WO2022068800A1 - 一种酚基精馏釜残的处理方法 - Google Patents

一种酚基精馏釜残的处理方法 Download PDF

Info

Publication number
WO2022068800A1
WO2022068800A1 PCT/CN2021/121253 CN2021121253W WO2022068800A1 WO 2022068800 A1 WO2022068800 A1 WO 2022068800A1 CN 2021121253 W CN2021121253 W CN 2021121253W WO 2022068800 A1 WO2022068800 A1 WO 2022068800A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
reaction
resin
deep
acid
Prior art date
Application number
PCT/CN2021/121253
Other languages
English (en)
French (fr)
Inventor
何林
李鑫钢
王成扬
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2022068800A1 publication Critical patent/WO2022068800A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • C08G8/32Chemically modified polycondensates by organic acids or derivatives thereof, e.g. fatty oils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28073Pore volume, e.g. total pore volume, mesopore volume, micropore volume being in the range 0.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28076Pore volume, e.g. total pore volume, mesopore volume, micropore volume being more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • C01B32/324Preparation characterised by the starting materials from waste materials, e.g. tyres or spent sulfite pulp liquor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • C01B32/348Metallic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/28Chemically modified polycondensates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the embodiments of the present application relate to the technical field of environmental protection, such as the technical field of solid waste treatment, and in particular, to a method for treating phenol-based distillation residues.
  • Industrial solid waste that is, industrial solid waste
  • General industrial waste mainly includes salt sludge, blast furnace slag and steel slag. The emergence of solid waste will occupy a lot of land resources and increase the cost input.
  • Phenol-based rectification residue is the rectification waste solid remaining in the refining process of crude phenol. It is a kind of hazardous waste and has the characteristics of being easily soluble in water. Therefore, it will also pollute the surrounding water and soil and other resources, and will affect the ecological environment. The damage to the environmental balance will even pose a threat to human health. If it is not handled properly, it will have a greater impact on the environment.
  • landfill methods include storage in engineering warehouses or storage ponds, landfilling and deep well injection.
  • landfilling methods greatly occupy land resources, and harmful pollutants will leak into the groundwater layer and cause groundwater pollution.
  • the pyrolysis incineration method has low energy consumption, simple treatment process and easy operation, but the combustion produces a large amount of greenhouse gases, sulfur and nitrogen oxides, and the combustion of halogenated hydrocarbons also produces dioxins, which increase air pollution.
  • CN106902489A discloses a treatment method for CTC rectification still residues.
  • the treatment method firstly adds a solvent to the rectification still residues to perform an impurity removal process; Converting high-content pyridinium chloride into carbon, hydrogen, oxygen, and nitrogen compounds is convenient for incineration, but incineration will still produce a large amount of greenhouse gases, sulfur and nitrogen oxides in this method, which is polluting to the air.
  • the biodegradation method mainly uses the degradation principle of microorganisms, which can realize the non-toxic treatment of industrial distillation residues.
  • the facilities required by the biodegradation method occupy a large area and take a long time, which cannot meet the treatment requirements of industrial continuous large-scale production. .
  • CN103613242A discloses a method for comprehensive utilization of synthetic leather distillation still residues as a resource.
  • the method follows the following steps: (1) collecting DMF still residues and slaughter sewage; (2) placing DMF still residues and slaughter sewage in a mixing tank Add additives for dilution, detoxification and acidification adjustment, the pH value is controlled between 7-9, and then add compound microbial flora and mix to make a sewage mixture; (3) The sewage mixture is input into the anaerobic reactor for cultivation and fermentation; (4) ) The sewage mixture is cultivated and fermented in the anaerobic reactor, and the biogas, biogas slurry and biogas residue are automatically separated; (5) The biogas enters the gas storage tank for combustion and power generation; (6) The biogas slurry enters the contact oxidation tank and the inclined The sludge enters the sludge tank and then returns to the mixing tank for reuse; (7) The biogas residue enters the biogas residue tank and is gasified by the biomass gasifier
  • the present application provides a method for treating phenol-based distillation residues.
  • the treatment method converts the phenol-based rectification still residue from solid waste into products with economic value such as activated carbon and resin, which not only effectively reduces the solid pollution of the still-based rectification still residue, but also reduces the impact on the soil during the treatment of the phenol-based rectification still residue. At the same time, it improves the utilization value of the residue in industrial applications.
  • the present application provides a method for treating phenol-based rectification still residues, which includes the following steps:
  • step (2) The decompression extract described in step (1) is synthesized and processed to obtain phenolic resin
  • the residues of the deep-drawing under reduced pressure described in step (1) are carbonized to obtain gas-phase products and activated carbon, or the residues of the deep-drawing under reduced pressure described in step (1) are subjected to extraction and cross-linking polymerization to obtain condensed polyaromatic hydrocarbons resin;
  • step (2) and step (3) are in no particular order.
  • the treatment method for phenol-based distillation still residues utilizes the principle of deep drawing under reduced pressure to extract phenolic compounds from the still residues to the greatest extent, and utilizes the preparation technology of mixed phenol to synthesize mixed phenolic resin, and the deep drawing under reduced pressure
  • the still residues are carbonized to collect gas-phase products for recycling, and carbonized activated carbon products can be obtained. utilization.
  • the gas-phase product described in the present application includes fuel gas and fuel oil that is gaseous at high temperature and cooled to normal temperature and then liquid.
  • the fuel gas contains ethylene, ethane, methane or propane, etc.; the fuel oil contains 1,2-propanediol, nonanoic acid, 3-methylphenol, 1,4-androstenedione, 2,3- Dimethylphenol, 2,5-dimethylresorcinol, benzene, toluene, 3,4-dimethylphenol, n-decanoic acid or 4-(2,5-dihydro-3-methoxybenzene base) butylamine and other substances.
  • the main components in the phenol-based distillation residues described in this application are mixed phenolic heteropolyacids and polycyclic aromatic hydrocarbons, such as 4-methyl-1,2-benzenediol, catechol, 3-methyl -1,2-benzenediol, 2-ethyl-1,4-benzenediol, 3,5-dimethylphenol, hexanoic acid, heptanoic acid, 5-methyl-1,3-benzenediol, 2,5-dimethylphenol or 2-ethyl-4-methylphenol, etc.
  • mixed phenolic heteropolyacids and polycyclic aromatic hydrocarbons such as 4-methyl-1,2-benzenediol, catechol, 3-methyl -1,2-benzenediol, 2-ethyl-1,4-benzenediol, 3,5-dimethylphenol, hexanoic acid, heptanoic acid, 5-methyl-1,3-benzenediol, 2,5-dimethylphenol or 2-ethyl-4-methylphenol, etc.
  • the temperature at the top of the tower for deep drawing under reduced pressure is 40 to 180°C, such as 40°C, 56°C, 72°C, 87°C, 103°C, 118°C, 134°C, 149°C, 165°C or 180°C °C, etc., but not limited to the listed numerical values, and other unlisted numerical values within this range are also applicable.
  • the temperature of the tower kettle for deep drawing under reduced pressure is controlled to be ⁇ 300°C, for example, it can be 200°C, 212°C, 223°C, 234°C, 245°C, 256°C, 267°C, 278°C, 289°C or 300°C °C, etc., but not limited to the listed numerical values, and other unlisted numerical values within this range are also applicable.
  • the pressure of the decompression and deep drawing is 3-10kPa, such as 3kPa, 4kPa, 5kPa, 6kPa, 7kPa, 7kPa, 8kPa, 9kPa or 10kPa, etc., but not limited to the listed values, other The same applies to non-recited values.
  • the synthesis treatment in step (2) includes: mixing and reacting the decompression extract, phenols, aldehydes and acids described in step (1) to obtain a phenolic resin.
  • the phenols include phenol and/or methylphenol.
  • phenol Compared with other phenols, phenol has a simple chemical structure, many active sites and is cheap, so phenol is chosen.
  • the aldehydes include formaldehyde.
  • the acids include any one or a combination of at least two of oxalic acid, acetic acid, formic acid, propionic acid, malonic acid, phosphoric acid, acetic acid, or hydrochloric acid, wherein a typical non-limiting combination is oxalic acid and acetic acid
  • a typical non-limiting combination is oxalic acid and acetic acid
  • the combination of oxalic acid and hydrochloric acid, the combination of oxalic acid and propionic acid, the combination of acetic acid and acetic acid, the combination of acetic acid and malonic acid, the combination of hydrochloric acid and propionic acid, the combination of propionic acid and phosphoric acid preferably oxalic acid.
  • the mass ratio of the phenols to the decompressed extract is 0.01-20:1, for example, 0.01:1, 2.24:1, 4.46:1, 6.68:1, 8.9:1, 11.12:1, 13.34:1, 15.56:1, 17.78:1 or 20:1, etc., but not limited to the listed values, and other unlisted values within the range are also applicable.
  • the molar ratio of the aldehydes to the phenols is 0.55-0.85:1, such as 0.55:1, 0.59:1, 0.62:1, 0.65:1, 0.69:1, 0.72:1, 0.75:1 , 0.79:1, 0.82:1 or 0.85:1, etc., but not limited to the listed values, and other unlisted values within this range are also applicable.
  • the acids account for 2 to 4wt% of the mass of the decompressed extract, such as 2wt%, 2.2wt%, 2.3wt%, 2.5wt%, 2.7wt%, 2.8wt%, 2.9wt%, 3.0wt%, 3.2wt%, 3.5wt%, 3.8wt% or 4.0wt% etc.
  • the synthesis treatment comprises: mixing the decompressed extracts, phenols, aldehydes and acids in the step (1), after the first-stage reaction is performed, the acids are added again, and the second-stage reaction is continued, Adding boiling water to continue the third-stage reaction to obtain the reacted resin.
  • the acid is preferably added in 2 to 4 times, among which, the reaction rate can be better controlled and the safety of the reaction can be improved, and then boiling water is added to remove free phenol, so that the resin can be better prepared.
  • the time of the first stage reaction is 0.3-0.8h, for example, it can be 0.3h, 0.32h, 0.35h, 0.38h, 0.4h, 0.42h, 0.45h, 0.48h, 0.5h, 0.55h, 0.60h, 0.65h, 0.70h, 0.75h or 0.8h, etc.
  • the time of the second-stage reaction is 0.8-1.2h, for example, 0.8h, 0.85h, 0.90h, 0.95h, 1.0h, 1.05h, 1.1h, 1.15h or 1.20h, etc.
  • the time of the third-stage reaction is 15 to 40 min, such as 15 min, 18 min, 19 min, 20 min, 22 min, 23 min, 25 min, 28 min, 30 min, 32 min, 35 min, 38 min or 40 min, etc.
  • the mass ratio of the acids in the first-stage reaction to the acids added in the second-stage reaction is 0.8-1.2:1, such as 0.8:1, 0.82:1, 0.85:1, 0.90:1, 0.95:1, 0.98:1, 1.0:1, 1.05:1, 1.1:1, 1.15:1 or 1.2:1, etc., preferably 1:1.
  • the resin after the reaction is subjected to water removal, cooling and viscosity adjustment in sequence to obtain a phenolic resin.
  • the viscosity of the resin after the reaction is adjusted, and the phenolic resin with the viscosity meeting the standard can be prepared, and the resin performance is better.
  • the phenolic resin described in this application has applications in the fields of coated sand, abrasive materials and abrasive tools, carbonized functional materials, and refractory materials.
  • the water removal comprises vacuuming to remove water.
  • the cooling includes cooling to 70-85°C, such as 70°C, 72°C, 74°C, 75°C, 78°C, 79°C, 80°C, 82°C, 84°C or 85°C, etc.
  • the viscosity adjustment includes: adding a viscosity modifier and mixing with the reacted resin to adjust the viscosity.
  • the viscosity modifier includes ethylene glycol.
  • step (2) further includes: modifying the phenolic resin.
  • the modification treatment includes mixing the phenolic resin with a curing agent and a modifier to carry out a modification reaction to obtain a modified phenolic resin.
  • the present application can further modify the phenolic resin, thereby improving the heat resistance of the resin.
  • the improved heat resistance resin is used for refractory magnesia-carbon bricks, and has excellent performance as a crosslinking agent for refractory materials.
  • the curing agent comprises any one or a combination of at least two of aniline, hexamethylenetetramine or melamine, wherein a typical non-limiting combination is a combination of aniline and hexamethylenetetramine, aniline and melamine, a combination of hexamethylenetetramine and melamine, preferably hexamethylenetetramine.
  • the prepared phenolic resin Before adding a curing agent such as hexamethylenetetramine (urotropine), the prepared phenolic resin is a thermoplastic phenolic resin, and after heating, it is necessary to add urotropine to form a resin with a network structure.
  • a curing agent such as hexamethylenetetramine (urotropine)
  • urotropine hexamethylenetetramine
  • the urotropine accounts for 5-15wt% of the mass of the phenolic resin, such as 5wt%, 6wt%, 7wt%, 8wt%, 9wt%, 10wt%, 11wt%, 12wt%, 13wt%, 14wt% % or 15wt%, etc.
  • the modifier comprises any one or a combination of at least two of ferric nitrate, nickel nitrate, silica, graphene oxide, boron oxide, boric acid or ferrocene, wherein typical non-limiting combinations are It is a combination of ferric nitrate and nickel nitrate, a combination of ferric nitrate and graphene oxide, a combination of nickel nitrate and graphene oxide, a combination of boric acid and ferrocene, preferably ferrocene.
  • the present application can also use other modifiers, preferably ferrocene, the presence of ferrocene can promote the transformation of the resin from amorphous carbon to graphite after high temperature pyrolysis, and improve the heat resistance of the resin.
  • other modifiers preferably ferrocene
  • the presence of ferrocene can promote the transformation of the resin from amorphous carbon to graphite after high temperature pyrolysis, and improve the heat resistance of the resin.
  • the ferrocene accounts for 3-11wt% in the modification reaction of the quality of the phenolic resin, such as 3wt%, 3.5wt%, 4wt%, 4.5wt%, 5wt%, 5.5wt%, 6wt%, 6.5wt% %, 7 wt %, 7.5 wt %, 8 wt %, 8.5 wt %, 9 wt %, 9.5 wt %, 10 wt %, 10.5 wt % or 11 wt %, etc.
  • the temperature of the modification reaction is 38°C to 50°C, such as 38°C, 39°C, 40°C, 42°C, 43°C, 45°C, 48°C, 49°C or 50°C.
  • the modification reaction is carried out under stirring conditions.
  • the carbonization in step (3) is nitrogen-doped carbonization.
  • the solid-phase product is carbonized by nitrogen doped to obtain activated carbon.
  • the nitrogen-doped carbonization includes: the decompression and deep drawing kettle is residually dissolved in a first solvent to form a first solution.
  • the nitrogen source is dissolved in the second solvent to form a second solution, the first solution and the second solution are mixed, and carbonized by nitrogen doping to obtain a gas-phase product and activated carbon.
  • the surface group functionalization of the activated carbon material prepared by nitrogen-doped carbonization in the present application can improve the adsorption capacity of the activated carbon for specific substances such as carbon dioxide, and can also collect gas-phase products generated in the carbonization process.
  • the first solvent includes ethanol and/or tetrahydrofuran.
  • the nitrogen source includes melamine.
  • the second solvent includes water and/or tetrahydrofuran.
  • the temperature of the second solvent is 50°C to 80°C, such as 50°C, 52°C, 55°C, 60°C, 65°C, 70°C, 75°C, or 80°C.
  • a nitrogen-fixing substance is also added to the second solution.
  • an active agent is also added to the second solution.
  • the mass ratio of the nitrogen source, the solid-phase product and the nitrogen-fixing substance is 0.5-2:3-6:0.1-0.5, for example, 0.5:3:0.1, 0.6:3:0.1, 0.7:3:0.1 , 1.0:3:0.1, 1.2:3:0.1, 1.5:3:0.1, 1.8:3:0.1, 2:3:0.1, 0.5:3.5:0.2, 0.5:3.8:0.2, 0.6:4.0:0.2, 0.7 :4.5:0.2, 0.8:4.5:0.2, 1.0:5:0.5, 1.5:6:0.5 or 1.5:5.5:0.5 etc.
  • the mixing includes: simultaneously pouring the first solution and the second solution into the same container for mixing.
  • the pouring time is 3-5min, for example, it can be 3min, 3.2min, 3.4min, 3.5min, 3.8min, 3.9min, 4.0min, 4.2min, 4.3min, 4.4min, 4.5min, 4.8min min or 5.0min, etc.
  • the mixing is carried out under stirring conditions.
  • the rotational speed of the stirring is 100-500r/min, such as 100r/min, 120r/min, 150r/min, 180r/min, 200r/min, 210r/min, 220r/min, 250r/min, 280r/min, 300r/min, 320r/min, 350r/min, 400r/min, 420r/min, 450r/min, 480r/min or 500r/min, etc.
  • the active agent is added to the mixed solution.
  • the mass ratio of the active agent to the solid product is 0.5 to 1.5:1, for example, 0.5:1, 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1.0:1, 1.1: 1, 1.2:1, 1.3:1, 1.4:1 or 1.5:1 etc.
  • the active agent comprises potassium hydroxide.
  • the nitrogen-doped carbonization further comprises evaporative drying.
  • the temperature of the evaporative drying is 80-120°C, such as 80°C, 82°C, 85°C, 88°C, 90°C, 95°C, 100°C, 105°C, 110°C, 115°C or 120°C Wait.
  • the temperature of the nitrogen-doped carbonization is 700-900°C, such as 700°C, 705°C, 710°C, 720°C, 740°C, 750°C, 780°C, 800°C, 820°C, 850°C, 880°C °C or 900°C, etc.
  • the heating rate of the nitrogen-doped carbonization is 2 to 5°C/min, for example, 2°C/min, 2.5°C/min, 2.8°C/min, 3.0°C/min, 3.2°C/min, 3.5°C/min min, 3.8°C/min, 4.0°C/min, 4.2°C/min, 4.5°C/min, 4.8°C/min or 5.0°C/min, etc.
  • the duration of the nitrogen-doped carbonization is 2-5h, for example, it can be 2h, 2.5h, 3h, 3.2h, 3.5h, 3.8h, 4.0h, 4.2h, 4.3h, 4.5h, 4.8h or 5.0h h et al.
  • the nitrogen-doped carbonization is performed in a nitrogen atmosphere.
  • the flow rate of nitrogen in the nitrogen-doped carbonization is 10-40 mL/min, for example, 10 mL/min, 12 mL/min, 15 mL/min, 18 mL/min, 20 mL/min, 22 mL/min, 25 mL/min, 28mL/min, 30mL/min, 32mL/min, 35mL/min, 38mL/min or 40mL/min etc.
  • the nitrogen-doped carbonization further comprises: adding an acid for reaction.
  • the acid comprises hydrochloric acid.
  • the concentration of the acid is 0.5-1.5moL/L, such as 0.5moL/L, 0.6moL/L, 0.7moL/L, 0.8moL/L, 0.9moL/L, 1.0moL/L, 1.1 moL/L, 1.2moL/L, 1.3moL/L, 1.4moL/L or 1.5moL/L, etc.
  • the duration of the reaction is 5 to 48h, such as 5h, 8h, 10h, 12h, 15h, 18h, 20h, 22h, 25h, 28h, 30h, 32h, 35h, 38h, 40h, 45h or 48h, etc. .
  • washing is also included after the reaction.
  • the washing includes rinsing with deionized water.
  • the washing includes drying.
  • the drying temperature is 100-180°C, such as 100°C, 120°C, 130°C, 140°C, 150°C, 155°C, 160°C, 165°C, 170°C, 175°C or 180°C, etc. .
  • the vacuum deep-drawing still residue is subjected to solvent extraction and cross-linking polymerization to obtain the condensed polyaromatic hydrocarbon resin.
  • the solvent extraction comprises: after solvent extraction, impurity removal and solvent removal of the residues in the vacuum and deep-drawing stills, aromatic hydrocarbon viscous solid substances are obtained.
  • the solvent includes tetrahydrofuran and/or ethanol.
  • the means of removing the solvent comprises evaporation.
  • the cross-linking polymerization comprises: mixing the aromatic hydrocarbon viscous solid substance with a cross-linking agent, and performing a cross-linking polymerization reaction under the action of a catalyst to obtain a condensed polyaromatic resin.
  • the cross-linking agent comprises any one or a combination of at least two of benzaldehyde, terephthalaldehyde or terephthalic sulfonic acid, wherein a typical non-limiting combination is a combination of benzaldehyde and terephthalaldehyde , a combination of benzaldehyde and p-benzenesulfonic acid, a combination of terephthalaldehyde and p-benzenesulfonic acid.
  • the catalyst is sulfuric acid.
  • the time of the cross-linking polymerization reaction is 0.75-2h, for example, it can be 0.75h, 0.89h, 1.03h, 1.17h, 1.31h, 1.45h, 1.59h, 1.73h, 1.87h or 2h, etc., but Without being limited to the recited values, other non-recited values within the range are equally applicable.
  • the cross-linking polymerization reaction is carried out in a nitrogen atmosphere.
  • the flow rate of the nitrogen gas is 40-80 mL/min, such as 40 mL/min, 45 mL/min, 49 mL/min, 54 mL/min, 58 mL/min, 63 mL/min, 67 mL/min, 72 mL/min, 76mL/min or 80mL/min, etc., but not limited to the recited values, other unrecited values within this range are also applicable.
  • the temperature of the cross-linking polymerization reaction is 150-180°C, such as 150°C, 154°C, 157°C, 160°C, 164°C, 167°C, 170°C, 174°C, 177°C or 180°C, etc. , but not limited to the recited values, and other non-recited values within this range are equally applicable.
  • the cross-linking polymerization reaction is carried out under stirring conditions.
  • the stirring speed is 300-600r/min, such as 300r/min, 334r/min, 367r/min, 400r/min, 434r/min, 467r/min, 500r/min, 534r/min, 567r/min or 600r/min, etc., but not limited to the listed values, and other unlisted values within this range are also applicable.
  • the processing method comprises the following steps:
  • step (2) Mixing the decompressed extracts, phenols, aldehydes and acids described in step (1), after the first-stage reaction for 0.3-0.8 h, the acids are added again, and the second-stage reaction is carried out for 0.8-1.2 h , adding boiling water to carry out the third-stage reaction for 15-40 min, to obtain the resin after the reaction, the resin after the reaction is successively dewatered by vacuum, cooled to 70-85 ° C, and a viscosity modifier is added to mix with the resin after the reaction, and the viscosity is adjusted. get phenolic resin;
  • the mass ratio of the phenols to the decompressed extract is 2.8 to 3.2:1; the molar ratio of the aldehydes to the phenols is 0.7 to 0.8:1; the acids account for 2 of the mass of the decompressed extract. ⁇ 4wt%; the mass ratio of acids in the first-stage reaction to the acids added in the second-stage reaction is 0.8-1.2:1;
  • step (1) The decompression and deep-drawing kettle described in step (1) is residually dissolved in the first solvent to form the first solution; the nitrogen source and the nitrogen-fixing substance are dissolved in the second solvent at 50 ⁇ 80° C. to form the second solution, and the second solution is formed at a temperature of 100 ⁇ Stir and mix at 500r/min rotation speed, add active agent to the mixed solution, evaporate to dryness at 80-120°C, and react with nitrogen-doped carbonization at 700-900°C for 2-5h, then add acid with a concentration of 0.5-1.5moL/L to carry out the reaction , the product after the reaction is washed and dried in turn to obtain activated carbon, and the gas-phase product is obtained in the process of nitrogen-doped carbonization;
  • the first solvent includes ethanol
  • the nitrogen source includes melamine
  • the second solvent includes water and/or tetrahydrofuran
  • the nitrogen-fixing substance includes ammonium polyphosphate
  • min the mass ratio of the nitrogen source, the solid-phase product and the nitrogen-fixing substance is 0.5-2:3-6:0.1-0.5
  • the mass ratio of the active agent to the solid-phase product is 0.5-1.5:1;
  • step (1) obtains the aromatic hydrocarbon intermediate after extraction with tetrahydrofuran and/or ethanol, centrifugal sedimentation to remove impurities, and rotary evaporation;
  • the aromatic hydrocarbon intermediate is protected in an atmosphere of nitrogen flow rate of 40-80 mL/min, a cross-linking agent is added, concentrated sulfuric acid is used as a catalyst, the reaction temperature is 150-180 ° C, and the stirring rate is 300-600 r/min. 2h, to obtain condensed polyaromatic resin;
  • step (2) and step (3) are in no particular order.
  • the present application provides a phenolic resin
  • the phenolic resin is prepared by the treatment method for phenol-based distillation residues described in the first aspect.
  • the performance of the phenolic resin provided by the application can meet the standards in all aspects, the performance is excellent, and the application prospect is broad.
  • the present application provides a use of the phenolic resin described in the second aspect in a refractory material.
  • the phenolic resin provided by the present application has excellent performance and high heat resistance, and can be preferably used in refractory materials, especially as a crosslinking agent for magnesia-carbon bricks.
  • the resin in the present application can also be applied in the fields of coated sand, abrasive materials and abrasive tools, carbonized functional materials, refractory materials, and the like.
  • the present application provides an activated carbon prepared by the method for treating phenol-based distillation still residues described in the first aspect.
  • the activated carbon prepared in the first aspect of the present application can be nitrogen-doped activated carbon, which has better properties such as specific surface area and pore volume, and better adsorption capacity.
  • the present application provides the use of the activated carbon described in the fourth aspect in the adsorption of gases such as carbon dioxide.
  • the activated carbon provided in the fourth aspect of the present application is doped with nitrogen active groups, it has a better capture effect on carbon dioxide, and has a better adsorption effect than the existing activated carbon in carbon dioxide adsorption.
  • the treatment method of the phenol-based rectification still residue provided by the embodiment of the application can convert the solid waste into the product that resin and activated carbon have economic value, and have higher industrial production value while alleviating the environmental problem;
  • the phenolic resin prepared by the treatment method for phenol-based rectification still residues provided in the examples of the present application has excellent performance, the residual carbon rate is ⁇ 40%, and the solid content is ⁇ 75%.
  • the method for treating phenol-based rectification still residues provided in the examples of the present application has high specific surface area and abundant mesopores and micropores, and the specific surface area of the activated carbon is ⁇ 500 m 2 /g and the total pore volume is ⁇ 0.9 cm 3 /g, the adsorption amount of CO 2 is ⁇ 1 mmol ⁇ g -1 under the condition of 25°C and 1 bar, which has a good adsorption effect on CO 2 .
  • Fig. 1 is the overall flow chart of the treatment method of the phenol-based distillation residue provided in the embodiment of the present application.
  • Fig. 2 is the flow chart of preparing resin by vacuum extract in the treatment method of phenol-based rectification still residue provided in the embodiment of the present application.
  • FIG. 3 is a flow chart of preparing activated carbon from a solid-phase product in the method for treating phenol-based distillation residues provided in the examples of the present application.
  • FIG. 4 is a flow chart of preparing a condensed polyaromatic resin from a solid-phase product in the treatment method for phenol-based rectification still residue provided in the embodiment of the present application.
  • FIG. 5 is the X-ray diffraction pattern of the modified resin prepared in Example 1 and Example 2 of the present application.
  • Example 6 is a scanning electron microscope image of the modified resin prepared in Example 1 of the present application.
  • Example 7 is a scanning electron microscope image of the modified resin prepared in Example 2 of the present application.
  • Example 8 is the N1S spectrum of the X-ray photoelectron spectrum of the activated carbon prepared in Example 1 of the present application.
  • Example 9 is a nitrogen isotherm adsorption curve diagram of the activated carbon prepared in Example 1 of the present application.
  • Figure 10 is a pore size distribution diagram of the activated carbon prepared in Example 1 of the present application.
  • step (2) The decompression extract described in step (1) is synthesized and processed to obtain phenolic resin
  • the residues of the deep-drawing under reduced pressure described in step (1) are carbonized to obtain gas-phase products and activated carbon, or the residues of the deep-drawing under reduced pressure described in step (1) are subjected to extraction and cross-linking polymerization to obtain condensed polyaromatic hydrocarbons resin;
  • step (2) and step (3) are in no particular order.
  • the synthesis step of the phenolic resin described in step (2) is shown in Figure 2, and specifically includes the following steps: the step (1) described in the mixed reaction of the decompression extract, phenols, aldehydes and acids to obtain A phenolic resin; the phenolic resin is mixed and reacted with a modifier to obtain a modified resin.
  • step (3) the step of preparing activated carbon and gas-phase products from the underpressure and deep-drawing still residues described in route 1 is shown in Figure 3, which specifically includes the following steps: the underpressure and deep-drawing still residues are dissolved in the first solvent to form the first solvent. A solution; the nitrogen source is dissolved in the second solvent to form a second solution, the first solution and the second solution are mixed, and carbonized by nitrogen doping. After the reaction, the product is washed and dried in turn to obtain activated carbon. gas phase product;
  • the step of preparing the condensed polyaromatic resin by route 2 in step (3) is shown in Figure 4, and specifically includes the following steps: the vacuum deep-drawing still residue is extracted by tetrahydrofuran and/or ethanol solvent, centrifugal sedimentation is removed, and the spinning is carried out. After steaming, aromatic hydrocarbon intermediates are obtained;
  • the aromatic hydrocarbon intermediate is protected in an atmosphere of nitrogen flow rate of 40-80 mL/min, a cross-linking agent is added, concentrated sulfuric acid is used as a catalyst, the reaction temperature is 150-180 ° C, and the stirring rate is 300-600 r/min. 2h, the condensation polyaromatic resin (Copna resin) was obtained.
  • the present embodiment provides a method for treating phenol-based rectification still residues, which includes the following steps:
  • step (1) After the described pressure reduction and deep drawing of the kettle residue in step (1), it is dissolved in absolute ethanol to form a first solution; melamine and ammonium polyphosphate are dissolved in hot water at 70° C. to form a second solution, wherein melamine, solid
  • the mass ratio of the phase product and ammonium polyphosphate is 1:5:0.2
  • the first solution and the second solution are poured into the same container at the same time in 3min, stirred and mixed at a rotating speed of 300r/min, and the mixed solution is added with hydroxide Potassium powder (potassium hydroxide is ground into powder, the potassium hydroxide powder after passing through a 100-mesh sieve, the mass ratio of solid phase product and potassium hydroxide is 1:1), heated and stirred in a water bath at 80 ° C to evaporate, and the dried The sample was dried in a drying oven.
  • the sample was placed in an ark, placed in a tube furnace, and the tube furnace was sealed. Before heating, set the nitrogen flow rate to 100mL/min, and let in nitrogen for 30min to exhaust the air, and then turn it on. Heat the switch, adjust the nitrogen flow rate to 20mL/min, raise the temperature from room temperature to 800°C at 5°C/min, hold for 2h, cool to room temperature and take out;
  • a volumetric flask was used to prepare a HCl solution with a concentration of 1 mol/L. After the sample was taken out of the tube furnace, it was mixed with hydrochloric acid solution and stirred for 12 hours to remove alkaline substances, potassium salts, etc. in the sample. The sample is suction filtered, and the sample is washed with neutral deionized water until the washing water is neutral to remove other impurity ions, and then the obtained product is dried in a vacuum drying oven at 120 °C to obtain nitrogen-doped activated carbon;
  • step (2) and step (3) are in no particular order.
  • the present embodiment provides a treatment method for phenol-based distillation residues, and the treatment method is the same as that in embodiment 1 except that ferrocene is not added in step (2).
  • the present embodiment provides a method for treating phenol-based rectification still residues, which is the same as that in embodiment 1 except that ammonium polyphosphate is not added in step (3).
  • the present embodiment provides a treatment method for phenol-based distillation still residues, and the treatment method is the same as that in embodiment 2 except that potassium hydroxide is not added in step (3).
  • This embodiment provides a treatment method for phenol-based rectification still residues, and the treatment method is the same as that in embodiment 3 except that melamine is not added in step (3).
  • the present embodiment provides a method for treating phenol-based rectification still residues, which includes the following steps:
  • step (1) The vacuum deep drawing kettle described in step (1) is residually dissolved in absolute ethanol to form a first solution; melamine and ammonium polyphosphate are dissolved in hot water at 50° C. to form a second solution, wherein melamine, solid phase
  • the mass ratio of product and ammonium polyphosphate is 0.5:6:1
  • pour the second solution into the first solution stir and mix at 500r/min rotating speed, add potassium hydroxide powder (grind potassium hydroxide into Powder, the potassium hydroxide powder after passing through a 100-mesh sieve, the mass ratio of the solid phase product to potassium hydroxide is 0.5:1), heated and stirred in a water bath at 90 ° C to evaporate, and the evaporated samples were dried in a drying box.
  • the sample was placed in an ark, placed in a tube furnace, and the tube furnace was sealed. Before heating, set the nitrogen flow rate to 80mL/min, pass in nitrogen for 40min to exhaust air, then turn on the heating switch and adjust the nitrogen flow rate to 40mL/min. min, heated from room temperature to 900 °C at 2 °C/min, kept for 3 h, cooled to room temperature and taken out;
  • HCl solution with a concentration of 0.5mol/L.
  • hydrochloric acid solution After the sample is taken out of the tube furnace, it is mixed with hydrochloric acid solution and stirred for 48 hours to remove alkaline substances, potassium salts, etc. in the sample; after washing with hydrochloric acid solution The sample was suction filtered, washed with neutral deionized water until the washing water was neutral to remove other impurity ions, and then the obtained product was dried in a vacuum drying oven at 180 °C to obtain nitrogen-doped activated carbon;
  • step (2) and step (3) are in no particular order.
  • the present embodiment provides a method for treating phenol-based rectification still residues, which includes the following steps:
  • step (3) after the described decompression deep-drawing kettle residue grinding in step (1), it is dissolved in absolute ethanol to form a first solution; melamine and ammonium polyphosphate are dissolved in hot water at 80°C to form a second solution, wherein melamine, The mass ratio of the solid phase product and ammonium polyphosphate is 2:3:0.5, the first solution and the second solution are poured into the same container at the same time in 5min, stirred and mixed at a rotating speed of 100r/min, and hydrogen is added to the mixed solution.
  • Potassium oxide powder (potassium hydroxide is ground into powder, the potassium hydroxide powder after passing through a 100-mesh sieve, the mass ratio of solid phase product and potassium hydroxide is 1.5:1), heated and stirred in a water bath at 95 ° C to evaporate, evaporated to dryness
  • the samples were dried in a drying oven. After drying, the samples were placed in an ark, placed in a tube furnace, and the tube furnace was sealed. Before heating, set the nitrogen flow rate to 120 mL/min, and let in nitrogen for 20 minutes to exhaust the air. Turn on the heating switch, adjust the nitrogen flow rate to 10mL/min, heat from room temperature to 700°C at 3°C/min, hold for 5h, cool to room temperature and take out;
  • HCl solution with a concentration of 1.5mol/L.
  • hydrochloric acid solution After the sample is taken out of the tube furnace, it is mixed with hydrochloric acid solution and stirred for 5 hours to remove alkaline substances and potassium salts in the sample. After washing with hydrochloric acid solution The sample was suction filtered, washed with neutral deionized water until the washing water was neutral to remove other impurity ions, and then the obtained product was dried in a vacuum drying oven at 100 °C to obtain nitrogen-doped activated carbon;
  • step (2) and step (3) are in no particular order.
  • the present embodiment provides a method for treating phenol-based rectification still residues, which includes the following steps:
  • step (1) described vacuum deep drawing still residue obtains aromatic hydrocarbon intermediate after extraction with tetrahydrofuran, centrifugal sedimentation, impurity removal, rotary evaporation;
  • the aromatic hydrocarbon intermediate is protected in an atmosphere of nitrogen flow rate of 40 mL/min, a cross-linking agent is added, concentrated sulfuric acid is used as a catalyst, the reaction temperature is 150 ° C, and the stirring rate is 600 r/min. resin;
  • step (2) and step (3) are in no particular order.
  • the present embodiment provides a method for treating phenol-based rectification still residues, which includes the following steps:
  • step (1) described vacuum deep drawing still residue obtains aromatic hydrocarbon intermediate after extraction with tetrahydrofuran, centrifugal sedimentation, impurity removal, rotary evaporation;
  • aromatic hydrocarbon intermediate is protected in an atmosphere of nitrogen flow rate of 80 mL/min, a cross-linking agent is added, concentrated sulfuric acid is used as a catalyst, the reaction temperature is 180 ° C, and the stirring rate is 300 r/min.
  • Aromatic resin
  • step (2) and step (3) are in no particular order.
  • the performance testing method of embodiment 1 modified resin is as follows: free phenol adopts the method of gas chromatography-mass spectrometry, residual carbon rate, solid content and pH value are in accordance with the method in YB/T4131-2005, and viscosity adopts the DV-III produced by AMETEK Brookfield. Type viscometer test, the water content is tested by ZDJ-3S Karl Fischer Trace Moisture Tester produced by Beijing Pioneer Weifeng Technology Development Company.
  • the modified resins prepared in Example 1 and Example 2 were put into a tube furnace under nitrogen protection atmosphere for pyrolysis. 1h at 500°C and 1h at 1200°C.
  • the XRD pattern of the resin after pyrolysis is shown in FIG. 5
  • the SEM images of Example 1 and Example 2 are shown in FIG. 6 and FIG. 7 , respectively. It can be seen from Figures 5-7 that the form of carbon in the phenolic resin is transformed from amorphous carbon to graphitic carbon after ferrocene modification, and the formation of graphitic carbon is verified by both XRD and SEM images, which is conducive to improving the resin quality. of heat resistance.
  • a YB/T4131-2005 is the ferrous metallurgy industry standard of the People's Republic of China.
  • N1s spectrum of XPS was analyzed on the activated carbon prepared in Example 1, and the XPS spectrum of N1s was deconvoluted and decomposed into 5 peaks, which correspond to the 5 existing forms of N: N-6 , pyridine nitrogen, binding energy of 398.3 eV; amino nitrogen, binding energy of 399.2 eV; N-5, pyrrolic nitrogen, binding energy of 400.1 eV; NQ, graphitic quaternary nitrogen, binding energy of 401.4 eV, NO x , nitrogen- oxide, the binding energy is located at 402eV-405eV, and the surface of the activated carbon was successfully doped with nitrogen atoms.
  • the isotherm in the low pressure region shows a rapid rise, which is mainly due to the existence of a large number of micropores in the sample, and the micropore volume is large, close to Type I isotherm characteristics.
  • There is an obvious hysteresis loop in the middle pressure zone indicating that the material has a certain mesoporous structure.
  • the shape of the hysteresis loop can roughly determine that most of the mesoporous types exist in the slit type.
  • the pore diameter of the activated carbon material prepared in Example 1 is mainly concentrated in 0-4 nm, which is an adsorbent material dominated by micropores and mesopores, and the distribution of mesopore diameters is small.
  • the nitrogen doping amount of the activated carbon material on the surface of the activated carbon is 2.03 wt % of the mass fraction of the activated carbon.
  • Table 2 shows the pore structure parameters, surface element content and carbon dioxide adsorption capacity of the nitrogen-doped activated carbon materials prepared in Example 1 and Examples 3-5.
  • Example 3 Comparing Example 1 and Example 3, it can be seen that the N and C elements of the activated carbon prepared in Example 1 are greater than those in Example 3, which shows that the present application can play a role by adding nitrogen-fixing substances such as ammonium polyphosphate. At the same time, it can reduce the loss of carbon in the process of nitrogen-doped carbonization, and improve the output of activated carbon;
  • Example 3 It can be seen from the comparison of Example 3 and Example 4 that the specific surface area and pore volume of the activated carbon prepared in Example 3 are significantly improved than those in Example 4, which shows that the addition of the active agent improves the final activated carbon.
  • the specific surface and pore volume of the activated carbon finally improve the adsorption capacity of activated carbon;
  • Example 4 Comparing Example 4 and Example 5, it can be seen that a nitrogen source is added in Example 4. Compared with no nitrogen source added in Example 5, the specific surface area is reduced, but the adsorption capacity of carbon dioxide is increase, thus indicating that the present application improves the adsorption capacity of activated carbon for carbon dioxide by introducing a nitrogen source.
  • the treatment method for phenol-based distillation still residues can convert solid waste into resin and activated carbon materials, and the obtained resin and activated carbon have excellent performance, wherein the resin can meet the standards of the ferrous metallurgy industry, and the activated carbon can meet the standards of the ferrous metallurgy industry.
  • the specific surface area is greater than or equal to 500m 2 /g
  • the total pore volume is greater than or equal to 0.9cm 3 /g
  • the adsorption capacity of CO 2 is greater than or equal to 1mmol ⁇ g -1 at 25°C and 1 bar. It has broad application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

本文公布一种酚基精馏釜残的处理方法,所述处理方法通过将酚基精馏釜残减压深拔得到减压拔出物和减压深拔釜残,其中减压拔出物经合成转化为酚醛树脂,而减压深拔釜残经碳化得到了气相产物和活性炭或者所述减压深拔釜残经萃取和交联聚合可制备缩合多聚芳烃树脂,能够有效地将酚基精馏釜残固废转化为性能优良的工业化产品,在缓解环境压力的同时经济效益佳,具有广阔的应用前景。

Description

一种酚基精馏釜残的处理方法 技术领域
本申请实施例涉及环境保护技术领域,例如固废处理技术领域,特别是一种酚基精馏釜残的处理方法。
背景技术
工业固废,即工业固体废物,是工业生产活动中所产生的固体废弃物,包括工业有害固体废物以及一般工业废物两种,其中一般工业废物主要包括盐泥、高炉渣以及钢渣等。固废的出现会占用大量土地资源,增加成本投入。
酚基精馏釜残是粗酚精制过程中残留的精馏废固,一种有害废弃物,具有易溶于水的特质,所以其还会对周边水体以及土壤等资源产生污染,会对生态环境平衡形成破坏,甚至会对人体健康形成威胁,如处理不当,对环境影响较大。
目前对于工业中精馏釜残的处理主要有三种方法:填埋法、热解焚烧法和生物氧化法。
其中,填埋法包括工程库或贮留池贮存、土地填埋以及深井灌注几种,但填埋法极大的占用了土地资源,其中的有害污染物会渗漏到地下水层引起地下水污染。
热解焚烧法能耗低、处理过程简单,便于操作,但燃烧产生大量温室气体、硫和氮氧化物,卤代烃的燃烧还会产生二噁英,加重对空气的污染。
CN106902489A公开了一种CTC精馏釜残的处理方法,所述处理方法首先向精馏釜残中加入溶剂做除杂工艺;然后向除杂后的混合液分批加入固体碱,升温回流反应,将高含量吡啶氯化物转化为碳、氢、氧、氮化合物,便于焚烧处理,但该方法最终采用焚烧处理,仍然会产生大量温室气体、硫和氮氧化物,对空气具有一定污染性。
生物降解法主要利用微生物的降解原理,可实现工业精馏釜残的无毒害化处理,但生物降解法所需设施场地占用面积大,所需时间长,无法满足工业连续化大生产的处理要求。
CN103613242A公开了一种合成革精馏釜残资源化综合利用的方法,所述方法按以下步骤:(1)收集DMF釜残和屠宰污水;(2)将DMF釜残和屠宰污水在调 配池中加入添加剂进行稀释除毒酸化调节,PH值控制在7-9之间,再添加复合微生物菌群混合制成污水混合物;(3)将污水混合物输入厌氧反应器内进行培养和发酵;(4)污水混合物在厌氧反应器内培养和发酵,并自动分离沼气、沼液和沼渣;(5)沼气进入储气柜用于燃烧和发电上网;(6)沼液进入接触氧化池和斜管沉淀池后进入出水池达标排放,污泥进入污泥池后回到调配池回用;(7)沼渣进入沼渣池经生物质气化炉气化用于发电,余灰填埋处理。但该方法同样具有设施场地占用面积大,所需时间长,无法满足工业连续化大生产的处理要求的问题。
综上所述,相关技术中针对酚基精馏釜残的处理方法较少,而通用的精馏釜残的处理方法各自存在的缺点限制了其在酚基精馏釜残处理上的应用。
因此,针对不断产生的酚基精馏釜残,需要开发一种有效的精馏釜残处理工艺实现精馏釜残的资源化利用,解决精馏釜残废固处理的问题,并实现不产生二次污染同时实现高价值回收的目的。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
鉴于相关技术中存在的问题,本申请提供一种酚基精馏釜残的处理方法。所述处理方法将酚基精馏釜残由固废转化为活性炭和树脂等具有经济价值的产品,不仅有效的降低了釜残废固污染,且降低了酚基精馏釜残处理过程中对土壤和大气的污染,同时提高了釜残在工业应用中的利用价值。
第一方面,本申请提供了一种酚基精馏釜残的处理方法,所述处理方法包括如下步骤:
(1)酚基精馏釜残经减压深拔,得到减压拔出物和减压深拔釜残;
(2)步骤(1)所述减压拔出物经合成处理,制得酚醛树脂;
(3)步骤(1)所述减压深拔釜残经碳化,得到气相产物以及活性炭,或步骤(1)所述减压深拔釜残经萃取和交联聚合,制得缩合多聚芳烃树脂;
其中,步骤(2)和步骤(3)不分先后顺序。
本申请提供的酚基精馏釜残的处理方法利用减压深拔原理最大程度的从釜残中提取酚类化合物,利用混合酚制备工艺技术,合成混合酚酚醛树脂,并将减压深拔釜残进行碳化,从而收集气相产物回收利用,并得到碳化后的活性炭 产品,或者将减压深拔釜残经萃取和交联聚合可制得Copna树脂,实现了酚基精馏釜残的资源化利用。
本申请所述气相产物包括燃料气和高温下呈气态冷却至常温后呈液态的燃料油。所述燃料气中含有乙烯、乙烷、甲烷或丙烷等;所述燃料油中含有1,2-丙二醇、壬酸、3-甲基苯酚、1,4-雄烯二酮、2,3-二甲基苯酚、2,5-二甲基间苯二酚、苯、甲苯、3,4-二甲基苯酚、正癸酸或4-(2,5-二氢-3-甲氧基苯基)丁胺等物质。
本申请所述酚基精馏釜残中的主要成分为混合酚杂多酸和多环芳香烃,例如含有4-甲基-1,2-苯二酚、邻苯二酚、3-甲基-1,2-苯二酚、2-乙基-1,4-苯二酚、3,5-二甲基苯酚、己酸、庚酸、5-甲基-1,3-苯二酚、2,5-二甲基苯酚或2-乙基-4-甲基苯酚等。
优选地,所述减压深拔的塔顶温度为40~180℃,例如可以是40℃、56℃、72℃、87℃、103℃、118℃、134℃、149℃、165℃或180℃等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述减压深拔的塔釜温度控制为≤300℃,例如可以是200℃、212℃、223℃、234℃、245℃、256℃、267℃、278℃、289℃或300℃等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述减压深拔的压力为3~10kPa,例如可以是3kPa、4kPa、5kPa、6kPa、7kPa、7kPa、8kPa、9kPa或10kPa等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,步骤(2)中所述合成处理包括:将步骤(1)所述减压拔出物、酚类、醛类以及酸类混合反应,制得酚醛树脂。
优选地,所述酚类包括苯酚和/或甲基酚。
相比其他酚类,苯酚化学结构简单、活性位点多且价格便宜,故选择苯酚。
优选地,所述醛类包括甲醛。
优选地,所述酸类包括草酸、乙酸、甲酸、丙酸、丙二酸、磷酸、醋酸、或盐酸中的任意一种或至少两种的组合,其中典型非限制性的组合为草酸和乙酸的组合,草酸和盐酸的组合,草酸和丙酸的组合,乙酸和醋酸的组合,乙酸和丙二酸的组合,盐酸和丙酸的组合,丙酸和磷酸的组合,优选为草酸。
优选地,所述酚类与减压拔出物的质量比为0.01~20:1,例如可以是0.01:1、 2.24:1、4.46:1、6.68:1、8.9:1、11.12:1、13.34:1、15.56:1、17.78:1或20:1等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述醛类与酚类的摩尔比为0.55~0.85:1,例如可以是0.55:1、0.59:1、0.62:1、0.65:1、0.69:1、0.72:1、0.75:1、0.79:1、0.82:1或0.85:1等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述酸类占减压拔出物质量的2~4wt%,例如可以是2wt%、2.2wt%、2.3wt%、2.5wt%、2.7wt%、2.8wt%、2.9wt%、3.0wt%、3.2wt%、3.5wt%、3.8wt%或4.0wt%等。
优选地,所述合成处理包括:混合步骤(1)所述减压拔出物、酚类、醛类以及酸类,进行第一阶段反应后,再次加入酸类,继续进行第二阶段反应,加入沸水继续进行第三阶段反应,得到反应后树脂。
本申请优选将酸类分2~4次加入,其中,能够更好地控制反应速率,提高反应的安全性,再加入沸水进行游离酚去除,能够更好地制得树脂。
优选地,所述第一阶段反应的时间为0.3~0.8h,例如可以是0.3h、0.32h、0.35h、0.38h、0.4h、0.42h、0.45h、0.48h、0.5h、0.55h、0.60h、0.65h、0.70h、0.75h或0.8h等。
优选地,所述第二阶段反应的时间为0.8~1.2h,例如可以是0.8h、0.85h、0.90h、0.95h、1.0h、1.05h、1.1h、1.15h或1.20h等。
优选地,所述第三阶段反应的时间为15~40min,例如可以是15min、18min、19min、20min、22min、23min、25min、28min、30min、32min、35min、38min或40min等。
优选地,所述第一阶段反应中酸类与第二阶段反应中加入的酸类质量比为0.8~1.2:1,例如可以是0.8:1、0.82:1、0.85:1、0.90:1、0.95:1、0.98:1、1.0:1、1.05:1、1.1:1、1.15:1或1.2:1等,优选为1:1。
优选地,所述反应后树脂依次经除水、冷却和粘度调节,得到酚醛树脂。
本申请针对反应后树脂进行粘度调节,能够制得粘度符合标准的酚醛树脂,树脂性能更佳。
本申请所述酚醛树脂在覆膜砂、研磨材料及磨具、炭化功能性材料、耐火材料等领域都有应用。
优选地,所述除水包括抽真空除水。
优选地,所述冷却包括冷却至70~85℃,例如可以是70℃、72℃、74℃、75℃、78℃、79℃、80℃、82℃、84℃或85℃等。
优选地,所述粘度调节包括:加入粘度调节剂与反应后树脂混合,进行粘度调节。
优选地,所述粘度调节剂包括乙二醇。
优选地,步骤(2)中还包括:对所述酚醛树脂进行改性处理。
优选地,所述改性处理包括将所述酚醛树脂与固化剂和改性剂混合进行改性反应,得到改性后酚醛树脂。
本申请还可进一步对酚醛树脂进行改性,从而提高树脂耐热性,所述改善耐热性后的树脂用于耐火材料镁碳砖,作为耐火材料的交联剂,性能优良。
优选地,所述固化剂包括苯胺、六亚甲基四胺或三聚氰胺中的任意一种或至少两种的组合,其中典型非限制性的组合为苯胺和六亚甲基四胺的组合,苯胺和三聚氰胺的组合,六亚甲基四胺和三聚氰胺的组合,优选六亚甲基四胺。
在未加入固化剂如六亚甲基四胺(乌洛托品)前,制得的酚醛树脂为热塑性酚醛树脂,加热后需加入乌洛托品能够形成网状结构的树脂。
优选地,所述乌洛托品占酚醛树脂质量的5~15wt%,例如可以是5wt%、6wt%、7wt%、8wt%、9wt%、10wt%、11wt%、12wt%、13wt%、14wt%或15wt%等。
优选地,所述改性剂包括硝酸铁、硝酸镍、二氧化硅、氧化石墨烯、氧化硼、硼酸或二茂铁中的任意一种或至少两种的组合,其中典型非限制性的组合为硝酸铁和硝酸镍的组合,硝酸铁和氧化石墨烯的组合,硝酸镍和氧化石墨烯的组合,硼酸和二茂铁的组合,优选为二茂铁。
本申请还可采用其他改性剂,优选采用二茂铁,二茂铁的存在可以促进树脂在高温热解后由非结晶碳向石墨的转化,提高了树脂的耐热性。
优选地,所述二茂铁占酚醛树脂质量的改性反应3~11wt%,例如可以是3wt%、3.5wt%、4wt%、4.5wt%、5wt%、5.5wt%、6wt%、6.5wt%、7wt%、7.5wt%、8wt%、8.5wt%、9wt%、9.5wt%、10wt%、10.5wt%或11wt%等。
优选地,所述改性反应的温度为38~50℃,例如可以是38℃、39℃、40℃、42℃、43℃、45℃、48℃、49℃或50℃等。
优选地,所述改性反应在搅拌条件下进行。
优选地,步骤(3)所述碳化为掺氮碳化。
优选地,步骤(3)中所述固相产物经掺氮碳化,制得活性炭。
优选地,所述掺氮碳化包括:所述减压深拔釜残溶于第一溶剂,形成第一溶液。氮源溶于第二溶剂,形成第二溶液,混合所述第一溶液和第二溶液,经掺氮碳化,得到气相产物和活性炭。
本申请通过掺氮碳化制得的活性炭材料表面基团功能化,能够提高活性炭对特定物质如二氧化碳的吸附能力,还能收集碳化过程中产生的气相产物。
优选地,所述第一溶剂包括乙醇和/或四氢呋喃。
优选地,所述氮源包括三聚氰胺。
优选地,所述第二溶剂包括水和/或四氢呋喃。
优选地,所述第二溶剂的温度为50~80℃,例如可以是50℃、52℃、55℃、60℃、65℃、70℃、75℃或80℃等。
优选地,所述第二溶液中还加入固氮物质。
优选地,所述第二溶液中还加入活性剂。
优选地,所述氮源、固相产物和固氮物质的质量比为0.5~2:3~6:0.1~0.5,例如可以是0.5:3:0.1、0.6:3:0.1、0.7:3:0.1、1.0:3:0.1、1.2:3:0.1、1.5:3:0.1、1.8:3:0.1、2:3:0.1、0.5:3.5:0.2、0.5:3.8:0.2、0.6:4.0:0.2、0.7:4.5:0.2、0.8:4.5:0.2、1.0:5:0.5、1.5:6:0.5或1.5:5.5:0.5等。
优选地,所述混合包括:将所述第一溶液和第二溶液同时倒入同一容器内,进行混合。
优选地,所述倒入的时长为3~5min,例如可以是3min、3.2min、3.4min、3.5min、3.8min、3.9min、4.0min、4.2min、4.3min、4.4min、4.5min、4.8min或5.0min等。
优选地,所述混合在搅拌条件下进行。
优选地,所述搅拌的转速为100~500r/min,例如可以是100r/min、120r/min、150r/min、180r/min、200r/min、210r/min、220r/min、250r/min、280r/min、300r/min、320r/min、350r/min、400r/min、420r/min、450r/min、480r/min或500r/min等。
优选地,在所述混合后的溶液中加入活性剂。
优选地,所述活性剂与固相产物的质量比为0.5~1.5:1,例如可以是0.5:1、0.6:1、0.7:1、0.8:1、0.9:1、1.0:1、1.1:1、1.2:1、1.3:1、1.4:1或1.5:1等。
优选地,所述活性剂包括氢氧化钾。
优选地,所述掺氮碳化之前还包括蒸发干燥。
优选地,所述蒸发干燥的温度为80~120℃,例如可以是80℃、82℃、85℃、88℃、90℃、95℃、100℃、105℃、110℃、115℃或120℃等。
优选地,所述掺氮碳化的温度为700~900℃,例如可以是700℃、705℃、710℃、720℃、740℃、750℃、780℃、800℃、820℃、850℃、880℃或900℃等。
优选地,所述掺氮碳化的升温速度为2~5℃/min,例如可以是2℃/min、2.5℃/min、2.8℃/min、3.0℃/min、3.2℃/min、3.5℃/min、3.8℃/min、4.0℃/min、4.2℃/min、4.5℃/min、4.8℃/min或5.0℃/min等。
优选地,所述掺氮碳化的时长为2~5h,例如可以是2h、2.5h、3h、3.2h、3.5h、3.8h、4.0h、4.2h、4.3h、4.5h、4.8h或5.0h等。
优选地,所述掺氮碳化在氮气气氛中进行。
优选地,所述掺氮碳化中氮气的流量为10~40mL/min,例如可以是10mL/min、12mL/min、15mL/min、18mL/min、20mL/min、22mL/min、25mL/min、28mL/min、30mL/min、32mL/min、35mL/min、38mL/min或40mL/min等。
优选地,所述掺氮碳化后还包括:加入酸进行反应。
优选地,所述酸包括盐酸。
优选地,所述酸的浓度为0.5~1.5moL/L,例如可以是0.5moL/L、0.6moL/L、0.7moL/L、0.8moL/L、0.9moL/L、1.0moL/L、1.1moL/L、1.2moL/L、1.3moL/L、1.4moL/L或1.5moL/L等。
优选地,所述反应的时长为5~48h,例如可以是5h、8h、10h、12h、15h、18h、20h、22h、25h、28h、30h、32h、35h、38h、40h、45h或48h等。
优选地,所述反应后还包括洗涤。
优选地,所述洗涤包括采用去离子水冲洗。
优选地,所述洗涤后包括干燥。
优选地,所述干燥的温度为100~180℃,例如可以是100℃、120℃、130℃、140℃、150℃、155℃、160℃、165℃、170℃、175℃或180℃等。
优选地,步骤(3)中所述减压深拔釜残经溶剂萃取和交联聚合,制得缩合多聚芳香烃树脂。
优选地,所述溶剂萃取包括:减压深拔釜残经溶剂萃取、除杂和去除溶剂后,得到芳香烃粘稠固体物质。
优选地,所述溶剂包括四氢呋喃和/或乙醇。
优选地,所述去除溶剂的方式包括蒸发。
优选地,所述交联聚合包括:芳香烃粘稠固体物质与交联剂混合,在催化剂作用下进行交联聚合反应,得到缩合多聚芳烃树脂。
优选地,所述交联剂包括苯甲醛、对苯二甲醛或对苯磺酸中的任意一种或至少两种的组合,其中典型非限制性的组合为苯甲醛和对苯二甲醛的组合,苯甲醛和对苯磺酸的组合,对苯二甲醛和对苯磺酸的组合。
优选地,所述催化剂为硫酸。
优选地,所述交联聚合反应的时间为0.75~2h,例如可以是0.75h、0.89h、1.03h、1.17h、1.31h、1.45h、1.59h、1.73h、1.87h或2h等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述交联聚合反应在氮气气氛中进行。
优选地,所述氮气的流量为40~80mL/min,例如可以是40mL/min、45mL/min、49mL/min、54mL/min、58mL/min、63mL/min、67mL/min、72mL/min、76mL/min或80mL/min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述交联聚合反应的温度为150~180℃,例如可以是150℃、154℃、157℃、160℃、164℃、167℃、170℃、174℃、177℃或180℃等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,所述交联聚合反应在搅拌条件下进行。
优选地,所述搅拌的速度为300~600r/min,例如可以是300r/min、334r/min、367r/min、400r/min、434r/min、467r/min、500r/min、534r/min、567r/min或600r/min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
作为本申请优选的技术方案,所述处理方法包括如下步骤:
(1)酚基精馏釜残经减压3~10kPa深拔,得到塔顶温度40~180℃的减压拔出物和塔釜温度≤300℃的减压深拔釜残;
(2)混合步骤(1)所述减压拔出物、酚类、醛类以及酸类,进行第一阶段反应0.3~0.8h后,再次加入酸类,进行第二阶段反应0.8~1.2h,加入沸水进行 第三阶段反应15~40min,得到反应后树脂,所述反应后树脂依次经真空除水、冷却至70~85℃并加入粘度调节剂与反应后树脂混合,进行粘度调节,制得酚醛树脂;
所述酚类与减压拔出物的质量比为2.8~3.2:1;所述醛类与酚类的摩尔比为0.7~0.8:1;所述酸类占减压拔出物质量的2~4wt%;所述第一阶段反应中酸类与第二阶段反应中加入的酸类质量比为0.8~1.2:1;
(3)步骤(1)所述减压深拔釜残溶于第一溶剂,形成第一溶液;氮源和固氮物质溶于50~80℃的第二溶剂,形成第二溶液,以100~500r/min转速搅拌混合,在混合溶液中加入活性剂,在80~120℃蒸发干燥,经700~900℃掺氮碳化反应2~5h后,加入浓度为0.5~1.5moL/L的酸进行反应,反应后产物依次经洗涤和干燥,得到活性炭,掺氮碳化过程中得到气相产物;
所述第一溶剂包括乙醇,所述氮源包括三聚氰胺;所述第二溶剂包括水和/或四氢呋喃;所述固氮物质包括聚磷酸铵;所述掺氮碳化的升温速度为2~5℃/min;所述氮源、固相产物和固氮物质的质量比为0.5~2:3~6:0.1~0.5;所述活性剂与固相产物的质量比为0.5~1.5:1;
或者,步骤(1)所述减压深拔釜残经四氢呋喃和/或乙醇萃取、离心沉降除杂、旋蒸后得到芳香烃中间物;
所述芳香烃中间物在氮气流量40~80mL/min气氛下保护,添加交联剂,以浓硫酸为催化剂,反应温度为150~180℃,搅拌速率为300~600r/min条件下反应0.75~2h,制得缩合多聚芳烃树脂;
其中,步骤(2)和步骤(3)不分先后顺序。
第二方面,本申请提供一种酚醛树脂,所述酚醛树脂由第一方面所述的酚基精馏釜残的处理方法制得。
本申请提供的酚醛树脂各方面性能能够符合标准,性能优良,应用前景广阔。
第三方面,本申请提供一种第二方面所述酚醛树脂在耐火材料中的用途。
本申请提供的酚醛树脂性能优良,具有较高的耐热性能,能够较好的应用在耐火材料中,尤其是作为镁碳砖的交联剂使用。
本申请中的树脂还能够在覆膜砂、研磨材料及磨具、炭化功能性材料、耐火材料等领域应用。
第四方面,本申请提供一种活性炭,所述活性炭由第一方面所述的酚基精馏釜残的处理方法制得。
本申请第一方面制得的活性炭可为掺氮活性炭,比表面积和孔容等均具有较佳的性能,吸附能力佳。
第五方面,本申请提供第四方面所述活性炭在二氧化碳等气体吸附中的用途。
本申请第四方面提供的活性炭由于掺杂有氮活性基团,对二氧化碳具有更佳的捕集作用,应用在二氧化碳吸附中相较于现有活性炭具有更好地吸附效果。
与相关技术相比,本申请实施例至少具有以下有益效果:
(1)本申请实施例提供的酚基精馏釜残的处理方法能够将固废转化为树脂和活性炭具有经济价值的产品,缓解了环境问题的同时具有较高的工业生产价值;
(2)本申请实施例提供的酚基精馏釜残的处理方法制得的酚醛树脂性能优良,残碳率≥40%,固含量≥75%,各方面性能符合黑色冶金行业标准,能够作为耐火材料的交联剂使用;
(3)本申请实施例提供的酚基精馏釜残的处理方法值得的活性炭比表面积高且具有丰富的介孔和微孔,其比表面积≥500m 2/g,总孔体积≥0.9cm 3/g,在25℃,1bar条件下CO 2吸附量≥1mmol·g -1,对CO 2具有较好的吸附效果。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1是本申请实施例提供的酚基精馏釜残的处理方法的整体流程图。
图2是本申请实施例提供的酚基精馏釜残的处理方法中减压拔出物制备树脂的流程图。
图3是本申请实施例提供的酚基精馏釜残的处理方法中固相产物制备活性炭的流程图。
图4是本申请实施例提供的酚基精馏釜残的处理方法中固相产物制备缩合多聚芳烃树脂的流程图。
图5是本申请实施例1和实施例2制得的改性树脂的X射线衍射图。
图6是本申请实施例1制得的改性树脂的扫描电子显微镜图。
图7是本申请实施例2制得的改性树脂的扫描电子显微镜图。
图8是本申请实施例1制得的活性炭的X射线光电子能谱的N1S谱图。
图9是本申请实施例1制得的活性炭的氮气等温吸附曲线图。
图10是本申请实施例1制得的活性炭的孔径分布图。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本申请的技术方案。
下面对本申请进一步详细说明。但下述的实例仅仅是本申请的简易例子,并不代表或限制本申请的权利保护范围,本申请的保护范围以权利要求书为准。
本申请提供的酚基精馏釜残的处理方法的整体流程如图1所示,包括如下步骤:
(1)酚基精馏釜残经减压深拔,得到减压拔出物和减压深拔釜残;
(2)步骤(1)所述减压拔出物经合成处理,制得酚醛树脂;
(3)步骤(1)所述减压深拔釜残经碳化,得到气相产物以及活性炭,或步骤(1)所述减压深拔釜残经萃取和交联聚合,制得缩合多聚芳烃树脂;
其中,步骤(2)和步骤(3)不分先后顺序。
其中,步骤(2)中所述酚醛树脂的合成步骤如图2所示,具体包括如下步骤:步骤(1)所述减压拔出物、酚类、醛类以及酸类混合反应,制得酚醛树脂;所述酚醛树脂与改性剂混合反应,制得改性树脂。
步骤(3)中路线一所述减压深拔釜残制得活性炭和气相产物的步骤如图3所示,具体包括如下步骤:所述减压深拔釜残溶于第一溶剂,形成第一溶液;氮源溶于第二溶剂,形成第二溶液,混合所述第一溶液和第二溶液,经掺氮碳化,反应后产物依次经洗涤和干燥,得到活性炭,掺氮碳化过程中得到气相产物;
步骤(3)中路线二制得缩合多聚芳烃树脂的步骤如图4所示,具体包括如下步骤:所述减压深拔釜残经四氢呋喃和/或乙醇溶剂萃取、离心沉降除杂、旋蒸后得到芳香烃中间物;
所述芳香烃中间物在氮气流量40~80mL/min气氛下保护,添加交联剂,以 浓硫酸为催化剂,反应温度为150~180℃,搅拌速率为300~600r/min条件下反应0.75~2h,制得缩合多聚芳烃树脂(Copna树脂)。
一、实施例
实施例1
本实施例提供一种酚基精馏釜残的处理方法,所述处理方法包括如下步骤:
(1)云南某厂酚基精馏釜残经减压深拔,得到5kPa下,塔顶温度在180℃的深拔减压拔出物和塔釜温度为300℃的减压深拔釜残;
(2)混合步骤(1)所述减压拔出物、苯酚、甲醛以及总量一半的草酸(所述苯酚与减压拔出物的质量比为2.8:1;所述甲醛与苯酚的摩尔比为0.73:1;所述草酸总量占减压拔出物质量的3.2wt%),加热回流进行第一阶段反应0.5h后,再次加入剩余一半的草酸,进行第二阶段反应1h,加入与反应体系质量相同的沸水进行第三阶段反应25min,虹吸出上层液体,并对下层树脂进行抽真空,当树脂含水量达到YB/T4131-2005要求后,停止抽真空,冷却至70℃并加入乙二醇调节粘度至满足YB/T4131-2005要求,制得酚醛树脂(RPF-1);
向酚醛树脂(RPF-1)中加入乌洛托品(HMTA,10wt%)和二茂铁(5wt%),在40℃的水浴下搅拌至组分混合均匀,制得改性树脂。
(3)步骤(1)所述减压深拔釜残后溶于无水乙醇,形成第一溶液;三聚氰胺和聚磷酸铵溶于70℃的热水中,形成第二溶液,其中三聚氰胺、固相产物、聚磷酸铵的质量比为1:5:0.2,用3min将所述第一溶液和第二溶液同时倒入同一容器内,以300r/min转速搅拌混合,在混合溶液中加入氢氧化钾粉末(将氢氧化钾研磨成粉末,过100目筛子后的氢氧化钾粉末,固相产物与氢氧化钾的质量比为1:1),在80℃水浴加热搅拌蒸发,蒸干后的样品在干燥箱内烘干,烘干后样品铺在方舟中,置于管式炉内,密封管式炉,加热开始前设置氮气流量为100mL/min,通入30min氮气以排出空气,然后打开加热开关,调整氮气流量为20mL/min,从室温以5℃/min升温至800℃,保持2h,冷却至室温后取出;
用容量瓶配置浓度为1mol/L的HCl溶液,样品从管式炉内取出后,与盐酸溶液混合反应,搅拌12h,以去除样品中的碱性物质、钾盐等;经过盐酸溶液洗涤后的样品进行抽滤,用中性去离子水冲洗样品,直至洗涤水呈中性,以去除其他杂质离子,然后将获得的产品在120℃真空干燥箱中烘干,得到氮掺杂活性炭;
其中,步骤(2)和步骤(3)不分先后顺序。
实施例2
本实施例提供一种酚基精馏釜残的处理方法,所述处理方法除步骤(2)中不加入二茂铁外,其余均与实施例1相同。
实施例3
本实施例提供一种酚基精馏釜残的处理方法,所述处理方法除步骤(3)中不加入聚磷酸铵外,其余均与实施例1相同。
实施例4
本实施例提供一种酚基精馏釜残的处理方法,所述处理方法除步骤(3)中不加入氢氧化钾外,其余均与实施例2相同。
实施例5
本实施例提供一种酚基精馏釜残的处理方法,所述处理方法除步骤(3)中不加入三聚氰胺外,其余均与实施例3相同。
实施例6
本实施例提供一种酚基精馏釜残的处理方法,所述处理方法包括如下步骤:
(1)新疆某厂酚基精馏釜残经减压深拔,得到3kPa下,塔顶温度在40℃的深拔减压拔出物和塔釜温度为280℃的减压深拔釜残;
(2)混合步骤(1)所述减压拔出物、苯酚、甲醛以及总量一半的草酸(所述苯酚与减压拔出物的质量比为2.9:1;所述甲醛与苯酚的摩尔比为0.75:1;所述草酸总量占减压拔出物质量的4wt%),加热回流进行第一阶段反应0.3h后,再次加入剩余一半的草酸,进行第二阶段反应0.8h,加入与反应体系质量相同的沸水进行第三阶段反应40min,虹吸出上层液体,并对下层树脂进行抽真空,当树脂含水量达到YB/T4131-2005要求后,停止抽真空,冷却至85℃并加入乙二醇调节粘度至满足YB/T4131-2005要求,制得酚醛树脂(RPF-1);
(3)步骤(1)所述减压深拔釜残溶于无水乙醇,形成第一溶液;三聚氰胺和聚磷酸铵溶于50℃的热水中,形成第二溶液,其中三聚氰胺、固相产物、聚磷酸铵的质量比为0.5:6:1,将第二溶液倒入第一溶液中,以500r/min转速搅拌混合,在混合溶液中加入氢氧化钾粉末(将氢氧化钾研磨成粉末,过100目筛子后的氢氧化钾粉末,固相产物与氢氧化钾的质量比为0.5:1),在90℃水浴加热搅拌蒸发,蒸干后的样品在干燥箱内烘干,烘干后样品铺在方舟中,置于 管式炉内,密封管式炉,加热开始前设置氮气流量为80mL/min,通入40min氮气以排出空气,然后打开加热开关,调整氮气流量为40mL/min,从室温以2℃/min升温至900℃,保持3h,冷却至室温后取出;
用容量瓶配置浓度为0.5mol/L的HCl溶液,样品从管式炉内取出后,与盐酸溶液混合反应,搅拌48h,以去除样品中的碱性物质、钾盐等;经过盐酸溶液洗涤后的样品进行抽滤,用中性去离子水冲洗样品,直至洗涤水呈中性,以去除其他杂质离子,然后将获得的产品在180℃真空干燥箱中烘干,得到氮掺杂活性炭;
其中,步骤(2)和步骤(3)不分先后顺序。
实施例7
本实施例提供一种酚基精馏釜残的处理方法,所述处理方法包括如下步骤:
(1)某煤焦油厂酚基精馏釜残经减压深拔,得到10kPa下,塔顶温度在120℃的深拔减压拔出物和塔釜温度为250℃的减压深拔釜残;
(2)混合步骤(1)所述减压拔出物、苯酚、甲醛以及总量40wt%的草酸(所述苯酚与减压拔出物的质量比为3.2:1;所述甲醛与苯酚的摩尔比为0.72:1;所述草酸总量占减压拔出物质量的2wt%),加热回流进行第一阶段反应0.8h后,再次加入剩余60wt%的草酸,进行第二阶段反应1.2h,加入与反应体系质量相同的沸水进行第三阶段反应15min,虹吸出上层液体,并对下层树脂进行抽真空,当树脂含水量达到YB/T4131-2005要求后,停止抽真空,冷却至75℃并加入乙二醇调节粘度至满足YB/T4131-2005要求,制得酚醛树脂(RPF-1);
向酚醛树脂(RPF-1)中加入乌洛托品(HMTA,8wt%)和二茂铁(3wt%),在60℃的水浴下搅拌至组分混合均匀,制得改性树脂。
(3)步骤(1)所述减压深拔釜残研磨后溶于无水乙醇,形成第一溶液;三聚氰胺和聚磷酸铵溶于80℃的热水中,形成第二溶液,其中三聚氰胺、固相产物、聚磷酸铵的质量比为2:3:0.5,用5min将所述第一溶液和第二溶液同时倒入同一容器内,以100r/min转速搅拌混合,在混合溶液中加入氢氧化钾粉末(将氢氧化钾研磨成粉末,过100目筛子后的氢氧化钾粉末,固相产物与氢氧化钾的质量比为1.5:1),在95℃水浴加热搅拌蒸发,蒸干后的样品在干燥箱内烘干,烘干后样品铺在方舟中,置于管式炉内,密封管式炉,加热开始前设置氮气流量为120mL/min,通入20min氮气以排出空气,然后打开加热开关,调整氮气 流量为10mL/min,从室温以3℃/min升温至700℃,保持5h,冷却至室温后取出;
用容量瓶配置浓度为1.5mol/L的HCl溶液,样品从管式炉内取出后,与盐酸溶液混合反应,搅拌5h,以去除样品中的碱性物质、钾盐等;经过盐酸溶液洗涤后的样品进行抽滤,用中性去离子水冲洗样品,直至洗涤水呈中性,以去除其他杂质离子,然后将获得的产品在100℃真空干燥箱中烘干,得到氮掺杂活性炭;
其中,步骤(2)和步骤(3)不分先后顺序。
实施例8
本实施例提供一种酚基精馏釜残的处理方法,所述处理方法包括如下步骤:
(1)新疆某厂酚基精馏釜残经减压深拔,得到6kPa下,塔顶温度在80℃的深拔减压拔出物和塔釜温度为270℃的减压深拔釜残;
(2)混合步骤(1)所述减压拔出物、苯酚、甲醛以及总量40wt%的草酸(所述苯酚与减压拔出物的质量比为3.0:1;所述甲醛与苯酚的摩尔比为0.78:1;所述草酸总量占减压拔出物质量的2wt%),加热回流进行第一阶段反应0.8h后,再次加入剩余60wt%的草酸,进行第二阶段反应1.5h,加入与反应体系质量相同的沸水进行第三阶段反应18min,虹吸出上层液体,并对下层树脂进行抽真空,当树脂含水量达到YB/T4131-2005要求后,停止抽真空,冷却至75℃并加入乙二醇调节粘度至满足YB/T4131-2005要求,制得酚醛树脂(RPF-1);
向酚醛树脂(RPF-1)中加入乌洛托品(HMTA,10wt%)和二茂铁(7wt%),在60℃的水浴下搅拌至组分混合均匀,制得改性树脂。
(3)步骤(1)步骤(1)所述减压深拔釜残经四氢呋喃萃取、离心沉降除杂、旋蒸后得到芳香烃中间物;
所述芳香烃中间物在氮气流量40mL/min气氛下保护,添加交联剂,以浓硫酸为催化剂,反应温度为150℃,搅拌速率为600r/min条件下反应2h,制得缩合多聚芳烃树脂;
其中,步骤(2)和步骤(3)不分先后顺序。
实施例9
本实施例提供一种酚基精馏釜残的处理方法,所述处理方法包括如下步骤:
(1)新疆某厂酚基精馏釜残经减压深拔,得到7kPa下,塔顶温度在60℃ 的深拔减压拔出物和塔釜温度为230℃的减压深拔釜残;
(2)混合步骤(1)所述减压拔出物、苯酚、甲醛以及总量20wt%的草酸(所述苯酚与减压拔出物的质量比为3.0:1;所述甲醛与苯酚的摩尔比为0.8:1;所述草酸总量占减压拔出物质量的2wt%),加热回流进行第一阶段反应0.8h后,再次加入剩余80wt%的草酸,进行第二阶段反应1.2h,加入与反应体系质量相同的沸水进行第三阶段反应15min,虹吸出上层液体,并对下层树脂进行抽真空,当树脂含水量达到YB/T4131-2005要求后,停止抽真空,冷却至75℃并加入乙二醇调节粘度至满足YB/T4131-2005要求,制得酚醛树脂(RPF-1);
向酚醛树脂(RPF-1)中加入乌洛托品(HMTA,8wt%)和二茂铁(3wt%),在60℃的水浴下搅拌至组分混合均匀,制得改性树脂。
(3)步骤(1)步骤(1)所述减压深拔釜残经四氢呋喃萃取、离心沉降除杂、旋蒸后得到芳香烃中间物;
所述芳香烃中间物在氮气流量80mL/min气氛下保护,添加交联剂,以浓硫酸为催化剂,反应温度为180℃,搅拌速率为300r/min条件下反应0.75h,制得缩合多聚芳烃树脂;
其中,步骤(2)和步骤(3)不分先后顺序。
二、测试及结果
1、树脂性能测试
实施例1改性树脂的性能测试方法如下:游离酚采用气相色谱-质谱联用的方法,残碳率、固含量、PH值依照YB/T4131-2005中方法,粘度采用AMETEKBrookfield生产的DV-III型粘度计测试,含水量采用北京先驱威锋技术开发公司生产的ZDJ-3S型卡氏微量水分测定仪测试。
测试结果如表1所示,从表1可以看出,实施例1制得的改性树脂的各方面性能均达到了黑色冶金行业标准,具有较高的工业应用价值。
为了验证改性树脂的石墨化水平,将实施例1和实施例2制得的改性树脂放入氮气保护氛围的管式炉中进行热解,热解程序包括在100℃下保持4h,在500℃下保持1h,在1200℃下保持1h。热解后树脂的XRD图如图5所示,实施例1和实施例2的SEM图分别如图6和图7所示。从图5~7可以看出,经二茂铁改性以后酚醛树脂中碳的形态由非结晶碳向石墨碳转化,而且XRD图和SEM图同时验证了石墨碳的形成,这有利于提高树脂的耐热性能。
表1
Figure PCTCN2021121253-appb-000001
aYB/T4131-2005是中华人民共和国黑色冶金行业标准。
2、活性炭性性能测试
如图8所示,对实施例1制备的活性炭进行XPS的N1s谱图分析,将N1s的XPS谱图反卷积分解成5个峰,这些峰分别对应N的5种存在形式:N-6,吡啶氮,结合能为398.3eV;氨基氮,结合能为399.2eV;N-5,吡咯氮,结合能为400.1eV;N-Q,石墨型季氮,结合能为401.4eV,NO x,氮-氧化物,结合能位于402eV-405eV,该活性炭表面成功掺杂了含氮原子。
如图9的氮气等温吸脱附曲线图所示,在低压区(P/P0=0~0.1)等温线呈现快速上升,这主要由于样品中存在大量微孔,且微孔体积较大,接近I型等温线特征。中压区有明显回滞环,表明材料具有一定的介孔结构,通过滞后环的形状可以大体判断出介孔类型大多以狭缝型存在。
如图10的孔径分布图所示,实施例1制得的活性炭材料的孔隙直径主要集中在0~4nm,是微孔-介孔为主的吸附材料,且介孔直径分布较小。该活性炭材料在活性炭表面掺氮量为活性炭质量分数的2.03wt%。
实施例1、实施例3~5中制得的氮掺杂活性炭材料的孔结构参数、表面元素含量及二氧化碳吸附量如表2所示。
表2
Figure PCTCN2021121253-appb-000002
从表2可以看出:
(1)综合实施例1、实施例3~5可以看出,本申请提供的酚基釜残的处理方法,能够较好地将其中的资源利用,制得性能优良的活性炭材料,其比表面积≥500m 2/g,总孔体积≥0.9cm 3/g,在25℃,1bar条件下CO 2吸附量≥1mmol·g -1,具有良好的应用前景;
(2)对比实施例1和实施例3可以看出,实施例1制得的活性炭的N和C元素均大于实施例3,由此表明,本申请通过加入诸如聚磷酸铵等固氮物质能够起到固氮作用,同时能够减少掺氮碳化过程中碳的损失,提高了活性炭的产量;
(3)对比实施例3和实施例4可以看出,实施例3中制得的活性炭的比表面积和孔容比实施例4中有显著提高,由此表明,活性剂的加入提高了最终活性炭的比表面和孔容,最终提高了活性炭的吸附能力;
(4)对比实施例4和实施例5可以看出,实施例4中添加了氮源,相较于实施例5中不加入氮源而言,比表面积有所降低,但针对二氧化碳的吸附量增加,由此表明,本申请通过引入氮源,提高了活性炭对二氧化碳的吸附能力。
综上所述,本申请提供的酚基精馏釜残的处理方法能够将固废转化为树脂以及活性炭材料,且得到的树脂和活性炭均性能优良,其中,树脂能够符合黑色冶金行业标准,活性炭的比表面积≥500m 2/g,总孔体积≥0.9cm 3/g,在25℃,1bar条件下CO 2吸附量≥1mmol·g -1,应用前景广阔。
申请人声明,本申请通过上述实施例来说明本申请的详细结构特征,但本申请并不局限于上述详细结构特征,即不意味着本申请必须依赖上述详细结构特征才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请所选用部件的等效替换以及辅助部件的增加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。

Claims (12)

  1. 一种酚基精馏釜残的处理方法,其包括如下步骤:
    (1)酚基精馏釜残经减压深拔,得到减压拔出物和减压深拔釜残;
    (2)步骤(1)所述减压拔出物经合成处理,制得酚醛树脂;
    (3)步骤(1)所述减压深拔釜残经碳化,得到气相产物以及活性炭,或步骤(1)所述减压深拔釜残经萃取和交联聚合,制得缩合多聚芳烃树脂;
    其中,步骤(2)和步骤(3)不分先后顺序。
  2. 根据权利要求1所述的处理方法,其中,所述减压深拔的塔顶温度为40℃~180℃。
  3. 根据权利要求1或2所述的处理方法,其中,所述减压深拔的塔釜温度控制为≤300℃。
  4. 根据权利要求1~3任一项所述的处理方法,其中,所述减压深拔的压力为3~10kPa。
  5. 根据权利要求1~4任一项所述的处理方法,其中,步骤(2)中所述合成处理包括:将步骤(1)所述减压拔出物、酚类、醛类以及酸类混合反应,制得酚醛树脂;
    优选地,所述酚类包括苯酚;
    优选地,所述醛类包括甲醛、多聚甲醛、三聚甲醛、乙醛、三聚乙醛或糠醛中的任意一种或至少两种的组合,优选甲醛;
    优选地,所述酸类包括草酸、乙酸、甲酸、丙酸、丙二酸、磷酸、醋酸、或盐酸中的任意一种或至少两种的组合,优选为草酸;
    优选地,所述酚类与减压拔出物的质量比为0.01~20:1,优选为2.8~3.2:1;
    优选地,所述醛类与减压拔出物中酚类的摩尔比为0.55~0.85:1,优选0.70~0.80:1;
    优选地,所述酸类占减压拔出物质量的2~4wt%。
  6. 根据权利要求1~5任一项所述的处理方法,其中,所述合成处理包括:混合步骤(1)所述减压拔出物、酚类、醛类以及酸类,进行第一阶段反应后,再次加入酸类,继续进行第二阶段反应,加入沸水继续进行第三阶段反应,得到反应后树脂;
    优选地,所述第一阶段反应的时间为0.3~0.8h;
    优选地,所述第二阶段反应的时间为0.8~1.2h;
    优选地,所述第三阶段反应的时间为15~40min;
    优选地,所述第一阶段反应中酸类与第二阶段反应中加入的酸类质量比为0.8~1.2:1,优选为1:1;
    优选地,所述反应后树脂依次经除水、冷却和粘度调节,得到酚醛树脂;
    优选地,所述除水包括抽真空除水;
    优选地,所述冷却包括冷却至70~85℃;
    优选地,所述粘度调节包括:加入粘度调节剂与反应后树脂混合,进行粘度调节;
    优选地,所述粘度调节剂包括乙二醇。
  7. 根据权利要求1~6任一项所述的处理方法,其中,步骤(2)中还包括:对所述酚醛树脂进行改性处理;
    优选地,所述改性处理包括将所述酚醛树脂与固化剂和改性剂混合进行改性反应,得到改性后酚醛树脂;
    优选地,所述固化剂包括苯胺、六亚甲基四胺或三聚氰胺中的任意一种或至少两种的组合,优选六亚甲基四胺;
    优选地,所述乌洛托品占酚醛树脂质量的5~15wt%;
    优选地,所述改性剂包括硝酸铁、硝酸镍、二氧化硅、氧化石墨烯、氧化硼、硼酸或二茂铁中的任意一种或至少两种的组合,优选为二茂铁;
    优选地,所述二茂铁占酚醛树脂质量的改性反应3~11wt%;
    优选地,所述改性反应的温度为38~50℃;
    优选地,所述改性反应在搅拌条件下进行。
  8. 根据权利要求1~7任一项所述的处理方法,其中,步骤(3)所述碳化为掺氮碳化;
    优选地,所述掺氮碳化包括:所述减压深拔釜残溶于第一溶剂,形成第一溶液;氮源溶于第二溶剂,形成第二溶液,混合所述第一溶液和第二溶液,经掺氮碳化,得到气相产物和活性炭;
    优选地,所述第一溶剂包括乙醇和/或四氢呋喃;
    优选地,所述氮源包括三聚氰胺;
    优选地,所述第二溶剂包括水;
    优选地,所述第二溶剂的温度为50~80℃;
    优选地,所述第二溶液中还加入固氮物质;
    优选地,所述第二溶液中还加入活性剂;
    优选地,所述氮源、固相产物和固氮物质的质量比为0.5~2:3~6:0.1~0.5;
    优选地,所述混合在搅拌条件下进行;
    优选地,所述活性剂与固相产物的质量比为0.5~1.5:1;
    优选地,所述活性剂包括氢氧化钾。
  9. 根据权利要求8所述的处理方法,其中,步骤(3)所述掺氮碳化之前还包括蒸发干燥;
    优选地,所述蒸发干燥的温度为80~120℃;
    优选地,所述掺氮碳化的温度为700~900℃;
    优选地,所述掺氮碳化的升温速度为2~5℃/min;
    优选地,所述掺氮碳化的时长为2~5h;
    优选地,所述掺氮碳化在氮气气氛中进行;
    优选地,所述掺氮碳化中氮气的流量为10~40mL/min;
    优选地,所述掺氮碳化后还包括:加入酸进行反应;
    优选地,所述酸包括盐酸;
    优选地,所述酸的浓度为0.5~1.5moL/L
    优选地,所述反应的时长为5~48h;
    优选地,所述反应后还包括洗涤;
    优选地,所述洗涤包括采用去离子水冲洗;
    优选地,所述洗涤后包括干燥;
    优选地,所述干燥的温度为100~180℃。
  10. 根据权利要求1~9任一项所述的处理方法,其中,步骤(3)中所述减压深拔釜残经溶剂萃取和交联聚合,制得缩合多聚芳烃树脂;
    优选地,所述溶剂萃取包括:减压深拔釜残经溶剂萃取、除杂和去除溶剂后,得到芳香烃粘稠固体物质;
    优选地,所述溶剂包括四氢呋喃和/或乙醇;
    优选地,所述去除溶剂的方式包括蒸发;
    优选地,所述交联聚合包括:芳香烃粘稠固体物质与交联剂混合,在催化剂作用下进行交联聚合反应,得到缩合多聚芳烃树脂;
    优选地,所述交联剂包括苯甲醛、对苯二甲醛或对苯磺酸中的任意一种或至少两种的组合;
    优选地,所述催化剂为硫酸;
    优选地,所述交联聚合反应的时间为0.75~2h;
    优选地,所述交联聚合反应在氮气气氛中进行;
    优选地,所述氮气的流量为40~80mL/min;
    优选地,所述交联聚合反应的温度为150~180℃;
    优选地,所述交联聚合反应在搅拌条件下进行;
    优选地,所述搅拌的速度为300~600r/min。
  11. 根据权利要求1~10任一项所述的处理方法,其包括如下步骤:
    (1)酚基精馏釜残经减压3~10kPa深拔,得到塔顶温度40~180℃的减压拔出物和塔釜温度≤300℃的减压深拔釜残;
    (2)混合步骤(1)所述减压拔出物、酚类、醛类以及酸类,进行第一阶段反应0.3~0.8h后,再次加入酸类,进行第二阶段反应0.8~1.2h,加入沸水进行第三阶段反应15~40min,得到反应后树脂,所述反应后树脂依次经真空除水、冷却至70~85℃并加入粘度调节剂与反应后树脂混合,进行粘度调节,制得酚醛树脂;
    所述酚类与减压拔出物的质量比为2.8~3.2:1;所述醛类与酚类的摩尔比为0.7~0.8:1;所述酸类占减压拔出物质量的2~4wt%;所述第一阶段反应中酸类与第二阶段反应中加入的酸类质量比为0.8~1.2:1;
    (3)步骤(1)所述减压深拔釜残溶于第一溶剂,形成第一溶液;氮源和固氮物质溶于50~80℃的第二溶剂,形成第二溶液,以100~500r/min转速搅拌混合,在混合溶液中加入活性剂,在80~120℃蒸发干燥,经700~900℃掺氮碳化反应2~5h后,加入浓度为0.5~1.5moL/L的酸进行反应,反应后产物依次经洗涤和干燥,得到活性炭,掺氮碳化过程中得到气相产物;
    所述第一溶剂包括乙醇,所述氮源包括三聚氰胺;所述第二溶剂包括水和/或四氢呋喃;所述固氮物质包括聚磷酸铵;所述掺氮碳化的升温速度为2~5℃/min;所述氮源、固相产物和固氮物质的质量比为0.5~2:3~6:0.1~0.5;所述活性剂与固相产物的质量比为0.5~1.5:1;
    或者,步骤(1)所述减压深拔釜残经四氢呋喃和/或乙醇萃取、离心沉降除 杂、旋蒸后得到芳香烃中间物;
    所述芳香烃中间物在氮气流量40~80mL/min气氛下保护,添加交联剂,以浓硫酸为催化剂,反应温度为150~180℃,搅拌速率为300~600r/min条件下反应0.75~2h,制得缩合多聚芳烃树脂;
    其中,步骤(2)和步骤(3)不分先后顺序。
  12. 一种酚醛树脂,其中,所述酚醛树脂由权利要求1~11任一项所述的酚基精馏釜残的处理方法制得。
PCT/CN2021/121253 2020-09-29 2021-09-28 一种酚基精馏釜残的处理方法 WO2022068800A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011051943.9 2020-09-29
CN202011051943.9A CN112194766B (zh) 2020-09-29 2020-09-29 一种酚基精馏釜残的处理方法

Publications (1)

Publication Number Publication Date
WO2022068800A1 true WO2022068800A1 (zh) 2022-04-07

Family

ID=74007918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121253 WO2022068800A1 (zh) 2020-09-29 2021-09-28 一种酚基精馏釜残的处理方法

Country Status (2)

Country Link
CN (1) CN112194766B (zh)
WO (1) WO2022068800A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112194766B (zh) * 2020-09-29 2023-05-26 天津大学 一种酚基精馏釜残的处理方法
CN114408921A (zh) * 2022-01-11 2022-04-29 南京工业大学 一种由化工精馏釜残制备活性炭的方法及所得活性炭和其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207612A (en) * 1981-06-15 1982-12-20 Matsushita Electric Works Ltd Preparing apparatus of phenolic resin
CN103772208A (zh) * 2014-01-22 2014-05-07 淮安嘉诚高新化工股份有限公司 一硝基甲苯精馏釜残的处理方法
CN104530338A (zh) * 2014-12-31 2015-04-22 珠海邦瑞合成材料有限公司 一种抗衰减改性超薄片树脂磨具用粉体酚醛树脂及其制备方法
CN106566572A (zh) * 2016-11-07 2017-04-19 中国石油大学(华东) 一种煤焦重油减压深拔生产高软化点硬沥青工艺
CN106902489A (zh) * 2017-04-16 2017-06-30 内蒙古佳瑞米精细化工有限公司 一种ctc精馏釜残的处理方法
CN108689806A (zh) * 2018-05-06 2018-10-23 陕西巴斯腾科技有限公司 一种甲酚产品精馏釜残液回收甲酚的方法
CN112194766A (zh) * 2020-09-29 2021-01-08 天津大学 一种酚基精馏釜残的处理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0910597A (ja) * 1995-06-28 1997-01-14 Dainippon Ink & Chem Inc 芳香族化合物用アルキル化触媒、その製造方法及び第3級アルキルフェノール類の製造方法
CN1247212A (zh) * 1998-09-05 2000-03-15 中国科学院山西煤炭化学研究所 一种中孔酚醛树脂基球形活性炭的制备方法
CN107915816B (zh) * 2016-08-26 2020-06-16 大连路生菲悦科技有限公司 玉米化工醇釜残废料制酚醛树脂的方法及酚醛树脂和应用
CN109174073B (zh) * 2018-09-06 2021-04-06 青岛科技大学 一种苯二胺生产中釜残焦油的资源化利用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207612A (en) * 1981-06-15 1982-12-20 Matsushita Electric Works Ltd Preparing apparatus of phenolic resin
CN103772208A (zh) * 2014-01-22 2014-05-07 淮安嘉诚高新化工股份有限公司 一硝基甲苯精馏釜残的处理方法
CN104530338A (zh) * 2014-12-31 2015-04-22 珠海邦瑞合成材料有限公司 一种抗衰减改性超薄片树脂磨具用粉体酚醛树脂及其制备方法
CN106566572A (zh) * 2016-11-07 2017-04-19 中国石油大学(华东) 一种煤焦重油减压深拔生产高软化点硬沥青工艺
CN106902489A (zh) * 2017-04-16 2017-06-30 内蒙古佳瑞米精细化工有限公司 一种ctc精馏釜残的处理方法
CN108689806A (zh) * 2018-05-06 2018-10-23 陕西巴斯腾科技有限公司 一种甲酚产品精馏釜残液回收甲酚的方法
CN112194766A (zh) * 2020-09-29 2021-01-08 天津大学 一种酚基精馏釜残的处理方法

Also Published As

Publication number Publication date
CN112194766A (zh) 2021-01-08
CN112194766B (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
WO2022068800A1 (zh) 一种酚基精馏釜残的处理方法
CN103265008B (zh) 一种氮掺杂多孔炭及其制备方法
Chen et al. Catalytic depolymerization of the hydrolyzed lignin over mesoporous catalysts
WO2023024365A1 (zh) 一种利用槟榔和污泥为材料制备活性炭的方法
Wang et al. Influence of the addition of cotton stalk during co-pyrolysis with sewage sludge on the properties, surface characteristics, and ecological risks of biochars
CN103833003A (zh) 一种软模板法落叶松基有序介孔炭的制备方法
CN101070156A (zh) 红蓼秸杆活性炭的制备方法
CN112973701A (zh) 一种铁-钠碳材料催化剂及其制备方法和应用
KR101259517B1 (ko) 무연탄계 고 표면적 분말 활성탄을 제조하는 방법
WO2021072684A1 (zh) 利用厌氧发酵副产物制备生物炭及氢气的方法
CN104874376A (zh) 一种沥青多孔材料及其制备方法与应用
Wu et al. A clean process for activator recovery during activated carbon production from waste biomass
Chen et al. Preparation of bagasse pith-derived biochar for high-efficiency removal of Cr (VI) and further hydrogenation of furfural
Wang et al. Using diaper waste to prepare magnetic catalyst for the synthesis of glycerol carbonate
CN110407207B (zh) 一种高温共炭化剂及其在塑料废弃物炭化过程增碳固杂的应用
CN113479876B (zh) 一种颠茄草药渣多孔碳及其制备方法和应用
CN101845315A (zh) 一种低压原位供氢煤直接液化的方法
CN109847755B (zh) 一种生物质基催化剂及其制备方法以及在热解煤方面的应用
CN107337585A (zh) 一种木质素微波解聚制备单酚类化合物的方法
CN114436257A (zh) 利用koh/尿素协同调控生物炭的孔道结构及含氧、氮官能团数量的方法
CN106241805A (zh) 一种造纸黑液粗提取物‑木质素磺酸盐制备活性炭的方法
CN114433027B (zh) 固体胺改性多孔材料及其制备方法
CN111392707B (zh) 一种利用煤直接液化制备中间相碳微球的方法
CN116333516B (zh) 一种木质素基纳米炭黑的制备方法
CN118179464A (zh) 一种聚对苯二甲酸乙二醇酯活性炭及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874460

Country of ref document: EP

Kind code of ref document: A1