin layer may shrink due to hot filling or the like even after molding into the packaging bag, but since the O / Si ratio is 2.0 or less, the inorganic vapor-filmed layer easily follows the shrinkage and is a barrier.
  • the O / Si ratio of the inorganic vapor-film-deposited layer is preferably 1.75 or more and 1.9 or less, and more preferably 1.8 or more and 1.85 or less.
  • the O / Al ratio and the O / Si ratio of the inorganic thin-film deposition layer can be determined by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • an X-ray photoelectron spectroscopic analyzer manufactured by JEOL Ltd., trade name: JPS-90MXV
  • JPS-90MXV X-ray photoelectron spectroscopic analyzer
  • a non-monochromatic MgK ⁇ 1253.6 eV
  • 100 W (10 kV-) is used. It can be measured with an X-ray output of 10 mA).
  • the inorganic thin-film deposition layer When aluminum oxide is selected as the inorganic thin-film deposition layer, its thickness is preferably 5 nm or more and 30 nm or less. When the thickness is 5 nm or more, it is easy to obtain sufficient gas barrier properties. Further, when the thickness is 30 nm or less, it is possible to suppress the generation of cracks due to deformation due to the internal stress of the layer, and it is easy to suppress the deterioration of the gas barrier property. If the thickness exceeds 30 nm, the cost tends to increase due to an increase in the amount of material used and a long layer formation time, which is not preferable from an economical point of view. From the same viewpoint as above, the thickness of the inorganic vapor-film-deposited layer is more preferably 7 nm or more and 15 nm or less.
  • the inorganic thin-film deposition layer When silicon oxide is selected as the inorganic thin-film deposition layer, its thickness is preferably 10 nm or more and 50 nm or less. When the thickness is 10 nm or more, sufficient gas barrier properties can be obtained. Further, when the thickness is 50 nm or less, it is possible to suppress the generation of cracks due to deformation due to the internal stress of the layer, and it is easy to suppress the deterioration of the gas barrier property. If the thickness exceeds 50 nm, the cost tends to increase due to an increase in the amount of material used and a long layer formation time, which is not preferable from an economical point of view. From the same viewpoint as above, the thickness of the inorganic thin-film deposition layer is more preferably 20 nm or more and 40 nm or less.
  • the inorganic thin-film deposition layer can be formed, for example, by vacuum film formation.
  • a physical vapor deposition method or a chemical vapor deposition method can be used.
  • the physical vapor deposition method include, but are not limited to, a vacuum vapor deposition method, a sputtering method, and an ion plating method.
  • the chemical vapor deposition method include, but are not limited to, a thermal CVD method, a plasma CVD method, and an optical CVD method.
  • resistance heating type vacuum deposition method In the above vacuum film formation, resistance heating type vacuum deposition method, EB (Electron Beam) heating type vacuum deposition method, induction heating type vacuum deposition method, sputtering method, reactive sputtering method, dual magnetron sputtering method, plasma chemical vapor deposition method (PECVD method) and the like are particularly preferably used.
  • EB Electro Beam
  • induction heating type vacuum deposition method sputtering method, reactive sputtering method, dual magnetron sputtering method, plasma chemical vapor deposition method (PECVD method) and the like
  • PECVD method plasma chemical vapor deposition method
  • the heating means of the vacuum vapor deposition method it is preferable to use any one of an electron beam heating method, a resistance heating method, and an induction heating method.
  • the gas barrier coating layer is formed for the purpose of preventing dissolution of the fragrance component of the package contents in the first polyolefin layer, improving the gas barrier property, and protecting the inorganic thin-film deposition layer. Further, even when a slight crack or the like is generated in the inorganic thin-film vapor deposition layer, the deterioration of the gas barrier property can be suppressed by the gas barrier material entering the crack or the like.
  • the gas barrier coating layer can also be referred to as an overcoat layer.
  • the gas barrier coating layer can contain a hydroxyl group-containing polymer compound.
  • the gas barrier coating layer includes at least one of a hydroxyl group-containing polymer compound and its hydrolyzate, and at least one selected from the group consisting of metal alkoxides, silane coupling agents and their hydrolysates. , May be a heat-dried product of the composition containing.
  • the gas barrier coating layer is a composition obtained by adding a hydroxyl group-containing polymer compound, a metal alkoxide and / or a silane coupling agent to water or a water / alcohol mixed solution (hereinafter, also referred to as an overcoat agent). Formed using.
  • the overcoat agent is, for example, a solution obtained by dissolving a hydroxyl group-containing polymer compound, which is a water-soluble polymer, in an aqueous (water or water / alcohol mixed) solvent, and a metal alkoxide and / or a silane coupling agent directly or. It can be prepared by mixing with those which have been subjected to a treatment such as hydrolyzing them in advance.
  • the overcoat agent may contain at least a silane coupling agent or a hydrolyzate thereof from the viewpoint of more sufficiently maintaining the gas barrier property after hot water treatment such as hot filling.
  • the overcoat agent may contain at least one of a hydroxyl group-containing polymer compound and its hydrolyzate, and at least one of a silane coupling agent and its hydrolyzate, and the hydroxyl group-containing polymer compound and its hydrolyzate. It may contain at least one of its hydrolysates, at least one of a metal alkoxide and its hydrolyzate, and at least one of a silane coupling agent and its hydrolyzate.
  • hydroxyl group-containing polymer compound examples include polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinylpyrrolidone, starch, methyl cellulose, carboxymethyl cellulose, sodium alginate and the like.
  • PVA polyvinyl alcohol
  • Examples of the metal alkoxide include compounds represented by the following general formula (I).
  • R 1 and R 2 are independently monovalent organic groups having 1 to 8 carbon atoms, and are preferably alkyl groups such as a methyl group and an ethyl group.
  • M represents an n-valent metal atom such as Si, Ti, Al, Zr and the like.
  • m is an integer from 1 to n.
  • R 1 or R 2 may be the same or different.
  • metal alkoxide examples include tetraethoxysilane [Si (OC 2 H 5 ) 4 ] and triisopropoxyaluminum [Al (O-2'-C 3 H 7 ) 3 ].
  • Tetraethoxysilane and triisopropoxyaluminum are preferred because they are relatively stable in aqueous solvents after hydrolysis.
  • silane coupling agent examples include compounds represented by the following general formula (II). Si (OR 11 ) p (R 12 ) 3-p R 13 ... (II)
  • R 11 represents an alkyl group such as a methyl group or an ethyl group
  • R 12 is an alkyl group substituted with an alkyl group, an aralkyl group, an aryl group, an alkenyl group or an acryloxy group, or a methacrylate group.
  • a monovalent organic group such as an alkyl group substituted with a group is shown
  • R 13 is a monovalent organic functional group
  • p is an integer of 1 to 3.
  • the monovalent organic functional group represented by R 13 includes a glycidyloxy group, an epoxy group, a mercapto group, a hydroxyl group, an amino group, an alkyl group substituted with a halogen atom, or a monovalent organic functional group containing an isocyanate group. The group is mentioned.
  • silane coupling agent examples include vinyltrimethoxysilane, ⁇ -chloropropylmethyldimethoxysilane, ⁇ -chloropropyltrimethoxysilane, glycidoxypropyltrimethoxysilane, and ⁇ -methacryloxypropyltrimethoxysilane.
  • silane coupling agent such as ⁇ -methacryloxypropylmethyldimethoxysilane.
  • the silane coupling agent may be a multimer obtained by polymerizing the compound represented by the above general formula (II).
  • a trimer is preferable, and 1,3,5-tris (3-trialkoxysilylalkyl) isocyanurate is more preferable.
  • This is a condensed polymer of 3-isocyanate alkylalkoxysilane. It is known that the 1,3,5-tris (3-trialkoxysilylalkyl) isocyanurate has no chemical reactivity in the isocyanate portion, but the reactivity is ensured by the polarity of the nurate portion.
  • 3-isocyanate alkylalkoxylan is added to an adhesive or the like like 3-isocyanate alkylalkoxylan, and is known as an adhesive improving agent. Therefore, by adding 1,3,5-tris (3-trialkoxysilylalkyl) isocyanurate to the hydroxyl group-containing polymer compound, the water resistance of the gas barrier coating layer can be improved by hydrogen bonding.
  • 3-Isocyanatealkylalkoxylan is highly reactive and has low liquid stability, whereas 1,3,5-tris (3-trialkoxysilylalkyl) isocyanurate is not water-soluble due to its polarity. However, it is easy to disperse in an aqueous solution, and the liquid viscosity can be kept stable.
  • the water resistance is equivalent to that of 3-isocyanatealkylalkoxylan and 1,3,5-tris (3-trialkoxysilylalkyl) isocyanurate.
  • the 1,3,5-tris (3-trialkoxysilylalkyl) isocyanurate may contain 3-isocyanatopropylalkoxysilane as a raw material when produced by thermal condensation of 3-isocyanatepropylalkoxysilane. However, there is no particular problem in its function as an agent.
  • the 1,3,5-tris (3-trialkoxysilylalkyl) isocyanurate is more preferably 1,3,5-tris (3-trialkoxysilylpropyl) isocyanurate, and more preferably 1,3,5-tris.
  • 5-Tris (3-trimethoxysilylpropyl) isocyanurate Since this methoxy group has a high hydrolysis rate and those containing a propyl group can be obtained at a relatively low cost, 1,3,5-tris (3-trimethoxysilylpropyl) isocyanurate is practically advantageous.
  • the amount of metal alkoxide in the overcoat agent should be 1 to 4 parts by mass with respect to 1 part by mass of the hydroxyl group-containing polymer compound from the viewpoint of suppressing the permeation of the fragrance, adhering to the inorganic vapor deposition layer, and maintaining the gas barrier property. It may be 2 to 3 parts by mass.
  • the amount of the silane coupling agent can be 0.01 to 1 part by mass with respect to 1 part by mass of the hydroxyl group-containing polymer compound, and may be 0.1 to 0.5 part by mass.
  • the amount of the silane compound (metal alkoxide and silane coupling agent) in the overcoat agent is 1 to 4 parts by mass with respect to 1 part by mass of the hydroxyl group-containing polymer compound. It can be 2 to 3 parts by mass.
  • an isocyanate compound or a known additive such as a dispersant, a stabilizer, a viscosity modifier, or a colorant to the overcoat agent as needed, as long as the gas barrier property is not impaired.
  • the gas barrier coating layer may contain a polycarboxylic acid-based polymer crosslinked with a polyvalent metal or a polyvalent metal compound.
  • a gas barrier coating layer is a layer formed by heating and drying a composition containing a polycarboxylic acid-based polymer and a composition containing a polyvalent metal or a polyvalent metal compound. It may be a layer formed by heating and drying a composition containing a polycarboxylic acid-based polymer and a polyvalent metal or a polyvalent metal compound.
  • an existing polycarboxylic acid-based polymer can be used as the polycarboxylic acid-based polymer.
  • the existing polycarboxylic acid-based polymer is a general term for polymers having two or more carboxy groups in the molecule. Specifically, it consists of a homopolymer using ⁇ , ⁇ -monoethyl unsaturated carboxylic acid as the polymerizable monomer, and only ⁇ , ⁇ -monoethyl unsaturated carboxylic acid as the monomer component.
  • At least two of these copolymers polymers of ⁇ , ⁇ -monoethylene unsaturated carboxylic acids and other ethylenically unsaturated monomers, and in molecules such as alginic acid, carboxymethyl cellulose, pectin, etc.
  • An acidic polymer having a carboxy group can be exemplified.
  • These polycarboxylic acid-based polymers can be used alone or in combination of at least two types of polycarboxylic acid-based polymers.
  • ⁇ , ⁇ -monoethyl unsaturated carboxylic acid acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid and the like are typical.
  • ethylenically unsaturated monomer copolymerizable with them include saturated carboxylic acid vinyl esters such as ethylene, propylene and vinyl acetate, alkyl acrylates, alkyl methacrylates, alkyl itaconates, acrylonitrile and vinyl chloride.
  • Typical examples are vinylidene chloride, vinyl fluoride, vinylidene fluoride, styrene and the like.
  • the polycarboxylic acid-based polymerization is a copolymer of ⁇ , ⁇ -monoethylenically unsaturated carboxylic acid and saturated carboxylic acid vinyl esters such as vinyl acetate
  • the saturated carboxylic acid vinyl ester is further subjected to saponification.
  • the portion can be converted to vinyl alcohol for use.
  • the polycarboxylic acid-based polymer is a copolymer of ⁇ , ⁇ -monoethylene unsaturated carboxylic acid and other ethylenically unsaturated monomers, the gas barrier property of the obtained film and the gas barrier property of the obtained film are obtained.
  • the copolymer composition preferably has an ⁇ , ⁇ -monoethyl unsaturated carboxylic acid monomer composition of 60 mol% or more.
  • the composition is more preferably 80 mol% or more, further preferably 90 mol% or more, and most preferably 100 mol%, that is, the polycarboxylic acid-based polymer is only ⁇ , ⁇ -monoethyl unsaturated carboxylic acid. It is preferably a polymer composed of.
  • the polycarboxylic acid-based polymer is a polymer consisting only of ⁇ , ⁇ -monoethyl unsaturated carboxylic acid
  • suitable specific examples thereof include acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid.
  • a polymer, a copolymer, and / or a mixture thereof obtained by polymerizing at least one polymerizable monomer selected from acrylic acid, methacrylic acid, and maleic acid can be used.
  • polyacrylic acid polymethacrylic acid, polymaleic acid, and mixtures thereof can be used.
  • polycarboxylic acid-based polymer is a compound other than the polymer of the ⁇ , ⁇ -monoethyl unsaturated carboxylic acid monomer, for example, in the case of an acidic polysaccharide, alginic acid can be preferably used.
  • the number average molecular weight of the polycarboxylic acid-based polymer is not particularly limited, but is preferably in the range of 2,000 to 10,000,000, and more preferably 5,000 to 1,000, from the viewpoint of film formability. It is preferably 000.
  • the gas barrier coating layer in addition to the polycarboxylic acid-based polymer, other polymers are mixed and used as long as the permeation inhibitory property, gas barrier property, and heat resistance of the gas barrier coating layer are not impaired. Although it is possible, it is preferable to use only the polycarboxylic acid-based polymer alone.
  • a polyvalent metal is a simple substance of a polyvalent metal atom having a metal ion valence of 2 or more, and a polyvalent metal compound is a compound thereof.
  • the polyvalent metal include alkaline earth metals such as beryllium, magnesium and calcium, transition metals such as titanium, zirconium, chromium, manganese, iron, cobalt, nickel, copper and zinc, and aluminum. ..
  • Specific examples of the polyvalent metal compound include the above-mentioned polyvalent metal oxides, hydroxides, carbonates, organic acid salts, inorganic acid salts, and other polyvalent metal ammonium complexes and 2 to 4 polyvalent metals.
  • Examples thereof include secondary amine complexes and carbonates and organic acid salts of these complexes.
  • Examples of the organic acid salt include acetate, oxalate, citrate, lactate, phosphate, phosphite, hypophosphite, stearate, monoethylene unsaturated carboxylate and the like. Be done.
  • Examples of the inorganic acid salt include chlorides, sulfates, nitrates and the like. Other than that, alkyl alkoxide of a multivalent metal and the like can be mentioned.
  • polyvalent metals and polyvalent metal compounds can be used alone or in combination of at least two or more.
  • a compound of a divalent polyvalent metal is preferably used from the viewpoints of permeation inhibitory property, gas barrier property, heat resistance, and manufacturability of the fragrance of the gas barrier coating layer.
  • alkaline earth metals and cobalt, nickel, copper, zinc oxides, hydroxides, carbonates, and ammonium complexes of cobalt, nickel, copper, zinc and carbonates thereof can be used.
  • magnesium, calcium, copper, zinc oxides, hydroxides, carbonates, and ammonium complexes of copper or zinc and carbonates of the complexes can be used.
  • a metal compound composed of a monovalent metal for example, a monovalent metal salt of a polycarboxylic acid-based polymer can be used as long as the permeation inhibitory property, gas barrier property, and heat resistance of the gas barrier coating layer are not impaired.
  • the preferable amount of the monovalent metal compound added is 0.2 chemicals with respect to the carboxy group of the polycarboxylic acid-based polymer from the viewpoint of the permeation inhibitory property, the gas barrier property, and the heat resistance of the fragrance of the gas barrier coating layer. Less than or equal to the equivalent.
  • the monovalent metal compound may be partially contained in the molecule of the polyvalent metal salt of the polycarboxylic acid-based polymer.
  • the form of the polyvalent metal and the polyvalent metal compound is not particularly limited. However, in the gas barrier coating layer, a part or all of the polyvalent metal and the polyvalent metal compound form a salt with the carboxy group of the polycarboxylic acid-based polymer. Therefore, when a polyvalent metal or a polyvalent metal compound that is not involved in carboxylate formation is present in the gas barrier coating layer, or when the gas barrier coating layer contains a polycarboxylic acid-based polymer and the polyvalent metal or When the layer containing the polyvalent metal compound is composed of adjacent layer building blocks, the polyvalent metal and the polyvalent metal compound are granular and have a smaller particle size from the viewpoint of transparency of the gas barrier coating layer. Is preferable.
  • the polyvalent metal and the polyvalent metal compound are granular from the viewpoint of improving the efficiency at the time of preparation and obtaining a more uniform overcoat agent, and the particle size thereof is large. Smaller is preferable.
  • the average particle size of the polyvalent metal and the polyvalent metal compound is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, and most preferably 0.1 ⁇ m or less.
  • the amount of the polyvalent metal and the polyvalent metal compound with respect to the amount of the polycarboxylic acid-based polymer is gas barrier property from the viewpoint of permeation inhibition property, gas barrier property, and heat resistance of the fragrance of the gas barrier property coating layer.
  • the coating layer has at least one layer constituent unit in which a layer containing a polycarboxylic acid-based polymer and a layer containing a polyvalent metal or a polyvalent metal compound are adjacent to each other, the layers and layers adjacent to each other have at least one unit. Based on the total, the total of the polyvalent metal and the polyvalent metal compound with respect to the total of the carboxy groups contained in those layers is 0.2 chemical equivalents or more, that is, the carboxy groups contained in those layers.
  • the total chemical equivalent of the polyvalent metal and the polyvalent metal compound with respect to the total is 0.2 or more.
  • the gas barrier coating layer contains a polycarboxylic acid-based polymer, a polyvalent metal, or a mixture containing a polyvalent metal compound, 0.2 chemicals are applied to all the carboxy groups of the polycarboxylic acid-based polymer. It is preferable to contain an equivalent amount or more of the polyvalent metal or the polyvalent metal compound.
  • the amounts of the polyvalent metal and the polyvalent metal compound are more preferably 0.5 equivalent or more for both of the above gas barrier coating layers, and in addition to the above viewpoints, the formability and transparency of the gas barrier coating layer From the viewpoint, it is in the range of 0.8 chemical equivalent or more and 10 chemical equivalent or less, most preferably 1 chemical equivalent or more and 5 chemical equivalent or less.
  • the gas barrier coating layer composed of this polycarboxylic acid-based polymer / polyvalent metal or polyvalent metal compound may contain a silicon-containing compound.
  • the silicon-containing compound is at least one silicon-containing compound selected from the group consisting of a silane coupling agent represented by the following general formula (1), a hydrolyzate thereof, and a condensate thereof.
  • R 1 is an organic group containing a glycidyloxy group or an amino group
  • R 2 is an alkyl group
  • the three R 2s may be the same or different.
  • examples of the organic group in R 1 include a glycidyloxyalkyl group and an aminoalkyl group.
  • the alkyl group of R2 an alkyl group having 1 to 6 carbon atoms is preferable, and a methyl group or an ethyl group is particularly preferable.
  • silane coupling agent examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane and the like. Among these, ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -aminopropyltrimethoxysilane are preferable.
  • the silicon-containing compound may be the silane coupling agent itself, a hydrolyzed product obtained by hydrolyzing the silane coupling agent, or a condensate thereof.
  • hydrolyzate examples include those in which at least one of the three OR 2s in the general formula (1) is OH.
  • condensate examples include those in which at least two molecules of the hydrolyzate Si—OH are condensed to form a Si—O—Si bond.
  • the condensed product of the hydrolyzate of the silane coupling agent can be referred to as a hydrolyzed condensate.
  • a silane coupling agent hydrolyzed and condensed using a sol-gel method can be used.
  • a silane coupling agent easily hydrolyzes, and a condensation reaction easily occurs in the presence of an acid or an alkali. Therefore, only the silane coupling agent, its hydrolyzate, or a condensate thereof is used. It rarely exists. That is, usually, a silane coupling agent, a hydrolyzate thereof, and a condensate thereof are mixed. Further, the hydrolyzate includes a partial hydrolyzate and a complete hydrolyzate.
  • the overcoating agent shall be applied by, for example, a dipping method, a roll coating method, a gravure coating method, a reverse gravure coating method, an air knife coating method, a comma coating method, a die coating method, a screen printing method, a spray coating method, a gravure offset method, or the like. Can be done.
  • the coating film to which the overcoat agent is applied can be dried by, for example, a hot air drying method, a hot roll drying method, a high frequency irradiation method, an infrared irradiation method, a UV irradiation method, or a combination thereof.
  • the temperature at which the coating film is dried can be, for example, a temperature of 50 to 150 ° C., preferably a temperature of 70 to 100 ° C.
  • the gas barrier coating layer may be formed by using an overcoat agent containing a hydroxyl group-containing polymer compound (for example, a polyvinyl alcohol-based resin) and a silane compound.
  • An acid catalyst, an alkali catalyst, a photoinitiator, or the like may be added to the overcoat agent, if necessary.
  • silane compound examples include a silane coupling agent, polysilazane, siloxane and the like, and specific examples thereof include tetramethoxysilane, tetraethoxysilane, glycidoxypropyltrimethoxysilane, acryloxypropyltrimethoxysilane and hexamethyldisilazane. And so on.
  • the thickness of the gas barrier coating layer is preferably 50 to 1000 nm, more preferably 100 to 500 nm. When the thickness of the gas barrier coating layer is 50 nm or more, more sufficient gas barrier property tends to be obtained, and when it is 1000 nm or less, sufficient flexibility tends to be maintained.
  • the gas barrier coating layer may be a layer having an adhesive function. Such a layer can be called an adhesive gas barrier coating layer.
  • the adhesive gas barrier coating layer may be a cured product of an adhesive composition containing a resin having at least one of an aromatic ring and an aliphatic ring. In the cured product (cured film), an aromatic ring or an aliphatic ring has a cyclic structure in parallel, and it is easy to suppress the permeation of the fragrance.
  • the glass transition point of the cured product is preferably 40 ° C. or higher and 70 ° C. or lower. If the temperature is lower than 40 ° C, the effect of suppressing the permeation of the fragrance cannot be obtained, and if the temperature exceeds 70 ° C, the flexibility near room temperature is weak and the adhesion to the adjacent layer is poor, so that the adhesion may be lowered.
  • a two-component curable adhesive composed of an epoxy resin and an amine-based epoxy resin curing agent can be exemplified.
  • the epoxy resin that can be used may be any of an alicyclic compound, an aromatic compound, or a heterocyclic compound.
  • the epoxy resin examples include an epoxy resin having a glycidylamino group derived from metaxylylene diamine, an epoxy resin having a glycidylamino group derived from 1,3-bis (aminomethyl) cyclohexane, and a diaminodiphenylmethane.
  • an ortho-oriented aromatic dicarboxylic acid or an anhydride thereof is used as a polyvalent carboxylic acid having two or more hydroxyl groups in one molecule as a functional group and a monomer component constituting polyester.
  • examples thereof include an adhesive containing the obtained polyester or polyester polyurethane resin and a polyisocyanate containing diphenylmethane diisocyanate, polypeptide diphenylmethane diisocyanate, and at least one of these derivatives.
  • gas barrier adhesive examples include "Maxive” manufactured by Mitsubishi Gas Chemical Company, “Paslim” manufactured by DIC, and the like.
  • the oxygen permeability of the adhesive gas barrier coating layer may be 150 cc / m 2 ⁇ day ⁇ atm or less, 100 cc / m 2 ⁇ day ⁇ atm or less, and 80 cc / m 2 ⁇ day ⁇ atm or less. It may be 50 cc / m 2 , day, atm or less. When the oxygen permeability is within the above range, it becomes easier to improve the gas barrier property.
  • the thickness of the adhesive gas barrier coating layer may be 50 times or more the thickness of the inorganic thin-film deposition layer.
  • the thickness of the adhesive gas barrier coating layer may be 300 times or less the thickness of the inorganic thin-film deposition layer.
  • the thickness of the adhesive gas barrier coating layer may be, for example, 0.1 to 20 ⁇ m, 0.5 to 10 ⁇ m, or 1 to 5 ⁇ m.
  • the above-mentioned material (gas barrier adhesive) for forming the adhesive gas barrier coating layer is, for example, a bar coating method, a dipping method, a roll coating method, a gravure coating method, a reverse coating method, an air knife coating method, a comma coating method, and the like. It can be applied by the die coating method, screen printing method, spray coating method, gravure offset method, or the like.
  • the temperature at which the coating film is dried may be, for example, 30 to 200 ° C. and may be 50 to 180 ° C.
  • the temperature at which the coating film is cured may be, for example, room temperature to 70 ° C., and may be 30 to 60 ° C.
  • the temperature at the time of drying and curing within the above range, the generation of cracks in the inorganic vapor deposition layer and the adhesive gas barrier coating layer can be further suppressed, the fragrance component can be prevented from being dissolved in the first polyolefin layer, the gas barrier property, etc. Can be achieved at a higher level.
  • an adhesive gas barrier coating layer can be formed directly on the inorganic vapor deposition layer, but a printing layer, a gas barrier coating layer (which does not have adhesiveness), etc. can be formed between the two layers. There may be other layers.
  • a printing layer can be provided on the surface of the first polyolefin layer on the inorganic vapor deposition layer side, on the surface of the first polyolefin layer opposite to the inorganic vapor deposition layer, or on the inorganic vapor deposition layer.
  • the print layer is provided at a position visible from the outside of the laminated body for the purpose of displaying information about the contents, identifying the contents, or improving the design of the packaging bag.
  • the printing method and printing ink are not particularly limited, and are appropriately selected from known printing methods and printing inks in consideration of printability on a film, designability such as color tone, adhesion, safety as a food container, and the like. To.
  • a gravure printing method for example, a gravure printing method, an offset printing method, a gravure offset printing method, a flexo printing method, an inkjet printing method, or the like can be used.
  • the gravure printing method can be preferably used from the viewpoint of productivity and high definition of the pattern.
  • the second polyolefin layer is made of a material having a melting point lower than that of the constituent material of the first polyolefin layer, and has a heat-sealing property. Therefore, the second polyolefin layer can also be referred to as a sealant layer.
  • the first polyolefin layer and the second polyolefin layer may be made of different materials, but it is preferable that the first polyolefin layer and the second polyolefin layer are made of the same material from the viewpoint of ease of reforming after melting of the resin material.
  • the term "made of the same material” means that, for example, both layers are made of polyethylene or both are made of polypropylene.
  • LLDPE linear low density polyethylene
  • HDPE high density polyethylene
  • MDPE medium density polyethylene
  • LDPE low density polyethylene
  • the constituent film can also be used as the second polyolefin layer.
  • the second polyolefin layer is low density polyethylene resin (LDPE), medium density polyethylene resin (MDPE), linear low density polyethylene resin (LLDPE), ethylene-vinyl acetate co-weight.
  • Ethylene-based resins such as coalesced (EVA), ethylene- ⁇ -olefin copolymer, ethylene- (meth) acrylic acid copolymer, blended resin of polyethylene and polybutene, homopolypropylene resin (PP), and propylene-ethylene random Polypropylene-based resins such as polymers, propylene-ethylene block copolymers, and propylene- ⁇ -olefin copolymers can be used.
  • additives such as flame retardants, slip agents, anti-blocking agents, antioxidants, light stabilizers, and tackifiers may be added to the polyolefin film constituting the second polyolefin layer.
  • the thickness of the second polyolefin layer is determined by the mass of the contents, the shape of the packaging bag, and the like, but a thickness of about 30 to 150 ⁇ m is preferable.
  • a one-component curable type or two-component curable urethane-based adhesive is used as a means for laminating the first polyolefin layer on which the inorganic vapor-deposited layer and the gas barrier coating layer are formed and the second polyolefin layer having heat-sealing properties.
  • Dry laminating method of laminating with an adhesive such as, non-solvent dry laminating method of laminating with a solvent-free adhesive, extrusion laminating method of heating and melting polyolefin resin such as polyethylene and polypropylene, extruding it into a curtain shape, and laminating. In either case, a known laminating method can be adopted.
  • the adhesive from the viewpoint of environmental consideration, an adhesive derived from biomass or containing a biodegradable polymer component may be used.
  • the first polyolefin layer on which the inorganic thin-film deposition layer is formed and the second polyolefin layer having heat sealability may be laminated by the adhesive gas barrier coating layer. can.
  • all the films constituting the packaging material can be polyolefin films.
  • a packaging material can be said to be a (monomaterial) material made of a single material having excellent recyclability.
  • the total mass of the components other than the polyolefin component is 10% by mass or less with respect to the total mass of the packaging material. It may be 7.5% by mass or less, and may be 5.0% by mass or less.
  • the packaging material may include another resin layer as a base material in addition to the first polyolefin layer.
  • the other resin layer may be a polyolefin layer.
  • a film having high heat resistance, a film having easy tearing property such as uniaxial stretching, a film provided with a nylon layer for imparting piercing resistance by co-pressing, etc. should be selected according to the purpose. Can be done.
  • the packaging bag can be obtained by heat-sealing the second polyolefin layers of the packaging material thus obtained together.
  • the package can be obtained by filling the package bag thus obtained with a content containing esters and terpenes as a fragrance and sealing the package.
  • Acrylic polyol and tolylene diisocyanate are mixed so that the number of NCO groups of tolylene diisocyanate is equal to the number of OH groups of acrylic polyol, and the total solid content (total amount of acrylic polyol and tolylene diisocyanate) is mixed.
  • ethyl acetate so as to be 5% by mass.
  • ⁇ - (3,4 epoxycyclohexyl) ethyltrimethoxysilane was further added so as to be 5 parts by mass with respect to 100 parts by mass of the total amount of acrylic polyol and tolylene diisocyanate.
  • An anchor coating agent was prepared by mixing.
  • overcoat agent (1) The overcoat agent (1) was prepared by mixing the following liquids A, B and C at a mass ratio of 70/20/10, respectively.
  • Solution A To 17.9 g of tetraethoxysilane (Si (OC 2 H 5 ) 4 ) and 10 g of methanol, 72.1 g of 0.1N hydrochloric acid was added, and the mixture was stirred for 30 minutes to hydrolyze 5% by mass (SiO 2 ). (Conversion) hydrolyzed solution.
  • Liquid B 5% by mass water / methanol solution of polyvinyl alcohol (water: methanol mass ratio is 95: 5).
  • Solution C 1,3,5-tris (3-trimethoxysilylpropyl) isocyanurate was diluted with a mixed solution of water / isopropyl alcohol (mass ratio of water: isopropyl alcohol 1: 1) to a solid content of 5% by mass. Hydrolyzed solution.
  • overcoat agent (2) After preparing an aqueous solution of polyacrylic acid by adding 200 g of water to 50 g of Aron A-10H (number average molecular weight: 200,000) manufactured by Toagosei Corporation, zinc oxide fine particles manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. are further prepared. 1.5 g of an aqueous dispersion was added, and the mixture was stirred at room temperature for 2 days to prepare an overcoat agent (2-1).
  • An overcoat agent (2-2) was prepared by mixing 100 g of a zinc oxide fine particle aqueous dispersion ZE143 manufactured by Sumitomo Osaka Cement Co., Ltd. and 1 g of a curing agent Liofol HAERTER UR 5889-21 manufactured by Henkel Co., Ltd.
  • overcoat agent (3) To 100 g of isopropyl alcohol was added 10 g of polyacrylic acid Julimer AC-10LP (number average molecular weight: 5,000) manufactured by Toagosei Co., Ltd. to prepare a polyacrylic acid solution. 100 g of zinc oxide FINEX-30 manufactured by Sakai Chemical Industry Co., Ltd. and 15 g of DA-325 manufactured by Kusumoto Kasei Co., Ltd. as a surfactant were dispersed in 220 g of isopropyl alcohol to prepare a zinc oxide dispersion. 80 parts by mass of the above polyacrylic acid solution and 20 parts by mass of the zinc oxide dispersion were mixed to prepare an overcoat agent (3).
  • the overcoating agent (4) was prepared by mixing the liquids A, B and C of the overcoating agent (1) at a mass ratio of 40/50/10, respectively.
  • overcoat agent (5) 16 parts by mass of Maxive C93T manufactured by Mitsubishi Gas Chemical Company and 5 parts by mass of Maxive M-100 manufactured by Mitsubishi Gas Chemical Company were mixed with 23 parts by mass of a solvent obtained by mixing ethyl acetate and methanol at a mass ratio of 1: 1. An overcoat agent (5) was prepared.
  • a urethane-based adhesive was prepared by mixing 100 parts by mass of Takelac A525 manufactured by Mitsui Chemicals, 11 parts by mass of Takenate A52 manufactured by Mitsui Chemicals, and 84 parts by mass of ethyl acetate.
  • the anchor coating agent was applied to a corona-treated surface of unstretched high-density polyethylene (HDPE) having a thickness of 32 ⁇ m by a gravure coating method and dried to provide an anchor coat layer having a thickness of 0.1 ⁇ m.
  • a transparent inorganic vapor deposition layer (alumina vapor deposition layer) made of aluminum oxide having a thickness of 10 nm was formed by a vacuum vapor deposition apparatus using an electron beam heating method. The O / Al ratio of the alumina vapor deposition layer was 1.5.
  • the overcoating agent (1) was applied onto the alumina vapor deposition layer by the gravure coating method and dried to form an overcoat layer having a thickness of 0.3 ⁇ m.
  • a 40 ⁇ m-thick sealant film made of linear low-density polyethylene (LLDPE) was laminated on the overcoat layer by a dry laminating method using a urethane-based adhesive to obtain a laminated body.
  • LLDPE linear low-dens
  • Example 2 As the inorganic vapor deposition layer, a transparent inorganic vapor deposition layer (silica vapor deposition layer) made of silicon oxide having a thickness of 30 nm was formed by a vacuum vapor deposition apparatus using an electron beam heating method. The O / Si ratio of the silica-film-deposited layer was 1.8. Except for this, a laminated body was obtained in the same manner as in Example 1.
  • Example 3 A laminate was obtained in the same manner as in Example 2 except that uniaxially stretched high density polyethylene (HDPE) having a thickness of 25 ⁇ m was used as the base material.
  • HDPE high density polyethylene
  • Example 4 A laminate was obtained in the same manner as in Example 2 except that a stretched polypropylene (OPP) having a thickness of 20 ⁇ m was used as a base material and an unstretched polypropylene (CPP) film having a thickness of 50 ⁇ m was used as a sealant film. ..
  • OPP stretched polypropylene
  • CPP unstretched polypropylene
  • Example 5 Polypropylene and EVOH were co-extruded with an adhesive resin sandwiched between them and sequentially stretched to obtain a multilayer film having EVOH of 1 ⁇ m as an anchor coat layer on stretched polypropylene (OPP) of 18 ⁇ m.
  • a transparent inorganic vapor deposition layer (silica vapor deposition layer) made of silicon oxide having a thickness of 30 nm was formed on the EVOH surface by a vacuum vapor deposition apparatus using an electron beam heating method. The O / Si ratio of the silica-film-deposited layer was 1.8.
  • the overcoating agent (1) was applied onto the silica-deposited layer by a gravure coating method and dried to form an overcoating layer having a thickness of 0.3 ⁇ m.
  • a sealant film having a thickness of 50 ⁇ m made of unstretched polypropylene (CPP) was laminated on the overcoat layer by a dry laminating method using a urethane adhesive to obtain a laminated body.
  • Example 6 The overcoating agent (5) was applied onto the silica-deposited layer by a dry laminating method and dried to form an adhesive gas barrier coating layer having a thickness of 2.5 ⁇ m. A sealant film having a thickness of 40 ⁇ m made of linear low density polyethylene (LLDPE) was laminated via the adhesive gas barrier coating layer. Except for this, a laminated body was obtained in the same manner as in Example 2.
  • LLDPE linear low density polyethylene
  • Example 7 The overcoating agent (5) was applied onto the silica-deposited layer by a dry laminating method and dried to form an adhesive gas barrier coating layer having a thickness of 2.5 ⁇ m. Unstretched polypropylene (CPP) having a thickness of 50 ⁇ m was laminated via the adhesive gas barrier coating layer. Except for this, a laminated body was obtained in the same manner as in Example 4.
  • CPP Unstretched polypropylene
  • Example 8 Using stretched polypropylene (OPP) with a thickness of 20 ⁇ m as the base material, the overcoating agents (2-1) and (2-1) were sequentially applied by the gravure coating method and dried, and the overcoating agent with a thickness of 0.6 ⁇ m was overcoated.
  • OPP stretched polypropylene
  • Example 8 Using stretched polypropylene (OPP) with a thickness of 20 ⁇ m as the base material, the overcoating agents (2-1) and (2-1) were sequentially applied by the gravure coating method and dried, and the overcoating agent with a thickness of 0.6 ⁇ m was overcoated.
  • a coat layer a layer containing polyacrylic acid crosslinked with zinc oxide
  • CPP unstretched polypropylene
  • Example 9 A laminate was obtained in the same manner as in Example 8 except that the overcoat agent (3) was applied by the gravure coating method and dried to form an overcoat layer having a thickness of 0.4 ⁇ m.
  • Example 10 A laminate was obtained in the same manner as in Example 4 except that the overcoat agent (4) was applied by the gravure coating method and dried to form an overcoat layer having a thickness of 0.4 ⁇ m.
  • Example 1 A laminated body was obtained in the same manner as in Example 1 except that the overcoat layer was not provided.
  • Example 2 A laminated body was obtained in the same manner as in Example 2 except that the overcoat layer was not provided.
  • Example 3 A laminate was obtained in the same manner as in Example 1 except that the anchor coat layer, the inorganic vapor deposition layer, and the overcoat layer were not provided.
  • Example 4 A laminated body was obtained in the same manner as in Example 4 except that the anchor coat layer, the inorganic vapor deposition layer, and the overcoat layer were not provided.
  • Example 5 A laminated body was obtained in the same manner as in Example 5 except that the inorganic vapor deposition layer and the overcoat layer were not provided.
  • the oxygen permeability (OTR) of the laminate obtained in each example was measured under the conditions of a temperature of 30 ° C. and a relative humidity of 70% using an oxygen permeability measuring device (manufactured by MOCON, trade name: OX-TRAN2 / 20). Measured at.
  • Oxygen permeability other than Comparative Examples 3 to 5 was measured according to JIS K-7126, B method (isopressure method).
  • the oxygen permeability of Comparative Examples 3 to 5 was measured according to the differential pressure method using an oxygen permeability measuring device (manufactured by GTR Tech, trade name: GTR-3000). The results are shown in Table 1.
  • the water vapor transmission rate (WTR) of the laminate obtained in each example was measured at a temperature of 40 ° C. and a relative humidity of 90% using a water vapor transmission rate measuring device (manufactured by MOCON, trade name: PERMATRAN-W 3/33). Measured under conditions.
  • the water vapor transmission rate was measured according to JIS K-7126, B method (isopressure method). The results are shown in Table 1.
  • a shampoo ethyl methylbutyrate, 2-methylethyl valerate, hexyl acetate, allyl hexaneate, allyl heptate, benzyl acetate as fragrance ingredients (Including esters such as, and terpenes such as limonene), or "Lenoa HAPPINESS antique rose & floral scent” manufactured by P & G as a soft finishing agent (ethyl methylbutyrate, ethyl 2-methylbutyrate, isoamyl acetate, etc.
  • Esters such as 2-methylethyl valerate, hexyl acetate, allyl hexaneate, allyl heptanate, ⁇ -methylbenzyl acetate, benzyl acetate, ⁇ -pinene, allyl cyclohexanepropionate, 2-phenoxyethyl isobutyrate, and limonene, ⁇ (Containing terpenes such as terpineol, ⁇ -citronellol, and milsen) were filled in 10 g each and sealed. The seal width was 5 mm (inner surface area 9 cm ⁇ 9 cm).
  • a package including a packaging bag and contents containing a fragrance packaged in the packaging bag was obtained.
  • the obtained package was sealed in an aluminum bag made of PET / aluminum foil / LLDPE with 140 cc of air, and stored at 40 ° C. for 10 days. After storage, a part of the aluminum bag was opened, a sensory evaluation was performed to smell it, and the evaluation was performed based on the following evaluation criteria.
  • the results are shown in Table 3. ---: I do not feel the scent of fragrance ingredients at all. -: I hardly feel the smell of fragrance ingredients. -: I don't really feel the scent of fragrance ingredients. +: Feel the scent of fragrance ingredients. ++: I strongly feel the scent of fragrance ingredients. +++: I feel the scent of the fragrance component very strongly.
  • a package was obtained in the same manner as in the above sensory evaluation.
  • the obtained package was sealed in an aluminum bag with 140 cc of air and stored at 40 ° C. for 10 days.
  • 1 mL of gas in the aluminum bag was withdrawn with a gas tight syringe, and qualitative analysis of the components in the air and, for example, qualitative analysis of hexyl acetate were performed by the GC / MS method under the conditions shown in Table 2.
  • a gas chromatograph / mass spectrometer manufactured by Agilent Technologies, model number: GC6890 / MSD5793 was used for the measurement.
  • Example 3 the fragrance component cut rates of Examples 1 to 3 and 6 and Comparative Examples 1 and 2 were calculated by dividing the GC peak area value of each example by the GC peak area value of Comparative Example 3 (all). All PE packaging material.
  • the fragrance component cut rate of Comparative Example 3 is specified as 0%).
  • Examples 4 and 7 to 10 are based on Comparative Example 4 (all PP packaging materials), and Example 5 is based on Comparative Example 5 (all PP / EVOH packaging materials), and the fragrance component is cut. The rate was calculated.
  • the packaging material according to the present disclosure has an excellent permeation inhibitory property against fragrance components, and the contents containing fragrance can be suitably packaged. Further, in the packaging material according to the present disclosure, the amount of polyolefin in the total amount of the packaging material can be 90% by mass or more, and the material can be recycled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)

Abstract

香料を含む内容物を包装するための包装材であって、第一のポリオレフィン層、無機蒸着層、ガスバリア性被覆層、及びヒートシール性を有する第二のポリオレフィン層をこの順に備える、包装材。

Description

包装材、包装袋及び包装体
 本開示は、包装材、包装袋及び包装体に関する。具体的には、本開示は、香料を含有する内容物を包装するための包装材であって、香料の散逸、移り香を抑制することができ、かつ、マテリアルリサイクル可能な包装材に関する。また、本開示は、マテリアルリサイクル可能な当該包装材を用いた包装袋及び包装体に関する。
 近年、シャンプー、コンディショナーなどのヘアケア商品、衣料用液体洗剤、柔軟仕上げ剤などは、プラスチックの使用量削減を目的として、軟包材に充填されて販売されており、家庭ではそれらをプラスチック製ボトルに移し替えて使用することが主流になっている。
 これらの包装材(軟包材)は、プラスチックフィルムを積層し、製袋して造られる。製造方法の一例を示すと、厚さ12μmのポリエチレンテレフタレート(PET)フィルムにグラビア印刷法により印刷層を形成し、この印刷面と厚さ15μmのナイロンフィルム(Ny)をウレタン系接着剤を用いたドライラミネート法により貼り合わせて積層体を得る。さらにこの積層体のナイロンフィルム面と厚さ100μmの直鎖状低密度ポリエチレン(LLDPE)とを同様にして貼り合わせて、PET/Ny/LLDPE構成の積層体を得る。次に、この積層体のLLDPE面同士を対向させてヒートシールし、製袋し、包装袋を得る。形状としては、店頭での陳列適性、注ぎ性を考慮し、注ぎ口部を有するスタンディングパウチが一般的である。
 また、厚さ15μmのナイロンフィルム(Ny)、または、厚さ12μmポリエチレンテレフタレート(PET)フィルムにグラビア印刷法により印刷層を形成し、この印刷面と厚さ120μmの直鎖状低密度ポリエチレン(LLDPE)とをウレタン系接着剤を用いたドライラミネート法により貼り合わせた、PET/LLDPE構成やNy/LLDPE構成の積層体も同様にして用いられている。
 ところで、このような異なる樹脂種同士を組み合わせた軟包材に代えて、ポリオレフィンを主たる素材とする軟包材が提案されている(例えば、特許文献1参照)。これは、プラスチックによる海洋汚染を始めとする廃棄物問題の観点から、プラスチックの使用量削減を目的として、マテリアルリサイクル可能な軟包材への要求が近年高まってきているためである。
国際公開第2019/189092号
 しかしながら、ポリエチレンやポリプロピレンのようなポリオレフィンを主たる素材とする軟包材に、香料を含む内容物を充填して密封した場合、PET/Ny/LLDPE構成やNy/LLDPE構成の積層体からなる包装袋に充填した場合に比して、香料成分の散逸や、それに伴う他の物品への移り香が問題となっている。
 本開示は上記事情に鑑みなされたものであり、ポリオレフィンを主たる素材として用いて、香料成分の良好な透過抑制性を実現することのできる包装材を提供することを目的とする。本開示はまた、当該包装材を用いた包装袋及び包装体を提供することを目的とする。
 発明者らは、マテリアルリサイクル可能であり、かつ香料成分の散逸や移り香が生じ難いポリオレフィン包材に関し検討を行った。その結果、少なくとも、第一のポリオレフィン層、無機蒸着層、ガスバリア性被覆層、及びヒートシール性を有する第二のポリオレフィン層を積層させた包装材であれば、上記目的を達成できることを見出し、本開示の包装材を完成させるに至った。
 すなわち、本開示の一側面に係る包装材は、香料を含む内容物を包装するための包装材であって、第一のポリオレフィン層、無機蒸着層、ガスバリア性被覆層、及びヒートシール性を有する第二のポリオレフィン層をこの順に備える。
 PETのガラス転移点(Tg)が70℃付近であり、Nyのガラス転移点が50℃付近であることから、これらを包装袋の構成フィルムとして使用した場合、通常の使用条件では、PETやNyの非晶質部分の分子は、熱運動が穏やかなガラス状態となっており、香料成分がこれらのフィルムに溶解し難く、透過が抑制される。このため、PET/Ny/LLDPE構成やNy/LLDPE構成の積層体からなる包装袋を用いた場合、香料成分の散逸や、他の物品への移り香が生じ難い。これに対し、ポリエチレンのガラス転移温度は-125℃付近、ポリプロピレンのガラス転移温度は0℃付近であることから、これらを包装袋の構成フィルムとして使用した場合、通常の使用温度において、ポリエチレンやポリプロピレンでは、非結晶部分の分子鎖の熱運動が活発な状態となっており、香料成分がこれらのフィルムに溶解し易く、包装袋外に透過する。ポリエチレンやポリプロピレンのようなポリオレフィンを主たる素材とする軟包材においては、香料成分の透過を抑制する観点において、本願発明のような層構成とすることが重要である。このことはすなわち、層構成を工夫することにより、ポリオレフィン包材であっても、ポリエステル包材と同程度の香料透過抑制性を得ることができるということである。
 一態様において、ガスバリア性被覆層は、水酸基含有高分子化合物及びその加水分解物の少なくともいずれかと、金属アルコキシド、シランカップリング剤及びそれらの加水分解物からなる群より選択される少なくとも1種と、を含有する組成物の加熱乾燥物であってよい。
 一態様において、ガスバリア性被覆層は、多価金属又は多価金属化合物で架橋されてなるポリカルボン酸系重合体を含有してよい。
 一態様において、ガスバリア性被覆層は、少なくとも芳香族環及び脂肪族環のいずれかを有する樹脂を含む接着性組成物の硬化物であってよい。
 一態様において、無機蒸着層は、酸化アルミニウム及び酸化珪素の少なくともいずれかを含んでよい。
 一態様において、第一のポリオレフィン層及び第二のポリオレフィン層は同一の素材からなってよい。
 一態様において、第一のポリオレフィン層及び第二のポリオレフィン層はポリエチレンからなってよい。
 一態様において、第一のポリオレフィン層及び第二のポリオレフィン層はポリプロピレンからなってよい。
 本開示の一側面に係る包装袋は、上記包装材から形成される。
 本開示の一側面に係る包装体は、上記包装袋と、包装袋内に包装された香料を含む内容物と、を備える。
 一態様において、香料は、エステル類及びテルペン類の少なくともいずれかを含んでよい。
 本開示によれば、ポリオレフィンを主たる素材として用いて、香料成分の良好な透過抑制性を実現することのできる包装材が提供される。また、本開示によれば、当該包装材を用いた包装袋及び包装体が提供される。
図1は、本開示に係る包装材の一態様を示す断面図である。
 以下、場合により図面を参照しつつ本開示の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、図面の寸法比率は図示の比率に限られるものではない。
<包装材>
 本開示の包装材は、香料を含む内容物を包装するための材である。当該香料としては、蟻酸イソブチル、酢酸エチル、酪酸メチル、酪酸エチル、ヘキサン酸エチル、メチル酪酸エチル、2-メチル酪酸エチル、2-メチル吉草酸エチル、酢酸ヘキシル、ヘキサン酸アリル、ヘプタン酸アリル、酢酸ベンジル、酪酸アミル、吉草酸アミル、酢酸イソアミル、酢酸αメチルベンジル、β-ピネン、シクロヘキサンプロピオン酸アリル、イソ酪酸2-フェノキシエチル、サリチル酸メチル等のエステル類、リモネン、シトロネロール、リナロール、ネロール、ネロリドール、α-テルピネオール、ミルセン、チモール、チオテルピネオール等のテルペン類などが挙げられる。これらの香料を含む内容物としては、シャンプー、コンディショナー等のヘアケア商品、衣料用液体洗剤、柔軟仕上げ剤などが挙げられる。本開示の包装材は、特にエステル類及びテルペン類に対する透過抑制性に優れる。エステル類とテルペン類とはいずれも、溶解度パラメーター(SP値)が、ポリオレフィンに近いという共通の特徴を有している。
 溶解度パラメーター(SP値)とは、正則溶液論により定義された値であり、2つの成分のSP値の差が小さいほど溶解度が大となることが経験的に知られている。ポリエチレンのSP値は8.6(cal/cm1/2であり、ポリプロピレンのSP値は8.0(cal/cm1/2である。一方、エステル類のSP値は7.8~8.5(cal/cm1/2程度、リモネンなどのテルペン類のSP値は7.3~7.8(cal/cm1/2程度であり、ポリエチレンやポリプロピレンのSP値との差が小さい。なお、PETのSP値は13.3(cal/cm1/2であり、NyのSP値は9.9~13.7(cal/cm1/2であり、ポリオレフィンのSP値と比較して、エステル類やテルペン類のSP値との差が大きく、溶解度が小さいことが示される。以上のようにSP値の観点からも、従来包装においての香料透過抑制性が説明される。
 本開示の包装材は、第一のポリオレフィン層、無機蒸着層、ガスバリア性被覆層、及びヒートシール性を有する第二のポリオレフィン層をこの順に備える。
 図1は、本開示に係る包装材の一態様を示す断面図である。包装材10は、第一のポリオレフィン層1、無機蒸着層2、ガスバリア性被覆層3、及びヒートシール性を有する第二のポリオレフィン層4をこの順に備える。同図では、第一のポリオレフィン層1の片方の面に無機蒸着層2が形成されているが、無機蒸着層は第一のポリオレフィン層1の両面に形成されていてよい。また、第二のポリオレフィン層4は、接着層(図示せず)を介してガスバリア性被覆層3に積層されてよい。
(第一のポリオレフィン層)
 第一のポリオレフィン層は、無機蒸着層を形成するための基材(ポリオレフィンフィルム)となる。第一のポリオレフィン層を構成するポリオレフィンとしては、ポリエチレン、ポリプロピレン等が挙げられる。
 ポリエチレンとしては、蒸着加工、印刷加工、製袋加工、充填適性などを考慮すると、高密度ポリエチレン(HDPE)が挙げられる。また、柔軟性などの物性を向上させるために、例えば、共押出法により形成される、高密度ポリエチレン(HDPE)/中密度ポリエチレン(MDPE)/低密度ポリエチレン(LDPE)/中密度ポリエチレン(MDPE)/高密度ポリエチレン(HDPE)のような多層構成フィルムを、第一のポリオレフィン層として用いてもよい。
 ポリプロピレンとしては、延伸ポリプロピレンが挙げられる。一般的に、ポリプロピレンは、ホモポリマー、ランダムコポリマー、ブロックコポリマー、ターポリマーに大別され、用途や要求性能に合わせてポリマー種が選択されるが、包装体の基材フィルムとして用いる場合は、ホモポリマーのポリプロピレンが好ましい。また、易接着性やシール性を付与する目的で、コア層であるホモポリマー上に、共押出法によりコポリマーやターポリマーをスキン層として形成した多層構成フィルムを、第一のポリオレフィン層として用いてもよい。
 第一のポリオレフィン層を構成するポリオレフィンは、リサイクルされたポリオレフィンであってもよく、また植物などのバイオマス由来の原料を重合して得られたポリオレフィンであってもよい。これらのポリオレフィンは、単独で使用しても、通常の化石燃料から重合されたポリオレフィンと混合して使用してもよい。
 第一のポリオレフィン層を構成するポリオレフィンフィルムは、延伸フィルムであってよく、非延伸フィルムであってよい。但し、耐衝撃性、耐熱性、耐水性、寸法安定性等の観点から、ポリオレフィンフィルムは延伸フィルムであってよい。これによりホット充填を施す用途に、積層体をより好適に用いることができる。延伸方法としては特に限定されず、インフレーションによる延伸、一軸延伸、二軸延伸等、寸法が安定したフィルムが供給可能であれば、どのような方法でもよい。
 ポリオレフィンフィルムの厚さは特に限定されない。用途に応じ、当該厚さを6~200μmとすることができるが、優れた耐衝撃性と優れたガスバリア性とを得る観点から、9~50μmであってよく、12~38μmであってよい。
 第一のポリオレフィン層上には、無機蒸着層との密着性を向上させるため、バリア性能を損なわない範囲でコロナ処理、プラズマ処理、フレーム処理等の各種前処理を施してよい。
(密着層)
 第一のポリオレフィン層の、無機蒸着層を積層する面には、密着層(アンカーコート層)が設けられてよい。密着層により、第一のポリオレフィン層と無機蒸着層との密着性能向上と、ポリオレフィン層表面の平滑性向上との二つの効果を得ることができる。なお、平滑性が向上することで無機蒸着層を欠陥なく均一に成膜し易くなり、高いバリア性を発現し易い。
 密着層の厚さは特に限定されないが、0.01~5μmの範囲であることが好ましく、0.03~3μmの範囲であることがより好ましく、0.05~2μmの範囲であることが特に好ましい。密着層の厚さが上記下限値以上であると、より十分な層間接着強度が得られる傾向にあり、他方、上記上限値以下であると所望のガスバリア性が発現し易い傾向にある。
 密着層はアンカーコート剤を用いて形成することができる。アンカーコート剤としては、例えば、ポリエステル系ポリウレタン樹脂、ポリエーテル系ポリウレタン樹脂、アクリル系ポリウレタン樹脂等が挙げられる。これらのうち、耐熱性及び層間接着強度の観点から、ポリエステル系ポリウレタン樹脂が好ましい。
 密着層を第一のポリオレフィン層上に形成する方法としては、公知の塗工方法が特に制限なく使用可能であり、浸漬法(ディッピング法)、スプレー、コーター、印刷機、刷毛等を用いる方法が挙げられる。また、これらの方法に用いられるコーター及び印刷機の種類並びにそれらの塗工方式としては、ダイレクトグラビア方式、リバースグラビア方式、キスリバースグラビア方式、オフセットグラビア方式等のグラビアコーター、リバースロールコーター、マイクログラビアコーター、チャンバードクター併用コーター、エアナイフコーター、ディップコーター、バーコーター、コンマコーター、ダイコーター等を挙げることができる。
 密着層の塗布量としては、アンカーコート剤を塗工して乾燥した後の1mあたりの質量が0.01~5g/mであることが好ましく、0.03~3g/mであることがより好ましい。アンカーコート剤を塗工して乾燥した後の1mあたりの質量が上記下限以上であると、成膜が十分となる傾向にあり、他方、上記上限以下であると十分に乾燥し易く溶剤が残留し難い傾向にある。
 密着層を乾燥させる方法としては、特に限定されないが、自然乾燥による方法や、所定の温度に設定したオーブン中で乾燥させる方法、上記コーター付属の乾燥機、例えばアーチドライヤー、フローティングドライヤー、ドラムドライヤー、赤外線ドライヤー等を用いる方法を挙げることができる。さらに、乾燥の条件は、乾燥させる方法により適宜選択することができ、例えばオーブン中で乾燥させる方法においては、温度60~100℃にて、1秒間~2分間程度乾燥することが好ましい。
 アンカーコート剤として、ポリビニルアルコール系樹脂を用いてもよい。ポリビニルアルコール系樹脂としては、ビニルエステル単位がケン化されてなるビニルアルコール単位を有するものであればよく、例えば、ポリビニルアルコール(PVA)、エチレン-ビニルアルコール共重合体(EVOH)が挙げられる。
 PVAとしては、例えば、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル等のビニルエステルを、単独で重合し、次いでケン化した樹脂が挙げられる。PVAは、共重合変性又は後変性された変性PVAであってもよい。変性PVAは、例えばビニルエステルと、ビニルエステルと共重合可能な不飽和モノマーを共重合させた後にケン化することで得られる。ビニルエステルと共重合可能な不飽和モノマーとしては、例えばエチレン、プロピレン、イソブチレン、α-オクテン、α-ドデセン、α-オクタデセン等のオレフィン;3-ブテン-1-オール、4-ペンチン-1-オール、5-ヘキセン-1-オール等のヒドロキシ基含有α-オレフィン;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸、ウンデシレン酸等の不飽和酸;アクリロニトリル、メタアクリロニトリル等のニトリル;ジアセトンアクリルアミド、アクリルアミド、メタクリルアミド等のアミド;エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸;アルキルビニルエーテル、ジメチルアリルビニルケトン、N-ビニルピロリドン、塩化ビニル、ビニルエチレンカーボネート、2,2-ジアルキル-4-ビニル-1,3-ジオキソラン、グリセリンモノアリルエーテル、3,4-ジアセトキシ-1-ブテン等のビニル化合物;塩化ビニリデン、1,4-ジアセトキシ-2-ブテン、ビニレンカーボネート等が挙げられる。
 PVAの重合度は300~3000が好ましい。重合度が300より小さいとバリア性が低下し易く、また3000超であると粘度が高すぎて塗工適性が低下し易い。PVAのケン化度は90モル%以上が好ましく、95モル%以上がより好ましく、99モル%以上がさらに好ましい。また、PVAのケン化度は100モル%以下であってもよく、99.9モル%以下であってもよい。PVAの重合度及びケン化度は、JIS K 6726(1994)に記載の方法に準拠して測定できる。
 EVOHは、一般にエチレンと、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル等の酸ビニルエステルとの共重合体をケン化して得られる。
 EVOHの重合度は300~3000が好ましい。重合度が300より小さいとバリア性が低下し易く、また3000超であると粘度が高すぎて塗工適性が低下し易い。EVOHのビニルエステル成分のケン化度は90モル%以上が好ましく、95モル%以上がより好ましく、99モル%以上がさらに好ましい。また、EVOHのケン化度は100モル%以下であっても、99.9モル%以下であってもよい。EVOHのケン化度は、核磁気共鳴(H-NMR)測定を行い、ビニルエステル構造に含まれる水素原子のピーク面積と、ビニルアルコール構造に含まれる水素原子のピーク面積とから求められる。
 EVOHのエチレン単位含有量は10モル%以上が好ましく、15モル%以上がより好ましく、20モル%以上がさらに好ましく、25モル%以上が特に好ましい。また、EVOHのエチレン単位含有量は65モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下がさらに好ましい。エチレン単位含有量が10モル%以上であると、高湿度下におけるガスバリア性や寸法安定性を良好に保つことができる。一方、エチレン単位含有量が65モル%以下であると、ガスバリア性を高めることができる。EVOHのエチレン単位含有量は、NMR法により求めることができる。
 密着層としてポリビニルアルコール系樹脂を用いる場合、密着層の形成方法としては、ポリビニルアルコール系樹脂溶液を用いた塗布や、多層押出等が挙げられる。多層押出の場合は、無水マレイン酸グラフト変性ポリエチレン等の接着性樹脂を介して積層してよい。
 アンカーコート剤は、基材層と蒸着層との密着性向上の観点から、シランカップリング剤を含有してよい。任意の有機官能基を含むシランカップリング剤を用いることができ、例えばビニルトリメトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルトリメトキシシラン、グリシドオキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン等のシランカップリング剤或いはその加水分解物の1種ないしは2種以上を用いることができる。
 これらのシランカップリング剤のうち、ポリオールの水酸基又はイソシアネート化合物のイソシアネート基と反応する官能基を持つものが好ましい。例えばγ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルトリメトキシシランのようなイソシアネート基を含むもの、γ-メルカプトプロピルトリエトキシシランのようなメルカプト基を含むものや、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン、γ-フェニルアミノプロピルトリメトキシシランのようなアミノ基を含むものがある。さらにγ-グリシドオキシプロピルトリメトキシシランやβ-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン等のようにエポキシ基を含むものや、ビニルトリメトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン等のようなシランカップリング剤にアルコール等を付加し水酸基等を付加したものでも良く、これら1種ないしは2種以上を用いることができる。
 シランカップリング剤の量は、密着層を構成する樹脂(主剤)100質量部に対して0.1~100質量部とすることができ、1~50質量部であってよい。
(無機蒸着層)
 無機蒸着層は、包装体内容物の香料成分の第一のポリオレフィン層への溶解を防止するために設けられるものである。無機蒸着層の構成材料としては、例えば、酸化アルミニウム、酸化珪素、酸化マグネシウム、酸化錫等の無機酸化物が挙げられる。したがって、無機蒸着層は無機酸化物層と言うこともできる。透明性及びバリア性の観点から、無機酸化物は、酸化アルミニウム、酸化珪素、及び酸化マグネシウムからなる群より選択されてよい。さらに、印刷適性及びコストを考慮すると、無機酸化物は、酸化アルミニウム又は酸化珪素から選択されてよい。さらに、加工時に引っ張り延伸性に優れる観点から、無機酸化物は、酸化珪素であってよい。無機蒸着層を用いることにより、ガスバリア積層体のリサイクル性に影響を与えない範囲のごく薄い層で、高いバリア性を得ることができる。
 無機蒸着層として酸化アルミニウムを選択した場合のO/Al比は1.4以上であることが望ましい。O/Al比が1.4以上であると金属Alの含有割合が抑制されて良好な透明性が得られ易い。また、O/Al比は1.7以下であることが好ましい。O/Al比が1.7以下であるとAlOの結晶性が高くなって無機蒸着層が硬くなり過ぎることを防ぐことができ、良好な引張り耐性が得られる。また、包装袋に成形後もホット充填時の熱により第一のポリオレフィン層が収縮することがあるが、O/Al比が1.7以下であることで無機蒸着層が上記収縮に追従し易く、バリア性の低下を抑制することができる。これらの効果をより十分に得る観点から、無機蒸着層のO/Al比は1.4以上1.7以下であることが好ましく、1.5以上1.55以下であることがより好ましい。
 無機蒸着層として酸化珪素を選択した場合のO/Si比は1.7以上であることが望ましい。O/Si比が1.7以上であると金属Siの含有割合が抑制されて良好な透明性が得られ易い。また、O/Si比は2.0以下であることが好ましい。O/Si比が2.0以下であるとSiOの結晶性が高くなって無機蒸着層が硬くなり過ぎることを防ぐことができ、良好な引張り耐性が得られる。また、包装袋に成形後もホット充填等により第一のポリオレフィン層が収縮することがあるが、O/Si比が2.0以下であることで無機蒸着層が上記収縮に追従し易く、バリア性の低下を抑制することができる。これらの効果をより十分に得る観点から、無機蒸着層のO/Si比は1.75以上1.9以下であることが好ましく、1.8以上1.85以下であることがより好ましい。
 無機蒸着層のO/Al比及びO/Si比は、X線光電子分光法(XPS)により求めることができる。例えば、測定装置にはX線光電子分光分析装置(日本電子株式会社製、商品名:JPS-90MXV)を、X線源には非単色化MgKα(1253.6eV)を使用し、100W(10kV-10mA)のX線出力で測定することができる。
 無機蒸着層として酸化アルミニウムを選択した場合、その厚さは5nm以上30nm以下であることが好ましい。厚さが5nm以上であると、十分なガスバリア性を得易い。また、厚さが30nm以下であると、層の内部応力による変形によりクラックが発生することが抑制され、ガスバリア性の低下を抑制し易い。なお、厚さが30nmを超えると、材料使用量の増加、及び層形成時間の長時間化等に起因してコストが増加し易いため、経済的観点からも好ましくない。上記と同様の観点から、無機蒸着層の厚さは、7nm以上15nm以下であることがより好ましい。
 無機蒸着層として酸化珪素を選択した場合、その厚さは10nm以上50nm以下であることが好ましい。厚さが10nm以上であると、十分なガスバリア性を得ることができる。また、厚さが50nm以下であると、層の内部応力による変形によりクラックが発生することが抑制され、ガスバリア性の低下を抑制し易い。なお、厚さが50nmを超えると、材料使用量の増加、及び層形成時間の長時間化等に起因してコストが増加し易いため、経済的観点からも好ましくない。上記と同様の観点から、無機蒸着層の厚さは、20nm以上40nm以下であることがより好ましい。
 無機蒸着層は、例えば真空成膜で形成することができる。真空成膜では、物理気相成長法あるいは化学気相成長法を用いることができる。物理気相成長法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等を挙げることができるが、これらに限定されるものではない。化学気相成長法としては、熱CVD法、プラズマCVD法、光CVD法等を挙げることができるが、これらに限定されるものではない。
 上記真空成膜では、抵抗加熱式真空蒸着法、EB(Electron Beam)加熱式真空蒸着法、誘導加熱式真空蒸着法、スパッタリング法、反応性スパッタリング法、デュアルマグネトロンスパッタリング法、プラズマ化学気相堆積法(PECVD法)等が特に好ましく用いられる。但し、生産性を考慮すれば、現時点では真空蒸着法が最も優れている。真空蒸着法の加熱手段としては電子線加熱方式や抵抗加熱方式、誘導加熱方式のいずれかの方式を用いることが好ましい。
(ガスバリア性被覆層)
 ガスバリア性被覆層は、包装体内容物の香料成分の第一のポリオレフィン層への溶解防止、ガスバリア性の向上及び無機蒸着層の保護を目的として形成される。また、無機蒸着層に軽微なクラック等が生じた場合であっても、そこにガスバリア性の材料が入りこむことにより、ガスバリア性の低下を抑制することができる。上記アンカーコート層に対し、ガスバリア性被覆層をオーバーコート層ということもできる。
(ガスバリア性被覆層の第一の態様)
 特に限定されるものではないが、ガスバリア性被覆層は水酸基含有高分子化合物を含むことができる。具体的には、ガスバリア性被覆層は、水酸基含有高分子化合物及びその加水分解物の少なくともいずれかと、金属アルコキシド、シランカップリング剤及びそれらの加水分解物からなる群より選択される少なくとも1種と、を含有する組成物の加熱乾燥物であってよい。
 ガスバリア性被覆層は、水酸基含有高分子化合物と、金属アルコキシド及び/又はシランカップリング剤とを、水或いは水/アルコール混合液に添加して得られる組成物(以下、オーバーコート剤ともいう)を用いて形成される。オーバーコート剤は、例えば、水溶性高分子である水酸基含有高分子化合物を水系(水或いは水/アルコール混合)溶媒で溶解させた溶液と、金属アルコキシド及び/又はシランカップリング剤とを直接、或いは予めこれらを加水分解させるなどの処理を行ったものとを混合して調製することができる。
 オーバーコート剤は、ホット充填等の熱水処理後のガスバリア性をより十分に維持する観点から、少なくともシランカップリング剤又はその加水分解物を含有してよい。具体的には、オーバーコート剤は、水酸基含有高分子化合物及びその加水分解物の少なくともいずれかと、シランカップリング剤及びその加水分解物の少なくともいずれかとを含有してよく、水酸基含有高分子化合物及びその加水分解物の少なくともいずれかと、金属アルコキシド及びその加水分解物の少なくともいずれかと、シランカップリング剤及びその加水分解物の少なくともいずれかと、を含有してよい。
 水酸基含有高分子化合物としては、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリビニルピロリドン、デンプン、メチルセルロース、カルボキシメチルセルロース、アルギン酸ナトリウム等が挙げられる。これらの中でもポリビニルアルコール(PVA)をガスバリア性被覆層のオーバーコート剤に用いた場合、ガスバリア性が特に優れるので好ましい。
 金属アルコキシドとしては、下記一般式(I)で表わされる化合物が挙げられる。
  M(OR)m(R)n-m   …(I)
 上記一般式(I)中、R及びRはそれぞれ独立に炭素数1~8の1価の有機基であり、メチル基、エチル基等のアルキル基であることが好ましい。MはSi、Ti、Al、Zr等のn価の金属原子を示す。mは1~nの整数である。なお、R又はRが複数存在する場合、R同士又はR同士は同一でも異なっていてもよい。
 金属アルコキシドとしては、具体的には、テトラエトキシシラン〔Si(OC〕、トリイソプロポキシアルミニウム〔Al(O-2’-C〕などが挙げられる。テトラエトキシシラン及びトリイソプロポキシアルミニウムは、加水分解後、水系の溶媒中において比較的安定であるので好ましい。
 シランカップリング剤としては、下記一般式(II)で表される化合物が挙げられる。
  Si(OR11(R123-p13   …(II)
 上記一般式(II)中、R11はメチル基、エチル基等のアルキル基を示し、R12はアルキル基、アラルキル基、アリール基、アルケニル基、アクリロキシ基で置換されたアルキル基、又は、メタクリロキシ基で置換されたアルキル基等の1価の有機基を示し、R13は1価の有機官能基を示し、pは1~3の整数を示す。なお、R11又はR12が複数存在する場合、R11同士又はR12同士は同一でも異なっていてもよい。R13で示される1価の有機官能基としては、グリシジルオキシ基、エポキシ基、メルカプト基、水酸基、アミノ基、ハロゲン原子で置換されたアルキル基、又は、イソシアネート基を含有する1価の有機官能基が挙げられる。
 シランカップリング剤としては、具体的には、ビニルトリメトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルトリメトキシシラン、グリシドオキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン等のシランカップリング剤などが挙げられる。
 また、シランカップリング剤は、上記一般式(II)で表される化合物が重合した多量体であってもよい。多量体としては三量体が好ましく、より好ましくは1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートである。これは、3-イソシアネートアルキルアルコキシシランの縮重合体である。この1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートは、イソシア部には化学的反応性はなくなるが、ヌレート部の極性により反応性は確保されることが知られている。一般的には、3-イソシアネートアルキルアルコキシランと同様に接着剤などに添加され、接着性向上剤として知られている。よって1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートを、水酸基含有高分子化合物に添加することにより、水素結合によりガスバリア性被覆層の耐水性を向上させることができる。3-イソシアネートアルキルアルコキシランは反応性が高く、液安定性が低いのに対し、1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートは、ヌレート部はその極性により水溶性ではないが、水系溶液中に分散しやすく、液粘度を安定に保つことができる。また、耐水性能は3-イソシアネートアルキルアルコキシランと1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートとは同等である。
 1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートには、3-イソシアネートプロピルアルコキシシランの熱縮合により製造される際の、原料の3-イソシアネートプロピルアルコキシシランが含まれる場合もあるが、剤としての機能に特に問題はない。1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートは、さらに好ましくは、1,3,5-トリス(3-トリアルコキシシリルプロピル)イソシアヌレートであり、より好ましくは1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレートである。このメトキシ基は加水分解速度が速く、またプロピル基を含むものは比較的安価に入手し得ることから1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレートは実用上有利である。
 オーバーコート剤における金属アルコキシドの量は、香料の透過抑制性、無機蒸着層との密着性及びガスバリア性維持の観点から、水酸基含有高分子化合物1質量部に対して1~4質量部とすることができ、2~3質量部であってよい。同様に、シランカップリング剤の量は、水酸基含有高分子化合物1質量部に対して0.01~1質量部とすることができ、0.1~0.5質量部であってよい。金属アルコキシドとしてシラン化合物(アルコキシシラン)を用いる場合、オーバーコート剤におけるシラン化合物(金属アルコキシドとシランカップリング剤)の量は、水酸基含有高分子化合物1質量部に対して1~4質量部とすることができ、2~3質量部であってよい。
 オーバーコート剤には、ガスバリア性を損なわない範囲で、イソシアネート化合物、あるいは、分散剤、安定化剤、粘度調整剤、着色剤などの公知の添加剤を必要に応じて加えることも可能である。
(ガスバリア性被覆層の第二の態様)
 ガスバリア性被覆層は、多価金属又は多価金属化合物で架橋されてなるポリカルボン酸系重合体を含有するものであってよい。そのようなガスバリア性被覆層は、ポリカルボン酸系重合体を含有する組成物と多価金属又は多価金属化合物を含有する組成物とを用いて、それらを加熱乾燥することにより形成された層であってよいし、ポリカルボン酸系重合体と多価金属又は多価金属化合物とを含有する組成物を加熱乾燥することにより形成された層であってもよい。
 ポリカルボン酸系重合体は、既存のポリカルボン酸系重合体を用いることができる。既存のポリカルボン酸系重合体とは、分子内に2個以上のカルボキシ基を有する重合体の総称である。具体的には、重合性単量体として、α,β-モノエチレン性不飽和カルボン酸を用いた単独重合体、単量体成分として、α,β-モノエチレン性不飽和カルボン酸のみからなり、それらの少なくとも2種の共重合体、またα,β-モノエチレン性不飽和カルボン酸と他のエチレン性不飽和単量体との共重合体、さらにアルギン酸、カルボキシメチルセルロース、ペクチンなどの分子内にカルボキシ基を有する酸性多糖類を例示することができる。これらのポリカルボン酸系重合体は、それぞれ単独で、または少なくとも2種のポリカルボン酸系重合体を混合して用いることができる。
 ここでα,β-モノエチレン性不飽和カルボン酸としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸等が代表的なものである。またそれらと共重合可能なエチレン性不飽和単量体としては、エチレン、プロピレン、酢酸ビニル等の飽和カルボン酸ビニルエステル類、アルキルアクリレート類、アルキルメタクリレート類、アルキルイタコネート類、アクリロニトリル、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、スチレン等が代表的なものである。ポリカルボン酸系重合がα,β-モノエチレン性不飽和カルボン酸と酢酸ビニル等の飽和カルボン酸ビニルエステル類との共重合体の場合には、さらにケン化することにより、飽和カルボン酸ビニルエステル部分をビニルアルコールに変換して使用することができる。また、ポリカルボン酸系重合体が、α,β-モノエチレン性不飽和カルボン酸とその他のエチレン性不飽和単量体との共重合体である場合には、得られるフィルムのガスバリア性、及び耐熱性の観点から、その共重合組成は、α,β-モノエチレン性不飽和カルボン酸単量体組成が60モル%以上であることが好ましい。当該組成は、より好ましくは80モル%以上、さらに好ましくは90モル%以上、最も好ましくは100モル%であり、即ち、ポリカルボン酸系重合体がα,β-モノエチレン性不飽和カルボン酸のみからなる重合体であることが好ましい。さらにポリカルボン酸系重合体がα,β-モノエチレン性不飽和カルボン酸のみからなる重合体の場合には、その好適な具体例は、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸からなる群から選ばれる少なくとも1種の重合性単量体の重合によって得られる重合体、及びそれらの混合物が挙げられる。好ましくは、アクリル酸、メタクリル酸、マレイン酸から選ばれる少なくとも1種の重合性単量体の重合によって得られる重合体、共重合体、及び/またはそれらの混合物を用いることができる。より好ましくは、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸、及びそれらの混合物を用いることができる。ポリカルボン酸系重合体が、α,β-モノエチレン性不飽和カルボン酸単量体の重合体以外の化合物である場合、例えば、酸性多糖類の場合には、アルギン酸を好ましく用いることができる。
 ポリカルボン酸系重合体の数平均分子量については、特に限定されないが、フィルム形成性の観点で2,000~10,000,000の範囲であることが好ましく、さらには5,000~1,000,000であることが好ましい。
 ガスバリア性被覆層を構成する材料として、ポリカルボン酸系重合体以外にも、ガスバリア性被覆層の香料の透過抑制性、ガスバリア性、耐熱性を損なわない範囲で他の重合体を混合して用いることが可能であるが、ポリカルボン酸系重合体のみを単独で用いることが好ましい。
 多価金属とは、金属イオンの価数が2以上の多価金属原子単体であり、多価金属化合物とはその化合物である。多価金属の具体例としては、ベリリウム、マグネシウム、カルシウムなどのアルカリ土類金属、チタン、ジルコニウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛などの遷移金属、アルミニウム等を挙げることができる。多価金属化合物の具体例としては、上記の多価金属の酸化物、水酸化物、炭酸塩、有機酸塩、無機酸塩、その他、多価金属のアンモニウム錯体や多価金属の2~4級アミン錯体とそれら錯体の炭酸塩や有機酸塩等が挙げられる。有機酸塩としては、酢酸塩、シュウ酸塩、クエン酸塩、乳酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、ステアリン酸塩、モノエチレン性不飽和カルボン酸塩等が挙げられる。無機酸塩としては、塩化物、硫酸塩、硝酸塩等を挙げることができる。それ以外には多価金属のアルキルアルコキシド等を挙げることができる。
 これらの多価金属及び多価金属化合物はそれぞれ単独で、また少なくとも2種以上を混合して用いることができる。それらの中でも、ガスバリア性被覆層の香料の透過抑制性、ガスバリア性、耐熱性、及び製造性の観点で、2価の多価金属の化合物が好ましく用いられる。更に好ましくは、アルカリ土類金属、及びコバルト、ニッケル、銅、亜鉛の酸化物、水酸化物、炭酸塩や、コバルト、ニッケル、銅、亜鉛のアンモニウム錯体とその錯体の炭酸塩を用いることができる。最も好ましくは、マグネシウム、カルシウム、銅、亜鉛の各酸化物、水酸化物、炭酸塩、及び銅もしくは亜鉛のアンモニウム錯体とその錯体の炭酸塩を用いることができる。
 ガスバリア性被覆層の香料の透過抑制性、ガスバリア性、及び耐熱性を損なわない範囲で、一価の金属からなる金属化合物、例えばポリカルボン酸系重合体の一価金属塩を用いることができる。一価の金属化合物の好ましい添加量は、ガスバリア性被覆層の香料の透過抑制性、ガスバリア性、及び耐熱性の観点で、ポリカルボン酸系重合体の、カルボキシ基に対して、0.2化学当量以下である。一価の金属化合物は、部分的にポリカルボン酸系重合体の多価金属塩の分子中に含まれていてもよい。
 多価金属及び多価金属化合物の形態は、特別限定されない。しかし、ガスバリア性被覆層中では、多価金属及び多価金属化合物の一部、または全部がポリカルボン酸系重合体のカルボキシ基と塩を形成している。従って、ガスバリア性被覆層中にカルボン酸塩形成に関与しない多価金属又は多価金属化合物が存在する場合、あるいは、ガスバリア性被覆層がポリカルボン酸系重合体を含有する層と多価金属又は多価金属化合物を含有する層とが隣接した層構成単位からなる場合には、ガスバリア性被覆層の透明性の観点で多価金属及び多価金属化合物は、粒状で、その粒径が小さい方が好ましい。また、フィルムを作製するためのオーバーコート剤を調製する上でも、調製時の効率化、及びより均一なオーバーコート剤を得る観点で多価金属及び多価金属化合物は粒状で、その粒径は小さい方が好ましい。多価金属及び多価金属化合物の平均粒径としては、好ましくは5μm以下、更に好ましくは1μm以下、最も好ましくは0.1μm以下である。
 ガスバリア性被覆層において、ポリカルボン酸系重合体の量に対する多価金属及び多価金属化合物の量は、ガスバリア性被覆層の香料の透過抑制性、ガスバリア性、及び耐熱性の観点で、ガスバリア性被覆層がポリカルボン酸系重合体を含有する層と多価金属又は多価金属化合物を含有する層とが隣接した層構成単位を少なくとも1単位有する場合は、互いに隣接する全ての層及び層の合計を基準として、それらの層中に含まれるカルボキシ基の合計に対する多価金属及び多価金属化合物の合計が0.2化学当量以上であること、即ち、それらの層中に含まれるカルボキシ基の合計に対する多価金属及び多価金属化合物の合計の化学当量が0.2以上であることが好ましい。また、ガスバリア性被覆層がポリカルボン酸系重合体、多価金属又は多価金属化合物を含む混合物を含有する場合は、ポリカルボン酸系重合体の全てのカルボキシ基に対して、0.2化学当量以上の量の多価金属又は多価金属化合物を含むことが好ましい。多価金属及び多価金属化合物の量は、上記の両方のガスバリア性被覆層について、更に好ましくは0.5化学当量以上であり、上記観点に加え、ガスバリア性被覆層の成形性や透明性の観点から、0.8化学当量以上、10化学当量以下、最も好ましくは、1化学当量以上5化学当量以下の範囲である。
 このポリカルボン酸系重合体/多価金属又は多価金属化合物から構成されるガスバリア被覆層は、ケイ素含有化合物を含有してもよい。ケイ素含有化合物は、下記一般式(1)で表されるシランカップリング剤、その加水分解物及びそれらの縮合物からなる群から選択される少なくとも1種のケイ素含有化合物である。これにより、少量でも、無機蒸着層との密着性を向上させ、耐熱性、耐水性等を向上させる。
  RSi(OR  ・・・(1)
 式(1)中、Rはグリシジルオキシ基又はアミノ基を含む有機基であり、Rはアルキル基であり、3個のRはそれぞれ同一であっても異なっていてもよい。ただし、一般式(1)中、Rにおける有機基としては、例えば、グリシジルオキシアルキル基、アミノアルキル基等が挙げられる。Rのアルキル基としては、炭素数1~6のアルキル基が好ましく、メチル基またはエチル基が特に好ましい。
 シランカップリング剤の具体例としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン等が挙げられる。これらの中でも、γ-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシランが好ましい。
 ケイ素含有化合物は、シランカップリング剤自体であってもよく、該シランカップリング剤が加水分解した加水分解物でもよく、これらの縮合物であってもよい。
 加水分解物としては、一般式(1)中の3つのORのうち少なくとも1つがOHとなったものが挙げられる。縮合物としては、少なくとも2分子の加水分解物のSi-OH同士が縮合してSi-O-Si結合を形成したものが挙げられる。なお、シランカップリング剤の加水分解物が縮合したものを、加水分解縮合物と言うことができる。
 また、例えばゾルゲル法を用いて、シランカップリング剤の加水分解および縮合反応を行ったものを用いることができる。通常、シランカップリング剤は、加水分解が容易におこり、また、酸、アルカリ存在下では容易に縮合反応がおこるため、シランカップリング剤のみ、その加水分解物のみ、またはそれらの縮合物のみで存在することは稀である。すなわち、通常、シランカップリング剤、その加水分解物、およびこれらの縮合物が混在している。また、加水分解物には、部分加水分解物、完全加水分解物が含まれる。
 オーバーコート剤は、例えば、ディッピング法、ロールコート法、グラビアコート法、リバースグラビアコート法、エアナイフコート法、コンマコート法、ダイコート法、スクリーン印刷法、スプレーコート法、グラビアオフセット法等により塗布することができる。オーバーコート剤を塗布してなる塗膜は、例えば、熱風乾燥法、熱ロール乾燥法、高周波照射法、赤外線照射法、UV照射法、またはそれらの組み合わせにより乾燥させることができる。
 上記塗膜を乾燥させる際の温度は、例えば、温度50~150℃とすることができ、温度70~100℃とすることが好ましい。乾燥時の温度を上記範囲内とすることで、無機蒸着層やガスバリア性被覆層にクラックが発生することをより一層抑制でき、優れたバリア性を発現することができる。
 ガスバリア性被覆層は、水酸基含有高分子化合物(例えばポリビニルアルコール系樹脂)及びシラン化合物を含むオーバーコート剤を用いて形成されてよい。オーバーコート剤には、必要に応じて酸触媒、アルカリ触媒、光重開始剤等を加えてよい。
 シラン化合物としては、シランカップリング剤、ポリシラザン、シロキサン等が挙げられ、具体的には、テトラメトキシシラン、テトラエトキシシラン、グリシドキシプロピルトリメトキシシラン、アクリロキシプロピルトリメトキシシラン、ヘキサメチルジシラザン等が挙げられる。
 ガスバリア性被覆層の厚さは、50~1000nmであることが好ましく、100~500nmであることがより好ましい。ガスバリア性被覆層の厚さが50nm以上であると、より十分なガスバリア性を得ることができる傾向があり、1000nm以下であると、十分な柔軟性を保持できる傾向がある。
(ガスバリア性被覆層の第三の態様)
 ガスバリア性被覆層は、接着剤機能を有する層であってもよい。このような層を接着性ガスバリア性被覆層と言うことができる。接着性ガスバリア性被覆層は、少なくとも芳香族環及び脂肪族環のいずれかを有する樹脂を含む接着性組成物の硬化物であってよい。当該硬化物(硬化膜)内では、芳香族環、または脂肪族環の環状構造が平行に存在し、香料の透過を抑制し易い。
 上記硬化物のガラス転移点は、40℃以上、70℃以下が好ましい。40℃より低いと香料の透過抑制効果が得られず、70℃を超えると室温付近での柔軟性が弱く、隣接する層への密着性が劣ることで密着力が低下するおそれがある。これらの条件を満たす接着剤として、エポキシ樹脂とアミン系エポキシ樹脂硬化剤とからなる二液硬化型接着剤を例示できる。使用可能なエポキシ樹脂は、脂環式化合物、芳香族化合物、あるいは複素環式化合物のいずれであってもよい。エポキシ樹脂の具体例としては、メタキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、1,3-ビス(アミノメチル)シクロヘキサンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、ジアミノジフェニルメタンから誘導されたグリシジルアミノ基を有するエポキシ樹脂、パラアミノフェノールから誘導されたグリシジルアミノ基及び/又はグリシジルオキシ基を有するエポキシ樹脂、ビスフェノールAから誘導されたグリシジルオキシ基を有するエポキシ樹脂、ビスフェノールFから誘導されたグリシジルオキシ基を有するエポキシ樹脂、フェノールノボラックから誘導されたグリシジルオキシ基を有するエポキシ樹脂ならびにレゾルシノールから誘導されたグリシジルオキシ基を有するエポキシ樹脂から選ばれる少なくとも1つの樹脂が好ましく挙げられる。なかでもメタキシリレンジアミンから誘導されたグリシジルアミノ基を有するエポキシ樹脂が特に好ましい。
 接着性組成物としては、官能基として1分子中に水酸基を2個以上有し、且つ、ポリエステルを構成するモノマー成分の多価カルボン酸として、オルト配向芳香族ジカルボン酸又はその無水物を用いて得られるポリエステル又はポリエステルポリウレタン樹脂と、ジフェニルメタンジイソシアネート、ポリメリックジフェニルメタンジイソシアネート、及びこれらの誘導体の少なくとも一種を含有するポリイソシアネートと、を含む接着剤を例示できる。
 ガスバリア性接着剤の具体例としては、三菱ガス化学社製の「マクシーブ」、DIC社製の「Paslim」等が挙げられる。
 接着性ガスバリア性被覆層の酸素透過度は、150cc/m・day・atm以下であってよく、100cc/m・day・atm以下であってよく、80cc/m・day・atm以下であってよく、50cc/m・day・atm以下であってよい。酸素透過度が上記範囲内であることで、ガスバリア性の向上をより行い易くなる。
 接着性ガスバリア性被覆層の厚さは、無機蒸着層の厚さの50倍以上であってよい。厚さが上記範囲内であることで、外部からの衝撃を緩和するクッション性がガスバリア性被覆層に付与され、無機蒸着層の割れをより抑制し易くなり、香料成分の第一のポリオレフィン層への溶解防止、ガスバリア性等をより高水準で達成することができる。包装材の柔軟性の保持、加工適性及びコストの観点から、接着性ガスバリア性被覆層の厚さは無機蒸着層の厚さの300倍以下であってよい。接着性ガスバリア性被覆層の厚さは、例えば0.1~20μmであってよく、0.5~10μmであってよく、1~5μmであってよい。
 接着性ガスバリア性被覆層を形成するための上記材料(ガスバリア性接着剤)は、例えば、バーコート法、ディッピング法、ロールコート法、グラビアコート法、リバースコート法、エアナイフコート法、コンマコート法、ダイコート法、スクリーン印刷法、スプレーコート法、グラビアオフセット法等により塗布できる。塗膜を乾燥させる際の温度は、例えば、30~200℃であってよく、50~180℃であってよい。塗膜を硬化させる際の温度は、例えば、室温~70℃であってよく、30~60℃であってよい。乾燥及び硬化時の温度を上記範囲内とすることで、無機蒸着層や接着性ガスバリア性被覆層におけるクラックの発生をより抑制でき、香料成分の第一のポリオレフィン層への溶解防止、ガスバリア性等をより高水準で達成することができる。
 無機蒸着層の保護の観点から、無機蒸着層上に直接接着性ガスバリア性被覆層を形成することができるが、両層の間には印刷層、(接着性を有しない)ガスバリア性被覆層等の他の層があってもよい。
(印刷層)
 第一のポリオレフィン層の無機蒸着層側の面上、第一のポリオレフィン層の無機蒸着層とは反対側の面上、あるいは無機蒸着層上などには、印刷層を設けることができる。印刷層は、内容物に関する情報の表示、内容物の識別、あるいは包装袋の意匠性向上を目的として、積層体の外側から見える位置に設けられる。印刷方法及び印刷インキは特に制限されず、既知の印刷方法及び印刷インキの中からフィルムへの印刷適性、色調などの意匠性、密着性、食品容器としての安全性などを考慮して適宜選択される。印刷方法としては、例えば、グラビア印刷法、オフセット印刷法、グラビアオフセット印刷法、フレキソ印刷法、インクジェット印刷法などを用いることができる。中でもグラビア印刷法は生産性や絵柄の高精細度の観点から、好ましく用いることができる。
(第二のポリオレフィン層)
 第二のポリオレフィン層は、第一のポリオレフィン層の構成材料よりも融点が低い材料から構成されており、ヒートシール性を有するものである。したがって、第二のポリオレフィン層をシーラント層と言うこともできる。
 第一のポリオレフィン層及び第二のポリオレフィン層は異なる素材からなってもよいが、樹脂素材の溶融を経た再形成のしやすさの観点から、同一の素材からなることが好ましい。ここで、同一の素材からなるとは、例えば両層が共にポリエチレンからなることや、共にポリプロピレンからなることを言う。
 第一のポリオレフィン層がポリエチレンの場合は、第二のポリオレフィン層として直鎖状低密度ポリエチレン(LLDPE)を用いることができる。また、剛性を付与するなどの目的で、無機蒸着層側を高密度ポリエチレン(HDPE)や中密度ポリエチレン(MDPE)とし、シートシール側を低密度ポリエチレン(LDPE)となるように共押出された積層構成のフィルムも、第二のポリオレフィン層として使用可能である。
 第一のポリオレフィン層がポリプロピレンの場合は、第二のポリオレフィン層として低密度ポリエチレン樹脂(LDPE)、中密度ポリエチレン樹脂(MDPE)、直鎖状低密度ポリエチレン樹脂(LLDPE)、エチレン-酢酸ビニル共重合体(EVA)、エチレン-αオレフィン共重合体、エチレン-(メタ)アクリル酸共重合体などのエチレン系樹脂や、ポリエチレンとポリブテンのブレンド樹脂や、ホモポリプロピレン樹脂(PP)、プロピレン-エチレンランダム共重合体、プロピレン-エチレンブロック共重合体、プロピレン-αオレフィン共重合体などのポリプロピレン系樹脂等を使用することができる。
 第二のポリオレフィン層を構成するポリオレフィンフィルムには、難燃剤、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤等の各種添加材が添加されてよい。
 第二のポリオレフィン層の厚さは、内容物の質量や、包装袋の形状などにより定められるが、概ね30~150μmの厚さが好ましい。
 無機蒸着層及びガスバリア性被覆層が形成された第一のポリオレフィン層と、ヒートシール性を有する第二のポリオレフィン層とを積層する手段としては、一液硬化型もしくは二液硬化型ウレタン系接着剤等の接着剤で貼りあわせるドライラミネート法、無溶剤接着剤を用いて貼りあわせるノンソルベントドライラミネート法、ポリエチレンやポリプロピレン等のポリオレフィン樹脂を加熱溶融させ、カーテン状に押し出し、貼りあわせるエクストルージョンラミネート法等、いずれも公知の積層方法を採用することができる。接着剤としては、環境配慮の観点から、バイオマス由来や生分解性を有する高分子成分を含むものを使用してもよい。
 接着性ガスバリア性被覆層を用いる場合は、無機蒸着層が形成された第一のポリオレフィン層と、ヒートシール性を有する第二のポリオレフィン層とを、当該接着性ガスバリア性被覆層により積層することができる。
 上記のとおり、包装材を構成するフィルムは、全てポリオレフィンフィルムとすることができる。そのような包装材は、リサイクル性に優れる単一素材からなる(モノマテリアルの)材料と言うことができる。この観点から、包装材の全質量に対し、ポリオレフィン成分以外の成分(例えば、密着層、金属蒸着層、ガスバリア性被覆層、接着層、印刷層等の成分)の合計質量は10質量%以下とすることができ、7.5質量%以下であってよく、5.0質量%以下であってよい。
 包装材は、第一のポリオレフィン層の他に、基材として他の樹脂層を備えていてもよい。他の樹脂層はポリオレフィン層であってよい。他の樹脂層には、耐熱性の高いフィルム、一軸延伸等の易引裂き性のあるフィルム、耐突き刺し性付与のためのナイロン層を共押で備えたフィルム等を、目的に応じて選択することができる。
<包装袋及び包装体>
 包装袋は、このようにして得られた包装材の、第二のポリオレフィン層同士を合わせてヒートシールすることにより得ることができる。包装体は、このようにして得られた包装袋に、香料としてエステル類やテルペン類を含む内容物を充填し、密封することにより得ることができる。
 以下、本開示を実験例により、さらに具体的に説明するが、本開示はこれら実験例に限定されるものではない。
(アンカーコート剤の調製)
 アクリルポリオールとトリレンジイソシアネートとを、アクリルポリオールのOH基の数に対してトリレンジイソシアネートのNCO基の数が等量となるように混合し、全固形分(アクリルポリオール及びトリレンジイソシアネートの合計量)が5質量%になるよう酢酸エチルで希釈した。希釈後の混合液に、さらにβ-(3,4エポキシシクロヘキシル)エチルトリメトキシシランを、アクリルポリオール及びトリレンジイソシアネートの合計量100質量部に対して5質量部となるように添加し、これらを混合することでアンカーコート剤を調製した。
(オーバーコート剤(1)の調製)
 下記のA液、B液及びC液を、それぞれ70/20/10の質量比で混合することで、オーバーコート剤(1)を調製した。
A液:テトラエトキシシラン(Si(OC)17.9gとメタノール10gに0.1N塩酸72.1gを加えて30分間攪拌して加水分解させた固形分5質量%(SiO換算)の加水分解溶液。
B液:ポリビニルアルコールの5質量%水/メタノール溶液(水:メタノールの質量比は95:5)。
C液:1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレートを水/イソプロピルアルコールの混合液(水:イソプロピルアルコールの質量比は1:1)で固形分5質量%に希釈した加水分解溶液。
(オーバーコート剤(2)の調製)
 東亜合成社製のポリアクリル酸アロンA-10H(数平均分子量:200,000)50gに水200gを添加してポリアクリル酸水溶液を調製した後、さらに富士フィルム和光純薬社製の酸化亜鉛微粒子水分散液1.5gを添加して、室温で2日間攪拌を行い、オーバーコート剤(2-1)を調製した。
 住友大阪セメント社製の酸化亜鉛微粒子水分散液ZE143 100gと、Henkel社製の硬化剤Liofol HAERTER UR 5889-21 1gとを混合し、オーバーコート剤(2-2)を調製した。
(オーバーコート剤(3)の調製)
 イソプロピルアルコール100gに東亜合成社製のポリアクリル酸ジュリマーAC―10LP(数平均分子量:5,0000)10gを添加し、ポリアクリル酸溶液を調製した。
 堺化学工業社製の酸化亜鉛FINEX―30 100g、界面活性剤として楠本化成社製のDA-325 15gを、220gのイソプロピルアルコールに分散させ、酸化亜鉛分散液を調製した。
 上記ポリアクリル酸溶液80質量部と酸化亜鉛分散液20質量部を混合し、オーバーコート剤(3)を調製した。
(オーバーコート剤(4)の調製)
 オーバーコート剤(1)のA液、B液及びC液を、それぞれ40/50/10の質量比で混合することで、オーバーコート剤(4)を調製した。
(オーバーコート剤(5)の調製)
 酢酸エチルとメタノールとを質量比1:1で混合した溶媒23質量部に、三菱ガス化学社製のマクシーブC93T 16質量部と、三菱ガス化学社製のマクシーブM-100 5質量部を混合し、オーバーコート剤(5)を調製した。
(接着剤の準備)
 三井化学社製のタケラックA525 100質量部に対し、三井化学社製のタケネートA52 11質量部、酢酸エチル 84質量部を混合した、ウレタン系接着剤を準備した。
(実施例1)
 厚さ32μmの未延伸高密度ポリエチレン(HDPE)のコロナ処理面に、上記アンカーコート剤をグラビアコート法により塗布して乾燥し、厚さ0.1μmのアンカーコート層を設けた。
 電子線加熱方式による真空蒸着装置により、厚さ10nmの酸化アルミニウムからなる透明な無機蒸着層(アルミナ蒸着層)を形成した。アルミナ蒸着層のO/Al比は1.5であった。
 アルミナ蒸着層上に、オーバーコート剤(1)をグラビアコート法により塗布して乾燥し、厚さ0.3μmのオーバーコート層を形成した。
 オーバーコート層上に、ウレタン系接着剤を用いたドライラミネート法により、直鎖状低密度ポリエチレン(LLDPE)からなる厚さ40μmのシーラントフィルムを積層し、積層体を得た。
(実施例2)
 無機蒸着層として、電子線加熱方式による真空蒸着装置により、厚さ30nmの酸化珪素からなる透明な無機蒸着層(シリカ蒸着層)を形成した。シリカ蒸着層のO/Si比は1.8であった。このこと以外は、実施例1と同様にして積層体を得た。
(実施例3)
 基材として厚さ25μmの一軸延伸高密度ポリエチレン(HDPE)を用いたこと以外は、実施例2と同様にして積層体を得た。
(実施例4)
 基材として厚さ20μmの延伸ポリプロピレン(OPP)を用いたこと、シーラントフィルムとして厚さ50μmの未延伸ポリプロピレン(CPP)フィルムを用いたこと以外は、実施例2と同様にして積層体を得た。
(実施例5)
 ポリプロピレンとEVOHを接着性樹脂を挟んで共押出し、逐次延伸し、延伸ポリプロピレン(OPP)18μm上にアンカーコート層としてEVOH1μmを有する多層フィルムを得た。
 EVOH面に、電子線加熱方式による真空蒸着装置により、厚さ30nmの酸化珪素からなる透明な無機蒸着層(シリカ蒸着層)を形成した。シリカ蒸着層のO/Si比は1.8であった。
 シリカ蒸着層上に、オーバーコート剤(1)をグラビアコート法により塗布して乾燥し、厚さ0.3μmのオーバーコート層を形成した。
 オーバーコート層上に、ウレタン系接着剤を用いたドライラミネート法により、未延伸ポリプロピレン(CPP)からなる厚さ50μmのシーラントフィルムを積層し、積層体を得た。
(実施例6)
 シリカ蒸着層上に、オーバーコート剤(5)をドライラミネート法により塗布して乾燥し、厚さ2.5μmの接着性ガスバリア性被覆層を形成した。この接着性ガスバリア性被覆層を介して、直鎖状低密度ポリエチレン(LLDPE)からなる厚さ40μmのシーラントフィルムを積層した。このこと以外は、実施例2と同様にして積層体を得た。
(実施例7)
 シリカ蒸着層上に、オーバーコート剤(5)をドライラミネート法により塗布して乾燥し、厚さ2.5μmの接着性ガスバリア性被覆層を形成した。この接着性ガスバリア性被覆層を介して、厚さ50μmの未延伸ポリプロピレン(CPP)を積層した。このこと以外は、実施例4と同様にして積層体を得た。
(実施例8)
 基材として厚さ20μmの延伸ポリプロピレン(OPP)を用いたこと、オーバーコート剤(2―1)及び(2-1)をグラビアコート法により順に塗布して乾燥し、厚さ0.6μmのオーバーコート層(酸化亜鉛で架橋されてなるポリアクリル酸を含む層)を形成したこと、シーラントフィルムとして厚さ50μmの未延伸ポリプロピレン(CPP)フィルムを用いたこと以外は、実施例1と同様にして積層体を得た。
(実施例9)
 オーバーコート剤(3)をグラビアコート法により塗布して乾燥し、厚さ0.4μmのオーバーコート層を形成したこと以外は、実施例8と同様にして積層体を得た。
(実施例10)
 オーバーコート剤(4)をグラビアコート法により塗布して乾燥し、厚さ0.4μmのオーバーコート層を形成したこと以外は、実施例4と同様にして積層体を得た。
(比較例1)
 オーバーコート層を設けなかったこと以外は、実施例1と同様にして積層体を得た。
(比較例2)
 オーバーコート層を設けなかったこと以外は、実施例2と同様にして積層体を得た。
(比較例3)
 アンカーコート層、無機蒸着層及びオーバーコート層を設けなかったこと以外は、実施例1と同様にして積層体を得た。
(比較例4)
 アンカーコート層、無機蒸着層及びオーバーコート層を設けなかったこと以外は、実施例4と同様にして積層体を得た。
(比較例5)
 無機蒸着層及びオーバーコート層を設けなかったこと以外は、実施例5と同様にして積層体を得た。
(比較例6)
 厚さ12μmのポリエチレンテレフタレート(PET)のコロナ処理面に、ウレタン系接着剤を用いたドライラミネート法により、直鎖状低密度ポリエチレン(LLDPE)からなる厚さ40μmのシーラントフィルムを積層し、積層体を得た。
[酸素透過度の測定方法]
 各例で得られた積層体の酸素透過度(OTR)を、酸素透過度測定装置(MOCON社製、商品名:OX-TRAN2/20)を用いて、温度30℃、相対湿度70%の条件で測定した。比較例3~5以外の酸素透過度はJIS K-7126、B法(等圧法)に準拠して測定した。比較例3~5の酸素透過度は、酸素透過度測定装置(GTRテック社製、商品名:GTR-3000)を用いて、差圧法に準拠して測定した。結果を表1に示す。
[水蒸気透過度の測定方法]
 各例で得られた積層体の水蒸気透過度(WTR)を、水蒸気透過度測定装置(MOCON社製、商品名:PERMATRAN-W 3/33)を用いて、温度40℃、相対湿度90%の条件で測定した。水蒸気透過度はJIS K-7126、B法(等圧法)に準拠して測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[香料成分透過抑制性評価]
(官能評価)
 各例で得られた積層体から、100mm×100mm角にサンプルを切り出し、切り出した2枚のサンプルを互いのシーラントフィルム同士が対向するように重ね、パウチ状に3方インパルスシールし、包装袋を得た。
 得られた包装袋に、シャンプーとしてユニリーバ社製「Luxスーパーリッチシャインダメージリペア補修シャンプー」(香料成分としてメチル酪酸エチル、2-メチル吉草酸エチル、酢酸ヘキシル、ヘキサン酸アリル、ヘプタン酸アリル、酢酸ベンジル等のエステル類、及びリモネン等のテルペン類を含む)、又は柔軟仕上げ剤としてP&G社製「レノアHAPPINESSアンティークローズ&フローラルの香り」(香料成分としてメチル酪酸エチル、2-メチル酪酸エチル、酢酸イソアミル、2-メチル吉草酸エチル、酢酸ヘキシル、ヘキサン酸アリル、ヘプタン酸アリル、酢酸α-メチルベンジル、酢酸ベンジル、βピネン、シクロヘキサンプロピオン酸アリル、イソ酪酸2-フェノキシエチル等のエステル類、及びリモネン、α-テルピネオール、βシトロネロール、ミルセン等のテルペン類を含む)を10gずつ充填し、密封した。なお、シール幅は5mm(内表面積9cm×9cm)とした。これにより、包装袋と、包装袋内に包装された香料を含む内容物と、を備える包装体を得た。
 得られた包装体を、PET/アルミ箔/LLDPEからなるアルミ袋に空気140ccと共に密封し、40℃で10日間保管した。
 保管後、アルミ袋の一部を開封し、においを嗅ぐ官能評価を実施し、以下の評価基準に基づき評価した。結果を表3に示す。
---:香料成分のにおいを全く感じない。
--:香料成分のにおいをほとんど感じない。
-:香料成分のにおいをあまり感じない。
+:香料成分のにおいを感じる。
++:香料成分のにおいを強く感じる。
+++:香料成分のにおいを非常に強く感じる。
(香料成分の定性分析]
 上記官能評価と同様にして包装体を得た。得られた包装体を、アルミ袋に空気140ccと共に密封し、40℃で10日間保管した。
 保管後のアルミ袋内のガス1mLをガスタイトシリンジで抜き取り、空気中の成分の定性分析、及び一例として酢酸ヘキシルの定性分析を、表2の条件でGC/MS法により実施した。測定には、ガスクロマトグラフ/質量分析計(Agilent Technologies製 型番:GC6890/MSD5973)を用いた。香料成分の同定は、香料を含む内容物(シャンプー又は柔軟仕上げ剤)0.01gを20mLバイアル瓶に入れて60℃×20分加熱し、その後気相中のガスをガスタイトシリンジで抜き取り、GC/MSに供して同定した。結果を表3に示す。表3中、実施例1~3、6、比較例1~2の香料成分カット率は、各実施例のGCピーク面積値を比較例3のGCピーク面積値で除して算出した(いずれもオールPE包装材。比較例3の香料成分カット率は0%と規定)。同様に、実施例4、7~10は比較例4を基準に(いずれもオールPP包装材)、実施例5は比較例5を基準に(いずれもオールPP/EVOH包装材)、香料成分カット率を算出した。
Figure JPOXMLDOC01-appb-T000002
(酢酸ヘキシルの定量分析)
 140mL容量のマヨネーズ瓶に酢酸ヘキシルを0.1μL滴下して蓋を閉め、40℃で30分間オーブンで加熱した後、ガスタイトシリンジでマヨネーズ瓶中のガス1mLを抜き取ってGC/MS分析に供し、得られたm/z=56で抽出したイオンクロマトグラムにおけるピーク面積値を用いて検量線を作成した。この検量線を用いて、各例に対するGC/MS分析から得られたm/z=56におけるピーク面積値より、酢酸ヘキシル量を定量した。結果を表3に示す。
 テルペン類(一例としてリモネン、シトロネロールに着目)については定量分析までは行わなかったものの、定性分析におけるピーク面積値の合計は、実施例の方が比較例に比べ顕著に小さかった。
Figure JPOXMLDOC01-appb-T000003
 本開示による包装材は、香料成分に対する優れた透過抑制性を有しており、香料を含む内容物を好適に包装することができる。また、本開示による包装材は、包装材全量に占めるポリオレフィン量を90質量%以上とすることができ、マテリアルリサイクルが可能である。
 1…第一のポリオレフィン層、2…無機蒸着層、3…ガスバリア性被覆層、4…第二のポリオレフィン層、10…包装材。

 

Claims (11)

  1.  香料を含む内容物を包装するための包装材であって、
     第一のポリオレフィン層、無機蒸着層、ガスバリア性被覆層、及びヒートシール性を有する第二のポリオレフィン層をこの順に備える、包装材。
  2.  前記ガスバリア性被覆層が、水酸基含有高分子化合物及びその加水分解物の少なくともいずれかと、金属アルコキシド、シランカップリング剤及びそれらの加水分解物からなる群より選択される少なくとも1種と、を含有する組成物の加熱乾燥物である、請求項1に記載の包装材。
  3.  前記ガスバリア性被覆層が、多価金属又は多価金属化合物で架橋されてなるポリカルボン酸系重合体を含有する、請求項1記載の包装材。
  4.  前記ガスバリア性被覆層が、少なくとも芳香族環及び脂肪族環のいずれかを有する樹脂を含む接着性組成物の硬化物である、請求項1記載の包装材。
  5.  前記無機蒸着層が、酸化アルミニウム及び酸化珪素の少なくともいずれかを含む、請求項1~4のいずれか一項に記載の包装材。
  6.  第一のポリオレフィン層及び第二のポリオレフィン層が同一の素材からなる、請求項1~5のいずれか一項に記載の包装材。
  7.  第一のポリオレフィン層及び第二のポリオレフィン層がポリエチレンからなる、請求項1~6のいずれか一項に記載の包装材。
  8.  第一のポリオレフィン層及び第二のポリオレフィン層がポリプロピレンからなる、請求項1~6のいずれか一項に記載の包装材。
  9.  請求項1~8のいずれか一項に記載の包装材から形成される包装袋。
  10.  請求項9に記載の包装袋と、前記包装袋内に包装された香料を含む内容物と、を備える包装体。
  11.  前記香料が、エステル類及びテルペン類の少なくともいずれかを含む、請求項10に記載の包装体。

     
PCT/JP2021/035450 2020-09-29 2021-09-27 包装材、包装袋及び包装体 WO2022071248A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180066302.7A CN116348386A (zh) 2020-09-29 2021-09-27 包装材料、包装袋以及包装体
JP2022553968A JPWO2022071248A1 (ja) 2020-09-29 2021-09-27
EP21875550.2A EP4223663A4 (en) 2020-09-29 2021-09-27 PACKAGING MATERIAL, PACKAGING BAGS AND PACKAGING
US18/127,344 US20230227228A1 (en) 2020-09-29 2023-03-28 Packaging material, packaging bag, and packaging body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020163611 2020-09-29
JP2020-163611 2020-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/127,344 Continuation US20230227228A1 (en) 2020-09-29 2023-03-28 Packaging material, packaging bag, and packaging body

Publications (1)

Publication Number Publication Date
WO2022071248A1 true WO2022071248A1 (ja) 2022-04-07

Family

ID=80949131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035450 WO2022071248A1 (ja) 2020-09-29 2021-09-27 包装材、包装袋及び包装体

Country Status (5)

Country Link
US (1) US20230227228A1 (ja)
EP (1) EP4223663A4 (ja)
JP (1) JPWO2022071248A1 (ja)
CN (1) CN116348386A (ja)
WO (1) WO2022071248A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199753A1 (ja) * 2022-04-13 2023-10-19 凸版印刷株式会社 ガスバリア性積層体、包装フィルム、包装容器及び包装製品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002337886A (ja) * 2001-05-11 2002-11-27 Dainippon Printing Co Ltd 自立性袋
JP2006273369A (ja) * 2005-03-29 2006-10-12 Toppan Printing Co Ltd 透明バリア積層体
JP2006282638A (ja) * 2005-04-05 2006-10-19 Mitsubishi Gas Chem Co Inc リモネン含有物品の保存方法
JP2009166895A (ja) * 2007-12-21 2009-07-30 Mitsubishi Gas Chem Co Inc 食品、薬品等の保存に適した袋状容器
WO2020116544A1 (ja) * 2018-12-05 2020-06-11 凸版印刷株式会社 ガスバリア性フィルム
JP2021000770A (ja) * 2019-06-21 2021-01-07 大日本印刷株式会社 保香性包装袋用積層体及び包装袋
JP2021142686A (ja) * 2020-03-11 2021-09-24 大日本印刷株式会社 積層体及び包装体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3935588B2 (ja) * 1998-01-16 2007-06-27 大日本印刷株式会社 多層積層ヒ−トシ−ル材、それを使用した積層体および包装用容器
CN109476141B (zh) * 2016-07-20 2021-03-09 凸版印刷株式会社 密封剂膜、包括该密封剂膜的多层膜及包装袋
KR102064094B1 (ko) * 2018-12-21 2020-02-12 정진만 포장튜브용 내박리성 시이트

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002337886A (ja) * 2001-05-11 2002-11-27 Dainippon Printing Co Ltd 自立性袋
JP2006273369A (ja) * 2005-03-29 2006-10-12 Toppan Printing Co Ltd 透明バリア積層体
JP2006282638A (ja) * 2005-04-05 2006-10-19 Mitsubishi Gas Chem Co Inc リモネン含有物品の保存方法
JP2009166895A (ja) * 2007-12-21 2009-07-30 Mitsubishi Gas Chem Co Inc 食品、薬品等の保存に適した袋状容器
WO2020116544A1 (ja) * 2018-12-05 2020-06-11 凸版印刷株式会社 ガスバリア性フィルム
JP2021000770A (ja) * 2019-06-21 2021-01-07 大日本印刷株式会社 保香性包装袋用積層体及び包装袋
JP2021142686A (ja) * 2020-03-11 2021-09-24 大日本印刷株式会社 積層体及び包装体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4223663A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199753A1 (ja) * 2022-04-13 2023-10-19 凸版印刷株式会社 ガスバリア性積層体、包装フィルム、包装容器及び包装製品

Also Published As

Publication number Publication date
EP4223663A4 (en) 2024-02-21
CN116348386A (zh) 2023-06-27
JPWO2022071248A1 (ja) 2022-04-07
US20230227228A1 (en) 2023-07-20
EP4223663A1 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
WO2021020400A1 (ja) 積層体及び包装袋
JP5846477B2 (ja) バリア性積層フィルム
WO2021176948A1 (ja) ガスバリア積層体及び包装袋
JP7332070B1 (ja) ガスバリア積層体及び包装袋
US20240025612A1 (en) Laminate, packaging bag, and standing pouch
JP6331166B2 (ja) バリア性積層フィルム
WO2022071248A1 (ja) 包装材、包装袋及び包装体
JP2022034746A (ja) ガスバリア積層体
JP7231095B2 (ja) 積層体及び包装袋
JP6098957B2 (ja) バリア性積層フィルム
WO2023181852A1 (ja) 包装用積層体及び包装袋
JP7473036B2 (ja) 積層体及び包装袋
JP7036266B1 (ja) ガスバリアフィルム、積層体、および包装材料
JP7036265B1 (ja) ガスバリアフィルム、積層体、および包装材料
WO2024019049A1 (ja) 包装用積層体、その選定方法及びその評価方法、並びに包装袋及びその製造方法
WO2023238825A1 (ja) 包装用の積層体及び包装袋
WO2023219141A1 (ja) ガスバリアフィルム、包装フィルム及び包装袋
JP2023178816A (ja) 包装用積層体及び包装袋
JP2023049299A (ja) 積層体、包装材料、包装体及び包装物品
JP2024066073A (ja) 積層体及び包装袋
JP2023183634A (ja) 積層体及びその製造方法、並びに、包装袋
JP2023179896A (ja) 積層体、包装材料及び包装袋
CN116568495A (zh) 层叠体、包装袋及自立袋
TW202233430A (zh) 積層薄膜及包裝材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553968

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021875550

Country of ref document: EP

Effective date: 20230502