WO2022068766A1 - 双工器设计方法和双工器、多工器、通信设备 - Google Patents

双工器设计方法和双工器、多工器、通信设备 Download PDF

Info

Publication number
WO2022068766A1
WO2022068766A1 PCT/CN2021/120885 CN2021120885W WO2022068766A1 WO 2022068766 A1 WO2022068766 A1 WO 2022068766A1 CN 2021120885 W CN2021120885 W CN 2021120885W WO 2022068766 A1 WO2022068766 A1 WO 2022068766A1
Authority
WO
WIPO (PCT)
Prior art keywords
raised portion
thickness
resonator
frequency filter
duplexer
Prior art date
Application number
PCT/CN2021/120885
Other languages
English (en)
French (fr)
Inventor
边子鹏
庞慰
Original Assignee
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺思(天津)微系统有限责任公司 filed Critical 诺思(天津)微系统有限责任公司
Publication of WO2022068766A1 publication Critical patent/WO2022068766A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/703Networks using bulk acoustic wave devices
    • H03H9/706Duplexers

Definitions

  • the present invention relates to the technical field of duplexers, in particular to a duplexer design method and a duplexer, a multiplexer and a communication device.
  • miniaturization is achieved by reducing the size of the chip and package substrate on the one hand, and better performance is achieved by reducing loss sources and better resonator fit design on the other hand.
  • FIG. 1 is a schematic diagram of a structure of an acoustic wave filter according to the prior art.
  • this filter 100 there are inductors 121, 122 and a plurality of resonators (usually called series resonators) 101 to 104 between the input terminal 131 and the output terminal 132, and the connection point of each series resonator is connected to the ground terminal.
  • Resonators 111 to 113 (usually referred to as parallel resonators) and inductors 123 to 125 are respectively provided on the multiple branches (usually referred to as parallel branches) of the .
  • a mass load layer is added to each parallel resonator, so that the frequency of the parallel resonator and the frequency of the series resonator are different to form the passband of the filter.
  • the duplexer is a different frequency duplex radio, its function is to isolate the transmitting and receiving signals to ensure that both receiving and transmitting can work normally at the same time.
  • the duplexer is composed of two sets of band-pass filters with different frequencies. In the design process of the duplexer, it is necessary to consider the influence of the elevated sub-resonant frequency of the parallel resonator in the high-frequency filter on the performance of the low-frequency filter. If the high-order resonant frequency falls within the passband of the low-frequency filter, it will affect the matching of the low-frequency filter, thereby affecting the insertion loss characteristics of the low-frequency filter.
  • the present invention provides a duplexer design method, a duplexer, a multiplexer, and a communication device.
  • the insertion loss of the low-frequency filter the insertion loss of the high-frequency filter is minimized.
  • a method for designing a duplexer wherein a high-frequency filter in the duplexer includes a multi-stage resonator circuit, and each of the multi-stage resonator circuits includes a common matching unit and a subsequent stage circuit , the common matching unit is the first-stage resonator circuit close to the input end of the high-frequency filter, and the latter-stage circuit is other multi-stage resonator circuits in the high-frequency filter except the first-stage resonator circuit, and the method includes the following Step: In the latter-stage circuit, a ring-shaped first raised portion is arranged on the edges of the top electrodes of all the parallel resonators, and the first raised portion is designed to be a first thickness that maximizes the QP of the parallel resonator.
  • QP is the quality factor when the parallel resonator works at the parallel resonance frequency; in the co-matching unit, a ring-shaped second raised portion is arranged on the edge of the top electrode of the parallel resonator, and the thickness of the second raised portion is designed is the first thickness, it is judged that if the sub-resonance frequency of the raised part of the parallel resonator with the second raised part does not fall within the passband of the low-frequency filter in the duplexer, then the parallel resonance
  • the second raised part with the first thickness is selected for the resonator; if the sub-resonance frequency of the raised part of the parallel resonator with the second raised part falls entirely or partially within the passband of the low-frequency filter, then the second raised part is changed.
  • the thickness of the second raised part is changed or the second raised part is deleted, wherein when the thickness of the second raised part is changed, its thickness is changed to a second thickness which makes the raised part of the parallel resonator sub-resonant frequency All moved out of the low frequency filter passband.
  • the width of the first raised portion and/or the second raised portion is adjusted to a limited value to further improve the filter insertion loss characteristic.
  • a duplexer including a high-frequency filter and a low-frequency filter
  • the high-frequency filter includes a multi-stage resonator circuit
  • each of the multi-stage resonator circuits includes a common matching unit and The post-stage circuit
  • the common matching unit is the first-stage resonator circuit close to the input end of the high-frequency filter
  • the post-stage circuit is other multi-stage resonator circuits except the first-stage resonator circuit in the high-frequency filter
  • the edge of the top electrode of the parallel resonator in the circuit is provided with a ring-shaped first raised portion
  • the edge of the top electrode of the parallel resonator in the co-matching unit is provided with a ring-shaped second raised portion.
  • Both the first and second raised portions have a first thickness, and the first thickness prevents the sub-resonance frequency of the raised portion of the parallel resonator having the second raised portion from falling within the passband of the low-frequency filter.
  • the parallel resonator further includes a conductive layer, and the conductive layer is located between the piezoelectric layer and the top electrode or between the piezoelectric layer and the bottom electrode of the parallel resonator, wherein the thickness of the conductive layer is smaller than the top electrode in contact with the conductive layer. The thickness of the electrode or bottom electrode.
  • the first thickness is 0 angstroms to 3000 angstroms.
  • the ratio of the first thickness to the bottom electrode, piezoelectric layer and top electrode of the parallel resonator where it is located is 0.01 to 0.3 respectively normalized to the sum of the thicknesses of the elevated material according to the sound speed, wherein the ratio of the ratio is 0.01 to 0.3.
  • the calculation formula is:
  • the ratio of the first thickness to the bottom electrode, piezoelectric layer and top electrode of the parallel resonator in which it is located is 0.03 to 0.25 respectively normalized to the sum of the thicknesses of the materials of the raised portion according to the speed of sound.
  • the width of the first elevated portion and/or the second elevated portion is 0 micrometers to 15 micrometers.
  • a duplexer including a high-frequency filter and a low-frequency filter
  • the high-frequency filter includes a multi-stage resonator circuit
  • each of the multi-stage resonator circuits includes a common matching unit and The post-stage circuit
  • the common matching unit is the first-stage resonator circuit close to the input end of the high-frequency filter
  • the post-stage circuit is other multi-stage resonator circuits except the first-stage resonator circuit in the high-frequency filter
  • the edge of the top electrode of the parallel resonator in the circuit is provided with a ring-shaped first raised portion
  • the edge of the top electrode of the parallel resonator in the co-matching unit is provided with a ring-shaped second raised portion.
  • the second raised part has a first thickness
  • the second raised part has a second thickness, and the second thickness makes all the raised part sub-resonance frequencies of the parallel resonator with the second raised part fall outside the passband of the low
  • the parallel resonator further includes a conductive layer, and the conductive layer is located between the piezoelectric layer and the top electrode or between the piezoelectric layer and the bottom electrode of the parallel resonator, wherein the thickness of the conductive layer is smaller than the top electrode in contact with the conductive layer. The thickness of the electrode or bottom electrode.
  • the first thickness is 0 angstroms to 3000 angstroms.
  • the ratio of the first thickness to the sum of the thicknesses of the material of the raised portion normalized to the bottom electrode, the piezoelectric layer and the top electrode of the parallel resonator where the parallel resonator is located is 0.01 to 0.3, respectively.
  • the ratio of the first thickness to the sum of the thicknesses of the material of the raised portion normalized to the bottom electrode, the piezoelectric layer and the top electrode of the parallel resonator where the parallel resonator is located is 0.03 to 0.25, respectively.
  • the width of the first raised portion and/or the second raised portion is 0um to 15um.
  • a multiplexer including the above-mentioned duplexer.
  • a communication device including the above-mentioned duplexer.
  • FIG. 1 is a schematic diagram of a filter topology according to the prior art
  • FIG. 2 is a schematic structural diagram of a thin film bulk acoustic wave resonator provided with a raised portion at the edge of the top electrode;
  • Fig. 3 is the sectional view of PP' position in Fig. 2;
  • FIG. 4 is a schematic diagram showing the relationship between the impedance of the parallel resonance point of the resonator when the thickness and width of the raised portion of the resonator are different;
  • FIG. 5 is a schematic diagram of the frequency characteristic curve of the real part of the resonator impedance corresponding to the bulk acoustic wave resonator with different raised part thicknesses;
  • FIG. 6 is a schematic diagram of the real part frequency characteristic curve of the resonator impedance corresponding to the bulk acoustic wave resonator with different raised widths;
  • FIG. 7 is a schematic diagram of a topology structure of a duplexer provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another topology structure of a duplexer provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing the comparison of the reflection coefficient curves at the antenna end of the filter at the low frequency end
  • Figure 10 is a schematic diagram showing the comparison of the insertion loss characteristic curves of the low-frequency filter
  • FIG. 11 is a schematic diagram of another topology structure of a duplexer provided by an embodiment of the present invention.
  • Figure 12 is a comparison diagram of the insertion loss characteristic curve of the high-frequency filter
  • FIG. 13 is a flowchart of a method for designing a duplexer according to an embodiment of the present invention.
  • the thickness and width of the raised portion on the parallel resonator in the high-frequency filter can be limited, so that the insertion loss of the high-frequency filter can be minimized without affecting the insertion loss of the low-frequency filter. Deterioration will be described in detail below.
  • FIG. 2 is a schematic structural diagram of a thin-film bulk acoustic wave resonator with a raised portion at the edge of the top electrode.
  • Fig. 3 is a cross-sectional view of the position of PP' in Fig. 2 .
  • a resonator with a raised portion includes a substrate 601 , an acoustic mirror 602 , a bottom electrode 603 , a piezoelectric thin film layer 604 , a top electrode 605 and a raised portion 606 .
  • the optional material of the substrate 601 is single crystal silicon, gallium arsenide, sapphire, quartz, etc.
  • the acoustic mirror 602 is shown as a cavity, which can also use a Bragg reflector or other equivalent forms.
  • the material of the bottom electrode 603 can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a combination of the above metals or their alloys, etc.;
  • the piezoelectric film layer 604 can be selected from single crystal aluminum nitride , polycrystalline aluminum nitride, zinc oxide, PZT and other materials and include rare earth element doping materials with a certain atomic ratio of the above materials;
  • the material of the top electrode 605 can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium , iridium, osmium, chromium or a composite of the above metals or their alloys, etc.
  • the top electrode 605 includes a mass load layer;
  • the thickness H of the raised portion 606 is defined as the height difference between the top surface of the raised portion and the inner top surface of the top electrode 605 in the thickness direction.
  • W is the width of the raised portion of the resonator.
  • the raised portion 606 is located above the top electrode 605 and at the edge of the top electrode 605 .
  • the impedance When the resonator works at the series resonance frequency Fs, the impedance is the series resonance point impedance, and the quality factor when it works at the series resonance frequency is Q S ; when the resonator works at the parallel resonance frequency Fp, the impedance is the parallel resonance point impedance, and when it works in parallel
  • the quality factor at the resonance frequency is Q P ; the maximum Q value (Q max ) of the resonator corresponds to a frequency between the series resonance frequency and the parallel resonance frequency. Filters designed with high-Q resonators have lower insertion loss and higher roll-off, so a higher Q-value of the resonator is required to obtain better filter performance.
  • the Q value of the resonator is mainly determined by the loss of the energy of the resonator.
  • the thin film bulk acoustic wave resonator works in the piston mode (main mode)
  • the transverse mode parasitsitic mode
  • the acoustic leakage caused by the transverse mode is a parallel resonance.
  • the main factor of energy loss that is, the smaller the acoustic energy leakage of the transverse mode, the higher the QP value.
  • the overlapping area of the acoustic mirror 602, the bottom electrode 603, the piezoelectric film layer 604 and the top electrode 605 is the effective area of the resonator, and the acoustic wave in the transverse mode propagates from one edge of the effective area of the resonator to the other edge.
  • the mismatch between the acoustic impedance inside the area and the acoustic impedance at the edge of the effective area increases, the acoustic energy of the resonator is more likely to be confined inside the resonator, and the QP value is higher.
  • FIG. 4 is a schematic diagram showing the relationship between the impedance of the parallel resonance point of the resonator when the thickness and width of the raised portion of the resonator are different.
  • the function of the raised part of the resonator is to change the acoustic impedance of the edge of the effective area of the resonator, as shown in Figure 4, within a certain thickness range (such as 0 to ) As the thickness of the raised part increases, the thickness is H1, H2 and H3 shown in the figure, the impedance of the parallel resonance point of the resonator first increases and then decreases; under the condition of a certain height of the raised part, the parallel resonance of the resonator The point impedance value changes approximately periodically with the increase of the width of the raised portion, the widths are W1 and W2 in the figure, each cycle has a peak point, and the width of the raised portion is generally set between 0 and 15um.
  • the QP value of the resonator can be effectively improved by providing raised parts at the top electrode connection end and non-connection end of the resonator, which improves the roll-off characteristics and insertion loss characteristics of the filter to a certain extent, but it will cause series resonance in the resonator.
  • the corresponding frequency band below the frequency point produces an elevated sub-resonance.
  • the sub-resonance of the raised part is defined as the impedance of the above two resonators in the frequency range lower than the series resonance frequency when the series resonance frequencies of two resonators with the same area provided with the raised part and without the raised part are aligned.
  • FIG. 5 is a schematic diagram of the frequency characteristic curve of the real part of the impedance of the resonator corresponding to the bulk acoustic wave resonator with different thickness of the raised part.
  • the solid line in Fig. 5 is the impedance real part frequency characteristic curve of the resonator when the top electrode connecting end and the non-connecting end are not provided with a raised part (when the height of the raised part is 0); the solid line marked with a circle is the top electrode connection
  • the impedance real part frequency characteristic curve of the resonator with the height of H1 and width W1 is set at the end and the non-connecting end, where the area shown in A is the top electrode connection end and non-connection end shown by the solid line marked by the circle.
  • the height of the resonator of the resonator with the height of H1 and the width of W2 is set; the solid line of the rectangular mark is the top electrode connecting end and the non-connecting end of the resonator with the thickness of H2 and the width of W2.
  • FIG. 6 is a schematic diagram of the frequency characteristic curve of the real part of the resonator impedance corresponding to the bulk acoustic wave resonator with different raised widths.
  • the solid line in Fig. 6 is the frequency characteristic curve of the impedance real part of the resonator when the top electrode connecting end and the non-connecting end are not provided with a raised portion (when the width of the raised portion is 0); the solid line marked with a circle is the top electrode connection The impedance real part frequency characteristic curve of the resonator with the raised part thickness H1 and the width W1 set at the end and the non-connecting end; the solid line marked with a rectangle is the top electrode connection end and the non-connecting end.
  • the Q max , Q S of the series resonator, and the Q value between the frequency corresponding to the series resonance frequency and the frequency corresponding to the left edge of the filter passband have a greater impact on the passband insertion loss, followed by Q P ;
  • Q P and Q max of the parallel resonator have a greater impact on the pass-band insertion loss, and Q S is the second; that is, in the ladder filter, the performance requirements of the series resonator and the parallel resonator are different, and different resonator elevation settings correspond to
  • the insertion loss characteristics of the filter can be improved by reasonably setting the thickness and width of the raised portion of the series-parallel resonator.
  • the influence of the elevated sub-resonant frequency of the resonator in the high-frequency filter on the performance of the low-frequency filter should be considered at the same time.
  • the rising frequency of the parallel resonator is within the passband of the low-frequency filter, which will affect the matching of the low-frequency filter, thereby affecting the insertion loss characteristics of the low-frequency filter; however, in the high-frequency filter, except for the first-order resonance
  • the embodiment of the present invention redesigns the duplexer, as follows:
  • FIG. 7 is a schematic diagram of a topology structure of a duplexer according to an embodiment of the present invention.
  • the duplexer topology 800 (the first embodiment) includes a low-frequency filter and a high-frequency filter.
  • One ends of the low-frequency filter and the high-frequency filter are connected to the antenna ANT, and the antenna ANT is also connected to a ground inductor LM, the other end of the low frequency filter is a signal input (output) port T1, and the other end of the high frequency filter is a signal output (input) port T2.
  • the input end and the output end respectively include an inductance L1 and an inductance L2
  • the high-frequency filter includes a 4-stage resonator circuit
  • the first-stage resonator circuit near the end of the antenna ANT
  • the remaining 3-stage resonator circuits are the post-stage circuits of the high-frequency filter.
  • the thickness and width of the raised part of the parallel resonator P1-Hx-W2 in the common matching unit are set as Hx and W2 respectively, and the parallel resonator P2-H2-W2, the parallel resonator P3-H2-W2 and the parallel resonance in the subsequent circuit
  • the thickness and width of the raised portion of the device P4-H2-W2 are set as H2 and W2.
  • FIG. 8 is a schematic diagram of another topology structure of a duplexer provided by an embodiment of the present invention.
  • the difference between the duplexer topology 900 shown in FIG. 8 (the first comparative example) and the duplexer topology 800 shown in FIG. 7 is that the high frequency filter in the duplexer topology 900
  • the thickness and width of the raised portion of the parallel resonator of the co-matching unit are respectively set as H2 and W2, that is, the same thickness and width as the parallel resonator in the co-matching unit.
  • FIG. 9 is a schematic diagram showing the comparison of the reflection coefficient curves at the antenna end of the filter at the low frequency end.
  • the thick solid line in FIG. 9 is the reflection coefficient curve of the low frequency filter antenna end in the duplexer topology structure 800
  • the dotted line is the emission coefficient curve of the low frequency filter antenna end in the duplexer topology structure 900
  • the thin solid line is the duplexer topology structure.
  • the impedance frequency characteristic curve of the parallel resonator in the co-matching unit of 900, the position marked by the circle R is the elevated sub-resonance of the parallel resonator in the co-matching unit. It can be seen from FIG.
  • FIG. 10 is a schematic diagram showing the comparison of the insertion loss characteristic curves of the low-frequency filter.
  • the solid line in FIG. 10 is the insertion loss characteristic of the low frequency filter in the duplexer topology 800
  • the dotted line is the insertion loss characteristic of the low frequency filter in the duplexer topology 900 .
  • the way to adjust the thickness Hx of the raised part is to reduce Hx to H1 or increase it to H3, so that the sub-resonance frequencies of the raised part of the parallel resonator are just moved out of the passband of the low-frequency filter.
  • the thickness Hx of the fixed raised portion is H1 or H3.
  • FIG. 11 is a schematic diagram of another topology structure of a duplexer provided by an embodiment of the present invention.
  • the difference between the duplexer topology 901 (second comparative example) and the duplexer topology 900 is that in the duplexer topology 901 , the common The thickness and width of the raised portion of the parallel resonator of the matching unit are set as H2 and W1, respectively.
  • Figure 12 is a comparison diagram of the insertion loss characteristic curves of the high-frequency filter.
  • the solid line in FIG. 12 is the insertion loss characteristic of the high frequency filter in the duplexer topology 800
  • the dotted line is the insertion loss characteristic of the high frequency filter in the duplexer topology 901 .
  • the thickness of the raised portion of the parallel resonator in the co-matching unit of the duplexer topology 901 is set to H2
  • the sub-resonance of the raised portion falls within the passband of the low-frequency filter.
  • the influence of the resonant frequency on the insertion loss characteristics of the low-frequency filter can be reduced by reducing the width of the raised portion to reduce the intensity of the sub-resonant frequency (the width of the raised portion of the co-matching unit resonator in the duplexer topology 901 is determined by H2- W2 becomes H2-W1), thereby reducing the influence of the elevated sub-resonant frequency on the insertion loss characteristic of the low-frequency filter.
  • the matching of the high-frequency filter can be
  • the thickness and width of the raised part of the parallel resonator in the unit are set to H1-W2.
  • the sub-resonant frequency of the raised part is moved to the high-frequency end until it moves out of the passband of the low-frequency filter.
  • select the appropriate width of the raised part to achieve a higher Rp value (eg H1-W2).
  • the above-mentioned setting can improve the insertion loss characteristic of the high-frequency filter to a certain extent.
  • FIG. 13 is a flowchart of a method for designing a duplexer according to an embodiment of the present invention.
  • the design index of the duplexer is determined, and the stacking of the resonators in the high-frequency filter (including the material and the thickness of each film layer) can be determined according to the design index; then, under the current stacking conditions of the resonators Determine the thickness and width of the raised part on the parallel resonator in the subsequent circuit as H2-W2 (the height of the raised part is in , the width of the raised part is between 0-15um ), and the QP of the resonator is the largest when the raised part is H2-W2.
  • the parallel resonator raised part of the co-matching unit of the high-frequency filter is also set to H2-W2;
  • the thickness of the raised part of the parallel resonator in the matching unit needs to be increased or decreased, so that the raised part resonant frequency moves to the low frequency end or the high frequency end of the passband of the low frequency filter until the raised part resonates
  • the frequencies are all moved out of the passband of the low-frequency filter, and the corresponding raised portion is Hx-W2 (for example, Hx can be H1 or H3 in Figure 4, and when the thickness of the raised portion is H1, the raised portion
  • the sub-resonant frequency is at the high-frequency end of the passband of the low-frequency filter
  • the thickness of the raised part of the parallel resonator in the co-matching unit is adjusted (adjusted to H1, H2 or H3), adjust its width and select the appropriate width of the raised part to achieve a higher Rp value.
  • the insertion loss characteristics of the high-frequency filter are improved.
  • the design method of the duplexer can effectively reduce the deterioration of the high-frequency filter in the duplexer, and at the same time, it increases the design flexibility to a certain extent.
  • An embodiment of the present invention further provides a multiplexer, the multiplexer including the above-mentioned duplexer.
  • An embodiment of the present invention further provides a communication device, where the communication device includes the above-mentioned duplexer.
  • the communication device includes the above-mentioned duplexer.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

一种双工器设计方法和双工器、多工器、通信设备。在该方法中,高频滤波器中共匹配单元中的并联谐振器和后级电路中的并联谐振器上抬高部的厚度被限定在合理的范围内,此限定条件下,在不影响低频滤波器插损时,可实现高频滤波器的插损最小恶化,并且在一定程度上增加了双工器设计的灵活性。

Description

双工器设计方法和双工器、多工器、通信设备 技术领域
本发明涉及双工器技术领域,特别地涉及一种双工器设计方法和双工器、多工器、通信设备。
背景技术
近年来的通信设备小型化和高性能趋势的加快,给射频前端提出了更高的挑战。在射频通信前端中,一方面要通过减小芯片和封装基板的尺寸来实现小型化,另一方面要通过减少损耗来源以及更好的谐振器配合设计来实现更好的性能。
普通的滤波器的一种典型结构如图1所示,图1是根据现有技术中的声波滤波器的一种结构的示意图。这种滤波器100中,输入端131和输出端132之间有电感121、122以及多个谐振器(通常称作串联谐振器)101~104,各串联谐振器的连接点与接地端之间的多个支路(通常称作并联支路)上分别设置有谐振器111~113(通常称作并联谐振器),以及电感123~125。各并联谐振器上添加有质量负载层,使并联谐振器的频率和串联谐振器的频率具有差异从而形成滤波器的通带。
双工器是异频双工电台,其作用是将发射和接收讯号相隔离,保证接收和发射都能同时正常工作,双工器由两组不同频率的带通滤波器组成。双工器设计过程中,需要考虑高频滤波器中并联谐振器的抬高部次谐振频率对低频滤波器性能的影响,若高频滤波器的第一级谐振器电路中并联谐振器的抬高部次谐振频率落在低频滤波器的通带内,则会影响低频滤波器的匹配,进而影响低频滤波器的插损特性。
发明内容
本发明提供一种双工器设计方法和双工器、多工器、通信设备,通过 对高频滤波器中并联谐振器上的抬高部的厚度和宽度进行合理的设置,可以在不影响低频滤波器插损的情况下,实现高频滤波器的插损最小恶化。
本发明的一个方面,提供了一种双工器设计方法,所述双工器中的高频滤波器包括多级谐振器电路,各所述多级谐振器电路包括共匹配单元和后级电路,共匹配单元为靠近高频滤波器输入端的第一级谐振器电路,后级电路为高频滤波器中的除第一级谐振器电路以外的其他多级谐振器电路,所述方法包括以下步骤:所述后级电路中,在全部并联谐振器顶电极的边缘设置呈环形的第一抬高部,第一抬高部设计为第一厚度,该第一厚度使得并联谐振器的QP最大,QP为并联谐振器工作在并联谐振频率时的品质因数;所述共匹配单元中,在并联谐振器的顶电极的边缘设置呈环形的第二抬高部,第二抬高部的厚度设计为所述第一厚度,判断此时若具有该第二抬高部的并联谐振器的抬高部次谐振频率未落在所述双工器中的低频滤波器的通带内,则并联谐振器选用具有第一厚度的第二抬高部;若具有该第二抬高部的并联谐振器的抬高部次谐振频率全部或部分落在低频滤波器通带内,则改变第二抬高部的厚度或者删除第二抬高部,其中,当改变第二抬高部的厚度时,将其厚度改变为第二厚度,该第二厚度使得所述并联谐振器的抬高部次谐振频率全部移至低频滤波器通带外。
可选地,在确定第一抬高部和第二抬高部的厚度后,调整第一抬高部和/或第二抬高部的宽度至限定值,以进一步改善滤波器插损特性。
本发明的另一个方面,还提供了一种双工器,包括高频滤波器和低频滤波器,高频滤波器包括多级谐振器电路,各所述多级谐振器电路包括共匹配单元和后级电路,共匹配单元为靠近高频滤波器输入端的第一级谐振器电路,后级电路为高频滤波器中的除第一级谐振器电路以外的其他多级谐振器电路;后级电路中的并联谐振器的顶电极的边缘设有呈环形的第一抬高部,共匹配单元中的并联谐振器的顶电极的边缘设有呈环形的第二抬高部,第一抬高部和第二抬高部均为第一厚度,该第一厚度使具有第二抬高部的并联谐振器的抬高部次谐振频率未落在低频滤波器的通带内。
可选地,并联谐振器还包括导电层,导电层位于所述并联谐振器的压电层与顶电极之间或压电层与底电极之间,其中,导电层的厚度小于其相接触的顶电极或底电极的厚度。
可选地,第一厚度为0埃米至3000埃米。
可选地,第一厚度与其所在的并联谐振器的底电极、压电层和顶电极分别按照声速归一化为抬高部材料的厚度之和的比值为0.01至0.3,其中,该比值的计算公式为:
Figure PCTCN2021120885-appb-000001
可选地,第一厚度与其所在的并联谐振器的底电极、压电层和顶电极分别按照声速归一化为抬高部材料的厚度之和的比值为0.03至0.25。
可选地,第一抬高部和/或第二抬高部的宽度为0微米至15微米。
本发明的又一个方面,还提供了一种双工器,包括高频滤波器和低频滤波器,高频滤波器包括多级谐振器电路,各所述多级谐振器电路包括共匹配单元和后级电路,共匹配单元为靠近高频滤波器输入端的第一级谐振器电路,后级电路为高频滤波器中的除第一级谐振器电路以外的其他多级谐振器电路;后级电路中的并联谐振器的顶电极的边缘设有呈环形的第一抬高部,共匹配单元中的并联谐振器的顶电极的边缘设有呈环形的第二抬高部,第一抬高部为第一厚度,第二抬高部为第二厚度,该第二厚度使具有第二抬高部的并联谐振器的抬高部次谐振频率全部落在低频滤波器通带外。
可选地,并联谐振器还包括导电层,导电层位于所述并联谐振器的压电层与顶电极之间或压电层与底电极之间,其中,导电层的厚度小于其相 接触的顶电极或底电极的厚度。
可选地,第一厚度为0埃米到3000埃米。
可选地,第一厚度与所在并联谐振器的底电极、压电层和顶电极分别按照声速归一化为抬高部材料的厚度之和的比值为0.01至0.3。
可选地,第一厚度与所在并联谐振器的底电极、压电层和顶电极分别按照声速归一化为抬高部材料的厚度之和的比值为0.03至0.25。
可选地,第一抬高部和/或第二抬高部的宽度为0um至15um。
本发明的又一个方面,还提供了一种多工器,包括上述双工器。
本发明的又一个方面,还提供了一种通信设备,包括上述双工器。
附图说明
为了说明而非限制的目的,现在将根据本发明的优选实施例、特别是参考附图来描述本发明,其中:
图1是根据现有技术的一种滤波器拓扑结构的示意图;
图2为顶电极边缘设置有抬高部的薄膜体声波谐振器结构示意图;
图3为图2中PP’位置的截面图;
图4为当谐振器的抬高部厚度和宽度不同时,所述谐振器的并联谐振点阻抗的关系示意图;
图5为不同抬高部厚度的体声波谐振器对应的谐振器阻抗实部频率特性曲线示意图;
图6为不同抬高部宽度的体声波谐振器对应的谐振器阻抗实部频率特性曲线示意图;
图7为本发明实施方式提供的双工器拓扑结构示意图;
图8为本发明实施方式提供的双工器的另一种拓扑结构示意图;
图9为低频端滤波器天线端反射系数曲线对比示意图;
图10为低频滤波器的插损特性曲线对比示意图;
图11为本发明实施方式提供的双工器的又一种拓扑结构示意图;
图12为高频滤波器的插损特性曲线对比图;
图13为本发明实施方式提供的双工器设计方法的流程图。
具体实施方式
本发明实施方式中,对高频滤波器中并联谐振器上的抬高部的厚度和宽度进行可限定,可以在不影响低频滤波器插损的情况下,实现高频滤波器的插损最小恶化,以下具体加以说明。
图2为顶电极边缘设置有抬高部的薄膜体声波谐振器结构示意图。图3为图2中PP’位置的截面图。如图2和图3所示,具有抬高部的谐振器包括衬底601、声学镜602、底电极603、压电薄膜层604、顶电极605和抬高部606。衬底601可选材料为单晶硅、砷化镓、蓝宝石、石英等;声学镜602示意为一空腔,其也可采用布拉格反射层及其他等效形式。底电极603的材料可选钼、钌、金、铝、镁、钨、铜、钛、铱、锇、铬或以上金属的复合或其合金等;压电薄膜层604可选单晶氮化铝、多晶氮化铝、氧化锌、PZT等材料并包含上述材料的一定原子比的稀土元素掺杂材料;顶电极605的材料可选钼、钌、金、铝、镁、钨、铜、钛、铱、锇、铬或以上金属的复合或其合金等,顶电极605包含质量负载层;抬高部606的材料可选钼、钌、金、铝、镁、钨、铜、钛、铱、锇、铬或以上金属的复合或其合金等。
其中,抬高部606的厚度H定义为在厚度方向上抬高部顶面与顶电极605内侧顶面的高度差。W为谐振器抬高部的宽度。抬高部606位于顶电极605的上方,并且在顶电极605的边缘位置。谐振器工作在串联谐振频率Fs时的阻抗为串联谐振点阻抗,工作在串联谐振频率时的品质因数为Q S;谐振器工作在并联谐振频率Fp时的阻抗为并联谐振点阻抗,工作在并联谐振频率时的品质因数为Q P;谐振器最大Q值(Q max)对应频率在 串联谐振频率和并联谐振频率之间。应用高Q值谐振器设计的滤波器具有更低的插损和更高的滚降,所以若得到更好的滤波器性能需要谐振器的Q值更高。
谐振器Q值的大小主要由谐振器能量的损耗决定,当薄膜体声波谐振器工作在活塞模式(主模)时,同时会存在横向模式(寄生模式),横向模式造成的声波泄漏是并联谐振时能量损耗的主要因素,即横向模式的声波能量泄漏越小,Q P值越高。在厚度方向上声学镜602、底电极603、压电薄膜层604和顶电极605的重叠区域为谐振器有效区,横向模式的声波从谐振器有效区的一个边缘向另一个边缘传播,当有效区内部声阻抗与有效区边缘声阻抗不匹配程度增加时,其声波能量更容易限制在谐振器内部,其Q P值也就越高。
图4为当谐振器的抬高部厚度和宽度不同时,所述谐振器的并联谐振点阻抗的关系示意图。谐振器抬高部的作用为改变谐振器有效区边缘的声阻抗,如图4所示,某一特定厚度范围内(例如0到
Figure PCTCN2021120885-appb-000002
)随着抬高部的厚度增加,厚度为图中所示的H1、H2和H3,谐振器的并联谐振点阻抗先增大后减小;在一定抬高部厚度条件下,谐振器并联谐振点阻抗值随抬高部宽度增大呈现近似周期性变化,宽度为图中的W1和W2,每一周期具有一个峰值点,抬高部宽度一般设置在0至15um之间。
通过在谐振器的顶电极连接端和非连接端设置抬高部可有效提升谐振器Q P值,在一定程度上改善了滤波器的滚降特性和插损特性,但是会在谐振器串联谐振频点以下对应频段产生抬高部次谐振。所述抬高部次谐振定义为两个设置有抬高部与不设置抬高部的相同面积的谐振器串联谐振频率对齐时,低于串联谐振频率的频率范围内上述两种谐振器的阻抗实部的差值大于某一指定值delta-Z对应的区域(例如delta-Z=0.5ohm)。
图5为不同抬高部厚度的体声波谐振器对应的谐振器阻抗实部频率特性曲线示意图。图5中实线为顶电极连接端和非连接端不设置抬高部时(抬 高部厚度H为0时)的谐振器的阻抗实部频率特性曲线;圆圈标记的实线为顶电极连接端和非连接端设置厚度为H1宽度为W1的抬高部的谐振器的阻抗实部频率特性曲线,其中A所示区域即为圆圈标记的实线所示的顶电极连接端和非连接端设置厚度为H1宽度为W2的抬高部的谐振器的抬高部次谐振;矩形标记的实线为顶电极连接端和非连接端设置厚度为H2宽度为W2的抬高部的谐振器的阻抗实部频率特性曲线,其中H2大于H1。由图5可知,随着抬高部厚度H的增加抬高部次谐振向低频端移动。
图6为不同抬高部宽度的体声波谐振器对应的谐振器阻抗实部频率特性曲线示意图。图6中实线为顶电极连接端和非连接端不设置抬高部时(抬高部宽度W为0时)的谐振器的阻抗实部频率特性曲线;圆圈标记的实线为顶电极连接端和非连接端设置抬高部厚度为H1宽度为W1的谐振器的阻抗实部频率特性曲线;矩形标记的实线为顶电极连接端和非连接端设置抬高部厚度为H1宽度为W2的谐振器的阻抗实部频率特性曲线,其中W2大于W1。由图6可知,抬高部宽度越大,抬高部次谐振阻抗峰值阻抗越大。
对于一个梯形滤波器结构,串联谐振器的Q max、Q S、以及串联谐振频点对应频率至滤波器通带左边沿对应频率之间的Q值对通带插损影响较大,Q P其次;并联谐振器的Q P和Q max对通带插损影响较大,Q S其次;即梯形滤波器中,串联谐振器和并联谐振器的性能要求不同,不同的谐振器抬高部设置对应不同的谐振器性能,通过对串并联谐振器的抬高部的厚度和宽度进行合理的设置,可提升滤波器的插损特性。进一步地,双工器设计过程中,同时要考虑高频滤波器中谐振器的抬高部次谐振频率对低频滤波器性能的影响,若高频滤波器的中第一级谐振器电路中的并联谐振器的抬高部次谐振落频率在低频滤波器的通带内,会影响低频滤波器的匹配,进而影响低频滤波器的插损特性;然而,高频滤波器中除第一级谐振器电路以外的其他谐振器电路中的并联谐振器的抬高部次谐振频率落在低频滤波器通带内时,其对低频滤波器的插损特性几乎是无影响的。因此,基于上述结论,本发明实施方式对双工器进行了重新设计,具体如下:
图7为本发明实施方式提供的双工器拓扑结构示意图。如图7所示,双工器拓扑结构800(第一实施例)包括低频滤波器和高频滤波器,低频滤波器和高频滤波器的一端与天线ANT连接,天线ANT还连接有接地电感LM,低频滤波器的另一端为信号输入(输出)端口T1,高频滤波器的另一端为信号输出(输入)端口T2。在高频滤波器中,输入端和输出端分别包括电感L1和电感L2,该高频滤波器包括4级谐振器电路,第一级谐振器电路(靠近天线ANT一端)为高频滤波器的共匹配单元,其余3级谐振器电路为高频滤波器的后级电路。共匹配单元中的并联谐振器P1-Hx-W2抬高部厚度和宽度分别设置为Hx和W2,后级电路中并联谐振器P2-H2-W2、并联谐振器P3-H2-W2和并联谐振器P4-H2-W2的抬高部厚度和宽度均设置为H2和W2。
图8为本发明实施方式提供的双工器的另一种拓扑结构示意图。图8所示的双工器拓扑结构900(第一对比例)与图7所示的双工器拓扑结构800相比,两者的不同之处在于:双工器拓扑结构900中高频滤波器的共匹配单元的并联谐振器的抬高部的厚度和宽度分别设置为H2和W2,即与共匹配单元中的并联谐振器为同一厚度和宽度。
图9为低频端滤波器天线端反射系数曲线对比示意图。图9中粗实线为双工器拓扑结构800中低频滤波器天线端的反射系数曲线,虚线为双工器拓扑结构900中低频滤波器天线端的发射系数曲线,细实线为双工器拓扑结构900的共匹配单元中并联谐振器的阻抗频率特性曲线,圆圈R标注位置为所述共匹配单元中并联谐振器的抬高部次谐振。由图9可知,当所述共匹配单元中并联谐振器的抬高部设置为H2-W2时,其抬高部次谐振频率落在了低频滤波器的通带内,从而导致对应频段反射系数严重恶化。
图10为低频滤波器的插损特性曲线对比示意图。图10中实线为双工器拓扑结构800中低频滤波器的插损特性,虚线为双工器拓扑结构900中低频滤波器的插损特性。由图10可知,当所述共匹配单元中并联谐振器 的抬高部设置为H2-W2时,共匹配单元中并联谐振器的抬高部次谐振频率落在了低频滤波器通带内,从而导致对应频段反射系数严重恶化,进而导致对应频段插损特性恶化进1dB。
由图9和图10所示的内容可知,高频滤波器共匹配单元中并联谐振器的抬高部厚度Hx与后级电路中并联谐振器抬高部的厚度H2设置为相同时,如果共匹配单元中并联谐振器的抬高部的次谐振频率没有落在低频滤波器的通带内,那么共匹配单元中并联谐振器的抬高部厚度Hx可以选用厚度H2,即双工器拓扑结构900所示的结构;如果共匹配单元中并联谐振器的抬高部的次谐振频率落在了低频滤波器的通带内,此时对低频滤波器的性能影响较大,因此,需要继续调整抬高部厚度Hx的厚度,使共匹配单元中并联谐振器的抬高部的次谐振频率落在低频滤波器的通带之外。调节抬高部厚度Hx的方式为,将Hx减小至H1或增大至H3,使得所述并联谐振器的抬高部次谐振频率刚好全部移出低频滤波器通带外,此时,可以选定抬高部厚度Hx为H1或H3。
图11为本发明实施方式提供的双工器的又一种拓扑结构示意图。如图11所示,双工器拓扑结构901(第二对比例)与双工器拓扑结构900相比,两者的区别在于:在双工器拓扑结构901中,高频滤波器中的共匹配单元的并联谐振器的抬高部的厚度和宽度分别设置为H2和W1。
图12为高频滤波器的插损特性曲线对比图。图12中实线为双工器拓扑结构800中高频滤波器的插损特性,虚线为双工器拓扑结构901中高频滤波器的插损特性。双工器拓扑结构901的共匹配单元中的并联谐振器抬高部厚度设置为H2时,其抬高部的次谐振落在了低频滤波器通带内,为了减小所述抬高部次谐振频率对低频滤波器插损特性的影响,可通过减小抬高部的宽度来减小所述次谐振频率的强度(双工器拓扑结构901中共匹配单元谐振器抬高部宽度由H2-W2变为H2-W1),进而减小所述抬高部次谐振频率对低频滤波器插损特性的影响。但是,由图4所示的并联谐振点阻抗的关系示意图可知,随着谐振器抬高部宽度的减小,谐振器的并联谐 振频点阻抗也会随之减小,进而影响高频端滤波器的插损特性。为了实现高频滤波器共匹配单元中并联谐振器不影响低频滤波器插损的前提下,而尽可能减小高频滤波器插损的恶化的目的,可将所述高频滤波器的匹配单元中并联谐振器的抬高部厚度和宽度设置为H1-W2,通过减小抬高部厚度将抬高部次谐振频率向高频端移动,直到移出低频滤波器通带以外,再在当前抬高部厚度下选择合适的抬高部宽度实现较高的Rp值(例如H1-W2)。如图12所示,通过上述设置可在一定程度上提升高频滤波器的插损特性。
图13为本发明实施方式提供的双工器设计方法的流程图。如图13所示,首先,确定双工器的设计指标,高频滤波器中谐振器的层叠(包括材料和各膜层厚度)可根据设计指标进行确定;然后,在当前谐振器层叠条件下确定后级电路中并联谐振器上抬高部的厚度和宽度为H2-W2(抬高部厚度在
Figure PCTCN2021120885-appb-000003
之间,抬高部宽度在0-15um之间),抬高部为H2-W2时谐振器的Q P最大。
判断共匹配单元中的并联谐振器抬高部为H2-W2时,其抬高部次谐振频率是否全部或部分落在低频滤波器通带内;如果抬高部次谐振频滤没有落在低频滤波器通带内,那么高频滤波器中共匹配单元的并联谐振器抬高部也设置为H2-W2;如果抬高部次谐振频滤全部或部分落在低频滤波器通带内,那么共匹配单元中的并联谐振器的抬高部厚度需要增大或减小,使其抬高部次谐振频率向低频滤波器通带的低频端或高频端移动,直到所述抬高部次谐振频率全部移至低频滤波器通带外,此时对应的抬高部为Hx-W2(例如Hx可为图4中的H1或H3,所述抬高部厚度为H1时,所述抬高部次谐振频率在低频滤波器通带的高频端,所述抬高部厚度为H3时,所述抬高部次谐振频率在低频滤波器通带的低频端)。当共匹配单元中并联谐振器的抬高部厚度调整完成后(调整至H1、H2或H3),在对其宽度进行调整,选择合适的抬高部宽度实现较高的Rp值,可在一定程度上提升高频滤波器的插损特性。此双工器的设计方法可有效的减小双工器中高频滤波器的恶化,同时,在一定程度上增加了设计的灵活性。
本发明实施方式还提供一种多工器,该多工器包括上述双工器。通过对双工器中高频滤波器的谐振器抬高部的厚度和宽度进行合理的设置,可在不影响低频滤波器插损的前提下实现高频滤波器插损的最小恶化。
本发明实施方式还提供一种通信设备,该通信设备包括上述双工器。通过对双工器中高频滤波器的谐振器抬高部的厚度和宽度进行合理的设置,可在不影响低频滤波器插损的前提下实现高频滤波器插损的最小恶化。
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,取决于设计要求和其他因素,可以发生各种各样的修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。

Claims (16)

  1. 一种双工器设计方法,所述双工器中的高频滤波器包括多级谐振器电路,各所述多级谐振器电路包括共匹配单元和后级电路,共匹配单元为靠近高频滤波器输入端的第一级谐振器电路,后级电路为高频滤波器中的除第一级谐振器电路以外的其他多级谐振器电路,其特征在于,所述方法包括以下步骤:
    所述后级电路中,在全部并联谐振器顶电极的边缘设置呈环形的第一抬高部,第一抬高部设计为第一厚度,该第一厚度使得并联谐振器的Q P最大,Q P为并联谐振器工作在并联谐振频率时的品质因数;
    所述共匹配单元中,在并联谐振器的顶电极的边缘设置呈环形的第二抬高部,第二抬高部的厚度设计为所述第一厚度,判断此时若具有该第二抬高部的并联谐振器的抬高部次谐振频率未落在所述双工器中的低频滤波器的通带内,则并联谐振器选用具有第一厚度的第二抬高部;若具有该第二抬高部的并联谐振器的抬高部次谐振频率全部或部分落在低频滤波器通带内,则改变第二抬高部的厚度或者删除第二抬高部,其中,当改变第二抬高部的厚度时,将其厚度改变为第二厚度,该第二厚度使得所述并联谐振器的抬高部次谐振频率全部移至低频滤波器通带外。
  2. 根据权利要求1所述的方法,其特征在于,在确定第一抬高部和第二抬高部的厚度后,调整第一抬高部和/或第二抬高部的宽度至限定值,以进一步改善滤波器插损特性。
  3. 一种双工器,包括高频滤波器和低频滤波器,高频滤波器包括多级谐振器电路,各所述多级谐振器电路包括共匹配单元和后级电路,共匹配单元为靠近高频滤波器输入端的第一级谐振器电路,后级电路为高频滤波器中的除第一级谐振器电路以外的其他多级谐振器电路,其特征在于;
    后级电路中的并联谐振器的顶电极的边缘设有呈环形的第一抬高部,共匹配单元中的并联谐振器的顶电极的边缘设有呈环形的第二抬高部,第一抬高部和第二抬高部均为第一厚度,该第一厚度使具有第二抬高部的并 联谐振器的抬高部次谐振频率未落在低频滤波器的通带内。
  4. 根据权利要求3所述的双工器,其特征在于,并联谐振器还包括导电层,导电层位于所述并联谐振器的压电层与顶电极之间或压电层与底电极之间,其中,导电层的厚度小于其相接触的顶电极或底电极的厚度。
  5. 根据权利要求3所述的双工器,其特征在于,第一厚度为0埃米至3000埃米。
  6. 根据权利要求3所述的双工器,其特征在于,第一厚度与其所在的并联谐振器的底电极、压电层和顶电极分别按照声速归一化为抬高部材料的厚度之和的比值为0.01至0.3。
  7. 根据权利要求6所述的双工器,其特征在于,第一厚度与其所在的并联谐振器的底电极、压电层和顶电极分别按照声速归一化为抬高部材料的厚度之和的比值为0.03至0.25。
  8. 根据权利要求3所述的双工器,其特征在于,第一抬高部和/或第二抬高部的宽度为0微米至15微米。
  9. 一种双工器,包括高频滤波器和低频滤波器,高频滤波器包括多级谐振器电路,各所述多级谐振器电路包括共匹配单元和后级电路,共匹配单元为靠近高频滤波器输入端的第一级谐振器电路,后级电路为高频滤波器中的除第一级谐振器电路以外的其他多级谐振器电路,其特征在于;
    后级电路中的并联谐振器的顶电极的边缘设有呈环形的第一抬高部,共匹配单元中的并联谐振器的顶电极的边缘设有呈环形的第二抬高部,第一抬高部为第一厚度,第二抬高部为第二厚度,该第二厚度使具有第二抬高部的并联谐振器的抬高部次谐振频率全部落在低频滤波器通带外。
  10. 根据权利要求9所述的双工器,其特征在于,并联谐振器还包括 导电层,导电层位于所述并联谐振器的压电层与顶电极之间或压电层与底电极之间,其中,导电层的厚度小于其相接触的顶电极或底电极的厚度。
  11. 根据权利要求9所述的双工器,其特征在于,第一厚度为0埃米到3000埃米。
  12. 根据权利要求9所述的双工器,其特征在于,第一厚度与所在并联谐振器的底电极、压电层和顶电极分别按照声速归一化为抬高部材料的厚度之和的比值为0.01至0.3。
  13. 根据权利要求12所述的双工器,其特征在于,第一厚度与所在并联谐振器的底电极、压电层和顶电极分别按照声速归一化为抬高部材料的厚度之和的比值为0.03至0.25。
  14. 根据权利要求9所述的双工器,其特征在于,第一抬高部和/或第二抬高部的宽度为0um至15um。
  15. 一种多工器,其特征在于,包括如权利要求3至8中任一项所述的双工器或包括如权利要求9至14中任一项所述的双工器。
  16. 一种通信设备,其特征在于,包括如权利要求3至8中任一项所述的双工器或包括如权利要求9至14中任一项所述的双工器。
PCT/CN2021/120885 2020-09-29 2021-09-27 双工器设计方法和双工器、多工器、通信设备 WO2022068766A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011055201.3 2020-09-29
CN202011055201.3A CN112187213B (zh) 2020-09-29 2020-09-29 双工器设计方法和双工器、多工器、通信设备

Publications (1)

Publication Number Publication Date
WO2022068766A1 true WO2022068766A1 (zh) 2022-04-07

Family

ID=73946059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120885 WO2022068766A1 (zh) 2020-09-29 2021-09-27 双工器设计方法和双工器、多工器、通信设备

Country Status (2)

Country Link
CN (1) CN112187213B (zh)
WO (1) WO2022068766A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112187213B (zh) * 2020-09-29 2021-06-01 诺思(天津)微系统有限责任公司 双工器设计方法和双工器、多工器、通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080055021A1 (en) * 2006-09-01 2008-03-06 Fujitsu Media Limited Acoustic wave device, filter and duplexer
CN105610407A (zh) * 2014-11-14 2016-05-25 太阳诱电株式会社 压电薄膜谐振器、滤波器和双工器
CN110868184A (zh) * 2019-04-23 2020-03-06 中国电子科技集团公司第十三研究所 体声波谐振器和半导体器件
CN111010119A (zh) * 2019-08-15 2020-04-14 天津大学 带复合环形结构的谐振器、滤波器及电子设备
CN112187213A (zh) * 2020-09-29 2021-01-05 诺思(天津)微系统有限责任公司 双工器设计方法和双工器、多工器、通信设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186525A (ja) * 2004-12-27 2006-07-13 Ngk Spark Plug Co Ltd フィルタ装置、デュプレクサ装置
JP2007060411A (ja) * 2005-08-25 2007-03-08 Fujitsu Media Device Kk 分波器
JP5322597B2 (ja) * 2008-11-13 2013-10-23 太陽誘電株式会社 共振子、フィルタ、デュープレクサおよび電子装置
CN103281050A (zh) * 2013-06-17 2013-09-04 天津大学 薄膜体声波滤波器
CN103532516B (zh) * 2013-08-05 2017-10-24 天津大学 体波谐振器及其制造方法
JP6589824B2 (ja) * 2016-11-04 2019-10-16 株式会社村田製作所 マルチプレクサ
CN111355464A (zh) * 2018-12-20 2020-06-30 天津大学 基于环形凸起调整有效机电耦合系数的装置
CN110061712B (zh) * 2018-12-26 2023-10-20 天津大学 包括环形凸起梁檐结构的声学谐振器、滤波器和电子设备
CN109889178B (zh) * 2018-12-26 2023-07-04 天津大学 体声波谐振器
CN109889179A (zh) * 2018-12-26 2019-06-14 天津大学 谐振器和梯形滤波器
CN111162748B (zh) * 2019-10-23 2021-06-01 诺思(天津)微系统有限责任公司 电极具有空隙层的体声波谐振器、滤波器及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080055021A1 (en) * 2006-09-01 2008-03-06 Fujitsu Media Limited Acoustic wave device, filter and duplexer
CN105610407A (zh) * 2014-11-14 2016-05-25 太阳诱电株式会社 压电薄膜谐振器、滤波器和双工器
CN110868184A (zh) * 2019-04-23 2020-03-06 中国电子科技集团公司第十三研究所 体声波谐振器和半导体器件
CN111010119A (zh) * 2019-08-15 2020-04-14 天津大学 带复合环形结构的谐振器、滤波器及电子设备
CN112187213A (zh) * 2020-09-29 2021-01-05 诺思(天津)微系统有限责任公司 双工器设计方法和双工器、多工器、通信设备

Also Published As

Publication number Publication date
CN112187213A (zh) 2021-01-05
CN112187213B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
US6862441B2 (en) Transmitter filter arrangement for multiband mobile phone
US7825747B2 (en) Thin-film BAW filter, and a method for production of a thin-film BAW filter
JP4144509B2 (ja) ラダー型フィルタ、分波器、通信装置
KR100825899B1 (ko) 결합 벌크음향파 공진기에 기반한 송수 전환기
US7646265B2 (en) BAW resonator filter bandwidth and out-of-band frequency rejection
US8164398B2 (en) Resonator, filter and electronic device
JP2003022074A (ja) 薄膜バルク波音響共振器アレイの製造方法及び送受切換器
WO2022022438A1 (zh) 滤波器设计方法和滤波器、多工器、通信设备
JP4468185B2 (ja) 等しい共振周波数を有する共振器フィルタ構造体
CN111917392A (zh) 压电滤波器及其带外抑制改善方法、多工器、通信设备
JP2006513662A5 (zh)
CN112398460B (zh) 多工器和通讯设备
US20050073375A1 (en) Single chip-type film bulk acoustic resonator duplexer
CN115473509A (zh) 滤波器、多工器和电子设备
WO2022068766A1 (zh) 双工器设计方法和双工器、多工器、通信设备
US20120200195A1 (en) Acoustic wave device
WO2021136282A1 (zh) 一种滤波器、信号处理设备及制造所述滤波器的方法
CN111817687B (zh) 滤波器设计方法和滤波器、多工器、通信设备
JP2002344349A (ja) 薄膜圧電共振器を用いた送受切換器
CN215344517U (zh) 宽带滤波器和多工器以及电子设备
WO2004066494A1 (en) Resonator filter structure with improved balance
JP2009182368A (ja) 送受切換器
WO2022179619A1 (zh) 双工器、抑制双工器高次谐振的方法以及电子设备
US11923827B2 (en) Bulk acoustic wave resonator stacked onto an integrated passive device
CN112332800A (zh) 梯形结构的体声波滤波器以及多工器和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874426

Country of ref document: EP

Kind code of ref document: A1