WO2022071194A1 - 転がり軸受および電動機 - Google Patents

転がり軸受および電動機 Download PDF

Info

Publication number
WO2022071194A1
WO2022071194A1 PCT/JP2021/035288 JP2021035288W WO2022071194A1 WO 2022071194 A1 WO2022071194 A1 WO 2022071194A1 JP 2021035288 W JP2021035288 W JP 2021035288W WO 2022071194 A1 WO2022071194 A1 WO 2022071194A1
Authority
WO
WIPO (PCT)
Prior art keywords
grease
apparent viscosity
rolling bearing
bearing
channeling
Prior art date
Application number
PCT/JP2021/035288
Other languages
English (en)
French (fr)
Inventor
智彦 小畑
宏樹 藤原
真人 吉野
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021036264A external-priority patent/JP2022058099A/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2022071194A1 publication Critical patent/WO2022071194A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • the present invention relates to a rolling bearing filled with grease and an electric motor incorporating the rolling bearing.
  • Grease is generally used as a lubricant for rolling bearings. Most of the grease sealed in the rolling bearing adheres to the rolling element and cage as the bearing rotates, and gradually enters the stationary space (the space excluding the area where the rolling element and cage pass) while being agitated. Move and stand still.
  • the stirring state of the grease in the bearing at the time of grease lubrication can be classified into churning and channeling (see, for example, Non-Patent Document 1). Specifically, the state in which the grease moves due to stirring and the bearing torque fluctuates is called churning, and the state in which the grease movement is almost completed and the bearing torque is stable is called channeling.
  • channeling transition time the time from the start of operation to reaching channeling.
  • churning is a state in which the grease is large in the bearing and is flowing with agitation and shearing, and the grease hinders the rotation of the cage and rolling elements, so the bearing torque tends to increase.
  • channeling most of the grease in the bearing does not flow, and the grease flows only in a limited part such as near the lubrication part of the rolling element and the raceway ring, and the bearing torque tends to be small. There is.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a rolling bearing having excellent channeling properties and an electric motor incorporating the rolling bearing.
  • the rolling bearing of the present invention is a rolling bearing having an inner ring and an outer ring, a plurality of rolling elements interposed between the inner ring and the outer ring, and grease enclosed in the inner space of the bearing, and the grease is at 40 ° C.
  • the appearance of the grease at any shear rate of at least two points containing a base oil with a kinematic viscosity of 6.12 mm 2 / s to 74.8 mm 2 / s and a thickener and measured with a leometer.
  • the apparent viscosity gradient n in the following formula (1) calculated from the viscosity is 0.84 or less.
  • the symbols in the formula are ⁇ : apparent viscosity [Pa ⁇ s], n: apparent viscosity gradient, ⁇ : shear rate [s -1 ], and a: specific constants for each grease type.
  • the apparent viscosity gradient n is characterized by being a gradient between the apparent viscosity at a shear rate of 10s -1 to 300s -1 measured by a rheometer and the apparent viscosity at a shear rate of 1000s -1 to 5000s -1 . And.
  • the apparent viscosity gradient n is 0.75 to 0.84.
  • the rolling bearing is characterized in that it is a bearing used at a low speed rotation having a dm ⁇ n value of 6.5 ⁇ 104 or less.
  • the rolling bearing is characterized by being a bearing that supports the spindle of the machine tool.
  • the electric motor of the present invention is an electric motor including a stator, a rotor, and a rolling bearing that rotatably supports the rotating shaft, and the rolling bearing is the rolling bearing of the present invention.
  • the rolling bearing of the present invention is a bearing filled with grease, and the grease contains a base oil having a kinematic viscosity at 40 ° C. of 6.12 mm 2 / s to 74.8 mm 2 / s and a thickener. Moreover, since the apparent viscosity gradient n in the above formula (1) calculated from the apparent viscosity of the grease measured using a leometer is 0.84 or less, the bearing quickly shifts to the channeling state during the bearing operation. Excellent channeling. As a result, the bearing torque can be reduced.
  • the rolling bearing is filled with grease having a predetermined viscosity characteristic, the grease adhering to the vicinity of the cage is scattered even when the rolling bearing is used at a low speed rotation having a dm ⁇ n value of 6.5 ⁇ 104 or less. It is possible to quickly shift to the channeling state.
  • the bearing that supports the spindle of the machine tool may deteriorate the processing accuracy of the machine tool and shorten the life of the bearing itself due to the heat generated by the grease stirring during churning.
  • the rolling bearing having excellent channeling property as a bearing for the spindle of a machine tool, it is possible to suppress deterioration of machining accuracy and shortening of life.
  • the rolling bearing of the present invention is incorporated as a rolling bearing that rotatably supports the rotating shaft, the electric motor of the present invention contributes to high efficiency of the electric motor.
  • FIG. 1 is a cross-sectional view of a deep groove ball bearing.
  • an inner ring 2 having an inner ring raceway surface 2a on the outer peripheral surface and an outer ring 3 having an outer ring raceway surface 3a on the inner peripheral surface are arranged concentrically, and a plurality of rolling bearings 1 are arranged between the inner ring raceway surface 2a and the outer ring raceway surface 3a.
  • Individual balls 4 are arranged.
  • the ball 4 is held by the cage 5.
  • the openings 8a and 8b at both ends in the axial direction of the inner and outer rings are sealed by the sealing member 6, and the grease 7 is sealed at least around the ball 4.
  • the inner ring 2, the outer ring 3 and the ball 4 are made of an iron-based metal material, and grease 7 is interposed in the raceway surface with the ball 4 to be lubricated.
  • the grease sealed in the rolling bearing of the present invention contains a base oil having a kinematic viscosity of 6.12 mm 2 / s to 74.8 mm 2 / s at 40 ° C. and a thickener, and the appearance of the grease described later is apparent.
  • the viscosity gradient n is 0.84 or less.
  • the stirring state of grease is greatly related to the bearing torque.
  • the grease in the case of channeling, the grease is scraped off during rotation, the amount of grease adhering to the rolling element surface or the raceway surface is reduced, and the torque tends to be low.
  • the grease that has been scraped off by rotation returns to the raceway surface again, so that the amount of grease adhering to the rolling element surface or the raceway surface always increases, and the torque tends to be high. Therefore, a grease having high channeling property, that is, a grease having a short channeling transition time is desired.
  • the rolling bearing of the present invention can improve the channeling property and reduce the bearing torque due to the stirring resistance by using the grease whose physical property values are defined as described above. In particular, as shown in Examples, it exhibits excellent channeling properties even under low-speed rotation conditions such that grease adhering to a cage or the like does not scatter due to centrifugal force.
  • the base oil, the thickener, and the additives added as necessary are known as long as the kinematic viscosity of the base oil and the apparent viscosity gradient n of the grease satisfy the above numerical range. Those can be used in combination as appropriate.
  • the base oil general ones usually used in the field of grease can be used.
  • highly refined oils, mineral oils, ester oils, ether oils, synthetic hydrocarbon oils (PAO oils), silicone oils, fluorine oils, and mixed oils thereof can be used.
  • PAO oils synthetic hydrocarbon oils
  • silicone oils silicone oils
  • fluorine oils fluorine oils
  • mixed oils thereof can be used.
  • the kinematic viscosity of the base oil at 40 ° C. is preferably 6.12 mm 2 / s to 50.0 mm 2 / s.
  • the thickener general ones usually used in the field of grease can be used.
  • soap-based thickeners such as metal soaps and composite metal soaps, and non-soap-based thickeners such as Benton, silica gel, urea compounds, and urea-urethane compounds
  • the metal soap include sodium soap, calcium soap, aluminum soap, lithium soap and the like
  • examples of the urea compound and the urea / urethane compound include a diurea compound, a triurea compound, a tetraurea compound, another polyurea compound and a diurethane compound.
  • the amount of the thickener to be blended is not particularly limited, but is preferably 5% by mass to 30% by mass with respect to the entire grease.
  • Additives include amine-based and phenol-based antioxidants, chlorine-based, sulfur-based, phosphorus-based compounds, extreme pressure agents such as organic molybdenum, petroleum sulfonates, dinonylnaphthalene sulfonates, and rust preventives such as sorbitan esters. Can be mentioned.
  • the apparent viscosity gradient n can be calculated by the following method.
  • the apparent viscosity of grease at any shear rate of at least two points is measured by rheology measurement using a rheometer.
  • a rotary rheometer having a cone plate type cell.
  • An outline of such a rheometer is shown in FIG.
  • the rotary rheometer 11 is composed of a cone plate type cell 12 and a horizontal disk plate 13, and the cell 12 and the plate 13 are in contact with each other at one point (with a slight gap).
  • the grease 14 as a sample is placed between them.
  • the shear rate applied to the grease 14 is the same at any position, independent of the distance from the cell center.
  • the conditions for rheology measurement are (1) rotation speed dependence at constant temperature / constant direction rotation, (2) vibration frequency dependence at constant temperature / constant shear strain, and (3) dynamic viscoelastic shear at constant frequency. Although there is stress dependence, etc., in the present invention, the measurement is mainly performed under the condition (1).
  • a rotary rheometer (HAAKE RheoWin MARS1 manufactured by Thermo Fisher Scientific) is used with a cone plate type cell having a diameter of 20 mm and a tip angle of 178 °, and the temperature is 25 at a constant temperature and a constant direction rotation. Perform at ° C.
  • the viscosity of the grease after 45 seconds at a shear rate (arbitrary shear rate of at least two points or more) at which the grease viscosity is measured in an environment of 25 ° C. is taken as the apparent viscosity.
  • the apparent viscosity measured by the rheometer is not particularly limited, but preferably includes the apparent viscosity at a shear rate of 10s -1 to 300s -1 and the apparent viscosity at a shear rate of 1000s -1 to 10000s -1 . It is more preferable to include the apparent viscosity at a shear rate of -1 to 100s -1 and the apparent viscosity at a shear rate of 1000s -1 to 5000s -1 .
  • FIG. 3 shows, as an example, the results of measuring the apparent viscosities at a shear rate of 100s -1 and a shear rate of 3000s -1 .
  • FIG. 3 is a graph in which the measurement results are plotted on a log-log graph in which the logarithm of the shear rate ⁇ is taken on the horizontal axis and the logarithm of the apparent viscosity ⁇ of the grease is taken on the vertical axis.
  • the straight line connecting each plot is represented by the following equation (1), and the apparent viscosity gradient n is calculated from this equation (1).
  • the apparent viscosity gradient n is calculated as a viscosity gradient for a shear rate of 100s -1 to 3000s -1 .
  • the symbols in the formula are ⁇ : apparent viscosity [Pa ⁇ s], n: apparent viscosity gradient, ⁇ : shear rate [s -1 ], and a: specific constants for each grease type.
  • the apparent viscosity gradient n is calculated from the measurement results of the apparent viscosity at two points, but the apparent viscosity gradient n may be calculated based on the measurement results of the apparent viscosity at three or more points.
  • the apparent viscosity at the shear rate between the above-mentioned two points (for example, the shear rate 1000s -1 in the case of FIG. 3) may be measured, and the apparent viscosity gradient n may be calculated at three points including the apparent viscosity. good.
  • the apparent viscosity at the shear rate on the lower speed side or the shear rate on the higher speed side than the range of the shear rates at the two points may be used.
  • the apparent viscosity gradient n is calculated from the regression line obtained by the least squares method.
  • FIG. 4 shows an outline of viscosity measurement using a capillary rheometer.
  • the capillary rheometer 21 has a cylinder 23 having a capillary 24 at a lower portion, a piston 22 that can move up and down in the cylinder 23, and a load cell 26 provided at one end of the piston 22. .. With the grease 25 filled in the cylinder 23, the piston 22 at a constant speed is lowered, and the load p when the grease 25 is extruded is detected by the load cell 26.
  • the apparent viscosity ⁇ at at least two points at any shear rate (unit: 1 / s) can be obtained according to the following equations (2) to (4). Then, the apparent viscosity gradient n is calculated from the obtained equation (1).
  • the apparent viscosity gradient n of the grease calculated as described above is 0.84 or less, preferably 0.60 to 0.84, and more preferably 0.75 to 0.84. Is.
  • a deep groove ball bearing is exemplified as the rolling bearing of the present invention, but in addition to the deep groove ball bearing, a cylindrical roller bearing, a tapered roller bearing, a self-aligning roller bearing, a needle roller bearing, a thrust cylindrical roller bearing, and a thrust It can also be applied to tapered roller bearings, thrust needle roller bearings, thrust self-aligning roller bearings, etc.
  • the rolling bearing of the present invention is applied to, for example, a motor bearing incorporated in a motor, a bearing that supports a spindle of a machine tool, an axle bearing, and the like. Further, the rolling bearing of the present invention is particularly suitable for low-speed rotation applications because it exhibits excellent channeling performance even under low-speed rotation. For example, it is applied to bearings used with a dm ⁇ n value of 20 ⁇ 104 or less.
  • the main rotation speed (steady state rotation speed) of the bearing in the used state is dm ⁇ n value 20 ⁇ 10 4 or less.
  • the dm ⁇ n value may be 10 ⁇ 10 4 or less, 6.5 ⁇ 10 4 or less, or 3.0 ⁇ 10 4 or less.
  • the lower limit of the dm ⁇ n value is not particularly limited, but is, for example, 1.0 ⁇ 104 .
  • the rolling bearing of the present invention is applied to a bearing used in a rotation speed range of, for example, 2000 min -1 or less.
  • the rotation speed may be 1500 min -1 or less.
  • it is applied to a motor bearing of a general-purpose motor having a rotation speed of 1800 min -1 and an axle bearing having a rotation speed of 1500 min -1 .
  • the motor of the present invention includes a stator, a rotor, and a rolling bearing that rotatably supports the rotating shaft. More specifically, the motor rotates the casing, the stator fixed to the casing, the rotors arranged to face the stator, the rotating shaft that rotates integrally with the rotor, and the rotating shaft with respect to the casing. It has a rolling bearing that supports it as much as possible. Generally, two rolling bearings are provided apart from each other with respect to the rotating shaft. The rolling bearing incorporated in this motor corresponds to the rolling bearing of the present invention.
  • One form of the motor of the present invention is a sine wave driven three-phase AC motor.
  • the efficiency class is a classification of efficiency reference values by class, and IE1 (standard efficiency), IE2 (high efficiency), and IE3 (premium efficiency) are defined. Due to the trend of energy saving, motors conforming to IE2 standard and IE3 standard are required.
  • the rolling bearing of the present invention has excellent channeling properties and low torque, so that it has excellent motor efficiency and is suitable for motors that meet the IE3 standard.
  • the efficiency is 80.7%.
  • the present invention can also be used as a grease evaluation method for evaluating the channelability of grease.
  • the above-mentioned evaluation method is encapsulated in a rolling bearing including an inner ring and an outer ring and a plurality of rolling elements interposed between the inner ring and the outer ring, and the channeling property of grease containing a base oil and a thickener is improved.
  • the evaluation method is an evaluation method in which the apparent viscosity of the grease at at least two points or more at an arbitrary shear rate is measured using a rheometer, and the following formula (1) is calculated from the measurement results.
  • the channeling property of the grease is evaluated based on the apparent viscosity gradient n of the above and the kinematic viscosity of the base oil at 40 ° C.
  • the symbols in the formula are ⁇ : apparent viscosity [Pa ⁇ s], n: apparent viscosity gradient, ⁇ : shear rate [s -1 ], and a: specific constants for each grease type.
  • evaluating the channeling property is to judge the superiority or inferiority of the channeling property of the grease.
  • the high channeling property means that the channeling transition time of the grease is short (for example, within 120 min) and that the channeling state can be stably maintained.
  • the evaluation of churning property and channeling property is performed by actually rotating the bearing, but this evaluation takes several tens of minutes to several days.
  • the channeling property is evaluated based on the apparent viscosity gradient n of the grease and the kinematic viscosity of the base oil at 40 ° C., for example, the length of the channeling transition time is evaluated. It is possible to determine the superiority or inferiority of channeling property without actually performing an evaluation test for rotating the bearing.
  • the viscous transition stress (see JP-A-2016-204623) is known as an index for evaluating the channeling property, but the viscous transition stress does not necessarily correlate with the channeling property, and in particular, it is retained. It was difficult to apply under relatively low speed rotation conditions such that the grease adhering to the vessel would not scatter due to centrifugal force.
  • the index (apparent viscosity gradient n) by the above evaluation method shows a good correlation with the channeling transition time even under the rotation condition of 2000 min -1 or less, and therefore is used in all rotation speed ranges. It can be used to evaluate grease for bearings.
  • the apparent viscosity gradient n shows a correlation with the channeling transition time as shown in Examples described later. Specifically, in a region where the apparent viscosity gradient n is equal to or larger than a predetermined value, the channeling transition time tends to become longer as the apparent viscosity gradient n becomes larger. Therefore, in the evaluation method of the present invention, the channeling property can be evaluated by the magnitude of the calculated apparent viscosity gradient n. For example, when the apparent viscosity gradient n is compared with a predetermined threshold value and the apparent viscosity gradient n is equal to or less than the predetermined threshold value, it is determined that the grease has high channeling property, and the apparent viscosity gradient n is larger than the predetermined threshold value. When it is large, it can be determined that the grease has low channeling property or churn property.
  • a predetermined threshold value can be set in advance by an experiment or the like performed in advance. For example, the threshold can be set to 0.84.
  • the grease having an apparent viscosity gradient n of 0.84 or less has an apparent viscosity gradient n of 0.84. It can be evaluated that the channeling property is higher than that of the larger grease.
  • the apparent viscosity gradient n was calculated for each of the eight types of grease (Examples 1 to 3 and Comparative Examples 1 to 5).
  • the apparent viscosity of each grease was measured with a rheometer (HAAKE RheoWin MARS1 manufactured by Thermo Fisher Scientific) using a cone plate type cell having a diameter of 20 mm and a tip angle of 178 °.
  • the apparent viscosities after 45 seconds were measured at a shear rate of 100 s -1 and a shear rate of 3000 s -1 under the condition of 25 ° C., respectively.
  • Table 1 shows the apparent viscosity gradient n of each grease.
  • the base oils of the greases of Examples 1 to 3 and Comparative Examples 1 to 3 are in the range specified in JIS K2220: 2013 General Grease Type 1 (kinematic viscosity at 40 ° C. 6. It is within 12 mm 2 / s to 74.8 mm 2 / s).
  • the base oils of Comparative Examples 4 to 5 have a kinematic viscosity of 100 mm 2 / s at 40 ° C.
  • the testing machine has a structure in which a load is applied in the axial direction of the bearing.
  • the test bearing is an inner ring rotation, and the outer ring has a load cell connected to the housing portion in order to measure the bearing torque.
  • a test bearing was obtained by enclosing each grease in a deep groove ball bearing 6204 (bearing dimensions: inner diameter 20 mm, outer diameter 47 mm, width 14 mm) so that the encapsulation amount was 50% of the rest space ratio.
  • the test bearing was rotated on the inner ring under the conditions of an axial load of 20 N and a rotation speed of 900 min -1 ).
  • the dm ⁇ n value under this condition is about 3.0 ⁇ 10 4 .
  • the tangential force acting on the housing when the bearing was rotated was measured with a load cell, and the bearing torque was calculated from the outer diameter of the housing.
  • Bearing torque was calculated over time (every minute) from the start of the test.
  • the time when the fluctuation of the bearing torque changed to 5% or less in the last 3 hours or the time when the bearing torque changed to 3 Nmm or less was defined as the channeling transition time.
  • Table 1 also shows the channeling transition time of each grease.
  • FIG. 5 shows the relationship between the channeling transition time and the apparent viscosity gradient n of the grease.
  • the greases of Comparative Examples 1 to 3 having a large apparent viscosity gradient n had a longer time to shift to the channeling state than the greases of Examples 1 to 3. Further, if the apparent viscosity gradient n is 0.84 or less from the intersection of the approximate straight line a obtained from the results of Examples 1 to 3 and the approximate straight line b obtained from the results of Comparative Examples 1 to 3, channeling is performed. It was found that the transition time could be kept short.
  • the greases of Comparative Examples 4 to 5 having a large kinematic viscosity the larger the apparent viscosity gradient n was, the longer the channeling transition time was, as in the case of the grease having a small kinematic viscosity.
  • the greases of Comparative Examples 4 to 5 had a longer channeling transition time than the greases having low kinematic viscosities.
  • the channeling transition time was 100 min in all the test examples.
  • the dm ⁇ n value was 20 ⁇ 10 4
  • the channeling transition time was 100 min in all the test examples.
  • the grease in the bearing easily scatters and moves to a stationary space such as the sealing surface, so it is considered that channeling was started at an early stage.
  • the dm ⁇ n value decreased, the number of test examples in which the channeling transition time exceeded 100 min increased.
  • the grease adhering to the cage and the like is less likely to scatter, so it is considered that the channeling transition time has become longer.
  • the channeling transition time was kept short even at low speed rotation, and excellent channeling property was shown.
  • the kinematic viscosity of the base oil at 40 ° C. is 6.12 mm 2 / s to 74.8 mm 2 / s, and the apparent viscosity gradient n of the grease is 0.84 or less. Therefore, it shows excellent channeling even at low speed rotation.
  • the rolling bearing of the present invention Since the rolling bearing of the present invention has excellent channeling properties, it can be widely used as a low torque bearing. In particular, it is suitable for bearings that are operated at low speeds.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

チャンネリング性に優れた転がり軸受、および転がり軸受が組み込まれた電動機を提供する。転がり軸受1は、内輪2および外輪3と、この内輪2および外輪3間に介在する複数の転動体4と、軸受内空間に封入されたグリース7とを有し、グリース7は、40℃における動粘度が6.12mm/s~74.8mm/sの基油と増ちょう剤とを含み、かつ、レオメータを用いて測定される少なくとも2点以上の任意のせん断速度におけるグリースの見かけ粘度から算出される下記式(1)中の見かけ粘度勾配nが0.84以下である。 ただし、式中の記号は、η:見かけ粘度[Pa・s]、n:見かけ粘度勾配、γ:せん断速度[s-1]、a:グリース種ごとの固有の定数である。

Description

転がり軸受および電動機
 本発明はグリースが封入された転がり軸受、および転がり軸受が組み込まれた電動機に関する。
 近年、地球温暖化などの環境問題の観点から、自動車や産業機械はさらなる省エネルギー化が求められている。特に、産業用モータは世界全体の電力消費量の約40%を占めるといわれており、高効率化が求められている。
 このような背景から、世界各国においてモータの効率規制化が進んでいる。日本では、2017年1月から販売される0.75kW以上7.5kW未満の誘導電動機に対して、新しいプレミアム効率規格が適用されている。さらには、次世代の効率規制の動きも進んできており、さらなる高効率クラスのモータの開発も進んでいる。これらの規格を達成するためにはモータの構成要素ごとの効率化が不可欠であり、構成要素の一つである転がり軸受もさらなる低トルク化が求められる。
 転がり軸受の潤滑剤として、一般にグリースが用いられている。転がり軸受に封入されたグリースの大半は、軸受の回転に伴って転動体や保持器に付着し、撹拌を受けながら徐々に静止空間(転動体と保持器が通過する領域を除いた空間)に移動して静止する。ここで、グリース潤滑時における軸受内のグリースの撹拌状態は、チャーニングとチャンネリングに分類できる(例えば非特許文献1参照)。具体的には、撹拌によりグリースが移動し、軸受トルクが変動する状態をチャーニングと称し、グリースの移動が概ね完了し、軸受トルクが安定した状態をチャンネリングと称する。本明細書において、運転開始からチャンネリングに達するまでの時間を「チャンネリング移行時間」と呼ぶ。
 また、チャーニングは、軸受内でグリースが大きく撹拌やせん断を伴う流動をしている状態であり、保持器や転動体の回転をグリースが妨げるため、軸受トルクが大きくなる傾向がある。一方、チャンネリングは、軸受内の大半のグリースは流動せず、転動体と軌道輪の潤滑部近傍などの限られた部位のみでグリースが流動している状態であり、軸受トルクが小さくなる傾向がある。
Lugt,P.M.、「Grease Lubrication in Rolling Bearings」、John Wiley & Sons、2013、p.149-155
 省エネルギーの観点から、転がり軸受はチャンネリング状態で運転されることが望ましい。しかし、チャンネリングとグリースの物性値や軸受の運転条件との関係はよく知られていない。
 本発明はこのような事情に鑑みてなされたものであり、チャンネリング性に優れた転がり軸受、および転がり軸受が組み込まれた電動機を提供することを目的とする。
 本発明の転がり軸受は、内輪および外輪と、この内輪および外輪間に介在する複数の転動体と、軸受内空間に封入されたグリースとを有する転がり軸受であって、上記グリースは、40℃における動粘度が6.12mm/s~74.8mm/sの基油と増ちょう剤とを含み、かつ、レオメータを用いて測定される少なくとも2点以上の任意のせん断速度における上記グリースの見かけ粘度から算出される下記式(1)中の見かけ粘度勾配nが0.84以下であることを特徴とする。
Figure JPOXMLDOC01-appb-M000002
 ただし、式中の記号は、η:見かけ粘度[Pa・s]、n:見かけ粘度勾配、γ:せん断速度[s-1]、a:グリース種ごとの固有の定数である。
 上記見かけ粘度勾配nは、レオメータにより測定される10s-1~300s-1のせん断速度における見かけ粘度と、1000s-1~5000s-1のせん断速度における見かけ粘度との間の勾配であることを特徴とする。
 上記見かけ粘度勾配nが0.75~0.84であることを特徴とする。
 上記転がり軸受が、dm・n値が6.5×10以下の低速回転で使用される軸受であることを特徴とする。
 上記転がり軸受が、工作機の主軸を支持する軸受であることを特徴とする。
 本発明の電動機は、ステータと、ロータと、回転軸を回転可能に支持する転がり軸受とを備える電動機であって、上記転がり軸受が本発明の転がり軸受であることを特徴とする。
 本発明の転がり軸受は、グリースが封入された軸受であり、該グリースは、40℃における動粘度が6.12mm/s~74.8mm/sの基油と増ちょう剤とを含み、かつ、レオメータを用いて測定されるグリースの見かけ粘度から算出される上記式(1)中の見かけ粘度勾配nが0.84以下であるので、軸受運転時において速やかにチャンネリング状態に移行し、チャンネリング性に優れる。これにより、軸受トルクの低減を図ることができる。
 上記転がり軸受は、所定の粘度特性のグリースが封入されているので、dm・n値が6.5×10以下の低速回転で使用される場合においても保持器付近に付着したグリースを飛散させることができ、速やかにチャンネリング状態に移行できる。
 工作機の主軸を支持する軸受は、チャーニング時のグリース撹拌に伴う発熱によって、工作機の加工精度の悪化や軸受自体の短寿命につながるおそれがある。これに対して、チャンネリング性に優れた上記転がり軸受を工作機の主軸用軸受として用いることで、加工精度の悪化や短寿命化を抑制することができる。
 本発明の電動機は、回転軸を回転可能に支持する転がり軸受として本発明の転がり軸受が組み込まれているので、電動機の高効率化に寄与する。
本発明の転がり軸受の一例を示す図である。 回転式レオメータの一例を示す概要図である。 グリースの見かけ粘度勾配を示す図である。 キャピラリー式レオメータの一例を示す概要図である。 チャンネリング移行時間と見かけ粘度勾配の関係を示す図である。
 本発明者らは、軸受内におけるグリースの撹拌状態(チャーニングおよびチャンネリング)について鋭意検討を重ねた結果、その撹拌状態と、グリースの見かけ粘度勾配との間に相関があることを見出した。本発明はこのような知見に基づくものである。
 本発明の転がり軸受の一例を図1に基づいて説明する。図1は深溝玉軸受の断面図である。転がり軸受1は、外周面に内輪軌道面2aを有する内輪2と内周面に外輪軌道面3aを有する外輪3とが同心に配置され、内輪軌道面2aと外輪軌道面3aとの間に複数個の玉4が配置される。この玉4は、保持器5により保持される。また、内・外輪の軸方向両端開口部8a、8bがシール部材6によりシールされ、少なくとも玉4の周囲にグリース7が封入される。内輪2、外輪3および玉4は鉄系金属材料からなり、グリース7が玉4との軌道面に介在して潤滑される。
 本発明の転がり軸受に封入されるグリースは、40℃における動粘度が6.12mm/s~74.8mm/sの基油と、増ちょう剤とを含み、かつ、後述するグリースの見かけ粘度勾配nが0.84以下であることを特徴としている。
 一般に軸受トルクには、グリースの撹拌状態が大きく関与している。例えば、チャンネリングの場合、回転中にグリースがかき分けられ、転動体表面や軌道面へのグリースの付着量が少なくなり、低トルクになる傾向がある。一方、チャーニングの場合、回転によりかき分けられたグリースが再び軌道面に戻ることで、転動体表面や軌道面へのグリースの付着量が常に多くなり、高トルクになる傾向がある。そのため、チャンネリング性の高いグリース、つまりチャンネリング移行時間が短いグリースが望まれている。
 本発明の転がり軸受は、上記のように物性値が規定されたグリースを用いることで、チャンネリング性を高めることができ、撹拌抵抗による軸受トルクを低減できる。特に、実施例に示すように、保持器などに付着したグリースが遠心力で飛散しないような、低速回転条件下においても優れたチャンネリング性を示す。
 本発明に用いるグリースにおいて、基油、増ちょう剤、および必要に応じて添加される添加剤は、基油の動粘度およびグリースの見かけ粘度勾配nが上記数値範囲を満たす範囲内において、公知のものを適宜組み合わせて用いることができる。
 基油は、通常グリースの分野で使用される一般的なものを使用できる。例えば、高度精製油、鉱油、エステル油、エーテル油、合成炭化水素油(PAO油)、シリコーン油、フッ素油、およびこれらの混合油などを使用できる。また、基油の40℃における動粘度は、6.12mm/s~50.0mm/sであることが好ましい。
 増ちょう剤は、通常グリースの分野で使用される一般的なものを使用できる。例えば、金属石けん、複合金属石けんなどの石けん系増ちょう剤、ベントン、シリカゲル、ウレア化合物、ウレア・ウレタン化合物などの非石けん系増ちょう剤を使用できる。金属石けんとしては、ナトリウム石けん、カルシウム石けん、アルミニウム石けん、リチウム石けんなどが、ウレア化合物、ウレア・ウレタン化合物としては、ジウレア化合物、トリウレア化合物、テトラウレア化合物、他のポリウレア化合物、ジウレタン化合物などが挙げられる。なお、増ちょう剤の配合量は、特に限定されないが、グリース全体に対して5質量%~30質量%含まれることが好ましい。
 添加剤としては、アミン系やフェノール系の酸化防止剤、塩素系、イオウ系、りん系化合物、有機モリブデンなどの極圧剤、石油スルホネート、ジノニルナフタレンスルホネート、ソルビタンエステルなどのさび止剤などが挙げられる。
 ここで、見かけ粘度勾配nは以下の手法によって算出できる。
 まず、レオメータを用いたレオロジー測定によって、少なくとも2点以上の任意のせん断速度におけるグリースの見かけ粘度を測定する。レオメータとしては、コーンプレート型のセルを有する回転式レオメータを用いることが好ましい。このようなレオメータの概要を図2に示す。図2に示すように、回転式レオメータ11は、コーンプレート型のセル12と、水平円盤プレート13とから構成されており、セル12とプレート13とは1点で接する(僅かなギャップあり)ように配置され、これらの間に試料であるグリース14を配置する。このレオメータでは、グリース14に加わるせん断速度が、セル中心からの距離に依存せずに、どの位置においても同一となる。レオロジー測定の条件としては、(1)一定温度・一定方向回転での回転速度依存性、(2)一定温度・一定せん断ひずみにおける振動周波数依存性、(3)一定周波数における動的粘弾性のせん断応力依存性などがあるが、本発明では主に(1)の条件で測定を行なう。
 具体的なレオロジー測定条件としては、回転式レオメータ(Thermo Fisher Scientific社製HAAKE RheoWin MARS1)に、直径20mm、先端角度178°のコーンプレート型のセルを用い、一定温度・一定方向回転で、温度25℃などで行なう。この場合、25℃環境下においてグリース粘度測定を行うせん断速度(少なくとも2点以上の任意のせん断速度)で45秒経過時のグリースの粘度を見かけ粘度とする。レオメータにより測定される見かけ粘度は、特に制限はないが、10s-1~300s-1のせん断速度における見かけ粘度と、1000s-1~10000s-1のせん断速度における見かけ粘度を含むことが好ましく、10s-1~100s-1のせん断速度における見かけ粘度と、1000s-1~5000s-1のせん断速度における見かけ粘度を含むことがより好ましい。
 図3には、その一例として、せん断速度100s-1とせん断速度3000s-1における見かけ粘度を測定した結果を示す。図3は、横軸にせん断速度γの対数をとり、縦軸にグリースの見かけ粘度ηの対数をとった両対数グラフに測定結果をプロットしたグラフである。各プロットを繋いだ直線は下記の式(1)で表され、この式(1)から見かけ粘度勾配nが算出される。図3では、見かけ粘度勾配nは、せん断速度100s-1~3000s-1に対する粘度勾配として算出される。
Figure JPOXMLDOC01-appb-M000003
 ただし、式中の記号は、η:見かけ粘度[Pa・s]、n:見かけ粘度勾配、γ:せん断速度[s-1]、a:グリース種ごとの固有の定数である。
 上記では、2点の見かけ粘度の測定結果から見かけ粘度勾配nを算出しているが、3点以上の見かけ粘度の測定結果に基づいて見かけ粘度勾配nを算出してもよい。例えば、上述した2点のせん断速度の間のせん断速度(図3の場合、例えばせん断速度1000s-1)における見かけ粘度を測定し、それを含めた3点で見かけ粘度勾配nを算出してもよい。また、2点のせん断速度の範囲よりも低速側のせん断速度や高速側のせん断速度における見かけ粘度を用いてもよい。なお、3点以上の測定結果を用いる場合には、最小二乗法によって求められる回帰直線から見かけ粘度勾配nが算出される。
 また、グリースの見かけ粘度の測定は、回転式レオメータに限らず、例えばキャピラリー式レオメータを用いて行ってもよい。キャピラリー式レオメータを用いた粘度測定の概要を図4に示す。図4に示すように、キャピラリー式レオメータ21は、下部にキャピラリー24を有するシリンダ23と、シリンダ23内を上下に移動可能なピストン22と、ピストン22の一端部に設けられたロードセル26とを有する。シリンダ23内にグリース25を充填した状態で、一定速度のピストン22を降下させ、グリース25を押出した際の荷重pをロードセル26によって検出する。キャピラリー式レオメータ21の各部の寸法を用いて、下記の式(2)~式(4)に従って、少なくとも2点の任意のせん断速度(単位:1/s)における見かけ粘度ηを求めることができる。そして、得られた上記の式(1)より見かけ粘度勾配nが算出される。
γ=32Q/πD・・・(2)
τ=pD/4L・・・(3)
η=τ/γ・・・(4)
 ただし、上記の式(2)~式(4)中の記号は、Q:体積流量[mm/s]、D:キャピラリー内径[mm]、p:検出荷重[Pa]、L:キャピラリー長さ[mm]、γ:せん断速度[s-1]、τ:せん断応力[Pa]である。なお、Qは、ピストンの断面積[mm]にピストンの速度[mm/s]を掛けた値である。
 本発明の転がり軸受において、上記のように算出されるグリースの見かけ粘度勾配nは0.84以下であり、好ましくは0.60~0.84であり、より好ましくは0.75~0.84である。
 図1では、本発明の転がり軸受として深溝玉軸受について例示したが、深溝玉軸受以外にも、円筒ころ軸受、円すいころ軸受、自動調心ころ軸受、針状ころ軸受、スラスト円筒ころ軸受、スラスト円すいころ軸受、スラスト針状ころ軸受、スラスト自動調心ころ軸受などにも適用できる。
 本発明の転がり軸受は、例えば、電動機に組み込まれるモータ軸受や、工作機の主軸(スピンドル)を支持する軸受、アクスル軸受などに適用される。さらに、本発明の転がり軸受は、低速回転下でも優れたチャンネリング性を示すことから、低速回転用途に特に適している。例えば、dm・n値が20×10以下で使用される軸受に適用される。ここで、dm・n値が20×10以下で使用されるとは、その軸受の使用状態の主な回転速度(定常状態の回転速度)がdm・n値20×10以下であることをいう。該dm・n値は10×10以下であってもよく、6.5×10以下であってもよく、3.0×10以下であってもよい。この場合、dm・n値の下限は特に限定されないが、例えば1.0×10である。
 また、本発明の転がり軸受は、例えば2000min-1以下の回転速度域で使用される軸受に適用される。該回転速度は1500min-1以下であってもよい。具体的には、回転速度1800min-1の汎用モータのモータ軸受や、回転速度1500min-1のアクスル軸受などに適用される。
 本発明の電動機は、ステータと、ロータと、回転軸を回転可能に支持する転がり軸受とを備える。より具体的には、電動機は、ケーシングと、そのケーシングに固定されたステータと、そのステータに対向配置されるロータと、そのロータと一体に回転する回転軸と、ケーシングに対して回転軸を回転可能に支持する転がり軸受とを有する。一般に、回転軸に対して転がり軸受は離間して2個設けられる。この電動機に組み込まれる転がり軸受が本発明の転がり軸受に相当する。本発明の電動機の一形態は、正弦波駆動の三相交流モータである。
 近年、一定速度で駆動するモータの効率クラスを規定する国際標準規格IEC60034-30が発行されている。効率クラスとは、効率基準値をクラスで分類したもので、IE1(標準効率)、IE2(高効率)、IE3(プレミアム効率)が規定されている。省エネルギー化の流れにより、IE2規格やIE3規格に適合するモータが求められている。
 本発明の転がり軸受は、チャンネリング性に優れ、低トルクであることからモータ効率に優れ、IE3規格を満たす電動機に適している。IE3規格は、例えば、極数が2、定格出力が0.75kWの三相交流モータの場合、効率が80.7%である。
 本発明は、グリースのチャンネリング性を評価する、グリースの評価方法とすることもできる。
 具体的には、上記評価方法は、内輪および外輪と、この内輪および外輪間に介在する複数の転動体とを備える転がり軸受に封入され、基油と増ちょう剤を含むグリースのチャンネリング性を評価する評価方法であって、上記評価方法は、レオメータを用いて、少なくとも2点以上の任意のせん断速度における上記グリースの見かけ粘度を測定し、その測定結果から算出される下記式(1)中の見かけ粘度勾配nと、上記基油の40℃における動粘度とに基づいて、上記グリースのチャンネリング性を評価することを特徴とする。
Figure JPOXMLDOC01-appb-M000004
 ただし、式中の記号は、η:見かけ粘度[Pa・s]、n:見かけ粘度勾配、γ:せん断速度[s-1]、a:グリース種ごとの固有の定数である。
 ここで、「チャンネリング性を評価する」とは、該グリースのチャンネリング性の優劣を判断することである。また、チャンネリング性が高いとは、該グリースのチャンネリング移行時間が短い(例えば120min以内)ことや安定的にチャンネリング状態を維持できることなどをいう。
 一般に、チャーニング性およびチャンネリング性の評価は、軸受を実際に回転させることで行なわれるが、この評価には数十分から数日の時間を要する。これに対して、上記評価方法は、グリースの見かけ粘度勾配nと、基油の40℃における動粘度とに基づいて、チャンネリング性を評価する、例えばチャンネリング移行時間の長短を評価するので、実際に軸受を回転させる評価試験を行うことなく、チャンネリング性の優劣を判別できる。
 また従来、チャンネリング性を評価する指標として粘性移行応力(特開2016-204623号公報参照)が知られているが、粘性移行応力は、チャンネリング性と必ずしも相関するものではなく、特に、保持器に付着したグリースが遠心力で飛散しないような、比較的低速の回転条件では適用が困難であった。これに対して、上記評価方法による指標(見かけ粘度勾配n)は、2000min-1以下の回転条件下でも、チャンネリング移行時間と良好な相関を示すため、すべての回転速度域で使用される転がり軸受用のグリースの評価に使える。
 上記見かけ粘度勾配nは、後述の実施例で示すようにチャンネリング移行時間と相関を示す。具体的には、見かけ粘度勾配nが所定以上の領域では、見かけ粘度勾配nが大きくなるほどチャンネリング移行時間が長くなる傾向がある。そのため、本発明の評価方法では、算出された見かけ粘度勾配nの大小によってチャンネリング性を評価することができる。例えば、見かけ粘度勾配nを所定の閾値と比較して、見かけ粘度勾配nが所定の閾値以下の場合に、そのグリースがチャンネリング性が高いと判断し、見かけ粘度勾配nが所定の閾値よりも大きい場合に、そのグリースがチャンネリング性が低い、またはチャーニング性であると判断することができる。所定の閾値は、事前に行われる実験などによって予め設定することができる。例えば、閾値を0.84に設定できる。
 この場合、基油の40℃における動粘度が6.12mm/s~74.8mm/sの場合において、見かけ粘度勾配nが0.84以下のグリースは、見かけ粘度勾配nが0.84よりも大きいグリースに比べて、チャンネリング性が高いと評価することができる。
 また、複数のグリース間において、見かけ粘度勾配nの大小を比較することで、チャンネリング性が最も高いグリースを選定することもできる。
 8種類のグリース(実施例1~3および比較例1~5)について、それぞれ見かけ粘度勾配nを算出した。まず、各グリースの見かけ粘度は、レオメータ(Thermo Fisher Scientific社製HAAKE RheoWin MARS1)において、直径20mm、先端角度178°のコーンプレート型のセルを用いて測定した。具体的には、25℃の条件下において、せん断速度100s-1およびせん断速度3000s-1で45秒後の見かけ粘度をそれぞれ測定した。得られた測定結果から導かれる上記の式(1)を用いて、見かけ粘度勾配nとグリース種ごとの固有の定数aを算出した。各グリースの見かけ粘度勾配nを表1に示す。
 また、8種類のグリースのうち、実施例1~3および比較例1~3のグリースの基油は、JISK2220:2013の一般用グリース1種に規定されている範囲(40℃の動粘度6.12mm/s~74.8mm/s)内である。一方、比較例4~5の基油は、40℃の動粘度が100mm/sである。
 また、各グリースについて、チャンネリング性を評価するため、軸受トルク試験を実施して軸受トルクを経時的に測定した。試験機は、軸受のアキシアル方向に荷重を付加する構造である。試験軸受は内輪回転であり、外輪は軸受トルクを測定するため、ハウジング部にロードセルが連結されている。深溝玉軸受6204(軸受寸法:内径20mm、外径47mm、幅14mm)に、各グリースを封入量が静止空間比50%となるように封入して、試験軸受を得た。試験軸受を、アキシアル荷重20N、回転速度900min-1)の条件で内輪回転させた。この条件のdm・n値は、約3.0×10である。
 試験では、軸受回転時にハウジングに作用する接線力をロードセルで測定し、ハウジングの外径寸法から軸受トルクを算出した。試験開始から軸受トルクを経時的(1分毎)に算出した。軸受トルクの変動が直近の3時間で5%以下に推移した時点の時間、または、軸受トルクが3Nmm以下に推移した時点の時間をチャンネリング移行時間とした。各グリースのチャンネリング移行時間を表1に併記する。
Figure JPOXMLDOC01-appb-T000005
 また、図5には、チャンネリング移行時間とグリースの見かけ粘度勾配nの関係を示す。比較例1~3の見かけ粘度勾配nが大きなグリースは、実施例1~3のグリースと比較して、チャンネリング状態に移行するまでの時間が長い結果になった。また、実施例1~3の結果から得られた近似直線aと比較例1~3の結果から得られた近似直線bの交点より、見かけ粘度勾配nが0.84以下であれば、チャンネリング移行時間は短く抑えられることが分かった。また、比較例4~5の基油の動粘度が大きいグリースは、動粘度の小さなグリースと同様に見かけ粘度勾配nが大きいほど、チャンネリング移行時間が長くなった。また、比較例4~5のグリースは、動粘度の小さいグリースと比較すると、チャンネリング移行時間は長い結果となった。
 続いて、dm・n値とチャンネリング移行時間との関係を検討した。dm・n値を変更した以外は、上述の軸受トルク試験と同様に実施し、各試験例についてチャンネリング移行時間を求めた。チャンネリング移行時間が100min以内の場合を「○」と評価し、100minを超える場合を「×」と評価した。結果を表2に示す。なお、表2中のdm・n値が3.0×10の結果は、上記の表1の試験結果に相当する。
Figure JPOXMLDOC01-appb-T000006
 表2に示すように、dm・n値が20×10の場合は、いずれの試験例もチャンネリング移行時間が100minであった。高速回転では、軸受内のグリースが飛散しやすく、シール面などの静止空間に移動するため、早期にチャンネリングに移行したと考えられる。
 一方、dm・n値が低くなるにつれて、チャンネリング移行時間が100minを超える試験例が増加した。低速回転では、保持器上などに付着したグリースが飛散しにくくなることから、チャンネリング移行時間が長くなったと考えられる。その中でも実施例1~3は、低速回転においてもチャンネリング移行時間が短く保たれ、優れたチャンネリング性を示した。
 以上より、本発明の転がり軸受は、基油の40℃における動粘度が6.12mm/s~74.8mm/sであり、かつ、グリースの見かけ粘度勾配nが0.84以下であるので、低速回転においても優れたチャンネリング性を示す。
 本発明の転がり軸受はチャンネリング性に優れるので、低トルク軸受として広く利用できる。特に、低速回転で運転される軸受に適している。
  1  転がり軸受
  2  内輪
  3  外輪
  4  玉(転動体)
  5  保持器
  6  シール部材
  7  グリース
  8  開口部
  11 回転式レオメータ
  12 コーンプレート型セル
  13 水平円盤プレート
  14 グリース
  21 キャピラリー式レオメータ
  22 ピストン
  23 シリンダ
  24 キャピラリー
  25 グリース
  26 ロードセル

Claims (6)

  1.  内輪および外輪と、この内輪および外輪間に介在する複数の転動体と、軸受内空間に封入されたグリースとを有する転がり軸受であって、
     前記グリースは、40℃における動粘度が6.12mm/s~74.8mm/sの基油と増ちょう剤とを含み、かつ、レオメータを用いて測定される少なくとも2点以上の任意のせん断速度における前記グリースの見かけ粘度から算出される下記式(1)中の見かけ粘度勾配nが0.84以下であることを特徴とする転がり軸受。
    Figure JPOXMLDOC01-appb-M000001
     ただし、式中の記号は、η:見かけ粘度[Pa・s]、n:見かけ粘度勾配、γ:せん断速度[s-1]、a:グリース種ごとの固有の定数である。
  2.  前記見かけ粘度勾配nは、レオメータにより測定される10s-1~300s-1のせん断速度における見かけ粘度と、1000s-1~5000s-1のせん断速度における見かけ粘度との間の勾配であることを特徴とする請求項1記載の転がり軸受。
  3.  前記見かけ粘度勾配nが0.75~0.84であることを特徴とする請求項1記載の転がり軸受。
  4.  前記転がり軸受が、dm・n値が6.5×10以下の低速回転で使用される軸受であることを特徴とする請求項1記載の転がり軸受。
  5.  前記転がり軸受が、工作機の主軸を支持する軸受であることを特徴とする請求項1記載の転がり軸受。
  6.  ステータと、ロータと、回転軸を回転可能に支持する転がり軸受とを備える電動機であって、
     前記転がり軸受が請求項1記載の転がり軸受であることを特徴とする電動機。
PCT/JP2021/035288 2020-09-30 2021-09-27 転がり軸受および電動機 WO2022071194A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-164864 2020-09-30
JP2020164864 2020-09-30
JP2021036264A JP2022058099A (ja) 2020-09-30 2021-03-08 転がり軸受および電動機
JP2021-036264 2021-03-08

Publications (1)

Publication Number Publication Date
WO2022071194A1 true WO2022071194A1 (ja) 2022-04-07

Family

ID=80951570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035288 WO2022071194A1 (ja) 2020-09-30 2021-09-27 転がり軸受および電動機

Country Status (1)

Country Link
WO (1) WO2022071194A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156761A (ja) * 2002-11-08 2004-06-03 Nsk Ltd 転動装置
JP2012167170A (ja) * 2011-02-14 2012-09-06 Nsk Ltd グリースおよび転がり軸受
JP2013023644A (ja) * 2011-07-25 2013-02-04 Nsk Ltd グリース組成物
JP2017172714A (ja) * 2016-03-24 2017-09-28 日本精工株式会社 転がり軸受
JP2019007809A (ja) * 2017-06-23 2019-01-17 Ntn株式会社 グリースの評価方法、およびグリースの評価方法により評価されたグリース
JP2020105462A (ja) * 2018-12-28 2020-07-09 Ntn株式会社 グリース組成物、および転がり軸受

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156761A (ja) * 2002-11-08 2004-06-03 Nsk Ltd 転動装置
JP2012167170A (ja) * 2011-02-14 2012-09-06 Nsk Ltd グリースおよび転がり軸受
JP2013023644A (ja) * 2011-07-25 2013-02-04 Nsk Ltd グリース組成物
JP2017172714A (ja) * 2016-03-24 2017-09-28 日本精工株式会社 転がり軸受
JP2019007809A (ja) * 2017-06-23 2019-01-17 Ntn株式会社 グリースの評価方法、およびグリースの評価方法により評価されたグリース
JP2020105462A (ja) * 2018-12-28 2020-07-09 Ntn株式会社 グリース組成物、および転がり軸受

Similar Documents

Publication Publication Date Title
JP2012229334A (ja) グリースおよび転がり軸受
JP2017172714A (ja) 転がり軸受
WO2018169046A1 (ja) グリース封入軸受のトルク評価方法
TW201224312A (en) Oil-impregnated sintered bearing
WO2022071194A1 (ja) 転がり軸受および電動機
KR20070039592A (ko) 구름 베어링
JP2012097827A (ja) 転がり軸受
JP2022058099A (ja) 転がり軸受および電動機
JP6990052B2 (ja) グリース封入転がり軸受
JP7455376B2 (ja) グリース組成物
WO2022071195A1 (ja) 転がり軸受および電動機
JP2022058100A (ja) 転がり軸受および電動機
JP5470709B2 (ja) 転がり支持装置
WO2021070888A1 (ja) 車軸用軸受、グリース組成物、および転がり玉軸受
JP2023101464A (ja) 転がり軸受および電動機
JP2022025702A (ja) グリースの評価方法、グリース、および転がり軸受
JP4989191B2 (ja) インバータ駆動モータ用グリース封入軸受
JP7419012B2 (ja) 車軸用軸受
JP6699332B2 (ja) 転動装置
JPH09217752A (ja) 転がり軸受
JP5691877B2 (ja) 潤滑剤組成物及び転がり軸受
JP7350608B2 (ja) グリース組成物および転がり玉軸受
JP2018003028A (ja) 転がり軸受用グリース組成物及び転がり軸受、並びに工作機械主軸装置
Franke et al. Service life and lubrication conditions of different grease types in high-speed rolling bearings
WO2021070887A1 (ja) グリース組成物および転がり玉軸受

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875496

Country of ref document: EP

Kind code of ref document: A1