WO2022071122A1 - ポリアミド多孔膜及びその製造方法 - Google Patents

ポリアミド多孔膜及びその製造方法 Download PDF

Info

Publication number
WO2022071122A1
WO2022071122A1 PCT/JP2021/035113 JP2021035113W WO2022071122A1 WO 2022071122 A1 WO2022071122 A1 WO 2022071122A1 JP 2021035113 W JP2021035113 W JP 2021035113W WO 2022071122 A1 WO2022071122 A1 WO 2022071122A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
membrane
hollow fiber
dense layer
porous
Prior art date
Application number
PCT/JP2021/035113
Other languages
English (en)
French (fr)
Inventor
亮太 中村
邦子 井上
恭平 馬越
貴博 小野
秀人 松山
Original Assignee
ユニチカ株式会社
国立大学法人神戸大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社, 国立大学法人神戸大学 filed Critical ユニチカ株式会社
Priority to US18/028,866 priority Critical patent/US20230347297A1/en
Priority to KR1020237009429A priority patent/KR20230079040A/ko
Priority to EP21875424.0A priority patent/EP4223833A1/en
Priority to JP2022553901A priority patent/JPWO2022071122A1/ja
Priority to CN202180063815.2A priority patent/CN116194194A/zh
Publication of WO2022071122A1 publication Critical patent/WO2022071122A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • B01D2325/0231Dense layers being placed on the outer side of the cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation

Definitions

  • the present invention relates to a polyamide porous membrane having excellent liquid permeability and a method for producing the same.
  • Porous membranes are used in various fields as filtration membranes.
  • nanofiltration membranes and ultrafiltration membranes are used for removing bacteria, viruses, pesticides, odor components, and hardness components in the water purification field, artificial dialysis in the medical field, removing viruses and proteins during the production of pharmaceuticals and medical water, and in the industrial field.
  • Separation or concentration of heat-sensitive substances such as proteins and enzymes, production of ultrapure water, recovery of electrodeposited paint, sewage treatment of yarn and pulp factories, treatment of oil-containing wastewater, treatment of building wastewater, clarification of fruit juice, It has been put to practical use in various fields such as raw liquor production, cheese whey concentration / desalting, concentrated milk production, egg white concentration, use in bioreactors, and water treatment of nuclear power plants.
  • nanofiltration There are various definitions of classifications such as nanofiltration and ultrafiltration, and the spread is not always clear, but according to the IUPAC definition, porous media with a pore diameter in the range of 2 to 100 nm are ultrafiltered and 2 nm. It is recommended to define the following as nanofiltration. Further, since nanofiltration targets the selection of substances having a size larger than that of reverse osmosis, it may be defined as a porous body having a pore diameter of 1 to 2 nm. On the other hand, it is difficult to observe and measure the pore diameters of nanofiltration and ultrafiltration membranes even with an electron microscope, and there are variations in pore diameters. Is not sufficient, and the molecular weight of the fraction is mainly used as an index of separation performance.
  • the size of the target substance that can be separated by the ultrafiltration membrane is not clearly separated before and after the molecular weight cut-off, but has a certain width.
  • those having a molecular weight cut-off of 1000 to 1000000 are generally classified as ultrafiltration, and those having a molecular weight cut off of 200 to 1000 are generally classified as nanofiltration.
  • ultrafiltration or “ultrafiltration membrane” is used in the present specification, the filtration or fractionation molecular weight in which the fractional molecular weight is set in the range of 1000 to 1000000 is used.
  • filtration membrane in the range of 1000 to 1000,000, and when it is described as “nanofiltration” or “nanofiltration membrane”, the filtration or fractionation in which the fractional molecular weight is set in the range of 200 to 1000 is set. It shall mean a filtration membrane having a molecular weight in the range of 200 to 1000.
  • the porous membrane is used as a filtration membrane in various industrial fields, it may be used for treating a solution containing an organic solvent.
  • polymer materials such as cellulose acetate, polyacrylonitrile, polyvinylidene fluoride, polysulfone, and polyethersulfone, which are often used as materials for conventional ultrafiltration membranes, are still satisfactory from the viewpoint of resistance to organic solvents. It wasn't going.
  • polyacrylonitrile and polyvinylidene fluoride which have relatively high organic solvent resistance among these materials, have a drawback that they are easily dissolved in an organic solvent such as an aprotic polar solvent.
  • the molecular weight cut-off of the porous membrane the lower the liquid-permeable performance. Therefore, the required liquid-permeable performance differs depending on the molecular weight cut-off.
  • the conventional polyamide porous membrane often does not have an appropriate liquid permeability according to the molecular weight cut-off, improvement of the liquid-permeable performance is required.
  • the molecular weight cut-off is high. With a porous membrane of about 200 to 50,000, the tendency for the liquid permeability to decrease remarkably tends to appear, and it has been difficult to improve the liquid permeability with a porous membrane satisfying such a molecular weight cut-off.
  • the present inventors have formed a dense layer having streaky recesses extending in one direction on at least one surface, and the streaky recesses are under predetermined conditions.
  • a polyamide porous film having an orientation angle of 0 to 5.0 ° or 175.0 to 180.0 ° and an orientation strength of 1.5 to 2.0 as determined by orientation analysis has a molecular weight cut-off of about 200 to 50,000.
  • the present inventors have used a heat-induced phase separation method (TIPS method) and a non-solvent-induced phase separation method (NIPS method) in combination to form a polyamide porous film from a film-forming stock solution containing a polyamide resin.
  • Item 1 A polyamide porous membrane in which a dense layer is formed on at least one surface. It has streaky recesses extending in one direction on the surface of the dense layer.
  • a polyamide porous film having an orientation angle of 0 to 5.0 ° or 175.0 to 180.0 ° and an orientation strength of 1.5 to 2.0 in the following orientation analysis.
  • Orientation analysis An electron microscope image of the surface of the dense layer is arranged so that the X-axis direction is parallel to the longitudinal direction of the streaky recess observed in the dense layer, and binarized to obtain a binarized image.
  • the approximate ellipse of the angle distribution map of the average amplitude is obtained from the power spectrum image obtained by Fourier transforming the binarized image. Based on the approximate ellipse, the following orientation angle and orientation strength are obtained.
  • Orientation angle Angle of the approximate ellipse in the minor axis direction with respect to the positive direction of the X-axis (°)
  • Orientation strength Ratio term of major axis length / minor axis length in approximate ellipse 2.
  • Polyamide porous membrane Item 4.
  • Item 6. The polyamide porous membrane according to any one of Items 1 to 3, which is a hollow fiber membrane.
  • Item 5. A filtration method for filtering a liquid to be treated containing a solute or particles using the polyamide porous membrane according to any one of Items 1 to 4.
  • Item 6. A filtration membrane module in which the polyamide porous membrane according to any one of Items 1 to 4 is housed in a module case.
  • a method for producing a polyamide porous membrane which comprises the following first to fourth steps: The first step of preparing a film-forming stock solution in which a polyamide resin is dissolved in an organic solvent having a boiling point of 150 ° C. or higher and incompatible with the polyamide resin at a temperature of less than 100 ° C. at a temperature of 100 ° C. or higher. This is a step of coagulating the polyamide resin into a film by extruding the film-forming stock solution prepared in the first step into a coagulation bath having a predetermined shape at 100 ° C. or lower, and is extruded in the predetermined shape in the step.
  • a coagulant having compatibility with the organic solvent used in the membrane-forming stock solution and having a low affinity with the polyamide resin is brought into contact with at least one surface of the membrane-forming stock solution to form a polyamide porous film.
  • Second step The third step of extracting and removing the coagulating liquid phase-separated in the polyamide porous film formed in the second step, and the polyamide porous film after the third step are uniaxially stretched at the same time as drying or after drying.
  • Item 10 This is a method for manufacturing a porous polyamide membrane in the shape of a hollow fiber membrane.
  • a double tubular nozzle for manufacturing a hollow fiber having a double tube structure is used, and the membrane-forming stock solution is discharged from the outer annular nozzle and the internal coagulation liquid is discharged from the inner nozzle in a coagulation bath. It is a process of immersing in Item 1 The manufacturing method described in.
  • the polyamide porous membrane of the present invention has improved liquid permeability based on having a dense layer having a specific structure, it can be provided with appropriate liquid permeability according to the molecular weight cut-off, and in particular, 200 to 200 to.
  • the liquid permeability can be improved even with a molecular weight cut off of about 50,000.
  • the polyamide porous membrane of the present invention has improved liquid permeability, it is possible to achieve productivity improvement, energy saving, and cost reduction in manufacturing processes in various industries.
  • the porous polyamide membrane of the present invention is made of a polyamide resin, it has excellent resistance to various organic solvents and comes into contact with various types of industrially used organic solvents.
  • the membrane properties can be maintained stably, and it becomes possible to provide new industrial processes such as alternatives to distillation.
  • the porous polyamide membrane of the present invention is highly hydrophilic, when applied to a conventional aqueous filtration process, if the substance to be removed is hydrophilic, the removal performance can be improved by the adsorption effect, while the removal performance can be improved. Since the adsorption of the hydrophobic substance is suppressed, the hydrophobic substance covers the membrane surface to prevent fouling in which the treatment flow rate decreases, and efficient filtration treatment can be realized.
  • a is an example of a scanning electron microscope image of the surface of a dense layer of a polyamide porous film
  • b is a binarized image obtained by binarizing the scanning electron microscope image of a by moving averaging
  • c is a binomial image of b.
  • It is a power spectrum image obtained by Fourier transforming the converted image.
  • a is a schematic diagram of a module used for measuring a methanol permeation amount
  • b is a schematic diagram of an apparatus used for measuring a methanol permeation amount.
  • It is a scanning electron microscope image of the dense layer of the polyamide hollow fiber membrane of Examples 1 to 4 and Comparative Example 1.
  • It is a power spectrum image obtained by binarizing the scanning electron microscope image of FIG. 3 and performing a Fourier transform.
  • the polyamide porous membrane of the present invention is a polyamide porous membrane in which a dense layer is formed on at least one surface, and has streaky recesses extending in one direction on the surface of the dense layer, and is oriented as described later. It is characterized in that the orientation angle of the streak recess in the analysis is 0 to 5.0 ° or 175.0 to 180.0 °, and the orientation strength is 1.5 to 2.0.
  • the polyamide porous membrane of the present invention will be described in detail.
  • the polyamide porous membrane of the present invention is formed of a polyamide resin.
  • the polyamide porous membrane of the present invention can be resistant to a wide range of organic solvents by using the polyamide resin as a constituent resin.
  • the type of the polyamide resin used as the constituent resin is not particularly limited, and examples thereof include a polyamide homopolymer, a polyamide copolymer, and a mixture thereof.
  • Specific examples of the polyamide homopolymer include polyamide 6, polyamide 66, polyamide 46, polyamide 610, polyamide 612, polyamide 11, polyamide 12, polyamide MXD6, polyamide 4T, polyamide 6T, polyamide 9T, and polyamide 10T. Be done.
  • Specific examples of the polyamide copolymer include a copolymer of a polyamide and a polyether such as polytetramethylene glycol or polyethylene glycol.
  • the ratio of the polyamide component in the polyamide copolymer is not particularly limited, but for example, the ratio of the polyamide component is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol%. As mentioned above, 95 mol% or more is particularly preferable. When the ratio of the polyamide component in the polyamide copolymer satisfies the above range, more excellent organic solvent resistance can be provided.
  • examples thereof include an aliphatic polyamide resin having a molar ratio of, more preferably one composed only of the aliphatic polyamide resin.
  • the polyamide resin used as the constituent resin may or may not be crosslinked, but it is preferable that the polyamide resin is not crosslinked from the viewpoint of reducing the manufacturing cost.
  • the relative viscosity of the polyamide resin is not particularly limited, and examples thereof include 2.0 to 7.0, preferably 3.0 to 6.0, and more preferably 2.0 to 4.0. By having such a relative viscosity, the moldability and the controllability of phase separation are improved at the time of manufacturing the polyamide porous membrane, and it becomes possible to provide excellent shape stability to the polyamide porous membrane.
  • the relative viscosity refers to a value measured by a Ubbelohde viscometer at 25 ° C. using a solution in which 1 g of a polyamide resin is dissolved in 100 mL of 96% sulfuric acid.
  • the polyamide resin used as the constituent resin may be used alone or in combination of two or more.
  • the porous polyamide film of the present invention may contain a filler in addition to the above-mentioned polyamide resin as long as the effect of the present invention is not impaired.
  • a filler By including the filler, the strength, elongation and elastic modulus of the polyamide porous membrane can be improved.
  • the inclusion of the filler also has the effect that the porous polyamide membrane is less likely to be deformed even when a high pressure is applied during filtration.
  • the type of filler to be added is not particularly limited, but for example, glass fiber, carbon fiber, potassium titanate whisker, zinc oxide whisker, calcium carbonate whisker, wallastenite whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide.
  • Fibrous fillers such as fibers, ceramic fibers, asbestos fibers, stone wool fibers, metal fibers; talc, hydrotalcite, wallastenite, zeolite, sericite, mica, kaolin, clay, pyrophyllite, bentonite, asbestos, alumina silicate Sylates such as silicon oxide, magnesium oxide, alumina, zirconium oxide, titanium oxide, iron oxide and the like; carbonates such as calcium carbonate, magnesium carbonate and dolomite; sulfates such as calcium sulfate and barium sulfate; hydroxylation.
  • Fibrous fillers such as fibers, ceramic fibers, asbestos fibers, stone wool fibers, metal fibers; talc, hydrotalcite, wallastenite, zeolite, sericite, mica, kaolin, clay, pyrophyllite, bentonite, asbestos, alumina silicate Sylates such as silicon oxide, magnesium oxide, alumina, zirconium oxide, titanium oxide, iron oxide and the like
  • Metal hydroxides such as calcium, magnesium hydroxide and aluminum hydroxide; inorganic materials such as glass beads, glass flakes, glass powder, ceramic beads, boron nitride, silicon carbide, carbon black, silica, graphite and other non-fiber fillers. Can be mentioned. These fillers may be used alone or in combination of two or more. Among these fillers, talc, hydrotalcite, silica, clay and titanium oxide are preferable, and talc and clay are more preferable.
  • the content of the filler is not particularly limited, and examples thereof include 5 to 100 parts by mass, preferably 10 to 75 parts by mass, and more preferably 25 to 50 parts by mass of the filler per 100 parts by mass of the polyamide resin.
  • the filler in such a content, the strength, elongation, and elastic modulus of the polyamide porous membrane can be improved.
  • additives such as a thickener, an antioxidant, a surface modifier, a lubricant, and a surfactant are added as necessary for controlling the pore size and improving the membrane performance. May be included.
  • the shape of the porous polyamide membrane of the present invention is not particularly limited and can be selected from any shape such as a hollow fiber membrane and a flat membrane, but the hollow fiber membrane has a large filtration area per unit volume of the module. This is suitable in the present invention because it enables efficient filtration treatment.
  • the porous polyamide membrane of the present invention is a hollow fiber membrane
  • its outer diameter is appropriately set according to its application, the thickness of the dense layer, the liquid permeability to be provided, and the like, but it is effective when filled in a module.
  • the outer diameter of the hollow fiber membrane is 450 ⁇ m or more, preferably 450 to 4000 ⁇ m, more preferably 500 to 3500 ⁇ m, and further. It is preferably 700 to 3000 ⁇ m, and particularly preferably 700 to 2000 ⁇ m.
  • the porous polyamide membrane of the present invention is a hollow fiber membrane
  • another example of the outer diameter range thereof is 450 to 1000 ⁇ m or 500 to 760 ⁇ m.
  • the inner diameter thereof is not particularly limited, but is, for example, 100 to 3000 ⁇ m, preferably 200 to 2500 ⁇ m, more preferably 300 to 2000 ⁇ m, and further preferably 300 to 300. 1500 ⁇ m can be mentioned.
  • the polyamide porous membrane of the present invention is a hollow fiber membrane, another example of the range of the inner diameter thereof is 200 to 400 ⁇ m or 230 to 370 ⁇ m.
  • the outer diameter and inner diameter of the hollow fiber membranes are observed with an optical microscope at a magnification of 200 times for five hollow fiber membranes, and the outer diameter and inner diameter of each hollow fiber membrane (both are the maximum diameters) are measured. However, it is a value obtained by calculating the average value of each.
  • the thickness of the porous polyamide membrane of the present invention is appropriately set according to the use and shape of the porous polyamide membrane, the thickness of the dense layer, the liquid permeability to be provided, and the like, and is, for example, 50 to 600 ⁇ m, preferably 100 to 350 ⁇ m. Can be mentioned. Further, as another example of the thickness range of the polyamide porous membrane of the present invention, 200 to 500 ⁇ m or 240 to 390 ⁇ m can be mentioned.
  • the thickness thereof is a value calculated by dividing the value obtained by subtracting the inner diameter from the outer diameter by 2.
  • a dense layer is formed on the surface of at least one of the surfaces.
  • the "dense layer” is a region where fine micropores are gathered, and a region in which the presence of pores is substantially not recognized in a scanning electron microscope (SEM) photograph having a magnification of 10000 times. Is shown.
  • SEM scanning electron microscope
  • the polyamide porous film When observing the dense layer with a scanning electron microscope, if the polyamide porous film is a flat film, it is cut to an appropriate size, placed on a sample table, and then subjected to vapor deposition treatment of Pt, Au, Pd, etc. for observation. do it.
  • the porous polyamide membrane When the porous polyamide membrane is a hollow fiber membrane, when observing the dense layer existing on the outer surface, cut it to an appropriate size and place it on a sample table, as in the case of a flat membrane, and then Pt, Au, It may be observed by subjecting it to vapor deposition treatment such as Pd, but when observing the dense layer existing on the inner cavity side surface, cut it in the longitudinal direction of the hollow fiber membrane with a sharp blade such as a knife and observe it on the inner cavity side. After the surface is exposed, it is cut to an appropriate size, placed on a sample table, and then subjected to a vapor deposition treatment of Pt, Au, Pd, etc. for observation.
  • the thickness of the dense layer is not particularly limited, and examples thereof include 10 to 2000 nm, preferably 100 to 1500 nm, and more preferably 200 to 1000 nm.
  • the thickness of the dense layer is determined by measuring the distance (thickness) of a region in which the presence of substantially no pores is not substantially observed in an SEM photograph of a hollow fiber membrane cross section at a magnification of 10000 times at 10 or more points, and averaging the distances (thicknesses). It is a value required to calculate the value.
  • the polyamide porous membrane of the present invention may have a dense layer formed on at least one of the surfaces thereof.
  • a dense layer may be formed on at least one of the lumen side surface and the outer surface.
  • a dense layer may be formed on at least one of the front surface and the back surface.
  • a preferred example of the polyamide porous membrane of the present invention is an embodiment in which a dense layer is provided on only one surface.
  • a dense layer is provided on the surface on the lumen side and no dense layer is provided on the outer surface.
  • the polyamide porous membrane of the present invention has streaky recesses extending in one direction on the surface of the dense layer.
  • the streaky recesses on the surface of the dense layer can be confirmed by observing the surface of the dense layer with a scanning electron microscope (SEM) having a magnification of 10000 times.
  • SEM scanning electron microscope
  • the longitudinal direction of the streaky recesses existing on the surface of the dense layer substantially coincides with the stretching direction of the uniaxial stretching at the time of manufacturing. That is, when the porous polyamide membrane of the present invention is a hollow fiber membrane, the longitudinal direction of the streaky recesses is substantially parallel to the longitudinal direction of the hollow fiber membrane, and the porous polyamide membrane of the present invention is a flat membrane. In some cases, the longitudinal direction of the streak recess is substantially parallel to the stretching direction of the flat membrane at the time of manufacture.
  • the streaky recesses on the surface of the dense layer satisfy the orientation angle of 0 to 5.0 ° or 175.0 to 180.0 ° and the orientation strength of 1 in the orientation analysis described later. .50 to 2.00 is satisfied.
  • the orientation angle in the orientation analysis described later is preferably 0 to 3.0 ° or 177.0 to 180.0 °, and more preferably 1.1 to 2 ° C. It may be 5.5 ° or 177.5 to 178.9 °, more preferably 1.1 to 2.5 ° or 177.9 to 178.9 °.
  • the orientation strength in the orientation analysis described later is preferably 1.50 to 1.90, more preferably 1.56 to 1.77.
  • the orientation angle and orientation strength are obtained by orientation analysis in the steps (1) to (4) shown below.
  • (1) The electron microscope image on the surface of the dense layer is binarized to obtain a binarized image.
  • (2) A power spectrum image is obtained by arranging the binarized image so that the X-axis direction is parallel to the longitudinal direction of the streaky recess observed in the dense layer and performing a Fourier transform.
  • (3) The approximate ellipse of the angle distribution map of the average amplitude is obtained from the power spectrum image.
  • the following orientation angle and orientation strength are obtained based on the approximate ellipse.
  • Orientation angle Angle of the approximate ellipse in the minor axis direction with respect to the positive direction of the X-axis (°)
  • Orientation strength Ratio of major axis length / minor axis length in approximate ellipse
  • the electron microscope image used in the step (1) above an image observed with a scanning electron microscope (SEM) having a magnification of 10000 times may be used.
  • SEM scanning electron microscope
  • the method for observing the dense layer with a scanning electron microscope is as described above. Since the binarized image obtained in the step (1) is subjected to the Fourier transform process, in the step (1), a square electron microscope image having a power of 2 on each side is used as the number of pixels. do.
  • the binarization process in the step (1) may be performed by the moving average method.
  • the X-axis direction is parallel to the longitudinal direction (uniaxial stretching direction at the time of manufacture) of the streaky recess observed in the dense layer, and the Y-axis direction is the width method of the streak recess (short direction).
  • the binarized image is arranged so as to be parallel to the direction (direction perpendicular to the uniaxial stretching direction at the time of manufacturing), and the Fourier conversion process is performed.
  • the Fourier transform process in the step (2) may be performed by a fast Fourier transform (FFT) process.
  • FFT fast Fourier transform
  • the angle distribution map (power spectrum pattern) of the average amplitude is obtained by displaying the power spectrum image obtained in the step (2) in polar coordinates.
  • the streaky recesses on the surface of the dense layer of the polyamide porous film of the present invention have orientation, and the angle distribution map of the average amplitude appears as a shape close to an ellipse. Therefore, in the step (3) above, the average amplitude Find the approximate ellipse of the angle distribution map of.
  • the minor axis direction of the approximate ellipse with respect to the positive direction of the X axis is based on the approximate ellipse (major axis length, minor axis length, angle in the minor axis direction) obtained in the step (3).
  • the angle of is calculated as the orientation angle (°)
  • the ratio of the major axis length / minor axis length in the approximate ellipse is calculated as the alignment strength.
  • the orientation angle and the orientation intensity are values calculated as the average value of the analysis results of the scanning electron microscope image 10 visual fields.
  • the orientation analysis according to the steps (1) to (4) above can be performed using known image analysis software. For example, you can easily use "Non-destructive paper surface fiber orientation analysis program FiberOri8single03.exe (V.8.03)" (downloadable from http://www.enomae.com/FiberOri/index.htm).
  • the orientation analysis according to the steps (1) to (4) above can be performed to obtain the orientation angle and the orientation strength.
  • the procedure for determining the orientation angle and orientation strength using the "non-destructive paper surface fiber orientation analysis program FiberOri8single03.exe (V.8.03)" will be described below. First, an electron microscope image (a in FIG.
  • the region other than the dense layer has a porous structure.
  • the region other than the dense layer may be referred to as a “porous region”.
  • the porous region specifically refers to a region in which the presence of pores is substantially observed in a scanning electron microscope (SEM) photograph at a magnification of 2000 times. Since the performance of the polyamide porous membrane of the present invention is determined by the portion of the dense layer, the porous region can be considered as a so-called support layer, and the pore size in the porous region is sufficient to hold the dense layer. There are no particular restrictions as long as it does not significantly hinder the permeation of the fluid.
  • the molecular weight cut-off of the polyamide porous membrane of the present invention is not particularly limited and can be appropriately set by appropriately adjusting the thickness of the dense layer, the pore size of the region other than the dense layer, and the like. 50,000, preferably 200 to 20000, more preferably 800 to 15000, and even more preferably 920 to 1400.
  • the fractional molecular weight represents the pore size of a membrane capable of blocking a substance having a specific molecular weight by 90% or more, and is represented by the molecular weight of the substance that can block the substance.
  • the molecular weight cut-off is a value obtained by the following method.
  • a compound having a known molecular weight dissolved in pure water at 0.1% by mass is used as a stock solution and filtered at a pressure of 0.3 MPa to recover the solution that has permeated the membrane.
  • the concentration of the compound in the permeate is measured, and the inhibition rate is calculated according to the following formula.
  • the inhibition rate is calculated for each, and based on the results, a graph showing the molecular weight of the compound used on the horizontal axis and the inhibition rate of each compound is created on the vertical axis, and the obtained approximate curve.
  • the molecular weight at the intersection of 90% and the blocking rate is determined as the fractional molecular weight.
  • polyethylene glycol is used when the molecular weight cut-off is in the range of 200 to 50,000, and dextran is used when the molecular weight cut-off is more than 50,000.
  • the polyamide porous membrane of the present invention has streaky recesses extending in one direction on the surface of the dense layer, and the alignment angle and orientation angle of the streak recesses satisfy the above-mentioned ranges, so that the liquid permeability is enhanced.
  • the liquid permeability that the porous polyamide film of the present invention can provide varies depending on the molecular weight cut-off, the type of polyamide resin used, and the like, and cannot be uniformly specified. For example, the permeation amount of methanol is 0.4 to 50 L.
  • the methanol permeation amount is a value measured by internal pressure filtration when the polyamide porous membrane is a hollow fiber membrane, and is a value measured by the following procedure.
  • 10 hollow fiber membranes are cut into a length of 30 cm, and these are aligned and bundled to prepare a bundle.
  • a nylon hard tube having an outer diameter of 8 mm, an inner diameter of 6 mm, and a length of 50 mm is prepared, and a rubber stopper having a length of about 20 mm is inserted from one end opening of the tube, and the stopper of the one end opening is inserted. do.
  • a two-component mixed type room temperature curing type epoxy resin is inserted into the opening of the tube on the opposite side of the rubber stopper, and the space inside the tube is filled with the epoxy resin.
  • the bundle of the prepared hollow fiber membranes is bent into a substantially U shape, and both ends of the hollow fiber membranes are inserted into the tube filled with the epoxy resin until the tip of the end touches the rubber stopper.
  • the epoxy resin is cured as it is.
  • the region on the rubber stopper side of the cured epoxy resin portion is cut together with the tube to obtain a module in which the hollow portions at both ends of the hollow fiber membrane are opened.
  • a schematic diagram of the module is shown in FIG. 2a.
  • the module was set in the device shown in b of FIG.
  • the methanol permeation amount is a value measured by dead-end filtration when the polyamide porous membrane is a flat membrane, and is a value measured by the following procedure.
  • a flat membrane cross-flow tester connected to a high-pressure pump (for example, a MeOH-CF flat membrane test cell manufactured by GE Water Technologies, Inc.)
  • a flat membrane-shaped polyamide porous membrane was formed into a predetermined size (19.1 cm ⁇ 14. Cut to 0 cm, effective membrane area in the cell: 155 cm 2 ), fix it in the cell, flow methanol at 25 ° C, collect the methanol permeated at a predetermined pressure, measure the volume (L), and follow the formula below.
  • the amount of methanol permeation (L / (m 2 ⁇ bar ⁇ h)) is calculated.
  • the molecular weight cut-off of the porous polyamide film of the present invention is more than 1000, as a suitable example of the range of the permeation amount of methanol that can be satisfied for each range of the molecular weight cut-off, for example, the molecular weight cut-off is 1100 to 2000.
  • the permeation amount of methanol is 5 to 50 L / (m 2 ⁇ bar ⁇ h); preferably the molecular weight cut-off is 1200 to 1500, and the permeation amount of methanol is 5 to 30 L / (m 2 ⁇ bar ⁇ h); more preferably.
  • ⁇ 19 L / (m 2 ⁇ bar ⁇ h) can be mentioned.
  • a suitable example of the range of the permeation amount of methanol that can be satisfied for each range of the molecular weight cut-off is, for example, 200 to 1000 molecular weight cut-off.
  • the permeation amount of methanol is 0.8 to 10 L / (m 2 ⁇ bar ⁇ h); preferably, the molecular weight cut-off is 900 to 1000, and the permeation amount of methanol is 0.8 to 5.0 L / (m 2 ).
  • the molecular weight cut-off is 900-1000 and the permeation amount of methanol is 0.8-3.0 L / (m 2 ⁇ bar ⁇ h): more preferably the molecular weight cut-off is 920 ⁇ . 990, and the permeation amount of methanol is 0.8 to 2.9 L / (m 2 ⁇ bar ⁇ h).
  • the porous polyamide membrane of the present invention Since the porous polyamide membrane of the present invention is made of a polyamide resin, it has the property of suppressing changes in strength and elongation and stably maintaining the membrane structure (organic solvent resistance) even when it comes into contact with various types of organic solvents. ) Is provided. More specifically, the porous polyamide membrane of the present invention has resistance to organic solvents such as alcohols, aprotic polar solvents, hydrocarbons, higher fatty acids, ketones, esters and ethers. .. Specific examples of the type of such organic solvent include the following.
  • Alcohols Primary alcohols such as methanol, ethanol, n-propanol, n-butanol, benzyl alcohol; secondary alcohols such as isopropyl alcohol and isobutanol; tertiary alcohols such as tertiary butyl alcohol; ethylene glycol, Polyhydric alcohols such as diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, 1,3-butanediol, and glycerin.
  • Ketones Acetone, methyl ethyl ketone, cyclohexanone, diisopropyl ketone, etc.
  • Ethers tetrahydrofurans, diethyl ethers, diisopropyl ethers, 1,4-dioxane and the like, and glycol ethers such as ethylene glycol monomethyl ethers, diethylene glycol monomethyl ethers and propylene glycol monomethyl ethers.
  • Aprotic polar solvent N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, sulfolane, etc.
  • Esters Ethyl acetate, isobutyl acetate, ethyl lactate, dimethyl phthalate, diethyl phthalate, ethylene carbonate, propylene carbonate, propylene glycol monomethyl ether acetate, etc.
  • Hydrocarbons petroleum ether, pentane, hexane, heptane, benzene, toluene, xylene, liquid paraffin, gasoline, and mineral oil.
  • Higher fatty acid A fatty acid having 4 or more carbon atoms (preferably 4 to 30) other than a carboxyl group such as oleic acid, linoleic acid, and linolenic acid.
  • a preferred example of the organic solvent resistance of the porous polyamide membrane of the present invention is that it has resistance to at least one of the following organic solvents, preferably all.
  • Alcohols Isopropyl alcohol, benzyl alcohol, ethylene glycol, glycerin.
  • Ketones Acetone, methyl ethyl ketone, cyclohexanone.
  • Ethers Tetrahydrofuran, diethyl ether, propylene glycol monomethyl ether.
  • Aprotic polar solvent N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone.
  • Esters Ethyl acetate, isobutyl acetate, dimethyl phthalate.
  • Hydrocarbons Hexane, heptane, benzene, toluene, gasoline, mineral oil.
  • Higher fatty acids oleic acid, linoleic acid.
  • the rate of change in the tensile strength and elongation of the ultrafiltration membrane after immersion is determined. It is mentioned that it is ⁇ 30% or less, preferably less than ⁇ 20% as compared with that before immersion. Specifically, the rate of change in the tensile strength and the elongation rate is calculated according to the following formula.
  • the strength and elongation of the porous polyamide membrane are values measured under the conditions described in the above [tensile strength and elongation] column when the porous polyamide membrane is a hollow fiber membrane, and the porous polyamide membrane is a flat membrane.
  • the values are measured under the conditions described in the above [Tensile strength and elongation] column except that a strip-shaped sample having a flat membrane having a width of 10 mm and a length of 100 mm is used.
  • the porous polyamide membrane of the present invention is used as an ultrafiltration membrane or a nanofiltration membrane in the fields of semiconductor industry, chemical industry, food industry, pharmaceutical industry, medical product industry and the like.
  • the "ultrafiltration” or “ultrafiltration membrane” is a filtration membrane having a molecular weight cut off of 1000 to 1000000 and having a molecular weight cut off of 1000 to 1000000. Point to.
  • the "nanofiltration” or “nanofiltration membrane” is a filtration membrane having a molecular weight cut off of 200 to 1000 and having a molecular weight cut off of 200 to 1000. Point to.
  • the polyamide porous membrane of the present invention has resistance to various organic solvents, it can be suitably used for filtration of a liquid to be treated containing an organic solvent.
  • the polyamide porous membrane of the present invention is preferably used by incorporating the polyamide porous membrane of the present invention into a filtration membrane module described later.
  • porous polyamide membrane of the present invention may be provided alone as a self-supporting membrane, or may have a shape laminated on a support of a microfiltration membrane.
  • the material of such a support is preferably resistant to an organic solvent, and specifically, a polymer material such as polyamide, polyethylene, polypropylene, polytetrafluoroethylene, polyphenylene sulfide, and polyetheretherketone; , Inorganic materials such as ceramics and the like.
  • the method for producing a polyamide porous membrane is not particularly limited as long as it is possible to obtain a method in which streaky recesses having the above-mentioned orientation angle and orientation strength are formed on the surface of the dense layer.
  • a manufacturing method including the following first to fourth steps can be mentioned.
  • a dense layer is formed on at least one surface, and the region other than the dense layer has a porous structure.
  • First step A film-forming stock solution is prepared by dissolving a polyamide resin at a temperature of 100 ° C. or higher in an organic solvent having a boiling point of 150 ° C. or higher and incompatible with the polyamide resin at a temperature of lower than 100 ° C.
  • Second step The step of coagulating the polyamide resin into a film by extruding the film-forming stock solution into a coagulation bath at 100 ° C. or lower in a predetermined shape, and in the step, the extruded in a predetermined shape.
  • a coagulant having compatibility with the organic solvent used in the membrane-forming stock and having a low affinity with the polyamide resin is brought into contact with at least one surface of the membrane-forming stock to form a porous polyamide membrane.
  • Third step The coagulating liquid phase-separated in the polyamide porous membrane formed in the second step is extracted and removed.
  • Fourth step The porous polyamide membrane after the third step is stretched in the uniaxial direction at the same time as drying or after drying.
  • a film-forming stock solution is prepared by dissolving a polyamide resin at a temperature of 100 ° C. or higher in an organic solvent having a boiling point of 150 ° C. or higher and incompatible with the polyamide resin at a temperature of less than 100 ° C.
  • Examples of the organic solvent having a boiling point of 150 ° C. or higher and incompatible with the polyamide resin at a temperature of less than 100 ° C. include aprotonic polar solvents, glycerin ethers, polyhydric alcohols, organic acids and organic acid esters. , Higher alcohols and the like.
  • Specific examples of the aprotonic polar solvent include sulfolane, dimethyl sulfone, dimethyl sulfoxide, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, N, N-dimethylformamide, N, N-dimethylacetamide, and N-. Examples thereof include methyl-2-pyrrolidone, ethylene carbonate and propylene carbonate.
  • glycerin ethers include diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, diethylene glycol dibutyl ether, and tetraethylene glycol dimethyl ether.
  • polyhydric alcohols include glycerin, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, hexylene glycol, 1,3-butanediol, polyethylene glycol (molecular weight 100 to 10,000) and the like.
  • organic acids and organic acid esters include dimethyl phthalate, diethyl phthalate, diisopropyl phthalate, dibutyl phthalate, butyl benzyl phthalate, methyl salicylate, oleic acid, palmitic acid, stearic acid, and lauric acid. And so on.
  • organic solvents aprotonic polar solvents and polyhydric alcohols are preferable; sulfolane, dimethyl sulfone, ⁇ -butyrolactone, ⁇ - are preferable from the viewpoint of obtaining a polyamide porous film having higher strength.
  • These organic solvents may be used alone or in combination of two or more. Sufficient effects can be obtained by using one of these organic solvents alone, but it is even more effective when two or more of these organic solvents are mixed and used because the order and structure of phase separation are different. In some cases, a polyamide porous membrane can be made.
  • the concentration of the polyamide resin in the film-forming stock solution is not particularly limited, and examples thereof include 5 to 50% by mass, preferably 10 to 40% by mass, and more preferably 12 to 35% by mass.
  • concentration of the polyamide resin in the film-forming stock solution satisfies the above range, the polyamide porous film can be provided with excellent strength and liquid permeability.
  • the temperature of the solvent when dissolving the polyamide resin in the organic solvent, it is necessary to keep the temperature of the solvent at 100 ° C. or higher. Specifically, it is desirable to dissolve the prepared membrane-forming stock solution at a temperature 10 to 50 ° C. higher, preferably 20 to 40 ° C. higher than the phase separation temperature.
  • the phase separation temperature of the film-forming stock solution refers to the temperature at which a mixture of the polyamide resin and the organic solvent is gradually cooled and solid-liquid phase separation occurs by liquid-liquid phase separation or crystal precipitation. ..
  • the phase separation temperature can be measured by using a microscope or the like equipped with a hot stage.
  • the temperature conditions for dissolving the polyamide resin in the organic solvent may be appropriately set in a temperature range of 100 ° C. or higher according to the above-mentioned index according to the type of the polyamide resin to be used and the type of the organic solvent. It is preferable, but preferably 120 to 250 ° C., more preferably 140 to 220 ° C., and even more preferably 160 to 200 ° C.
  • fillers, thickeners, antioxidants, surface modifiers, lubricants, surfactants, etc. are added to the membrane-forming stock solution as necessary to control the pore size of the polyamide porous membrane and improve its performance. May be.
  • the film-forming stock solution prepared in the first step is subjected to the second step at that temperature (that is, in a state of 100 ° C. or higher).
  • the second step is a step of coagulating the polyamide resin into a film by extruding the film-forming stock solution prepared in the first step into a coagulation bath at 100 ° C. or lower in a predetermined shape.
  • a coagulant having compatibility with the organic solvent used in the film-forming stock solution and having a low affinity with the polyamide resin on at least one surface of the film-forming stock solution extruded in a predetermined shape hereinafter, "" It may be referred to as "coagulant for forming a dense layer" to form a porous polyamide film.
  • the film-forming stock solution extruded into the coagulation bath in a predetermined shape forms a dense layer on the surface in contact with the coagulation liquid for forming a dense layer.
  • non-solvent phase separation by solvent exchange proceeds predominantly over heat-induced phase separation by cooling, and the surface has a denser structure than the conventional TIPS method. Is formed in.
  • one surface of the film-forming stock solution extruded in a predetermined shape is brought into contact with the coagulant for forming the dense layer, and the other surface is formed.
  • a coagulating liquid having compatibility with the organic solvent used in the film-forming stock solution and having a high affinity with the polyamide resin (hereinafter, may be referred to as "coagulating liquid for forming a porous structure"). Just do it.
  • the coagulation liquid for forming a dense layer may be brought into contact with both surfaces of the film-forming stock solution extruded in a predetermined shape. ..
  • the coagulating liquid for forming a dense layer is compatible with the organic solvent used in the film-forming stock solution at a temperature of 50 ° C. or lower, but does not dissolve the polyamide resin at a temperature of boiling point or lower or 200 ° C. or lower. It is a solvent.
  • an aqueous solvent such as an aqueous solution having a water content of 80% by mass or more; monohydric lower alcohols such as 1-propanol, 2-propanol, and isobutanol; average molecular weight.
  • Glycol ethers such as polyethylene glycol of 300 or more, polypropylene glycol having an average molecular weight of 400 or more, diethylene glycol diethyl ether, triethylene glycol monomethyl ether, propylene glycol monoethyl ether; glycol acetates such as triacetin and propylene glycol monoethyl ether acetate Can be mentioned.
  • Examples include 400-600 polyethylene glycols. These solvents may be used alone or in combination of two or more.
  • the average molecular weight of polyethylene glycol and polypropylene glycol is JIS K 1557-6: 2009 "Plastic-Polyurethane Raw Material Polyurethane Test Method-Part 6: Hydroxyl Value by Near Infrared (NIR) Spectroscopy". It is a number average molecular weight calculated based on the hydroxyl value measured according to "How to obtain”.
  • the coagulating liquid for forming a dense layer is a solvent used for the coagulating liquid for forming a porous structure such as glycerin (the film-forming stock solution at a temperature of 25 ° C. or lower, as long as the dense layer can be formed.
  • a solvent that is compatible with the organic solvent used in the above and dissolves the polyamide resin at a temperature equal to or lower than the boiling point) may be contained.
  • the coagulating liquid for forming a dense layer contains the solvent used for the coagulating liquid for forming a porous structure, the content of the solvent is, for example, 20% by mass or less, preferably 10% by mass or less.
  • the coagulating liquid for forming a porous structure may be any solvent that is compatible with the organic solvent used in the film-forming stock solution at a temperature of 25 ° C. or lower and dissolves the polyamide resin at a temperature of boiling point or lower.
  • Specific examples of the coagulating liquid for forming a porous structure include glycerin, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol 200, propylene glycol, 1,3-butanediol, sulfolane, and N-methyl-2. Examples thereof include pyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, and an aqueous solution containing 20% by mass or more of these.
  • a double tubular nozzle for manufacturing a hollow fiber having a double tube structure is used, and the membrane-forming stock solution is discharged from an outer annular nozzle and an inner one.
  • the internal coagulation liquid may be discharged from the nozzle of No. 1 and immersed in the coagulation bath.
  • the coagulating liquid for forming a dense layer may be used for at least one of the coagulating liquid for internal use and the coagulating bath.
  • the coagulation liquid for forming a dense layer is used for both the coagulation liquid for internal use and the coagulation liquid for coagulation bath, a dense layer is formed on both the inner surface side surface and the outer surface surface, and a hollow fiber membrane having a porous region inside is formed. can get. Further, when the coagulant for forming a dense layer is used as the coagulant for internal use and the coagulant for forming a porous structure is used as the coagulation bath, a dense layer is formed on the inner surface side surface, and the inner and outer surfaces are formed. A hollow thread film, which is a porous region, can be obtained.
  • the coagulant for forming a porous structure is used as the coagulant for internal use and the coagulant for forming a dense layer is used as the coagulation bath, a dense layer is formed on the outer surface, and the surface on the cavity side and the inside are formed. A hollow thread film in which is a porous region can be obtained. Since the internal coagulating liquid used for forming the hollow fiber membrane passes through the double annular nozzle, it is preferable that the internal coagulation liquid does not contain water whose boiling point is equal to or lower than the temperature of the double annular nozzle.
  • a mouthpiece having a double tubular structure such as that used when producing core-sheath type composite fibers in melt spinning can be used.
  • the diameter of the outer annular nozzle and the diameter of the inner nozzle of the double tubular nozzle for manufacturing hollow fibers may be appropriately set according to the inner and outer diameters of the hollow fiber membrane.
  • the flow rate when the membrane-forming stock solution is discharged from the annular nozzle outside the double tubular nozzle for manufacturing hollow fibers is not particularly limited because it depends on the slit width, but is preferably 2 to 30 g / min, for example. 3 to 20 g / min, more preferably 5 to 15 g / min.
  • the flow rate of the coagulating liquid for internal use is appropriately set in consideration of the diameter of the inner nozzle of the double tubular nozzle for manufacturing hollow fibers, the type of internal liquid used, the flow rate of the undiluted membrane-forming solution, etc.
  • the flow rate of the undiluted solution is 0.1 to 2 times, preferably 0.2 to 1 times, and more preferably 0.4 to 0.7 times.
  • the coagulation liquid for forming a dense layer is used as a coagulation bath, and the film-forming stock solution is formed in a predetermined shape in the coagulation bath. It may be extruded and immersed.
  • the temperature of the coagulation bath may be 100 ° C. or lower, but is preferably ⁇ 20 to 100 ° C., more preferably 0 to 60 ° C., still more preferably 2 to 20 ° C., and particularly preferably 2 to 10 ° C. °C is mentioned.
  • the suitable temperature of the coagulation bath may vary depending on the organic solvent used for the film-forming stock solution, the composition of the coagulation liquid, etc. There is a tendency for non-solvent phase separation to proceed preferentially.
  • the coagulation bath in the case of producing a hollow fiber membrane in which a dense layer is formed on the surface on the lumen side, it is preferable to set the coagulation bath at a low temperature in order to increase the pore size of the dense layer on the surface on the lumen side. In order to make the dense layer on the surface on the lumen side more dense and to make the internal structure coarse, it is preferable to set the coagulation bath at a high temperature.
  • the temperature of the coagulating liquid for internal use may be about the set temperature of the double tubular nozzle, for example, 120 to 250 ° C., preferably (160 to 230). ° C., more preferably 180 to 220 ° C.
  • the membrane-forming stock solution is solidified in the coagulation bath, and a polyamide porous film having a dense layer formed on at least one surface is formed.
  • the polyamide porous film formed in the second step is immersed in an extraction solvent, or the polyamide porous film formed in the second step is dipped. On the other hand, it may be shuffled with an extraction solvent.
  • the extraction solvent used for extraction and removal in the third step is preferably inexpensive, has a low boiling point, and can be easily separated by the difference in boiling point after extraction.
  • examples include ether, hexane, petroleum ether, toluene and the like.
  • water, methanol, ethanol, isopropanol and acetone are preferable; and water, methanol and isopropanol are more preferable.
  • an organic solvent insoluble in water such as phthalates and fatty acids
  • isopropyl alcohol, petroleum ether and the like can be preferably used.
  • the time for immersing the porous polyamide film in the extraction solvent is not particularly limited, but is preferably 0.2 hours to 2 months, for example. Is 0.5 hours to 1 month, more preferably 2 hours to 10 days.
  • the extraction solvent may be replaced or stirred.
  • the polyamide porous membrane from which the phase-separated coagulation liquid has been extracted and removed is subjected to the fourth step described later.
  • the porous polyamide membrane after the third step is stretched in the uniaxial direction at the same time as drying or after drying.
  • the streaky recesses having the above-mentioned orientation angle and orientation strength are not formed on the surface of the dense layer, but by performing the fourth step, the above-mentioned orientation angle and orientation strength can be obtained.
  • the streaky recesses to have are formed on the surface of the dense layer.
  • the fourth step at the same time as drying the polyamide porous film to which the extraction solvent is attached after the third step, or after drying the polyamide porous film to which the extraction solvent is attached after the third step, uniaxially. Is stretched.
  • the polyamide porous membrane stretched by drying contracts significantly, and the streaks having the above-mentioned orientation angle and orientation strength are obtained.
  • the shape recesses are no longer formed on the surface of the dense layer, and the liquid permeability performance cannot be sufficiently improved.
  • the polyamide porous membrane may be dried while tension for stretching is applied.
  • the temperature conditions for stretching in the uniaxial direction at the same time as drying are not particularly limited as long as both drying and stretching are possible, but for example, 40 ° C. or higher, preferably 40 to 160 ° C., more preferably 50 ° C. ° C. to 140 ° C., more preferably 120 to 140 ° C.
  • the temperature condition at the time of drying is not particularly limited as long as the attached extraction solvent can be volatilized, but is, for example, 40 ° C. or higher, preferably 40 to 160. ° C., more preferably 50 ° C. to 140 ° C., still more preferably 120 to 140 ° C.
  • the temperature condition at the time of stretching is not particularly limited and may be ⁇ 10 to 140 ° C., preferably 0 to 120 ° C., but the liquid permeation performance is further improved. From this point of view, it is desirable that the temperature is equal to or higher than the glass transition point (more preferably 50 to 120) ° C., more preferably 60 to 100 ° C. of the polyamide resin used.
  • Stretching in the uniaxial direction may be performed by a known method, for example, continuous winding from a low speed roll to a high speed roll. Further, both ends of the polyamide porous membrane cut to a certain length may be grasped and stretched using a tensile tester or the like, or manual stretching may be used.
  • the polyamide porous membrane is a hollow fiber membrane, it may be uniaxially stretched in the longitudinal direction of the hollow fiber membrane.
  • the porous polyamide membrane is a flat membrane, it may be uniaxially stretched in either the vertical direction or the horizontal direction of the flat membrane.
  • Examples of the stretching ratio when stretching in one direction include 1.2 to 5 times, preferably 1.2 to 3 times. From the viewpoint of increasing the strength of the polyamide porous membrane and providing excellent water pressure resistance, the draw ratio is preferably 1.2 to 2.4 times, more preferably 1.5 to 2.0 times.
  • the porous polyamide membrane of the present invention is housed in a module case provided with a liquid inlet and a permeate outlet, and is used as a filtration membrane module.
  • the polyamide porous membrane of the present invention When the polyamide porous membrane of the present invention has a hollow fiber shape, it is used as a hollow fiber membrane module.
  • the hollow fiber-like polyamide porous membrane of the present invention is bundled, housed in a module case, and one or both ends of the hollow fiber-like polyamide porous membrane are sealed with a potting agent. Any structure may be used as long as it is fixed.
  • the hollow fiber membrane module is connected to an opening connected to a flow path passing through the outer wall surface side of the hollow fiber-like polyamide porous membrane and a hollow portion of the hollow fiber-like polyamide porous membrane as an inlet of the liquid to be treated or an outlet of the filtrate. It suffices if the opening is provided.
  • the shape of the hollow fiber membrane module is not particularly limited, and may be a dead-end type module or a cross-flow type module. Specifically, a dead-end type module in which a hollow fiber membrane bundle is bent into a U shape and filled, and the end portion of the hollow fiber-like polyamide porous membrane bundle is sealed and then cut to open; A dead-end type module in which the hollow opening at one end is closed straight by a heat seal or the like, and the end of the open hollow fiber-like polyamide porous membrane bundle is sealed and then cut to open.
  • a dead-end module in which a filamentous polyamide porous membrane bundle is filled straight, both ends of the hollow fiber polyamide porous membrane bundle are sealed, and only one end is cut to expose an opening; a hollow fiber polyamide porous membrane bundle is straightened.
  • a cross-flow type module that is filled, seals both ends of the hollow fiber-like polyamide porous membrane bundle, cuts the seals at both ends of the hollow fiber-like polyamide porous membrane bundle, and creates two flow paths on the side surface of the filter case. And so on.
  • the filling rate of the hollow filamentous polyamide porous membrane to be inserted into the module case is not particularly limited, but for example, the volume of the hollow filamentous polyamide porous membrane including the volume of the hollow portion with respect to the volume inside the module case is preferably 30 to 90% by volume. Is 35 to 75% by volume, more preferably 45 to 65% by volume. By satisfying such a filling rate, it is possible to facilitate the filling work of the hollow filamentous polyamide porous membrane into the module case while ensuring a sufficient filtration area, and to facilitate the potting agent flowing between the hollow filamentous polyamide porous membranes. Can be done.
  • the potting agent used for manufacturing the hollow fiber membrane module is not particularly limited, but when the hollow fiber membrane module is used for treating an organic solvent, it is desirable to have an organic solvent, and such potting is performed.
  • the agent include polyamide, silicon resin, epoxy resin, melamine resin, polyethylene, polypropylene, phenol resin, polyimide, polyurea resin and the like.
  • these potting agents those having small shrinkage and swelling when cured and not too hard are preferable, and preferred examples thereof include polyamide, silicone resin, epoxy resin, and polyethylene. These potting agents may be used alone or in combination of two or more.
  • the material of the module case used for the hollow fiber membrane module is not particularly limited, and for example, polyamide, polyester, polyethylene, polypropylene, polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl chloride, polysulfone, polyethersulfone, polycarbonate, etc.
  • polyallylate and polyphenylene sulfide examples include polyallylate and polyphenylene sulfide.
  • polyamide, polyethylene, polypropylene, polytetrafluoroethylene, polycarbonate, polysulfone, polyethersulfone, and more preferably polyamide, polyethylene, polypropylene, and polytetrafluoroethylene are mentioned.
  • the polyamide porous membrane of the present invention has a flat membrane shape, it is used as a plate-and-frame type, a stack type or the like sheet type module, a spiral type module, a rotary flat membrane type module or the like.
  • the filtration membrane module using the polyamide porous membrane of the present invention is used in the fields of semiconductor industry, chemical industry, food industry, pharmaceutical industry, medical product industry, etc. to remove foreign substances in the solvent, concentrate useful components in the solvent, and use the solvent. Used in ultra-filtration or nano-filtration applications for recovery, water purification, etc. Further, in one aspect of the filtration membrane module using the porous polyamide membrane of the present invention, it is suitably used for filtration of a liquid to be treated containing an organic solvent.
  • the filtration membrane module using the porous polyamide membrane of the present invention it is suitably used for filtration of a liquid to be treated containing an organic solvent.
  • the polyamide hollow fiber membrane was cut to about 1 cm and divided into two in the length direction to expose the dense layer on the lumen side surface and used as a sample piece.
  • the sample piece is placed on the sample table, and the dense layer of the sample piece is subjected to platinum thin-film deposition under the conditions of a discharge voltage of 45 mA and a vapor deposition time of 15 seconds using a thin-film deposition device (MSP-1S magnetron sputtering device, manufactured by Vacuum Device Co., Ltd.). was given.
  • MSP-1S magnetron sputtering device manufactured by Vacuum Device Co., Ltd.
  • the image obtained by observing the dense layer at 1000 times with a scanning electron microscope (SEM) was used (total number of pixels 262,144, vertical number of pixels 512, horizontal number of pixels 512. ) was acquired.
  • SEM scanning electron microscope
  • the X-axis direction is parallel to the longitudinal direction of the streaky recesses observed in the dense layer (longitudinal direction of the polyamide hollow fiber membrane), and the Y-axis direction is the width (short) direction of the streaky recesses.
  • image analysis software non-destructive paper surface fiber orientation analysis program FiberOri8single03.exe (V.8.03); downloaded from http://www.enomae.com/FiberOri/index.htm ) Was used for image analysis.
  • the image is binarized by the moving averaging method, then fast Fourier transform (FFT) processing is performed to convert it into a power spectrum image, and the obtained power spectrum image is oriented and analyzed.
  • the orientation angle and orientation strength were determined by.
  • an angle distribution map power spectrum pattern
  • an approximate ellipse of the angle distribution map is obtained, and the approximation with respect to the positive direction of the X axis is obtained.
  • the angle in the minor axis direction of the ellipse is set as the orientation angle (°), and the ratio of the major axis length / minor axis length in the approximate ellipse is set to be output as the alignment intensity.
  • the orientation angle and the orientation intensity were obtained as the average value of the analysis results of the scanning electron microscope image 10 field of view.
  • the module shown in FIG. 2a was manufactured. Specifically, first, 10 hollow fiber membranes were cut into a length of 30 cm, and these were aligned and bundled to prepare a product. Next, a nylon hard tube having an outer diameter of 8 mm, an inner diameter of 6 mm, and a length of 50 mm is prepared, and a rubber stopper having a length of about 20 mm is inserted from one end opening of the tube, and the stopper of the one end opening is inserted. Did. Next, a two-component mixed type room temperature curing type epoxy resin was inserted into the opening of the tube on the opposite side of the rubber stopper, and the space inside the tube was filled with the epoxy resin.
  • the bundle of the prepared hollow fiber membranes is bent into a substantially U shape, and both ends of the hollow fiber membranes are inserted into the tube filled with the epoxy resin until the tip of the end touches the rubber stopper. Then, the epoxy resin was cured as it was. Next, the region on the rubber stopper side of the cured epoxy resin portion was cut together with the tube to prepare a module in which the hollow portions at both ends of the hollow fiber membrane were opened.
  • the module was set in the apparatus shown in FIG. 2b, and methanol (100% methanol) at 25 ° C. was flowed inside the hollow fiber membrane of the module for a certain period of time under a pressure of about 0.3 MPa to make it hollow.
  • the volume of methanol permeated to the outside of the filament membrane was determined, and the amount of methanol permeated (L / (m 2 ⁇ bar ⁇ h)) was calculated according to the following calculation formula.
  • Polyethylene glycol (PEG, Azilent Technologies, Inc., molecular weight 600, 1000, 4000, 7000, 20000, 50000), which is a commercially available standard substance for GPC, is dissolved in methanol in an amount of 0.1% by mass as a stock solution at a pressure of 0.3 MPa. The liquid was passed through, the permeated liquid was collected, the polyethylene glycol concentration in the permeated liquid was measured by high performance liquid chromatography, and the inhibition rate was calculated according to the following formula.
  • PEG Azilent Technologies, Inc., molecular weight 600, 1000, 4000, 7000, 20000, 50000
  • a module having a polyamide hollow fiber membrane open at both ends was produced by the method described in the [Methanol Permeation Amount] column.
  • the obtained module was set in the apparatus shown in FIG. 2b, and the module portion was immersed in water and pressurized with air from the inside up to 2 MPa to check the presence or absence of burst (breakage) of the polyamide hollow fiber membrane.
  • Examined Five modules were prepared and tested for each polyamide hollow fiber membrane, and the number of burst modules was determined.
  • the internal coagulation liquid As the internal coagulation liquid (coagulation liquid for forming a dense layer), 5 parts of a mixed solution of polyethylene glycol 400 (PEG400, average molecular weight 400) and glycerin (Gly) (90 parts by mass of PEG400 and 10 parts by mass of glycerin by weight). It was flushed at a liquid feeding rate of 0.0 g / min.
  • the extruded membrane-forming stock solution is placed in a coagulation bath made of a 50% by mass propylene glycol (PG) aqueous solution (coagulation liquid for forming a porous structure) at 5 ° C. through a 10 mm air gap to be cooled and solidified to form a hollow polyamide.
  • PG propylene glycol
  • a thread film was formed and collected at a collection speed of 20 m / min.
  • the wound polyamide hollow fiber membrane is immersed in water for 24 hours to perform solvent extraction (washing), and then dried by passing through a hot air dryer (inside temperature 130 ° C.) without stretching to obtain a polyamide hollow.
  • a filament membrane was obtained.
  • Examples 1 to 4 Up to the step before solvent extraction, the operation was performed under the same conditions as in Comparative Example 1 to form a polyamide hollow fiber membrane.
  • the wound polyamide hollow fiber membrane was immersed in water for 24 hours to extract the solvent.
  • the polyamide hollow fiber membrane was passed through a supply roller, a hot air dryer (inside temperature 130 ° C.), and a stretching roller in this order, and drying and stretching were carried out at the same time.
  • the polyamide hollow fiber membrane is stretched between the supply roller and the stretching roller, and drying and stretching are set to proceed simultaneously while passing through the hot air dryer.
  • the draw ratios in this operation were 1.5 times (Example 1), 2 times (Example 2), 2.5 times (Example 3), and 3 times (Example 4).
  • Comparative Example 2 Up to the step before solvent extraction, the operation was performed under the same conditions as in Comparative Example 1 to form a polyamide hollow fiber membrane.
  • the wound polyamide hollow fiber membrane was immersed in water for 24 hours to extract the solvent.
  • the polyamide hollow fiber membrane was passed through a supply roller, a stretching roller, a hot air dryer (inside temperature 130 ° C.), and a take-up roller in this order, and drying was performed after stretching.
  • the polyamide hollow fiber membrane is stretched between the supply roller and the stretching roller, and is set so as not to be stretched after the stretching roller.
  • the draw ratio in this operation was 2 times.
  • Example 5 Up to the step before solvent extraction, the operation was performed under the same conditions as in Comparative Example 1 to form a polyamide hollow fiber membrane.
  • the wound polyamide hollow fiber membrane was immersed in water for 24 hours to extract the solvent.
  • the polyamide hollow fiber membrane was passed through a supply roller, a hot air dryer (inside temperature 130 ° C.), a take-up roller, and a stretching roller in this order, and stretching was performed after drying.
  • the polyamide hollow fiber membrane is not stretched between the supply roller and the take-up roller, and the polyamide hollow fiber membrane is stretched only between the take-up roller and the draw roller.
  • the draw ratio in this operation was 2 times.
  • Table 1 shows the manufacturing conditions, the results of orientation analysis of dense layers (alignment angle, orientation strength), methanol permeation amount, molecular weight cut-off, and pressure test results for each polyamide hollow fiber membrane. show.
  • FIG. 3 shows images of the dense layer (cavity side surface) of the polyamide hollow fiber membranes of Examples 1 to 4 and Comparative Example 1 observed 1000 times with a scanning electron microscope.
  • FIG. 4 shows power spectrum images obtained by binarizing and Fourier transforming scanning electron microscope images (1000 times) of the dense layers of the polyamide hollow fiber membranes of Examples 1 to 4 and Comparative Example 1.
  • the polyamide hollow fiber membrane of Comparative Example 1 which was not stretched, it was confirmed by a scanning electron microscope image (1000 times) that a dense layer with no visible holes was formed on the inner surface side surface, and the orientation of the dense layer was confirmed. As a result of the analysis, the alignment angle was 169 ° and the alignment intensity was 1.19.
  • the polyamide hollow fiber membrane of Comparative Example 1 had a molecular weight cut-off of 12000 and a low molecular weight of methanol of 3.9 L / (m 2 ⁇ bar ⁇ h).
  • the amount of methanol permeation was 9.4 to 16 L / (m 2 ⁇ bar ⁇ h), although the molecular weight cut-off was the same as that of Comparative Example 1 which was not stretched. It was high.
  • Examples 1 and 2 stretched at a stretch ratio of 1.5 to 2.0 times also had excellent pressure resistance.
  • the hole diameter of the spinneret was 1.5 mm in outer diameter and 0.6 mm in inner diameter.
  • Polyethylene glycol 400 (PEG400, average molecular weight 400) was flowed as an internal coagulating liquid (coagulating liquid for forming a dense layer) at a liquid feeding rate of 5.0 g / min.
  • the extruded membrane-forming stock solution is placed in a coagulation bath made of a 50% by mass propylene glycol (PG) aqueous solution (coagulation liquid for forming a porous structure) at 5 ° C. through a 10 mm air gap to be cooled and solidified to form a hollow polyamide.
  • PG propylene glycol
  • a thread film was formed and collected at a collection speed of 20 m / min.
  • the wound polyamide hollow fiber membrane is immersed in water for 24 hours to perform solvent extraction (washing), and then dried by passing through a hot air dryer (inside temperature 130 ° C.) without stretching to obtain a polyamide hollow.
  • a filament membrane was obtained.
  • Example 6 Up to the step before solvent extraction, the operation was performed under the same conditions as in Comparative Example 3 to form a polyamide hollow fiber membrane.
  • the wound polyamide hollow fiber membrane was immersed in water for 24 hours to extract the solvent.
  • the polyamide hollow fiber membrane was passed through a supply roller, a hot air dryer (inside temperature 130 ° C.), a take-up roller, and a stretching roller in this order, and stretching was performed after drying.
  • the polyamide hollow fiber membrane is not stretched between the supply roller and the take-up roller, and the polyamide hollow fiber membrane is set to be stretched only after the take-up roller.
  • the draw ratio in this operation was 2 times.
  • Example 7 A polyamide hollow fiber membrane was produced under the same conditions as in Example 6 except that polypropylene glycol 400 (PPG400, average molecular weight 400) was used as the internal coagulation liquid (coagulation liquid for forming a dense layer).
  • PPG400 polypropylene glycol 400
  • Table 2 shows the manufacturing conditions, the results of orientation analysis of dense layers (alignment angle, orientation strength), methanol permeation amount, molecular weight cut-off, and pressure test results for each polyamide hollow fiber membrane. show.
  • the polyamide hollow fiber membrane of Comparative Example 3 which was not stretched, it was confirmed by a scanning electron microscope image (1000 times) that a dense layer with no visible holes was formed on the inner surface side surface, and the orientation of the dense layer was confirmed. As a result of the analysis, the alignment angle was 12.9 ° and the alignment intensity was 1.16. Further, the polyamide hollow fiber membrane of Comparative Example 3 had a molecular weight cut-off of 920 and a low methanol permeation amount of 0.6 L / (m 2 ⁇ bar ⁇ h).
  • Test Example 3 4-1. Production of Hollow Fiber Membrane [Comparative Example 4] 150 g of polyamide 11 chip (Arkema Lilsan BESV0 A FDA, relative viscosity 2.50) and 850 g of ⁇ -butyrolactone (Fuji Film Wako Pure Chemical Industries, Ltd.) were stirred at 180 ° C. for 1.5 hours to dissolve and stir. The speed was reduced and defoaming was performed for 1 hour to prepare a film-forming stock solution. The undiluted film-forming solution was sent to a spinneret kept at 210 ° C. via a metering pump and extruded at 13.0 g / min.
  • the hole diameter of the spinneret was 1.5 mm in outer diameter and 0.6 mm in inner diameter.
  • the extruded membrane-forming stock solution is placed in a coagulation bath made of a 50% by mass propylene glycol (PG) aqueous solution (coagulation liquid for forming a porous structure) at 5 ° C.
  • PG propylene glycol
  • the wound polyamide hollow fiber membrane is immersed in water for 24 hours to perform solvent extraction (washing), and then dried by passing through a hot air dryer (inside temperature 130 ° C.) without stretching to obtain a polyamide hollow.
  • a filament membrane was obtained.
  • Example 8 The operation was performed under the same conditions as in Comparative Example 4 until the step before the solvent extraction to form a polyamide hollow fiber membrane.
  • the wound polyamide hollow fiber membrane was immersed in water for 24 hours to extract the solvent.
  • the polyamide hollow fiber membrane was passed through a supply roller, a hot air dryer (inside temperature 130 ° C.), a take-up roller, and a stretching roller in this order, and stretching was performed after drying.
  • the polyamide hollow fiber membrane is not stretched between the supply roller and the take-up roller, and the polyamide hollow fiber membrane is set to be stretched only after the take-up roller.
  • the draw ratio in this operation was 2 times.
  • Table 3 shows the manufacturing conditions, the results of orientation analysis of dense layers (alignment angle, orientation strength), methanol permeation amount, molecular weight cut-off, and pressure test results for each polyamide hollow fiber membrane. show.
  • the polyamide hollow fiber membrane of Comparative Example 4 which was not stretched, it was confirmed by a scanning electron microscope image (1000 times) that a dense layer with no visible holes was formed on the inner surface side surface, and the orientation of the dense layer was confirmed. As a result of the analysis, the alignment angle was 165.0 ° and the alignment intensity was 1.08. Further, the polyamide hollow fiber membrane of Comparative Example 4 had a molecular weight cut-off of 860 and a low methanol permeation amount of 0.2 L / (m 2 ⁇ bar ⁇ h).
  • Example 8 In the polyamide hollow fiber membrane of Example 8 which was stretched after drying, a dense layer with no visible holes was maintained on the inner surface side surface by a scanning electron microscope image (1000 times), and the polyamide hollow fiber membrane was stretched in the longitudinal direction. The streaky recesses were formed in the dense layer in the direction parallel to the above, and the result of the orientation analysis showed that the orientation angle was 0 to 5.0 ° and the orientation strength was in the range of 1.5 to 2.0. Further, in the polyamide hollow fiber membrane of Example 8, the permeation amount of methanol was increased to four times that of Comparative Example 4 while maintaining the same molecular weight cut-off as that of Comparative Example 4 which was not stretched. ..
  • Module 1 a Hollow fiber membrane 1b Tube filled with cured epoxy resin 2 Liquid feed pump 3 Pressure gauge 4 Pressure relief valve 5 Reservoir 6 Methanol permeated outside the hollow fiber membrane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本発明の目的は、透液性能が向上しているポリアミド多孔膜を提供することである。 少なくとも一方の面に緻密層が形成されているポリアミド多孔膜であって、前記緻密層の表面に一方向に伸びる筋状凹部を有し、所定の配向解析における前記筋状凹部の配向角度が0~5.0°又は175.0~180.0°であり、配向強度が1.5~2.0である、ポリアミド多孔膜。

Description

ポリアミド多孔膜及びその製造方法
 本発明は、優れた透液性能を有するポリアミド多孔膜、及びその製造方法に関する。
 多孔膜は、濾過膜として様々な分野で用いられている。例えば、ナノ濾過膜及び限外濾過膜は、浄水分野では細菌・ウイルス・農薬・臭気成分・硬度成分の除去、医療分野では人工透析、医薬品や医療用水製造時のウイルスや蛋白質の除去、工業分野では蛋白質や酵素等の熱に弱い物質の分離又は濃縮、超純水の製造、電着塗料の回収、製糸・パルプ工場の汚水処理、含油排水の処理、ビル排水の処理、果汁の清澄化、生酒の製造、チーズホエーの濃縮・脱塩、濃縮乳の製造、卵白の濃縮、バイオリアクターへの利用、原子力発電所の水処理等の様々な分野で実用化されている。
 ナノ濾過や限外濾過といった分類の定義は様々で、必ずしもその外延が一概に明確とはいえないが、IUPACの定義では多孔体の細孔径が2~100nmの範囲のものを限外濾過、2nm以下のものをナノ濾過と定義することが推奨されている。また、ナノ濾過は逆浸透より大きいサイズの物質の選択を対象としていることから、細孔径としては1~2nmの多孔体と定義されることもある。一方で、ナノ濾過及び限外濾過膜の細孔径は、電子顕微鏡でも観測・測定することは困難であり、また細孔径のばらつきもあるので、膜の分離性能を表すには膜の代表細孔径では十分とはいえず、分離性能の指標として分画分子量が主として使われている。なお、限外濾過膜で分離できる対象物質の大きさは分画分子量の前後で明確に区切られるものではなく、ある幅を持っている。具体的には、分画分子量が1000~1000000のものを限外濾過、200~1000のものをナノ濾過と一般に分類される。後述するように、本明細書において、「限外濾過」又は「限外濾過膜」と表記する場合には、分画分子量が1000~1000000の範囲内に設定されている濾過又は分画分子量が1000~1000000の範囲内にある濾過膜を意味し、「ナノ濾過」又は「ナノ濾過膜」と表記する場合には、分画分子量が200~1000の範囲内に設定されている濾過又は分画分子量が200~1000の範囲内にある濾過膜を意味するものとする。
 このように多孔膜は、濾過膜として様々な産業分野で利用されるため、有機溶媒を含む溶液の処理に使用されることがある。しかしながら、従来の限外濾過膜の素材として多用されている、酢酸セルロース、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリスルホン、ポリエーテルスルホン等の高分子素材は、有機溶媒への耐性という観点からは、未だ満足いくものではなかった。例えば、これら素材の中で比較的耐有機溶媒性の高いポリアクリロニトリル及びポリフッ化ビニリデンであっても、非プロトン性極性溶媒等の有機溶媒には簡単に溶解するという欠点があった。
 こうした背景の下、耐有機溶媒性の高い素材を使用した分離膜が報告されている。その中でも、ポリアミド樹脂は高い有機溶剤耐性と比較的安価で容易に入手しやすいことから、ポリアミド樹脂を使用した多孔膜の製造方法が提案されている。ポリアミド濾過膜に関しては、例えば、ポリアミド15~25重量%及びポリエチレングリコール5~20質量%を含む紡糸溶液を、蟻酸及び凝固性コアー液と共に、当該凝固性コアーとのpH値の差が3以上である沈殿溶液に押出して、湿潤状態で延伸した後に乾燥することによって、薄い隔離膜と熱い支持膜よりなる非対称ポリアミド中空糸が得られることが報告されている(例えば、特許文献1参照。)。
特開昭58-65009号公報
 多孔膜は、分画分子量が小さくなる程、透液性能が低下するため、要求される透液性能は分画分子量に応じて異なっている。しかしながら、従来のポリアミド多孔膜では、分画分子量に応じた適度な透液性能を備えていないことが多いため、透液性能の改善が求められており、特に、従来技術では、分画分子量が200~50000程度の多孔膜では、透液性能が低下する傾向が顕著に現れ易く、かかる分画分子量を満たす多孔膜において透液性能を向上させることは困難であった。
 そこで、本発明は、透液性能が向上しているポリアミド多孔膜及びその製造方法を提供することを課題とする。
 本発明者等は、前記課題を解決すべく鋭意検討を行ったところ、一方向に伸びる筋状凹部を有する緻密層が少なくとも一方の面に形成されており、当該筋状凹部は所定条件での配向解析による配向角度が0~5.0°又は175.0~180.0°、且つ配向強度が1.5~2.0を満たすポリアミド多孔膜は、分画分子量が200~50000程度であっても、透液性能が向上していることを見出した。また、本発明者等は、前記ポリアミド多孔膜は、熱誘起相分離法(TIPS法)と非溶媒誘起相分離法(NIPS法)を併用してポリアミド樹脂を含む製膜原液からポリアミド多孔膜を形成して、ポリアミド多孔膜中で相分離している凝固液を抽出除去した後に、乾燥と同時又は乾燥後にポリアミド多孔膜を一軸方向に延伸することにより得られることを見出した。本発明は、かかる知見に基づいて更に検討を重ねることにより完成したものである。
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 少なくとも一方の面に緻密層が形成されているポリアミド多孔膜であって、
 前記緻密層の表面に一方向に伸びる筋状凹部を有し、
 下記配向解析における前記筋状凹部の配向角度が0~5.0°又は175.0~180.0°であり、配向強度が1.5~2.0である、ポリアミド多孔膜。
[配向解析]
 緻密層表面の電子顕微鏡画像を、X軸方向が緻密層で観察される筋状凹部の長手方向と平行方向になるように配して二値化し、二値化画像を得る。当該二値化画像をフーリエ変換したパワースペクトル画像から平均振幅の角度分布図の近似楕円を求める。当該近似楕円に基づいて、下記配向角度及び配向強度を求める。
  配向角度:X軸の正方向に対する近似楕円の短軸方向の角度(°)
  配向強度:近似楕円における長軸長/短軸長の比
項2. 分画分子量が200~50000である、項1に記載のポリアミド多孔膜。
項3. ポリアミド多孔膜を構成するポリアミド樹脂が、メチレン基とアミド基を-CH2-:-NHCO-=4:1~10:1のモル比で有する脂肪族ポリアミド樹脂である、項1又は2に記載のポリアミド多孔膜。
項4. 中空糸膜である、項1~3のいずれかに記載のポリアミド多孔膜。
項5. 項1~4のいずれかに記載のポリアミド多孔膜を使用して、溶質又は粒子を含む被処理液を濾過処理する、濾過方法。
項6. モジュールケースに、項1~4のいずれかに記載のポリアミド多孔膜が収容されてなる、濾過膜モジュール。
項7. 下記第1工程~第4工程を含む、ポリアミド多孔膜の製造方法:
 150℃以上の沸点を有し且つ100℃未満の温度ではポリアミド樹脂と相溶しない有機溶媒に、100℃以上の温度でポリアミド樹脂を溶解させた製膜原液を調製する第1工程、
 前記第1工程で調製した製膜原液を所定形状にて100℃以下の凝固浴中に押し出すことにより、ポリアミド樹脂を膜状に凝固させる工程であって、当該工程において、所定形状にて押し出された前記製膜原液の少なくとも一方の表面に対して、前記製膜原液で使用した有機溶媒と相溶性を有し且つポリアミド樹脂とは親和性が低い凝固液を接触させて、ポリアミド多孔膜を形成する第2工程、
 前記第2工程で形成されたポリアミド多孔膜中で相分離している凝固液を抽出除去する第3工程、及び
 前記第3工程後のポリアミド多孔膜を乾燥と同時又は乾燥後に一軸方向に延伸する第4工程。
項8. 前記第4工程において、延伸倍率1.2~5倍で一軸方向に延伸する、項7に記載の製造方法。
項9. 前記第1工程において、前記製膜原液の調製に使用される有機溶媒が、非プロトン性極性溶媒である、項7又は8に記載の製造方法。
項10. 中空糸膜形状のポリアミド多孔膜の製造方法であり、
 前記第2工程が、二重管構造の中空糸製造用二重管状ノズルを用い、外側の環状ノズルから前記製膜原液を吐出すると共に内側のノズルから内部用凝固液を吐出し、凝固浴中に浸漬させる工程であって、
 前記内部用凝固液及び凝固浴の少なくとも一方に、前記製膜原液で使用した有機溶媒と相溶性を有し且つポリアミド樹脂とは親和性が低い凝固液を使用する、項7~9のいずれかに記載の製造方法。
 本発明のポリアミド多孔膜は、特定の構造の緻密層を有することに基づいて透液性能が向上しているので、分画分子量に応じた適度な透液性能を備えることができ、特に200~50000程度の分画分子量であっても透液性能を向上させることができる。
 また、発明のポリアミド多孔膜は、透液性能が向上しているので、様々な産業の製造プロセスの生産性向上、省エネルギー、低コスト化を達成することが可能である。特に、本発明のポリアミド多孔膜は、ポリアミド樹脂で形成されているため、多種の有機溶剤に対して優れた耐性を備えており、工業的に使用されている様々なタイプの有機溶剤と接触しても膜特性を安定に維持でき、蒸留の代替など新規な工業プロセスの提供も可能になる。更に、本発明のポリアミド多孔膜は、親水性が高いため、従来の水系の濾過プロセスにも適用すると、除去対象物質が親水性のものである場合には吸着効果によって除去性能が向上でき、一方で疎水性物質の吸着が抑えられることから疎水性物質が膜表面を覆い処理流量が低下するファウリングを防ぐことができ、効率的な濾過処理を実現できる。
aはポリアミド多孔膜の緻密層表面の走査型電子顕微鏡画像の一例であり、bはaの走査型電子顕微鏡画像を移動平均による二値化した二値化画像であり、cはbの二値化画像をフーリエ変換したパワースペクトル画像である。 aはメタノール透過量測定時に使用するモジュールの模式図であり、bはメタノール透過量測定の測定に使用する装置の模式図である。 実施例1~4及び比較例1のポリアミド中空糸膜の緻密層の走査型電子顕微鏡画像である。 図3の走査型電子顕微鏡画像を二値化してフーリエ変換することにより得られたパワースペクトル画像である。
1.ポリアミド多孔膜
 本発明のポリアミド多孔膜は、少なくとも一方の面に緻密層が形成されているポリアミド多孔膜であって、前記緻密層の表面に一方向に伸びる筋状凹部を有し、後述する配向解析における前記筋状凹部の配向角度が0~5.0°又は175.0~180.0°であり、配向強度が1.5~2.0であることを特徴とする。以下、本発明のポリアミド多孔膜について詳述する。
[構成素材]
 本発明のポリアミド多孔膜は、ポリアミド樹脂で形成される。本発明のポリアミド多孔膜では、ポリアミド樹脂を構成樹脂とすることにより、幅広い有機溶媒に対して耐性を具備できる。
 構成樹脂として使用されるポリアミド樹脂の種類については、特に制限されないが、例えば、ポリアミドのホモポリマー、ポリアミドの共重合体、又はこれらの混合物が挙げられる。ポリアミドのホモポリマーとしては、具体的には、ポリアミド6、ポリアミド66、ポリアミド46、ポリアミド610、ポリアミド612、ポリアミド11、ポリアミド12、ポリアミドMXD6、ポリアミド4T、ポリアミド6T、ポリアミド9T、ポリアミド10T等が挙げられる。また、ポリアミドの共重合体としては、具体的には、ポリアミドとポリテトラメチレングリコール又はポリエチレングリコール等のポリエーテルとの共重合体等が挙げられる。また、ポリアミドの共重合体におけるポリアミド成分の比率については、特に制限されないが、例えば、ポリアミド成分が占める割合として、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上、特に好ましくは95モル%以上が挙げられる。ポリアミドの共重合体においてポリアミド成分の比率が上記範囲を充足することにより、一層優れた有機溶媒耐性を備えさせることができる。
 幅広い有機溶媒に対する耐性をより一層向上させるという観点から、構成樹脂として使用されるポリアミド樹脂の好適な一例として、メチレン基とアミド基を-CH2-:-NHCO-=4:1~10:1のモル比で有する脂肪族ポリアミド樹脂、より好ましくは当該脂肪族ポリアミド樹脂のみからなるものが挙げられる。
 構成樹脂として使用されるポリアミド樹脂は、架橋の有無は問わないが、製造コストを低減させるという観点から、架橋されていないものが好ましい。
 また、ポリアミド樹脂の相対粘度については、特に制限されないが、例えば、2.0~7.0、好ましくは3.0~6.0、より好ましくは2.0~4.0が挙げられる。このような相対粘度を備えることにより、ポリアミド多孔膜の製造時に、成形性や相分離の制御性が向上し、ポリアミド多孔膜に対して優れた形状安定性を備えさせることが可能になる。なお、ここで、相対粘度とは、96%硫酸100mLに1gのポリアミド樹脂を溶解した溶液を用い、25℃でウベローデ粘度計によって測定した値を指す。
 本発明において、構成樹脂として使用されるポリアミド樹脂は、1種単独で使用してもよく、また2種以上組み合わせて使用してもよい。
 本発明のポリアミド多孔膜は、前記ポリアミド樹脂の他に本発明の効果を損なわない範囲で、必要に応じて、フィラーが含まれていてもよい。フィラーを含むことにより、ポリアミド多孔膜の強度、伸度、弾性率を向上させることができる。特に、フィラーを含むことにより、濾過の際に高圧をかけても、ポリアミド多孔膜が変形し難くなるという効果も得られる。添加するフィラーの種類については、特に制限されないが、例えば、ガラス繊維、炭素繊維、チタン酸カリウィスカー、酸化亜鉛ウィスカー、炭酸カルシウムウィスカー、ワラステナイトウィスカー、硼酸アルミウィスカー、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維等の繊維状フィラー;タルク、ハイドロタルサイト、ワラステナイト、ゼオライト、セリサイト、マイカ、カオリン、クレー、パイロフィライト、ベントナイト、アスベスト、アルミナシリケート等の珪酸塩;酸化珪素、酸化マグネシウム、アルミナ、酸化ジルコニウム、酸化チタン、酸化鉄等の金属化合物;炭酸カルシウム、炭酸マグネシウム、ドロマイト等の炭酸塩;硫酸カルシウム、硫酸バリウム等の硫酸塩;水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム等の金属水酸化物;ガラスビーズ、ガラスフレーク、ガラス粉、セラミックビーズ、窒化ホウ素、炭化珪素、カーボンブラック、シリカ、黒鉛等の非繊維フィラー等の無機材料が挙げられる。これらのフィラーは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらのフィラーの中でも、好ましくは、タルク、ハイドロタルサイト、シリカ、クレー、酸化チタン、より好ましくは、タルク、クレーが挙げられる。
 フィラーの含有量については、特に限定されないが、例えば、ポリアミド樹脂100質量部当たり、フィラーが5~100質量部、好ましくは10~75質量部、より好ましくは25~50質量部が挙げられる。このような含有量でフィラーを含むことにより、ポリアミド多孔膜の強度、伸度、弾性率の向上を図ることができる。
 また、本発明のポリアミド多孔膜には、孔径制御や膜性能の向上等のために、必要に応じて、増粘剤、酸化防止剤、表面改質剤、滑剤、界面活性剤等の添加剤が含まれていてもよい。
[形状]
 本発明のポリアミド多孔膜の形状については、特に制限されず、中空糸膜、平膜等の任意の形状から選択することができるが、中空糸膜は、モジュールの単位体積当たりの濾過面積が多く、効率的に濾過処理を行うことが可能になるので、本発明において好適である。
 本発明のポリアミド多孔膜が中空糸膜である場合、その外径については、その用途、緻密層の厚み、備えさせる透液性能等に応じて適宜設定されるが、モジュールに充填した際の有効膜面積、膜強度、中空部を流れる流体の圧損、座屈圧との関係を鑑みた場合、中空糸膜の外径として、450μm以上、好ましくは450~4000μm、より好ましくは500~3500μm、更に好ましくは700~3000μm、特に好ましくは700~2000μmが挙げられる。また、本発明のポリアミド多孔膜が中空糸膜である場合、その外径の範囲の他の例として、450~1000μm又は500~760μmが挙げられる。また、本発明のポリアミド多孔膜が中空糸形状である場合、その内径については、特に制限されないが、例えば、100~3000μm、好ましくは200~2500μm、より好ましくは300~2000μm、更に好ましくは300~1500μm挙げられる。また、発明のポリアミド多孔膜が中空糸膜である場合、その内径の範囲の他の例として、200~400μm又は230~370μmが挙げられる。本発明において中空糸膜の外径及び内径は、5本の中空糸膜について光学顕微鏡にて倍率200倍で観察し、各中空糸膜の外径及び内径(ともに最大径となる箇所)を測定し、それぞれの平均値を算出することにより求められる値である。
 本発明のポリアミド多孔膜の厚みについては、ポリアミド多孔膜の用途や形状、緻密層の厚み、備えさせる透液性能等に応じて適宜設定されるが、例えば、50~600μm、好ましくは100~350μmが挙げられる。また、発明のポリアミド多孔膜の厚みの範囲の他の例として、200~500μm又は240~390μmが挙げられる。本発明のポリアミド多孔膜が中空糸形状である場合、その厚みは、外径から内径を引いた値を2で除することにより算出される値である。
[緻密層]
 本発明のポリアミド多孔膜では、少なくとも一方の面の表面に、緻密層が形成されている。本発明において、「緻密層」とは、緻密な微細孔が集合している領域であって、倍率10000倍の走査型電子顕微鏡(SEM)写真において実質的に細孔の存在が認められない領域を示す。本発明のポリアミド多孔膜において、分画分子量と透液性能等の濾過性能は、ほぼ緻密層の部分が担っている。なお、走査型電子顕微鏡による緻密層の観察は、ポリアミド多孔膜が平膜の場合は、適切な大きさに裁断し試料台に載せた後、Pt、Au、Pd等の蒸着処理を施して観察すればよい。また、ポリアミド多孔膜が中空糸膜の場合、外側表面に存在する緻密層を観察する場合は、平膜の場合と同様、適切な大きさに裁断し試料台に載せた後、Pt、Au、Pd等の蒸着処理を施し観察すればよいが、内腔側表面に存在する緻密層を観察する場合であれば、メス等の鋭利な刃物で中空糸膜の長手方向に裁断し、内腔側表面を露出させてから適切な大きさに裁断し試料台に載せた後、Pt、Au、Pd等の蒸着処理を施し観察すればよい。
 本発明のポリアミド多孔膜において、緻密層の厚みについては、特に制限されないが、例えば10~2000nm、好ましくは100~1500nm、より好ましくは200~1000nmが挙げられる。本発明において、緻密層の厚みは、倍率10000倍の中空糸膜断面のSEM写真において、実質的に細孔の存在が認められない領域の距離(厚み)を10か所以上測定し、その平均値を算出することにとり求められる値である。
 本発明のポリアミド多孔膜は表面の少なくとも一方に緻密層が形成されていればよい。例えば、本発明のポリアミド多孔膜が中空糸膜の場合、内腔側表面と外側表面のいずれか少なくとも一方に緻密層が形成されていればよい。また、例えば、本発明のポリアミド多孔膜が平膜形状の場合、表側の表面と裏側の表面のいずれか少なくとも一方に緻密層が形成されていればよい。分画分子量と透液性能のバランスの観点から、本発明のポリアミド多孔膜の好適な一例として、緻密層が一方の面のみに設けられている態様が挙げられる。また、本発明のポリアミド多孔膜が中空糸膜の場合の好適な一例として、内腔側表面に緻密層が設けられ、外側表面には緻密層が設けられていない態様が挙げられる。
 本発明のポリアミド多孔膜では、緻密層の表面に一方向に伸びる筋状凹部を有している。緻密層の表面の筋状凹部は、倍率10000倍の走査型電子顕微鏡(SEM)にて緻密層の表面を観察することにより確認することができる。緻密層の表面の筋状凹部は、複数存在しており、それぞれの筋状凹部が同一方向に伸びている。即ち、緻密層の表面では、複数の筋状凹部の長手方向がそれぞれ略平行方向となるように存在している。
 また、本発明のポリアミド多孔膜において、緻密層の表面に存在する筋状凹部の長手方向は、製造時の一軸延伸の延伸方向と略一致している。即ち、本発明のポリアミド多孔膜が中空糸膜の場合であれば、筋状凹部の長手方向が中空糸膜の長手方向と略平行方向になっており、本発明のポリアミド多孔膜が平膜の場合であれば、筋状凹部の長手方向は、製造時の平膜の延伸方向と略平行方向になっている。
 本発明のポリアミド多孔膜において、緻密層の表面の筋状凹部は、後述する配向解析において、配向角度が0~5.0°又は175.0~180.0°を満たし、且つ配向強度が1.50~2.00を満たす。このような配向角度及び配向強度を満たす筋状凹部が緻密層の表面に形成されていることにより、透液性能を向上させることが可能になる。
 透液性能をより一層向上させるという観点から、後述する配向解析における配向角度として、好ましくは0~3.0°又は177.0~180.0°が挙げられ、より好ましくは1.1~2.5°又は177.5~178.9°、更に好ましくは1.1~2.5°又は177.9~178.9°が挙げられる。また、透液性能をより一層向上させるという観点から、後述する配向解析における配向強度として、好ましくは1.50~1.90、より好ましくは1.56~1.77が挙げられる。
 前記配向角度及び配向強度は、以下に示す(1)~(4)のステップで配向解析することによって求められる。
(1)緻密層表面の電子顕微鏡画像を二値化し、二値化画像を得る。
(2)前記二値化画像を、X軸方向が緻密層で観察される筋状凹部の長手方向と平行方向になるように配して、フーリエ変換することによりパワースペクトル画像を得る。
(3)前記パワースペクトル画像から平均振幅の角度分布図の近似楕円を求める。
(4)前記近似楕円に基づいて、下記配向角度及び配向強度を求める。
  配向角度:X軸の正方向に対する近似楕円の短軸方向の角度(°)
  配向強度:近似楕円における長軸長/短軸長の比
 前記(1)~(4)のステップによる配向解析手法については、江前敏晴等の文献(「紙の繊維配向をフーリエ画像解析により求める手法」、文化財保存修復学会第26回大会研究発表要旨集、44~45頁、2004年)に記載されており、当該文献に記載の手法で行うこときるが、以下、前記(1)~(4)のステップについて補足説明する。
 前記(1)のステップで使用する電子顕微鏡画像は、倍率10000倍の走査型電子顕微鏡(SEM)で観察した画像を使用すればよい。走査型電子顕微鏡による緻密層を観察する手法は前記の通りである。前記(1)のステップで得られた二値化画像は、フーリエ変換処理に供されるため、前記(1)のステップでは、画素数は1辺が2のべき乗の正方形の電子顕微鏡画像を使用する。前記(1)のステップにおける二値化処理は、具体的には、移動平均法によって行えばよい。
 前記(2)のステップでは、X軸方向が緻密層で観察される筋状凹部の長手方向(製造時の一軸延伸方向)と平行方向、Y軸方向が筋状凹部の幅方法(短手方向;製造時の一軸延伸方向に対して垂直方向)方向と平行方向になるように二値化画像を配して、フーリエ変換処理を行う。前記(2)のステップにおけるフーリエ変換処理は、高速フーリエ変換(FFT)処理にて行えばよい。前記(1)のステップで得られた二値化画像をフーリエ変換することによって得られるパワースペクトル画像には、周期構造の波数と方向に応じた箇所にスポットが現れる。
 前記(3)のステップにおいて、平均振幅の角度分布図(パワースペクトルパターン)は、前記(2)のステップで得られたパワースペクトル画像を極座標表示することにより得られる。本発明のポリアミド多孔膜の緻密層表面の筋状凹部は配向性を有しており、その平均振幅の角度分布図は楕円に近似した形状として現れるため、前記(3)のステップでは、平均振幅の角度分布図の近似楕円を求める。
 前記(4)のステップでは、前記(3)のステップで求めた近似楕円(長軸長、短軸長、短軸方向の角度)に基づいて、X軸の正方向に対する近似楕円の短軸方向の角度を配向角度(°)、近似楕円における長軸長/短軸長の比を配向強度として算出する。本発明において、配向角度及び配向強度は、走査型電子顕微鏡画像10視野の解析結果の平均値として算出される値である。
 前記(1)~(4)のステップによる配向解析は、公知の画像解析ソフトを使用して行うことができる。例えば、「非破壊による紙の表面繊維配向解析プログラム FiberOri8single03.exe(V.8.03)」(http://www.enomae.com/FiberOri/index.htmからダウンロード可能)を使用することにより、簡便に、前記(1)~(4)のステップによる配向解析を行って、配向角度及び配向強度を求めることができる。以下、「非破壊による紙の表面繊維配向解析プログラム FiberOri8single03.exe(V.8.03)」を使用して配向角度及び配向強度を求める手順について説明する。先ず、X軸方向が緻密層で観察される筋状凹部の長手方向と平行方向になるように緻密層表面の電子顕微鏡画像(図1のa)を前記画像解析ソフトに取り込む。次いで、当該電子顕微鏡画像に対して移動平均による二値化を行い、二値化画像(図1のb)を作成する。その後、当該値化画像を高速フーリエ変換(FFT)し、パワースペクトル画像(図1のc)を作成する。次いで、当該パワースペクトル画像に基づいて、配向角度と配向度の計算処理を行うことにより、配向角度と配向度の各値が出力される。
[多孔質領域]
 本発明のポリアミド多孔膜では、緻密層以外の領域は多孔質構造になっている。以下、緻密層以外の領域を「多孔質領域」と表記することもある。多孔質領域とは、具体的には、倍率2000倍の走査型電子顕微鏡(SEM)写真において実質的に細孔の存在が認められる領域を示す。本発明のポリアミド多孔膜性能は、ほぼ緻密層の部分で決定されることから多孔質領域はいわゆる支持層と考えることができ、多孔質領域における孔径については、緻密層を保持する程度の強度と流体の透過にとって著しい妨げにならない限り特に制限されない。
[分画分子量及びメタノール透過量]
 本発明のポリアミド多孔膜の分画分子量については、特に制限されず、緻密層の厚さ、緻密層以外の領域の孔径等を適宜調整することにより適宜設定することができるが、例えば、200~50000、好ましくは200~20000、より好ましくは800~15000、更に好ましくは920~1400が挙げられる。分画分子量は、特定の分子量を持つ物質を90%以上阻止可能な膜の細孔サイズを表わすものであり、その阻止できる物質の分子量にて表される。
 本発明において、分画分子量は、以下の方法で求められる値である。分子量既知の化合物を純水に0.1質量%で溶解させたものを原液として0.3MPaの圧力でろ過を行って膜を透過した液を回収する。透過液中の前記化合物の濃度を測定し、下記式に従って阻止率を算出する。各種分子量の化合物を用いて、それぞれ阻止率を算出し、それらの結果に基づいて、横軸に使用した化合物の分子量、縦軸に各化合物の阻止率を示すグラフを作成し、得られる近似曲線と阻止率90%の交点の分子量を分画分子量として求める。なお、分子量既知の化合物としては、分画分子量が200~50000の範囲の場合はポリエチレングリコールを使用し、分画分子量が50000超の場合はデキストランを使用する。
Figure JPOXMLDOC01-appb-M000001
 本発明のポリアミド多孔膜は、緻密層の表面に一方向に伸びる筋状凹部を有し、当該筋状凹部の配向角度及び配向角が前述する範囲を満たすことにより、透液性能が高められている。本発明のポリアミド多孔膜が備え得る透液性能については、分画分子量や使用するポリアミド樹脂の種類等によって異なり、一律に規定することはできないが、例えば、メタノール透過量が、0.4~50L/(m2・bar・h)、好ましくは0.6~40L/(m2・bar・h)、より好ましくは0.8~30L/(m2・bar・h)、更に好ましくは0.8~19L/(m2・bar・h)が挙げられる。
 本発明において、メタノール透過量は、ポリアミド多孔膜が中空糸膜である場合には、内圧式濾過によって測定される値であり、以下の手順で測定される値である。先ず、中空糸膜10本を30cm長に切断しこれらを揃えて束ねたものを準備する。次に、外径8mm、内径6mm、長さ50mmのナイロン硬質チューブを準備し、当該チューブの一方の端部開口から、長さ20mm程度のゴム栓を挿入し、当該一方の端部開口の栓をする。次に、当該チューブの、ゴム栓をした方とは反対側の開口部に2液混合型で室温硬化型のエポキシ樹脂を挿入しチューブ内側空間を当該エポキシ樹脂で充填する。次いで、前記準備した中空糸膜を束ねたものを略U字状に曲げ、中空糸膜の両端部を、前記エポキシ樹脂で充填されたチューブ内に、当該端部先端がゴム栓に触れるまで挿入し、そのままの状態でエポキシ樹脂を硬化させる。次いで、硬化したエポキシ樹脂部分のゴム栓側の領域をチューブごと切断することにより、中空糸膜の両端部の中空部が開口したモジュールを得る。当該モジュールの模式図を図2のaに示す。次いで、下図2のbに示す装置に前記モジュールをセットし、約0.3MPaの圧力をかけて25℃のメタノール(メタノール100%)を前記モジュールの中空糸膜の内側に一定時間流し、中空糸膜の外側に透過したメタノールの容量を求め、下記算出式に従ってメタノール透過量(L/(m2・bar・h))を算出する。
Figure JPOXMLDOC01-appb-M000002
 また、本発明において、メタノール透過量は、ポリアミド多孔膜が平膜である場合にはデッドエンド式濾過によって測定される値であり、以下の手順で測定される値である。高圧ポンプを接続した平膜クロスフロー試験機(例えば、GEウォーターテクノロジーズ社製のSepa-CF平膜試験セル)を用い、平膜形状のポリアミド多孔膜を所定の大きさ(19.1cm×14.0cm、セル中の有効膜面積:155cm2)にカットしてセルに固定し、25℃のメタノールを流して所定の圧力で透過したメタノールを回収し容量(L)を測定し、下記算出式に従ってメタノール透過量(L/(m2・bar・h))を算出する。
Figure JPOXMLDOC01-appb-M000003
 本発明のポリアミド多孔膜の分画分子量が1000超である場合、分画分子量の範囲毎に満たし得るメタノール透過量の範囲の好適な例としては、例えば、分画分子量が1100~2000であり、且つメタノール透過量が5~50L/(m2・bar・h);好ましくは分画分子量が1200~1500であり、且つメタノール透過量が5~30L/(m2・bar・h);より好ましくは分画分子量が1200~1500であり、且つメタノール透過量が8~20L/(m2・bar・h);更に好ましくは分画分子量が1200~1400であり、且つメタノール透過量が9.4~19L/(m2・bar・h)が挙げられる。
 また、本発明のポリアミド多孔膜の分画分子量が1000以下である場合、分画分子量の範囲毎に満たし得るメタノール透過量の範囲の好適な例としては、例えば、分画分子量が200~1000であり、且つメタノール透過量が0.8~10L/(m2・bar・h);好ましくは分画分子量が900~1000であり、且つメタノール透過量が0.8~5.0L/(m2・bar・h);より好ましくは分画分子量が900~1000であり、且つメタノール透過量が0.8~3.0L/(m2・bar・h):更に好ましくは分画分子量が920~990であり、且つメタノール透過量が0.8~2.9L/(m2・bar・h)が挙げられる。
[有機溶媒耐性]
 本発明のポリアミド多孔膜は、ポリアミド樹脂で形成されているため、様々な種類の有機溶媒と接触しても、強度や伸びの変化を抑制して膜構造を安定に保持する特性(有機溶媒耐性)を備えている。より具体的には、本発明のポリアミド多孔膜は、アルコール類、非プロトン性極性溶媒、炭化水素類、高級脂肪酸、ケトン類、エステル類、エーテル類等の有機溶媒への耐性を有している。かかる有機溶媒の種類としては、具体的には以下のものが例示される。
アルコール類:メタノール、エタノール、n-プロパノール、n-ブタノール、ベンジルアルコール等の第一級アルコール;イソプロピルアルコール、イソブタノール等の第二級アルコール;ターシャリーブチルアルコール等の第三級アルコール;エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、1,3-ブタンジオール、グリセリン等の多価アルコール。
ケトン類:アセトン、メチルエチルケトン、シクロヘキサノン、ジイソプロピルケトン等。
エーテル類:テトラヒドロフラン、ジエチルエーテル、ジイソプロピルエーテル、1,4-ジオキサン等、及び、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル類。
非プロトン性極性溶媒:N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、スルホラン等。
エステル類:酢酸エチル、酢酸イソブチル、乳酸エチル、フタル酸ジメチル、フタル酸ジエチル、エチレンカーボネート、プロピレンカーボネート、プロピレングリコールモノメチルエーテルアセテート等。
炭化水素類:石油エーテル、ペンタン、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、流動パラフィン、ガソリン、及び鉱油。
高級脂肪酸:オレイン酸、リノール酸、リノレン酸等のカルボキシル基以外の炭素数が4以上(好ましくは4~30)の脂肪酸。
 とりわけ、本発明のポリアミド多孔膜が備える有機溶媒耐性の好適な例として、下記の有機溶媒の少なくも1種、好ましくは全てに対する耐性を備えていることが挙げられる。
アルコール類:イソプロピルアルコール、ベンジルアルコール、エチレングリコール、グリセリン。
ケトン類:アセトン、メチルエチルケトン、シクロヘキサノン。
エーテル類:テトラヒドロフラン、ジエチルエーテル、プロピレングリコールモノメチルエーテル。
非プロトン性極性溶媒:N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン。
エステル類:酢酸エチル、酢酸イソブチル、フタル酸ジメチル。
炭化水素類:ヘキサン、ヘプタン、ベンゼン、トルエン、ガソリン、鉱油。
高級脂肪酸:オレイン酸、リノール酸。
 本発明のポリアミド多孔膜が備える有機溶媒耐性として、具体的には、前記有機溶媒に25℃で14時間浸漬した際に、浸漬後の限外濾過膜の引張強度及び伸び率の変化率が、浸漬前に比べて±30%以下、好ましくは±20%未満であることが挙げられる。具体的には、当該引張強度及び伸び率の変化率は、下記式に従って算出される。
Figure JPOXMLDOC01-appb-M000004
 ポリアミド多孔膜の強度及び伸びは、ポリアミド多孔膜が中空糸膜である場合には前記[引張強さ及び伸び率]の欄に記載の条件で測定される値であり、ポリアミド多孔膜が平膜である場合には平膜を幅10mm、長さ100mmの短冊状にしたサンプルを使用すること以外は前記[引張強さ及び伸び率]の欄に記載の条件で測定される値である。
[用途]
 本発明のポリアミド多孔膜は、限外濾過膜又はナノ濾過膜として、半導体工業、化学工業、食品工業、医薬品工業、医療品工業等の分野で使用される。本発明において、「限外濾過」又は「限外濾過膜」とは、分画分子量が1000~1000000の範囲内に設定されている濾過又は分画分子量が1000~1000000の範囲内にある濾過膜を指す。また、本発明において、「ナノ濾過」又は「ナノ濾過膜」とは、分画分子量が200~1000の範囲内に設定されている濾過又は分画分子量が200~1000の範囲内にある濾過膜を指す。
 また、本発明のポリアミド多孔膜は、様々な有機溶媒に対する耐性を有しているので、有機溶媒を含む被処理液を処理対象とする濾過に好適に使用することができる。
 本発明のポリアミド多孔膜は、本発明のポリアミド多孔膜を後述する濾過膜モジュールに組み込んで使用することが好ましい。
 また、本発明のポリアミド多孔膜は、単独で自立膜として提供されてもよく、また、精密濾過膜の支持体上に積層された形状であってもよい。かかる支持体の素材としては、有機溶剤に耐性があることが好ましく、具体的には、ポリアミド、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリフェニレンスルフィド、ポリエーテルエーテルケトン等の高分子素材;焼結金属、セラミック等の無機素材等が挙げられる。
2.ポリアミド多孔膜の製造方法
 本発明ポリアミド多孔膜の製造方法については、緻密層の表面に前述する配向角度及び配向強度を有する筋状凹部が形成されているものが得られることを限度として特に制限されないが、好適な一例として下記第1工程~第4工程を含む製造方法が挙げられる。本発明のポリアミド多孔膜は、少なくとも一方の表面に緻密層が形成され、緻密層以外の領域は多孔質構造になっており、従来公知の一般的な熱誘起相分離法(TIPS法)や非溶媒誘起相分離法(NIPS法)を単独で採用する製造条件では得ることが困難であるが、下記第1工程~第4工程を含む製造方法では、TIPS法とNIPS法の双方の原理を採用し、且つ所定条件で一軸延伸するによって、本発明のポリアミド多孔膜を効率的に製造することが可能になっている。
第1工程:150℃以上の沸点を有し且つ100℃未満の温度ではポリアミド樹脂と相溶しない有機溶媒に、100℃以上の温度でポリアミド樹脂を溶解させた製膜原液を調製する。
第2工程:前記製膜原液を所定形状にて100℃以下の凝固浴中に押し出すことにより、ポリアミド樹脂を膜状に凝固させる工程であって、当該工程において、所定形状にて押し出された前記製膜原液の少なくとも一方の表面に対して、前記製膜原液で使用した有機溶媒と相溶性を有し且つポリアミド樹脂とは親和性が低い凝固液を接触させて、ポリアミド多孔膜を形成する。
第3工程:前記第2工程で形成されたポリアミド多孔膜中で相分離している凝固液を抽出除去する。
第4工程:第3工程後のポリアミド多孔膜を乾燥と同時又は乾燥後に一軸方向に延伸する。
 以下、前記第1工程~第4工程について工程毎に詳述する。
[第1工程]
 第1工程では、150℃以上の沸点を有し且つ100℃未満の温度ではポリアミド樹脂と相溶しない有機溶媒に、100℃以上の温度でポリアミド樹脂を溶解させた製膜原液を調製する。
 150℃以上の沸点を有し且つ100℃未満の温度ではポリアミド樹脂と相溶しない有機溶媒としては、例えば、非プロトン性極性溶媒、グリセリンエーテル類、多価アルコール類、有機酸及び有機酸エステル類、高級アルコール類等が挙げられる。非プロトン性極性溶媒としては、具体的には、スルホラン、ジメチルスルホン、ジメチルスルホキシド、γ-ブチロラクトン、δ-バレロラクトン、ε-カプロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、炭酸エチレン、炭酸プロピレン等が挙げられる。グリセリンエーテル類としては、具体的には、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、テトラエチレングリコールジメチルエーテル等が挙げられる。多価アルコール類としては、具体的には、グリセリン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ヘキシレングリコール、1,3-ブタンジオール、ポリエチレングリコール(分子量100~10000)等が挙げられる。有機酸及び有機酸エステル類としては、具体的には、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジイソプロピル、フタル酸ジブチル、フタル酸ブチルベンジル、サリチル酸メチル、オレイン酸、パルミチン酸、ステアリン酸、ラウリン酸等が挙げられる。これらの有機溶媒の中でも、より高い強度を備えるポリアミド多孔膜を得るという観点から、好ましくは、非プロトン性極性溶媒、多価アルコール類;より好ましくは、スルホラン、ジメチルスルホン、γ-ブチロラクトン、δ-バレロラクトン、ε-カプロラクトン、プロピレングリコール、へキシレングリコール、1,3-ブタンジオール、ポリエチレングリコール(分子量100~600);更に好ましくは、スルホラン、ジメチルスルホン、γ-ブチロラクトン、δ-バレロラクトン、ε-カプロラクトンが挙げられる。これらの有機溶媒は、1種単独で使用してもよく、また2種以上を組み合せて使用してもよい。これらの有機溶媒を1種単独で使用しても十分な効果が得られるが、2種類以上を混合して用いることで、相分離の順序や構造が異なることに起因して、更に効果的なポリアミド多孔膜を作製できることもある。
 製膜原液中のポリアミド樹脂の濃度としては、特に制限されないが、例えば、5~50質量%、好ましくは10~40質量%、更に好ましくは12~35質量%が挙げられる。製膜原液中のポリアミド樹脂の濃度が前記範囲を充足することにより、ポリアミド多孔膜に優れた強度と透液性能を備えさせることができる。
 また、第1工程において、ポリアミド樹脂を前記有機溶媒に溶解するに当たり、溶媒の温度を100℃以上にしておくことが必要である。具体的には、調製される製膜原液の相分離温度の10~50℃高い温度、好ましくは20~40℃高い温度で溶解させることが望ましい。製膜原液の相分離温度とは、ポリアミド樹脂と前記有機溶媒を十分に高い温度で混合したものを徐々に冷却し、液-液相分離又は結晶析出による固-液相分離が起こる温度を指す。相分離温度は、ホットステージを備えた顕微鏡等を使用することにより測定することができる。
 第1工程において、ポリアミド樹脂を前記有機溶媒に溶解させる際の温度条件は、使用するポリアミド樹脂の種類や有機溶媒の種類に応じて、前述する指標に従って100℃以上の温度域で適宜設定すればよいが、好ましくは120~250℃、より好ましくは140~220℃、更に好ましくは160~200℃が挙げられる。
 また、製膜原液には、ポリアミド多孔膜の孔径制御や性能向上等のために、必要に応じてフィラー、増粘剤、酸化防止剤、表面改質剤、滑剤、界面活性剤等を添加してもよい。
 第1工程で調製された製膜原液は、その温度のまま(即ち、100℃以上の状態)で第2工程に供される。
[第2工程]
 第2工程では、前記第1工程で調製された製膜原液を所定形状にて100℃以下の凝固浴中に押し出すことにより、ポリアミド樹脂を膜状に凝固させる工程であって、当該工程において、所定形状にて押し出された前記製膜原液の少なくとも一方の表面に対して、前記製膜原液で使用した有機溶媒と相溶性を有し且つポリアミド樹脂とは親和性が低い凝固液(以下、「緻密層形成用凝固液」と表記することもある)を接触させて、ポリアミド多孔膜を形成する。
 当該第2工程において、凝固浴中に所定形状にて押し出された前記製膜原液は、緻密層形成用凝固液と接触した表面において緻密層が形成される。前記製膜原液が緻密層形成用凝固液と接触した表面近傍では冷却による熱誘起相分離よりも、溶媒交換による非溶媒相分離が優勢に進行し、従来のTIPS法よりも緻密な構造が表面に形成される。
 ポリアミド多孔膜の一方の表面のみに緻密層を形成させる場合には、第2工程において、所定形状で押し出された製膜原液の一方の面に緻密層形成用凝固液を接触させ、他方の面には前記製膜原液に使用した有機溶媒と相溶性を有し且つポリアミド樹脂とは親和性が高い凝固液(以下、「多孔質構造形成用凝固液」と表記することもある)を接触させればよい。また、ポリアミド多孔膜の両方の表面に緻密層を形成させる場合には、第2工程において、所定形状で押し出された製膜原液の両方の面に緻密層形成用凝固液を接触させればよい。
 緻密層形成用凝固液は、具体的には、50℃以下の温度にて前記製膜原液で使用した有機溶媒と相溶するが、沸点以下又は200℃以下の温度にてポリアミド樹脂を溶解させない溶剤である。緻密層形成用凝固液として、具体的には、水、水含有量が80質量%以上の水溶液等の水性溶剤;1-プロパノール、2-プロパノール、イソブタノール等の1価低級アルコール類;平均分子量300以上のポリエチレングリコール、平均分子量400以上のポリプロピレングリコール、ジエチレングリコールジエチルエーテル、トリエチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のグリコールエーテル類;トリアセチン、プロピレングリコールモノエチルエーテルアセテート等のグリコールアセテート類等が挙げられる。これらの中でも、好ましくは、平均分子量300~1000のポリエチレングリコール、平均分子量400~1000のポリプロピレングリコール、トリアセチン、トリエチレングリコールモノメチルエーテル;より好ましくは平均分子量300~700のポリエチレングリコール;更に好ましくは平均分子量400~600のポリエチレングリコールが挙げられる。これらの溶剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。本発明において、本発明において、ポリエチレングリコール及びポリプロピレングリコールの平均分子量は、JIS K 1557-6:2009「プラスチック-ポリウレタン原料ポリオール 試験方法-第6部:近赤外(NIR)分光法による水酸基価の求め方」に準拠して測定した水酸基価に基づいて算出された数平均分子量である。
 また、緻密層形成用凝固液には、緻密層を形成可能であることを限度として、グリセリン等の多孔質構造形成用凝固液に使用される溶剤(25℃以下の温度にて前記製膜原液に使用した有機溶媒と相溶し、且つ沸点以下の温度にてポリアミド樹脂を溶解させる溶剤)が含まれていてもよい。緻密層形成用凝固液に多孔質構造形成用凝固液に使用される溶剤を含有させる場合、当該溶剤の含有量としては、例えば、20質量%以下、好ましくは10質量%以下が挙げられる。
 多孔質構造形成用凝固液は、25℃以下の温度にて前記製膜原液に使用した有機溶媒と相溶し、且つ沸点以下の温度にてポリアミド樹脂を溶解させる溶剤であればよい。多孔質構造形成用凝固液として、具体的には、グリセリン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール200、プロピレングリコール、1,3-ブタンジオール、スルホラン、N-メチル-2-ピロリドン、γ-ブチロラクトン、δ-バレロラクトン、及びこれらの20質量%以上を含む水溶液が挙げられる。これらの中でも、好ましくは、グリセリン、プロピレングリコール、ジエチレングリコール、及びポリエチレングリコール200よりなる群から選択される少なくとも1種、並びにこれらを25~75質量%の割合で含む水溶液;更に好ましくは、グリセリン、ジエチレングリコール、テトラエチレングリコール、及びプロピレングリコールよりなる群から選択される少なくとも1種、並びにこれらの少なくとも1種を40~80質量%(好ましくは40~60質量%)の割合で含む水溶液が挙げられる。
 ポリアミド多孔膜として中空糸膜を形成する場合であれば、第2工程は、二重管構造の中空糸製造用二重管状ノズルを用い、外側の環状ノズルから前記製膜原液を吐出すると共に内側のノズルから内部用凝固液を吐出し、凝固浴中に浸漬すればよい。この際、内部用凝固液と凝固浴の内、少なくとも一方に緻密層形成用凝固液を使用すればよい。内部用凝固液と凝固浴の双方に緻密層形成用凝固液を使用した場合には、内腔側表面及び外側表面の双方に緻密層が形成され、内部が多孔質領域である中空糸膜が得られる。また、内部用凝固液として緻密層形成用凝固液を使用し、且つ凝固浴として多孔質構造形成用凝固液を使用した場合には、内腔側表面に緻密層が形成され、内部と外側表面は多孔質領域である中空糸膜が得られる。また、内部用凝固液として多孔質構造形成用凝固液を使用し、且つ凝固浴として緻密層形成用凝固液を使用した場合には、外側表面に緻密層が形成され、内腔側表面と内部が多孔質領域である中空糸膜が得られる。なお、中空糸膜を形成する際に使用される内部用凝固液は、二重環状ノズルを経由することから、沸点が二重環状ノズルの温度以下となる水を含有しないことが好ましい。
 中空糸製造用二重管状ノズルとしては、溶融紡糸において芯鞘型の複合繊維を作製する際に用いられるような二重管状構造を有する口金を用いることができる。中空糸製造用二重管状ノズルの外側の環状ノズルの径、内側のノズルの径については、中空糸膜の内径と外径に応じて適宜設定すればよい。
 また、中空糸製造用二重管状ノズルの外側の環状ノズルから前記製膜原液を吐出させる際の流量については、そのスリット幅にもよるため特に制限されないが、例えば、2~30g/分、好ましくは3~20g/分、更に好ましくは5~15g/分が挙げられる。また、内部用凝固液の流量については、中空糸製造用二重管状ノズルの内側ノズルの径、使用する内部液の種類、製膜原液の流量等を勘案して適宜設定されるが、製膜原液の流量に対して、0.1~2倍、好ましくは0.2~1倍、更に好ましくは0.4~0.7倍が挙げられる。
 また、ポリアミド多孔膜として平膜を形成する場合であれば、第2工程は、前記緻密層形成用凝固液を凝固浴と使用して、当該凝固浴中に前記製膜原液を所定形状にて押し出して浸漬させればよい。
 第2工程において、凝固浴の温度は、100℃以下であればよいが、好ましくは-20~100℃、より好ましくは0~60℃、更に好ましくは2~20℃、特に好ましくは2~10℃が挙げられる。凝固浴の好適な温度は、製膜原液に使用した有機溶媒、凝固液組成等に応じて変動し得るが、一般により低い温度にすることで熱誘起相分離が優先して進み、より高い温度にすることで非溶媒相分離が優先して進む傾向がみられる。即ち、内腔側表面に緻密層が形成された中空糸膜を製造する場合であれば、内腔側表面の緻密層の孔径を大きくするためには凝固浴を低い温度に設定することが好ましく、内腔側表面の緻密層をより緻密にし、内部構造を粗大にするには凝固浴を高い温度に設定することが好ましい。
 また、ポリアミド多孔膜として中空糸膜を形成する場合であれば、内部用凝固液の温度は、二重管状ノズルの設定温度程度であればよく、例えば120~250℃、好ましくは(160~230℃、より好ましくは180~220℃が挙げられる。
 斯して第2工程を実施することにより、製膜原液が凝固浴中で凝固すると共に、少なくとも一方の表面に緻密層が形成されたポリアミド多孔膜が形成される。
[第3工程]
 第3工程では、前記第2工程で形成されたポリアミド多孔膜中で相分離している凝固液を抽出除去する。
 ポリアミド多孔膜中で相分離している凝固液を抽出除去するには、前記第2工程で形成されたポリアミド多孔膜を抽出溶媒に浸漬したり、前記第2工程で形成されたポリアミド多孔膜に対して抽出溶媒でシャワリングしたりすればよい。
 第3工程における抽出除去に使用される抽出溶媒としては、安価で沸点が低く抽出後に沸点の差などで容易に分離できるものが好ましく、例えば、水、グリセリン、メタノール、エタノール、イソプロパノール、アセトン、ジエチルエーテル、ヘキサン、石油エーテル、トルエン等が挙げられる。これらの中でも、好ましくは水、メタノール、エタノール、イソプロパノール、アセトン;より好ましくは水、メタノール、イソプロパノールが挙げられる。また、フタル酸エステル、脂肪酸等の水に不溶の有機溶媒を抽出する際は、イソプロピルアルコール、石油エーテル等を好適に用いることができる。
 ポリアミド多孔膜を抽出溶媒に浸漬することにより、凝固液の抽出除去を行う場合、抽出溶媒にポリアミド多孔膜を浸漬する時間については、特に制限されないが、例えば0.2時間~2ヶ月間、好ましくは0.5時間~1ヶ月間、更に好ましくは2時間~10日間が挙げられる。ポリアミド多孔膜に残留する凝固液を効果的に抽出除去するために、抽出溶媒を入れ替えたり、攪拌したりしてもよい。
 斯くして相分離している凝固液を抽出除去したポリアミド多孔膜は、後述する第4工程に供される。
[第4工程]
 第4工程では、第3工程後のポリアミド多孔膜を乾燥と同時又は乾燥後に一軸方向に延伸する。第3工程後のポリアミド多孔膜では、緻密層の表面に前述する配向角度及び配向強度を有する筋状凹部は形成されていないが、第4工程を行うことによって、前述する配向角度及び配向強度を有する筋状凹部が緻密層の表面に形成される。
 第4工程では、第3工程後に抽出溶媒が付着しているポリアミド多孔膜を乾燥させるのと同時に、又は第3工程後に抽出溶媒が付着しているポリアミド多孔膜を乾燥させた後に、一軸方向への延伸を行う。第3工程後に抽出溶媒が付着している状態で一軸方向への延伸を行った後に乾燥を行うと、乾燥によって延伸されたポリアミド多孔膜が大きく収縮し、前述する配向角度及び配向強度を有する筋状凹部が緻密層の表面に形成されなくなり、透液性能を十分に向上できなくなる。
 乾燥と同時に一軸方向に延伸するには、ポリアミド多孔膜に対して延伸のための張力をかけた状態で乾燥を行えばよい。乾燥と同時に一軸方向に延伸する際の温度条件としては、乾燥と延伸の双方が可能であることを限度として特に制限されないが、例えば、40℃以上、好ましくは40~160℃、より好ましくは50℃~140℃、更に好ましくは120~140℃が挙げられる。
 また、乾燥後に一軸方向に延伸する場合、乾燥時の温度条件については、付着している抽出溶媒を揮散可能であることを限度として特に制限されないが、例えば、40℃以上、好ましくは40~160℃、より好ましくは50℃~140℃、更に好ましくは120~140℃が挙げられる。また、乾燥後に一軸方向に延伸する場合、延伸時の温度条件については、特に制限されず、-10~140℃、好ましくは0~120℃であればよいが、透液性能をより一層向上させるという観点から、使用しているポリアミド樹脂のガラス転移点以上(より好ましくは50~120)℃、更に好ましくは60~100℃)であることが望ましい。
 一軸方向への延伸は公知の方法で行えばよく、例えば低速ロールから高速ロールへの巻取によって連続的に行えばよい。また、一定の長さに切断したポリアミド多孔膜の両端をつかんで引張試験機等を使用して延伸してもよく、また手動延伸を使用してもよい。ポリアミド多孔膜が中空糸膜である場合、中空糸膜の長手方向に一軸延伸すればよい。また、ポリアミド多孔膜が平膜である場合、平膜の縦方向又は横方向のいずれに一軸延伸してもよい。
 一方向に延伸する際の延伸倍率としては、例えば、1.2~5倍、好ましくは1.2~3倍が挙げられる。ポリアミド多孔膜の強度を高め、優れた耐水圧性を具備させるという観点からは、延伸倍率として、好ましくは1.2~2.4倍、より好ましくは1.5~2.0倍が挙げられる。
3.濾過モジュール
 本発明のポリアミド多孔膜は、被処理液流入口や透過液流出口等を備えたモジュールケースに収容され、濾過膜モジュールとして使用される。
 本発明のポリアミド多孔膜が中空糸形状である場合には、中空糸膜モジュールとして使用される。
 具体的には、中空糸膜モジュールは、本発明の中空糸状ポリアミド多孔膜を束にし、モジュールケースに収容して、中空糸状ポリアミド多孔膜の端部の一方又は双方をポッティング剤により封止して固着させた構造であればよい。中空糸膜モジュールには、被処理液の流入口又は濾液の流出口として、中空糸状ポリアミド多孔膜の外壁面側を通る流路と連結した開口部と、中空糸状ポリアミド多孔膜の中空部分と連結した開口部が設けられていればよい。
 中空糸膜モジュールの形状は、特に制限されず、デッドエンド型モジュールであっても、クロスフロー型モジュールであってもよい。具体的には、中空糸膜束をU字型に折り曲げて充填し、中空糸状ポリアミド多孔膜束の端部を封止後カットして開口させたデッドエンド型モジュール;中空糸状ポリアミド多孔膜束の一端の中空開口部を熱シール等により閉じたものを真っ直ぐに充填し、開口している方の中空糸状ポリアミド多孔膜束の端部を封止後カットして開口させたデッドエンド型モジュール;中空糸状ポリアミド多孔膜束を真っ直ぐに充填し、中空糸状ポリアミド多孔膜束の両端部を封止し片端部のみをカットして開口部を露出させたデッドエンドモジュール;中空糸状ポリアミド多孔膜束を真っ直ぐに充填し、中空糸状ポリアミド多孔膜束の両端部を封止し、中空糸状ポリアミド多孔膜束の両端の封止部をカットし、フィルターケースの側面に2箇所の流路を作ったクロスフロー型モジュール等が挙げられる。
 モジュールケースに挿入する中空糸状ポリアミド多孔膜の充填率は、特に制限されないが、例えば、モジュールケース内部の体積に対する中空部分の体積を入れた中空糸状ポリアミド多孔膜の体積が30~90体積%、好ましくは35~75体積%、更に好ましくは45~65体積%が挙げられる。このような充填率を満たすことによって、十分な濾過面積を確保しつつ、中空糸状ポリアミド多孔膜のモジュールケースへの充填作業を容易にし、中空糸状ポリアミド多孔膜の間をポッティング剤が流れ易くすることができる。
 中空糸膜モジュールの製造に使用されるポッティング剤については、特に制限されないが、中空糸膜モジュールを有機溶媒の処理に使用する場合には、有機溶媒を備えていることが望ましく、このようなポッティング剤の例として、ポリアミド、シリコン樹脂、エポキシ樹脂、メラミン樹脂、ポリエチレン、ポリプロピレン、フェノール樹脂、ポリイミド、ポリウレア樹脂等が挙げられる。これらのポッティング剤の中でも、硬化した時の収縮や膨潤が小さく、硬度が硬過ぎないものが好ましく、好適な例として、ポリアミド、シリコン樹脂、エポキシ樹脂、ポリエチレンが挙げられる。これらのポッティング剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 中空糸膜モジュールに使用するモジュールケースの材質については、特に制限されず、例えば、ポリアミド、ポリエステル、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリ塩化ビニル、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアリレート、ポリフェニレンサルファイド等が挙げられる。これらの中でも、好ましくはポリアミド、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、更に好ましくはポリアミド、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレンが挙げられる。
 また、本発明のポリアミド多孔膜が、平膜形状である場合には、プレートアンドフレーム型、スタック型等のシート型モジュール、スパイラル型モジュール、回転平膜型モジュール等として使用される。
 本発明のポリアミド多孔膜を利用した濾過膜モジュールは、半導体工業、化学工業、食品工業、医薬品工業、医療品工業等の分野で、溶剤中の異物の除去、溶剤中の有用成分の濃縮、溶剤回収、水の浄化等のための限外濾過又はナノ濾過用途で使用される。また、本発明のポリアミド多孔膜を利用した濾過膜モジュールの一態様では、有機溶媒を含む被処理液を処理対象とする濾過に好適に使用される。
 また、本発明のポリアミド多孔膜を利用した濾過膜モジュールの一態様では、有機溶媒を含む被処理液を処理対象とする濾過に好適に使用される。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
1.測定方法
[中空糸膜の外径及び内径、中空糸膜の厚み]
 5本の中空糸膜について光学顕微鏡にて倍率200倍で観察し、各中空糸膜の外径及び内径(ともに最大径となる箇所)を測定し、各平均値を求めた。中空糸膜の厚みは、外径から内径を引いた値を2で除して算出した。
[配向解析(配向角度及び配向強度)]
 ポリアミド中空糸膜を約1cmに切断し、長さ方向に2分割して内腔側表面の緻密層を露出させ試料片とした。試料片を試料台に載せ、蒸着装置(MSP-1S形マグネトロンスパッタ装置、株式会社真空デバイス製)にて放電電圧45mA、蒸着時間15秒の条件で、試料片の緻密層に対して白金蒸着処理を施した。次いで、走査型電子顕微鏡(SEM)にて1000倍で緻密層を観察した画像を、画像解析ソフトImageJを使用して、(総画素数262,144、縦の画素数512、横の画素数512)を取得した。得られた画像について、X軸方向が緻密層で観察される筋状凹部の長手方向(ポリアミド中空糸膜の長手方向)と平行方向、Y軸方向が筋状凹部の幅(短手)方向と平行方向になるように配して、画像解析ソフト(非破壊による紙の表面繊維配向解析プログラム FiberOri8single03.exe(V.8.03);http://www.enomae.com/FiberOri/index.htmからダウンロード)を用いて画像解析を行った。
 画像解析では、具体的には、画像を移動平均法による二値化を行った後に高速フーリエ変換(FFT)処理を行ってパワースペクトル画像に変換し、得られたパワースペクトル画像を配向解析することにより配向角度及び配向強度を求めた。なお、本測定に使用した前記画像解析ソフトでは、パワースペクトル画像から平均振幅の角度分布図(パワースペクトルパターン)を得て、当該角度分布図の近似楕円を求め、X軸の正方向に対する当該近似楕円の短軸方向の角度が配向角度(°)、当該近似楕円における長軸長/短軸長の比が配向強度として出力されるように設定されている。なお、配向角度及び配向強度は、走査型電子顕微鏡画像10視野の解析結果の平均値として求めた。
[メタノール透過量]
 先ず、図2のaに示すモジュールを作製した。具体的には、先ず、中空糸膜10本を30cm長に切断し、これらを揃えて束ねたものを準備した。次に、外径8mm、内径6mm、長さ50mmのナイロン硬質チューブを準備し、当該チューブの一方の端部開口から、長さ20mm程度のゴム栓を挿入し、当該一方の端部開口の栓をした。次に、当該チューブの、ゴム栓をした方とは反対側の開口部に2液混合型で室温硬化型のエポキシ樹脂を挿入しチューブ内側空間を当該エポキシ樹脂で充填した。その後、前記準備した中空糸膜を束ねたものを略U字状に曲げ、中空糸膜の両端部を、前記エポキシ樹脂で充填されたチューブ内に、当該端部先端がゴム栓に触れるまで挿入し、そのままの状態でエポキシ樹脂を硬化させた。次いで、硬化したエポキシ樹脂部分のゴム栓側の領域をチューブごと切断することにより、中空糸膜の両端部の中空部が開口したモジュールを作製した。
 次に、図2のbに示す装置に前記モジュールをセットし、約0.3MPaの圧力をかけて25℃のメタノール(メタノール100%)を前記モジュールの中空糸膜の内側に一定時間流し、中空糸膜の外側に透過したメタノールの容量を求め、下記算出式に従ってメタノール透過量(L/(m2・bar・h))を算出した。
Figure JPOXMLDOC01-appb-M000005
[分画分子量]
 市販のGPC用標準物質のポリエチレングリコール(PEG、アジレントテクノロジーズ社、分子量600、1000,4000,7000、20000、50000)をメタノールに0.1質量%溶解させたものを原液として0.3MPaの圧力で通液し、透過した液を回収して高速液体クロマトグラフィーによって透過液中のポリエチレングリコール濃度を測定し、下記式に従って阻止率を算出した。各分子量のポリエチレングリコールに対する阻止率の結果に基づいて、横軸に使用したポリエチレングリコールの分子量、縦軸に阻止率を示すグラフを作成し、得られる近似曲線と阻止率90%の交点の分子量を分画分子量として求めた。
Figure JPOXMLDOC01-appb-M000006
[耐水圧性]
 [メタノール透過量]の欄に記載の方法で、両端にポリアミド中空糸膜が開口しているモジュールを作製した。得られたモジュールを図2のbに示す装置にセットし、モジュール部を水に浸漬した状態で内側から空気による加圧を2MPaまでかけ、ポリアミド中空糸膜のバースト(破断)の発生の有無を調べた。各ポリアミド中空糸膜について5つのモジュールを作製して試験し、バーストしたモジュール数を求めた。
2.試験例1
2-1.中空糸膜の製造
[比較例1]
 ポリアミド6のチップ(ユニチカ株式会社製A1030BRT、相対粘度3.53)250g、及びスルホラン(東京化成株式会社製)750gを180℃で1.5時間攪拌し溶解させ、撹拌速度を下げて1時間脱泡し製膜原液を調製した。製膜原液を定量ポンプを介して、210℃に保温した紡糸口金に送液し、13.0g/分で押出した。紡糸口金の孔径は外径1.5mm、内径0.6mmのものを用いた。内部用凝固液(緻密層形成用凝固液)として、ポリエチレングリコール400(PEG400、平均分子量400)とグリセリン(Gly)の混合液(重量比でPEG400が90質量部、グリセリンが10質量部)を5.0g/分の送液速度で流した。押出された製膜原液は10mmのエアーギャップを介して、5℃の50質量%プロピレングリコール(PG)水溶液(多孔質構造形成用凝固液)からなる凝固浴に投入して冷却固化させてポリアミド中空糸膜を形成し、20m/分の引取り速度にて引き取った。巻き取ったポリアミド中空糸膜を水に24時間浸漬して溶媒抽出(洗浄)を行った後に、延伸させることなく熱風乾燥機(庫内温度130℃)内を通過させることによって乾燥させ、ポリアミド中空糸膜を得た。
[実施例1~4]
 溶媒抽出の前の工程までは比較例1と同条件で操作を行い、ポリアミド中空糸膜を形成した。巻き取ったポリアミド中空糸膜を水に24時間浸漬して溶媒を抽出した。次いで、ポリアミド中空糸膜を供給ローラー、熱風乾燥機(庫内温度130℃)、延伸ローラーの順に通過させ、乾燥と延伸を同時に実施した。この操作では、供給ローラーと延伸ローラーの間でポリアミド中空糸膜が延伸され、熱風乾燥機通過中に乾燥と延伸が同時に進行するように設定されている。この操作における延伸倍率は、1.5倍(実施例1)、2倍(実施例2)、2.5倍(実施例3)、3倍(実施例4)であった。
[比較例2]
 溶媒抽出の前の工程までは比較例1と同条件で操作を行い、ポリアミド中空糸膜を形成した。巻き取ったポリアミド中空糸膜を水に24時間浸漬して溶媒を抽出した。次いで、ポリアミド中空糸膜を供給ローラー、延伸ローラー、熱風乾燥機(庫内温度130℃)、引取ローラーの順に通過させ、延伸後に乾燥を実施した。この操作では、供給ローラーと延伸ローラーの間でポリアミド中空糸膜が延伸され、延伸ローラー以降では延伸されないように設定されている。この操作における延伸倍率は2倍であった。
[実施例5]
 溶媒抽出の前の工程までは比較例1と同条件で操作を行い、ポリアミド中空糸膜を形成した。巻き取ったポリアミド中空糸膜を水に24時間浸漬して溶媒を抽出した。次いで、ポリアミド中空糸膜を供給ローラー、熱風乾燥機(庫内温度130℃)、引取ローラー、延伸ローラーの順に通過させ、乾燥後に延伸を実施した。この操作では、供給ローラーと引取ローラーの間ではポリアミド中空糸膜が延伸されず、引取ローラーと延伸ローラーの間でのみポリアミド中空糸膜が延伸されるように設定されている。この操作における延伸倍率は2倍であった。
2-2.中空糸膜の物性評価結果
 表1に、各ポリアミド中空糸膜について、製造条件、緻密層の配向解析の結果(配向角度、配向強度)、メタノール透過量、分画分子量、及び加圧試験結果を示す。図3に、実施例1~4及び比較例1のポリアミド中空糸膜の緻密層(内腔側表面)を走査型電子顕微鏡で1000倍観察した画像を示す。図4に、実施例1~4及び比較例1のポリアミド中空糸膜の緻密層の走査型電子顕微鏡画像(1000倍)を二値化してフーリエ変換することにより得られたパワースペクトル画像を示す。
 延伸を行っていない比較例1のポリアミド中空糸膜では、走査型電子顕微鏡画像(1000倍)によって内腔側表面に孔の見えない緻密層が形成されていることが確認され、緻密層の配向解析の結果は配向角度が169°、配向強度が1.19であった。また、比較例1のポリアミド中空糸膜は、分画分子量が12000であり、メタノール透過量が3.9L/(m2・bar・h)と低かった。
 乾燥と同時に延伸を行った実施例1~4のポリアミド中空糸膜では、走査型電子顕微鏡画像(1000倍)によって内腔側表面に孔の見えない緻密層が維持されており、ポリアミド中空糸膜の長手方向と平行方向に筋状凹部が緻密層に形成できており、その配向解析の結果は、配向角度が0~5.0°又は175.0~180.0°且つ配向強度が1.5~2.0の範囲を満たしていた。また、実施例1~4のポリアミド中空糸膜では、延伸していない比較例1と同等の分画分子量でありながらも、メタノール透過量が9.4~16L/(m2・bar・h)と高くなっていた。特に、延伸倍率1.5~2.0倍で延伸した実施例1及び2では、優れた耐圧性も備えていた。
 また、乾燥後に延伸を行った実施例5のポリアミド中空糸膜でも、実施例1~4と同様に、ポリアミド中空糸膜の長手方向と平行方向に筋状凹部が緻密層に形成できていることが確認された。また、実施例5のポリアミド中空糸膜でも、延伸していない比較例1と同等の分画分子量を備えつつ、メタノール透過量が高くなっていた。
 一方、湿潤状態で延伸した後に乾燥を行った比較例2のポリアミド中空糸膜でも、ポリアミド中空糸膜の長手方向と平行方向に筋状凹部が緻密層に形成できていることが確認されたが、分画分子量とメタノール透過量は比較例1と同等であり、機能性は、延伸していない比較例1と同等であった。
Figure JPOXMLDOC01-appb-T000007
3.試験例2
3-1.中空糸膜の製造
[比較例3]
 ポリアミド6のチップ(ユニチカ株式会社製A1030BRT、相対粘度3.53)300g、ジメチルスルホン(東京化成株式会社製)515g、及びスルホラン(東京化成株式会社製)185gを180℃で1.5時間攪拌し溶解させ、撹拌速度を下げて1時間脱泡し製膜原液を調製した。製膜原液を定量ポンプを介して、210℃に保温した紡糸口金に送液し、13.0g/分で押出した。紡糸口金の孔径は外径1.5mm、内径0.6mmのものを用いた。内部用凝固液(緻密層形成用凝固液)として、ポリエチレングリコール400(PEG400、平均分子量400)を5.0g/分の送液速度で流した。押出された製膜原液は10mmのエアーギャップを介して、5℃の50質量%プロピレングリコール(PG)水溶液(多孔質構造形成用凝固液)からなる凝固浴に投入して冷却固化させてポリアミド中空糸膜を形成し、20m/分の引取り速度にて引き取った。巻き取ったポリアミド中空糸膜を水に24時間浸漬して溶媒抽出(洗浄)を行った後に、延伸させることなく熱風乾燥機(庫内温度130℃)内を通過させることによって乾燥させ、ポリアミド中空糸膜を得た。
[実施例6]
 溶媒抽出の前の工程までは比較例3と同条件で操作を行い、ポリアミド中空糸膜を形成した。巻き取ったポリアミド中空糸膜を水に24時間浸漬して溶媒を抽出した。次いで、ポリアミド中空糸膜を供給ローラー、熱風乾燥機(庫内温度130℃)、引取ローラー、延伸ローラーの順に通過させ、乾燥後に延伸を実施した。この操作では、供給ローラーと引取ローラーの間ではポリアミド中空糸膜が延伸されず、引取ローラー以降でのみポリアミド中空糸膜が延伸されるように設定されている。この操作における延伸倍率は2倍であった。
[実施例7]
 内部用凝固液(緻密層形成用凝固液)としてポリプロピレングリコール400(PPG400、平均分子量400)を用いたこと以外は、実施例6と同条件で、ポリアミド中空糸膜を製造した。
3-2.中空糸膜の物性評価結果
 表2に、各ポリアミド中空糸膜について、製造条件、緻密層の配向解析の結果(配向角度、配向強度)、メタノール透過量、分画分子量、及び加圧試験結果を示す。
 延伸を行っていない比較例3のポリアミド中空糸膜では、走査型電子顕微鏡画像(1000倍)によって内腔側表面に孔の見えない緻密層が形成されていることが確認され、緻密層の配向解析の結果は配向角度が12.9°、配向強度が1.16であった。また、比較例3のポリアミド中空糸膜は、分画分子量が920であり、メタノール透過量が0.6L/(m2・bar・h)と低かった。
 乾燥後に延伸を行った実施例6及び7のポリアミド中空糸膜では、走査型電子顕微鏡画像(1000倍)によって内腔側表面に孔の見えない緻密層が維持されており、ポリアミド中空糸膜の長手方向と平行方向に筋状凹部が緻密層に形成できており、その配向解析の結果は、配向角度が175.0~180.0°且つ配向強度が1.5~2.0の範囲を満たしていた。また、実施例6及び7のポリアミド中空糸膜では、延伸していない比較例3と同程度の分画分子量を維持しつつ、メタノール透過量が2.1~2.9L/(m2・bar・h)と高められていた。
Figure JPOXMLDOC01-appb-T000008
4.試験例3
4-1.中空糸膜の製造
[比較例4]
 ポリアミド11のチップ(アルケマ社製リルサンBESV0 A FDA、相対粘度2.50)150g、及びγ-ブチロラクトン(富士フィルム和光純薬株式会社製)850gを180℃で1.5時間攪拌し溶解させ、撹拌速度を下げて1時間脱泡し製膜原液を調製した。製膜原液を定量ポンプを介して、210℃に保温した紡糸口金に送液し、13.0g/分で押出した。紡糸口金の孔径は外径1.5mm、内径0.6mmのものを用いた。内部用凝固液(緻密層形成用凝固液)として、ポリエチレングリコール400(PEG400、平均分子量400)とグリセリン(Gly)の混合液(重量比でPEG400が90質量部、グリセリンが10質量部)を5.0g/分の送液速度で流した。押出された製膜原液は10mmのエアーギャップを介して、5℃の50質量%プロピレングリコール(PG)水溶液(多孔質構造形成用凝固液)からなる凝固浴に投入して冷却固化させてポリアミド中空糸膜を形成し、20m/分の引取り速度にて引き取った。巻き取ったポリアミド中空糸膜を水に24時間浸漬して溶媒抽出(洗浄)を行った後に、延伸させることなく熱風乾燥機(庫内温度130℃)内を通過させることによって乾燥させ、ポリアミド中空糸膜を得た。
[実施例8]
 溶媒抽出の前の工程までは比較例4と同条件で操作を行い、ポリアミド中空糸膜を形成した。巻き取ったポリアミド中空糸膜を水に24時間浸漬して溶媒を抽出した。次いで、ポリアミド中空糸膜を供給ローラー、熱風乾燥機(庫内温度130℃)、引取ローラー、延伸ローラーの順に通過させ、乾燥後に延伸を実施した。この操作では、供給ローラーと引取ローラーの間ではポリアミド中空糸膜が延伸されず、引取ローラー以降でのみポリアミド中空糸膜が延伸されるように設定されている。この操作における延伸倍率は2倍であった。
4-2.中空糸膜の物性評価結果
 表3に、各ポリアミド中空糸膜について、製造条件、緻密層の配向解析の結果(配向角度、配向強度)、メタノール透過量、分画分子量、及び加圧試験結果を示す。
 延伸を行っていない比較例4のポリアミド中空糸膜では、走査型電子顕微鏡画像(1000倍)によって内腔側表面に孔の見えない緻密層が形成されていることが確認され、緻密層の配向解析の結果は配向角度が165.0°、配向強度が1.08であった。また、比較例4のポリアミド中空糸膜は、分画分子量が860であり、メタノール透過量が0.2L/(m2・bar・h)と低かった。
 乾燥後に延伸を行った実施例8のポリアミド中空糸膜では、走査型電子顕微鏡画像(1000倍)によって内腔側表面に孔の見えない緻密層が維持されており、ポリアミド中空糸膜の長手方向と平行方向に筋状凹部が緻密層に形成できており、その配向解析の結果は、配向角度が0~5.0°且つ配向強度が1.5~2.0の範囲を満たしていた。また、実施例8のポリアミド中空糸膜では、延伸していない比較例4と同程度の分画分子量を維持しつつ、メタノール透過量が比較例4の場合の4倍にまでと高められていた。
Figure JPOXMLDOC01-appb-T000009
1 モジュール
1a 中空糸膜
1b 硬化したエポキシ樹脂が充填されているチューブ
2 送液ポンプ
3 圧力計
4 圧抜きバルブ
5 受け皿
6 中空糸膜の外側に透過したメタノール

Claims (10)

  1.  少なくとも一方の面に緻密層が形成されているポリアミド多孔膜であって、
     前記緻密層の表面に一方向に伸びる筋状凹部を有し、
     下記配向解析における前記筋状凹部の配向角度が0~5.0°又は175.0~180.0°であり、配向強度が1.5~2.0である、ポリアミド多孔膜。
    [配向解析]
     緻密層表面の電子顕微鏡画像を、X軸方向が緻密層で観察される筋状凹部の長手方向と平行方向になるように配して二値化し、二値化画像を得る。当該二値化画像をフーリエ変換したパワースペクトル画像から平均振幅の角度分布図の近似楕円を求める。当該近似楕円に基づいて、下記配向角度及び配向強度を求める。
      配向角度:X軸の正方向に対する近似楕円の短軸方向の角度(°)
      配向強度:近似楕円における長軸長/短軸長の比
  2.  分画分子量が200~50000である、請求項1に記載のポリアミド多孔膜。
  3.  ポリアミド多孔膜を構成するポリアミド樹脂が、メチレン基とアミド基を-CH2-:-NHCO-=4:1~10:1のモル比で有する脂肪族ポリアミド樹脂である、請求項1又は2に記載のポリアミド多孔膜。
  4.  中空糸膜である、請求項1~3のいずれかに記載のポリアミド多孔膜。
  5.  請求項1~4のいずれかに記載のポリアミド多孔膜を使用して、溶質又は粒子を含む被処理液を濾過処理する、濾過方法。
  6.  モジュールケースに、請求項1~4のいずれかに記載のポリアミド多孔膜が収容されてなる、濾過膜モジュール。
  7.  下記第1工程~第4工程を含む、ポリアミド多孔膜の製造方法:
     150℃以上の沸点を有し且つ100℃未満の温度ではポリアミド樹脂と相溶しない有機溶媒に、100℃以上の温度でポリアミド樹脂を溶解させた製膜原液を調製する第1工程、
     前記第1工程で調製した製膜原液を所定形状にて100℃以下の凝固浴中に押し出すことにより、ポリアミド樹脂を膜状に凝固させる工程であって、当該工程において、所定形状にて押し出された前記製膜原液の少なくとも一方の表面に対して、前記製膜原液で使用した有機溶媒と相溶性を有し且つポリアミド樹脂とは親和性が低い凝固液を接触させて、ポリアミド多孔膜を形成する第2工程、
     前記第2工程で形成されたポリアミド多孔膜中で相分離している凝固液を抽出除去する第3工程、及び
     前記第3工程後のポリアミド多孔膜を乾燥と同時又は乾燥後に一軸方向に延伸する第4工程。
  8.  前記第4工程において、延伸倍率1.2~5倍で一軸方向に延伸する、請求項7に記載の製造方法。
  9.  前記第1工程において、前記製膜原液の調製に使用される有機溶媒が、非プロトン性極性溶媒である、請求項7又は8に記載の製造方法。
  10.  中空糸膜形状のポリアミド多孔膜の製造方法であり、
     前記第2工程が、二重管構造の中空糸製造用二重管状ノズルを用い、外側の環状ノズルから前記製膜原液を吐出すると共に内側のノズルから内部用凝固液を吐出し、凝固浴中に浸漬させる工程であって、
     前記内部用凝固液及び凝固浴の少なくとも一方に、前記製膜原液で使用した有機溶媒と相溶性を有し且つポリアミド樹脂とは親和性が低い凝固液を使用する、請求項7~9のいずれかに記載の製造方法。
PCT/JP2021/035113 2020-09-30 2021-09-24 ポリアミド多孔膜及びその製造方法 WO2022071122A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/028,866 US20230347297A1 (en) 2020-09-30 2021-09-24 Polyamide porous membrane and method for producing same
KR1020237009429A KR20230079040A (ko) 2020-09-30 2021-09-24 폴리아미드 다공막 및 그 제조 방법
EP21875424.0A EP4223833A1 (en) 2020-09-30 2021-09-24 Polyamide porous membrane and method for producing same
JP2022553901A JPWO2022071122A1 (ja) 2020-09-30 2021-09-24
CN202180063815.2A CN116194194A (zh) 2020-09-30 2021-09-24 聚酰胺多孔膜及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-165096 2020-09-30
JP2020165096 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022071122A1 true WO2022071122A1 (ja) 2022-04-07

Family

ID=80950328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035113 WO2022071122A1 (ja) 2020-09-30 2021-09-24 ポリアミド多孔膜及びその製造方法

Country Status (7)

Country Link
US (1) US20230347297A1 (ja)
EP (1) EP4223833A1 (ja)
JP (1) JPWO2022071122A1 (ja)
KR (1) KR20230079040A (ja)
CN (1) CN116194194A (ja)
TW (1) TW202222414A (ja)
WO (1) WO2022071122A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865009A (ja) 1981-09-28 1983-04-18 アクゾ・エヌ・ヴエ− 非対象ポリアミド中空糸膜の製造方法
JPS63100916A (ja) * 1986-10-17 1988-05-06 Sumitomo Electric Ind Ltd ガス選択透過性膜の製造方法
JPH0226917A (ja) * 1988-07-15 1990-01-29 Toyo Roshi Kaisha Ltd ポリアミド微多孔性中空糸膜及びその製造方法
JP2002030176A (ja) * 2000-07-18 2002-01-31 Teijin Ltd 耐熱性ポリメタフェニレンイソフタルアミド系ポリマー多孔膜およびその製造方法
JP2005193193A (ja) * 2004-01-09 2005-07-21 Kuraray Co Ltd 半芳香族ポリアミド系多孔膜およびその製造方法
WO2009054495A1 (ja) * 2007-10-25 2009-04-30 Toyo Boseki Kabushiki Kaisha 高分子多孔質膜
JP2010240535A (ja) * 2009-04-02 2010-10-28 Unitika Ltd 中空糸膜及びその製造方法
JP2014036946A (ja) * 2012-08-20 2014-02-27 Unitika Ltd 有機溶剤耐性を有するポリアミド限外濾過膜、及びその製造方法
JP2015198999A (ja) * 2014-04-04 2015-11-12 東レ株式会社 中空糸膜、その製造方法およびそれを用いたモジュール

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865009A (ja) 1981-09-28 1983-04-18 アクゾ・エヌ・ヴエ− 非対象ポリアミド中空糸膜の製造方法
JPS63100916A (ja) * 1986-10-17 1988-05-06 Sumitomo Electric Ind Ltd ガス選択透過性膜の製造方法
JPH0226917A (ja) * 1988-07-15 1990-01-29 Toyo Roshi Kaisha Ltd ポリアミド微多孔性中空糸膜及びその製造方法
JP2002030176A (ja) * 2000-07-18 2002-01-31 Teijin Ltd 耐熱性ポリメタフェニレンイソフタルアミド系ポリマー多孔膜およびその製造方法
JP2005193193A (ja) * 2004-01-09 2005-07-21 Kuraray Co Ltd 半芳香族ポリアミド系多孔膜およびその製造方法
WO2009054495A1 (ja) * 2007-10-25 2009-04-30 Toyo Boseki Kabushiki Kaisha 高分子多孔質膜
JP2010240535A (ja) * 2009-04-02 2010-10-28 Unitika Ltd 中空糸膜及びその製造方法
JP2014036946A (ja) * 2012-08-20 2014-02-27 Unitika Ltd 有機溶剤耐性を有するポリアミド限外濾過膜、及びその製造方法
JP2015198999A (ja) * 2014-04-04 2015-11-12 東レ株式会社 中空糸膜、その製造方法およびそれを用いたモジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOSHIHARU ENOMAE ET AL.: "Method of Determining Fiber Orientation of Paper by Fourier Image Analysis", SUMMARY OF 26TH ANNUAL MEETING OF THE JAPAN SOCIETY FOR THE CONSERVATION OF CULTURAL PROPERTY, 2004, pages 44 - 45

Also Published As

Publication number Publication date
CN116194194A (zh) 2023-05-30
EP4223833A1 (en) 2023-08-09
US20230347297A1 (en) 2023-11-02
KR20230079040A (ko) 2023-06-05
TW202222414A (zh) 2022-06-16
JPWO2022071122A1 (ja) 2022-04-07

Similar Documents

Publication Publication Date Title
JP6110000B2 (ja) 微細孔径多孔質ポリアミド中空糸膜及びその製造方法
JP6675335B2 (ja) 有機溶剤耐性を有するポリアミド限外濾過膜、及びその製造方法
JP5305296B2 (ja) ポリアミド中空糸膜及びその製造方法
JP5433921B2 (ja) 高分子多孔質中空糸膜
JP5293959B2 (ja) 中空糸膜及びその製造方法
JP7157790B2 (ja) 多孔質膜、多孔質膜モジュール、多孔質膜の製造方法、清澄化された液体の製造方法およびビールの製造方法
JP5609116B2 (ja) 耐ファウリング性に優れる中空糸型限外ろ過膜
JP5440332B2 (ja) 中空糸膜
JP6105875B2 (ja) 有機溶剤耐性を有するポリアミド限外濾過膜、及びその製造方法
JP6405177B2 (ja) ポリアミド中空糸膜
JP2008284471A (ja) 高分子多孔質中空糸膜
JP6152193B2 (ja) 有機溶剤耐性を有するポリアミド限外濾過膜、及びその製造方法
JP5212837B2 (ja) 選択透過性中空糸膜
WO2022071122A1 (ja) ポリアミド多孔膜及びその製造方法
WO2022071123A1 (ja) ナノ濾過膜及びその製造方法
JP2024515027A (ja) 中空糸膜及びその作製方法
JP6591782B2 (ja) ポリアリレート中空糸膜及び該製造方法並びに該中空糸膜モジュール
JPWO2016182015A1 (ja) 多孔質中空糸膜及びその製造方法
Nazarian et al. Preparation of blend hydrophilic polyetherimide-cellulose acetate hollow fiber membrane for oily wastewater treatment
EP4385609A1 (en) Polyamide porous membrane and method for producing polyamide porous membrane
Mansourizadeh et al. Preparation of blend hydrophilic PSF-SPEEK ultrafiltration membranes for oily wastewater treatment
Yuliwati et al. Refinery Produced Wastewater Treatment by PVDF Composite Hollow Fiber Membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875424

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553901

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021875424

Country of ref document: EP

Effective date: 20230502