WO2022107858A1 - ガスバリア性積層体、包装材料、包装体及び包装物品 - Google Patents

ガスバリア性積層体、包装材料、包装体及び包装物品 Download PDF

Info

Publication number
WO2022107858A1
WO2022107858A1 PCT/JP2021/042484 JP2021042484W WO2022107858A1 WO 2022107858 A1 WO2022107858 A1 WO 2022107858A1 JP 2021042484 W JP2021042484 W JP 2021042484W WO 2022107858 A1 WO2022107858 A1 WO 2022107858A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
group
acid
silicon
layer
Prior art date
Application number
PCT/JP2021/042484
Other languages
English (en)
French (fr)
Inventor
正貴 前田
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to EP21894730.7A priority Critical patent/EP4249235A4/en
Priority to CN202180075961.7A priority patent/CN116438073A/zh
Publication of WO2022107858A1 publication Critical patent/WO2022107858A1/ja
Priority to US18/199,343 priority patent/US20230303788A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a gas barrier laminate, a packaging material, a packaging body and a packaging article.
  • films and sheets having an oxygen gas barrier property are used as packaging materials for these articles.
  • a material provided with aluminum foil as a gas barrier coating layer has been widely used in the past.
  • packaging materials containing aluminum foil are used, the contents are not visible and, moreover, metal detectors cannot be used. Therefore, especially in the fields of foods and pharmaceuticals, there has been a demand for the development of transparent packaging materials having excellent gas barrier properties.
  • a gas barrier laminate having a layer made of PVDC by applying a coating liquid containing polyvinylidene chloride (PVDC) on a base material has been used.
  • the layer made of PVDC is transparent and has a gas barrier property.
  • PVDC polyvinyl alcohol
  • the layer made of PVA-based polymer has a high density due to hydrogen bonds of hydroxyl groups, and exhibits high gas barrier properties in a low humidity atmosphere.
  • the layer made of PVA-based polymer has a problem that hydrogen bonds are loosened by moisture absorption in a high humidity atmosphere and the gas barrier property is greatly deteriorated. Therefore, a gas barrier laminate using a layer made of a PVA-based polymer as a gas barrier coating layer cannot often be used as a packaging material for foods containing a large amount of water, and is used as a packaging material for dried products. Was limited to.
  • a coating liquid containing a PVA-based polymer and a polymer capable of forming a crosslinked structure is applied to a base material and heat-treated to cause a gas barrier laminating. It has been proposed to manufacture a body (see, for example, Patent Documents 2 and 3).
  • This method does not require high-temperature heat treatment performed by the methods described in Patent Documents 2 and 3. Therefore, polyolefin can be used as the base material. Further, the obtained gas barrier coating layer has excellent gas barrier properties even in a high humidity atmosphere. Therefore, the gas barrier laminate containing the gas barrier coating layer can also be used for heat sterilization treatment such as boiling and retort.
  • the polycarboxylic acid-based polymer and the polyvalent metal compound react with each other in the coating liquid, and precipitation is likely to occur. If precipitation occurs in the liquid, a uniform film cannot be formed. Therefore, in this method, when the gas barrier coating layer is formed, the layer containing the polycarboxylic acid-based polymer and the layer containing the polyvalent metal compound are separately formed, or the polycarboxylic acid-based polymer is formed. An aqueous solution of the polyvalent metal salt is brought into contact with the containing layer. Therefore, when this method is used, the number of steps increases in that the gas barrier coating layer has a two-layer structure.
  • Patent Document 7 discloses a gas barrier film containing a polycarboxylic acid-based polymer and polyvalent metal compound particles in the same gas barrier coating layer.
  • the coating liquid used for forming the gas barrier coating layer the water content is set to 1000 ppm or less in the coating liquid containing a polycarboxylic acid polymer, polyvalent metal compound particles, a surfactant and an organic solvent.
  • the water content of this coating liquid is 1000 ppm or less, the reaction between the polycarboxylic acid-based polymer and the polyvalent metal compound is suppressed.
  • Patent Document 7 describes that the coating liquid disclosed therein can form a film having excellent gas barrier properties under high humidity conditions.
  • the laminate formed by applying this coating liquid peels off between the gas barrier coating layer and the adjacent layer, for example, a film substrate, under a harsher high temperature and high humidity environment. , There is a risk that the gas barrier property will deteriorate.
  • An object of the present invention is to provide a gas barrier laminated body, a packaging material, a packaging body, and a packaging article having both transparency and a high degree of gas barrier property in a high temperature and high humidity environment.
  • the gas barrier laminate is provided with a base material, an inorganic vapor deposition layer containing an inorganic oxide, and a coating layer in this order, and the coating layer is a carboxy group-containing polymer ( It contains a), polyvalent metal-containing particles (b), a surfactant (c), and a silicon-containing compound (d), and the silicon-containing compound (d) is represented by the following general formulas (1) and (2). It is at least one selected from the group consisting of the silane coupling agent, these hydrolysates, and condensates thereof, and is the number of moles (a) of carboxy groups contained in the above-mentioned carboxy group-containing polymer (a).
  • the molar ratio ( dt ) / (at) of the number of moles ( dt ) of the silicon-containing compound ( d) to t ) is 0.15% or more and 6.10% or less, and the film thickness of the coating layer is A gas barrier laminate having a size of 230 nm or more and 600 nm or less is provided.
  • ( dt ) in the above molar ratio ( dt ) / (at) is the mass of the silicon-containing compound ( d ) converted into a silane coupling agent.
  • R 1 is an alkyl group having 1 to 6 carbon atoms, which may be the same or different, and Z 1 is a group containing an epoxy group, and is a general formula (2).
  • R 2 is a methyl group
  • R 3 is an alkyl group having 1 to 6 carbon atoms which may be the same or different
  • Z 2 is a group containing an epoxy group.
  • the carboxy group-containing polymer (a) is at least one ⁇ , ⁇ - selected from the group consisting of acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid and fumaric acid. It may contain at least a structural unit derived from a monoethylenically unsaturated carboxylic acid.
  • the multivalent metal constituting the polyvalent metal-containing particles (b) may be a divalent metal.
  • the gas barrier laminate may further include an anchor coat layer between the base material and the inorganic thin-film deposition layer.
  • a packaging material containing the gas barrier laminate is provided.
  • a package containing the above packaging material is provided.
  • a packaged article containing the packaged body and the contents contained in the packaged body is provided.
  • a gas barrier laminated body a packaging material, a packaging body, and a packaging article having both transparency and a high degree of gas barrier property in a high temperature and high humidity environment.
  • FIG. 1 is a cross-sectional view schematically showing a gas barrier laminated body according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a gas barrier laminate according to a second embodiment of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing a gas barrier laminated body according to the first embodiment of the present invention.
  • the gas barrier laminate 10 shown in FIG. 1 includes a base material 1, an inorganic thin-film deposition layer 2 containing an inorganic oxide, and a coating layer 3.
  • the coating layer 3 contains a carboxy group-containing polymer (a), polyvalent metal-containing particles (b), a surfactant (c), and a silicon-containing compound (d), which are described in detail below.
  • the carboxy group-containing polymer (a) is ion-crosslinked with polyvalent metal ions derived from the polyvalent metal-containing particles (b), and exhibits excellent gas barrier properties even in a high humidity atmosphere. Then, the coating layer 3 contains the silicon-containing compound (d), so that the gas barrier property is further enhanced.
  • the blending amount of the silicon-containing compound (d) is determined by [the number of moles of the silicon-containing compound ( d ) ( dt ) / the number of moles of the carboxy group contained in the carboxy group-containing polymer (a) (at)].
  • the transparency is improved by adjusting the molar ratio to be within a range satisfying 0.15% or more and 6.10% or less, and setting the film thickness of the coating layer 3 to 230 nm or more and 600 nm or less.
  • the gas barrier laminated body 10 further improves the gas barrier property, and makes it possible to achieve both transparency and a high degree of gas barrier property.
  • the carboxy group-containing polymer (a) contained in the coating layer 3 is a polymer having two or more carboxy groups in the molecule, and may be hereinafter referred to as a “polycarboxylic acid-based polymer”. As described above, the carboxy group-containing polymer (a) forms an ion crosslink with the metal ion derived from the polyvalent metal-containing particles (b) described later in the coating layer 3, and exhibits excellent gas barrier properties. ..
  • Examples of the carboxy group-containing polymer (a) include a homopolymer of a carboxy group-containing unsaturated monomer, a copolymer of two or more kinds of carboxy group-containing unsaturated monomers, and a carboxy group-containing unsaturated monomer. Typical examples are copolymers with other polymerizable monomers and polysaccharides containing a carboxy group in the molecule (also referred to as "carboxy group-containing polysaccharide” or "acidic polysaccharide”).
  • the carboxy group includes not only a free carboxy group but also an acid anhydride group (specifically, a dicarboxylic acid anhydride group).
  • the acid anhydride group may be partially ring-opened to form a carboxy group.
  • Some of the carboxy groups may be neutralized with alkali. In this case, the degree of neutralization is preferably 20% or less.
  • the "neutralization degree” is a value obtained by the following method. That is, the carboxy group can be partially neutralized by adding an alkali ( ft ) to the carboxy group-containing polymer (a). At this time, the ratio of the number of moles ( ft ) of the alkali ( f ) to the number of moles (at) of the carboxy group contained in the carboxy group-containing polymer (a) is the degree of neutralization.
  • a graft polymer obtained by graft-polymerizing a carboxy group-containing unsaturated monomer to a carboxy group-free polymer such as polyolefin can also be used as the carboxy group-containing polymer (a). It is also possible to use a polymer obtained by hydrolyzing a polymer having a hydrolyzable ester group such as an alkoxycarbonyl group (for example, a methoxycarbonyl group) and converting it into a carboxy group.
  • the carboxy group-containing polymer (a) includes a homopolymer of ⁇ , ⁇ -monoethyl unsaturated carboxylic acid, a copolymer of two or more kinds of ⁇ , ⁇ -monoethyl unsaturated carboxylic acid, and a copolymer of ⁇ , ⁇ -monoethyl unsaturated carboxylic acid. It contains a copolymer of ⁇ , ⁇ -monoethylene unsaturated carboxylic acid and other polymerizable monomers. As the other polymerizable monomer, an ethylenically unsaturated monomer is typical.
  • Examples of the ⁇ , ⁇ -monoethylene unsaturated carboxylic acid include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid; unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid; anhydrous. Unsaturated dicarboxylic acid anhydrides such as maleic acid and itaconic acid anhydride; and mixtures of two or more of these can be mentioned.
  • At least one ⁇ , ⁇ -monoethyl unsaturated carboxylic acid selected from the group consisting of acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid is preferable, and acrylic acid and methacrylic acid are preferable.
  • At least one ⁇ , ⁇ -monoethyl unsaturated carboxylic acid selected from the group consisting of acid and maleic acid is more preferable.
  • polymerizable monomers copolymerizable with the ⁇ , ⁇ -monoethyl unsaturated carboxylic acid particularly ethylenically unsaturated monomers
  • ethylene propylene, 1-butene, 1-pentene, 1 - ⁇ -olefins such as hexene and 1-octene
  • saturated carboxylic acid vinyl esters such as vinyl acetate
  • acrylic acid alkyl esters such as methyl acrylate and ethyl acrylate
  • methacrylic acids such as methyl methacrylate and ethyl methacrylate.
  • Alkyl esters Chlorine-containing vinyl monomers such as vinyl chloride and vinylidene chloride; Fluorine-containing vinyl monomers such as vinyl fluoride and vinylidene fluoride; Unsaturated nitriles such as acrylonitrile and methacrylonitrile; styrene and ⁇ - Aromatic vinyl monomers such as methylstyrene; as well as itaconic acid alkyl esters can be mentioned. These ethylenically unsaturated monomers can be used alone or in combination of two or more.
  • the carboxy group-containing polymer is a copolymer of ⁇ , ⁇ -monoethylene unsaturated carboxylic acid and saturated carboxylic acid vinyl esters such as vinyl acetate
  • the copolymer is saponified to saturate carboxylic acid.
  • a copolymer obtained by converting an acid vinyl ester unit into a vinyl alcohol unit can also be used.
  • carboxy group-containing polysaccharide examples include acidic polysaccharides having a carboxy group in the molecule such as alginic acid, carboxymethyl cellulose, and pectin. These acidic polysaccharides can be used alone or in combination of two or more. In addition, acidic polysaccharides can also be used in combination with a (co) polymer of ⁇ , ⁇ -monoethyl unsaturated carboxylic acid.
  • the carboxy group-containing polymer is a copolymer of ⁇ , ⁇ -monoethylene unsaturated carboxylic acid and other ethylenically unsaturated monomers, the gas barrier property, heat resistance and water resistance of the obtained film, and From the viewpoint of water vapor resistance, the ratio of the number of moles of the ⁇ , ⁇ -monoethyl unsaturated carboxylic acid monomer to the total number of moles of the monomers in the polymer is 60 mol% or more. It is preferably 80 mol% or more, more preferably 90 mol% or more, and particularly preferably 90 mol% or more.
  • the carboxy group-containing polymer (a) is excellent in gas barrier property, moisture resistance, water resistance, heat resistance and water resistance, and is easy to obtain a film having excellent gas barrier property under high humidity conditions.
  • a homopolymer or copolymer obtained by polymerizing only ⁇ -monoethyl unsaturated carboxylic acid is preferable.
  • the carboxy group-containing polymer (a) is a (co) polymer consisting of only ⁇ , ⁇ -monoethyl unsaturated carboxylic acid, preferred specific examples thereof are acrylic acid, methacrylic acid, crotonic acid, maleic acid, and fumal.
  • homopolymers and copolymers of at least one ⁇ , ⁇ -monoethyl unsaturated carboxylic acid selected from the group consisting of acrylic acid, methacrylic acid, and maleic acid are more preferable.
  • carboxy group-containing polymer (a) polyacrylic acid, polymethacrylic acid, polymaleic acid, and a mixture of two or more thereof are particularly preferable.
  • acidic polysaccharide alginic acid is preferable.
  • polyacrylic acid is particularly preferable because it is relatively easy to obtain and it is easy to obtain a film having excellent various physical characteristics.
  • the number average molecular weight of the carboxy group-containing polymer (a) is not particularly limited, but the number average molecular weight is preferably in the range of 2,000 to 10,000,000 from the viewpoint of film formability and film physical characteristics. , 5,000 to 1,000,000, more preferably 10,000 to 500,000.
  • the "number average molecular weight” is a value obtained by measurement by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the number average molecular weight of the polymer is generally measured in terms of standard polystyrene.
  • the polyvalent metal-containing particles (b) contained in the coating layer 3 are preferably particles containing at least one type of polyvalent metal having a metal ion valence of 2 or more.
  • the polyvalent metal-containing particles (b) may be particles made of a polyvalent metal having a metal ion valence of 2 or more, and are particles made of a compound of a polyvalent metal having a metal ion valence of 2 or more. It may be a mixture thereof.
  • polyvalent metals include short-period periodic table 2A metals such as beryllium, magnesium, and calcium; transition metals such as titanium, zirconium, chromium, manganese, iron, cobalt, nickel, copper, and zinc; And aluminum, but is not limited to these.
  • the polyvalent metal is preferably a divalent metal. Further, it is preferable that the polyvalent metal forms a compound.
  • polyvalent metal compound examples include, but are not limited to, polyvalent metal oxides, hydroxides, carbonates, organic acid salts, and inorganic acid salts.
  • organic acid salt examples include acetate, oxalate, citrate, lactate, phosphate, phosphite, hypophosphite, stearate, and monoethylene unsaturated carboxylate.
  • inorganic acid salt examples include, but are not limited to, chlorides, sulfates, and nitrates.
  • the polyvalent metal alkyl alkoxide can also be used as the polyvalent metal compound. These polyvalent metal compounds can be used alone or in combination of two or more.
  • polyvalent metal compounds compounds of beryllium, magnesium, calcium, copper, cobalt, nickel, zinc, aluminum, and zirconium are preferable from the viewpoint of gas barrier property of the gas barrier laminate 10, and berylium, magnesium, calcium, copper, etc.
  • Compounds of divalent metals such as zinc, cobalt, and nickel are more preferred.
  • Preferred divalent metal compounds include, for example, oxides such as zinc oxide, magnesium oxide, copper oxide, nickel oxide, and cobalt oxide; carbonates such as calcium carbonate; organics such as calcium lactate, zinc lactate, and calcium acrylate. Salts; as well as alkoxides such as magnesium methoxydo can be mentioned, but are not limited thereto.
  • the polyvalent metal or the polyvalent metal compound is used as particles.
  • the polyvalent metal particles (b) include the dispersion stability of the coating liquid (hereinafter, referred to as “coating liquid for forming the coating layer” or simply “coating liquid”) used for forming the coating layer 3 described later, and the dispersion stability.
  • Gas barrier properties From the viewpoint of gas barrier properties, those having an average particle size in the coating liquid in the range of 10 nm to 10 ⁇ m (or 10,000 nm) are preferably used.
  • the polyvalent metal particles (b) are more preferably in the range of 12 nm to 1 ⁇ m (or 1,000 nm), and further preferably in the range of 15 nm to 500 nm, as the average particle diameter in the coating liquid. It is particularly preferably in the range of 15 nm to 50 nm.
  • the average particle size of the polyvalent metal-containing particles (b) is too large, the uniformity of the film thickness of the coating layer 3, the flatness of the surface, the ionic cross-linking reactivity with the carboxy group-containing polymer (a), and the like are insufficient. It is easy to become. If the average particle size of the polyvalent metal-containing particles (b) is too small, the ionic cross-linking reaction with the carboxy group-containing polymer (a) may proceed at an early stage. Further, if the average particle size of the multivalent metal-containing particles (b) is too small, it may be difficult to uniformly disperse the polyvalent metal-containing particles (b) in the coating liquid.
  • the average particle size of the polyvalent metal-containing particles (b) can be measured by measuring and counting using a scanning electron microscope or a transmission electron microscope when the sample is a dry solid. ..
  • the average particle size of the polyvalent metal-containing particles (b) in the coating liquid can be measured by a light scattering method. 2001)].
  • the polyvalent metal-containing particles in the coating liquid exist as primary particles, secondary particles, or a mixture thereof, but in many cases, it is presumed that they exist as secondary particles in view of the average particle size.
  • the coating layer 3 contains a surfactant (c) in order to enhance the dispersibility of the polyvalent metal-containing particles (b).
  • Surfactants are compounds that have both hydrophilic and lipophilic groups in the molecule.
  • Surfactants include anionic, cationic, and amphoteric ionic and nonionic surfactants. Any surfactant may be used in the coating layer 3.
  • Anionic surfactants include, for example, carboxylic acid type, sulfonic acid type, sulfate ester type, and phosphoric acid ester type.
  • carboxylic acid type anionic surfactant include aliphatic monocarboxylates, polyoxyethylene alkyl ether carboxylates, N-acylsarcosates, and N-acylglutamates.
  • sulfonic acid type anionic surfactant examples include dialkyl sulfosuccinate, alkane sulfonate, alpha olefin sulfonate, linear alkyl benzene sulfonate, alkyl (branched chain) benzene sulfonate, and naphthalene sulfonic acid. Included are salt-formaldehyde condensates, alkylnaphthalene sulfonates, and N-methyl-N-acyltaurate.
  • Examples of the sulfate ester type anionic surfactant include alkyl sulfates, polyoxyethylene alkyl ether sulfates, and oil and fat sulfates.
  • Examples of the phosphate ester type anionic surfactant include an alkyl phosphate type, a polyoxyethylene alkyl ether phosphate, and a polyoxyethylene alkyl phenyl ether phosphate.
  • Examples of the cationic surfactant (c) include an alkylamine salt type and a quaternary ammonium salt type.
  • Examples of the alkylamine salt type cationic surfactant include monoalkylamine salts, dialkylamine salts, and trialkylamine salts.
  • Examples of the quaternary ammonium salt type cationic surfactant include halogenated (chloride, bromide or iodide) alkyltrimethylammonium salt and alkylbenzalconium chloride.
  • amphoteric surfactants include carboxybetaine type, 2-alkylimidazoline derivative type, glycine type, and amine oxide type.
  • carboxybetaine type amphoteric tenside agent examples include alkyl betaine and fatty acid amide propyl betaine.
  • amphoteric surfactant of the derivative form of 2-alkylimidazolin examples include 2-alkyl-N-carboxymethyl-N-hydroxyethyl imidazolinium betaine.
  • Examples of the glycine-type amphoteric surfactant include alkyl or dialkyldiethylenetriaminoacetic acid.
  • amino oxide type amphoteric surfactant examples include alkylamine oxides.
  • nonionic surfactants include ester type, ether type, ester ether type, and alkanolamide type.
  • ester-type nonionic surfactant include glycerin fatty acid ester, sorbitan fatty acid ester, and sucrose fatty acid ester.
  • ether type nonionic surfactant include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene polyoxypropylene glycol.
  • examples of the ester ether type nonionic surfactant include fatty acid polyethylene glycol and fatty acid polyoxyethylene sorbitan.
  • alkanolamide type nonionic surfactant include fatty acid alkanolamide.
  • a surfactant having a polymer skeleton such as a styrene-acrylic acid copolymer can also be used.
  • anionic surfactants such as phosphoric acid esters and surfactants having a polymer skeleton such as styrene-acrylic acid copolymers are preferable.
  • the coating layer 3 contains a silicon-containing compound (d) in order to increase the peel strength.
  • the silicon-containing compound (d) is derived from a silane coupling agent represented by the following general formula (1), a silane coupling agent represented by the following general formula (2), hydrolysates thereof, and condensates thereof. At least one compound selected from the group consisting of. Si (OR 1 ) 3 Z 1 ... (1) Si (R 2 ) (OR 3 ) 2 Z 2 ... (2)
  • R 1 is an alkyl group having 1 to 6 carbon atoms, which may be the same or different
  • Z 1 is a group containing an epoxy group.
  • R 2 is a methyl group
  • R 3 is an alkyl group having 1 to 6 carbon atoms which may be the same or different
  • Z 2 is an epoxy group. It is a group contained.
  • the silane coupling agent easily causes hydrolysis, and also easily causes a condensation reaction in the presence of an acid or an alkali. Therefore, in the coating layer 3, the silicon-containing compound (d) is contained only in the form of the silane coupling agent represented by the general formula (1) or (2), only in the form of its hydrolyzate, or its condensate. It rarely exists only in the form of. That is, in the coating layer 3, the silicon-containing compound (d) is usually at least one of the silane coupling agent represented by the general formula (1) and the silane coupling agent represented by the general formula (2), and the silane coupling agent thereof. It is mixed as a mixture of the hydrolyzate and its condensate.
  • Each of R 1 and R 3 in the general formulas (1) and (2) may be an alkyl group having 1 to 6 carbon atoms, and is preferably a methyl group or an ethyl group.
  • Each of Z 1 and Z 2 may be a group containing an epoxy group, and may be, for example, an organic group having a glycidyloxy group.
  • silane coupling agent represented by the general formula (1) or (2) examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 3-. Examples thereof include glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane and 3-glycidoxypropyltri. Methylsilane is preferred.
  • the silane coupling agent one kind or two or more kinds may be used.
  • the hydrolyzate of the silane coupling agent represented by the general formula (1) or (2) may be a partial hydrolyzate, a complete hydrolyzate, or a mixture thereof. good.
  • the condensate that the coating layer 3 can contain as at least a part of the silicon-containing compound (d) is a hydrolyzed condensate of a silane coupling agent represented by the general formula (1) and a silane represented by the general formula (2).
  • These hydrolyzed condensates are produced by the following reactions. That is, first, the silane coupling agent is hydrolyzed.
  • the silane coupling agent becomes a hydrolyzate by substituting one or more of the alkoxy groups contained in the molecule with the hydroxyl group. Subsequently, by condensing these hydrolysates, a compound in which silicon atoms (Si) are bonded via oxygen is formed. By repeating this condensation, a hydrolyzed condensate is obtained.
  • the coating layer 3 preferably contains the carboxy group-containing polymer (a) and the polyvalent metal-containing particles (b) in the following compounding ratios. That is, the product of the number of moles of the polyvalent metal contained in the polyvalent metal-containing particles (b) and the number of valences with respect to the number of moles (at) of the carboxy group contained in the carboxy group-containing polymer (a).
  • the ratio of b t ) (( bt ) / ( at)) (hereinafter, also referred to as equivalent ratio) is preferably 0.6 or more. This ratio is more preferably 0.8 or more, and particularly preferably 1.0 or more. The upper limit of this ratio is usually 10.0, preferably 2.0. If this ratio is made too small, various properties such as gas barrier property, heat resistance and water vapor resistance of the gas barrier layered body 10 tend to be deteriorated.
  • the above equivalent ratio can be obtained, for example, as follows.
  • the case where the carboxy group-containing polymer (a) is polyacrylic acid and the polyvalent metal compound particles (b) are magnesium oxide will be described as an example.
  • Polyacrylic acid has a molecular weight of 72 in a monomer unit and has one carboxy group per monomer molecule. Therefore, the amount of carboxy groups in 100 g of polyacrylic acid is 1.39 mol.
  • the above equivalent ratio of 1.0 in the coating solution containing 100 g of polyacrylic acid means that the coating layer 3 contains 1.39 mol of magnesium oxide in an amount that neutralizes the carboxy group. Means that you are. Therefore, in order to make the above equivalent ratio in the coating layer 3 containing 100 g of polyacrylic acid 0.6, magnesium oxide in an amount that neutralizes 0.834 mol of carboxy groups should be added to the coating layer 3. Just do it.
  • the valence of magnesium is divalent, and the molecular weight of magnesium oxide is 40. Therefore, in order to set the above equivalent ratio in the coating layer 3 containing 100 g of polyacrylic acid to 0.6, 16.68 g (0.417 mol) of magnesium oxide may be added to the coating layer 3.
  • the surfactant (c) is used in an amount sufficient to stably disperse the polyvalent metal-containing particles in the coating liquid. Therefore, when the blending amount is explained as the concentration in the coating liquid for forming a coating layer, it is usually 0.0001 to 70% by mass, preferably 0.001 to 60% by mass, more preferably 0.1 in the coating liquid. It shall be in the range of 50% by mass.
  • the surfactant (c) is added, it becomes difficult to disperse the polyvalent metal-containing particles (b) in the coating liquid so that their average particle diameters are sufficiently small. As a result, it becomes difficult to obtain a coating liquid in which the multivalent metal-containing particles (b) are uniformly dispersed. In that case, it becomes difficult to obtain a coating layer 3 having a uniform film thickness in the coating layer 3 obtained by applying a coating liquid on the inorganic thin-film deposition layer 2 and drying it.
  • the coating layer 3 contains the silicon-containing compound (d) in the molar number of carboxy groups (a) contained in the carboxy group-containing polymer (a) from the viewpoint of achieving both high gas barrier properties and transparency in the gas barrier laminate 10. It is contained in an amount such that the molar ratio ( dt ) / (at) of the number of moles ( dt ) of the silicon-containing compound ( d) to t ) is 0.15% or more and 6.10% or less.
  • ( dt ) in the molar ratio ( dt ) / (at) is the number of moles of the silicon-containing compound ( d ) converted into a silane coupling agent.
  • the molar ratio ( dt ) / (at) of the number of moles ( dt ) of the silicon-containing compound ( d ) to the number of moles (at) of the carboxy group contained in the carboxy group-containing polymer (a ) is the above-mentioned viewpoint. Therefore, it is preferably 0.3% or more, more preferably 0.46% or more, and particularly preferably 0.61% or more.
  • the amount of the silicon-containing compound ( d ) added is too large and the molar ratio ( dt ) / (at) is higher than 6.10%, the transparency of the gas barrier laminate 10 is lowered. Further, the silicon-containing compound (d) does not have a gas barrier property. Therefore, when the molar ratio ( dt ) / (at) is higher than 6.10 %, not only the transparency of the laminate is lowered, but also the gas barrier property is lowered.
  • the molar ratio ( dt ) / (at) of the number of moles ( dt ) of the silicon-containing compound ( d ) to the number of moles (at) of the carboxy group contained in the carboxy group-containing polymer (a ) is the above-mentioned viewpoint. Therefore, it is preferably 4.57% or less, more preferably 3.66% or less, and particularly preferably 2.13% or less.
  • the film thickness of the coating layer 3 is 230 nm or more and 600 nm or less from the viewpoint of achieving both transparency and gas barrier properties.
  • the film thickness of the coating layer 3 is specifically a film thickness measured by a method for measuring the film thickness of the coating layer, which will be described later.
  • the film thickness of the coating layer 3 is preferably 250 nm or more and 500 nm or less, and more preferably 300 nm or more and 450 nm or less.
  • the gas barrier laminate 10 according to the present embodiment includes an inorganic thin-film deposition layer 2 between the base material 1 and the coating layer 3.
  • the gas barrier property of the gas barrier layered body 10 provided with the coating layer 3 can be further enhanced, and both transparency and a high degree of gas barrier property can be achieved at the same time.
  • the inorganic vapor deposition layer 2 contains an inorganic oxide.
  • the inorganic oxide include aluminum oxide, silicon oxide, magnesium oxide, tin oxide and the like. Among these, aluminum oxide, silicon oxide, magnesium oxide, or a mixture of any two or more thereof is preferable from the viewpoint of achieving both transparency and gas barrier property.
  • the thickness of the inorganic thin-film deposition layer 2 may be, for example, in the range of 5 to 100 nm, and may be in the range of 10 to 50 nm. It is preferable that the thickness of the inorganic thin-film layer 2 is 5 nm or more from the viewpoint of forming a uniform thin film. If the thin film as the gas barrier material is uniform, the functions required for the gas barrier material can be sufficiently fulfilled. It is preferable that the thickness of the inorganic thin-film layer 2 is 100 nm or less from the viewpoint of the flexibility of the thin film. If the gas barrier material has poor flexibility, cracks may occur due to external factors such as bending and pulling.
  • the base material 1 included in the gas barrier laminate 10 according to the present embodiment is not particularly limited, and various types can be used.
  • the material constituting the base material 1 is not particularly limited, and various types can be used, and examples thereof include plastic and paper.
  • the base material 1 may be a single layer made of a single material, or may be a multilayer made of a plurality of materials.
  • An example of a multi-layered substrate is a film made of plastic laminated on paper.
  • plastic is preferable as the material constituting the base material 1 because it can be molded into various shapes and its use is further expanded by imparting gas barrier properties.
  • the plastic is not particularly limited, but for example, a polyolefin resin such as polyethylene and polypropylene; a polyester resin such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, and a copolymer thereof; nylon-6. , Nylon-66, Nylon-12, Metaxylylene adipamide, and polyamide-based resins such as copolymers thereof; styrene-based resins such as polystyrene, styrene-butadiene copolymer, and styrene-butadiene-acrylonitrile copolymer.
  • a polyolefin resin such as polyethylene and polypropylene
  • a polyester resin such as polyethylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, and a copolymer thereof
  • nylon-6. Nylon-66, Nylon-12, Metaxylylene a
  • Resin poly (meth) acrylic acid ester; polyacrylonitrile; polyvinyl acetate; ethylene-vinyl acetate copolymer; ethylene-vinyl alcohol copolymer; polycarbonate; polyarylate; regenerated cellulose; polyimide; polyetherimide; polysulphon; Polymer sulphon; polyether ketones; and ionomer resins can be mentioned.
  • the base material 1 is preferably made of polyethylene, polypropylene, polyethylene terephthalate, nylon-6 or nylon-66.
  • plastic constituting the base material 1 one type may be used alone, or two or more types may be blended and used.
  • the plastic may contain additives.
  • the additive can be appropriately selected from known additives such as pigments, antioxidants, antistatic agents, ultraviolet absorbers, and lubricants, depending on the intended use.
  • additive one type may be used alone, or two or more types may be used in combination.
  • the form of the base material 1 is not particularly limited, and examples thereof include films, sheets, cups, trays, tubes, and bottles. Among these, the film is preferable.
  • this film may be a stretched film or an unstretched film.
  • the thickness of the film is not particularly limited, but it is preferably in the range of 1 to 200 ⁇ m, preferably in the range of 5 to 100 ⁇ m, from the viewpoint of the mechanical strength and processability of the obtained gas barrier laminate. More preferred.
  • the treatment method is appropriately selected depending on the type of the base material.
  • the gas barrier laminate according to the present embodiment may further include one or more layers other than the base material 1, the inorganic vapor deposition layer 2, and the coating layer 3.
  • the gas barrier laminate according to the present embodiment may include only the above-mentioned coating layer 3 as the gas barrier coating layer, but in addition to the coating layer 3, another one or more layers may be further added. It may be included.
  • a layer made of an inorganic compound such as aluminum oxide, silicon oxide, and aluminum may be formed on the surface of the base material by a sputtering method, an ion plating method, or the like.
  • the gas barrier laminate according to the present embodiment has an object of increasing the adhesion between layers or allowing the coating liquid for forming a coating layer to be applied to the inorganic vapor deposition layer without being repelled by the base material 1.
  • An anchor coat layer may be further provided between the inorganic vapor deposition layer 2 or between the inorganic vapor deposition layer 2 and the coating layer 3.
  • FIG. 2 is a cross-sectional view schematically showing a gas barrier laminate according to a second embodiment of the present invention.
  • the gas barrier laminate 20 shown in FIG. 2 further includes an anchor coat layer 4 between the base material 1 and the inorganic vapor deposition layer 2 with respect to the gas barrier laminate 10 according to the first embodiment described above.
  • the anchor coat layer 4 can be formed by a conventional method using a known anchor coat liquid.
  • the anchor coating liquid include those containing resins such as polyurethane resin, acrylic resin, melamine resin, polyester resin, phenol resin, amino resin, and fluororesin.
  • the anchor coating liquid may further contain an isocyanate compound for the purpose of improving adhesion and heat resistance.
  • the isocyanate compound may be any compound having one or more isocyanate groups in the molecule, and examples thereof include hexamethylene diisocyanate, xylylene diisocyanate, isophorone diisocyanate, and tolylene diisocyanate.
  • the anchor coating liquid may further contain a liquid medium for dissolving or dispersing the resin or the isocyanate compound.
  • the thickness of the anchor coat layer 4 is not particularly limited.
  • the thickness of the anchor coat layer 4 may be, for example, in the range of 0.01 to 2 ⁇ m, and may be in the range of 0.05 to 1 ⁇ m. If the film thickness is less than 0.01 ⁇ m, it is very thin, so that the performance as an anchor coat layer may not be fully exhibited. On the other hand, it is preferable that the film thickness is 2 ⁇ m or less from the viewpoint of flexibility. When flexibility is reduced, external factors can cause cracks in the anchor coat layer.
  • the gas-barrier laminated body according to the present embodiment further includes another layer laminated via an adhesive on the coating layer 3 or on the surface of the base material 1 or the inorganic vapor-deposited layer 2, if necessary. It may be provided, and may be further provided with another layer formed by extruding and laminating the adhesive resin.
  • the other layer to be laminated can be appropriately selected according to the purpose of imparting strength, imparting sealing property, imparting easy-opening property at the time of sealing, imparting design property, imparting light blocking property, imparting moisture resistance, and the like, and in particular.
  • the base material may be made of the same material as the above-mentioned plastic.
  • paper, aluminum foil, or the like may be used.
  • the thickness of the other layer to be laminated is preferably in the range of 1 to 1000 ⁇ m, more preferably in the range of 5 to 500 ⁇ m, still more preferably in the range of 5 to 200 ⁇ m, and 5 to 200 ⁇ m. It is particularly preferable that it is within the range of 150 ⁇ m.
  • the other layers to be laminated may be one type or two or more types.
  • the gas barrier laminate according to the present embodiment may further include a printing layer, if necessary.
  • the printed layer may be formed on the coat layer provided on the substrate, or may be formed on the surface of the substrate on which the coat layer is not provided. Further, when another layer is laminated, it may be formed on the other layer to be laminated.
  • the gas barrier laminate according to the present embodiment can be produced by a production method including a step of forming an inorganic vapor-filmed layer and a step of forming a coating layer using the coating liquid for forming a coating layer shown below.
  • This manufacturing method can further include, if necessary, a step of forming another layer such as an anchor coat layer and / or a step of forming a printed layer.
  • the method for producing the gas barrier laminate 20 shown in FIG. 2 will be described below. It was
  • the anchor coat layer 4 is formed on the base material 1.
  • the anchor coat layer 4 can be formed by applying the above-mentioned anchor coat liquid onto the base material 1 and drying the formed coating film.
  • the method of applying the anchor coating liquid is not particularly limited, and a well-known printing method such as an offset printing method, a gravure printing method, or a silk screen printing method, or a well-known coating method such as a roll coat, a knife edge coat, or a gravure coat is used. Can be carried out. By drying the formed coating film, removal and curing of the solvent proceed, and the anchor coat layer 4 is formed.
  • the inorganic thin-film deposition layer 2 is formed on the anchor coat layer 4.
  • various methods such as a vacuum vapor deposition method, a sputtering method, an ion plating method, and a chemical vapor deposition (CVD) method are known, and any method is used. Although it may be used, it is generally formed by a vacuum vapor deposition method. Examples of the heating means of the vacuum vapor deposition apparatus by the vacuum vapor deposition method include an electron beam heating method, a resistance heating method, an induction heating method, and the like, and any of them may be used.
  • reaction vapor deposition may be performed by blowing oxygen gas or the like during the vapor deposition.
  • the coating layer 3 is formed on the inorganic vapor deposition layer 2.
  • the coating layer 3 can be formed by applying a coating liquid for forming a coating layer prepared by the method described below on the inorganic vapor deposition layer 2 and drying the formed coating film.
  • an organic solvent e
  • this coating liquid contains a carboxy group-containing polymer (a), a polyvalent metal-containing particle (b), a surfactant (c), a silicon-containing compound (d), and an organic solvent, and the polyvalent metal-containing particles.
  • (B) is a dispersion liquid in which (b) is dispersed.
  • the organic solvent (e) is used in an amount sufficient to uniformly dissolve the carboxy group-containing polymer (a) and uniformly disperse the polyvalent metal-containing particles. Therefore, as the organic solvent, a solvent that dissolves the carboxy group-containing polymer but does not substantially dissolve the polyvalent metal compound and can disperse it in the form of particles is used.
  • organic solvent (e) a polar organic solvent that dissolves the carboxy group-containing polymer (a) is generally used, but a polar group (an atomic group having a hetero atom or a hetero atom) is used together with the polar organic solvent.
  • a polar group an atomic group having a hetero atom or a hetero atom
  • An organic solvent having no polarity may be used in combination.
  • organic solvent (e) examples include alcohols such as methanol, ethanol, isopropanol, n-propanol, and n-butanol; dimethyl sulfoxide, N, N-dimethylacetamide, N, N-dimethylformamide, N.
  • examples include polar organic solvents such as -methyl-2-pyrrolidone, tetramethylurea, hexamethylphosphoric acid triamide, and ⁇ -butyrolactone.
  • organic solvent (e) in addition to the above-mentioned polar organic solvent, hydrocarbons such as benzene, toluene, xylene, hexane, heptane, and octane; ketones such as acetone and methyl ethyl ketone; halogenated hydrocarbons such as dichloromethane. Esters such as methyl acetate; and ethers such as diethyl ether can be appropriately used. Hydrocarbons such as benzene, which do not have a polar group, are generally used in combination with a polar organic solvent.
  • the above coating liquid may contain only the organic solvent (e) as the solvent or the dispersion medium, but may further contain water.
  • water By containing water, the solubility of the carboxy group-containing polymer (a) can be improved, and the coatability and workability of the coating liquid can be improved.
  • the water content of this coating liquid may be 100 ppm or more, 1,000 ppm or more, 1,500 ppm or more, or 2,000 ppm or more in terms of mass fraction. ..
  • the water content of this coating liquid is preferably 50,000 ppm or less, more preferably 10,000 ppm or less, and further preferably 5,000 ppm or less in terms of mass fraction.
  • the carboxy group-containing polymer (a) is uniformly dissolved in the organic solvent (e), and then the silicon-containing compound (d) is added thereto to carboxy.
  • the silicon-containing compound (d) is added thereto to carboxy.
  • the polyvalent metal-containing particles (b), the surfactant (c), and the organic solvent (e) are mixed, and if necessary, a dispersion treatment is performed to prepare a dispersion liquid.
  • the dispersion treatment is performed so that the average particle diameter of the polyvalent metal-containing particles (b) becomes a predetermined value.
  • the dispersion treatment may not be performed, but it is preferable to perform the dispersion treatment even in that case.
  • the aggregation of the multivalent metal-containing particles (b) is dissolved, the coating liquid is stabilized, and the transparency of the gas barrier laminate obtained by applying the coating liquid is enhanced. Furthermore, when the coating liquid is applied and the coating film is dried, crosslink formation between the carboxy group-containing polymer (a) and the polyvalent metal ions derived from the polyvalent metal-containing particles (b) is likely to proceed. Therefore, it is easy to obtain a gas barrier laminate having good gas barrier properties.
  • Examples of the dispersion treatment method include a method using a high-speed stirrer, a homogenizer, a ball mill, or a bead mill.
  • a ball mill or a bead mill when dispersion is performed using a ball mill or a bead mill, dispersion can be performed with high efficiency, and therefore a coating liquid having a stable dispersion state can be obtained in a relatively short time.
  • the diameter of the ball or bead is preferably small, preferably 0.1 to 1 mm.
  • a coating liquid can be prepared by mixing the carboxy group-containing polymer solution prepared as described above with the dispersion liquid of the polyvalent metal-containing particles (b).
  • the silicon-containing compound (d) was added to the carboxyl group-containing polymer solution in advance, but the silicon-containing compound (d) was not added to the obtained solution for the carboxyl group-containing polymer, for example, carboxy.
  • the silicon-containing compound (d) may be mixed when the group-containing polymer solution and the dispersion liquid of the polyvalent metal-containing particles (b) are mixed.
  • the coating liquid has a total concentration of components other than the organic solvent (e) of preferably 0.1 to 60% by mass, more preferably 0.5 to 25% by mass, and particularly preferably 1 to 20% by mass. It is preferable that it is within the range in order to obtain a coating film and a coating layer having a desired film thickness with high workability.
  • the above coating liquid may contain other polymers, thickeners, stabilizers, UV absorbers, antiblocking agents, softeners, inorganic layered compounds (eg, montmorillonite), and colorants (dye, as required).
  • Various additives such as (pigment) can be contained.
  • the method for applying the coating liquid is not particularly limited, but for example, a reverse roll coater such as an air knife coater, a direct gravure coater, a gravure offset, an arc gravure coater, a top feed reverse coater, a bottom feed reverse coater, and a nozzle feed reverse coater.
  • a reverse roll coater such as an air knife coater, a direct gravure coater, a gravure offset, an arc gravure coater, a top feed reverse coater, a bottom feed reverse coater, and a nozzle feed reverse coater.
  • a method of coating using a five-roll coater, a lip coater, a bar coater, a bar reverse coater, and a die coater can be mentioned.
  • the method for drying the coating film is not particularly limited, but for example, a method by natural drying, a method of drying in an oven set to a predetermined temperature, and a dryer attached to the coater, such as an arch dryer, a floating dryer, and a drum.
  • a method using a dryer, an infrared dryer, or the like can be mentioned.
  • the drying conditions can be appropriately selected depending on the drying method and the like.
  • the drying temperature is preferably in the range of 40 to 150 ° C, more preferably in the range of 45 to 150 ° C, and in the range of 50 to 140 ° C. It is particularly preferable to have.
  • the drying time varies depending on the drying temperature, but is preferably in the range of 0.5 seconds to 10 minutes, more preferably in the range of 1 second to 5 minutes, and in the range of 1 second to 1 minute. It is especially preferable to be inside.
  • the carboxy group-containing polymer (a) contained in the coating film reacts with the polyvalent metal-containing particles (b) during or after drying to introduce an ionic crosslinked structure.
  • the dried film is preferably placed in an atmosphere of relative humidity in the range of preferably 20% or more, more preferably 40 to 100%, preferably 5 to 200 ° C., more preferably. It is preferably aged for about 1 second to 10 days under a temperature condition in the range of 20 to 150 ° C.
  • the gas barrier laminate Since the gas barrier laminate thus obtained is ion-crosslinked, it is excellent in moisture resistance, water resistance, heat resistance and water resistance, and water vapor resistance.
  • the gas barrier laminate is excellent not only in low humidity conditions but also in high humidity conditions.
  • the gas barrier laminate preferably has oxygen permeability measured at a temperature of 30 ° C. and a relative humidity of 70% in accordance with the methods described in JIS K-7126 B method (isopressure method) and ASTM D3985. Is 10 cm 3 / (m 2 , day, MPa) or less.
  • the packaging material according to this embodiment includes the above-mentioned gas barrier laminate. This packaging material is used, for example, in the manufacture of a package for packaging an article.
  • the package according to the present embodiment includes the above-mentioned packaging material.
  • This package may be made of the above-mentioned packaging material, or may include the above-mentioned packaging material and other members.
  • the packaging body is, for example, a bag-shaped molding of the above-mentioned packaging material.
  • the packaging body is, for example, a container including the above-mentioned packaging material as a lid and a bottomed tubular container body.
  • the above-mentioned packaging material may be a molded product.
  • this molded product may be a container such as a bag or a part of a container such as a lid.
  • Specific examples of the package or a part thereof include bag-making products, pouches with spouts, laminated tubes, infusion bags, container lids, and paper containers.
  • This package can be used for packaging various articles.
  • the packaged article according to the present embodiment includes the above-mentioned packaged body and the contents contained therein.
  • the packaging materials and packaging bodies containing this gas barrier laminate are used as packaging materials and packaging bodies for articles that are easily deteriorated by the influence of oxygen, steam, etc., respectively, and particularly food packaging materials and food packaging. It is preferably used as a body.
  • These packaging materials and packaging bodies can also be preferably used as packaging materials and packaging bodies for packaging chemicals such as pesticides and pharmaceuticals, medical devices, mechanical parts, and industrial materials such as precision materials, respectively.
  • the gas barrier laminated body does not deteriorate in gas barrier property and interlayer adhesion when heat sterilization treatment such as boiling treatment and retort treatment is performed, and on the contrary, it tends to increase. Therefore, these packaging materials and packaging bodies may be heat sterilization packaging materials and heat sterilization packaging bodies, respectively.
  • the heat sterilization packaging material and the heat sterilization package are used for packaging articles that are heat sterilized after packaging.
  • articles that are heat sterilized after packaging include foods such as curry, stew, soup, sauce, and processed livestock meat.
  • the heat sterilization treatment examples include boiling treatment and retort treatment.
  • the boil treatment is a treatment of moist heat sterilization for preserving foods and the like.
  • the packaged article obtained by packaging the contents such as food in the above-mentioned package is placed under atmospheric pressure at a temperature of 60 to 100 ° C. for 10 to 120 minutes. It is sterilized by moist heat.
  • the boiling treatment is usually performed using a hot water tank.
  • the boil treatment includes a batch type in which the packaged article is immersed in a hot water tank at a constant temperature and taken out after a certain period of time, and a continuous type in which the packaged article is passed through a tunnel type in the hot water tank to be sterilized.
  • the retort treatment is generally a process of pressurizing and sterilizing microorganisms such as mold, yeast, and bacteria in order to store foods and the like.
  • a packaged article obtained by packaging food in the above-mentioned package is pressurized at a temperature of 105 to 140 ° C. for 10 to 120 minutes under a pressure of 0.15 to 0.3 MPa. Sterilize and heat treat.
  • the retort device includes a steam type that uses heated steam and a hot water type that uses pressurized superheated water, and these are appropriately used according to the sterilization conditions of the food or the like as the content.
  • ⁇ Preparation of anchor coat liquid> In a diluting solvent (ethyl acetate), 5 parts by mass of an acrylic polyol was mixed with 1 part by mass of ⁇ -isocyanatepropyltrimethoxysilane and stirred. Then, toluene diisocyanate (TDI) was added as an isocyanate compound so that the amount of NCO groups was equal to that of the OH groups of the acrylic polyol. An anchor coat solution was obtained by diluting the obtained mixed solution to a concentration of 2% by mass with the above-mentioned diluting solvent. As the acrylic polyol, GS-5756 manufactured by Mitsubishi Rayon Co., Ltd. was used.
  • TDI toluene diisocyanate
  • Coating liquid 1 The carboxy group-containing polymer was dissolved in 2-propanol by heating.
  • polyacrylic acid (PAA) Julimer (registered trademark) AC-10LP manufactured by Toagosei Corporation, number average molecular weight 50,000
  • PAA polyacrylic acid
  • a polyacrylic acid solution containing polyacrylic acid at a concentration of 10% by mass was prepared.
  • the molar ratio of the number of moles ( dt ) of the silicon-containing compound ( d ) to the number of moles (at) of the carboxy group contained in the carboxy group-containing polymer (a) (( dt ) / ( At)) was 0.78 %.
  • the coating liquid 2 was prepared by the same method as described above for the coating liquid 1 except that the addition amount of the silicon-containing compound was changed to 0.164 g.
  • the molar ratio of the number of moles ( dt ) of the silicon-containing compound ( d ) to the number of moles (at) of the carboxy group contained in the carboxy group-containing polymer (a) (( dt ) / ( At)) was 1.60 %.
  • the coating liquid 3 was prepared by the same method as described above for the coating liquid 1 except that the addition amount of the silicon-containing compound was changed to 0.499 g.
  • the molar ratio of the number of moles ( dt ) of the silicon-containing compound ( d ) to the number of moles (at) of the carboxy group contained in the carboxy group-containing polymer (a) (( dt ) / ( At)) was 4.87 %.
  • the coating liquid 4 was prepared by the same method as described above for the coating liquid 1 except that the addition amount of the silicon-containing compound was changed to 0.655 g.
  • this coating liquid 2 the molar ratio of the number of moles ( dt ) of the silicon-containing compound ( d ) to the number of moles (at) of the carboxy group contained in the carboxy group-containing polymer (a) (( dt ) / ( At)) was 6.40 %.
  • the coating liquid 5 was prepared by the same method as described above for the coating liquid 1 except that the silicon-containing compound was not added. In this coating liquid 5, the molar ratio of the number of moles ( dt ) of the silicon-containing compound ( d ) to the number of moles (at) of the carboxy group contained in the carboxy group-containing polymer (a) (( dt ) / ( a t )) was 0%.
  • Anchor coating liquid 1 is applied to one surface of a biaxially stretched polypropylene film (manufactured by Mitsui Chemicals Tocello Co., Ltd., trade name: ME-1, thickness 20 ⁇ m) so that the thickness after drying becomes 0.2 ⁇ m.
  • An anchor coat layer was formed by coating with a coater and drying at 150 ° C. for 1 minute.
  • Silicon was evaporated on this anchor coat layer by a vacuum vapor deposition apparatus using an electron beam heating method, oxygen gas was introduced therein, and silicon oxide was vapor-deposited to form an inorganic thin-film deposition layer having a thickness of 20 nm.
  • the coating liquid 1 was applied onto the inorganic thin-film deposition layer using a bar coater (wire bar). This coating film was dried in an oven at 50 ° C. for 1 minute to form a coating film having a film thickness of 500 nm.
  • the laminated body 1 was obtained as described above. The film thickness of the coating layer was measured by the method described later.
  • Example 2 The laminate 2 was obtained by the same method as described above for the laminate 1 of Example 1 except that the coating amount of the coating liquid 1 was changed to change the film thickness of the coating layer.
  • Example 3 The same method as described above for the laminate 1 of Example 1 except that the silicon oxide of the inorganic thin-film deposition layer was changed to aluminum oxide and the coating amount of the coating liquid 1 was changed to change the film thickness of the coating layer. 3 was obtained.
  • Example 4 The laminate 1 of Example 1 was laminated by the same method as described above, except that the coating liquid 1 was changed to the coating liquid 2 and the coating amount of the coating liquid was changed to change the film thickness of the coating layer. I got body 4.
  • Example 5 The laminate 1 of Example 1 was laminated by the same method as described above, except that the coating liquid 1 was changed to the coating liquid 3 and the coating amount of the coating liquid was changed to change the film thickness of the coating layer. I got body 5.
  • the laminated body 3C was formed by the same method as described above for the laminated body 4 of Example 4, except that the inorganic vapor deposition layer was not formed and the film thickness of the coating layer was changed by changing the coating amount of the coating liquid 2.
  • the laminated body 4C was obtained by the same method as described above for the laminated body 5 of Example 5 except that the inorganic vapor-filmed layer was not formed.
  • the laminate 5C was obtained by the same method as described above for the laminate 1 of Example 1 except that the inorganic vapor deposition layer was not formed and the coating liquid 1 was changed to the coating liquid 4.
  • the laminated body 6C was obtained by the same method as described above for the laminated body 1 of Example 1 except that the coating liquid 1 was changed to the coating liquid 4.
  • the laminate 7C was obtained by the same method as described above for the laminate 1 of Example 1 except that the inorganic vapor deposition layer was not formed and the coating liquid 1 was changed to the coating liquid 5.
  • the obtained laminate was embedded with an embedding resin, the cross section was exposed with a microtome, and the cross section of the laminate was observed using a scanning electron microscope (SEM). From the obtained SEM image, the thickness of the coating layer on the flat surface was measured at 10 points and an average value was taken, which was taken as the thickness of the coating layer.
  • SEM scanning electron microscope
  • the laminated bodies 1 to 5 (Examples 1 to 5) according to the present embodiment were excellent in both transparency and gas barrier property in a high temperature and high humidity environment.
  • the present invention is not limited to the above embodiment, and can be variously modified at the implementation stage without departing from the gist thereof.
  • each embodiment may be carried out in combination as appropriate, in which case the combined effect can be obtained.
  • the above-described embodiment includes various inventions, and various inventions can be extracted by a combination selected from a plurality of disclosed constituent requirements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, if the problem can be solved and the effect is obtained, the configuration in which the constituent elements are deleted can be extracted as an invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)

Abstract

本発明の実施形態により、基材と、無機酸化物を含む無機蒸着層と、被覆層とをこの順序で備えたガスバリア性積層体が提供される。上記被覆層はカルボキシ基含有重合体(a)、多価金属含有粒子(b)、界面活性剤(c)、及びケイ素含有化合物(d)を含有し、ケイ素含有化合物(d)が特定構造を有するシランカップリング剤、これらの加水分解物、およびこれらの縮合物からなる群から選択される少なくとも1種であり、[ケイ素含有化合物(d)のモル数(dt)/カルボキシ基含有重合体(a)中のカルボキシ基のモル数(at)]で表されるモル比(dt/at)が0.15%以上6.10%以下であり、上記被覆層の膜厚が230nm以上600nm以下である。但し、上記モル比(d)/(a)における(d)は、ケイ素含有化合物(d)をシランカップリング剤に換算した質量である。

Description

ガスバリア性積層体、包装材料、包装体及び包装物品
 本発明は、ガスバリア性積層体、包装材料、包装体及び包装物品に関する。
 食品、医薬品、化粧品、農薬、及び工業製品等の物品は、長期間保存すると、酸素によって品質が劣化することがある。そのため、これらの物品の包装材料として、酸素ガスバリア性のあるフィルムやシートが使用されている。
 そのような包装材料としては、従来、ガスバリア性被覆層としてアルミニウム箔を備えるものが多用されてきた。しかしながら、アルミニウム箔を含む包装材料を用いると、内容物が視認できず、その上、金属探知機が使用できない。そのため、特に食品分野や医薬品分野では、優れたガスバリア性を有し且つ透明な包装材料の開発が求められてきた。
 このような要求のもと、基材の上に、ポリ塩化ビニリデン(Polyvinylidene chloride;PVDC)を含むコーティング液を塗工することによってPVDCからなる層を設けたガスバリア性積層体が使用されてきた。PVDCからなる層は、透明でガスバリア性がある。
 しかしながら、PVDCは焼却時にダイオキシンの発生が懸念される。そのため、PVDCから非塩素系材料への移行が求められた。このような要求のもと、例えば、PVDCに代わりポリビニルアルコール(Polyvinil alcohol;PVA)系重合体を用いることが提案された。
 PVA系重合体からなる層は、水酸基の水素結合によって高密度化し、低湿度雰囲気下では高いガスバリア性を発揮する。しかし、PVA系重合体からなる層は、高湿度雰囲気下では吸湿によって水素結合が緩み、ガスバリア性が大きく低下するという問題がある。そのため、PVA系重合体からなる層をガスバリア性被覆層として用いたガスバリア性積層体は、水分を多く含む食品等の包装材料には用いることができない場合が多く、用途が乾燥物の包装材料などに限られていた。
 ガスバリア性を更に向上させることを目的として、PVA系重合体に無機層状化合物を添加することが提案された(例えば、特許文献1参照)。しかしながら、無機層状化合物を添加しても、PVA系重合体自体の耐水性が向上した訳ではないため、依然として高湿度雰囲気下でガスバリア性が低下する問題が残る。
 高湿度雰囲気下でのガスバリア性を改善するため、PVA系重合体と、これと架橋構造を形成し得る重合体とを含有するコーティング液を基材に塗布し、熱処理することにより、ガスバリア性積層体を製造することが提案されている(例えば、特許文献2及び3参照)。
 しかしながら、これら技術で充分なガスバリア性を得るためには、コーティング液の塗工後の熱処理を、高温、例えば150℃以上で行って、架橋構造を形成させる必要がある。そのような熱処理は、例えば、基材の材質がポリプロピレン(OPP)やポリエチレン(PE)などのポリオレフィンである場合、基材の激しい劣化を引き起こす。そのため、基材の材質が制限されたり、より穏和な条件で製造し得るガスバリア性積層体が求められる。
 ガスバリア性被覆層を形成する方法として、ポリアクリル酸等のポリカルボン酸系重合体を含む層を形成し、このポリカルボン酸系重合体を多価金属イオンでイオン架橋する方法も提案されている(例えば、特許文献4乃至6参照)。
 この方法では、特許文献2及び3に記載の方法で行う高温の熱処理は不要である。そのため、基材にポリオレフィンを用いることができる。また、得られたガスバリア性被覆層は、高湿度雰囲気下でもガスバリア性に優れている。それ故、このガスバリア性被覆層を含んだガスバリア性積層体は、ボイルやレトルト等の加熱殺菌処理を行う用途にも使用することができる。
 しかしながら、ポリカルボン酸系重合体と多価金属化合物とをコーティング液中に共存させると、コーティング液中でポリカルボン酸系重合体と多価金属化合物とが反応して沈殿が生じ易い。液中に沈殿が生じると、均一な膜が形成できなくなる。そのため、この方法では、ガスバリア性被覆層を形成する際に、ポリカルボン酸系重合体を含む層と多価金属化合物を含む層とを別々に形成するか、又は、ポリカルボン酸系重合体を含む層に多価金属塩の水溶液を接触させる。それ故、この方法を用いる場合、ガスバリア性被覆層を2層構造にするという点で工程数が増える。
 ポリカルボン酸系重合体と多価金属化合物粒子とを同一のガスバリア性被覆層に含有するガスバリア性フィルムが特許文献7に開示されている。ここでは、ガスバリア性被覆層の形成に用いられるコーティング液として、ポリカルボン酸系重合体と多価金属化合物粒子と界面活性剤と有機溶媒とを含んだコーティング液において、含水率を1000ppm以下とすることが提案されている。このコーティング液では、含水率が1000ppm以下であるため、ポリカルボン酸系重合体と多価金属化合物との反応が抑制される。
日本国特開平6-093133号公報 日本国特開2000-289154号公報 日本国特開2000-336195号公報 国際公開第2003/091317号 国際公開第2005/053954号 日本国特開2013-252618号公報 日本国特開2005-126528号公報
 特許文献7には、そこに開示されるコーティング液は、高湿条件下でのガスバリア性にも優れたフィルムを形成することができることが記載されている。しかし、このコーティング液を塗工して形成された積層体は、より厳しい高温高湿度環境下においては、ガスバリア性被覆層と、これと隣接した層、例えば、フィルム基材との間で剥離し、ガスバリア性が低下する虞がある。
 フィルム基材とガスバリア性被覆層との間のラミネート強度を高めるために、ガスバリア性被覆層にシランカップリング剤を添加した場合、透明性が低下する。このように透明性と高温高湿度環境下におけるガスバリア性の双方に優れたガスバリア性積層体を得ることは困難である。
 本発明は、透明性と、高温高湿度環境下にける高度のガスバリア性とを両立したガスバリア性積層体、包装材料、包装体及び包装物品を提供することを目的とする。
 本発明の第1側面によると、基材と、無機酸化物を含む無機蒸着層と、被覆層とをこの順序で備えたガスバリア性積層体であって、上記被覆層がカルボキシ基含有重合体(a)、多価金属含有粒子(b)、界面活性剤(c)、及びケイ素含有化合物(d)を含有し、上記ケイ素含有化合物(d)が下記一般式(1)及び(2)で表されるシランカップリング剤、これらの加水分解物、およびこれらの縮合物からなる群から選択される少なくとも1種であり、上記カルボキシ基含有重合体(a)に含まれるカルボキシ基のモル数(a)に対する上記ケイ素含有化合物(d)のモル数(d)のモル比(d)/(a)が0.15%以上6.10%以下であり、上記被覆層の膜厚が230nm以上600nm以下であるガスバリア性積層体が提供される。但し、上記モル比(d)/(a)における(d)は、ケイ素含有化合物(d)をシランカップリング剤に換算した質量である。 Si(OR …(1)
 Si(R)(OR …(2)
 一般式(1)において、Rは、同一であっても異なっていてもよい、炭素数が1乃至6のアルキル基であり、Zはエポキシ基を含有する基であり、一般式(2)において、Rはメチル基であり、Rは、同一であっても異なっていてもよい、炭素数が1乃至6のアルキル基であり、Zはエポキシ基を含有する基である。
 本発明の実施形態において、上記カルボキシ基含有重合体(a)は、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸及びフマル酸からなる群から選択される少なくとも1種のα,β-モノエチレン性不飽和カルボン酸に由来する構成単位を少なくとも含んでよい。
 また、本発明の実施形態において、上記多価金属含有粒子(b)を構成する多価金属は2価の金属であってよい。
 また、本発明の実施形態において、上記ガスバリア性積層体は、上記基材と上記無機蒸着層との間にアンカーコート層を更に備えていてよい。
 本発明の第2側面によると、上記ガスバリア性積層体を含んだ包装材料が提供される。
 本発明の第3側面によると、上記包装材料を含んだ包装体が提供される。
 本発明の第3側面によると、上記包装体と、上記包装体に収容された内容物とを含んだ包装物品が提供される。
 本発明によれば、透明性と、高温高湿度環境下における高度のガスバリア性とを両立したガスバリア性積層体、包装材料、包装体及び包装物品を提供することが可能となる。
図1は、本発明の第1実施形態に係るガスバリア性積層体を概略的に示す断面図である。 図2は、本発明の第2実施形態に係るガスバリア性積層体を概略的に示す断面図である。
 以下に、本実施形態について、図面を参照しながら説明する。なお、同様又は類似した機能を有する要素については、同一の参照符号を付し、重複する説明は省略する。
 図1は、本発明の第1実施形態に係るガスバリア性積層体を概略的に示す断面図である。図1に示すガスバリア性積層体10は、基材1と、無機酸化物を含む無機蒸着層2と、被覆層3とを具備している。
 被覆層3は、以下に詳述するカルボキシ基含有重合体(a)、多価金属含有粒子(b)、界面活性剤(c)、及びケイ素含有化合物(d)を含有する。多価金属含有粒子(b)由来の多価金属イオンでカルボキシ基含有重合体(a)がイオン架橋されており、高湿度雰囲気下でも優れたガスバリア性を発揮する。そして、被覆層3がケイ素含有化合物(d)を含有することにより、ガスバリア性が更に高まる。一方、ケイ素含有化合物(d)の配合量を、[ケイ素含有化合物(d)のモル数(d)/カルボキシ基含有重合体(a)に含まれるカルボキシ基のモル数(a)]で表されるモル比において0.15%以上6.10%以下を満たす範囲に調整し、且つ、被覆層3の膜厚を230nm以上600nm以下とすることにより、透明性を改善している。更に、ガスバリア性積層体10が無機蒸着層2を被覆層3と基材1との間に備えることにより、ガスバリア性が更に改善され、透明性と高度のガスバリア性の両立を可能としている。
 <被覆層>
 〔カルボキシ基含有重合体(a)〕
 被覆層3に含有されるカルボキシ基含有重合体(a)は、分子内に2個以上のカルボキシ基を有する重合体であり、以下において「ポリカルボン酸系重合体」と呼ぶことがある。カルボキシ基含有重合体(a)は、上述したように、被覆層3において後述する多価金属含有粒子(b)に由来する金属イオンとイオン架橋を形成しており、優れたガスバリア性を発揮する。カルボキシ基含有重合体(a)としては、カルボキシ基含有不飽和単量体の単独重合体、2種以上のカルボキシ基含有不飽和単量体の共重合体、カルボキシ基含有不飽和単量体と他の重合性単量体との共重合体、及び分子内にカルボキシ基を含有する多糖類(「カルボキシ基含有多糖類」又は「酸性多糖類」ともいう)が代表的なものである。
 カルボキシ基には、遊離のカルボキシ基のみならず、酸無水物基(具体的には、ジカルボン酸無水物基)も含まれる。酸無水物基は、部分的に開環してカルボキシ基となっていてもよい。カルボキシ基の一部は、アルカリで中和されていてもよい。この場合、中和度は、20%以下であることが好ましい。
 ここで、「中和度」は、以下の方法によって得られる値である。即ち、カルボキシ基含有重合体(a)に対してアルカリ(f)を添加することでカルボキシ基を部分中和できる。この時、カルボキシ基含有重合体(a)が含んでいるカルボキシ基のモル数(a)に対するアルカリ(f)のモル数(f)の比が中和度である。
 また、ポリオレフィンなどのカルボキシ基を含有していない重合体にカルボキシ基含有不飽和単量体をグラフト重合してなるグラフト重合体も、カルボキシ基含有重合体(a)として使用することができる。アルコキシカルボニル基(例えば、メトキシカルボニル基)のような加水分解性のエステル基を有する重合体を加水分解して、カルボキシ基に変換した重合体を使用することもできる。
 カルボキシ基含有不飽和単量体としては、α,β-モノエチレン性不飽和カルボン酸が好ましい。従って、カルボキシ基含有重合体(a)には、α,β-モノエチレン性不飽和カルボン酸の単独重合体、2種以上のα,β-モノエチレン性不飽和カルボン酸の共重合体、及びα,β-モノエチレン性不飽和カルボン酸と他の重合性単量体との共重合体が含まれる。他の重合性単量体としては、エチレン性不飽和単量体が代表的なものである。
 α,β-モノエチレン性不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、及びクロトン酸などの不飽和モノカルボン酸;マレイン酸、フマル酸、及びイタコン酸などの不飽和ジカルボン酸;無水マレイン酸及び無水イタコン酸などの不飽和ジカルボン酸無水物;並びに、これらの2種以上の混合物が挙げられる。これらの中でも、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、及びイタコン酸からなる群より選ばれる少なくとも1種のα,β-モノエチレン性不飽和カルボン酸が好ましく、アクリル酸、メタクリル酸、及びマレイン酸からなる群より選ばれる少なくとも1種のα,β-モノエチレン性不飽和カルボン酸がより好ましい。
 α,β-モノエチレン性不飽和カルボン酸と共重合可能な他の重合性単量体、特にエチレン性不飽和単量体としては、例えば、エチレン;プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、及び1-オクテンなどのα-オレフィン;酢酸ビニルなどの飽和カルボン酸ビニルエステル類;アクリル酸メチル及びアクリル酸エチルなどのアクリル酸アルキルエステル類;メタクリル酸メチル及びメタクリル酸エチルなどのメタクリル酸アルキルエステル類;塩化ビニル及び塩化ビニリデンなどの塩素含有ビニル単量体;フッ化ビニル及びフッ化ビニリデンなどのフッ素含有ビニル単量体;アクリロニトリル及びメタクリロニトリルなどの不飽和ニトリル類;スチレン及びα-メチルスチレンなどの芳香族ビニル単量体;並びに、イタコン酸アルキルエステル類を挙げることができる。これらのエチレン性不飽和単量体は、それぞれ単独で又は2種以上を組み合わせて使用することができる。また、カルボキシ基含有重合体がα,β-モノエチレン性不飽和カルボン酸と酢酸ビニルなどの飽和カルボン酸ビニルエステル類との共重合体である場合は、この共重合体をケン化して飽和カルボン酸ビニルエステル単位をビニルアルコール単位に変換してなる共重合体も使用することができる。
 カルボキシ基含有多糖類としては、例えば、アルギン酸、カルボキシメチルセルロース、及びペクチンなどの分子内にカルボキシ基を有する酸性多糖類を挙げることができる。これらの酸性多糖類は、それぞれ単独で又は2種以上を組み合わせて使用することができる。また、酸性多糖類を、α,β-モノエチレン性不飽和カルボン酸の(共)重合体と組み合わせて使用することもできる。
 カルボキシ基含有重合体が、α,β-モノエチレン性不飽和カルボン酸とその他のエチレン性不飽和単量体との共重合体である場合には、得られるフィルムのガスバリア性、耐熱水性、及び耐水蒸気性の観点から、その共重合体において、それら単量体の合計モル数に占めるα,β-モノエチレン性不飽和カルボン酸単量体のモル数の割合は、60モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることが特に好ましい。
 カルボキシ基含有重合体(a)は、ガスバリア性、耐湿性、耐水性、耐熱水性、及び耐水蒸気性に優れ、高湿条件下でのガスバリア性にも優れたフィルムが得られやすい点で、α,β-モノエチレン性不飽和カルボン酸のみの重合によって得られる単独重合体又は共重合体であることが好ましい。カルボキシ基含有重合体(a)がα,β-モノエチレン性不飽和カルボン酸のみからなる(共)重合体の場合、その好ましい具体例は、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、及びイタコン酸からなる群から選ばれる少なくとも1種のα,β-モノエチレン性不飽和カルボン酸の重合によって得られる単独重合体、共重合体、及びそれらの2種以上の混合物である。これらの中でも、アクリル酸、メタクリル酸、及びマレイン酸からなる群より選ばれる少なくとも1種のα,β-モノエチレン性不飽和カルボン酸の単独重合体及び共重合体がより好ましい。
 カルボキシ基含有重合体(a)としては、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸、及びこれらの2種以上の混合物が特に好ましい。酸性多糖類としては、アルギン酸が好ましい。これらの中でも、入手が比較的容易で、諸物性に優れたフィルムが得られやすい点で、ポリアクリル酸が特に好ましい。
 カルボキシ基含有重合体(a)の数平均分子量は、特に制限されないが、フィルム形成性及びフィルム物性の観点から、数平均分子量が2,000乃至10,000,000の範囲内にあることが好ましく、5,000乃至1,000,000の範囲内にあることがより好ましく、10,000~500,000の範囲内にあることが更に好ましい。
 ここで、「数平均分子量」は、ゲルパーミエーションクロマトグラフィ(Gel permeation chromatography;GPC)による測定によって得られる値である。GPC測定では、一般に、標準ポリスチレン換算で重合体の数平均分子量を測定する。
 〔多価金属含有粒子(b)〕
 被覆層3に含有される多価金属含有粒子(b)は、金属イオンの価数が2以上の多価金属を1種以上含んだ粒子であることが好ましい。多価金属含有粒子(b)は、金属イオンの価数が2以上の多価金属からなる粒子であってもよく、金属イオンの価数が2以上の多価金属の化合物からなる粒子であってもよく、それらの混合物であってもよい。
 多価金属の具体例としては、ベリリウム、マグネシウム、及びカルシウムなどの短周期型周期表2A族の金属;チタン、ジルコニウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、及び亜鉛などの遷移金属;並びにアルミニウムを挙げることができるが、これらに限定されない。
 多価金属は、2価の金属であることが好ましい。また、多価金属は、化合物を形成していることが好ましい。
 多価金属の化合物の具体例としては、多価金属の酸化物、水酸化物、炭酸塩、有機酸塩、及び無機酸塩が挙げられるが、これらに限定されない。有機酸塩としては、例えば、酢酸塩、シュウ酸塩、クエン酸塩、乳酸塩、リン酸塩、亜リン酸塩、次亜リン酸塩、ステアリン酸塩、モノエチレン性不飽和カルボン酸塩が挙げられるが、これらに限定されない。無機酸塩としては、例えば、塩化物、硫酸塩、硝酸塩を挙げることができるが、これらに限定されない。多価金属のアルキルアルコキシドも多価金属化合物として使用することができる。これらの多価金属化合物は、それぞれ単独で又は2種以上を組み合わせて使用することができる。
 多価金属化合物の中でも、ガスバリア性積層体10のガスバリア性の観点から、ベリリウム、マグネシウム、カルシウム、銅、コバルト、ニッケル、亜鉛、アルミニウム、及びジルコニウムの化合物が好ましく、ベリリウム、マグネシウム、カルシウム、銅、亜鉛、コバルト、及びニッケルなどの2価金属の化合物がより好ましい。
 好ましい2価金属化合物としては、例えば、酸化亜鉛、酸化マグネシウム、酸化銅、酸化ニッケル、及び酸化コバルトなどの酸化物;炭酸カルシウムなどの炭酸塩;乳酸カルシウム、乳酸亜鉛、及びアクリル酸カルシウムなどの有機酸塩;並びにマグネシウムメトキシドなどのアルコキシドを挙げることができるが、これらに限定されない。
 多価金属又は多価金属化合物は、粒子として用いられる。多価金属粒子(b)としては、被覆層3の形成に用いられる後述するコーティング液(以下において、「被覆層形成用コーティング液」又は単に「コーティング液」という。)の分散安定性、及び、ガスバリア性積層体10のガスバリア性の観点から、コーティング液中の平均粒子径として、10nm乃至10μm(又は10,000nm)の範囲内にあるものが好適に用いられる。多価金属粒子(b)は、コーティング液中の平均粒子径として、12nm乃至1μm(又は1,000nm)の範囲内にあることがより好ましく、15nm乃至500nmの範囲内にあることが更に好ましく、15nm乃至50nmの範囲内にあることが特に好ましい。
 多価金属含有粒子(b)の平均粒子径が大きすぎると、被覆層3の膜厚の均一性、表面の平坦性、カルボキシ基含有重合体(a)とのイオン架橋反応性などが不十分となり易い。多価金属含有粒子(b)の平均粒子径が小さすぎると、カルボキシ基含有重合体(a)とのイオン架橋反応が早期に進行するおそれがある。また、多価金属含有粒子(b)の平均粒子径が小さすぎると、コーティング液中に均一分散させることが困難となる場合がある。
 多価金属含有粒子(b)の平均粒子径は、試料が乾燥した固体である場合には、走査型電子顕微鏡又は透過型電子顕微鏡を用いて計測と計数とを行うことにより測定することができる。コーティング液中の多価金属含有粒子(b)の平均粒子径は、光散乱法により測定することができる〔参考文献:「微粒子工学体系」第I巻、第362~365頁、フジテクノシステム(2001)〕。
 コーティング液中における多価金属含有粒子は、一次粒子、二次粒子、又はこれらの混合物として存在するが、多くの場合、平均粒子径からみて二次粒子として存在するものと推定される。
 〔界面活性剤(c)〕
 被覆層3は、多価金属含有粒子(b)の分散性を高めるため、界面活性剤(c)を含有する。界面活性剤とは、分子内に親水性基と親油性基の両方を持つ化合物である。界面活性剤には、アニオン性、カチオン性、及び両性のイオン性界面活性剤並びに非イオン性界面活性剤がある。被覆層3では、何れの界面活性剤を使用してもよい。
 アニオン系界面活性剤には、例えば、カルボン酸型、スルホン酸型、硫酸エステル型、及びリン酸エステル型がある。カルボン酸型のアニオン系界面活性剤としては、例えば、脂肪族モノカルボン酸塩、ポリオキシエチレンアルキルエーテルカルボン酸塩、N-アシルサルコシン酸塩、及びN-アシルグルタミン酸塩がある。スルホン酸型のアニオン系界面活性剤としては、例えば、ジアルキルスルホコハク酸塩、アルカンスルホン酸塩、アルファオレフィンスルホン酸塩、直鎖アルキルベンゼンスルホン酸塩、アルキル(分岐鎖)ベンゼンスルホン酸塩、ナフタレンスルホン酸塩-ホルムアルデヒド縮合物、アルキルナフタレンスルホン酸塩、及びN-メチル-N-アシルタウリン酸塩が挙げられる。硫酸エステル型のアニオン系界面活性剤としては、例えば、アルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩及び油脂硫酸エステル塩が挙げられる。リン酸エステル型のアニオン系界面活性剤としては、例えば、アルキルリン酸塩型、ポリオキシエチレンアルキルエーテルリン酸塩、及びポリオキシエチレンアルキルフェニルエーテルリン酸塩が挙げられる。
 カチオン系界面活性剤(c)としては、例えば、アルキルアミン塩型及び第4級アンモニウム塩型がある。アルキルアミン塩型のカチオン系界面活性剤としては、例えば、モノアルキルアミン塩、ジアルキルアミン塩、及びトリアルキルアミン塩が挙げられる。第四級アンモニウム塩型のカチオン系界面活性剤としては、例えば、ハロゲン化(塩化、臭化又はヨウ化)アルキルトリメチルアンモニウム塩及び塩化アルキルベンザルコニウムが挙げられる。
 両性界面活性剤としては、例えば、カルボキシベタイン型、2-アルキルイミダゾリンの誘導体型、グリシン型、及びアミンオキシド型がある。カルボキシベタイン型の両性界面活性剤としては、例えば、アルキルベタイン及び脂肪酸アミドプロピルベタインが挙げられる。2-アルキルイミダゾリンの誘導体型の両性界面活性剤としては、例えば、2-アルキル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタインが挙げられる。グリシン型の両性界面活性剤としては、例えば、アルキル又はジアルキルジエチレントリアミノ酢酸が挙げられる。アミノオキシド型の両性界面活性剤としては、例えば、アルキルアミンオキシドが挙げられる。
 非イオン性の界面活性剤としては、例えば、エステル型、エーテル型、エステルエーテル型、及びアルカノールアミド型がある。エステル型の非イオン性界面活性剤としては、例えば、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、及びしょ糖脂肪酸エステルが挙げられる。エーテル型の非イオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、及びポリオキシエチレンポリオキシプロピレングリコールが挙げられる。エステルエーテル型の非イオン性界面活性剤としては、例えば、脂肪酸ポリエチレングリコール及び脂肪酸ポリオキシエチレンソルビタンが挙げられる。アルカノールアミド型の非イオン性界面活性剤としては、例えば、脂肪酸アルカノールアミドが挙げられる。
 スチレン-アクリル酸共重合体などのポリマー骨格を有する界面活性剤も使用することができる。
 これらの界面活性剤の中でも、リン酸エステルなどのアニオン系界面活性剤、及びスチレン-アクリル酸共重合体などのポリマー骨格を有する界面活性剤などが好ましい。
 〔ケイ素含有化合物(d)〕
 被覆層3は、剥離強度を高めるため、ケイ素含有化合物(d)を含有する。ケイ素含有化合物(d)は、下記一般式(1)で表されるシランカップリング剤、下記一般式(2)で表されるシランカップリング剤、これらの加水分解物、及びこれらの縮合物からなる群から選択される少なくとも1種の化合物である。 
 Si(OR …(1)
 Si(R)(OR …(2)
 一般式(1)において、Rは、同一であっても異なっていてもよい、炭素数が1乃至6のアルキル基であり、Zはエポキシ基を含有する基である。そして、一般式(2)において、Rはメチル基であり、Rは、同一であっても異なっていてもよい、炭素数が1乃至6のアルキル基であり、Zはエポキシ基を含有する基である。
 シランカップリング剤は、加水分解を容易に生じ、また、酸又はアルカリ存在下では縮合反応を容易に生じる。そのため、被覆層3において、ケイ素含有化合物(d)は、一般式(1)又は(2)で表されるシランカップリング剤の形態でのみ、その加水分解物の形態でのみ、又はその縮合物の形態でのみで存在することは稀である。即ち、被覆層3において、ケイ素含有化合物(d)は、通常、一般式(1)で表されるシランカップリング剤及び一般式(2)で表されるシランカップリング剤の少なくとも一方と、その加水分解物と、その縮合物との混合物として混在している。
 一般式(1)及び(2)中のR及びRの各々は、炭素原子数が1乃至6のアルキル基であればよく、メチル基又はエチル基であることが好ましい。Z及びZの各々は、エポキシ基を含有する基であればよく、例えば、グリシジルオキシ基を有する有機基であってよい。
 一般式(1)又は(2)で表されるシランカップリング剤の具体例としては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、及び3-グリシドキシプロピルトリエトキシシランが挙げられ、3-グリシドキシプロピルメチルジメトキシシラン及び3-グリシドキシプロピルトリメトキシシランが好ましい。シランカップリング剤としては、一種を用いても、二種以上を用いてもよい。
 一般式(1)又は(2)で表されるシランカップリング剤の加水分解物は、部分加水分解物であってもよく、完全加水分解物であってもよく、それらの混合物であってもよい。
 被覆層3がケイ素含有化合物(d)の少なくとも一部として含み得る縮合物は、一般式(1)で表されるシランカップリング剤の加水分解縮合物、一般式(2)で表されるシランカップリング剤の加水分解縮合物、及び、一般式(1)で表されるシランカップリング剤の加水分解物と一般式(2)で表されるシランカップリング剤の加水分解物との縮合物の2以上である。これら加水分解縮合物は、以下の反応によって生じる。即ち、先ず、シランカップリング剤を加水分解させる。これにより、シランカップリング剤は、その分子が含んでいるアルコキシ基の1以上が水酸基によって置換されて、加水分解物となる。続いて、これら加水分解物を縮合させることによって、ケイ素原子(Si)が酸素を介して結合した化合物が形成される。この縮合が繰り返されることにより、加水分解縮合物が得られる。
 〔組成〕
 被覆層3は、カルボキシ基含有重合体(a)と多価金属含有粒子(b)を、以下の配合比で含有することが好ましい。すなわち、カルボキシ基含有重合体(a)が含んでいるカルボキシ基のモル数(a)に対する、多価金属含有粒子(b)が含んでいる多価金属のモル数と価数との積(b)の比((b)/(a))(以下、当量比ともいう)は、0.6以上であることが好ましい。この比は、より好ましくは0.8以上、特に好ましくは1.0以上である。この比の上限は、通常は10.0、好ましくは2.0である。この比を小さくしすぎると、ガスバリア性積層体10のガスバリア性、耐熱水性、及び耐水蒸気性などの諸特性が低下する傾向がみられる。
 上記の当量比は、例えば、以下のようにして求めることができる。カルボキシ基含有重合体(a)がポリアクリル酸であり、多価金属化合物粒子(b)が酸化マグネシウムである場合を例に挙げて説明する。
 ポリアクリル酸は、単量体単位の分子量が72であり、単量体1分子当たり1個のカルボキシ基を有する。それ故、ポリアクリル酸100g中のカルボキシ基の量は、1.39モルである。ポリアクリル酸100gを含んだコーティング液における上記の当量比が1.0であるということは、この被覆層3には、1.39モルのカルボキシ基を中和する量の酸化マグネシウムが含まれていることを意味する。従って、ポリアクリル酸100gを含んだ被覆層3における上記の当量比を0.6とするには、この被覆層3に、0.834モルのカルボキシ基を中和する量の酸化マグネシウムを配合すればよい。ここで、マグネシウムの価数は2価であり、酸化マグネシウムの分子量は40である。従って、ポリアクリル酸100gを含んだ被覆層3における上記の当量比を0.6とするには、この被覆層3に、16.68g(0.417モル)の酸化マグネシウムを配合すればよい。
 界面活性剤(c)は、コーティング液中に多価金属含有粒子が安定して分散するに足る量で用いられる。したがって、その配合量を、被覆層形成用コーティング液中の濃度として説明すると、コーティング液中、通常は0.0001乃至70質量%、好ましくは0.001乃至60質量%、より好ましくは0.1乃至50質量%の範囲内とする。
 界面活性剤(c)を添加しないと、コーティング液中で多価金属含有粒子(b)をそれらの平均粒子径が十分に小さくなるように分散させることが困難になる。その結果、多価金属含有粒子(b)が均一に分散したコーティング液を得ることが難しくなる。その場合、無機蒸着層2上にコーティング液を塗布、乾燥して得られる被覆層3において、均一な膜厚を有する被覆層3を得ることが難しくなる。
 被覆層3は、ガスバリア性積層体10における高度のガスバリア性と透明性を両立させる観点から、ケイ素含有化合物(d)を、カルボキシ基含有重合体(a)に含まれるカルボキシ基のモル数(a)に対するケイ素含有化合物(d)のモル数(d)のモル比(d)/(a)が0.15%以上6.10%以下となる量において含有する。ここで、モル比(d)/(a)における(d)は、ケイ素含有化合物(d)をシランカップリング剤に換算したモル数である。
 ケイ素含有化合物(d)の添加量が少なすぎ、上記モル比(d)/(a)が0.15%より低くなると、ガスバリア性積層体10の剥離強度が低くなる。そのため、層間剥離を防止するための慎重な取り扱いが必要となり、生産性の低下にもつながる。
 カルボキシ基含有重合体(a)に含まれるカルボキシ基のモル数(a)に対するケイ素含有化合物(d)のモル数(d)のモル比(d)/(a)は、上記観点から、0.3%以上であることが好ましく、0.46%以上であることがより好ましく、0.61%以上であることが特に好ましい。
 一方、ケイ素含有化合物(d)の添加量が多すぎ、上記モル比(d)/(a)が6.10%より高くなると、ガスバリア性積層体10における透明性が低下する。また、ケイ素含有化合物(d)はガスバリア性を持たない。そのため、上記モル比(d)/(a)が6.10%より高くなると、積層体の透明性が低下するだけでなく、ガスバリア性も低下する。
 カルボキシ基含有重合体(a)に含まれるカルボキシ基のモル数(a)に対するケイ素含有化合物(d)のモル数(d)のモル比(d)/(a)は、上記観点から、4.57%以下であることが好ましく、3.66%以下であることがより好ましく、2.13%以下であることが特に好ましい。
 被覆層3の膜厚は、透明性とガスバリア性の両立の観点から、230nm以上600nm以下である。ここで被覆層3の膜厚は、具体的には、後述する被覆層の膜厚の測定方法により測定される膜厚である。被覆層3の膜厚は、250nm以上500nm以下であることが好ましく、300nm以上450nm以下であることがより好ましい。
 <無機蒸着層>
 本実施形態に係るガスバリア性積層体10は、基材1と被覆層3との間に無機蒸着層2を備える。これにより、被覆層3を備えるガスバリア性積層体10におけるガスバリア性を更に高めることができ、透明性と高度のガスバリア性の両立が可能となる。
 無機蒸着層2は、無機酸化物を含む。無機酸化物としては、例えば酸化アルミニウム、酸化ケイ素、酸化マグネシウム、酸化錫等が挙げられる。これらの中でも、透明性とガスバリア性の両立の観点から、酸化アルミニウム、酸化ケイ素、酸化マグネシウム又はそれらのいずれか2種以上の混合物が好ましい。
 無機蒸着層2の厚さは、例えば、5~100nmの範囲であってよく、10~50nmの範囲であってよい。無機蒸着層2の厚さが5nm以上であることは、均一な薄膜形成の観点から好ましい。ガスバリア材としての薄膜が均一であると、ガスバリア材に求められる機能を充分に果たすことができる。無機蒸着層2の厚さが100nm以下であることは、薄膜のフレキシビリティの観点から好ましい。ガスバリア材においてフレキシビリティが悪いと、折り曲げ、引っ張りなどの外的要因により亀裂を生じる恐れがある。
 <基材>
 本実施形態に係るガスバリア性積層体10が備える基材1に特に制限はなく、様々な種類のものが使用できる。基材1を構成する材質は、特に限定されず、様々な種類のものが使用でき、例えばプラスチック又は紙が挙げられる。
 基材1は、単一の材料からなる単層であってもよく、複数の材料からなる多層であってもよい。多層の基材の例としては、プラスチックから構成されるフィルムが紙にラミネートされたものが挙げられる。
 基材1を構成する材質としては、上記の中でも、様々な形状に成形でき、ガスバリア性を付与することで更に用途が広がることから、プラスチックが好ましい。
 プラスチックとしては、特に限定されないが、例えば、ポリエチレン及びポリプロピレン等のポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンテレフタレート、及びこれらの共重合体等のポリエステル系樹脂;ナイロン-6、ナイロン-66、ナイロン-12、メタキシリレンアジパミド、及びこれらの共重合体等のポリアミド系樹脂;ポリスチレン、スチレン-ブタジエン共重合体、及びスチレン-ブタジエン-アクリロニトリル共重合体等のスチレン系樹脂;ポリ(メタ)アクリル酸エステル;ポリアクリロニトリル;ポリ酢酸ビニル;エチレン-酢酸ビニル共重合体;エチレン-ビニルアルコール共重合体;ポリカーボネート;ポリアリレート;再生セルロース;ポリイミド;ポリエーテルイミド;ポリスルフォン;ポリエーテルスルフォン;ポリエーテルケトン;並びにアイオノマー樹脂が挙げられる。
 ガスバリア性積層体が食品用包装材料に用いられる場合、基材1としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ナイロン-6又はナイロン-66からなるものが好ましい。
 基材1を構成するプラスチックとして、1種を単独で使用してもよく、2種以上をブレンドして使用してもよい。
 プラスチックには、添加剤が配合されていてもよい。添加剤としては、用途に応じて、顔料、酸化防止剤、帯電防止剤、紫外線吸収剤、及び滑剤等の公知の添加剤から適宜選択できる。添加剤としては、1種を単独で用いてもよく、2種以上を併用してもよい。
 基材1の形態は、特に限定されず、例えば、フィルム、シート、カップ、トレー、チューブ、及びボトルが挙げられる。これらの中でも、フィルムが好ましい。
 基材1がフィルムである場合、このフィルムは、延伸フィルムであってもよいし、未延伸フィルムであってもよい。
 フィルムの厚さに特に制限はないが、得られるガスバリア性積層体の機械的強度や加工適性の観点で、1乃至200μmの範囲内にあることが好ましく、5乃至100μmの範囲内にあることがより好ましい。
 基材1の表面には、コーティング液を、基材によって弾かれることなく塗布できるようにするために、プラズマ処理、コロナ処理、オゾン処理、火炎処理、又は紫外線(UV)若しくは電子線によるラジカル活性化処理等が施されていてもよい。処理方法は、基材の種類によって適宜選択される。
 〔他の層〕
 本実施形態に係るガスバリア性積層体は、必要に応じて、基材1、無機蒸着層2及び被覆層3以外の他の1以上の層を更に備えていてもよい。 
 例えば、本実施形態に係るガスバリア性積層体は、ガスバリア性コート層として、上述した被覆層3のみを具備するものであってもよいが、被覆層3に加えて他の1以上の層を更に含んでいてもよい。例えば、酸化アルミニウム、酸化ケイ素、及びアルミニウム等の無機化合物からなる層が、基材の表面に、スパッタリング法又はイオンプレーディング法等により形成されていてもよい。
 また、本実施形態に係るガスバリア性積層体は、層間の密着性を高めること、あるいは、被覆層形成用コーティング液を無機蒸着層に弾かれずに塗れるようにすることを目的として、基材1と無機蒸着層2との間、あるいは、無機蒸着層2と被覆層3との間に、アンカーコート層を更に備えていてもよい。
 図2は、本発明の第2実施形態に係るガスバリア性積層体を概略的に示す断面図である。図2に示すガスバリア性積層体20は、上述した第1実施形態に係るガスバリア性積層体10に対し、基材1と、無機蒸着層2との間にアンカーコート層4を更に備えている。
 アンカーコート層4は、公知のアンカーコート液を用いて常法により形成することができる。アンカーコート液としては、例えば、ポリウレタン樹脂、アクリル樹脂、メラミン樹脂、ポリエステル樹脂、フェノール樹脂、アミノ樹脂、及びフッ素樹脂等の樹脂を含むものが挙げられる。
 アンカーコート液は、樹脂に加えて、密着性や耐熱水性を高める目的で、イソシアネート化合物を更に含んでもよい。イソシアネート化合物は、分子中に1以上のイソシアネート基を有するものであればよく、例えば、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、及びトリレンジイソシアネートが挙げられる。 
 アンカーコート液は、樹脂やイソシアネート化合物を溶解又は分散させるための液体媒体を更に含有してもよい。
 アンカーコート層4の厚さは特に限定されない。アンカーコート層4の厚さは、例えば、0.01~2μmの範囲内であってよく、0.05~1μmの範囲内であってよい。膜厚が0.01μm未満になると非常に薄いため、アンカーコート層としての性能が充分に発揮されないおそれがある。一方、膜厚が2μm以下であることは、フレキシビリティの観点から好ましい。フレキシビリティが低下すると、外的要因によりアンカーコート層に亀裂を生じるおそれがある。
 本実施形態に係るガスバリア性積層体は、必要に応じて、被覆層3上に、又は基材1もしくは無機蒸着層2の表面上に、接着剤を介してラミネートされた他の層を更に備えていてもよく、接着性樹脂を押し出しラミネートしてなる他の層を更に備えていてもよい。
 ラミネートされる他の層は、強度付与、シール性付与、シール時の易開封性付与、意匠性付与、光遮断性付与、及び防湿性付与等の目的に合わせて適宜選択することができ、特に限定されないが、例えば、基材について上述したプラスチックと同様の材質のものを挙げることができる。それ以外にも、紙やアルミ箔等を用いてもよい。
 ラミネートされる他の層の厚みは、1乃至1000μmの範囲内にあることが好ましく、5乃至500μmの範囲内にあることがより好ましく、5乃至200μmの範囲内にあることが更に好ましく、5乃至150μmの範囲内にあることが特に好ましい。 
 ラミネートされる他の層は1種でも2種以上でもよい。
 本実施形態に係るガスバリア性積層体は、必要に応じて、印刷層を更に備えていてもよい。印刷層は、基材上に設けられたコート層上に形成されてもよく、コート層が設けられていない基材の表面上に形成されてもよい。また、他の層がラミネートされる場合は、ラミネートされる他の層の上に形成されてもよい。
 〔ガスバリア性積層体の製造方法〕
 本実施形態に係るガスバリア性積層体は、無機蒸着層を形成する工程、下記に示す被覆層形成用コーティング液を用いて被覆層を形成する工程を含む製造方法により製造することができる。この製造方法は、必要に応じて、アンカーコート層などの他の層を形成する工程および/または印刷層を形成する工程等を更に含むことができる。
 本実施形態に係るガスバリア性積層体の製造方法の一例として、図2に示すガスバリア性積層体20の製造方法を以下に説明する。 
 ガスバリア性積層体20の製造方法において、アンカーコート層4は、基材1上に形成される。アンカーコート層4は、上述したアンカーコート液を基材1上に塗工し、形成された塗膜を乾燥することにより形成することができる。アンカーコート液の塗工方法は特に限定されず、オフセット印刷法、グラビア印刷法、シルクスクリーン印刷法等の周知の印刷方式や、ロールコート、ナイフエッジコート、グラビアコートなどの周知の塗布方式を用いて実施できる。形成された塗膜を乾燥することで、溶媒の除去と硬化が進み、アンカーコート層4が形成される。
 ガスバリア性積層体20の製造方法において、無機蒸着層2は、アンカーコート層4上に形成される。無機蒸着層2の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、化学気相成長法(Chemical vapor deposition;CVD)など種々の方法が知られており、いずれの方法を用いてもよいが、真空蒸着法により形成することが一般的である。
 真空蒸着法による真空蒸着装置の加熱手段としては、電子線加熱方式、抵抗加熱方式、誘導加熱方式等が挙げられ、いずれを用いてもよい。
 また、無機蒸着層2のアンカーコート層4への密着性及び無機蒸着層2の緻密性を向上させるために、プラズマアシスト法やイオンビームアシスト法を用いることも可能である。
 また、無機蒸着層2の透明性を上げるために蒸着の際、酸素ガスなどを吹き込んだりする反応蒸着を行ってもよい。
 ガスバリア性積層体20の製造方法において、被覆層3は、無機蒸着層2上に形成される。被覆層3は、以下に説明する方法により調製される被覆層形成用コーティング液を無機蒸着層2上に塗工し、形成された塗膜を乾燥することにより形成することができる。
 ・被覆層形成用コーティング液の調製方法
 被覆層形成用コーティング液では、溶媒又は分散媒として有機溶媒(e)を使用する。すなわち、このコーティング液は、カルボキシ基含有重合体(a)、多価金属含有粒子(b)、界面活性剤(c)、ケイ素含有化合物(d)及び有機溶媒を含有し、多価金属含有粒子(b)が分散している分散液である。
 有機溶媒(e)は、カルボキシ基含有重合体(a)が均一に溶解し且つ多価金属含有粒子が均一に分散するに足る量で用いられる。従って、有機溶媒としては、カルボキシ基含有重合体は溶解するが、多価金属化合物を実質的に溶解せず、それを粒子の形状で分散させることができるものが用いられる。
 また、有機溶媒(e)としては、一般に、カルボキシ基含有重合体(a)を溶解する極性有機溶媒が用いられるが、極性有機溶媒とともに、極性基(ヘテロ原子又はヘテロ原子を有する原子団)をもたない有機溶媒を併用してもよい。
 好ましく使用できる有機溶媒(e)としては、例えば、メタノール、エタノール、イソプロパノール、n-プロパノール、及びn-ブタノールなどのアルコール類;ジメチルスルホキシド、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、テトラメチル尿素、ヘキサメチルリン酸トリアミド、並びにγ-ブチロラクトンなどの極性有機溶媒を挙げることができる。
 有機溶媒(e)として、上記の極性有機溶媒の他に、ベンゼン、トルエン、キシレン、ヘキサン、ヘプタン、及びオクタンなどの炭化水素類;アセトン及びメチルエチルケトンなどのケトン類;ジクロロメタンなどのハロゲン化炭化水素類;酢酸メチルなどのエステル類;並びにジエチルエーテルなどのエーテル類を適宜用いることができる。極性基を持たないベンゼンなどの炭化水素類は、一般に、極性有機溶媒と併用する。
 上記のコーティング液は、溶媒又は分散媒として、有機溶媒(e)のみを含んでいてもよいが、水を更に含んでもよい。水を含有させることにより、カルボキシ基含有重合体(a)の溶解性を向上させ、コーティング液の塗工性や作業性を改善することができる。このコーティング液の含水率は、質量分率で、100ppm以上であってもよく、1,000ppm以上であってもよく、1,500ppm以上であってもよく、2,000ppm以上であってもよい。
 このコーティング液の含水率は、質量分率で、好ましくは50,000ppm以下、より好ましくは10,000ppm以下、更に好ましくは5,000ppm以下である。
 被覆層形成用コーティング液を調製するには、一方で、カルボキシ基含有重合体(a)を有機溶媒(e)に均一に溶解させた後に、これにケイ素含有化合物(d)を添加し、カルボキシ基含有重合体溶液を調製する。
 そして、他方で、多価金属含有粒子(b)、界面活性剤(c)、有機溶媒(e)を混合し、必要に応じて分散処理を施すことで分散液を調製する。分散処理は、多価金属含有粒子(b)の平均粒子径が所定の値となるように行われる。分散処理前の混合液中の多価金属含有粒子(b)の平均粒子径が10μm以下である場合は、分散処理は行わなくてもよいが、その場合でも、分散処理を行うことが好ましい。分散処理を行うことで多価金属含有粒子(b)の凝集が解け、コーティング液が安定化すると共に、コーティング液を塗工して得られるガスバリア性積層体の透明性が高まる。更には、コーティング液を塗工し、塗膜を乾燥させたときに、カルボキシ基含有重合体(a)と多価金属含有粒子(b)に由来する多価金属イオンとの架橋形成が進み易くなり、良好なガスバリア性を有するガスバリア性積層体が得られ易い。
 分散処理の方法としては、高速撹拌機、ホモジナイザー、ボールミル、又はビーズミルを用いる方法が挙げられる。特に、ボールミル又はビーズミルを用いて分散を行うと、高い効率で分散させることができ、それ故、分散状態が安定なコーティング液を比較的短時間で得ることができる。この場合、ボール又はビーズの径は小さいものがよく、0.1乃至1mmであることが好ましい。
 以上のようにして調製したカルボキシ基含有重合体溶液と多価金属含有粒子(b)の分散液とを混合することにより、コーティング液を作製することができる。なお、上述した調製方法では、ケイ素含有化合物(d)を予めカルボキシル基含有重合体溶液に添加したが、カルボキシル基含有重合体用得液にケイ素含有化合物(d)を添加せず、例えば、カルボキシ基含有重合体溶液と多価金属含有粒子(b)の分散液とを混合する際にケイ素含有化合物(d)を混合してもよい。
 上記のコーティング液は、上記有機溶媒(e)以外の成分の合計濃度が、好ましくは0.1乃至60質量%、より好ましくは0.5乃至25質量%、特に好ましくは1乃至20質量%の範囲内にあることが、所望の膜厚の塗膜及び被覆層を高い作業性で得る上で好ましい。
 上記のコーティング液には、必要に応じて、他の重合体、増粘剤、安定剤、紫外線吸収剤、アンチブロッキング剤、柔軟剤、無機層状化合物(例えば、モンモリロナイト)、及び着色剤(染料、顔料)などの各種添加剤を含有させることができる。
 コーティング液の塗工方法としては、特に限定されないが、例えば、エアーナイフコーター、ダイレクトグラビアコーター、グラビアオフセット、アークグラビアコーター、トップフィードリバースコーター、ボトムフィードリバースコーター及びノズルフィードリバースコーター等のリバースロールコーター、5本ロールコーター、リップコーター、バーコーター、バーリバースコーター、ダイコーターを用いて塗工する方法が挙げられる。
 塗膜の乾燥方法としては、特に限定されないが、例えば、自然乾燥による方法や、所定の温度に設定したオーブン中で乾燥させる方法、及び、コーター付属の乾燥機、例えばアーチドライヤー、フローティングドライヤー、ドラムドライヤー、又は赤外線ドライヤー等を用いる方法を挙げることができる。
 乾燥条件は、乾燥方法等により適宜選択することできる。例えば、オーブン中で乾燥させる方法においては、乾燥温度は、40乃至150℃の範囲内にあることが好ましく、45乃至150℃の範囲内にあることがより好ましく、50乃至140℃の範囲内にあることが特に好ましい。乾燥時間は、乾燥温度によっても異なるが、0.5秒乃至~10分の範囲内にあることが好ましく、1秒乃至5分の範囲内にあることがより好ましく、1秒乃至1分の範囲内にあることが特に好ましい。
 乾燥中又は乾燥後に、塗膜中に含まれるカルボキシ基含有重合体(a)と多価金属含有粒子(b)とが反応して、イオン架橋構造が導入されると推定される。イオン架橋反応を十分に進行させるには、乾燥後のフィルムを、好ましくは20%以上、より好ましくは40乃至100%の範囲内の相対湿度の雰囲気中、好ましくは5乃至200℃、より好ましくは20乃至150℃の範囲内の温度条件下で、1秒乃至10日程度熟成させることが好ましい。
 このようにして得られるガスバリア性積層体は、イオン架橋しているため、耐湿性、耐水性、耐熱水性、及び耐水蒸気性に優れている。そして、このガスバリア性積層体は、低湿条件下はもとより、高湿条件下でのガスバリア性にも優れている。このガスバリア性積層体は、JIS K-7126 B法(等圧法)及びASTM D3985に記載された方法に準拠して、温度30℃及び相対湿度70%の条件下で測定した酸素透過度が、好ましくは10cm/(m・day・MPa)以下である。
 <包装材料、包装体及び包装物品>
 本実施形態に係る包装材料は、上記のガスバリア性積層体を含むものである。この包装材料は、例えば、物品を包装する包装体の製造に使用する。
 本実施形態に係る包装体は、上記の包装材料を含むものである。 
 この包装体は、上記の包装材料からなるものであってもよく、上記の包装材料と他の部材とを含むものであってもよい。前者の場合、包装体は、例えば、上記の包装材料を袋状に成形したものである。後者の場合、包装体は、例えば、蓋体としての上記包装材料と、有底筒状の容器本体とを含んだ容器である。
 この包装体において、上記の包装材料は、成形品であってもよい。この成形品は、上記の通り、袋などの容器であってもよく、蓋体などの容器の一部であってもよい。包装体又はその一部の具体例としては、製袋品、スパウト付きパウチ、ラミネートチューブ、輸液バッグ、容器用蓋材、及び紙容器が挙げられる。
 この包装体には、適用される用途に特に制限はない。この包装体は、様々な物品の包装に使用することができる。
 本実施形態に係る包装物品は、上記の包装体と、これに収容された内容物とを含むものである。
 上述した通り、上記のガスバリア性積層体は、優れたガスバリア性と透明性を有する。そのため、このガスバリア性積層体を含んだ包装材料及び包装体は、それぞれ、酸素及び水蒸気等の影響により劣化し易い物品のための包装材料及び包装体として、特には食品用包装材料及び食品用包装体として好ましく用いられる。これら包装材料及び包装体は、それぞれ、農薬や医薬などの薬品、医療用具、機械部品、及び精密材料などの産業資材を包装するための包装材料及び包装体としても好ましく用いることができる。
 上記のガスバリア性積層体は、ボイル処理及びレトルト処理等の加熱殺菌処理を施したときに、ガスバリア性や層間密着性が劣化せず、逆に高まる傾向にある。そのため、これら包装材料及び包装体は、それぞれ、加熱殺菌用包装材料及び加熱殺菌用包装体であってもよい。
 加熱殺菌用包装材料及び加熱殺菌用包装体は、包装後に加熱殺菌処理が行われる物品の包装に用いられる。 
 包装後に加熱殺菌処理が行われる物品としては、例えば、カレー、シチュー、スープ、ソース、及び畜肉加工品等の食品が挙げられる。
 加熱殺菌処理としては、例えば、ボイル処理及びレトルト処理が挙げられる。 
 ボイル処理は、食品等を保存するため湿熱殺菌する処理である。ボイル処理では、内容物にもよるが、通常は、食品等の内容物を上記の包装体に包装してなる包装物品を、大気圧下、60乃至100℃の温度で、10乃至120分間に亘って湿熱殺菌処理する。ボイル処理は、通常、熱水槽を用いて行う。ボイル処理には、包装物品を一定温度の熱水槽の中に浸漬させ、一定時間後に取り出すバッチ式と、熱水槽の中に包装物品をトンネル式に通して殺菌する連続式とがある。
 レトルト処理は、一般には食品等を保存するために、カビ、酵母、及び細菌などの微生物を加圧加熱殺菌する処理である。レトルト処理では、通常は、食品を上記の包装体に包装してなる包装物品を、0.15乃至0.3MPaの圧力下、105乃至140℃の温度で、10乃至120分間に亘って加圧殺菌加熱処理する。レトルト装置には、加熱蒸気を利用する蒸気式及び加圧過熱水を利用する熱水式等があり、それらは内容物となる食品等の殺菌条件に応じて適宜使い分ける。
 以下に、本発明の具体例を記載する。
 <アンカーコート液の調製>
 希釈溶媒(酢酸エチル)中、γ-イソシアネートプロピルトリメトキシシラン1質量部に対し、アクリルポリオール5質量部を混合し、攪拌した。ついで、イソシアネート化合物としてトリレンジイソシアネート(TDI)を、アクリルポリオールのOH基に対しNCO基が等量となるように加えた。得られた混合溶液を2質量%の濃度に上記希釈溶媒で希釈することによりアンカーコート液を得た。
 アクリルポリオールとしては、三菱レイヨン(株)製、GS-5756を使用した。
 <被覆層形成用コーティング液の調製>
 (コーティング液1)
 カルボキシ基含有重合体を、2-プロパノールに加熱溶解させた。カルボキシ基含有重合体としては、ポリアクリル酸(PAA)(東亜合成(株)製ジュリマー(登録商標)AC-10LP、数平均分子量50,000)を使用した。以上のようにして、ポリアクリル酸を10質量%の濃度で含んだポリアクリル酸溶液を調製した。
 ポリエーテル燐酸エステル(楠本化成(株)製ディスパロン(登録商標)DA-375、固形分100質量%)1.8gを、2-プロパノール26.2gに溶解させた。次いで、これに、一次粒子の平均径が35nmの酸化亜鉛(堺化学工業(株)製FINEX(登録商標)-30)12gを加えて攪拌した。得られた液を、遊星ボールミル(フリッチュ社製P-7)で1時間分散処理した。この分散処理には、直径0.2mmのジルコニアビーズを使用した。その後、この液からビーズを篩分けて、酸化亜鉛を30質量%の濃度で含んだ分散液を得た。
 次に、ポリアクリル酸(PAA)溶液31.20gと、酸化亜鉛分散液5.79gと、ケイ素含有化合物としてシランカップリング剤(SC剤)(信越化学工業(株)製KBM-403、3-グリシドキシプロピルトリメトキシシラン)0.08gと、2-プロパノール23.57gとを混合して、コーティング液1を調製した。このコーティング液1では、カルボキシ基含有重合体(a)に含まれるカルボキシ基のモル数(a)に対するケイ素含有化合物(d)のモル数(d)のモル比((d)/(a))が0.78%であった。
 (コーティング液2)
 上記ケイ素含有化合物の添加量を0.164gに変更した以外は、コーティング液1について上述したのと同様の方法により、コーティング液2を調製した。このコーティング液2では、カルボキシ基含有重合体(a)に含まれるカルボキシ基のモル数(a)に対するケイ素含有化合物(d)のモル数(d)のモル比((d)/(a))が1.60%であった。
 (コーティング液3)
 上記ケイ素含有化合物の添加量を0.499gに変更した以外は、コーティング液1について上述したのと同様の方法により、コーティング液3を調製した。このコーティング液2では、カルボキシ基含有重合体(a)に含まれるカルボキシ基のモル数(a)に対するケイ素含有化合物(d)のモル数(d)のモル比((d)/(a))が4.87%であった。
 (コーティング液4)
 上記ケイ素含有化合物の添加量を0.655gに変更した以外は、コーティング液1について上述したのと同様の方法により、コーティング液4を調製した。このコーティング液2では、カルボキシ基含有重合体(a)に含まれるカルボキシ基のモル数(a)に対するケイ素含有化合物(d)のモル数(d)のモル比((d)/(a))が6.40%であった。
 (コーティング液5)
 ケイ素含有化合物を添加しなかったこと以外は、コーティング液1について上述したのと同様の方法により、コーティング液5を調製した。このコーティング液5では、カルボキシ基含有重合体(a)に含まれるカルボキシ基のモル数(a)に対するケイ素含有化合物(d)のモル数(d)のモル比((d)/(a))が0%であった。
 <ガスバリア性積層体の製造>
 [実施例1]
 2軸延伸ポリプロピレンフィルム(三井化学東セロ株式会社製、商品名:ME-1、厚さ20μm)の一方の面に、アンカーコート液1を、乾燥後の厚さが0.2μmになるようにバーコーターを用いて塗工し、150℃で1分間乾燥させることによってアンカーコート層を形成した。
 このアンカーコート層上に、電子線加熱方式による真空蒸着装置により、ケイ素を蒸発させ、そこに酸素ガスを導入し、酸化ケイ素を蒸着して厚さ20nmの無機蒸着層を形成した。
 この無機蒸着層上に、コーティング液1をバーコーター(ワイヤーバー)を用いて塗布した。この塗膜を50℃のオーブンで1分間乾燥させて、膜厚500nmの被覆層を形成した。以上のようにして積層体1を得た。なお、被覆層の膜厚は後述する方法により測定した。
 [実施例2]
 コーティング液1の塗布量を変えて被覆層の膜厚を変更した以外は、実施例1の積層体1について上述したのと同様の方法により、積層体2を得た。
 [実施例3]
 無機蒸着層の酸化ケイ素を酸化アルミニウムに変更し、且つ、コーティング液1の塗布量を変えて被覆層の膜厚を変更した以外は、実施例1の積層体1について上述したのと同様の方法により、積層体3を得た。
 [実施例4]
 コーティング液1をコーティング液2に変更し、且つ、コーティング液の塗布量を変えて被覆層の膜厚を変更した以外は、実施例1の積層体1について上述したのと同様の方法により、積層体4を得た。
 [実施例5]
 コーティング液1をコーティング液3に変更し、且つ、コーティング液の塗布量を変えて被覆層の膜厚を変更した以外は、実施例1の積層体1について上述したのと同様の方法により、積層体5を得た。
 [比較例1]
 無機蒸着層を形成せず、且つ、コーティング液1の塗布量を変えて被覆層の膜厚を変更した以外は、実施例1の積層体1について上述したのと同様の方法により、積層体1Cを得た。
 [比較例2]
 コーティング液1の塗布量を変えて被覆層の膜厚を変更した以外は、実施例1の積層体1について上述したのと同様の方法により、積層体2Cを得た。
 [比較例3]
 無機蒸着層を形成せず、且つ、コーティング液2の塗布量を変えて被覆層の膜厚を変更した以外は、実施例4の積層体4について上述したのと同様の方法により、積層体3Cを得た。
 [比較例4]
 無機蒸着層を形成しなかったこと以外は、実施例5の積層体5について上述したのと同様の方法により、積層体4Cを得た。
 [比較例5]
 無機蒸着層を形成せず、且つ、コーティング液1をコーティング液4に変更した以外は、実施例1の積層体1について上述したのと同様の方法により、積層体5Cを得た。
 [比較例6]
 コーティング液1をコーティング液4に変更した以外は、実施例1の積層体1について上述したのと同様の方法により、積層体6Cを得た。
 [比較例7]
 無機蒸着層を形成せず、且つ、コーティング液1をコーティング液5に変更した以外は、実施例1の積層体1について上述したのと同様の方法により、積層体7Cを得た。
 <被覆層の膜厚の測定>
 得られた積層体を包埋樹脂で埋めてミクロトームで断面を露出させ、走査型電子顕微鏡(SEM)を用いて積層体の断面観察を行った。得られたSEM画像から、平面部における被覆層の厚さを10点測定して平均値をとり、これを被覆層の厚さとした。
 <評価>
 [透明性]
 得られた各積層体について、ヘイズメータ(日本電色工業製NDH2000)を用い、JIS-K7105-1981に準じて被覆層のヘイズを測定した。ヘイズ値が10%以下であるものをA、10%超であるものをBと評価する。ヘイズ値が10%以下であるとき、積層体は所望とする透明性を有する。これら結果を表1に示す。
 [酸素透過度]
 得られた各積層体を、20cm×20cmの大きさに切り出し、貯湯式レトルト釜を用いて0.2MPa、120℃で30分間レトルト処理を行った。レトルト処理後における各試料の酸素透過度を、Modern Control社製の酸素透過試験器OXTRAN(登録商標)2/20を用いて、温度30℃、相対湿度70%の条件下で測定した。測定方法は、JIS K-7126 B法(等圧法)、及びASTM D3985に準拠し、測定値は、単位cm/(m・day・MPa)で表記した。酸素透過度が10cm/(m・day・MPa)以下であるものをA、10cm/(m・day・MPa)超であるものをBと評価する。酸素透過度が10cm/(m・day・MPa)以下であるとき、積層体は高温高湿度環境下において所望とするガスバリア性を有する。これら結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、本実施形態に係る積層体1~5(実施例1~5)は、透明性及び高温高湿度環境下におけるガスバリア性の双方に優れていた。
 なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
1・・・基材
2・・・無機蒸着層
3・・・被覆層
4・・・アンカーコート層
10、20・・・ガスバリア性積層体

Claims (7)

  1.  基材と、無機酸化物を含む無機蒸着層と、被覆層とをこの順序で備えたガスバリア性積層体であって、前記被覆層がカルボキシ基含有重合体(a)、多価金属含有粒子(b)、界面活性剤(c)、及びケイ素含有化合物(d)を含有し、前記ケイ素含有化合物(d)が下記一般式(1)及び(2)で表されるシランカップリング剤、これらの加水分解物、およびこれらの縮合物からなる群から選択される少なくとも1種であり、前記カルボキシ基含有重合体(a)に含まれるカルボキシ基のモル数(a)に対する前記ケイ素含有化合物(d)のモル数(d)のモル比(d)/(a)が0.15%以上6.10%以下であり、前記被覆層の膜厚が230nm以上600nm以下であるガスバリア性積層体。但し、前記モル比(d)/(a)における(d)は、ケイ素含有化合物(d)をシランカップリング剤に換算したモル数である。
     Si(OR …(1)
     Si(R)(OR …(2)
     一般式(1)において、Rは、同一であっても異なっていてもよい、炭素数が1乃至6のアルキル基であり、Zはエポキシ基を含有する基であり、一般式(2)において、Rはメチル基であり、Rは、同一であっても異なっていてもよい、炭素数が1乃至6のアルキル基であり、Zはエポキシ基を含有する基である。
  2.  前記カルボキシ基含有重合体(a)が、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸及びフマル酸からなる群から選択される少なくとも1種のα,β-モノエチレン性不飽和カルボン酸に由来する構成単位を少なくとも含む、請求項1に記載のガスバリア性積層体。
  3.  前記多価金属含有粒子(b)を構成する多価金属が2価の金属である、請求項1又は2に記載のガスバリア性積層体。
  4.  前記基材と前記無機蒸着層との間にアンカーコート層を更に備えた請求項1~3の何れか1項に記載のガスバリア性積層体。
  5.  請求項1~4の何れか1項に記載のガスバリア性積層体を含んだ包装材料。
  6.  請求項5に記載の包装材料を含んだ包装体。
  7.  請求項6に記載の包装体と、前記包装体に収容された内容物とを含んだ包装物品。
PCT/JP2021/042484 2020-11-20 2021-11-18 ガスバリア性積層体、包装材料、包装体及び包装物品 WO2022107858A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21894730.7A EP4249235A4 (en) 2020-11-20 2021-11-18 GAS BARRIER LAYER PRODUCT, PACKAGING MATERIAL, PACKAGING AND PACKAGED ARTICLE
CN202180075961.7A CN116438073A (zh) 2020-11-20 2021-11-18 阻气性层叠体、包装材料、包装体以及包装物品
US18/199,343 US20230303788A1 (en) 2020-11-20 2023-05-18 Gas barrier laminate, packaging material, packaging body, and packaged article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-193219 2020-11-20
JP2020193219A JP2022081953A (ja) 2020-11-20 2020-11-20 ガスバリア性積層体、包装材料、包装体及び包装物品

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/199,343 Continuation US20230303788A1 (en) 2020-11-20 2023-05-18 Gas barrier laminate, packaging material, packaging body, and packaged article

Publications (1)

Publication Number Publication Date
WO2022107858A1 true WO2022107858A1 (ja) 2022-05-27

Family

ID=81709069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042484 WO2022107858A1 (ja) 2020-11-20 2021-11-18 ガスバリア性積層体、包装材料、包装体及び包装物品

Country Status (5)

Country Link
US (1) US20230303788A1 (ja)
EP (1) EP4249235A4 (ja)
JP (1) JP2022081953A (ja)
CN (1) CN116438073A (ja)
WO (1) WO2022107858A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126528A (ja) * 2003-10-22 2005-05-19 Kureha Chem Ind Co Ltd コーティング液及びそれを用いたフィルムの製造方法
JP2016193509A (ja) * 2015-03-31 2016-11-17 凸版印刷株式会社 ガスバリア性包装材料およびその製造方法
JP2016199722A (ja) * 2015-04-14 2016-12-01 凸版印刷株式会社 ガスバリア用塗液、ガスバリア性包装材料および熱水処理用包装袋
JP2020023130A (ja) * 2018-08-08 2020-02-13 凸版印刷株式会社 多層バリアシート、それを用いた成形容器及びその製造方法
WO2020203766A1 (ja) * 2019-04-01 2020-10-08 Dic株式会社 ガスバリア性組成物、コーティング剤および積層体
JP2020186774A (ja) * 2019-05-15 2020-11-19 凸版印刷株式会社 真空断熱材用外装材及び真空断熱材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069143A1 (ja) * 2015-10-20 2017-04-27 凸版印刷株式会社 コーティング液およびガスバリア性積層体
JP2022110382A (ja) * 2021-01-18 2022-07-29 凸版印刷株式会社 ガスバリア性積層体、その製造用のコーティング液、包装材料、包装体及び包装物品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126528A (ja) * 2003-10-22 2005-05-19 Kureha Chem Ind Co Ltd コーティング液及びそれを用いたフィルムの製造方法
JP2016193509A (ja) * 2015-03-31 2016-11-17 凸版印刷株式会社 ガスバリア性包装材料およびその製造方法
JP2016199722A (ja) * 2015-04-14 2016-12-01 凸版印刷株式会社 ガスバリア用塗液、ガスバリア性包装材料および熱水処理用包装袋
JP2020023130A (ja) * 2018-08-08 2020-02-13 凸版印刷株式会社 多層バリアシート、それを用いた成形容器及びその製造方法
WO2020203766A1 (ja) * 2019-04-01 2020-10-08 Dic株式会社 ガスバリア性組成物、コーティング剤および積層体
JP2020186774A (ja) * 2019-05-15 2020-11-19 凸版印刷株式会社 真空断熱材用外装材及び真空断熱材

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Microparticle Engineering System", vol. I, 2001, FUJI TECHNO SYSTEM, pages: 362 - 365
See also references of EP4249235A4

Also Published As

Publication number Publication date
CN116438073A (zh) 2023-07-14
EP4249235A1 (en) 2023-09-27
JP2022081953A (ja) 2022-06-01
EP4249235A4 (en) 2024-05-22
US20230303788A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
JP4373797B2 (ja) フィルム及びその製造方法
JP6131570B2 (ja) ガスバリア用コーティング液、その製造方法、ガスバリア性積層体の製造方法、包装材料の製造方法および加熱殺菌用包装材料の製造方法
WO2021256545A1 (ja) ガスバリア性積層体、その製造用のコーティング液、包装材料、包装体及び包装物品
WO2022154031A1 (ja) ガスバリア性積層体、その製造用のコーティング液、包装材料、包装体及び包装物品
JP2015150836A (ja) ガスバリア積層体
JP6862815B2 (ja) 熱成形用ガスバリア性積層体、コーティング液、熱成形用ガスバリア性積層体の製造方法および成形体
CN1871125A (zh) 多层薄膜
JP4620945B2 (ja) コーティング液及びそれを用いたフィルムの製造方法
JP2019119132A (ja) ラミネートフィルムおよび成形品
WO2022107858A1 (ja) ガスバリア性積層体、包装材料、包装体及び包装物品
JP7467937B2 (ja) ガスバリア性積層体、その製造用のコーティング液、包装材料、包装体及び包装物品
JP2019019206A (ja) コーティング液、熱成形用ガスバリア性積層体および成形体
WO2021210571A1 (ja) ガスバリア性積層体製造用コーティング液
JP7088361B1 (ja) ガスバリア性積層体、包装材料、包装体及び包装物品
WO2017104695A1 (ja) ガスバリア性包装材料用前駆体、その製造方法、ガスバリア性包装材料および包装体の製造方法
WO2023074494A1 (ja) ガスバリア性積層体、包装体及び包装物品
JP2023068474A (ja) ガスバリア性積層体、包装体及び包装物品
CN118119505A (zh) 阻气性层叠体、包装体以及包装物品
JP2023049299A (ja) 積層体、包装材料、包装体及び包装物品
JP2015150843A (ja) ガスバリア性積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021894730

Country of ref document: EP

Effective date: 20230620