JP2023049299A - 積層体、包装材料、包装体及び包装物品 - Google Patents

積層体、包装材料、包装体及び包装物品 Download PDF

Info

Publication number
JP2023049299A
JP2023049299A JP2021158960A JP2021158960A JP2023049299A JP 2023049299 A JP2023049299 A JP 2023049299A JP 2021158960 A JP2021158960 A JP 2021158960A JP 2021158960 A JP2021158960 A JP 2021158960A JP 2023049299 A JP2023049299 A JP 2023049299A
Authority
JP
Japan
Prior art keywords
layer
gas barrier
group
laminate
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021158960A
Other languages
English (en)
Inventor
誠司 滝澤
Seiji Takizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2021158960A priority Critical patent/JP2023049299A/ja
Publication of JP2023049299A publication Critical patent/JP2023049299A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Landscapes

  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】積層体を構成するフィルムがポリオレフィンフィルムからなり、レトルト処理に対して高い耐性を示す包装体を実現可能とする。【解決手段】積層体10Aは、第1基材層1、第2基材層2及びシーラント層3をこの順に備え、これらは何れもポリオレフィンフィルムを含み、第1又は第2基材層は、そのポリオレフィンフィルムの少なくとも一方の表面に設けられたガスバリア性蒸着層と、これを被覆したガスバリア性被覆層とを更に含み、第1基材層、第2基材層及びシーラント層の120℃で15分間加熱した後の走行方向における熱収縮率x1、x2及びx3は、下記式(1)乃至(3)に示す関係を満たす。x2≦2.5% …(1)-1.0%≦x2-x1 …(2)-0.2%≦x2-x3 …(3)【選択図】図1

Description

本発明は、積層体、包装材料、包装体及び包装物品に関する。
レトルト食品用の包装袋としては、例えば、接着剤によって貼り合わされた、基材層、中間層及びシーラント層を備え、基材層及び中間層の各々が、一方の面に無機酸化物からなる蒸着層を有するポリエステルフィルムからなり、シーラント層がポリオレフィンフィルムからなるものがある(特許文献1)。
特開2017-178357号公報
近年、海洋プラスチックごみ問題等に端を発する環境意識の高まりから、プラスチック材料の分別回収と再資源化のさらなる高効率化とが求められるようになってきている。即ち、従来から様々な異種材料を組み合わせることで高性能化を図ってきた包装用の積層体にも、モノマテリアル化が求められるようになってきた。
積層体においてモノマテリアル化を実現するためには、この積層体を構成するフィルムを同一素材とする必要がある。しかしながら、ポリオレフィン系のフィルムを用いて積層体を作製した場合、そのような積層体から得られる包装体は、高温処理であるレトルト処理に耐えられない虞がある。
本発明は、上記事情に鑑みてなされたものであり、積層体を構成するフィルムがポリオレフィンフィルムからなり、レトルト処理に対して高い耐性を示す包装体を実現可能とすることを目的とする。
本発明の一側面によると、第1基材層、第2基材層及びシーラント層をこの順に備え、前記第1基材層、前記第2基材層及び前記シーラント層は何れもポリオレフィンフィルムを含み、前記第1基材層又は前記第2基材層は、そのポリオレフィンフィルムの少なくとも一方の表面に設けられたガスバリア性蒸着層と、前記ガスバリア性蒸着層を被覆したガスバリア性被覆層とを更に含み、前記第1基材層の120℃で15分間加熱した後の走行方向における熱収縮率x1、前記第2基材層の120℃で15分間加熱した後の走行方向における熱収縮率x2、及び、前記シーラント層の120℃で15分間加熱した後の走行方向における熱収縮率x3は、下記式(1)乃至(3)に示す関係を満たす積層体が提供される。
x2≦2.5% …(1)
-1.0%≦x2-x1 …(2)
-0.2%≦x2-x3 …(3)
本発明の他の側面によると、前記ガスバリア性被覆層は、カルボキシ基含有重合体(A)と、多価金属含有粒子(B)と、界面活性剤(C)と、有機溶媒(D)と、下記一般式(4)で表されるシランカップリング剤、下記一般式(5)で表されるシランカップリング剤、これらの加水分解物、及びこれらの縮合物からなる群から選択される少なくとも1種の珪素含有化合物(E)とを含有したコーティング液の硬化物である上記側面に係る積層体が提供される。
Si(OR1)Z1 …(4)
Si(R2)(OR3)Z2 …(5)
一般式(4)において、R1は、同一であっても異なっていてもよい、炭素数が1乃至6のアルキル基であり、Z1はエポキシ基を含有する基であり、一般式(5)において、R2はメチル基であり、R3は、同一であっても異なっていてもよい、炭素数が1乃至6のアルキル基であり、Z2はエポキシ基を含有する基である。
或いは、本発明の他の側面によると、前記ガスバリア性被覆層は、水酸基含有高分子化合物、金属アルコキシド、シランカップリング剤、及びそれらの加水分解物からなる群より選ばれる1以上を含んだコーティング液の硬化物である上記側面に係る積層体が提供される。
本発明の更に他の側面によると、前記ガスバリア性蒸着層は酸化アルミニウム又は酸化珪素を含んだ上記側面の何れかに係る積層体が提供される。
本発明の更に他の側面によると、上記側面の何れかに係る積層体を含んだ包装材料が提供される。
本発明の更に他の側面によると、レトルト用である上記側面に係る包装材料が提供される。
本発明の更に他の側面によると、上記側面の何れかに係る包装材料を含んだ包装体が提供される。
本発明の更に他の側面によると、袋状である上記側面に係る包装体が提供される。
本発明の更に他の側面によると、上記側面の何れかに係る包装体と、前記包装体に収容された内容物とを備えた包装物品が提供される。
本発明の更に他の側面によると、レトルト処理された上記側面に係る包装物品が提供される。
本発明によると、積層体を構成するフィルムがポリオレフィンフィルムからなり、レトルト処理に対して高い耐性を示す包装体を実現することが可能となる。
本発明の第1実施形態に係る積層体の一部を概略的に示す断面図。 本発明の第2実施形態に係る積層体の一部を概略的に示す断面図。 本発明の第3実施形態に係る積層体の一部を概略的に示す断面図。 本発明の一実施形態に係る包装体を概略的に示す斜視図。
以下に、本発明の実施形態について、図面を参照しながら説明する。以下に説明する実施形態は、上記側面の何れかをより具体化したものである。なお、同様又は類似した機能を有する要素については、同一の参照符号を付し、重複する説明は省略する。
<1>第1実施形態
図1は、本発明の第1実施形態に係る積層体の一部を概略的に示す断面図である。
図1に示す積層体10Aは、例えば、包装材料又はその一部として使用可能である。好ましくは、積層体10Aは、レトルト用の包装材料又はその一部である。
積層体10Aは、第1基材層1、第2基材層2及びシーラント層3を、この順に含んでいる。積層体10Aは、第1基材層1と第2基材層2とを互いに対して接着している第1接着層4、及び、第2基材層2とシーラント層3とを互いに対して接着している第2接着層5を更に含んでいる。
積層体10Aは、例えば、ロール・トゥー・ロール方式で製造する。後述するように、第1基材層1、第2基材層2及びシーラント層3は、ポリオレフィンフィルムを含んでいる。なお、用語「フィルム」は、製造の段階から単独で取り扱うことが可能であり且つ可撓性を有している薄層、又は、積層体の構成要素の上にエクストルージョンラミネートによって設けた薄層を含意し、積層体の構成要素の上にコーティングや気相堆積などによって形成した薄層は含意しない。
積層体10Aは、フィルムとして、第1基材層1、第2基材層2及びシーラント層3のポリオレフィンのみを含んでいる。そのような積層体10Aは、リサイクル性に優れる単一素材からなる、即ち、モノマテリアルの積層体であると言うことができる。この観点から、積層体10Aの全質量に対し、ポリオレフィン成分以外の成分、例えば、接着剤やインキ成分の合計質量は、10質量%以下とすることが好ましく、7.5質量%以下とすることがより好ましい。
以下に、積層体10Aが含んでいる層について、順次説明する。
<1.1>第1基材層
<1.1.1>ポリオレフィンフィルム
第1基材層1は、ポリオレフィンフィルムからなる。典型的には、第1基材層1が含んでいるポリオレフィンフィルムは、その製造時における走行方向が、積層体10Aの製造時における走行方向と等しい。
ポリオレフィンフィルムとしては、例えば、ポリエチレンフィルム(PE)、ポリプロピレンフィルム(PP)、及びポリブテンフィルム(PB)が挙げられる。ポリオレフィンフィルムは、ポリオレフィンを、例えば、不飽和カルボン酸、不飽和カルボン酸の酸無水物、又は不飽和カルボン酸のエステルを用いてグラフト変性して得られる酸変性ポリオレフィンフィルムであってもよい。
第1基材層1を構成するポリオレフィンフィルムは、延伸フィルムであってもよく、無延伸フィルムであってもよい。耐衝撃性、耐熱性、耐水性、及び寸法安定性等の観点では、ポリオレフィンフィルムは延伸フィルムであることが好ましい。第1基材層1のポリオレフィンフィルムが延伸フィルムである積層体10Aは、この積層体10Aを包装材料の少なくとも一部と使用して得られる包装物品をレトルト処理やボイル処理を施す用途に好適である。延伸方法は特に限定されず、インフレーションによる延伸及び一軸又は二軸延伸のように、フィルムを安定した寸法で供給可能であれば、どのような方法でもよい。
ポリオレフィンフィルム厚さは、特に限定されない。この厚さは、用途に応じて、例えば6乃至200μmの範囲内とすることができ、優れた耐衝撃性と優れたガスバリア性とを得る観点では、9乃至50μmの範囲内とすることが好ましく、12乃至38μmの範囲内とすることがより好ましい。
ポリオレフィンフィルムには、その第2基材層2と向き合う面に、コロナ処理、プラズマ処理、及びフレーム処理などの表面改質処理を施してもよく、易接着層などのコート層を設けても構わない。
<1.1.2>印刷層
第1基材層1は、第2基材層2と向き合った面に、印刷層を更に含むことができる。印刷層は、例えば、積層体10Aから得られる包装体の内容物に関する情報の表示、内容物の識別、又は包装体の意匠性向上を目的として、包装体の外側から見える位置に設けられる。印刷方法及び印刷インキは特に制限されず、既知の印刷方法及び印刷インキの中から、フィルムへの印刷適性、色調などの意匠性、密着性、及び食品容器としての安全性などを考慮して適宜選択される。印刷方法としては、例えば、グラビア印刷法、オフセット印刷法、グラビアオフセット印刷法、フレキソ印刷法、又はインクジェット印刷法を用いることができる。これらの中でも、グラビア印刷法は、生産性や絵柄の高精細度の観点から特に好ましい。印刷層の密着性を高めるために、その下地の表面に、コロナ処理、プラズマ処理、及びフレーム処理などの表面改質処理を施してもよく、易接着層などのコート層を設けてもよい。
<1.2>第2基材層
第2基材層2は、ポリオレフィンフィルム21と、密着層22と、ガスバリア性蒸着層23と、ガスバリア性被覆層24とを、シーラント層3側からこの順に含んでいる。
<1.2.1>ポリオレフィンフィルム
ポリオレフィンフィルム21としては、第1基材層1のポリオレフィンフィルムに関して上述したものを使用することができる。
ポリオレフィンフィルム21は、第1基材層1のポリオレフィンフィルムと、材質や厚さが同一であってもよく、異なっていてもよい。リサイクルの観点では、ポリオレフィンフィルム21の材質は、第1基材層1のポリオレフィンフィルムの材質と同一であることが好ましい。即ち、第1基材層1がポリエチレンフィルムである場合、ポリオレフィンフィルム21もポリエチレンフィルムであることが好ましい。また、第1基材層1がポリプロピレンフィルムである場合、ポリオレフィンフィルム21もポリプロピレンフィルムであることが好ましい。
ポリオレフィンフィルム21は、第1基材層1のポリオレフィンフィルムと、結晶性又は分子鎖の配向状態が同一であってもよく、異なっていてもよい。典型的には、ポリオレフィンフィルム21の製造時における走行方向(MD)は、第1基材層1のポリオレフィンフィルムの製造時における走行方向と等しい。
<1.2.2>密着層
密着層22は、アンカーコート層と呼ばれることもある層である。密着層22は省略することができるが、これをポリオレフィンフィルム21上に設けると、ポリオレフィンフィルム21とガスバリア性蒸着層23との密着性能向上と、ポリオレフィンフィルム21の表面の平滑性向上との2つの効果を得ることができる。ポリオレフィンフィルム21の表面の平滑性が向上すると、ガスバリア性蒸着層23を欠陥なく均一に成膜し易くなり、高いバリア性を発現させ易い。密着層22は、アンカーコート剤を用いて形成することができる。
アンカーコート剤としては、例えば、ポリエステル系ポリウレタン樹脂及びポリエーテル系ポリウレタン樹脂が挙げられる。アンカーコート剤としては、耐熱性及び層間接着強度の観点から、ポリエステル系ポリウレタン樹脂が好ましい。アンカーコート剤は、上記の樹脂に加え、溶媒を更に含むことができる。
密着層22の厚さは、特に限定されないが、0.01乃至5μmの範囲内にあることが好ましく、0.03乃至3μmの範囲内にあることがより好ましく、0.05乃至2μmの範囲内にあることが特に好ましい。密着層22を厚くすると、より高い層間接着強度が得られる傾向にある。但し、密着層22を厚くすると、ガスバリア性が低下する傾向にある。
アンカーコート剤をポリオレフィンフィルム21上に塗工する方法としては、公知の塗工方法を特に制限なく使用可能であり、浸漬法(ディッピング法)、及び、スプレー、コータ、印刷機、又は刷毛等を用いる方法が挙げられる。また、これらの方法に用いられるコータ及び印刷機の種類並びにそれらの塗工方式としては、ダイレクトグラビア方式、リバースグラビア方式、キスリバースグラビア方式、及びオフセットグラビア方式等のグラビアコータ、リバースロールコータ、マイクログラビアコータ、チャンバードクター併用コータ、エアナイフコータ、ディップコータ、バーコータ、コンマコータ、並びにダイコータ等を挙げることができる。
アンカーコート剤は、乾燥後の塗膜の1m当たりの質量が0.01乃至5g/mの範囲内となるように塗工することが好ましく、0.03乃至3g/mとなるように塗工することがより好ましい。アンカーコート剤の塗工量を少なくすると、密着層22に不連続部を生じ易くなる。他方、アンカーコート剤の塗工量を多くすると、塗膜が完全に乾燥せずに、溶剤が残留し易くなる。
塗膜を乾燥させる方法としては、特に限定されないが、自然乾燥による方法、所定の温度に設定したオーブン中で乾燥させる方法、及び、上記コータに付属の乾燥機、例えばアーチドライヤー、フローティングドライヤー、ドラムドライヤー、又は赤外線ドライヤーを用いる方法を挙げることができる。塗膜の乾燥条件は、乾燥させる方法により適宜選択することができる。例えば、オーブン中で塗膜を乾燥させる方法では、温度を60乃至100℃の範囲内として、1秒間乃至2分間程度の時間に亘って塗膜を乾燥させることが好ましい。
アンカーコート剤においては、上記ポリウレタン樹脂に代えて、ポリビニルアルコール系樹脂を用いることができる。ポリビニルアルコール系樹脂としては、ビニルエステル単位がケン化されたビニルアルコール単位を有するものであればよく、例えば、ポリビニルアルコール(PVA)及びエチレン-ビニルアルコール共重合体(EVOH)が挙げられる。
PVAとしては、例えば、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、ピバリン酸ビニル、及びバーサティック酸ビニル等のビニルエステルを、単独で重合させ、次いでケン化した樹脂が挙げられる。
PVAは、共重合変性又は後変性された変性PVAであってもよい。変性PVAは、例えば、ビニルエステルと、ビニルエステルと共重合可能な不飽和モノマーとを共重合させ、この共重合体をケン化することで得られる。ビニルエステルと共重合可能な不飽和モノマーとしては、例えば、エチレン、プロピレン、イソブチレン、α-オクテン、α-ドデセン、及びα-オクタデセン等のオレフィン;3-ブテン-1-オール、4-ペンチン-1-オール、及び5-ヘキセン-1-オール等のヒドロキシ基含有α-オレフィン;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸、及びウンデシレン酸等の不飽和酸;アクリロニトリル及びメタアクリロニトリル等のニトリル; ジアセトンアクリルアミド、アクリルアミド、及びメタクリルアミド等のアミド;エチレンスルホン酸、アリルスルホン酸、及びメタアリルスルホン酸等のオレフィンスルホン酸;アルキルビニルエーテル、ジメチルアリルビニルケトン、N-ビニルピロリドン、塩化ビニル、ビニルエチレンカーボネート、2,2-ジアルキル-4-ビニル-1,3-ジオキンラン、グリセリンモノアリルエーテル、及び3,4-ジアセトキシ-1-ブテン等のビニル化合物;塩化ビニリデン;1,4-ジアセトキシ-2-ブテン;並びにビニレンカーボネートが挙げられる。
PVAの重合度は、300乃至3,000の範囲内にあることが好ましい。PVAの重合度を小さくすると、バリア性が低下し易い。PVAの重合度を大きくすると、粘度が高まり、塗工適性が低下し易い。PVAのケン化度は、90モル%以上であることが好ましく、95モル%以上であることがより好ましく、99モル%以上であることが更に好ましい。PVAのケン化度は、100モル%以下であってもよく、99.9モル%以下であってもよい。PVAの重合度及びケン化度は、JIS K6726(1994)に記載の方法に準拠して測定できる。
EVOHは、一般に、エチレンと、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、ピバリン酸ビニル、及びバーサティック酸ビニル等の酸ビニルエステルとの共重合体をケン化して得られる。
EVOHの重合度は、300乃至3,000の範囲内にあることが好ましい。EVOHの重合度を小さくすると、バリア性が低下し易い。EVOHの重合度を大きくすると、粘度が高まり、塗工適性が低下し易い。EVOHのビニルエステル成分のケン化度は、90モル%以上であることが好ましく、95モル%以上であることがより好ましく、99モル%以上であることが更に好ましい。EVOHのケン化度は、100モル%以下であってもよく、99.9モル%以下であってもよい。EVOHのケン化度は、核磁気共鳴(1H-NMR)測定を行うことによって得られる、ビニルエステル構造に含まれる水素原子のピーク面積と、ビニルアルコール構造に含まれる水素原子のピーク面積とから求められる。
EVOHのエチレン単位含有量は、10モル%以上であることが好ましく、15モル%以上であることがより好ましく、20モル%以上であることが更に好ましく、25モル%以上であることが特に好ましい。EVOHのエチレン単位含有量は、65モル%以下であることが好ましく、55モル%以下であることがより好ましく、50モル%以下であることが更に好ましい。エチレン単位含有量が多い場合、高湿度下におけるガスバリア性又は寸法安定性を良好に保つうえで有利である。他方、エチレン単位含有量が小さい場合、高いガスバリア性を実現するうえで有利である。EVOHのエチレン単位含有量は、NMR法により求めることができる。
<1.2.3>ガスバリア性蒸着層
ガスバリア性蒸着層23は、ガスバリア性被覆層24とともに、積層体10Aにガスバリア性を付与する層である。ガスバリア性蒸着層23は、後述するように、真空成膜で形成した層である。
ガスバリア性蒸着層23は、例えば、無機酸化物からなる。無機酸化物としては、例えば、酸化アルミニウム、酸化珪素、酸化マグネシウム、及び酸化錫が挙げられる。透明性及びバリア性の観点から、無機酸化物は、酸化アルミニウム、酸化珪素、及び酸化マグネシウムからなる群より選択されるものであることが好ましい。また、加工時に引っ張り延伸性に優れる観点から、ガスバリア性蒸着層23は、酸化珪素からなる層であることが好ましい。ガスバリア性蒸着層23は、積層体10Aのリサイクル性に影響を与えない範囲内の厚さでありながらも、高いバリア性を得ることを可能とする。
ガスバリア性蒸着層23が酸化珪素からなる場合、ガスバリア性蒸着層23における酸素原子と珪素原子との原子比O/Siは、1.7以上であることが好ましく、1.75以上であることがより好ましく、1.8以上であることが更に好ましい。原子比O/Siを小さくすると、Si原子の含有割合が高まり、透明性が低下する。原子比O/Siは、2.0以下であることが好ましく、1.9以下であることが好ましく、1.85以下であることが更に好ましい。
原子比O/Siを過剰に大きくすると、酸化珪素の結晶性が高まり、ガスバリア性蒸着層23が硬くなり過ぎ、引張り耐性が低下する。ガスバリア性蒸着層23が高い引張り耐性を有している場合、ガスバリア性被覆層24を積層する際に、ガスバリア性蒸着層23にクラックを生じ難い。また、ガスバリア性蒸着層23が高い引張り耐性を有している場合、レトルト処理やボイル処理の際に加えられる熱によってポリオレフィンフィルムが収縮したとしても、ガスバリア性蒸着層23は上記収縮へ十分に追従し、バリア性の低下を生じ難い。
原子比O/Siは、X線光電子分光法(XPS)により求めることができる。例えば、X線光電子分光分析装置として、日本電子株式会社製JPS-90MXV)を使用し、X線源としては非単色化MgKα(1253.6eV)を使用し、100W(10kV-10mA)のX線出力で測定する。原子比O/Siを求めるための定量分析には、O1s及びSi2pでそれぞれ2.28及び0.9の相対感度因子を用いることができる。
ガスバリア性蒸着層23の厚さは、10乃至50nmの範囲内にあることが好ましく、20乃至40nmの範囲内にあることがより好ましい。ガスバリア性蒸着層23の厚さを小さくすると、水蒸気バリア性が低下する。ガスバリア性蒸着層23の厚さを大きくすると、内部応力に起因した変形によるクラックが発生し易く、これに起因した水蒸気バリア性の低下を生じ易い。また、ガスバリア性蒸着層23の厚さを大きくした場合、材料使用量の増加及び膜形成時間の長時間化等に起因してコストが増加し易いため、経済的観点からも好ましくない。
ガスバリア性蒸着層23は、真空成膜で形成することができる。真空成膜は、物理気相堆積法又は化学気相堆積法によって行う。物理気相堆積法としては、真空蒸着法、スパッタリング法、及びイオンプレーティング法等を挙げることができるが、これらに限定されるものではない。化学気相堆積法としては、熱化学気相堆積(CVD)法、プラズマCVD法、及び光CVD法等を挙げることができるが、これらに限定されるものではない。
上記真空成膜では、抵抗加熱式真空蒸着法、電子ビーム(EB)加熱式真空蒸着法、誘導加熱式真空蒸着法、スパッタリング法、反応性スパッタリング法、デュアルマグネトロンスパッタリング法、及びプラズマ化学気相堆積法(PECVD法)等が特に好ましく用いられる。生産性を考慮すれば、現時点では真空蒸着法が最も優れている。真空蒸着法の加熱手段としては、電子線加熱方式、抵抗加熱方式、及び誘導加熱方式の何れかの方式を用いることが好ましい。
<1.2.4>ガスバリア性被覆層
ガスバリア性被覆層24は、ガスバリア性蒸着層23とともに、積層体10Aにガスバリア性を付与する層である。ガスバリア性被覆層24は、後述するように、コーティング液を塗工することにより形成した層である。
ガスバリア性被覆層24の厚さは、50乃至1,000nmの範囲内にあることが好ましく、100乃至500nmの範囲内にあることがより好ましい。ガスバリア性被覆層24を厚くすると、より高いガスバリア性が得られる傾向にある。但し、ガスバリア性被覆層24を厚くすると、積層体10Aの柔軟性が低下する。
(第1コーティング液)
ガスバリア性被覆層24は、一例によれば、水酸基含有高分子化合物、金属アルコキシド、シランカップリング剤、及びそれらの加水分解物からなる群より選ばれる1以上を含んだ第1コーティング液の硬化物である。第1コーティング液は、溶媒として、水、又は、水とアルコールとの混合物を更に含むことができる。
第1コーティング液は、レトルト処理等の熱水処理後においても高いガスバリア性を維持する観点では、少なくともシランカップリング剤又はその加水分解物を含有することが好ましく、水酸基含有高分子化合物、金属アルコキシド及びそれらの加水分解物からなる群より選択される少なくとも1種と、シランカップリング剤又はその加水分解物とを含有することがより好ましく、水酸基含有高分子化合物又はその加水分解物と、金属アルコキシド又はその加水分解物と、シランカップリング剤又はその加水分解物とを含有することが更に好ましい。
第1コーティング液は、例えば、水溶性高分子である水酸基含有高分子化合物を、水系溶媒、即ち、水又は水とアルコールとの混合物に溶解させてなる溶液に、金属アルコキシドとシランカップリング剤とを直接混合するか又は或いは予め加水分解させるなどの処理を行ったものを混合することにより得られる。
第1コーティング液に含まれる各成分について詳細に説明する。
水酸基含有高分子化合物としては、例えば、ポリビニルアルコール、ポリビニルピロリドン、デンプン、メチルセルロース、カルボキシメチルセルロース、及びアルギン酸ナトリウム等挙げられる。これらの中でもポリビニルアルコール(PVA)を用いた場合、特に優れたガスバリア性を実現できる。
第1コーティング液は、優れたガスバリア性を得る観点から、下記一般式(I)で表わされる金属アルコキシド及びその加水分解物からなる群より選択される少なくとも1種を含んでいることが好ましい。
M(OR1)(R2)n-m …(I)
上記一般式(I)において、R1及びR2は、それぞれ独立に、炭素数が1乃至8の1価の有機基であり、メチル基及びエチル基等のアルキル基であることが好ましい。Mは、Si、Ti、Al、及びZr等のn価の原子を表している。mは、1乃至nの整数である。なお、R1又はR2が複数存在する場合、R1同士又はR2同士は、同一であってもよく、異なっていてもよい。
金属アルコキシドの具体例としては、テトラエトキシシラン〔Si(OC〕及びトリイソプロポキシアルミニウム〔Al(O-2’-C〕などが挙げられる。テトラエトキシシラン及びトリイソプロポキシアルミニウムは、加水分解後、水系の溶媒中において比較的安定であるので好ましい。
シランカップリング剤としては、下記一般式(II)で表される化合物が挙げられる。
Si(OR11)(R12)3-pR13 … (II)
上記一般式(II)において、R11は、メチル基及びエチル基等のアルキル基を表している。R12は、アルキル基、アラルキル基、アリール基、アルケニル基、アクリロキシ基で置換されたアルキル基、及び、メタクリロキシ基で置換されたアルキル基等の1価の有機基を表している。R13は、1価の有機官能基を表している。pは、1乃至3の整数を表している。なお、R11又はR12が複数存在する場合、R11同士又はR12同士は、同一であってもよく、異なっていてもよい。R13で表される1価の有機官能基としては、グリシジルオキシ基、エポキシ基、メルカプト基、水酸基、アミノ基、ハロゲン原子で置換されたアルキル基、及び、イソシアネート基を含有する1価の有機官能基が挙げられる。
シランカップリング剤の具体例としては、ビニルトリメトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルトリメトキシシラン、グリシドオキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、及びγ-メタクリロキシプロピルメチルジメトキシシランが挙げられる。
シランカップリング剤は、上記一般式(II)で表される化合物が重合した多量体であってもよい。多量体としては、三量体が好ましく、より好ましくは、1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートである。1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートは、3-イソシアネートアルキルアルコキシシランの縮重合体である。
1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートは、イソシア部には化学的反応性はないが、ヌレート部の極性により反応性は確保されることが知られている。1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートは、一般的には、3-イソシアネートアルキルアルコキシランと同様に接着剤などに添加される接着性向上剤として知られている。よって、1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートを、水酸基含有高分子化合物に添加すると、水素結合によりガスバリア性被覆層24の耐水性を向上させることができる。
また、3-イソシアネートアルキルアルコキシランは反応性が高く、液安定性が低いのに対し、1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートは、ヌレート部はその極性により水溶性ではないものの、水系溶液中に分散しやすく、液粘度を安定に保つことができる。また、実現し得る耐水性能については、3-イソシアネートアルキルアルコキシランと1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートとは同等である。
なお、1,3,5-トリス(3-トリアルコキシシリルアルキル)イソシアヌレートは、3-イソシアネートプロピルアルコキシシランの熱縮合により製造されるものもあることから、原料である3-イソシアネートプロピルアルコキシシランが混入している場合もある。そのような原料が混入していても特に問題はない。
シランカップリング剤は、より好ましくは、1,3,5-トリス(3-トリアルコキシシリルプロピル)イソシアヌレートであり、更に好ましくは1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレートである。メトキシ基を含んだシランカップリング剤は加水分解速度が速く、また、プロピル基を含んだものは比較的安価に入手し得る。従って、1,3,5-トリス(3-トリメトキシシリルプロピル)イソシアヌレートが特に好ましい。
第1コーティング剤には、ガスバリア性を損なわない範囲内で、イソシアネート化合物、又は、分散剤、安定剤、粘度調整剤、及び着色剤などの公知の添加剤を加えることも可能である。
第1コーティング液は、例えば、ディッピング法、ロールコート法、グラビアコート法、リバースグラビアコート法、エアナイフコート法、コンマコート法、ダイコート法、スクリーン印刷法、スプレーコート法、又はグラビアオフセット法により、ガスバリア性蒸着層23上に塗工することができる。第1コーティング液を塗工してなる塗膜は、例えば、熱風乾燥法、熱ロール乾燥法、高周波照射法、赤外線照射法、紫外線(UV)照射法、又はそれらの組み合わせにより乾燥させることができる。
上記塗膜を乾燥させる際の温度は、50乃至150℃の範囲内とすることが好ましく、70乃至100℃の範囲内とすることがより好ましい。乾燥時の温度を上記範囲内とすることで、ガスバリア性蒸着層23やガスバリア性被覆層24にクラックが発生することをより一層抑制でき、特に優れたバリア性を発現させることができる。
(第2コーティング液)
ガスバリア性被覆層24は、他の例によれば、ポリビニルアルコール系樹脂及びシラン化合物を含んだ第2コーティング液の硬化物である。第2コーティング液には、必要に応じて、酸触媒、アルカリ触媒、又は光重開始剤を加えてもよい。
シラン化合物としては、シランカップリング剤、ポリシラザン、及びシロキサンが挙げられる。シラン化合物の具体例としては、テトラメトキシシラン、テトラエトキシシラン、グリシドキシプロピルトリメトキシシラン、アクリロキシプロピルトリメトキシシラン、及びヘキサメチルジシラザンが挙げられる。
(第3コーティング液)
ガスバリア性被覆層24は、更に他の例によれば、カルボキシ基含有重合体(A)と、多価金属含有粒子(B)と、界面活性剤(C)と、有機溶媒(D)と、下記一般式(4)で表されるシランカップリング剤、下記一般式(5)で表されるシランカップリング剤、これらの加水分解物、及びこれらの縮合物からなる群から選択される少なくとも1種の珪素含有化合物(E)とを含有した第3コーティング液の硬化物である。
Si(OR1)Z1 …(4)
Si(R2)(OR3)Z2 …(5)
上記一般式(4)において、R1は、同一であっても異なっていてもよい、炭素数が1乃至6のアルキル基である。Z1は、エポキシ基を含有する基である。
上記一般式(5)において、R2はメチル基である。R3は、同一であっても異なっていてもよい、炭素数が1乃至6のアルキル基である。Z2は、エポキシ基を含有する基である。
〔カルボキシ基含有重合体(A)〕
第3コーティング液で使用するカルボキシ基含有重合体は、分子内に2個以上のカルボキシ基を有する重合体であり、「ポリカルボン酸系重合体」と呼ばれることがある。カルボキシ基含有重合体としては、カルボキシ基含有不飽和単量体の単独重合体、2種以上のカルボキシ基含有不飽和単量体の共重合体、カルボキシ基含有不飽和単量体と他の重合性単量体との共重合体、及び分子内にカルボキシ基を含有する多糖類(「カルボキシ基含有多糖類」又は「酸性多糖類」ともいう)が代表的なものである。
カルボキシ基には、遊離のカルボキシ基のみならず、酸無水物基(具体的には、ジカルボン酸無水物基)も含まれる。酸無水物基は、部分的に開環してカルボキシ基となっていてもよい。カルボキシ基の一部は、アルカリで中和されていてもよい。この場合、中和度は、20%以下であることが好ましい。
ここで、「中和度」は、以下の方法によって得られる値である。即ち、カルボキシ基含有重合体(A)に対してアルカリ(F)を添加することでカルボキシ基を部分中和できる。この時、カルボキシ基含有重合体(A)が含んでいるカルボキシ基のモル数(At)に対するアルカリ(F)のモル数(Ft)の比が中和度である。
また、ポリオレフィンなどのカルボキシ基を含有していない重合体にカルボキシ基含有不飽和単量体をグラフト重合してなるグラフト重合体も、カルボキシ基含有重合体として使用することができる。アルコキシカルボニル基(例えば、メトキシカルボニル基)のような加水分解性のエステル基を有する重合体を加水分解して、カルボキシ基に変換した重合体を使用することもできる。
カルボキシ基含有不飽和単量体としては、α,β-モノエチレン性不飽和カルボン酸が好ましい。従って、カルボキシ基含有重合体には、α,β-モノエチレン性不飽和カルボン酸の単独重合体、2種以上のα,β-モノエチレン性不飽和カルボン酸の共重合体、及びα,β-モノエチレン性不飽和カルボン酸と他の重合性単量体との共重合体が含まれる。他の重合性単量体としては、エチレン性不飽和単量体が代表的なものである。
α,β-モノエチレン性不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、及びクロトン酸などの不飽和モノカルボン酸;マレイン酸、フマル酸、及びイタコン酸などの不飽和ジカルボン酸;無水マレイン酸及び無水イタコン酸などの不飽和ジカルボン酸無水物;並びに、これらの2種以上の混合物が挙げられる。これらの中でも、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、及びイタコン酸からなる群より選ばれる少なくとも1種のα,β-モノエチレン性不飽和カルボン酸が好ましく、アクリル酸、メタクリル酸、及びマレイン酸からなる群より選ばれる少なくとも1種のα,β-モノエチレン性不飽和カルボン酸がより好ましい。
α,β-モノエチレン性不飽和カルボン酸と共重合可能な他の重合性単量体、特にエチレン性不飽和単量体としては、例えば、エチレン;プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、及び1-オクテンなどのα-オレフィン;酢酸ビニルなどの飽和カルボン酸ビニルエステル類;アクリル酸メチル及びアクリル酸エチルなどのアクリル酸アルキルエステル類;メタクリル酸メチル及びメタクリル酸エチルなどのメタクリル酸アルキルエステル類;塩化ビニル及び塩化ビニリデンなどの塩素含有ビニル単量体;フッ化ビニル及びフッ化ビニリデンなどのフッ素含有ビニル単量体;アクリロニトリル及びメタクリロニトリルなどの不飽和ニトリル類;スチレン及びα-メチルスチレンなどの芳香族ビニル単量体;並びに、イタコン酸アルキルエステル類を挙げることができる。これらのエチレン性不飽和単量体は、それぞれ単独で又は2種以上を組み合わせて使用することができる。また、カルボキシ基含有重合体がα,β-モノエチレン性不飽和カルボン酸と酢酸ビニルなどの飽和カルボン酸ビニルエステル類との共重合体である場合は、この共重合体をケン化して飽和カルボン酸ビニルエステル単位をビニルアルコール単位に変換してなる共重合体も使用することができる。
カルボキシ基含有多糖類としては、例えば、アルギン酸、カルボキシメチルセルロース、及びペクチンなどの分子内にカルボキシ基を有する酸性多糖類を挙げることができる。これらの酸性多糖類は、それぞれ単独で又は2種以上を組み合わせて使用することができる。また、酸性多糖類を、α,β-モノエチレン性不飽和カルボン酸の(共)重合体と組み合わせて使用することもできる。
カルボキシ基含有重合体が、α,β-モノエチレン性不飽和カルボン酸とその他のエチレン性不飽和単量体との共重合体である場合には、得られるフィルムのガスバリア性、耐熱水性、及び耐水蒸気性の観点から、その共重合体において、それら単量体の合計モル数に占めるα,β-モノエチレン性不飽和カルボン酸単量体のモル数の割合は、60モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることが特に好ましい。
カルボキシ基含有重合体は、ガスバリア性、耐湿性、耐水性、耐熱水性、及び耐水蒸気性に優れ、高湿条件下でのガスバリア性にも優れたフィルムが得られやすい点で、α,β-モノエチレン性不飽和カルボン酸のみの重合によって得られる単独重合体又は共重合体であることが好ましい。カルボキシ基含有重合体がα,β-モノエチレン性不飽和カルボン酸のみからなる(共)重合体の場合、その好ましい具体例は、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、及びイタコン酸からなる群から選ばれる少なくとも1種のα,β-モノエチレン性不飽和カルボン酸の重合によって得られる単独重合体、共重合体、及びそれらの2種以上の混合物である。これらの中でも、アクリル酸、メタクリル酸、及びマレイン酸からなる群より選ばれる少なくとも1種のα,β-モノエチレン性不飽和カルボン酸の単独重合体及び共重合体がより好ましい。
カルボキシ基含有重合体としては、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸、及びこれらの2種以上の混合物が特に好ましい。酸性多糖類としては、アルギン酸が好ましい。これらの中でも、入手が比較的容易で、諸物性に優れたフィルムが得られやすい点で、ポリアクリル酸が特に好ましい。
カルボキシ基含有重合体の数平均分子量は、特に制限されないが、フィルム形成性及びフィルム物性の観点から、数平均分子量が2,000乃至10,000,000の範囲内にあることが好ましく、5,000乃至1,000,000の範囲内にあることがより好ましく、10,000乃至500,000の範囲内にあることが更に好ましい。
ここで、「数平均分子量」は、ゲルパーミエーションクロマトグラフィ(GPC)による測定によって得られる値である。GPC測定では、一般に、標準ポリスチレン換算で重合体の数平均分子量を測定する。
〔多価金属含有粒子(B)〕
第3コーティング液で使用する多価金属含有粒子は、金属イオンの価数が2以上の多価金属を1種以上含んだ粒子である。多価金属含有粒子は、金属イオンの価数が2以上の多価金属からなる粒子であってもよく、金属イオンの価数が2以上の多価金属の化合物からなる粒子であってもよく、それらの混合物であってもよい。
多価金属の具体例としては、ベリリウム、マグネシウム、及びカルシウムなどの短周期型周期表2A族の金属;チタン、ジルコニウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、及び亜鉛などの遷移金属;並びにアルミニウムを挙げることができるが、これらに限定されない。
多価金属は、2価の金属であることが好ましい。また、多価金属は、化合物を形成していることが好ましい。
多価金属の化合物の具体例としては、多価金属の酸化物、水酸化物、炭酸塩、有機酸塩、及び無機酸塩が挙げられるが、これらに限定されない。有機酸塩としては、例えば、酢酸塩、シュウ酸塩、クエン酸塩、乳酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、ステアリン酸塩、モノエチレン性不飽和カルボン酸塩が挙げられるが、これらに限定されない。無機酸塩としては、例えば、塩化物、硫酸塩、硝酸塩を挙げることができるが、これらに限定されない。多価金属のアルキルアルコキシドも多価金属化合物として使用することができる。これらの多価金属化合物は、それぞれ単独で又は2種以上を組み合わせて使用することができる。
多価金属化合物の中でも、第3コーティング液の分散安定性と積層体10Aのガスバリア性の観点から、ベリリウム、マグネシウム、カルシウム、銅、コバルト、ニッケル、亜鉛、アルミニウム、及びジルコニウムの化合物が好ましく、ベリリウム、マグネシウム、カルシウム、銅、亜鉛、コバルト、及びニッケルなどの2価金属の化合物がより好ましい。
好ましい2価金属化合物としては、例えば、酸化亜鉛、酸化マグネシウム、酸化銅、酸化ニッケル、及び酸化コバルトなどの酸化物;炭酸カルシウムなどの炭酸塩;乳酸カルシウム、乳酸亜鉛、及びアクリル酸カルシウムなどの有機酸塩;並びにマグネシウムメトキシドなどのアルコキシドを挙げることができるが、これらに限定されない。
多価金属又は多価金属化合物は、粒子として用いられ、第3コーティング液中でも粒子形状が維持される。多価金属含有粒子の平均粒子径は、第3コーティング液の分散安定性及び積層体10Aのガスバリア性の観点から、第3コーティング液中の平均粒子径として、10nm乃至10μm(又は10,000nm)の範囲内にあることが好ましく、12nm乃至1μm(又は1,000nm)の範囲内にあることがより好ましく、15乃至500nmの範囲内にあることが更に好ましく、15乃至50nmの範囲内にあることが特に好ましい。
第3コーティング液中での多価金属含有粒子の平均粒子径が大きすぎると、得られるコート層の膜厚の均一性、表面の平坦性、カルボキシ基含有重合体とのイオン架橋反応性などが不十分となり易い。多価金属含有粒子の平均粒子径が小さすぎると、カルボキシ基含有重合体とのイオン架橋反応が早期に進行する虞がある。また、粒径が10nm未満の超微粒子は、第3コーティング液中に均一分散させることが困難である。
多価金属含有粒子の平均粒子径は、試料が乾燥した固体である場合には、走査型電子顕微鏡又は透過型電子顕微鏡を用いて計測と計数とを行うことにより測定することができる。第3コーティング液中の多価金属含有粒子の平均粒子径は、光散乱法により測定することができる〔参考文献:「微粒子工学体系」第I巻、第362~365頁、フジテクノシステム(2001)〕。
第3コーティング液中における多価金属含有粒子は、一次粒子、二次粒子、又はこれらの混合物として存在するが、多くの場合、平均粒子径からみて二次粒子として存在するものと推定される。
〔界面活性剤(C)〕
第3コーティング液では、多価金属含有粒子の分散性を高めるため、界面活性剤を使用する。界面活性剤とは、分子内に親水性基と親油性基の両方を持つ化合物である。界面活性剤には、アニオン性、カチオン性、及び両性のイオン性界面活性剤並びに非イオン性界面活性剤がある。第3コーティング液では、何れの界面活性剤を使用してもよい。
アニオン系界面活性剤には、例えば、カルボン酸型、スルホン酸型、硫酸エステル型、及びリン酸エステル型がある。カルボン酸型のアニオン系界面活性剤としては、例えば、脂肪族モノカルボン酸塩、ポリオキシエチレンアルキルエーテルカルボン酸塩、N-アシルサルコシン酸塩、及びN-アシルグルタミン酸塩がある。スルホン酸型のアニオン系界面活性剤としては、例えば、ジアルキルスルホコハク酸塩、アルカンスルホン酸塩、アルファオレフィンスルホン酸塩、直鎖アルキルベンゼンスルホン酸塩、アルキル(分岐鎖)ベンゼンスルホン酸塩、ナフタレンスルホン酸塩-ホルムアルデヒド縮合物、アルキルナフタレンスルホン酸塩、及びN-メチル-N-アシルタウリン酸塩が挙げられる。硫酸エステル型のアニオン系界面活性剤としては、例えば、アルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩及び油脂硫酸エステル塩が挙げられる。リン酸エステル型のアニオン系界面活性剤としては、例えば、アルキルリン酸塩型、ポリオキシエチレンアルキルエーテルリン酸塩、及びポリオキシエチレンアルキルフェニルエーテルリン酸塩が挙げられる。
カチオン系界面活性剤としては、例えば、アルキルアミン塩型及び第4級アンモニウム塩型がある。アルキルアミン塩型のカチオン系界面活性剤としては、例えば、モノアルキルアミン塩、ジアルキルアミン塩、及びトリアルキルアミン塩が挙げられる。第四級アンモニウム塩型のカチオン系界面活性剤としては、例えば、ハロゲン化(塩化、臭化又はヨウ化)アルキルトリメチルアンモニウム塩及び塩化アルキルベンザルコニウムが挙げられる。
両性界面活性剤としては、例えば、カルボキシベタイン型、2-アルキルイミダゾリンの誘導体型、グリシン型、及びアミンオキシド型がある。カルボキシベタイン型の両性界面活性剤としては、例えば、アルキルベタイン及び脂肪酸アミドプロピルベタインが挙げられる。2-アルキルイミダゾリンの誘導体型の両性界面活性剤としては、例えば、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタインが挙げられる。グリシン型の両性界面活性剤としては、例えば、アルキル又はジアルキルジエチレントリアミノ酢酸が挙げられる。アミノオキシド型の両性界面活性剤としては、例えば、アルキルアミンオキシドが挙げられる。
非イオン性の界面活性剤としては、例えば、エステル型、エーテル型、エステルエーテル型、及びアルカノールアミド型がある。エステル型の非イオン性界面活性剤としては、例えば、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、及びしょ糖脂肪酸エステルが挙げられる。エーテル型の非イオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、及びポリオキシエチレンポリオキシプロピレングリコールが挙げられる。エステルエーテル型の非イオン性界面活性剤としては、例えば、脂肪酸ポリエチレングリコール及び脂肪酸ポリオキシエチレンソルビタンが挙げられる。アルカノールアミド型の非イオン性界面活性剤としては、例えば、脂肪酸アルカノールアミドが挙げられる。
スチレン-アクリル酸共重合体などのポリマー骨格を有する界面活性剤も使用することができる。
これらの界面活性剤の中でも、リン酸エステルなどのアニオン系界面活性剤、及びスチレン-アクリル酸共重合体などのポリマー骨格を有する界面活性剤などが好ましい。
〔有機溶媒(D)〕
第3コーティング液では、溶媒又は分散媒として有機溶媒を使用する。有機溶媒としては、一般に、カルボキシ基含有重合体を溶解する極性有機溶媒が用いられるが、極性有機溶媒とともに、極性基(ヘテロ原子又はヘテロ原子を有する原子団)をもたない有機溶媒を併用してもよい。
好ましく使用できる有機溶媒としては、例えば、メタノール、エタノール、イソプロパノール、n-プロパノール、及びn-ブタノールなどのアルコール類;ジメチルスルホキシド、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、テトラメチル尿素、ヘキサメチルリン酸トリアミド、並びにγ-ブチロラクトンなどの極性有機溶媒を挙げることができる。
上記の極性有機溶媒の他に、ベンゼン、トルエン、キシレン、ヘキサン、ヘプタン、及びオクタンなどの炭化水素類;アセトン及びメチルエチルケトンなどのケトン類;ジクロロメタンなどのハロゲン化炭化水素類;酢酸メチルなどのエステル類;並びにジエチルエーテルなどのエーテル類を適宜用いることができる。極性基を持たないベンゼンなどの炭化水素類は、一般に、極性有機溶媒と併用する。
第3コーティング液は、溶媒又は分散媒として、有機溶媒のみを含んでいてもよいが、水を更に含んでもよい。水を含有させることにより、カルボキシ基含有重合体の溶解性を向上させ、第3コーティング液の塗工性や作業性を改善することができる。第3コーティング液の含水率は、質量分率で、100ppm以上であってもよく、1,000ppm以上であってもよく、1,500ppm以上であってもよく、2,000ppm以上であってもよい。
第3コーティング液の含水率は、質量分率で、好ましくは50,000ppm以下、より好ましくは10,000ppm以下、更に好ましくは5,000ppm以下である。
〔珪素含有化合物(E)〕
第3コーティング液では、剥離強度を高めるため、珪素含有化合物を使用する。珪素含有化合物は、下記一般式(4)で表されるシランカップリング剤、下記一般式(5)で表されるシランカップリング剤、これらの加水分解物、及びこれらの縮合物からなる群から選択される少なくとも1種の化合物である。
Si(OR1)Z1 …(4)
Si(R2)(OR3)Z2 …(5)
ここで、珪素含有化合物(E)の質量は、シランカップリング剤換算の質量である。また、一般式(4)において、R1は、同一であっても異なっていてもよい、炭素数が1乃至6のアルキル基であり、Z1はエポキシ基を含有する基である。そして、一般式(5)において、R2はメチル基であり、R3は、同一であっても異なっていてもよい、炭素数が1乃至6のアルキル基であり、Z2はエポキシ基を含有する基である。
シランカップリング剤は、加水分解を容易に生じ、また、酸又はアルカリ存在下では縮合反応を容易に生じる。そのため、第3コーティング液において、珪素含有化合物(E)は、一般式(4)又は(5)で表されるシランカップリング剤の形態でのみ、その加水分解物の形態でのみ、又はその縮合物の形態でのみで存在することは稀である。即ち、第3コーティング液において、珪素含有化合物(E)は、通常、一般式(4)で表されるシランカップリング剤及び一般式(5)で表されるシランカップリング剤の少なくとも一方と、その加水分解物と、その縮合物との混合物として混在している。
R1及びR3の各々は、炭素原子数が1乃至6のアルキル基であればよく、メチル基又はエチル基であることが好ましい。Z1及びZ2の各々は、エポキシ基を含有する基であればよい。
一般式(4)又は(5)で表されるシランカップリング剤の具体例としては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、及び3-グリシドキシプロピルトリエトキシシランが挙げられ、3-グリシドキシプロピルメチルジメトキシシラン及び3-グリシドキシプロピルトリメトキシシランが好ましい。シランカップリング剤としては、一種を用いても、二種以上を用いてもよい。
一般式(4)又は(5)で表されるシランカップリング剤の加水分解物は、部分加水分解物であってもよく、完全加水分解物であってもよく、それらの混合物であってもよい。
第3コーティング液が珪素含有化合物(E)の少なくとも一部として含む縮合物は、一般式(4)で表されるシランカップリング剤の加水分解縮合物、一般式(5)で表されるシランカップリング剤の加水分解縮合物、及び、一般式(4)で表されるシランカップリング剤の加水分解物と一般式(5)で表されるシランカップリング剤の加水分解物との縮合物の2以上である。これら加水分解縮合物は、以下の反応によって生じる。即ち、先ず、シランカップリング剤を加水分解させる。これにより、シランカップリング剤は、その分子が含んでいるアルコキシ基の1以上が水酸基によって置換されて、加水分解物となる。続いて、これら加水分解物を縮合させることによって、珪素原子(Si)が酸素を介して結合した化合物が形成される。この縮合が繰り返されることにより、加水分解縮合物が得られる。
〔組成〕
第3コーティング液は、カルボキシ基含有重合体(A)、多価金属含有粒子(B)、界面活性剤(C)、有機溶媒(D)及び珪素含有化合物(E)を含有し、多価金属含有粒子が分散している分散液である。
カルボキシ基含有重合体(A)が含んでいるカルボキシ基のモル数(At)に対する、多価金属含有粒子(B)が含んでいる多価金属のモル数と価数との積(Bt)の比(以下、当量比ともいう)は、0.6以上であることが好ましい。この比は、より好ましくは0.8以上、特に好ましくは1.0以上である。この比の上限は、通常は10.0、好ましくは2.0である。この比を小さくしすぎると、コーティング液からコート層を形成した積層体のガスバリア性、耐熱水性、及び耐水蒸気性などの諸特性が低下する。
上記の当量比は、例えば、以下のようにして求めることができる。カルボキシ基含有重合体がポリアクリル酸であり、多価金属化合物が酸化マグネシウムである場合を例に挙げて説明する。
ポリアクリル酸は、単量体単位の分子量が72であり、単量体1分子当たり1個のカルボキシ基を有する。それ故、ポリアクリル酸100g中のカルボキシ基の量は、1.39モルである。ポリアクリル酸100gを含んだコーティング液における上記の当量比が1.0であるということは、このコーティング液には、1.39モルのカルボキシ基を中和する量の酸化マグネシウムが含まれていることを意味する。従って、ポリアクリル酸100gを含んだコーティング液における上記の当量比を0.6とするには、このコーティング液に、0.834モルのカルボキシ基を中和する量の酸化マグネシウムを添加すればよい。ここで、マグネシウムの価数は2価であり、酸化マグネシウムの分子量は40である。従って、ポリアクリル酸100gを含んだコーティング液における上記の当量比を0.6とするには、このコーティング液に、16.68g(0.417モル)の酸化マグネシウムを添加すればよい。
有機溶媒は、カルボキシ基含有重合体が均一に溶解し且つ多価金属含有粒子が均一に分散するに足る量で用いられる。従って、有機溶媒としては、カルボキシ基含有重合体は溶解するが、多価金属化合物を実質的に溶解せず、それを粒子の形状で分散させることができるものが用いられる。
界面活性剤は、多価金属含有粒子が安定して分散するに足る量で用いられる。第3コーティング液中の界面活性剤の濃度は、通常は0.0001乃至70質量%、好ましくは0.001乃至60重量%、より好ましくは0.1乃至50質量%の範囲内とする。
界面活性剤を添加しないと、第3コーティング液中で多価金属含有粒子をそれらの平均粒子径が十分に小さくなるように分散させることが困難になる。その結果、多価金属含有粒子が均一に分散したコーティング液を得ることが難しく、基材上に塗布するとき、膜厚が均一な塗膜を形成することが難しくなる。
カルボキシ基含有重合体に対する珪素含有化合物の質量比(但し、珪素含有化合物の質量はシランカップリング剤換算の質量である)は、0.5%以上であることが好ましく、1.0%以上であることがより好ましく、1.5%以上であることがより好ましく、2.0%以上であることが特に好ましい。
珪素含有化合物の添加量が少なすぎると、積層体10Aの剥離強度が低くなる。そのため、層間剥離を防止するための慎重な取り扱いが必要となり、生産性の低下につながる。
カルボキシ基含有重合体に対する珪素含有化合物の上記質量比は、20%以下であることが好ましく、15%以下であることがより好ましく、12%以下であることが更に好ましく、7%以下であることが特に好ましい。
珪素含有化合物はガスバリア性を持たない。そのため、珪素含有化合物の添加量が多すぎると、積層体10Aのガスバリア性が低下する。
〔第3コーティング液の製造方法〕
第3コーティング液を製造するには、一方で、カルボキシ基含有重合体(A)を有機溶媒(D)に均一に溶解させた後に、これに珪素含有化合物(E)を添加し、カルボキシ基含有重合体溶液を調製する。
そして、他方で、多価金属含有粒子(B)、界面活性剤(C)、有機溶媒(D)を混合し、必要に応じて分散処理を施すことで分散液を調製する。分散処理は、多価金属含有粒子(B)の平均粒子径が所定の値となるように行われる。分散処理前の混合液中の多価金属含有粒子(B)の平均粒子径が10μm以下である場合は、分散処理は行わなくてもよいが、その場合でも、分散処理を行うことが好ましい。分散処理を行うことで多価金属含有粒子(B)の凝集が解け、第3コーティング液が安定化すると共に、第3コーティング液を塗工して得られる積層体10Aの透明性が高まる。更には、第3コーティング液を塗工し、塗膜を乾燥させたときに、カルボキシ基含有重合体と多価金属イオンとの架橋形成が進み易くなり、良好なガスバリア性を有する積層体10Aが得られ易い。
分散処理の方法としては、高速撹拌機、ホモジナイザ、ボールミル、又はビーズミルを用いる方法が挙げられる。特に、ボールミル又はビーズミルを用いて分散を行うと、高い効率で分散させることができ、それ故、分散状態が安定な第3コーティング液を比較的短時間で得ることができる。この場合、ボール又はビーズの径は小さいものがよく、0.1乃至1mmであることが好ましい。
以上のようにして調製したカルボキシ基含有重合体溶液と多価金属含有粒子の分散液とを混合することにより、第3コーティング液を作製することができる。なお、カルボキシ基含有重合体溶液から珪素含有化合物(E)を省略してもよい。この場合、珪素含有化合物(E)は、例えば、カルボキシ基含有重合体溶液と多価金属含有粒子の分散液とを混合する際に一緒に混合する。
第3コーティング液は、有機溶媒以外の成分の合計濃度が、好ましくは0.1乃至60質量%、より好ましくは0.5乃至25質量%、特に好ましくは1乃至20質量%の範囲内にあることが、所望の膜厚の塗膜及びコート層を高い作業性で得るうえで好ましい。
第3コーティング液には、必要に応じて、他の重合体、増粘剤、安定剤、紫外線吸収剤、アンチブロッキング剤、柔軟剤、無機層状化合物(例えば、モンモリロナイト)、及び着色剤(染料、顔料)などの各種添加剤を含有させることができる。
<1.3>シーラント層
シーラント層3は、積層体10Aに、ヒートシールによる封止性を付与する層であり、ポリオレフィンフィルムを含んでいる。シーラント層3は、例えば、ポリオレフィンフィルムからなる。典型的には、シーラント層3が含んでいるポリオレフィンフィルムは、その製造時における走行方向が、第1基材層1のポリオレフィンフィルムの製造時における走行方向と等しい。
シーラント層3の材質としては、熱可塑性樹脂のうちポリオレフィン系樹脂を使用する。ポリオレフィン系樹脂の具体的としては、低密度ポリエチレン樹脂(LDPE)、中密度ポリエチレン樹脂(MDPE)、直鎖状低密度ポリエチレン樹脂(LLDPE)、エチレン-酢酸ビニル共重合体(EVA)、エチレン-αオレフィン共重合体、及びエチレン-(メタ)アクリル酸共重合体などのエチレン系樹脂や、ポリエチレンとポリブテンとのブレンド樹脂や、ホモポリプロピレン樹脂(PP)、プロピレン-エチレンランダム共重合体、プロピレン- エチレンブロック共重合体、及びプロピレン-αオレフィン共重合体などのポリプロピレン系樹脂が挙げられる。これらの熱可塑性樹脂は、包装体の用途やレトルト処理及びボイル処理における温度条件に応じて適宜選択できる。
リサイクルの観点では、シーラント層3が含むポリオレフィンフィルムの材質は、第1基材層1及び第2基材層2のポリオレフィンフィルムの材質と同一であることが好ましい。即ち、第1基材層1及び第2基材層2が含んでいるポリオレフィンフィルムがポリエチレンフィルムである場合、シーラント層3が含んでいるポリオレフィンフィルムもポリエチレンフィルムであることが好ましい。また、第1基材層1及び第2基材層2が含んでいるポリオレフィンフィルムがポリプロピレンフィルムである場合、シーラント層3が含んでいるポリオレフィンフィルムもポリプロピレンフィルムであることが好ましい。
シーラント層3が含んでいるポリオレフィンフィルムには、難燃剤、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、及び粘着付与剤等の各種添加材が添加されていてもよい。
シーラント層3の厚さは、積層体10Aから得られる包装体に収容する内容物の質量や、包装体の形状などに応じて適宜定められるが、概ね30乃至150μmの範囲内にあることが好ましい。
<1.4>接着層
第1接着層4は、第1基材層1と第2基材層2とを互いに対して接着している。第1接着層4は、第1接着剤からなる。第1接着剤としては、例えば、ポリエステル-イソシアネート系樹脂、ウレタン樹脂、又はポリエーテル系樹脂を用いることができる。積層体10Aから得られる包装体をレトルト用途に使用するには、レトルト耐性の観点で、第1接着剤として、一液硬化型及び二液硬化型のウレタン系接着剤等の接着剤、特には二液硬化型のウレタン系接着剤を用いるドライラミネート法により第1基材層1と第2基材層2とを互いに対して接着することが好ましい。
第2接着層5は、第2基材層2とシーラント層3とを互いに対して接着している。第2接着層5は、第2接着剤からなる。第2基材層2とシーラント層3とは、例えば、第2接着剤として、一液硬化型又は二液硬化型ウレタン系接着剤等の接着剤を用いるドライラミネート法により、互いに対して接着することができる。或いは、第2基材層2とシーラント層3とは、第2接着剤として無溶剤接着剤を用いるノンソルベントドライラミネート法により、互いに対して接着することができる。
上記の方法の中でも、ドライラミネート法は、レトルト処理、特に120℃ 以上の高温熱水処理に対して高い耐性を達成するうえで特に有利である。なお、包装体を85℃以下の温度で処理する用途に用いるのであれば、ラミネート方式は特に制限されない。
第1基材層1と第2基材層2との接着時及び第2基材層2とシーラント層3との接着時における加熱は、85℃以下の温度で行うことが好ましく、70℃以下の温度で行うことがより好ましい。積層体10Aの製造において高温の熱処理を行うと、ガスバリア性蒸着層23及びガスバリア性被覆層24にクラックや基材からの剥離が起こり、バリア性能が低下してしまう。
第1基材層1と第2基材層2との接着時及び第2基材層2とシーラント層3との接着時における加熱は、50℃以上の温度で行うことが好ましく、60℃以上の温度で行うことがより好ましい。温度を低くすると、生産性が低下する。
なお、シーラント層3は、熱可塑性樹脂を加熱溶融させ、カーテン状に第2基材層2上へ押し出して、これに貼り合わせるエクストルージョンラミネート法により、第2基材層2上へ設けてもよい。この場合、第2接着層5は省略することができる。
<1.5>熱収縮率
上記の積層体10Aは、第1基材層の120℃で15分間加熱した後の走行方向(MD)における熱収縮率x1、前記第2基材層の120℃で15分間加熱した後の走行方向における熱収縮率x2、及び、前記シーラント層の120℃で15分間加熱した後の走行方向における熱収縮率x3が、下記式(1)乃至(3)に示す関係を満たしている。
x2≦2.5% …(1)
-1.0%≦x2-x1 …(2)
-0.2%≦x2-x3 …(3)
ここで、熱収縮率x1、x2及びx3の各々は、加熱前の走行方向長さL0と加熱後の走行方向長L1との差L0-L1と、加熱前の走行方向長さL0との比(L0-L1)/L0に100を乗じてなる値である。熱収縮率x1、x2及びx3の各々は、具体的には、以下の手順で測定する。
先ず、測定対象の層から、一辺の長さが20cmの正方形状を有している測定サンプルを切り出す。次に、室温条件のもとで、測定サンプルの一方の面に、その走行方向に平行であり且つ長さが10cmである線を書き込む。上記の加熱前の走行方向長さL0は、この線の長さ(10cm)である。次いで、測定サンプルを120℃で15分間加熱する。測定サンプルを室温まで冷却し、線の長さを測定する。上記の加熱後の走行方向長さL1は、この線の長さである。その後、このようにして得られた走行方向長さL0及びL1から、熱収縮率を算出する。
熱収縮率x1は、上記式(1)及び(2)から明らかなように、3.5%以下である。熱収縮率x1は、2%以下であることが好ましい。熱収縮率x1は、0%以上である。
熱収縮率x2は、上記式(1)に示すように、2.5%以下である。熱収縮率x2は、2%以下であることが好ましい。熱収縮率x2は、0%以上であり、好ましくは0.4%以上である。
熱収縮率x3は、上記式(1)及び(3)から明らかなように、2.7%以下である。熱収縮率x3は、2%以下であることが好ましい。熱収縮率x3は、0%以上である。
熱収縮率x2と熱収縮率x1との差x2-x1は、上記式(2)に示すように、-1.0%以上である。差x2-x1は、-0.8%以上であることが好ましい。差x2-x1は、好ましくは0.3%以下である。
熱収縮率x2と熱収縮率x3との差x2-x3は、上記式(2)に示すように、-0.2%以上である。差x2-x3は、0%以上であることが好ましい。差x2-x3は、好ましくは1.1%以下である。
熱収縮率x1、x2及びx3が上記の関係を満たしている積層体10Aから得られる包装体は、レトルト処理後において、第1基材層1と第2基材層2との間で高い密着性を維持するとともに、第2基材層2とシーラント層3との間でも高い密着性を維持する。即ち、積層体10Aから得られる包装体は、レトルト処理に対して高い耐性を示す。
<2>第2実施形態
図2は、本発明の第2実施形態に係る積層体の一部を概略的に示す断面図である。
図2に示す積層体10Bは、以下の構成を採用したこと以外は、図1を参照しながら説明した積層体10Aと同様である。即ち、積層体10Bでは、第2基材層2は、ポリオレフィンフィルム21と、密着層22と、ガスバリア性蒸着層23と、ガスバリア性被覆層24とを、第1基材層1側からこの順に含んでいる。換言すれば、積層体10Bでは、ポリオレフィンフィルム21と、密着層22と、ガスバリア性蒸着層23と、ガスバリア性被覆層24との積層順が、積層体10Aとは逆である。
この構成を採用した積層体10Bから得られる包装体も、積層体10Aから得られる包装体と同様に、レトルト処理後において、第1基材層1と第2基材層2との間で高い密着性を維持するとともに、第2基材層2とシーラント層3との間でも高い密着性を維持する。即ち、積層体10Bから得られる包装体は、レトルト処理に対して高い耐性を示す。
<3>第3実施形態
図3は、本発明の第3実施形態に係る積層体の一部を概略的に示す断面図である。
図3に示す積層体10Cは、以下の構成を採用したこと以外は、図1を参照しながら説明した積層体10Aと同様である。
即ち、積層体10Cでは、第1基材層1は、ポリオレフィンフィルム11と、密着層12と、ガスバリア性蒸着層13と、ガスバリア性被覆層14とを、この順に含んでいる。第1基材層1は、ガスバリア性被覆層14が第2基材層2と向き合うように、第1接着層4を介して第2基材層2に接着されている。ポリオレフィンフィルム11は、積層体10Aの第1基材層1が含んでいるポリオレフィンフィルムに相当している。密着層12、ガスバリア性蒸着層13、及びガスバリア性被覆層14は、それぞれ、積層体10Aの第2基材層2が含んでいる密着層22、ガスバリア性蒸着層23、及びガスバリア性被覆層24に相当している。
また、積層体10Cでは、第1基材層1は、ポリオレフィンフィルムからなる。このポリオレフィンフィルムは、積層体10Aの第2基材層2が含んでいるポリオレフィンフィルム21に相当している。
この構成を採用した積層体10Cから得られる包装体も、積層体10Aから得られる包装体と同様に、レトルト処理後において、第1基材層1と第2基材層2との間で高い密着性を維持するとともに、第2基材層2とシーラント層3との間でも高い密着性を維持する。即ち、積層体10Cから得られる包装体は、レトルト処理に対して高い耐性を示す。
<4>包装体及び包装物品
図4は、本発明の一実施形態に係る包装体を概略的に示す斜視図である。
図4に示す包装体100は、袋である。包装体100は、包装材料10からなる。包装材料10は、上述した積層体10A、10B及び10Cの何れかである。包装体100は、シーラント層3が袋の内側を向くように製袋されている。包装体100では、その端部でシーラント層3同士がヒートシールされている。包装体100は、サイドシール袋、三方シール袋、及びスタンド袋等の様々な構造を有し得る。
この包装体100を含んだ包装物品は、包装体100に内容物を入れ、包装体100の開口を塞いだものである。内容物は、例えば、食品又は医薬品である。内容物として食品を含んだ包装物品は、例えば、レトルト食品である。内容物として医薬品を含んだ包装物品は、例えば、輸液バッグである。包装体100の開口は、開口部でシーラント層3同士をヒートシールすることにより塞ぐことができる。この包装物品は、好ましくは、レトルト処理及びボイル処理などの加熱殺菌処理に供する。
レトルト処理は、一般に、食品及び医薬品等の長期保存を可能とするために、カビ、酵母、及び細菌などの微生物を加熱殺菌する方法である。レトルト処理では、通常、食品等を包装体に収容してなる包装物品を、0.15乃至0.30MPaの加圧条件下、105乃至140℃の温度で10乃至120分間に亘って熱処理する。レトルト装置は、加熱蒸気を利用する蒸気式と加圧加熱水を利用する熱水式とがあり、内容物である食品等の殺菌条件に応じて適宜使い分ける。
ボイル処理は、食品及び医薬品等の長期保存を可能とするための湿熱殺菌法である。ボイル処理では、通常、内容物にもよるが、食品等を包装体に収容してなる包装物品を、大気圧下、60乃至100℃の温度で10乃至120分間に亘って熱処理する。ボイル処理は、通常、熱水槽を用いて100℃以下の温度で行う。ボイル処理装置には、一定温度の熱水槽の中に包装物品を浸漬させ、一定時間処理した後に取り出すバッチ式と、包装物品を熱水槽の中にトンネル式に通して処理する連続式とがある。
上記の包装体100は、特には、120℃ 以上の温度でレトルト処理を施す用途に好適に用いることができる。包装体100は、レトルト処理を施した場合であっても、第1基材層1と第2基材層2との間で高い密着性を維持するとともに、第2基材層2とシーラント層3との間でも高い密着性を維持する。即ち、包装体100は、レトルト処理に対して高い耐性を示す。
なお、ここでは、袋状の包装体100を例示したが、積層体10A、10B及び10Cを用いて得られる包装体は袋状に限られない。例えば、積層体10A、10B及び10Cは、有底筒状の容器本体と、その開口を塞いだ蓋体とを含んだ包装体において、蓋材として使用することができる。
以下に、本発明に関連して行った試験を記載する。
<二軸延伸ポリプロピレンフィルムの準備>
第1又は第2基材層として、以下の二軸延伸ポリプロピレンフィルム(OPP)を準備した。
・OPP(熱収縮率0.6%、厚さ20μm)
・OPP(熱収縮率0.7%、厚さ20μm)
・OPP(熱収縮率0.8%、厚さ20μm)
・OPP(熱収縮率1.0%、厚さ20μm)
・OPP(熱収縮率1.1%、厚さ20μm)
・OPP(熱収縮率1.2%、厚さ20μm)
・OPP(熱収縮率1.3%、厚さ20μm)
・OPP(熱収縮率1.4%、厚さ20μm)
・OPP(熱収縮率1.5%、厚さ20μm)
・OPP(熱収縮率1.7%、厚さ20μm)
・OPP(熱収縮率2.2%、厚さ20μm)
・OPP(熱収縮率3.2%、厚さ20μm)
・OPP(熱収縮率3.3%、厚さ20μm)
・OPP(熱収縮率3.4%、厚さ20μm)
なお、ここで、「熱収縮率」は、120℃で15分間加熱した後の走行方向における熱収縮率である。これら熱収縮率は、上述した熱収縮率x1又はx2に相当する。
<ガスバリア性OPPの準備>
また、第1又は第2基材層として、以下のガスバリア性OPPを準備した。
・ガスバリア性OPP(熱収縮率0.4%、厚さ20μm、AlO蒸着層)
・ガスバリア性OPP(熱収縮率0.5%、厚さ20μm、AlO蒸着層)
・ガスバリア性OPP(熱収縮率0.6%、厚さ20μm、AlO蒸着層)
・ガスバリア性OPP(熱収縮率0.7%、厚さ20μm、AlO蒸着層)
・ガスバリア性OPP(熱収縮率1.2%、厚さ20μm、AlO蒸着層)
・ガスバリア性OPP(熱収縮率1.4%、厚さ20μm、AlO蒸着層)
・ガスバリア性OPP(熱収縮率1.4%、厚さ20μm、SiO蒸着層)
・ガスバリア性OPP(熱収縮率1.5%、厚さ20μm、AlO蒸着層)
・ガスバリア性OPP(熱収縮率1.7%、厚さ20μm、AlO蒸着層)
・ガスバリア性OPP(熱収縮率1.8%、厚さ20μm、AlO蒸着層)
・ガスバリア性OPP(熱収縮率3.3%、厚さ20μm、AlO蒸着層)
・ガスバリア性OPP(熱収縮率3.4%、厚さ20μm、AlO蒸着層)
なお、ここで、「熱収縮率」は、120℃で15分間加熱した後の走行方向における熱収縮率である。これら熱収縮率は、上述した熱収縮率x1又はx2に相当する。
上記ガスバリア性OPPの各々は、ポリプロピレンフィルムと、その上に形成された密着層と、その上に形成されたガスバリア性蒸着層であるAlO蒸着層又はSiO蒸着層と、その上に形成されたガスバリア性被覆層とからなる。なお、ガスバリア性OPPについて上述した厚さは、ポリプロピレンフィルムと密着層とガスバリア性蒸着層とガスバリア性被覆層との合計厚さである。
密着層は、以下の方法で調製したアンカーコート剤を塗工することにより形成した。即ち、先ず、アクリルポリオールとトリレンジイソシアネートとを、アクリルポリオールのOH基の数に対してトリレンジイソシアネートのNCO基の数が等量となるように混合し、これを全固形分(アクリルポリオール及びトリレンジイソシアネートの合計量)が5質量%になるように酢酸エチルで希釈した。希釈後の混合液に、β-(3,4エポキシシクロヘキシル)トリメトキシシランを、アクリルポリオール及びトリレンジイソシアネートの合計量100質量部に対して5質量部となるように添加し、これらを混合することでアンカーコート剤を得た。密着層は、コロナ処理を施したポリプロピレンフィルムの表面に、このアンカーコート剤をグラビアロールコート法で塗工し、塗膜を60℃で乾燥及び硬化させることにより形成した。密着層の単位面積当たりの質量は0.1g/mとした。
ガスバリア性蒸着層は、電子ビーム式真空蒸着法により形成した。AlO蒸着層の厚さは10nmとした。SiO蒸着層の厚さは30nmとした。
ガスバリア性被覆層は、以下の方法で調製したコーティング液をガスバリア性蒸着層へ塗工することにより形成した。
即ち、先ず、テトラエトキシシラン(Si(OC)17.9gとメタノール10gとの混合液に、0.1N塩酸72.1gを加え、これを30分間攪拌して、テトラエトキシシランの加水分解を生じさせた。これにより、固形分が5質量%(SiO換算)の加水分解溶液としてA液を得た。
また、ポリビニルアルコールを5質量%の濃度で含んだ溶液を調製した。この溶液の溶媒としては、水とメタノールとを95:5の質量比で含んだ水系溶媒を使用した。以下、この溶液をB液と呼ぶ。
更に、1,3,5-トリス(3-トリアルコキシシリルプロピル)イソシアヌレートを含んだ、固形分量が5質量%の溶液を調製した。この溶液の溶媒としては、水とイソプロピルアルコールとを1:1の質量比で含んだ水系溶媒を使用した。以下、この溶液をC液と呼ぶ。
次に、上記のA液、B液及びC液を、65:25:10の質量比で混合することで、コーティング液を調製した。
このコーティング液をグラビアロールコート法にてガスバリア性蒸着層へ塗工し、オーブン中、張力20N/m、乾燥温度80℃の条件で加熱乾燥させて、厚さが0.3μmのガスバリア性被覆層を形成した。
これにより、ポリプロピレンフィルムと密着層とガスバリア性蒸着層とガスバリア性被覆層とがこの順に積層された構造を有するガスバリア性OPPを得た。
<シーラント層の準備>
シーラント層として、以下の無延伸ポリプロピレンフィルム(CPP)を準備した。
・CPP(熱収縮率0.3%、厚さ70μm)
・CPP(熱収縮率0.6%、厚さ70μm)
・CPP(熱収縮率0.7%、厚さ70μm)
・CPP(熱収縮率1.4%、厚さ70μm)
・CPP(熱収縮率1.6%、厚さ70μm)
なお、これら熱収縮率は、上述した熱収縮率x3に相当する。
<熱収縮率の測定>
第1及び第2基材層並びにシーラント層として記載した各フィルムの熱収縮率を、熱収縮率x1、x2及びx3に関して上述した手順に従って測定した。結果を、以下の表1及び表2に示す。
<積層体の製造>
図1乃至図3を参照しながら説明した積層体10A、10B及び10Cを、ロール・トゥー・ロール方式で製造した。
第1基材層及び第2基材層は、ドライラミネート法によってラミネートした。また、第2基材層及びシーラント層も、ドライラミネート法によってラミネートした。これらラミネートには、二液型の接着剤を使用した。二液型接着剤の主剤としては、三井化学株式会社製のA525を使用し、硬化剤としては三井化学株式会社製のA52を使用した。これらラミネートでは、加熱温度を60℃とした。
以下の表1及び表2に、第1基材層、第2基材層及びシーラント層に使用したフィルムの組み合わせと、積層体に採用した構造とを記載する。なお、表1及び2において、第2基材層がガスバリア性OPPであり且つバリア面が第1基材層側である例に係る積層体は、図1を参照しながら説明した積層体10Aと同様の構造を有している。第2基材層がガスバリア性OPPであり且つバリア面がシーラント層側である例に係る積層体は、図2を参照しながら説明した積層体10Bと同様の構造を有している。そして、第1基材層がガスバリア性OPPである例に係る積層体は、図3を参照しながら説明した積層体10Cと同様の構造を有している。
<包装物品の製造>
上記積層体の各々から、一辺の長さが15cmの正方形状を有しているフィルム片を2枚切り出し、これらフィルム片を、それらのシーラント層が対向するように重ねた。そして、パウチ状に三方インパルスシールして袋状とし、これに内容物として100mLの水道水を入れ、残り一辺をインパルスシールした。これにより、包装体である四方シールされたパウチと、内容物である水道水とを含んだ包装物品を得た。
<密着力の評価>
上記の積層体の各々から、幅が15mmの短冊形状を有している試験片を切り出し、第1基材層と第2基材層との間の剥離強度と、第2基材層とシーラント層との間の剥離強度とを測定した。この測定には、オリエンテック社製のテンシロン万能試験機RTC-1250を使用した。
また、上記の包装物品に対して、レトルト装置において、0.2MPaの加圧条件下、121℃で30分間のレトルト処理を行った。その後、各包装物品の積層体から、幅が15mmの短冊形状を有している試験片を切り出し、上記と同様の方法により、第1基材層と第2基材層との間の剥離強度と、第2基材層とシーラント層との間の剥離強度とを測定した。
このようにして得られた剥離強度を密着力とした。結果を、以下の表1及び表2に記載する。
Figure 2023049299000002
Figure 2023049299000003
上記表1及び表2では、密着力が2.0N/15mm以上であった場合の判定を「A」、密着力が1.5N/15mmより大きく且つ2.0N/15mm未満であった場合の判定を「B」、及び、密着力が1.5N/15mm以下であった場合の判定を「C」としている。
表1に示すように、例1乃至例16では、レトルト処理前及びレトルト処理後の双方において、密着力はA判定であった。これに対し、比較例1乃至16では、レトルト処理前及びレトルト処理後の少なくとも一方において、密着力はB又はC判定であった。
1…第1基材層、2…第2基材層、3…シーラント層、4…第1接着層、5…第2接着層、10…包装材料、10A…積層体、10B…積層体、10C…積層体、11…ポリオレフィンフィルム、12…密着層、13…ガスバリア性蒸着層、14…ガスバリア性被覆層、21…ポリオレフィンフィルム、22…密着層、23…ガスバリア性蒸着層、24…ガスバリア性被覆層、100…包装体。

Claims (10)

  1. 第1基材層、第2基材層及びシーラント層をこの順に備え、
    前記第1基材層、前記第2基材層及び前記シーラント層は何れもポリオレフィンフィルムを含み、
    前記第1基材層又は前記第2基材層は、そのポリオレフィンフィルムの少なくとも一方の表面に設けられたガスバリア性蒸着層と、前記ガスバリア性蒸着層を被覆したガスバリア性被覆層とを更に含み、
    前記第1基材層の120℃で15分間加熱した後の走行方向における熱収縮率x1、前記第2基材層の120℃で15分間加熱した後の走行方向における熱収縮率x2、及び、前記シーラント層の120℃で15分間加熱した後の走行方向における熱収縮率x3は、下記式(1)乃至(3)に示す関係を満たす積層体。
    x2≦2.5% …(1)
    -1.0%≦x2-x1 …(2)
    -0.2%≦x2-x3 …(3)
  2. 前記ガスバリア性被覆層は、カルボキシ基含有重合体(A)と、多価金属含有粒子(B)と、界面活性剤(C)と、有機溶媒(D)と、下記一般式(4)で表されるシランカップリング剤、下記一般式(5)で表されるシランカップリング剤、これらの加水分解物、及びこれらの縮合物からなる群から選択される少なくとも1種の珪素含有化合物(E)とを含有したコーティング液の硬化物である請求項1に記載の積層体。
    Si(OR1)Z1 …(4)
    Si(R2)(OR3)Z2 …(5)
    (一般式(4)において、R1は、同一であっても異なっていてもよい、炭素数が1乃至6のアルキル基であり、Z1はエポキシ基を含有する基であり、一般式(5)において、R2はメチル基であり、R3は、同一であっても異なっていてもよい、炭素数が1乃至6のアルキル基であり、Z2はエポキシ基を含有する基である。)
  3. 前記ガスバリア性被覆層は、水酸基含有高分子化合物、金属アルコキシド、シランカップリング剤、及びそれらの加水分解物からなる群より選ばれる1以上を含んだコーティング液の硬化物である請求項1に記載の積層体。
  4. 前記ガスバリア性蒸着層は酸化アルミニウム又は酸化珪素を含んだ請求項1乃至3の何れか1項に記載の積層体。
  5. 請求項1乃至4の何れか1項に記載の積層体を含んだ包装材料。
  6. レトルト用である請求項5に記載の包装材料。
  7. 請求項5又は6に記載の包装材料を含んだ包装体。
  8. 袋状である請求項7に記載の包装体。
  9. 請求項7又は8に記載の包装体と、
    前記包装体に収容された内容物と
    を備えた包装物品。
  10. レトルト処理された請求項9に記載の包装物品。
JP2021158960A 2021-09-29 2021-09-29 積層体、包装材料、包装体及び包装物品 Pending JP2023049299A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021158960A JP2023049299A (ja) 2021-09-29 2021-09-29 積層体、包装材料、包装体及び包装物品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021158960A JP2023049299A (ja) 2021-09-29 2021-09-29 積層体、包装材料、包装体及び包装物品

Publications (1)

Publication Number Publication Date
JP2023049299A true JP2023049299A (ja) 2023-04-10

Family

ID=85801768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021158960A Pending JP2023049299A (ja) 2021-09-29 2021-09-29 積層体、包装材料、包装体及び包装物品

Country Status (1)

Country Link
JP (1) JP2023049299A (ja)

Similar Documents

Publication Publication Date Title
WO2021020400A1 (ja) 積層体及び包装袋
JP2015150836A (ja) ガスバリア積層体
WO2021020401A1 (ja) ガスバリア積層体及びこれを用いた包装材
US20230115899A1 (en) Gas barrier laminate, gas barrier laminate producing coating solution, package, packaging body, and packaged article
US20230365768A1 (en) Gas barrier laminate, coating liquid for producing same, packaging material, package, and packaged article
WO2022131264A1 (ja) 積層体、包装袋及びスタンディングパウチ
JP4811783B2 (ja) 複合蒸着フィルム及びその製造方法
JP2022034746A (ja) ガスバリア積層体
JP7231095B2 (ja) 積層体及び包装袋
JP2019119132A (ja) ラミネートフィルムおよび成形品
WO2022071248A1 (ja) 包装材、包装袋及び包装体
JP2023049299A (ja) 積層体、包装材料、包装体及び包装物品
WO2023181852A1 (ja) 包装用積層体及び包装袋
JP7473036B2 (ja) 積層体及び包装袋
JP7088361B1 (ja) ガスバリア性積層体、包装材料、包装体及び包装物品
WO2024019049A1 (ja) 包装用積層体、その選定方法及びその評価方法、並びに包装袋及びその製造方法
WO2024014451A1 (ja) ガスバリアフィルムおよびバリア性積層体
WO2023219141A1 (ja) ガスバリアフィルム、包装フィルム及び包装袋
JP2023178816A (ja) 包装用積層体及び包装袋
WO2022107858A1 (ja) ガスバリア性積層体、包装材料、包装体及び包装物品
WO2022270491A1 (ja) ガスバリアフィルム、積層体、および包装材料
CN116568495A (zh) 层叠体、包装袋及自立袋
JP2023085732A (ja) ガスバリアフィルムおよび積層体
JP2023064414A (ja) ガスバリア性積層体、包装体及び包装物品

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230104